CN113019394B - 氨分解制氢Ni-Pt/CeO2催化剂及其制备方法和应用 - Google Patents

氨分解制氢Ni-Pt/CeO2催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN113019394B
CN113019394B CN202110305657.9A CN202110305657A CN113019394B CN 113019394 B CN113019394 B CN 113019394B CN 202110305657 A CN202110305657 A CN 202110305657A CN 113019394 B CN113019394 B CN 113019394B
Authority
CN
China
Prior art keywords
ceo
catalyst
carrier
roasting
ammonia decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110305657.9A
Other languages
English (en)
Other versions
CN113019394A (zh
Inventor
江莉龙
范晓双
陈崇启
罗宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuda Zijin Hydrogen Energy Technology Co ltd
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202110305657.9A priority Critical patent/CN113019394B/zh
Publication of CN113019394A publication Critical patent/CN113019394A/zh
Application granted granted Critical
Publication of CN113019394B publication Critical patent/CN113019394B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/047Decomposition of ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明提供了一种氨分解制氢Ni‑Pt/CeO2催化剂及其制备方法和应用,属氨分解制氢技术领域。该催化剂包括活性组分和载体,所述活性组分为Ni和Pt,载体为CeO2;采用等体积浸渍法制备,首先将Ce3+盐在350℃焙烧制得CeO2载体,然后将载体分散于氯铂酸溶液中进行浸渍,所得产物经干燥、焙烧制得Pt/CeO2,最后将Pt/CeO2分散于镍金属盐溶液中进行浸渍,所得产物经干燥、焙烧制得Ni‑Pt/CeO2双金属催化剂。与Ni/CeO2催化剂相比,本发明通过引入少量贵金属Pt制备双金属Ni‑Pt催化剂,可以显著提高其氨分解反应活性,达到较好的氨分解效果。

