WO2022143345A1 - 一种纳米材料、发光二极管器件及其制备方法 - Google Patents

一种纳米材料、发光二极管器件及其制备方法 Download PDF

Info

Publication number
WO2022143345A1
WO2022143345A1 PCT/CN2021/140528 CN2021140528W WO2022143345A1 WO 2022143345 A1 WO2022143345 A1 WO 2022143345A1 CN 2021140528 W CN2021140528 W CN 2021140528W WO 2022143345 A1 WO2022143345 A1 WO 2022143345A1
Authority
WO
WIPO (PCT)
Prior art keywords
zno
light
layer
nanomaterial
shell
Prior art date
Application number
PCT/CN2021/140528
Other languages
English (en)
French (fr)
Inventor
郭煜林
吴龙佳
张天朔
李俊杰
Original Assignee
Tcl科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl科技集团股份有限公司 filed Critical Tcl科技集团股份有限公司
Priority to US17/995,852 priority Critical patent/US20230157045A1/en
Priority to EP21914082.9A priority patent/EP4131448A4/en
Priority to KR1020227033275A priority patent/KR20220145889A/ko
Publication of WO2022143345A1 publication Critical patent/WO2022143345A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/58Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing copper, silver or gold
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/62Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing gallium, indium or thallium
    • C09K11/621Chalcogenides
    • C09K11/623Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/166Electron transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/167Electron transporting layers between the light-emitting layer and the anode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/321Inverted OLED, i.e. having cathode between substrate and anode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating

