WO2022142981A1 - 发热体及其制备方法、雾化器和电子装置 - Google Patents

发热体及其制备方法、雾化器和电子装置 Download PDF

Info

Publication number
WO2022142981A1
WO2022142981A1 PCT/CN2021/134818 CN2021134818W WO2022142981A1 WO 2022142981 A1 WO2022142981 A1 WO 2022142981A1 CN 2021134818 W CN2021134818 W CN 2021134818W WO 2022142981 A1 WO2022142981 A1 WO 2022142981A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating element
preheating
base body
heating
element according
Prior art date
Application number
PCT/CN2021/134818
Other languages
English (en)
French (fr)
Inventor
周宏明
张威
李日红
刘望生
Original Assignee
江门摩尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江门摩尔科技有限公司 filed Critical 江门摩尔科技有限公司
Priority to CA3203428A priority Critical patent/CA3203428A1/en
Publication of WO2022142981A1 publication Critical patent/WO2022142981A1/zh
Priority to US18/342,014 priority patent/US20230337744A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/10Devices using liquid inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/42Cartridges or containers for inhalable precursors
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/44Wicks
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • A24F40/485Valves; Apertures
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/70Manufacture
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F47/00Smokers' requisites not otherwise provided for

Definitions

  • the present application relates to the technical field of atomizers, and in particular, to a heating element and a preparation method thereof, an atomizer and an electronic device.
  • the electronic atomizer mainly includes an atomizer and a battery.
  • the atomizer is an important part of the electronic atomizer, which is used to atomize the atomized medium for inhalation.
  • the heating element is the core component of the atomizer, which is mainly formed by pre-embedding a heating wire or a silk-screen heating film on the ceramic substrate.
  • the heating element with embedded heating wire has the advantages of simple structure, high atomization efficiency and uniform temperature field.
  • the heating element of the silk-screen heating film has the advantages of large heating area, surface atomization, and high thermal efficiency.
  • a heating body and a preparation method thereof there are provided a heating body and a preparation method thereof, an atomizer, and an electronic device.
  • a heat generating body comprising:
  • a porous ceramic body comprising a preheating member for preheating the liquid, the preheating member being a porous infrared ceramic structure;
  • the heating element is located on the porous ceramic body, and is used for providing heat to the preheating element and atomizing the preheated liquid.
  • the above heating element uses the porous infrared ceramic structure as a preheating element, which preheats the liquid by radiating far infrared rays with the heat provided by the heating element, reduces the viscosity of the liquid, and improves the fluidity of the liquid in the porous ceramic body, so that the The atomized liquid reaches the heating element more quickly and is atomized, which improves the problem that the atomized atomizing medium is easy to form aerosol and is slow.
  • the fluidity of the liquid to be atomized in the porous ceramic body is improved, it can reach the heating element more quickly, and the problem that the heating element is easy to dry-burn is also improved.
  • the porous ceramic body further includes a base body, the preheating element is located on the base body, the base body is a porous ceramic structure, and the heat generating element is completely located in the preheating element and is close to the preheating element.
  • the base body is located at the junction of the base body and the preheating element.
  • the base body is a hollow porous ceramic structure
  • the preheating member is a hollow porous infrared ceramic structure
  • the base body and the preheating member are nested in each other.
  • the preheating element is sleeved on the base body, and the heating element is spirally distributed on the base body.
  • the heating element includes a heating part and an infrared heating layer on the heating part.
  • the thickness of the infrared heating layer is 20 ⁇ m ⁇ 500 ⁇ m.
  • the base body is in the shape of a hollow cylinder
  • the preheating member is in the shape of a hollow cylinder
  • the preheating member is sleeved on the base body
  • the inner diameter of the base body is 5 mm to 3 mm
  • the The outer diameter of the preheating piece is 2.5mm to 9mm.
  • a surface of the base body close to the preheating member is concave to form a first groove
  • a surface of the preheat member close to the base body is concave to form a second groove corresponding to the first groove
  • the first groove and the second groove form a heating cavity, and the heating element is accommodated in the heating cavity.
  • the porosity of the preheating member is 30% to 80%.
  • the median pore diameter of the preheating member is 10 ⁇ m ⁇ 100 ⁇ m.
  • the radiation wavelength of the preheating element is 5 ⁇ m ⁇ 20 ⁇ m.
  • the preheating temperature of the preheating member is 40°C to 90°C.
  • the resistance value of the heating element is 0.5 ⁇ ⁇ 5 ⁇ .
  • the porosity of the matrix is 30%-80%.
  • the median pore diameter of the substrate is 10 ⁇ m ⁇ 100 ⁇ m.
  • a method for preparing the above-mentioned heating element comprising:
  • the heating element is integrally formed with the raw material for preparing the porous ceramic body to prepare the green embryo;
  • the raw embryo is degummed and then sintered to obtain the heating element.
  • An atomizer comprising:
  • a liquid storage chamber for storing liquid
  • the heating element is used for absorbing the liquid in the liquid storage chamber and atomizing the liquid, and the heating element is the above heating element.
  • An electronic device includes a power supply and the above-mentioned atomizer, wherein the power supply is electrically connected to the atomizer to supply power to the atomizer.
  • FIG. 1 is a schematic structural diagram of a heating element according to an embodiment.
  • FIG. 2 is an exploded view of the heating element shown in FIG. 1 .
  • FIG. 3 is a cross-sectional view of the heating element shown in FIG. 1 .
  • FIG. 4 is a flowchart of a method for preparing a heating element according to an embodiment.
  • An embodiment of the present application provides an atomizer
  • the atomizer includes a liquid storage chamber and a heating body 10
  • the liquid storage chamber is used to store liquid, such as an atomization medium
  • the heating body 10 is used to absorb the liquid in the liquid storage chamber , and atomize the liquid.
  • the liquid storage chamber has a liquid outlet, and the heating element 10 is close to the liquid outlet. The liquid in the liquid storage chamber flows out from the liquid outlet and then enters the heating element 10 to be atomized.
  • the atomizer is an electronic atomizer.
  • the heating body 10 includes a porous ceramic body 110 and a heating element 120 located on the porous ceramic body 110 .
  • the porous ceramic body 110 includes a base body 111 and a preheating member 112 located on the base body 111 .
  • the porous ceramic body 110 has a liquid inlet surface 113 . The liquid in the liquid storage cavity flows out through the liquid outlet and then enters the porous ceramic body 110 from the liquid inlet surface 113 .
  • the base body 111 is a porous ceramic structure with a liquid-conducting function. In other embodiments, the base body 111 is a hollow porous ceramic structure. In the illustrated embodiment, the base body 111 is in the shape of a hollow cylinder. Of course, in other embodiments, the shape of the base body 111 is not limited to a hollow cylindrical shape, and may also be other hollow structures.
  • the porosity of the base body 111 is 30% to 80%, and the median pore diameter of the pores of the base body 111 is 10 ⁇ m to 100 ⁇ m.
  • the porosity of the base body 111 and the pore size of the pores are set as described above, so that the base body 111 can easily absorb the liquid.
  • the porosity of the matrix 111 is 30%, 40%, 50%, 60%, 70% or 80%.
  • the median pore diameter of the pores of the substrate 111 is 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m, 50 ⁇ m, 60 ⁇ m, 70 ⁇ m, 80 ⁇ m, 90 ⁇ m or 100 ⁇ m.
  • the porosity of the base body 111 is 40% to 70%, and the median diameter of the pores of the base body 111 is 10 ⁇ m to 80 ⁇ m. It can be understood that, in other embodiments, the porosity of the matrix 111 and the pore size of the pores are not limited to the above, and can be adjusted according to actual needs.
  • the preheating element 112 is close to the liquid outlet and located on the base body 111 , and is a porous infrared ceramic structure, which has the functions of conducting liquid and radiating infrared rays.
  • the preheating element 112 has a liquid inlet surface 113 , and the liquid flows out from the liquid storage chamber and enters the preheating element 112 through the liquid inlet surface 113 of the preheating element 112 .
  • the infrared rays radiated by the preheating element 112 are preheated, the viscosity is reduced, and the fluidity is improved, so that it is not easy for the heating element 10 to atomize the atomizing medium because the atomizing medium is in the porous ceramic body.