Description

氨分解制氢Ni-Pt/CeO2催化剂及其制备方法和应用
技术领域
本发明涉及氨分解制氢技术领域,具体涉及一种氨分解制氢Ni-Pt/CeO2双金属催化剂及其制备方法和应用。
背景技术
氢气(H2)作为一种环境友好、高能高效的能源载体,有望成为未来能源体系的核心。目前氢气制取的主流工艺有两种,一种是碳氢化合物气化或重整,然而由于碳氢化合物中含有碳,生产过程中无法避免CO等副产物的产生;另一种是电解水制氢,电解水制氢虽然工艺流程简单,安全无污染,但是耗电量非常大,能耗高。NH3分解制氢(2NH3(g) → 3H2(g)+ N2(g) ΔH0 = 46.1 kJ/mol)因操作简单、成本相对较低而受到广泛关注。由于氨分解产生的氮气为化学惰性,避免了使用含碳原料生产的氢气中普遍存在的COx对电池电极的毒害作用,满足质子交换膜燃料电池(PEMFC)工作要求。因此,氨分解制氢是化学工业制取洁净氢气的一个重要反应,而其应用的关键是氨分解催化剂的开发。
中国专利文献CN1245737A公开了一种镍基氨分解制氢氮混合气催化剂,其主要活性成分为Ni和Mo;载体为MgO或Al2O3;其中镍重量百分比为0.5~16%,钼重量百分比为3~21%,载体余量。采用该催化剂可以进行氨气分解,但只有当反应温度高达650℃才有较高的氨转化率,在较低温度下的催化活性不高,氨气的分解效果欠佳,且该催化剂使用的空速仅为1800 h-1,氨气处理效率较低。
中国专利文献CN1772614A公开了一种镍基氨分解制氢氮混合气催化剂,其主要活性成分为Ni;载体为ZrO2或Al2O3;助剂为La2O3或CeO2;其中镍重量百分含量为10~70%。采用该催化剂可以进行氨气分解,且该催化剂的使用温度为550 ℃,较现有的工业催化剂工作温度800 ℃有所降低,但是当Ni的负载量高达60%时,才有较高的氨分解转化率。
目前,氨分解催化剂依然存在活性组分负载量较大,低温催化活性低,氨气处理效率低等问题。针对以上问题,本发明目的在于以CeO2为载体,通过引入Pt金属来提高Ni基氨分解反应的活性,并通过降低Ni和Pt的负载量达到节约成本的目的,从而提供一种具有高活性、金属负载量低、适用温区宽和耐热稳定性优异的氨分解催化剂制备工艺。
发明内容
本发明公开了一种用于氨分解制氢反应的Ni-Pt/CeO2催化剂,包括活性组分和载体,活性组分为Ni和Pt,载体为CeO2;以质量百分比计,金属Pt含量为0.03~1.0 wt.%,金属Ni含量为2.0~6.0 wt.%。具体制备步骤如下:
首先,将金属铈盐在空气气氛中,350℃焙烧2h制得CeO2载体;
进一步,室温下,采用等体积浸渍法,将CeO2载体加入氯铂酸溶液中进行浸渍,所得产物经80℃干燥12h、焙烧,得到Pt/CeO2
再进一步,将Pt/CeO2加入金属镍盐溶液中进行等体积浸渍,所得产物经120 ℃干燥、一定温度焙烧制得Ni-Pt/CeO2催化剂。
优选的,所述金属铈盐选自Ce(NO3)3∙6H2O、(NH4)2Ce(NO3)6、Ce2(SO4)3·8H2O和Ce(SO4)2·4H2O中的至少一种;
优选的,所述金属镍盐选自醋酸镍、硝酸镍和氯化镍中的至少一种;
优选的,步骤(2)所述焙烧温度为700~900 ℃,焙烧时间10~14 h;
优选的,步骤(3)所述的焙烧温度为300~500℃,焙烧时间1~4 h。
应用:所述Ni-Pt/CeO2双金属催化剂用于催化氨分解制氢。
与现有技术相比,本发明的优点在于:
Ni-Pt/CeO2氨分解催化剂的活性组分为Ni和Pt,CeO2为载体,在还原性气氛中CeO2中Ce4+可转化为Ce3+,从而获得氧空位,有利于增强活性组分与CeO2载体间的相互作用,提高催化剂活性;本发明通过在制备CeO2过程添加微量的Pt,使CeO2载体的颗粒尺寸减小,经还原后CeO2表面氧空位浓度增大,从而获得更多的Ni-CeO2界面以及更强的Ni-CeO2相互作用,进而影响催化剂氨分解反应性能;同时Pt的添加,有利于显著降低Ni的负载量,达到节约成本的目的,从而提供一种具有高活性、低金属负载量、适用温区宽和耐热稳定性优异的氨分解催化剂制备工艺。
此外,微量Pt的添加,起到改性载体CeO2的作用,进而提高负载Ni催化剂的氨分解活性;随着Pt含量的增加,Ni和Pt可构成双金属活性中心,由于Ni和Pt与反应物NH3分子的键合能力不同,即Ni-N和Pt-N化学键的键能不同,将Ni和Pt进行复合有利于获得适中的金属-N化学键,有利于氨分解反应物NH3的解离和产物N2分子的脱附,提高催化剂的氨分解性能。
根据本发明Ni-Pt/CeO2催化剂的制备方法,通过将金属Pt和活性组分Ni依次浸渍到CeO2载体上,该制备方法工艺简单,操作方便,只需要一般的催化剂制备条件;且相对于负载型贵金属催化剂,该制备方法所需贵金属含量比较低,更为经济。
附图说明
图1为本发明实施例5和对比例样品的H2-TPR谱图。由图1a可见,添加微量Pt后,Pt/CeO2在360℃左右出现一个明显的还原峰,可归属为CeO2表面Ce4+还原为Ce3+并产生氧空位;由图1b可以看出,与对比例的Ni/CeO2催化剂相比,实施例5的Ni-Pt/CeO2催化剂归属于Ni 物种的还原峰(50~350℃)峰温较低,说明Ni与载体间存在更强的相互作用,更容被还原。
图2为本发明实施例5和对比例样品的XRD图谱。由图2可见,实施例5样品的CeO2衍射峰,强度较小,半峰宽较窄,说明Pt的加入有利于获得较小的CeO2晶粒尺寸。实施例5的Ni-Pt/CeO2和对比例的Ni/CeO2催化剂CeO2的晶粒尺寸分别为52.8和109.7 nm。