Definitions

  • the present disclosure relates to the technical field of quantum dots, and in particular, to a nanomaterial, a light-emitting diode device and a preparation method thereof.
  • ZnO is a direct bandgap n-type semiconductor material with a wide band gap of 3.37eV and a low work function of 3.7eV, and has the advantages of good stability, high transparency, safety and non-toxicity, making ZnO a suitable electron Transmission layer material.
  • ZnO has many potential advantages: First, its exciton binding energy is as high as 60meV, which is much higher than other wide-bandgap semiconductor materials (25meV for GaN) and 2.3 times higher than the room temperature thermal energy (26meV), so the excitons of ZnO can be Stable at room temperature.
  • ZnO has a hexagonal wurtzite structure and exhibits strong spontaneous polarization; in the ZnO-based heterostructure, the strain of the material can lead to extremely strong piezoelectric polarization, which in turn leads to the generation of polarities in the ZnO-based heterostructure.
  • the polarization electric field generated by the polarization induces a high concentration of interfacial polarization charges on the ZnO heterojunction surface, thereby regulating the energy band of the material, thereby affecting the related structure and device performance.
  • the purpose of the present disclosure is to provide a nanomaterial, a light-emitting diode device and a preparation method thereof, aiming to solve the problem of using ZnO nanoparticles as the electron transport layer due to the existence of many defects on the surface of the existing ZnO nanoparticles.
  • the problem of performance degradation of light-emitting diode devices is to provide a nanomaterial, a light-emitting diode device and a preparation method thereof, aiming to solve the problem of using ZnO nanoparticles as the electron transport layer due to the existence of many defects on the surface of the existing ZnO nanoparticles.
  • a nanomaterial comprising ZnO nanoparticles and an In 2 O 3 shell layer coated on the surface of the ZnO nanoparticles.
  • a method for preparing nanomaterials comprising the steps of:
  • the In 2 O 3 shell layer is deposited on the surface of the ZnO nanoparticle to prepare the nanomaterial.
  • a preparation method of a light-emitting diode comprising the steps of:
  • the electron transport layer material is a nanomaterial, and the nanomaterial includes ZnO nanoparticles and an In 2 O 3 shell layer coated on the surface of the ZnO nanoparticles;
  • An anode is prepared on the light-emitting layer to prepare the light-emitting diode
  • a light-emitting layer is prepared on the anode
  • the material of the electron transport layer is a nanomaterial, and the nanomaterial includes ZnO nanoparticles and an In 2 O 3 shell layer coated on the surface of the ZnO nanoparticles;
  • a cathode is prepared on the electron transport layer to prepare the light emitting diode
  • a light-emitting diode device comprising a cathode, an anode, a light-emitting layer disposed between the cathode and the anode, and an electron transport layer disposed between the cathode and the light-emitting layer, the electron transporting
  • the layer material is the nanomaterial described in the present disclosure or the nanomaterial prepared by the preparation method described in the present disclosure.
  • a ZnO@In 2 O 3 core-shell structure is formed by coating the surface of ZnO nanoparticles with an In 2 O 3 shell layer, that is, a nanomaterial is prepared.
  • the wide band gap In 2 O 3 is used as the shell layer to coat the semiconductor ZnO nanoparticles with relatively narrow band gaps, which can effectively passivate the surface of the ZnO nanoparticles, reduce the surface defects, alleviate their lattice mismatch, and also improve the It can effectively block the transmission of holes from the light-emitting layer to the cathode, improve the recombination efficiency of electrons and holes in the light-emitting layer, and thereby improve the light-emitting performance of the light-emitting device.
  • FIG. 1 is a first flow chart of a preferred embodiment of a method for preparing a nanomaterial disclosed.
  • FIG. 2 is a second flow chart of a preferred embodiment of a method for preparing a nanomaterial disclosed.
  • FIG. 3 is a schematic structural diagram of a preferred embodiment of the disclosed QLED device.
  • the present disclosure provides a nanomaterial, a light-emitting diode device, and a preparation method thereof.
  • a nanomaterial a light-emitting diode device, and a preparation method thereof.
  • the present disclosure will be described in further detail below. It should be understood that the specific embodiments described herein are only used to explain the present disclosure, but not to limit the present disclosure.
  • expressions such as “one or more” and “at least one” involved in the present disclosure refer to one or more of the listed items, and “multiple” refers to two of these items. One or any combination of two or more, including any combination of a single item (species) or a plurality of items (species).
  • “at least one of methanol, ethanol, and ethylene glycol” refers to methanol, ethanol, ethylene glycol, methanol+ethanol, methanol+ethylene glycol, ethanol+ethylene glycol, or methanol+ethanol+ethylene glycol.
  • ZnO is a direct bandgap n-type semiconductor material with a wide band gap of 3.37eV and a low work function of 3.7eV, and has the advantages of good stability, high transparency, safety and non-toxicity, making ZnO a suitable electron Transmission layer material.
  • ZnO nanoparticles are used as the electron transport layer, surface defects such as hydroxyl and oxygen vacancies in ZnO inevitably lead to the degradation of device performance.
  • embodiments of the present disclosure provide a nanomaterial comprising ZnO nanoparticles and an In 2 O 3 shell layer coated on the surface of the ZnO nanoparticles.
  • In 2 O 3 is a semiconductor with a wider band gap than ZnO (3.55-3.75 eV).
  • ZnO nanoparticles are used as the core, and the surface of the ZnO nanoparticles is covered with In 2 O 3 as a shell layer.
  • the In 2 O 3 shell layer can effectively passivate the surface of the ZnO nanoparticles, reduce the surface defects and alleviate the
  • the lattice mismatch can also effectively block the transmission of holes from the light-emitting layer to the cathode, and improve the recombination efficiency of electrons and holes in the light-emitting layer, thereby improving the light-emitting performance of the light-emitting device.
  • the nanomaterial further includes Au atoms or Au microclusters supported on the In 2 O 3 shell.
  • the In 2 O 3 shell can interact with Au atoms or Au microclusters through electrostatic interaction adsorbed together.
  • the Au microcluster refers to an aggregate formed by several Au atoms or Au molecules, and the properties are close to that of a single Au atom, and the atomic-level dispersion greatly improves the utilization of Au atoms and reduces the use of precious metals;
  • Au atoms or Au micelles form a contact interface on the In 2 O 3 material, and after activation, an Au ⁇ + -In 2 O 3-x interface is formed, where Au ⁇ + activates the positively charged Au atoms (or Partially delocalized Au ions), Au atoms have a large specific surface area, which interacts with adjacent coordinated In atoms, causing charge redistribution around In atoms, thereby causing charge redistribution, building new electron transport pathways, and improving Electron transport properties.
  • a preparation method of nanomaterial is also provided, as shown in Figure 1, which comprises the steps:
  • the ZnO nanoparticles can be prepared by a solution method, which is relatively simple, has strong versatility, and is suitable for large-scale preparation; the In 2 O 3 shell layer can be deposited on the surface of the ZnO nanoparticles by chemical
  • the co-precipitation method has the advantages of simple preparation process, low cost and controllable conditions.
  • an In 2 O 3 shell is prepared on the surface of the ZnO nanoparticle, and the In 2 O3 shell can effectively passivate the surface of the ZnO nanoparticle, reduce surface defects, alleviate its lattice mismatch, and at the same time It can also effectively block the transport of holes from the light-emitting layer to the cathode, improve the recombination efficiency of electrons and holes in the light-emitting layer, and thereby improve the light-emitting performance of the light-emitting device.
  • the preparation of the ZnO nanoparticles includes the steps of: dissolving a zinc salt in an organic solvent to obtain a zinc salt solution; adding lye to the zinc salt solution and stirring to obtain a ZnO nanoparticle solution; Precipitating and drying the ZnO nanoparticle solution to prepare ZnO nanoparticle.
  • the preparation method of ZnO nanoparticles is a solution method, and the preparation method is relatively simple, has strong versatility, and is suitable for large-scale preparation.
  • Described zinc salt is one or more in zinc chloride, zinc nitrate and zinc acetate, but is not limited to this;
  • Described organic solvent is one or both in DMSO and DMF, but is not limited to this;
  • Described The lye is one or more of sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide and ammonia water, but is not limited thereto.
  • the concentration of the zinc salt solution is 0.1-1M
  • the concentration of the lye solution is 0.1-1M
  • the molar ratio of the hydroxide ions of the alkali solution to the molar ratio of the zinc ions is (1.5-3.0): 1.
  • the metal salt is excessive; when it is greater than 3:1, the pH value is too high, which will slow down the reaction speed of the system.
  • the molar ratio of hydroxide ions to zinc ions is maintained at (1.5-3.0):1, a pH of 12-14 can be achieved, and finally the particles on the surface of the subsequently obtained film can be uniformly distributed.
  • the step of depositing an In 2 O 3 shell on the surface of the ZnO nanoparticles includes: dissolving an indium salt in an organic solvent to obtain an indium salt solution; dissolving the ZnO nanoparticles in an organic alcohol, obtaining the ZnO nanoparticle alcohol solution; adding the ZnO nanoparticle alcohol solution to the indium salt solution, then adding the alkaline solution and stirring, and reacting to obtain a ZnO nanoparticle solution covered by an In 2 O 3 shell; The ZnO nanoparticle solution coated with the 2 O 3 shell layer is subjected to precipitation and drying treatment to obtain the ZnO nanoparticles coated with the In 2 O 3 shell layer.
  • a chemical co-precipitation method is used to deposit the In 2 O 3 shell on the surface of the ZnO nanoparticles, which has a simple preparation process, low cost and controllable conditions.
  • the indium salt is one or more of indium nitrate, indium chloride and indium acetate, but not limited thereto;
  • the organic solvent is one or more of methanol, ethanol and isopropanol, but not limited to This;