  • the poor fluidity in 110 causes the slow formation of aerosols, dry burning, etc.
  • the preheating member 112 and the base body 111 are both hollow structures, and the preheating member 112 is sleeved on the base body 111 .
  • the outer peripheral surface of the preheating element 112 is the liquid inlet surface 113 , and the liquid flows out from the liquid storage chamber, enters the preheating element 112 through the outer peripheral surface of the preheating element 112 , and is preheated.
  • the heating element 112 is preheated and the heating element 120 is heated, it is atomized into an aerosol, which is discharged from the inner peripheral surface of the base body 111 .
  • the preheating element 112 can also be nested in the base body 111 , that is, the base body 111 is sleeved on the preheating element 112 .
  • the preheating element 112 is accommodated in the hollow part of the base body 111 , the inner peripheral surface of the preheating element 112 is the liquid inlet surface 113 , the liquid flows out from the liquid storage cavity, and enters the preheating element 112 through the inner peripheral surface of the preheating element 112 .
  • which is preheated by the preheating element 112 and then heated by the heating element 120 to be atomized into an aerosol which is discharged from the outer peripheral surface of the base body 111 .
  • the preheating member 112 is a hollow cylinder.
  • the base body 111 is a hollow cylindrical shape
  • the preheating piece 112 is a hollow cylindrical shape
  • the preheating piece 112 is sleeved on the base body 111
  • the inner diameter of the base body 111 is 1.5mm-3mm
  • the outer diameter of the preheating piece is 2.5mm ⁇ 9mm.
  • the size of the base body 111 is not limited to the above, and the size of the preheating element 112 is not limited to the above, and can also be adjusted according to the actual situation, as long as its shape and size can match the base body 111 and the liquid outlet.
  • At least one of the base body 111 and the preheating member 112 may be a non-hollow structure.
  • the preheating member 112 has a hollow structure.
  • the preheating member 112 is located on one side surface of the base body 111, and the liquid to be atomized is preheated by the preheating member 112 and then atomized. Then it is discharged from the other side of the base body 111 .
  • the preheating member 112 may be a non-hollow structure, and in this case, the preheating member 112 may be located on the base body 111 in a stacked manner.
  • the porosity of the preheating member 112 is 30% to 80%, and the median diameter of the pores of the preheating member 112 is 10 ⁇ m to 100 ⁇ m.
  • the porosity of the preheating element 112 and the pore size of the pores are set as described above, so that the substrate 111 can easily absorb the liquid.
  • the porosity of the preheater 112 is 30%, 40%, 50%, 60%, 70%, or 80%.
  • the median diameter of the pores of the preheating member 112 is 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m, 50 ⁇ m, 60 ⁇ m, 70 ⁇ m, 80 ⁇ m, 90 ⁇ m or 100 ⁇ m.
  • the porosity of the preheating member 112 is 40% ⁇ 70%, and the median diameter of the pores of the preheating member 112 is 20 ⁇ m ⁇ 80 ⁇ m. It can be understood that, in other embodiments, the porosity of the preheating member 112 and the pore size of the pores are not limited to the above, and can be adjusted according to actual needs.
  • the wavelength radiated by the preheating element 112 can be selected according to the substance to be heated.
  • the object to be heated is an oil-based atomizing medium
  • the radiation wavelength of the preheating element 112 is 5 ⁇ m ⁇ 20 ⁇ m.
  • the active ingredients such as essence, glycerol, nicotine, etc.
  • Effective atomization concentration the radiation wavelength of the preheating element 112 is not limited to the above, and may also be other radiation wavelengths, as long as it can match the absorption wavelength of the object to be heated.
  • the preheating member 112 is a normal temperature porous infrared ceramic structure.
  • the normal temperature here means 25 degreeC - 150 degreeC.
  • the preheating temperature of the preheater 112 is 40°C to 90°C.
  • the preheating temperature refers to the temperature that the liquid preheated by the preheating element 112 can reach. This temperature is suitable for the preheating of the oil-based atomizing medium of the electronic atomizer.
  • the preheating temperature of the preheating element 112 can be adjusted according to the liquid to be atomized.
  • the heating element 120 is used for providing heat to the preheating element 112 and atomizing the preheated liquid. A part of the heat released by the heating element 120 directly heats the liquid to atomize it, and the other part is conducted to the preheating element 112 to absorb the heat and radiate infrared rays.
  • the heating element 120 is located in the porous ceramic body 110 for heating. In the illustrated embodiment, the heating element 120 is located at the junction of the base body 111 and the preheating element 112 . Disposing the heating element 120 at the junction of the base body 111 and the preheating element 112 can make full use of the heat generated by the heating element 120 , satisfying both preheating and atomization.
  • the surface of the base body 111 close to the preheating member 112 is concave to form a first groove 114
  • the surface of the preheating member 112 close to the base body 111 is concave to form a second groove 115 corresponding to the first groove 114
  • the first groove 114 A heating cavity is formed with the second groove 115, and the heating element 120 is accommodated in the heating cavity.
  • the heating element 120 may be completely embedded in the preheating element 112 , or may be completely embedded in the base body 111 .
  • the heating element 120 is completely located in the preheating element 112 and away from the liquid outlet; or, the heating element 120 is completely located in the base body 111 and close to the preheating element 112 .
  • the heating elements 120 are distributed in a spiral shape on the base body 111 .
  • the shape of the heating element 120 is not limited to a spiral shape, and may also be other shapes. For example, at least one of sheet shape, strip shape, S shape and U shape.
  • the heating element 120 includes a heating part 121 .
  • the heating part 121 is a heating wire.
  • the heating part 121 is a heating wire (ie, a single wire).
  • the resistance value of the heat generating portion 121 is 0.5 ⁇ to 1.5 ⁇ . In other embodiments, the resistance value of the heating portion 121 is 0.8 ⁇ ⁇ 1.3 ⁇ .
  • the heating element 120 further includes an infrared heating layer (not shown) on the heating part 121 .
  • an infrared heating layer (not shown) on the heating part 121 .
  • the heat utilization rate of the heating part 121 is higher, which is more favorable for the preheating element 112 to receive more and more uniform heat, and the preheating is faster.
  • the thickness of the infrared heat generating layer is 20 ⁇ m to 500 ⁇ m. In other embodiments, the thickness of the infrared heating layer ranges from 20 ⁇ m to 80 ⁇ m.
  • the base body 111 may be omitted.
  • the heating element 120 can be located in the preheating element 112 and away from the liquid outlet, so that the liquid is preheated first and then atomized. At this time, the heating element 120 transmits heat energy to the preheating element 112 and causes the preheating element 112 to radiate heat energy to preheat the liquid. The preheated liquid flows through the heating element 120 and is atomized, thereby releasing aerosol.
  • the heating element 120 can also be located on the outer surface of the preheating element 112, as long as it can provide heat for the preheating element 112 to preheat and atomize the atomizing medium.
  • the preheating element 112 is a non-hollow structure, one side of the preheating element 112 is close to the liquid outlet, and the heating element 120 is located on the surface of the preheating element 112 and is away from the liquid outlet. At this time, the liquid flowing out of the liquid outlet enters the preheating element 112 near the liquid outlet, is preheated by the preheating element 112 first, and then atomized by the heating element 120 on the surface of the preheating element 112 and released.
  • the preheating element 112 is a hollow structure, and the heating element 120 is located on the outer peripheral surface of the preheating element 112 .
  • the liquid flows out from the liquid outlet, it enters the preheating member 112 through the inner peripheral surface of the preheating member 112 , and is first preheated by the preheating member 112 and then heated by the heating member. release aerosols.
  • the heating element 120 may also be located on the surface of the porous ceramic body 110 .
  • the heating element 120 is located on the outer surface of the preheating element 112 .
  • the above-mentioned heating element 10 further includes a connecting member 130, and the connecting member 130 is used to electrically connect the heating element 120 with the power source.