具体实施方式
本发明将通过以下实施例和对比例更详细地描述,但不限于这些实施例。
制备CeO2载体:
将Ce(NO3)3∙6H2O粉末在静态空气气氛中,350℃下焙烧2 h制得CeO2载体。
氯铂酸溶液:
称取0.9773g H2PtCl6∙6H2O溶于10 mL浓度为6 mol/L的浓盐酸中,制得氯铂酸溶液。
实施例1:
称取4.8 g CeO2载体,称量0.1328 g 氯铂酸溶液并用3.5 mL去离子水稀释,然后加入CeO2载体进行等体积浸渍;产物在80℃下干燥12 h后,在空气气氛中800℃下焙烧12h,制得Pt/CeO2
称取0.7432 g Ni(NO3)2·6H2O溶于3.5 mL去离子水中,采用等体积浸渍法负载于上述Pt/CeO2上;然后在120℃下干燥2 h后,在空气气氛中400℃焙烧2 h,即得Ni-Pt/CeO2催化剂。
实施例2:
称取4.825 g CeO2载体,称量0.8460 g氯铂酸溶液并用3.5 mL去离子水稀释,然后加入CeO2载体进行等体积浸渍;产物在80℃下干燥12 h后,在空气气氛中800℃下焙烧12h,得到 Pt/CeO2
称取0.7432 g Ni(NO3)2·6H2O溶于3.5 mL去离子水中,采用等体积浸渍法负载于上述Pt/CeO2上;然后在120℃下干燥2 h后,在空气气氛中400℃焙烧2 h,即得Ni-Pt/CeO2催化剂。
实施例3:
称取4.835 g CeO2载体,称量0.5074 g氯铂酸溶液并用3.5 mL去离子水稀释,然后加入CeO2载体进行等体积浸渍;产物在80℃下干燥12 h后,在空气气氛中800℃下焙烧12h,制得Pt/CeO2
称取0.7432 g Ni(NO3)2·6H2O溶于3.5 mL去离子水中,采用等体积浸渍法负载于上述Pt/CeO2上;然后在120℃下干燥2 h后,在空气气氛中400℃焙烧2 h,即得Ni-Pt/CeO2催化剂。
实施例4:
称取4.845 g CeO2载体,称量0.1691g氯铂酸溶液并用3.5 mL去离子水稀释,然后加入CeO2载体进行等体积浸渍;产物在80℃下干燥12 h后,在空气气氛中800℃下焙烧12h,制得Pt/CeO2
称取0.7432 g Ni(NO3)2·6H2O溶于3.5 mL去离子水中,采用等体积浸渍法负载于上述Pt/CeO2上;然后在120℃下干燥2 h后,在空气气氛中400℃焙烧2 h,即得Ni-Pt/CeO2催化剂。
实施例5:
称取4.8475 g CeO2载体,称量0.0846 g氯铂酸溶液并用3.5 mL去离子水稀释,然后加入CeO2载体进行等体积浸渍;产物在80℃下干燥12 h后,在空气气氛中800℃下焙烧12h,制得Pt/CeO2
称取0.7432 g Ni(NO3)2·6H2O溶于3.5 mL去离子水中,采用等体积浸渍法负载于上述Pt/CeO2上;然后在120℃下干燥2 h后,在空气气氛中400℃焙烧2 h,即得Ni-Pt/CeO2催化剂。
实施例6:
称取4.8485 g CeO2载体,称量0.0507 g氯铂酸溶液并用3.5 mL去离子水稀释,然后加入CeO2载体进行等体积浸渍;产物在80℃下干燥12 h后,在空气气氛中800℃下焙烧12h,制得Pt/CeO2
称取0.7432 g Ni(NO3)2·6H2O溶于3.5 mL去离子水中,采用等体积浸渍法负载于上述Pt/CeO2上;然后在120℃下干燥2 h后,在空气气氛中400℃焙烧2 h,即得Ni-Pt/CeO2催化剂。
对比例:
称取4.85 g CeO2载体在空气气氛中800℃焙烧12 h获得CeO2载体;然后称取0.7432 g Ni(NO3)2·6H2O溶于3.5 mL去离子水中,采用等体积浸渍法负载于CeO2载体中,在120℃下干燥2 h后,在空气气氛中400℃焙烧2 h,经压片成型即得Ni/CeO2催化剂。
H2程序升温还原测试在美国Micromeritics公司生产的AutoChem Ⅱ 2920型全自动化学吸附仪上进行。称取50 mg催化剂,10 vol.% H2/Ar气氛中,以10℃min-1的升温速率将催化剂从室温加热至900℃;测量前,样品经高纯Ar,300℃下吹扫30 min。
XRD测试在配备X’Celerator探测器的X’pert Pro粉末衍射仪(荷兰Panalytical公司)上进行,测试前样品经还原3 h。采用Cu Kα辐射(λ = 0.154 06 nm),工作电压45 kV,工作电流40 mA,测试范围为:2θ=20-100°。
活性测试条件:原料气为纯氨,催化剂经500℃预还原3 h。测试空速30 000 mL·g-1·h-1,测试温区为600~800℃。
催化剂的活性用NH3分解率表示,氨分解率=(初始氨含量-处理后氨含量)/初始氨含量*100%。
以NH3分解率表示催化活性,实施例及对比例的活性评价结果如下表:
表1 实施例及对比例的金属含量
Figure DEST_PATH_IMAGE002
表2 实施例及对比例的活性评价结果
Figure DEST_PATH_IMAGE004
由表2可知,本发明的Ni-Pt/CeO2催化剂在低温区有较高的氨分解率;添加微量Pt(实施例6,Pt含量0.03%)后,催化剂在低温区即可获得较高的氨分解率;进一步提高Pt含量至1.0%,由于Ni-Pt双金属的共同作用,催化剂低温氨分解活性进一步提高。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (6)