  • the organic alcohol includes but not limited to at least one of methanol, ethanol and ethylene glycol;
  • the lye is one or more of sodium hydroxide, potassium hydroxide, tetramethylammonium hydroxide and ammonia water species, but not limited to this.
  • the concentration of the indium salt solution is 0.1-0.3M.
  • the pH value of the solution is too high or too low, which has a great influence on the purity and yield of the product.
  • the reaction conditions were maintained at pH 8-10.
  • a preparation method of nanomaterial is also provided, as shown in Figure 2, which comprises the steps:
  • the ZnO nanoparticle alcohol solution is added to the mixed solution composed of oleylamine and octadecene, and stirred at 80-150 ° C, and Au atoms and/or Au microclusters are loaded on the In 2 O 3 shell layer, Preparation of nanomaterials.
  • the octadecene can be used as a reducing agent to reduce gold salts to Au atoms and be supported on the In 2 O 3 shell layer, and the oleylamine can be used as a dispersant to inhibit excessive aggregation of Au atoms.
  • Au atoms and/or Au microclusters are introduced on the In 2 O 3 shell, and the Au microclusters refer to the aggregates formed by several Au atoms or Au molecules, and the properties will be close to that of a single Au atom , atomic-level dispersion greatly improves the utilization of Au atoms and reduces the use of noble metals; Au atoms or Au micelles form contact interfaces on In 2 O 3 materials, and Au ⁇ + -In 2 O 3-x interfaces are formed after activation , Au ⁇ + is the activation of positively charged Au atoms (or partially delocalized Au ions) on this interface, Au atoms have a large specific surface area, which interacts with the adjacent coordinated In atoms, causing the surrounding of the In atoms The charge is redistributed, thereby causing the charge redistribution, constructing a new electron transport pathway, and improving the electron transport performance.
  • the gold salt is one or more of chloroauric acid, ammonium tetrachloroaurate hydrate and (triphenylphosphine) gold chloride, but not limited thereto;
  • the organic alcohol includes But not limited to at least one of methanol, ethanol and ethylene glycol.
  • ZnO nanoparticles are synthesized by a solution method, an In 2 O 3 shell layer is deposited on the surface of the ZnO nanoparticles by a chemical co-precipitation method, and then Au atoms are deposited by a dipping method. Or Au micelles are supported on In 2 O 3 to prepare the nanomaterials.
  • the preparation method provided by the present disclosure is relatively simple, has strong versatility, reduces the use of precious metals, and is suitable for large-scale preparation.
  • a light emitting diode device which includes an electron transport layer, and the electron transport layer material is the nanomaterial described in the present disclosure or the nanomaterial prepared by the preparation method described in the present disclosure.
  • the light emitting diode device is a QLED device or an OLED device.
  • a nanomaterial, a preparation method thereof, and a light-emitting diode of the present disclosure will be further explained by the following examples:
  • Example 1 of the present disclosure zinc chloride, sodium hydroxide, indium nitrate, and chloroauric acid are used as examples for detailed introduction.
  • Embodiment 2 of the present disclosure zinc nitrate hexahydrate, potassium hydroxide, indium nitrate, and chloroauric acid are used as examples for detailed introduction.
  • Example 3 of the present disclosure takes zinc acetate dihydrate, tetramethylammonium hydroxide, indium nitrate, and chloroauric acid as examples for detailed introduction.
  • An embodiment of the present disclosure also provides a light emitting diode device, which includes an electron transport layer, and the material of the electron transport layer is the nanomaterial or the nanomaterial prepared by the above preparation method.
  • the light emitting diode device is a QLED device or an OLED device.
  • the light emitting diode device is a QLED device, as shown in FIG. 3 , comprising a substrate 10, an anode 20, a hole transport layer 30, a quantum dot light emitting layer 40, an electron transport layer 50 and The cathode 60, wherein the material of the electron transport layer 50 is the nanomaterial provided by the present disclosure.
  • a method of fabricating a QLED device includes the steps of:
  • A. Provide a substrate, the substrate is provided with an anode;
  • An electron transport layer is deposited on the light-emitting functional layer, and the material of the electron transport layer is the nanomaterial;
  • the ITO substrate in order to obtain a high quality nanomaterial layer, needs to undergo a pretreatment process.
  • the treatment steps include: cleaning the ITO conductive glass with detergent to preliminarily remove the stains on the surface, then ultrasonically cleaning in deionized water, isopropanol, acetone, and deionized water for 20 minutes respectively to remove impurities on the surface, and finally using Dry with high-purity nitrogen to obtain ITO anode.
  • the preparation steps of the hole transport layer include: placing the ITO substrate on a spinner, and spin coating the prepared hole transport material solution to form a film; adjusting the concentration of the solution, the spin coating speed and the spin coating time to control the thickness of the film, followed by thermal annealing at an appropriate temperature.
  • the hole transport layer described in the present disclosure can be made of conventional hole transport materials in the art, including but not limited to TFB, PVK, Poly-TPD, TCTA, PEDOT:PSS, CBP, etc. or a mixture of any combination thereof. Can be other high performance hole transport materials.
  • the hole transport material solution concentration was 10 mg/mL, the spin coating speed was 4.5k rpm/min, and the spin coating time was 30 s.
  • the preparation steps of the quantum dot light-emitting layer include: placing the substrate on which the hole transport layer has been spin-coated on a glue spinner, spin-coating a prepared solution of a certain concentration of light-emitting substances to form a film, and adjusting the solution Concentration, spin coating speed and spin coating time to control the thickness of the light-emitting layer, drying at an appropriate temperature.
  • the quantum dots of the quantum dot light-emitting layer are any one of red, green, and blue quantum dots, and the quantum dots include but are not limited to CdS, CdSe, CdTe, ZnO, ZnS, ZnSe, ZnTe, GaAs, GaP , GaSb, HgS, HgSe, HgTe, InAs, InP, InSb, AlAs, AlP, CuInS, CuInSe and at least one of various core-shell quantum dots.
  • the thickness of the quantum dot light-emitting layer is 20-60 nm.
  • the concentration of the luminescent substance solution was 20 mg/mL, the spin coating speed was 4 krpm/min, and the spin coating time was 30 s.
  • the preparation step of the electron transport layer includes: placing the substrate on which the quantum dot light-emitting layer has been spin-coated on a glue spinner, spin-coating the prepared nanomaterial solution with a certain concentration to form a film, and passing the The concentration of the solution, spin coating speed and spin coating time were adjusted to control the thickness of the electron transport layer, and then annealed to form a film.
  • the thickness of the electron transport layer is 20-60 nm.
  • the concentration of the electron transport layer material solution was 30 mg/mL, the spin coating speed was 4 krpm/min, and the spin coating time was 30 s.
  • the steps of preparing the cathode include: placing the substrate on which each functional layer has been deposited into an evaporation chamber and thermally vapor-depositing a layer of 30-80 nm metal silver or aluminum as a cathode through a mask.
  • the obtained QLED device is subjected to a packaging process, and the packaging process can be packaged by a common machine or by manual packaging.
  • the oxygen content and the water content are both lower than 0.1 ppm to ensure the stability of the device.
  • the material of the substrate 10 is a glass sheet
  • the material of the anode 20 is an ITO substrate
  • the material of the hole transport layer 30 is TFB
  • the material of the electron transport layer 50 is the nanomaterial prepared in Example 1
  • the material of the cathode The material of 60 is Al.
  • the material of the substrate 10 is a glass sheet
  • the material of the anode 20 is an ITO substrate
  • the material of the hole transport layer 30 is TFB
  • the material of the electron transport layer 50 is the nanomaterial prepared in Example 2
  • the material of the cathode The material of 60 is Al.
  • the material of the substrate 10 is a glass sheet
  • the material of the anode 20 is an ITO substrate
  • the material of the hole transport layer 30 is TFB
  • the material of the electron transport layer 50 is the nanomaterial prepared in Example 3
  • the material of the cathode The material of 60 is Al.
  • the present disclosure also provides a pair of examples, wherein the material of the substrate 10 is a glass sheet, the material of the anode 20 is an ITO substrate, the material of the hole transport layer 30 is TFB, the material of the electron transport layer 50 is ZnO nanoparticles, the material of the cathode 60 is The material is Al.
  • Example 4 The QLEDs prepared in Example 4, Example 5, Example 6 and Comparative Example were tested for performance, and the luminous efficiency and stability of the two were measured as follows:
  • the nanomaterials provided by the present disclosure can effectively block holes from cavities by covering the surface of ZnO with an In 2 O 3 layer, and using In 2 O 3 as a shell to coat semiconductor ZnO nanoparticles with a relatively narrow band gap.
  • the light-emitting layer is transported to the electron transport layer, and passivates the surface defects of ZnO, reduces the capture of electrons by the defects, and improves the electron-hole recombination efficiency; at the same time, the conductive component Au atoms or Au microclusters are introduced and loaded into the In2O3 shell layer On the surface, isolated Au single atoms and Au microclusters are formed.
  • the atomically dispersed Au atoms have a large specific surface area and interact with the adjacent coordinated In atoms, causing the charge redistribution around the In atoms to build new electrons
  • the transmission channel can accelerate the electron transfer and improve the electron transport performance of the device, thereby synergistically improving the electron transport performance and stability of the device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Luminescent Compositions (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开涉及一种纳米材料、发光二极管器件及其制备方法,其中所述纳米材料包括ZnO纳米颗粒,以及包覆在所述ZnO纳米颗粒表面的In 2O 3壳层。本公开通过在ZnO纳米颗粒表面包覆In 2O 3壳层,形成ZnO@In 2O 3核壳结构,即制得纳米材料。本公开以宽带隙的In 2O 3作为壳层包覆带隙相对较窄的半导体ZnO纳米颗粒,可有效钝化ZnO纳米颗粒表面,使其表面缺陷减少,缓解其晶格失配,同时还可有效阻挡空穴从发光层传输至阴极,提高电子和空穴在发光层的复合效率,从而提升发光器件的发光性能。