  • the connecting member 130 protrudes from the outer peripheral surface of the preheating member 112 .
  • the above heating body 10 includes a porous ceramic body 110 and a heating element 120 located on the porous ceramic body 110, and has at least the following advantages:
  • a part of the heat provided by the heating element 120 can cause the preheating element 112 to be heated to radiate infrared rays, thereby preheating the atomizing medium, thereby reducing the viscosity of the atomizing medium after entering the porous ceramic body 110 and increasing the fluidity, which can be faster It flows to the vicinity of the heating element 10 and is heated and atomized by the heating element 120 more quickly. Therefore, the above-mentioned heating element 10 cooperates with the heating element 112 and the heating element 120, so that the atomization medium can be smoothly conducted in the porous ceramic body 110, and the problems such as slow formation of aerosol and dry burning of the heating element 10 are less likely to occur, which improves the performance of the heating element 10. user experience. It has been verified that the above-mentioned heating element 10 has a particularly obvious effect on the lifting effect of the atomized medium with high viscosity.
  • the above-mentioned heating element 10 can be designed for the effective components in the atomization medium, so as to achieve precise atomization and improve the effective atomization concentration. At the same time, because it is a specific wavelength The infrared rays resonate with the effective components of the atomizing medium to heat the atomizing medium, which has a higher thermal efficiency than heating with a heating wire alone, and can significantly reduce energy consumption.
  • infrared heating Since infrared heating has heating uniformity, it can avoid problems such as burnt smell caused by excessive local temperature caused by uneven heating circuit, dry burning of atomized medium, etc., and improve the taste.
  • the aerosol is formed rapidly, and it is not easy to dry and burn, and saves energy.
  • an embodiment of the present application also provides an electronic device, the electronic device includes a power source and the above-mentioned atomizer, and the power source is electrically connected to the above-mentioned atomizer to supply power to the atomizer. More specifically, the above-mentioned electronic device is an electronic atomizer.
  • an embodiment of the present application also provides a method for preparing the above-mentioned heating element, including the following steps:
  • Step S10 According to the preset shape, the raw material for preparing the porous ceramic body and the heating element are integrally formed to prepare a green embryo.
  • the raw material for preparing the porous ceramic body includes the raw material for preparing the matrix and the raw material for preparing the preheating member.
  • the raw materials for preparing the matrix include ceramic powder, sintering aid and pore-forming agent.
  • the types of ceramic powders, pore formers and sintering aids are not particularly limited, and commonly used ceramic powders, pore formers and sintering aids in the art can be used.
  • a diatomaceous earth system or a zeolite system can be used for the ceramic powder.
  • ceramic powder refers to a powdery substance obtained by fully mixing the raw materials (excluding sintering aids and pore-forming agents) used in the preparation of ceramics and then calcining them.
  • the raw materials for preparing the matrix include 40 to 70 parts of ceramic powder, 5 to 30 parts of a sintering aid, and 10 to 30 parts of a pore-forming agent. In other embodiments, in parts by mass, the raw materials for preparing the matrix include 45 to 70 parts of ceramic powder, 10 to 30 parts of a sintering aid, and 15 to 30 parts of a pore-forming agent.
  • the types and contents of the components of the raw materials for preparing the matrix are not limited to the above, and can also be adjusted according to actual conditions.
  • the raw materials for preparing the preheater include ceramic powder, sintering aid and pore-forming agent, wherein the ceramic powder includes far-infrared ceramic powder.
  • Far-infrared ceramic powder refers to ceramic powder with far-infrared radiation properties.
  • Far-infrared ceramic powders include far-infrared ceramic powders with spinel or inverse spinel-type ferrite structures, high-performance infrared ceramic powders prepared by mixed sintering of transition metal oxides and cordierite system silicate materials at least one of them.
  • the far-infrared ceramic powder having a spinel or inverse spinel-type ferrite structure is made of transition metal oxides such as NiO, Cr2O3 , TiO2 , MnO2 , CuO , CoO, Far-infrared ceramic powder with spinel or reverse spinel ferrite structure composed of Fe 2 O 3 , ZnO, etc.
  • the raw materials for preparing the preheater include 40 to 80 parts of ceramic powder, 5 to 30 parts of sintering aid, and 10 to 30 parts of pore-forming agent, Among them, the ceramic powder is far-infrared ceramic powder.
  • the raw materials for preparing the preheater include 50 to 80 parts of far-infrared ceramic powder, 10 to 30 parts of a sintering aid, and 15 to 30 parts of pore forming agent, wherein the ceramic powder is far-infrared ceramic powder.
  • the ceramic powder in the raw material for preparing the preheater includes far-infrared ceramic powder and ordinary ceramic powder. That is, the ceramic powder in the raw material for preparing the preheater includes far-infrared ceramic powder, ordinary ceramic powder, sintering aid and pore-forming agent. In a specific example, in parts by mass, the raw materials for preparing the preheater include 40 to 80 parts of ceramic powder, 5 to 30 parts of a sintering aid, and 10 to 30 parts of a pore-forming agent, wherein , Ceramic powder includes far-infrared ceramic powder and ordinary ceramic powder.
  • the raw materials for preparing the preheater include 45 to 70 parts of far-infrared ceramic powder, 10 to 30 parts of a sintering aid, and 15 to 30 parts of pore forming agent, wherein the ceramic powder includes far-infrared ceramic powder and ordinary ceramic powder.
  • the types and contents of the components of the raw materials for preparing the preheater are not limited to the above, and can also be adjusted according to actual conditions.
  • the heating element includes a heating part and an infrared heating layer on the heating part.
  • the material of the heating part is not particularly limited, and can be selected according to the resistance value of the heating element to be prepared.
  • the materials for preparing the infrared heating layer include far-infrared ceramic powder, binder and solvent.
  • the far-infrared ceramic powder can be the same as the far-infrared ceramic powder used in the above-mentioned preheating piece, or it can be different from the far-infrared powder used in the above-mentioned preheating piece.
  • the binder is selected from at least one of inorganic binders and organic binders. Specifically, the inorganic binder is selected from at least one of aluminum sol and sodium silicate.
  • the organic binder is selected from at least one of CMC (hydroxymethyl cellulose), acrylic polymer, PVA (polyvinyl alcohol) and dextrin.
  • the binder is not limited to the above, and can also be other substances that can be used as the binder.
  • the step of preparing a heating element with an infrared heating layer includes: making a material for preparing the infrared heating layer into a slurry; and spraying the slurry on a spraying process (eg, ion spraying, spraying gun, etc.) On the heating wire, then molding, debinding, and sintering to prepare heating.
  • a spraying process eg, ion spraying, spraying gun, etc.
  • the heating element can be sintered first, then formed, debonded and sintered together with the raw materials for preparing the porous ceramic body to prepare the heating element, or the formed heating element (the raw embryo of the heating element) can be prepared with The raw materials of the porous ceramic body are re-molded together, then debinding and sintering to prepare a heating element.
  • the molding method in the process of preparing the green embryo is one of injection molding, gel injection molding and dry pressing.
  • the molding method in the process of preparing the green embryo is not limited to the above, and other methods may also be used.
  • Step S402 the green embryo is degummed and then sintered to obtain a heating element.
  • the debinding temperature is 350°C to 700°C; the sintering temperature is 800°C to 1200°C. In other embodiments, the debinding temperature is 450°C to 650°C; the sintering temperature is 750°C to 1100°C.
  • the temperature of debinding and the temperature of sintering are not limited to the above, and the temperature of debinding and sintering can be adjusted according to the prepared porous ceramic body.
  • the preparation method of the above heating element is simple and convenient, the prepared heating element has a preheating function, and the liquid guiding effect is good. In addition, the preparation method of the above heating element is simple and easy to industrialize production.