1. 一种用于氨分解制氢Ni-Pt/CeO2双金属催化剂的制备方法,其特征在于,所述Ni-Pt/CeO2双金属催化剂包括活性组分和载体,活性组分为Ni和Pt,载体为CeO2;以质量百分比计,金属Pt含量为0.03~1.0 wt.%,金属Ni含量为2.0~6.0 wt.%;
所述的用于氨分解制氢Ni-Pt/CeO2双金属催化剂的制备方法,包括以下步骤:
(1)将金属铈盐在空气气氛中,350℃焙烧2h制得CeO2载体;
(2)室温下,采用等体积浸渍法,将CeO2载体加入氯铂酸溶液中进行浸渍,所得产物经80℃干燥12h、焙烧,得到Pt/CeO2
(3)进一步,将Pt/CeO2加入金属镍盐溶液中进行浸渍,所得产物经120 ℃干燥、焙烧制得Ni-Pt/CeO2催化剂。
2.根据权利要求1所述的制备方法,其特征在于:所述金属铈盐为Ce(NO3)3∙6H2O、(NH4)2Ce(NO3)6、Ce2(SO4)3·8H2O和Ce(SO4)2·4H2O中的至少一种。
3.根据权利要求1所述的制备方法,其特征在于:所述金属镍盐为醋酸镍、硝酸镍和氯化镍中的至少一种。
4. 根据权利要求1所述的制备方法,其特征在于:步骤(2)所述焙烧温度为700~900℃,焙烧时间10~14 h。
5. 根据权利要求1所述的制备方法,其特征在于:步骤(3)所述的焙烧温度为300~500℃,焙烧时间1~4 h。
6.根据权利要求1–5任一项所述的制备方法制备得到的催化剂在氨分解中的应用。
CN202110305657.9A 2021-03-23 2021-03-23 氨分解制氢Ni-Pt/CeO2催化剂及其制备方法和应用 Active CN113019394B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110305657.9A CN113019394B (zh) 2021-03-23 2021-03-23 氨分解制氢Ni-Pt/CeO2催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110305657.9A CN113019394B (zh) 2021-03-23 2021-03-23 氨分解制氢Ni-Pt/CeO2催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113019394A CN113019394A (zh) 2021-06-25
CN113019394B true CN113019394B (zh) 2022-05-27