Description

一种纳米材料、发光二极管器件及其制备方法
优先权
本公开要求申请日为2020年12月28日,申请号为“202011588908.0”,申请名称为“一种纳米材料、发光二极管器件及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及量子点技术领域,尤其涉及一种纳米材料、发光二极管器件及其制备方法。
背景技术
ZnO是一种直接带隙的n型半导体材料,具有3.37eV的宽禁带和3.7eV的低功函,且具有稳定性好、透明度高、安全无毒等优点,使得ZnO可成为合适的电子传输层材料。ZnO具有诸多潜在的优点:首先,其激子束缚能高达60meV,远远高于其他宽禁带半导体材料(GaN为25meV),是室温热能(26meV)的2.3倍,因此ZnO的激子可在室温下稳定存在。其次,ZnO具有六方纤锌矿结构,表现出很强的自发极化;在ZnO基异质结构中,材料的应变会导致极强的压电极化,继而导致ZnO基异质结构中产生极化效应;极化产生的极化电场在ZnO异质结面感生出高浓度的界面极化电荷,从而对材料的能带产生调控,进而影响相关结构与器件性能。
然而,当ZnO纳米颗粒作为电子传输层时,ZnO表面缺陷如羟基和氧空位不可避免地导致器件性能下降。
因此,现有技术还有待于改进和发展。
公开内容
鉴于上述现有技术的不足,本公开的目的在于提供一种纳米材料、发光二极管器件及其制备方法,旨在解决现有ZnO纳米颗粒表面存在较多缺陷导致以ZnO纳米颗粒作为电子传输层的发光二极管器件性能下降的问题。
本公开的技术方案如下:
一种纳米材料,其中,包括ZnO纳米颗粒,以及包覆在所述ZnO纳米颗粒表面的 In 2O 3壳层。
一种纳米材料的制备方法,其中,包括步骤:
提供ZnO纳米颗粒;
在所述ZnO纳米颗粒表面沉积In 2O 3壳层,制得所述纳米材料。
一种发光二极管的制备方法,其中,包括步骤:
在阴极上制备电子传输层,所述电子传输层材料为纳米材料,所述纳米材料包括ZnO纳米颗粒,以及包覆在所述ZnO纳米颗粒表面的In 2O 3壳层;
在电子传输层上制备发光层;
在发光层上制备阳极,制得所述发光二极管;
或者,在阳极上制备发光层;
在所述发光层上制备电子传输层,所述电子传输层材料为纳米材料,所述纳米材料包括ZnO纳米颗粒,以及包覆在所述ZnO纳米颗粒表面的In 2O 3壳层;
在所述电子传输层上制备阴极,制得所述发光二级管
一种发光二极管器件,其中,包括阴极、阳极、设置在所述阴极和所述阳极之间的发光层,以及设置在所述阴极和所述发光层之间的电子传输层,所述电子传输层材料为本公开所述的纳米材料或为本公开所述制备方法制得的纳米材料。
有益效果:本公开通过在ZnO纳米颗粒表面包覆In 2O 3壳层,形成ZnO@In 2O 3核壳结构,即制得纳米材料。本公开以宽带隙的In 2O 3作为壳层包覆带隙相对较窄的半导体ZnO纳米颗粒,可有效钝化ZnO纳米颗粒表面,使其表面缺陷减少,缓解其晶格失配,同时还可有效阻挡空穴从发光层传输至阴极,提高电子和空穴在发光层的复合效率,从而提升发光器件的发光性能。
附图说明
图1为本公开一种纳米材料的制备方法较佳实施例的第一流程图。
图2为本公开一种纳米材料的制备方法较佳实施例的第二流程图。
图3为本公开一种QLED器件的较佳实施例的结构示意图。
具体实施方式
本公开提供一种纳米材料、发光二极管器件及其制备方法,为使本公开的目的、技术方案及效果更加清楚、明确,以下对本公开进一步详细说明。应当理解,此处所描述 的具体实施例仅仅用以解释本公开,并不用于限定本公开。
需说明的是,本公开中涉及的“一种或多种”和“至少一种”等表述,是指所列举多项中的一种或者多种,“多种”是指这些项中两种或两种以上的任意组合,包括单项(种)或复数项(种)的任意组合。例如“甲醇、乙醇和乙二醇中的至少一种”,是指甲醇、乙醇、乙二醇、甲醇+乙醇、甲醇+乙二醇、乙醇+乙二醇或甲醇+乙醇+乙二醇。
ZnO是一种直接带隙的n型半导体材料,具有3.37eV的宽禁带和3.7eV的低功函,且具有稳定性好、透明度高、安全无毒等优点,使得ZnO可成为合适的电子传输层材料。然而当ZnO纳米颗粒作为电子传输层时,ZnO表面缺陷如羟基和氧空位不可避免地导致器件性能下降。
基于此,本公开实施例提供了一种纳米材料,其包括ZnO纳米颗粒以及包覆在所述ZnO纳米颗粒表面的In 2O 3壳层。
与ZnO类似,In 2O 3是一种具有比ZnO更宽带隙的半导体(3.55-3.75eV)。本实施例以ZnO纳米颗粒作为核,在所述ZnO纳米颗粒表面覆盖In 2O 3作为壳层,所述In 2O 3壳层可有效钝化ZnO纳米颗粒表面,使其表面缺陷减少,缓解其晶格失配,同时还可有效阻挡空穴从发光层传输至阴极,提高电子和空穴在发光层的复合效率,从而提升发光器件的发光性能。
在一些实施方式中,所述纳米材料还包括负载在所述In 2O 3壳层上的Au原子或Au微团簇。在本实施例中,由于In 2O 3壳层和Au原子或Au微团簇之间存在电负性差异,使得所述In 2O 3壳层可与Au原子或Au微团簇通过静电作用吸附在一起。本实施例中,所述Au微团簇指的是若干个Au原子或Au分子形成的聚集体,性质会接近单个Au原子,原子级分散使得Au原子利用率大幅提升,降低了贵金属的使用;Au原子或Au微团在In 2O 3材料上形成接触界面,活化后形成了Au δ+-In 2O 3-x界面,Au δ+是在该界面上活化带正电的Au原子(或部分离域的Au离子),Au原子具有大的比表面积,其与相邻配位的In原子相互作用,引起In原子周围电荷重新分布,从而引起电荷重新分布,构筑新的电子传输通路,提高电子传输性能。
在一些实施方式中,还提供一种纳米材料的制备方法,如图1所示,其包括步骤:
S10、提供ZnO纳米颗粒;
S20、在所述ZnO纳米颗粒表面沉积In 2O 3壳层,制得所述纳米材料。
在本实施例中,所述ZnO纳米颗粒可采用溶液法制得,该制备方法相对简单,通用性较强,适合大规模制备;在所述ZnO纳米颗粒表面沉积In 2O 3壳层可采用化学共沉 淀法,其制备工艺简单,成本低,条件可控。本实施例通过在所述ZnO纳米颗粒表面制备In 2O 3壳层,所述In 2O 3壳层可有效钝化ZnO纳米颗粒表面,使其表面缺陷减少,缓解其晶格失配,同时还可有效阻挡空穴从发光层传输至阴极,提高电子和空穴在发光层的复合效率,从而提升发光器件的发光性能。