Abstract

一种发热体(10)及其制备方法、雾化器和电子装置。发热体(10)包括多孔陶瓷体(110)和发热件(120)。多孔陶瓷体(110)包括预热件(112),预热件(112)为多孔红外陶瓷结构。发热件(120)位于多孔陶瓷体(110)上,用于为预热件(112)提供热量和雾化预热后的液体。

Description

发热体及其制备方法、雾化器和电子装置
相关申请的交叉引用
本申请要求于2020年12月29日提交中国专利局、申请号为202011595814.6、发明名称为“发热体及其制备方法、雾化器和电子装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及雾化器技术领域,特别是涉及一种发热体及其制备方法、雾化器和电子装置。
技术背景
电子雾化器主要包括雾化器和电池,雾化器是电子雾化器的重要部件,用于将雾化介质雾化以供吸食。在雾化器中,发热体是雾化器发挥雾化作用的核心部件,主要是通过在陶瓷基体上预埋发热丝或丝印发热膜而形成。预埋发热丝的发热体具有结构简单、雾化效率高、温度场均匀等优点。丝印发热膜的发热体具有发热面积大、可实现表面雾化、热效率高等优点。
然而,这两类发热体在将雾化介质雾化时,容易出现形成气溶胶迟缓、发热体干烧而产生焦味、杂气等问题,影响用户体验。
发明内容
根据本申请的各种示意性实施例,提供一种发热体及其制备方法、雾化器和电子装置。
一种发热体,包括:
多孔陶瓷体,包括用于预热液体的预热件,所述预热件为多孔红外陶瓷结构;及
发热件,所述发热件位于所述多孔陶瓷体上,用于为所述预热件提供热 量并雾化预热后的液体。
上述发热体将多孔红外陶瓷结构作为预热件,该预热件通过利用发热件提供的热量辐射远红外线而预热液体,降低液体的粘度,提高多孔陶瓷体内的液体的流动性,从而使得待雾化液体更快速地到达发热件而被雾化,改善雾化雾化介质容易形成气溶胶迟缓的问题。此外,由于待雾化液体在多孔陶瓷体内的流动性提高,能更快速地到达发热件,也改善了发热体容易干烧的问题。
在其中一个实施例中,所述多孔陶瓷体还包括基体,所述预热件位于所述基体上,所述基体为多孔陶瓷结构,所述发热件完全位于所述预热件内并靠近所述基体或位于所述基体与所述预热件的交界处。
在其中一个实施例中,所述基体为中空的多孔陶瓷结构,所述预热件为中空的多孔红外陶瓷结构,所述基体与所述预热件相互嵌套。
在其中一个实施例中,所述预热件套设于所述基体上,所述发热件在所述基体上呈螺旋分布。
在其中一个实施例中,所述发热件包括发热部和位于所述发热部上的红外发热层。
在其中一个实施例中,所述红外发热层的厚度为20μm~500μm。
在其中一个实施例中,所述基体为中空圆筒状,所述预热件为中空圆筒状,所述预热件套于所述基体,所述基体的内径为5mm~3mm,所述预热件的外径为2.5mm~9mm。
在其中一个实施例中,所述基体靠近所述预热件的表面凹陷形成第一凹槽,所述预热件靠近所述基体的表面凹陷形成与所述第一凹槽对应的第二凹槽,所述第一凹槽与所述第二凹槽形成发热腔,所述发热件收容在所述发热腔内。
在其中一个实施例中,所述预热件的孔隙率为30%~80%。
在其中一个实施例中,所述预热件的中位孔径为10μm~100μm。
在其中一个实施例中,所述预热件的辐射波长为5μm~20μm。
在其中一个实施例中,所述预热件的预热温度为40℃~90℃。
在其中一个实施例中,所述发热件的阻值为0.5Ω~5Ω。
在其中一个实施例中,所述基体的孔隙率为30%~80%。
在其中一个实施例中,所述基体的中位孔径为10μm~100μm。
一种制备上述的发热体的方法,包括:
按照预设形状,将发热件与制备多孔陶瓷体的原料一体成型,制备生胚;及
将所述生胚排胶后烧结,制得所述发热体。
一种雾化器,包括:
储液腔,用于储存液体;及
发热体,用于吸取所述储液腔中的液体并将所述液体雾化,所述发热体为上述的发热体。
一种电子装置,包括电源及上述的雾化器,所述电源与所述雾化器电连接以给所述雾化器供电。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一实施例的发热体的结构示意图。
图2为图1所示的发热体的爆炸图。
图3为图1所示的发热体的截面图。
图4为一实施例的制备发热体的方法的流程图。
具体实施方式
为了便于理解本申请,下面将对本申请进行更全面的描述,本申请可以 以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使本申请公开内容更加透彻全面。
需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。当使用术语“垂直的”、“水平的”、“左”、“右”、“上”、“下”、“内”、“外”、“底部”等指示方位或位置关系时,是为基于附图所示的方位或位置关系,仅为了便于描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
本申请一实施方式提供一种雾化器,该雾化器包括储液腔和发热体10,储液腔用于储存液体,例如雾化介质,发热体10用于吸取储液腔中的液体,并将该液体雾化。在一些实施例中,储液腔具有出液口,发热体10靠近出液口。储液腔中的液体从出液口流出后进入发热体10,从而被雾化。在一个具体示例中,雾化器为电子雾化器。
请参阅图1~图3,发热体10包括多孔陶瓷体110和位于多孔陶瓷体110上的发热件120。多孔陶瓷体110包括基体111和位于基体111上的预热件112。具体地,多孔陶瓷体110具有入液面113。储液腔中的液体经出液口流出后从入液面113进入多孔陶瓷体110。
在一些实施例中,基体111为多孔陶瓷结构,具有导液功能。在另一些实施例中,基体111为中空的多孔陶瓷结构。在图示的实施例中,基体111为中空圆柱状。当然,在其他实施例中,基体111的形状不限于中空圆柱状,还可以是其他中空结构。
在本实施方式中,基体111的孔隙率为30%~80%,基体111的气孔的中位孔径为10μm~100μm。将基体111的孔隙率和气孔的孔径按照上述设置,便于基体111吸取液体。在一些实施例中,基体111的孔隙率为30%、40%、50%、60%、70%或80%。基体111的气孔的中位孔径为10μm、20μm、30μm、40μm、50μm、60μm、70μm、80μm、90μm或100μm。在另一些实施例中,基体111的孔隙率为40%~70%,基体111的气孔的中位孔径为10μm~80μm。可以理解的是,在其他实施方式中,基体111的孔隙率和气孔的孔径均不限于上述,可以根据实际需要进行调整。