Family

ID=76472748

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110305657.9A Active CN113019394B (zh) 2021-03-23 2021-03-23 氨分解制氢Ni-Pt/CeO2催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113019394B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116273031A (zh) * 2023-02-23 2023-06-23 福州大学 一种氨分解制氢催化剂的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101147863A (zh) * 2007-11-06 2008-03-26 华东师范大学 一种整体式氨分解制氢催化剂
CN109529865A (zh) * 2018-11-22 2019-03-29 福州大学化肥催化剂国家工程研究中心 一种钌基氨分解制氢催化剂及其制备方法与应用
CN110270341B (zh) * 2019-06-19 2021-01-01 福州大学 一种催化剂及其制备方法和应用
CN110270338B (zh) * 2019-06-20 2021-03-12 福州大学 一种镍和/或钌系氨分解催化剂及其制备方法和应用
CN110482489A (zh) * 2019-09-23 2019-11-22 安徽工业大学 一种用Ni-Pt催化剂可见光催化氨硼烷脱氢的方法

Also Published As

Publication number Publication date
CN113019394A (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
CN106784895A (zh) 一种基于Zr‑MOF结构的CO选择性甲烷化Ni/ZrO2催化剂及其制备方法
CN113058595A (zh) 一种Ru基氨分解制氢催化剂及其制备方法
CN112647095B (zh) 原子级分散的双金属位点锚定的氮掺杂碳材料及其制备和应用
CN112687900B (zh) 一种电能-增值化学品共生燃料电池及其制备方法
Lin et al. A review on catalysts for electrocatalytic and photocatalytic reduction of N 2 to ammonia
WO2014119707A1 (ja) 固体高分子形燃料電池用の触媒及びその製造方法
Yousaf et al. Synergistic effect of interfacial phenomenon on enhancing catalytic performance of Pd loaded MnO x–CeO 2–C hetero-nanostructure for hydrogenation and electrochemical reactions
Wu et al. Metal-organic frameworks-derived hierarchical Co3O4/CoNi-layered double oxides nanocages with the enhanced catalytic activity for toluene oxidation
TWI474547B (zh) 電催化觸媒及包含其之燃料電池
CN105618065A (zh) 一种催化剂在肼分解制氢中的应用
Sun et al. Ni-Fe bimetallic hexaaluminate for efficient reduction of O2-containing CO2 via chemical looping
CN113019394B (zh) 氨分解制氢Ni-Pt/CeO2催化剂及其制备方法和应用
Min et al. Boosting the VOCs purification over high-performance α-MnO2 separated from spent lithium-ion battery: Synergistic effect of metal doping and acid treatment
Li et al. Boosted N2 activation through 4f–2p–3d orbital hybridization for efficient nitrate electrosynthesis
Fang et al. Combining molybdenum carbide with ceria overlayers to boost Mo/CeO2 catalyzed ammonia synthesis
CN112909272A (zh) 一种构建双金属活性位点的非贵金属氧还原反应催化剂的制备方法
Song et al. Metal doping promotes the efficient electrochemical reduction of CO2 to CO in CuO nanosheets
You et al. Pd/CNT with controllable Pd particle size and hydrophilicity for improved direct synthesis efficiency of H 2 O 2
KR101994088B1 (ko) 팔라듐계 연료전지용 촉매의 제조방법 및 이에 의해 제조된 팔라듐계 연료전지용 촉매
CN114602496A (zh) 纳米碳负载的铂铁双金属催化剂及其制备方法和在富氢气氛下co选择性氧化反应中的应用
Yin et al. A simple hydrothermal synthesis of an oxygen vacancy-rich MnMoO 4 rod-like material and its highly efficient electrocatalytic nitrogen reduction
CN106140169A (zh) 一种二甲醚水蒸气重整制氢结构化催化剂及其制备方法和应用
CN111686723A (zh) 一种用于甲烷催化燃烧的含铱双金属催化剂及其制备方法
CN114807968B (zh) 一种偏磷酸盐负载的磷化钌催化材料的制备方法及在电催化全解水中的应用
CN114308057B (zh) 乙酸自热重整制氢用钨锰矿型氧化物负载钴基催化剂

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230330

Address after: 4F, Science and Technology Innovation Center, Southeast Science City, No. 6 Qiuyang East Road, Shangjie Town, Minhou County, Fuzhou City, Fujian Province, 350000

Patentee after: Fuda Zijin Hydrogen Energy Technology Co.,Ltd.

Address before: Fuzhou University, No.2, wulongjiang North Avenue, Fuzhou University Town, Minhou County, Fuzhou City, Fujian Province

Patentee before: FUZHOU University