在一些实施方式中,所述ZnO纳米颗粒的制备包括步骤:将锌盐溶于有机溶剂中,得到锌盐溶液;向所述锌盐溶液中加入碱液并搅拌,制得ZnO纳米颗粒溶液;对所述ZnO纳米颗粒溶液进行析出、干燥处理,制得ZnO纳米颗粒。
本实施例中,ZnO纳米颗粒的制备方法为溶液法,制备方法相对简单,通用性较强,适合大规模制备。所述锌盐为氯化锌、硝酸锌和醋酸锌中的一种或多种,但不限于此;所述有机溶剂为DMSO和DMF中的一种或两种,但不限于此;所述碱液为氢氧化钠、氢氧化钾、四甲基氢氧化铵和氨水中的一种或多种,但不限于此。
在本实施例中,所述锌盐溶液浓度为0.1-1M,所述碱液浓度为0.1-1M,所述碱液氢氧根离子摩尔量与锌离子摩尔量比为(1.5-3.0):1。当氢氧根离子与锌离子的摩尔量之比小于1.5:1时,金属盐过量;大于3:1时,pH值过高会导致体系反应速度减慢。最优地,保持氢氧根离子与锌离子的摩尔比为(1.5-3.0):1时,可实现pH为12-14,最终可以使后续得到的薄膜表面颗粒分布均匀。
在一些实施方式中,在所述ZnO纳米颗粒表面沉积In 2O 3壳层的步骤包括:将铟盐溶于有机溶剂中,得到铟盐溶液;将所述ZnO纳米颗粒溶于有机醇中,得到ZnO纳米颗粒醇液;向所述铟盐溶液中加入所述ZnO纳米颗粒醇液,再加入碱液并搅拌,反应得到In 2O 3壳层包覆的ZnO纳米颗粒溶液;对所述In 2O 3壳层包覆的ZnO纳米颗粒溶液进行析出、干燥处理,得到In 2O 3壳层包覆的ZnO纳米颗粒。
本实施例中,在所述ZnO纳米颗粒表面沉积In 2O 3壳层采用了化学共沉淀法,制备工艺简单,成本低,条件可控。所述铟盐为硝酸铟、氯化铟和醋酸铟中的一种或多种,但不限于此;所述有机溶剂为甲醇、乙醇和异丙醇中的一种或几种,但不限于此;所述有机醇包括但不限于甲醇、乙醇和乙二醇中的至少一种;所述碱液为氢氧化钠、氢氧化钾、四甲基氢氧化铵和氨水中的一种或多种,但不限于此。本实施例中,所述铟盐溶液浓度为0.1-0.3M。
在反应过程中,所述溶液pH值过高或过低对产物纯度和产率的影响极大。作为举例,保持反应条件pH为8-10。
在一些实施方式中,还提供一种纳米材料的制备方法,如图2所示,其包括步骤:
S10、提供ZnO纳米颗粒;
S20、在所述ZnO纳米颗粒表面沉积In 2O 3壳层;
S30、将Au原子和/或Au微团簇负载在所述In 2O 3壳层上,制得所述纳米材料。
将所述In 2O 3壳层包覆的ZnO纳米颗粒溶于有机醇中,得到In 2O 3包覆的ZnO纳米颗粒醇液;将金盐以及所述In 2O 3壳层包覆的ZnO纳米颗粒醇液加入由油胺与十八烯组成的混合溶液中,在80-150℃下进行搅拌,在所述In 2O 3壳层上负载有Au原子和/或Au微团簇,制得纳米材料。
在本实施例中,所述十八烯作为还原剂可将金盐还原成Au原子并负载在所述In 2O 3壳层上,所述油胺作为分散剂,可抑制Au原子过度团聚。本实施例通过在In 2O 3壳层上引入Au原子和/或Au微团簇,所述Au微团簇指的是若干个Au原子或Au分子形成的聚集体,性质会接近单个Au原子,原子级分散使得Au原子利用率大幅提升,降低了贵金属的使用;Au原子或Au微团在In 2O 3材料上形成接触界面,活化后形成了Au δ+-In 2O 3-x界面,Au δ+是在该界面上活化带正电的Au原子(或部分离域的Au离子),Au原子具有大的比表面积,其与相邻配位的In原子相互作用,引起In原子周围电荷重新分布,从而引起电荷重新分布,构筑新的电子传输通路,提高电子传输性能。
在一些实施方式中,所述金盐为氯金酸、四氯金酸铵水合物和(三苯基膦)氯化金中的一种或多种,但不限于此;所述有机醇包括但不限于甲醇、乙醇和乙二醇中的至少一种。
本公开实施例提供的一种纳米材料的制备方法,采用溶液法合成ZnO纳米颗粒,再采用化学共沉淀法在所述ZnO纳米颗粒表面沉积In 2O 3壳层,之后用浸渍法将Au原子或Au微团负载在In 2O 3上,制得所述纳米材料。本公开提供的制备方法相对简单,通用性较强,且降低了贵金属的使用,适合大规模制备。
在一些实施方式中,还提供一种发光二极管器件,其中,包括电子传输层,所述电子传输层材料为本公开所述的纳米材料或为本公开所述制备方法制得的纳米材料。作为举例,所述发光二极管器件为QLED器件或OLED器件。
下面通过实施例对本公开一种纳米材料及其制备方法与发光二极管做进一步的解释说明:
本公开实施例1中以氯化锌、氢氧化钠、硝酸铟、氯金酸为例进行详细介绍。
(1)将氯化锌加入到DMF中形成总浓度为0.5M的溶液,室温下滴加0.6M NaOH乙醇溶液,继续搅拌1.5h得到澄清透明溶液。用丙酮析出,离心后收集,制得ZnO纳 米颗粒。
(2)用适量乙醇溶解分散上述ZnO纳米颗粒,制得ZnO纳米颗粒乙醇液。
(3)将硝酸铟加入到乙醇中,形成浓度为0.2M的溶液,加入30mL上述ZnO纳米颗粒乙醇液,再加入适量NaOH,pH调节至10,室温下搅拌2h,得到In 2O 3壳层包覆的ZnO纳米颗粒溶液。沉淀析出后,即得到In 2O 3壳层包覆的ZnO纳米颗粒。
(4)用适量乙醇分散In 2O 3壳层包覆的ZnO纳米颗粒,得到In 2O 3壳层包覆的ZnO纳米颗粒乙醇液。
(5)将20mg氯金酸、30mL上述In 2O 3壳层包覆的ZnO纳米颗粒乙醇液加入至20mL油胺和十八烯混合溶液中,超声分散,在120℃下搅拌1h,得到混合溶液,然后冷却至室温。离心收集固体,制得纳米材料,并用己烷清洗后用适量乙醇分散,用于器件制备。
本公开实施例2中以六水合硝酸锌、氢氧化钾、硝酸铟、氯金酸为例进行详细介绍。
(1)将硝酸锌加入到DMF中形成总浓度为0.5M的溶液,室温下滴加0.6M KOH乙醇溶液,继续搅拌1.5h得到澄清透明溶液。用丙酮析出,离心后收集,制得ZnO纳米颗粒。
(2)用适量乙醇溶解分散上述ZnO纳米颗粒,制得ZnO纳米颗粒乙醇液。
(3)将硝酸铟加入到乙醇中,形成浓度为0.2M的溶液,加入30mL上述ZnO纳米颗粒乙醇液,再加入适量NaOH,pH调节至10,室温下搅拌2h,得到In 2O 3壳层包覆的ZnO纳米颗粒溶液。沉淀析出后,即得到In 2O 3壳层包覆的ZnO纳米颗粒。
(4)用适量乙醇分散In 2O 3壳层包覆的ZnO纳米颗粒,得到In 2O 3壳层包覆的ZnO纳米颗粒乙醇液。
(5)将20mg氯金酸、30mL上述In 2O 3壳层包覆的ZnO纳米颗粒乙醇液加入至20mL油胺和十八烯混合溶液中,超声分散,在120℃下搅拌1h,得到混合溶液,然后冷却至室温。离心收集固体,制得纳米材料,并用己烷清洗后用适量乙醇分散,用于器件制备。