预热件112靠近出液口,并位于基体111上,为多孔红外陶瓷结构,具有导液和辐射红外线的功能。预热件112具有入液面113,液体从储液腔流出后经预热件112的入液面113进入预热件112。液体流过预热件112时,被预热件112辐射的红外线预热而粘度降低,流动性提高,从而使得发热体10将雾化介质雾化时不容易出现由于雾化介质在多孔陶瓷体110中的流动性差而导致的形成气溶胶迟缓、干烧等情况。
在一些实施例中,预热件112和基体111均为中空结构,预热件112套设于基体111上。在预热件112套设于基体111上时,预热件112的外周面为入液面113,液体从储液腔流出,经预热件112的外周面进入预热件112,被预热件112预热及发热件120加热后雾化成气溶胶,从基体111的内周面排出。可以理解的是,预热件112也可以嵌套在基体111内,也即是基体111套设在预热件112上。此时,预热件112收容在基体111的中空部位,预热件112的内周面为入液面113,液体从储液腔流出,经预热件112的内周面进入预热件112,被预热件112预热后被发热件120加热后而雾化成气溶胶,从基体111的外周面排出。
在图示的实施例中,预热件112为中空圆柱状。在一个具体示例中,基体111为中空圆柱状,预热件112为中空圆柱状,预热件112套于基体111,基体111的内径为1.5mm~3mm,预热件的外径为2.5mm~9mm。可以理解的是,基体111的尺寸不限于上述,预热件112的尺寸也不限于上述,还可以 根据实际情况进行调整,只要其形状和尺寸能与基体111及出液口相匹配即可。
在一些实施例中,基体111及预热件112中的至少一个可以为非中空结构。在基体111为非中空结构时,预热件112为中空结构,此时,预热件112位于基体111的一侧表面上,待雾化的液体经预热件112预热后被雾化,而后从基体111的另一侧排出。在基体111为中空结构时,预热件112可以为非中空结构,此时预热件112可以以层叠的方式位于基体111上。
在本实施方式中,预热件112的孔隙率为30%~80%,预热件112的气孔的中位孔径为10μm~100μm。将预热件112的孔隙率和气孔的孔径按照上述设置,便于基体111吸取液体。在一些实施例中,预热件112的孔隙率为30%、40%、50%、60%、70%或80%。预热件112的气孔的中位孔径为10μm、20μm、30μm、40μm、50μm、60μm、70μm、80μm、90μm或100μm。在另一些实施例中,预热件112的孔隙率为40%~70%,预热件112的气孔的中位孔径为20μm~80μm。可以理解的是,在其他实施方式中,预热件112的孔隙率和气孔的孔径均不限于上述,可以根据实际需要进行调整。
远红外线照射到被加热物体上时,一部分射线被反射回来,一部分被物体吸收。当发射的远红外线波长和被加热物体的吸收波长一致时,被加热的物体吸收远红外线,这时,物体内部分子和原子发生“共振”——产生强烈的振动、旋转,而振动和旋转使物体温度升高,达到了加热物体的目的。因此,预热件112辐射出的波长可以根据被加热的物质进行选择。在本实施例在,被加热的物体为油类雾化介质,预热件112的辐射波长为5μm~20μm。通过将预热件112的辐射波长设为5μm~20μm,可以使得油类雾化介质中的有效成分(例如香精、丙三醇、尼古丁等)被精准加热,实现精准雾化,提高有效成分的有效雾化浓度。当然,预热件112的辐射波长不限于上述,还可以是其他辐射波长,只要能与被加热的物体的吸收波长相匹配即可。
在其中一个实施例中,预热件112为常温多孔红外陶瓷结构。此处的常温是指25℃~150℃。在本实施方式中,预热件112的预热温度为40℃~90℃。 预热温度是指经预热件112预热后的液体所能达到的温度。该温度适合电子雾化器的油类雾化介质的预热。当然,在被雾化的液体不是油类雾化介质而是其他液体时,可以根据具体需要雾化的液体调整预热件112的预热温度。
发热件120用于为预热件112提供热量和雾化预热后的液体。发热件120释放的热量一部分直接加热液体使其雾化,另一部分传导给预热件112,使其吸收热量而辐射红外线。
在一些实施例中,发热件120位于多孔陶瓷体110内,用于发热。在图示的实施例中,发热件120位于基体111与预热件112的交界处。将发热件120设置于基体111与预热件112的交界处,可以使得发热件120产生的热量能够充分利用,满足预热的同时也满足雾化。具体地,基体111靠近预热件112的表面凹陷形成第一凹槽114,预热件112靠近基体111的表面凹陷形成与第一凹槽114对应的第二凹槽115,第一凹槽114与第二凹槽115形成发热腔,发热件120收容在发热腔内。
在其他实施方式中,发热件120可以完全内嵌于预热件112中,也可以完全内嵌于基体111中。例如,发热件120完全位于预热件112内并远离出液口;或者,发热件120完全位于基体111内并靠近预热件112。
在图示的实施方式中,发热件120在基体111上呈螺旋状分布。当然,在其他一些实施例中,发热件120的形状不限于螺旋状,还可以是其他形状。例如,片状、条状、S状及U状中的至少一种。
在其中一个实施例中,发热件120包括发热部121。可选地,发热部121为发热丝。在一个可选地具体示例中,发热部121为一根发热丝(即单丝)。在本实施方式中,发热部121的阻值为0.5Ω~1.5Ω。在其他实施例中,发热部121的阻值为0.8Ω~1.3Ω。
在一些实施例中,发热件120还包括位于发热部121上的红外发热层(图未示)。通过在发热部121上设置红外发热层,使得发热部121的热量利用率更高,更利于预热件112接收到更多、更均匀的热量,预热更快。在本实施方式中,红外发热层的厚度为20μm~500μm。在其他实施例中,红外发热层 的厚度为20μm~80μm。
在一些实施例中,基体111可以省略。在基体111省略时,发热件120可以位于预热件112内且远离出液口,以使液体先被预热,后被雾化。此时,发热件120将热能传递给预热件112并使预热件112辐射热能而预热液体,预热后的液体流经发热件120而被雾化,从而释放气溶胶。当然,在基体111省略时,发热件120也可以位于预热件112的外表面上,只要能为预热件112提供热量预热雾化介质并雾化雾化介质即可。在一个实施例中,预热件112为非中空结构,预热件112的一侧靠近出液口,发热件120位于预热件112的表面上并远离出液口的一侧。此时,从出液口流出的液体在靠近出液口的位置进入预热件112,先被预热件112预热,后被预热件112表面的发热件120雾化,并释放。在另一个实施例中,预热件112为中空结构,发热件120位于预热件112的外周面上。此时,液体从出液口流出后,经预热件112的内周面进入预热件112,先被预热件112预热后被加热件加热,从而从预热件112的外周面上释放气溶胶。
在一些实施例中,发热件120还可以位于多孔陶瓷体110的表面上。例如,在基体111省略时,发热件120位于预热件112的外表面上。
当然,上述发热体10还包括连接件130,连接件130用于将发热件120与电源电连接。在图示的实施方式中,连接件130从预热件112的外周面穿出。
上述发热体10包括多孔陶瓷体110及位于多孔陶瓷体110上的发热件120,至少具有以下优点:
(1)发热件120提供的一部分热量能够使得预热件112受热而辐射红外线,从而预热雾化介质,进而使得雾化介质进入多孔陶瓷体110后的粘度降低,流动性增加,能更快速地流动到发热体10附近,更快速地被发热件120加热雾化。因此,上述发热体10通过预热件112与发热件120的相互配合,使得雾化介质在多孔陶瓷体110中导液顺畅,不易出现形成气溶胶迟缓、发热体10干烧等问题,提高了用户体验。经验证,上述发热体10对粘度较高 的雾化介质的提升效果作用尤为明显。
(2)因为红外线加热的辐射波长的可选择性,所以上述发热体10可以针对雾化介质中有效成分而设计,从而可实现精准雾化,提高有效雾化浓度,同时,由于是特定波长的红外线与雾化介质的有效成分共振而使得雾化介质加热,比单用发热丝加热的热效率高,能显著降低能耗。
(3)由于红外加热具有加热均匀性,可避免了因发热线路不均匀导致的局部温度过高、雾化介质干烧等导致的焦味等问题,改善口感。
上述雾化器由于包括上述发热体10,形成气溶胶迅速、不易干烧且节能。
此外,本申请一实施方式还提供了一种电子装置,该电子装置包括电源和上述雾化器,电源与上述雾化器电连接以为雾化器供电。更具体地,上述电子装置为电子雾化器。
此外,参阅图4,本申请一实施方式还提供了一种制备上述发热体的方法,包括如下步骤:
步骤S10:按照预设形状,将制备多孔陶瓷体的原料和发热件一体成型,制备生胚。
具体地,制备多孔陶瓷体的原料包括制备基体的原料和制备预热件的原料。
制备基体的原料包括陶瓷粉体、烧结助剂和造孔剂。具体地,陶瓷粉体、造孔剂和烧结助剂的种类并没有特别限制,可以采用本领域常用的陶瓷粉体、造孔剂和烧结助剂。例如陶瓷粉体可以采用硅藻土体系或沸石体系。需要说明的是,“陶瓷粉体”是指将制备陶瓷时所用的原料(不包括烧结助剂和造孔剂)经充分混合均匀后焙烧得到的粉末状物质。
在其中一个实施例中,以质量份数计,制备基体的原料包括40份~70份的陶瓷粉体、5份~30份的烧结助剂和10份~30份的造孔剂。在另一些实施例中,以质量份数计,制备基体的原料包括45份~70份的陶瓷粉体、10份~30份的烧结助剂和15份~30份的造孔剂。当然,在其他实施例中,制备基体的原料的组分的种类和含量不限于上述,还可以根据实际情况进行调整。
制备预热件的原料包括陶瓷粉体、烧结助剂和造孔剂,其中陶瓷粉体包括远红外陶瓷粉体。远红外陶瓷粉体是指具有远红外辐射性能的陶瓷粉体。远红外陶瓷粉体包括具有尖晶石或反尖晶石型铁氧体结构的远红外陶瓷粉体、过渡族金属氧化物与堇青石体系硅酸盐材料混合烧结制备的高性能红外陶瓷粉体中的至少一种。在一些实施例中,具有尖晶石或反尖晶石型铁氧体结构的远红外陶瓷粉是由过渡金属氧化物(例如NiO、Cr 2O 3、TiO 2、MnO 2、CuO、CoO、Fe 2O 3、ZnO等)构成的尖晶石或反尖晶石型铁氧体结构的远红外陶瓷粉。
在其中一个实施例中,以质量份数计,制备预热件的原料包括40份~80份的陶瓷粉体、5份~30份的烧结助剂和10份~30份的造孔剂,其中,陶瓷粉体为远红外陶瓷粉体。在另一些实施例中,以质量份数计,制备预热件的原料包括50份~80份的远红外陶瓷粉体、10份~30份的烧结助剂和15份~30份的造孔剂,其中陶瓷粉体为远红外陶瓷粉体。
在另一些实施例中,制备预热件的原料中的陶瓷粉体包括远红外陶瓷粉体和普通陶瓷粉体。也即是,制备预热件的原料中的陶瓷粉体包括远红外陶瓷粉体、普通陶瓷粉体、烧结助剂和造孔剂。在一个具体示例中,以质量份数计,制备预热件的原料包括40份~80份的陶瓷粉体、5份~30份的烧结助剂和10份~30份的造孔剂,其中,陶瓷粉体包括远红外陶瓷粉体和普通陶瓷粉体。在另一些实施例中,以质量份数计,制备预热件的原料包括45份~70份的远红外陶瓷粉体、10份~30份的烧结助剂和15份~30份的造孔剂,其中,陶瓷粉体包括远红外陶瓷粉体和普通陶瓷粉体。当然,在其他实施例中,制备预热件的原料的组分的种类和含量不限于上述,还可以根据实际情况进行调整。
在其中一个实施例中,发热件包括发热部和位于发热部上的红外发热层。发热部的材料没有特别限制,可以根据需要制备的发热件的阻值进行选择。
制备红外发热层的材料包括远红外陶瓷粉体、粘结剂和溶剂。远红外陶瓷粉体可以与上述预热件所采用的远红外陶瓷粉体相同,也可以与上述预热 件所采用的远红外粉体不同。粘结剂选自无机粘结剂和有机粘结剂中的至少一种。具体地,无机粘结剂选自铝溶胶和硅酸钠中的至少一种。有机粘结剂选自CMC(羟甲基纤维素)、丙烯酸聚合物、PVA(聚乙烯醇)和糊精中的至少一种。当然,粘结剂不限于上述,还可以是其他可以作为粘结剂的物质。
在其中一个实施例中,制备具有红外发热层的发热件的步骤包括:将制备红外发热层的材料制成浆料;和采用喷涂工艺(例如,离子喷涂、喷涂枪等)将浆料喷涂在发热丝上,然后成型、排胶、烧结,制备发热。可以理解的是,可以先将发热件烧结之后,与制备多孔陶瓷体的原料一起成型、排胶及烧结,制备发热体,也可以先将成型后的发热件(发热件的生胚)与制备多孔陶瓷体的原料一起再次成型,然后排胶及烧结,制备发热体。
需要说明的是,对于预热件与基体烧结后的收缩匹配性问题,可以通过调整烧结助剂、造孔剂及骨架成型剂的质量配比来解决。
在其中一个实施例中,制备生胚过程中的成型方式为注塑成型、凝胶注模成型和干压成型中的一种。当然,制备生胚过程中的成型方式不限于上述,还可以是其他方式。
步骤S402:将生胚排胶后烧结,制得发热体。
具体地,排胶的温度为350℃~700℃排胶;烧结的温度为800℃~1200℃。在另一些实施例中,排胶的温度为450℃~650℃排胶;烧结的温度为750℃~1100℃。当然,在其他实施例中,排胶的温度和烧结的温度不限于上述,可以根据制备的多孔陶瓷体调整排胶和烧结的温度。
上述发热体的制备方法简捷,制备得到的发热体具有预热功能,导液效果好,尤其对于粘度较高的液体,不易出现导液不畅、发热体干烧等问题。此外,上述发热体的制备方法简捷,易于工业化生产。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详 细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (18)