本公开实施例3中以二水合醋酸锌、四甲基氢氧化铵、硝酸铟、氯金酸为例进行详细介绍。
(1)将醋酸锌加入到DMF中形成总浓度为0.5M的溶液,室温下滴加0.6M四甲基氢氧化铵乙醇溶液,继续搅拌1.5h得到澄清透明溶液。用丙酮将ZnO纳米颗粒析出,离心后收集,制得ZnO纳米颗粒。
(2)用适量乙醇溶解分散上述ZnO纳米颗粒,制得ZnO纳米颗粒乙醇液。
(3)将硝酸铟加入到乙醇中,形成浓度为0.2M的溶液,加入30mL上述ZnO纳米颗粒乙醇液,再加入适量NaOH,pH调节至10,室温下搅拌2h,得到In 2O 3壳层包覆的ZnO纳米颗粒溶液。沉淀析出后,即得到In 2O 3壳层包覆的ZnO纳米颗粒。
(4)用适量乙醇分散In 2O 3壳层包覆的ZnO纳米颗粒,得到In 2O 3壳层包覆的ZnO纳米颗粒乙醇液。
(5)将20mg氯金酸、30mL上述In 2O 3壳层包覆的ZnO纳米颗粒乙醇液加入至20mL油胺和十八烯混合溶液中,超声分散,在120℃下搅拌1h,得到混合溶液,然后冷却至室温。离心收集固体,制得纳米材料,并用己烷清洗后用适量乙醇分散,用于器件制备。
本公开实施例还提供了一种发光二极管器件,其中,包括电子传输层,所述电子传输层材料为所述的纳米材料或采用上述制备方法制得的纳米材料。所述发光二极管器件为QLED器件或OLED器件。
在一些实施方式中,所述发光二极管器件为QLED器件,如图3所示,包括依次层叠设置的衬底10、阳极20、空穴传输层30、量子点发光层40、电子传输层50以及阴极60,其中所述电子传输层50的材料为本公开提供的纳米材料。
在一些实施方式中,QLED器件的制备方法包括如下步骤:
A、提供基板,所述基板上设置有阳极;
B、在所述基板上生长空穴传输层;
C、在所述空穴传输层上沉积发光功能层;
D、在所述发光功能层上沉积电子传输层,所述电子传输层材料为所述的纳米材料;
E、在所述电子传输层上蒸镀阴极。
在一些实施方式中,为了得到高质量纳米材料层,ITO基板需要经过预处理过程。处理步骤包括:将ITO导电玻璃用清洁剂清洗,初步去除表面存在的污渍,随后依次在去离子水、异丙醇、丙酮、去离子水中分别超声清洗20min,以除去表面存在的杂质,最后用高纯氮气吹干,即可得到ITO阳极。
在一些实施方式中,空穴传输层的制备步骤包括:将ITO基板置于匀胶机上,用配制好的空穴传输材料溶液旋涂成膜;通过调节溶液的浓度、旋涂速度和旋涂时间来控制膜的厚度,然后在适当温度下热退火处理。
本公开所述空穴传输层可采用本领域常规的空穴传输材料制成,包括但不限于 TFB、PVK、Poly-TPD、TCTA、PEDOT:PSS、CBP等或者为其任意组合的混合物,亦可以是其它高性能的空穴传输材料。
所述空穴传输材料溶液浓度为10mg/mL,旋涂速度4.5k rpm/min,旋涂时间30s。
在一些实施方式中,量子点发光层的制备步骤包括:将已旋涂上空穴传输层的基片置于匀胶机上,用配制好的一定浓度的发光物质溶液旋涂成膜,通过调节溶液的浓度、旋涂速度和旋涂时间来控制发光层的厚度,在适当温度下干燥。
所述量子点发光层的量子点为红、绿、蓝三种中的任一种量子点,所述量子点包括但不限于CdS、CdSe、CdTe、ZnO、ZnS、ZnSe、ZnTe、GaAs、GaP、GaSb、HgS、HgSe、HgTe、InAs、InP、InSb、AlAs、AlP、CuInS、CuInSe以及各种核壳结构量子点中的至少一种。
量子点发光层的厚度为20-60nm。
所述发光物质溶液浓度为20mg/mL,旋涂速度4krpm/min,旋涂时间30s。
在一些实施方式中,电子传输层的制备步骤包括:将已旋涂上量子点发光层的基片置于匀胶机上,将配制好的一定浓度的所述纳米材料溶液旋涂成膜,通过调节溶液的浓度、旋涂速度和旋涂时间来控制电子传输层的厚度,然后退火成膜。
电子传输层的厚度为20-60nm。
所述电子传输层材料溶液浓度为30mg/mL,旋涂速度4krpm/min,旋涂时间30s。
在一些实施方式中,阴极的制备步骤包括:将沉积完各功能层的衬底置于蒸镀仓中通过掩膜板热蒸镀一层30-80nm的金属银或者铝作为阴极。
在一些实施方式中,将得到的QLED器件进行封装处理,所述封装处理可采用常用的机器封装,也可以采用手动封装。
所述封装处理的环境中,氧含量和水含量均低于0.1ppm,以保证器件的稳定性。
下面通过实施例对本公开一种QLED器件做进一步的解释说明:
本公开实施例4中衬底10的材料为玻璃片,阳极20的材料为ITO基板,空穴传输层30的材料为TFB,电子传输层50的材料为实施例1制得的纳米材料,阴极60的材料为Al。
本公开实施例5中衬底10的材料为玻璃片,阳极20的材料为ITO基板,空穴传输层30的材料为TFB,电子传输层50的材料为实施例2制得的纳米材料,阴极60的材料为Al。
本公开实施例6中衬底10的材料为玻璃片,阳极20的材料为ITO基板,空穴传输层30的材料为TFB,电子传输层50的材料为实施例3制得的纳米材料,阴极60的材料为Al。
本公开还提供一对比例,其中衬底10的材料为玻璃片,阳极20的材料为ITO基板,空穴传输层30的材料为TFB,电子传输层50的材料为ZnO纳米颗粒,阴极60的材料为Al。
对实施例4、实施例5、实施例6及对比例制得的QLED进行性能测试,测得两者的发光效率及稳定性分别如下表:
  开启电压(V) 发光效率(EQE)(%)
对比例 5.33 2.49
实施例4 2.54 6.33
实施例5 3.07 5.60
实施例6 3.24 5.31
与对比例相比,实施例4、5、6的发光效率都有了明显的提升,同时在一定程度上提高了二极管的稳定性。
综上所述,本公开提供的纳米材料,通过在ZnO表面覆盖In 2O 3层,以In 2O 3作为壳层包覆带隙相对较窄的半导体ZnO纳米颗粒,可有效阻挡空穴从发光层传输至电子传输层,并钝化ZnO的表面缺陷,减少缺陷对电子的俘获,提高电子-空穴复合效率;同时引入导电组分Au原子或Au微团簇,并负载至In2O3壳层表面,形成孤立的Au单原子和Au微团簇,原子级分散的Au原子具有大的比表面积,与相邻配位的In原子相互作用,引起In原子周围电荷重新分布,可构筑新的电子传输通道,加速电子传递,提高器件电子传输性能,从而协同提高器件的电子传输性能及稳定性。
应当理解的是,本公开的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本公开所附权利要求的保护范围。

Claims (15)

  1. 一种纳米材料的制备方法,其中,包括步骤:
    提供ZnO纳米颗粒;
    在所述ZnO纳米颗粒表面沉积In 2O 3壳层,制得所述纳米材料。
  2. 根据权利要求1所述纳米材料的制备方法,其中,所述在所述ZnO纳米颗粒表面沉积In 2O 3壳层之后还包括步骤:
    将Au原子和/或Au微团簇负载在所述In 2O 3壳层上。
  3. 根据权利要求2所述纳米材料的制备方法,其中,所述ZnO纳米颗粒的制备包括步骤:
    将锌盐溶于有机溶剂中,得到锌盐溶液;
    向所述锌盐溶液中加入碱液,制得ZnO纳米颗粒溶液;
    对所述ZnO纳米颗粒溶液进行析出、干燥处理,制得ZnO纳米颗粒。
  4. 根据权利要求3所述纳米材料的制备方法,其中,所述在所述ZnO纳米颗粒表面沉积In 2O 3壳层的步骤包括:
    将铟盐溶于有机溶剂中,得到铟盐溶液;
    将所述ZnO纳米颗粒溶于有机醇中,得到ZnO纳米颗粒醇液;
    向所述铟盐溶液中加入所述ZnO纳米颗粒醇液,再加入碱液混合,反应得到In 2O 3壳层包覆的ZnO纳米颗粒溶液;
    对所述In 2O 3壳层包覆的ZnO纳米颗粒溶液进行析出、干燥处理,得到In 2O 3壳层包覆的ZnO纳米颗粒。
  5. 根据权利要求4所述纳米材料的制备方法,其中,将Au原子和/或Au微团簇负载在所述In 2O 3壳层上,制得纳米材料的步骤包括:
    将所述In 2O 3壳层包覆的ZnO纳米颗粒溶于有机醇中,得到In 2O 3包覆的ZnO纳米颗粒醇液;
    将金盐以及所述In 2O 3壳层包覆的ZnO纳米颗粒醇液加入由油胺与十八烯组成的混合溶液中,在80-50℃下进行混合,在所述In 2O 3壳层上负载有Au原子和/或Au微团簇,制得纳米材料。
  6. 根据权利要求5所述纳米材料的制备方法,其中,所述金盐为氯金酸、四氯金酸铵水合物和(三苯基膦)氯化金中的一种或多种;和/或,所述铟盐为硝酸铟、氯化铟和醋酸铟中的一种或多种;和/或,所述锌盐为氯化锌、硝酸锌和醋酸锌中的一种或多种;和/或,所述有机溶剂为DMF和DMSO中的一种或两种;和/或,所述碱液为氢氧化钠、 氢氧化钾、四甲基氢氧化铵和氨水中的一种或多种。
  7. 根据权利要求6所述纳米材料的制备方法,其中,所述有机醇为甲醇、乙醇和乙二醇中的至少一种。
  8. 根据权利要求6所述纳米材料的制备方法,其中,所述铟盐溶液浓度为0.1-0.3M。
  9. 根据权利要求6所述纳米材料的制备方法,其中,所述制备方法中保持反应条件pH为8-10。
  10. 一种发光二极管的制备方法,其中,包括步骤:
    在阴极上制备电子传输层,所述电子传输层材料为纳米材料,所述纳米材料包括ZnO纳米颗粒,以及包覆在所述ZnO纳米颗粒表面的In 2O 3壳层;
    在电子传输层上制备发光层;
    在发光层上制备阳极,制得所述发光二极管;
    或者,在阳极上制备发光层;
    在所述发光层上制备电子传输层,所述电子传输层材料为纳米材料,所述纳米材料包括ZnO纳米颗粒,以及包覆在所述ZnO纳米颗粒表面的In 2O 3壳层;
    在所述电子传输层上制备阴极,制得所述发光二级管。
  11. 一种纳米材料,其中,包括ZnO纳米颗粒,以及包覆在所述ZnO纳米颗粒表面的In 2O 3壳层。
  12. 根据权利要求11所述的纳米材料,其中,还包括负载在所述In 2O 3壳层上的Au原子和/或Au微团簇。
  13. 一种发光二极管器件,其中,包括阴极、阳极、设置在所述阴极和所述阳极之间的发光层,以及设置在所述阴极和所述发光层之间的电子传输层,所述电子传输层材料为权利要求1-6任一所述制备方法制得的纳米材料或为权利要求11-12任一所述的纳米材料。
  14. 根据权利要求13所述的发光二极管器件,其中,所述发光层为量子点发光层,所述量子点发光层的量子点为红、绿、蓝三种中的任一种量子点,所述量子点为CdS、CdSe、CdTe、ZnO、ZnS、ZnSe、ZnTe、GaAs、GaP、GaSb、HgS、HgSe、HgTe、InAs、InP、InSb、AlAs、AlP、CuInS、CuInSe中的至少一种。
  15. 根据权利要求14所述的发光二极管器件,其中,所述量子点发光层的厚度为20-60nm,所述电子传输层的厚度为20-60nm。
PCT/CN2021/140528 2020-12-28 2021-12-22 一种纳米材料、发光二极管器件及其制备方法 WO2022143345A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/995,852 US20230157045A1 (en) 2020-12-28 2021-12-22 Nanomaterial, preparation method thereof, and quantum dot light-emitting diode
EP21914082.9A EP4131448A4 (en) 2020-12-28 2021-12-22 NANOMATERIAL, LIGHT-EMITTING DIODE DEVICE AND PREPARATION METHOD THEREFOR
KR1020227033275A KR20220145889A (ko) 2020-12-28 2021-12-22 나노 물질, 발광 다이오드 소자 및 이의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011588908.0 2020-12-28
CN202011588908.0A CN114695685A (zh) 2020-12-28 2020-12-28 一种纳米材料、发光二极管器件及其制备方法