  1. 一种发热体,包括:
    多孔陶瓷体,包括预热件,所述预热件为多孔红外陶瓷结构;及
    发热件,所述发热件位于所述多孔陶瓷体上,用于为所述预热件提供热量并雾化预热后的液体。
  2. 根据权利要求1所述的发热体,其中,所述多孔陶瓷体还包括基体,所述预热件位于所述基体上,所述基体为多孔陶瓷结构,所述发热件完全位于所述预热件内并靠近所述基体或位于所述基体与所述预热件的交界处。
  3. 根据权利要求2所述的发热体,其中,所述基体为中空的多孔陶瓷结构,所述预热件为中空的多孔红外陶瓷结构,所述基体与所述预热件相互嵌套。
  4. 根据权利要求3所述的发热体,其中,所述预热件套设于所述基体上,所述发热件在所述基体上呈螺旋分布。
  5. 根据权利要求4所述的发热体,其中,所述发热件包括发热部和位于所述发热部上的红外发热层。
  6. 根据权利要求5所述的发热体,其中,所述红外发热层的厚度为20μm~500μm。
  7. 根据权利要求3所述的发热体,其中,所述基体为中空圆筒状,所述预热件为中空圆筒状,所述预热件套于所述基体,所述基体的内径为1.5mm~3mm,所述预热件的外径为2.5mm~9mm。
  8. 根据权利要求2所述的发热体,其中,所述基体靠近所述预热件的表面凹陷形成第一凹槽,所述预热件靠近所述基体的表面凹陷形成与所述第一凹槽对应的第二凹槽,所述第一凹槽与所述第二凹槽形成发热腔,所述发热件收容在所述发热腔内。
  9. 根据权利要求1~8任一项所述的发热体,其中,所述预热件的孔隙率为30%~80%。
  10. 根据权利要求1~8任一项所述的发热体,其中,所述预热件的中位孔径为10μm~100μm。
  11. 根据权利要求1~8任一项所述的发热体,其中,所述预热件的辐射波长为5μm~20μm。
  12. 根据权利要求1~8任一项所述的发热体,其中,所述预热件的预热温度为40℃~90℃。
  13. 根据权利要求1~8任一项所述的发热体,其中,所述发热件的阻值为0.5Ω~1.5Ω。
  14. 根据权利要求2~8任一项所述的发热体,其中,所述基体的孔隙率为30%~80%。
  15. 根据权利要求2~8任一项所述的发热体,其中,所述基体的中位孔径为10μm~100μm。
  16. 一种制备权利要求1~15任一项所述的发热体的方法,包括:
    按照预设形状,将发热件与制备多孔陶瓷体的原料一体成型,制备生胚;及
    将所述生胚排胶后烧结,制得所述发热体。
  17. 一种雾化器,包括:
    储液腔,用于储存液体;及
    如权利要求1~15任一项所述的发热体,用于吸取所述储液腔中的液体并将所述液体雾化。
  18. 一种电子装置,包括电源及权利要求17所述的雾化器,所述电源与所述雾化器电连接以给所述雾化器供电。
PCT/CN2021/134818 2020-12-29 2021-12-01 发热体及其制备方法、雾化器和电子装置 WO2022142981A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3203428A CA3203428A1 (en) 2020-12-29 2021-12-01 Heat generating body and preparation method therefor, atomizer, and electronic device
US18/342,014 US20230337744A1 (en) 2020-12-29 2023-06-27 Heating body and preparation method therefor, vaporizer, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011595814.6A CN112690507A (zh) 2020-12-29 2020-12-29 发热体及其制备方法、雾化器和电子装置
CN202011595814.6 2020-12-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/342,014 Continuation US20230337744A1 (en) 2020-12-29 2023-06-27 Heating body and preparation method therefor, vaporizer, and electronic device