Publications (1)

Publication Number Publication Date
WO2022143345A1 true WO2022143345A1 (zh) 2022-07-07

Family

ID=82133267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140528 WO2022143345A1 (zh) 2020-12-28 2021-12-22 一种纳米材料、发光二极管器件及其制备方法

Country Status (5)

Country Link
US (1) US20230157045A1 (zh)
EP (1) EP4131448A4 (zh)
KR (1) KR20220145889A (zh)
CN (1) CN114695685A (zh)
WO (1) WO2022143345A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103706350A (zh) * 2014-01-06 2014-04-09 齐鲁工业大学 一种In2O3/ZnO异质结构纳米管及其制备方法与应用
CN107890863A (zh) * 2017-11-02 2018-04-10 西安交通大学 一种具有纳米核壳结构的复合催化剂及其制备方法
CN112058252A (zh) * 2020-09-29 2020-12-11 西安建筑科技大学 一种中空核壳结构ZnO/In2O3异质Ⅱ型光催化材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103706350A (zh) * 2014-01-06 2014-04-09 齐鲁工业大学 一种In2O3/ZnO异质结构纳米管及其制备方法与应用
CN107890863A (zh) * 2017-11-02 2018-04-10 西安交通大学 一种具有纳米核壳结构的复合催化剂及其制备方法
CN112058252A (zh) * 2020-09-29 2020-12-11 西安建筑科技大学 一种中空核壳结构ZnO/In2O3异质Ⅱ型光催化材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIU, BIN ET AL.: "The Influence of Concentration of Hydrochloric Acid on the Structure of Porous Hollow Rod Indium Oxide", JOURNAL OF GANSU SCIENCES, vol. 28, no. 2, 25 April 2016 (2016-04-25), pages 20 - 23, XP055947045, ISSN: 1004-0366 *
See also references of EP4131448A4

Also Published As

Publication number Publication date
EP4131448A4 (en) 2023-12-06
KR20220145889A (ko) 2022-10-31
CN114695685A (zh) 2022-07-01
US20230157045A1 (en) 2023-05-18
EP4131448A1 (en) 2023-02-08

Similar Documents

Publication Publication Date Title
CN113903865B (zh) 氧化锌纳米材料及其制备方法、发光器件
WO2021136043A1 (zh) 一种复合材料、量子点发光二极管及其制备方法
WO2021136044A1 (zh) 一种量子点发光二极管及其制备方法
CN110600621A (zh) 电子传输材料及其制备方法和量子点发光二极管
CN110752319B (zh) 核壳纳米材料及其制备方法和量子点发光二极管
CN113809272A (zh) 氧化锌纳米材料及制备方法、电子传输薄膜、发光二极管
CN109935662B (zh) 电子传输材料及其制备方法、发光二极管
CN111384244B (zh) 量子点发光二极管及其制备方法
CN110838560B (zh) 核壳纳米材料及其制备方法和量子点发光二极管
WO2022143345A1 (zh) 一种纳米材料、发光二极管器件及其制备方法
CN112349850A (zh) 无机半导体材料及其制备方法
CN113707777B (zh) 复合材料及其制备方法、发光器件
CN111384245B (zh) 复合材料及其制备方法和量子点发光二极管
CN109935705B (zh) 空穴注入材料及其制备方法和qled器件
CN109970356B (zh) 氧化锌纳米材料及其制备方法、发光器件
CN114388713A (zh) 电子传输材料及制备方法、光电器件
CN114672314A (zh) 核壳结构量子点及其制备方法,量子点发光薄膜和二极管
CN110963535A (zh) 复合材料及其制备方法和量子点发光二极管
CN111341921B (zh) 复合材料及其制备方法和量子点发光二极管
CN110752301A (zh) 复合材料及其制备方法和量子点发光二极管
WO2022078510A1 (zh) 电子传输材料、其制备方法和光电器件
CN112349870B (zh) 量子点发光二极管及其制备方法
CN113054062B (zh) 纳米材料及其制备方法、量子点发光二极管及发光装置
CN110752300B (zh) 复合材料及其制备方法和量子点发光二极管
CN109935669B (zh) 还原氧化石墨烯的制备方法和空穴注入材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21914082

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227033275

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021914082

Country of ref document: EP

Effective date: 20221102

NENP Non-entry into the national phase

Ref country code: DE