Publications (1)

Publication Number Publication Date
WO2022142981A1 true WO2022142981A1 (zh) 2022-07-07

Family

ID=75511833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134818 WO2022142981A1 (zh) 2020-12-29 2021-12-01 发热体及其制备方法、雾化器和电子装置

Country Status (4)

Country Link
US (1) US20230337744A1 (zh)
CN (1) CN112690507A (zh)
CA (1) CA3203428A1 (zh)
WO (1) WO2022142981A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112690507A (zh) * 2020-12-29 2021-04-23 江门摩尔科技有限公司 发热体及其制备方法、雾化器和电子装置
CN113287795B (zh) * 2021-06-09 2023-09-29 深圳市克莱鹏科技有限公司 一种双向陶瓷发热结构和电子烟及制备方法
CN113615885A (zh) * 2021-08-05 2021-11-09 深圳市基克纳科技有限公司 发热结构、雾化器及电子雾化装置
CN113828767B (zh) * 2021-08-24 2023-09-08 深圳市吉迩科技有限公司 一种发热膜材料、制备方法、雾化芯及应用
CN113768196A (zh) * 2021-08-26 2021-12-10 深圳麦时科技有限公司 一种电子雾化装置及其发热组件
CN114831352A (zh) * 2022-03-04 2022-08-02 海南摩尔兄弟科技有限公司 电子雾化装置、雾化器、雾化芯及其雾化芯的制造方法
CN117356761A (zh) * 2022-07-01 2024-01-09 海南摩尔兄弟科技有限公司 雾化组件及电子雾化器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110045279A1 (en) * 2008-04-28 2011-02-24 Roland Heinl Molded body having porous surface and method for the production thereof
CN108272136A (zh) * 2018-01-13 2018-07-13 深圳市新宜康电子技术有限公司 自调式智能雾化芯及其制作方法
CN108378426A (zh) * 2018-04-23 2018-08-10 杭州森翼科技有限公司 一种使用远红外线加热的电子烟模组
CN109984387A (zh) * 2019-04-22 2019-07-09 深圳市合元科技有限公司 雾化组件及其制备方法
CN110720675A (zh) * 2019-10-18 2020-01-24 深圳麦克韦尔科技有限公司 发热体及其制备方法和电子烟
CN111264903A (zh) * 2020-04-10 2020-06-12 深圳市辰昱科技有限公司 一种用于加热烟弹的加热装置及加热不燃烧电子烟
CN111449300A (zh) * 2020-04-13 2020-07-28 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化器和雾化组件
CN112690507A (zh) * 2020-12-29 2021-04-23 江门摩尔科技有限公司 发热体及其制备方法、雾化器和电子装置
CN214710375U (zh) * 2020-12-29 2021-11-16 江门摩尔科技有限公司 发热体、雾化器和电子装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110045279A1 (en) * 2008-04-28 2011-02-24 Roland Heinl Molded body having porous surface and method for the production thereof
CN108272136A (zh) * 2018-01-13 2018-07-13 深圳市新宜康电子技术有限公司 自调式智能雾化芯及其制作方法
CN108378426A (zh) * 2018-04-23 2018-08-10 杭州森翼科技有限公司 一种使用远红外线加热的电子烟模组
CN109984387A (zh) * 2019-04-22 2019-07-09 深圳市合元科技有限公司 雾化组件及其制备方法
CN110720675A (zh) * 2019-10-18 2020-01-24 深圳麦克韦尔科技有限公司 发热体及其制备方法和电子烟
CN111264903A (zh) * 2020-04-10 2020-06-12 深圳市辰昱科技有限公司 一种用于加热烟弹的加热装置及加热不燃烧电子烟
CN111449300A (zh) * 2020-04-13 2020-07-28 深圳麦克韦尔科技有限公司 电子雾化装置及其雾化器和雾化组件
CN112690507A (zh) * 2020-12-29 2021-04-23 江门摩尔科技有限公司 发热体及其制备方法、雾化器和电子装置
CN214710375U (zh) * 2020-12-29 2021-11-16 江门摩尔科技有限公司 发热体、雾化器和电子装置

Also Published As

Publication number Publication date
US20230337744A1 (en) 2023-10-26
CA3203428A1 (en) 2022-07-07
CN112690507A (zh) 2021-04-23

Similar Documents

Publication Publication Date Title
WO2022142981A1 (zh) 发热体及其制备方法、雾化器和电子装置
WO2020098544A1 (zh) 多孔发热体、包含多孔发热体的雾化器
US20210345670A1 (en) Electronic cigarette atomizer and electronic cigarette comprising same
CN103449777B (zh) 一种高性能多层薄毡复合隔热材料及其制备方法
CN110876493B (zh) 气溶胶生成制品、电子雾化装置及吸波相变体制备方法
CN114831352A (zh) 电子雾化装置、雾化器、雾化芯及其雾化芯的制造方法
CN110022622A (zh) 一种氧化铝蜂窝陶瓷发热体及其制备方法
WO2021073564A1 (zh) 雾化芯及电子雾化装置
WO2019119609A1 (zh) 一种新型多孔发热陶瓷的制备工艺
AU2020276530B2 (en) Air-heating type heat not burn heating device, ceramic heating element and preparation method thereof
CN214710375U (zh) 发热体、雾化器和电子装置
CN112515246A (zh) 雾化芯、雾化器、电子雾化装置及雾化芯制作方法
CN216701680U (zh) 雾化芯、雾化器及气溶胶发生装置
CN113261707B (zh) 一种电子烟用快速发热多孔陶瓷雾化芯及制备方法
WO2024021923A1 (zh) 雾化芯、雾化器及气溶胶发生装置
WO2023226274A1 (zh) 一种雾化芯的制备方法及雾化器
WO2023029870A1 (zh) 雾化组件、雾化器及气溶胶发生装置
CN113349451A (zh) 一种基于开孔烧制成型的电子烟陶瓷发热体及制备方法
CN215075486U (zh) 一种双向陶瓷发热结构和电子烟
WO2024027354A1 (zh) 雾化芯、雾化器、气溶胶发生装置及雾化芯制备方法
CN116076800A (zh) 发热结构及其制备方法和电子烟雾化器
CN215075545U (zh) 一种电子烟用快速发热多孔陶瓷雾化芯
CN215075546U (zh) 一种基于开孔烧制成型的电子烟陶瓷发热体
CN219353076U (zh) 雾化芯及电子雾化装置
CN215075544U (zh) 一种基于烧制热片结构的雾化芯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913722

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3203428

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21913722

Country of ref document: EP

Kind code of ref document: A1