WO2022142484A1 - 多孔聚合物及其制备方法、催化剂以及己二腈的制备方法 - Google Patents

多孔聚合物及其制备方法、催化剂以及己二腈的制备方法 Download PDF

Info

Publication number
WO2022142484A1
WO2022142484A1 PCT/CN2021/118766 CN2021118766W WO2022142484A1 WO 2022142484 A1 WO2022142484 A1 WO 2022142484A1 CN 2021118766 W CN2021118766 W CN 2021118766W WO 2022142484 A1 WO2022142484 A1 WO 2022142484A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous polymer
catalyst
phosphorus
same manner
preparation
Prior art date
Application number
PCT/CN2021/118766
Other languages
English (en)
French (fr)
Inventor
陈志荣
吴文彬
尹红
刘亚庆
查增仕
封智超
张庭兰
黄国东
Original Assignee
浙江大学
浙江新和成股份有限公司
山东新和成氨基酸有限公司
浙江新和成特种材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学, 浙江新和成股份有限公司, 山东新和成氨基酸有限公司, 浙江新和成特种材料有限公司 filed Critical 浙江大学
Priority to US17/795,838 priority Critical patent/US20230094350A1/en
Priority to EP21913231.3A priority patent/EP4242242A1/en
Publication of WO2022142484A1 publication Critical patent/WO2022142484A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing phosphorus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/165Polymer immobilised coordination complexes, e.g. organometallic complexes
    • B01J31/1658Polymer immobilised coordination complexes, e.g. organometallic complexes immobilised by covalent linkages, i.e. pendant complexes with optional linking groups, e.g. on Wang or Merrifield resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1845Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing phosphorus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1845Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing phosphorus
    • B01J31/185Phosphites ((RO)3P), their isomeric phosphonates (R(RO)2P=O) and RO-substitution derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1845Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing phosphorus
    • B01J31/185Phosphites ((RO)3P), their isomeric phosphonates (R(RO)2P=O) and RO-substitution derivatives thereof
    • B01J31/186Mono- or diamide derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2282Unsaturated compounds used as ligands
    • B01J31/2295Cyclic compounds, e.g. cyclopentadienyls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • B01J35/394
    • B01J35/613
    • B01J35/615
    • B01J35/617
    • B01J35/618
    • B01J35/638
    • B01J35/66
    • B01J35/69
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/08Preparation of carboxylic acid nitriles by addition of hydrogen cyanide or salts thereof to unsaturated compounds
    • C07C253/10Preparation of carboxylic acid nitriles by addition of hydrogen cyanide or salts thereof to unsaturated compounds to compounds containing carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/30Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F30/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F30/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • C08J9/286Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum the liquid phase being a solvent for the monomers but not for the resulting macromolecular composition, i.e. macroporous or macroreticular polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/30Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
    • B01J2231/32Addition reactions to C=C or C-C triple bonds
    • B01J2231/322Hydrocyanation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J2523/80Constitutive chemical elements of heterogeneous catalysts of Group VIII of the Periodic Table
    • B01J2523/84Metals of the iron group
    • B01J2523/847Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/001General concepts, e.g. reviews, relating to catalyst systems and methods of making them, the concept being defined by a common material or method/theory
    • B01J2531/002Materials
    • B01J2531/005Catalytic metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0225Complexes comprising pentahapto-cyclopentadienyl analogues
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0261Complexes comprising ligands with non-tetrahedral chirality
    • B01J2531/0266Axially chiral or atropisomeric ligands, e.g. bulky biaryls such as donor-substituted binaphthalenes, e.g. "BINAP" or "BINOL"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/05Elimination by evaporation or heat degradation of a liquid phase
    • C08J2201/0502Elimination by evaporation or heat degradation of a liquid phase the liquid phase being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2343/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium or a metal; Derivatives of such polymers
    • C08J2343/02Homopolymers or copolymers of monomers containing phosphorus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the present invention relates to a porous polymer containing phosphorus ligands, a preparation method thereof, a porous polymer-nickel catalyst and a preparation method of adiponitrile.
  • the present invention relates to a porous polymer formed by self-polymerization or copolymerization of at least one phosphorus ligand, and the catalyst formed by the coordination of the porous polymer and nickel can efficiently catalyze the hydrocyanation of butadiene, branched mononitrile isoform Structure and double hydrocyanation of linear mononitriles to prepare adiponitrile.
  • Adiponitrile is an important organic chemical intermediate. It is a colorless and transparent oily liquid with a slight bitter taste and is flammable.
  • the molecular formula is NC(CH 2 ) 4 CN.
  • adiponitrile is mainly used for hydrogenation to produce hexamethylene diamine, and then hexamethylene diamine and adipic acid are polymerized to produce polyhexamethylene adipamide (nylon 66).
  • nylon 66 polyhexamethylene adipamide
  • nylon 66 polyhexamethylene adipamide
  • nylon 6 the material of nylon 66 has better strength, heat resistance, crystallinity, wear resistance and lower water absorption, and is widely used in automobiles, machinery industry, electronic appliances, precision instruments and other fields.
  • the main technical routes for preparing adiponitrile include acrylonitrile electrolytic dimerization, adipic acid catalytic amination and butadiene hydrocyanation.
  • the butadiene hydrocyanation method is developed on the basis of the butadiene chlorocyanation method by DuPont in the United States.
  • the method overcomes the problems such as large-scale supporting chlor-alkali engineering and serious equipment corrosion required by the butadiene chlorination cyanidation method.
  • the method Compared with other preparation methods of adiponitrile, the method has the advantages of easy availability of raw materials, low cost, low energy consumption, High product yield advantage.
  • Butadiene hydrocyanation to prepare adiponitrile is currently the most advanced production process of adiponitrile recognized in the world.
  • the key to determining whether the industrialization can be successful is to seek a catalyst type with higher selectivity and more stability and to solve the problem of recycling and recovery of the catalyst in the reaction system.
  • CN1387534A discloses catalysts for the hydrocyanation of unsaturated organic compounds in a technically simple and economical manner using phosphites having the following general formula I as ligands and also transition metal complex catalysts, and their preparation methods, and their use as catalysts:
  • CN1159799A discloses a hydrocyanation method and the used multi-coordination phosphite and nickel catalyst composite.
  • the hydrocyanation process comprises combining an acyclic, aliphatic, monoethylenically unsaturated compound with a source of HCN in the presence of Lewis acid, zerovalent nickel and a catalyst complex selected from bidentate phosphite ligands having a specific structure reaction.
  • the catalyst complex is mainly composed of zero-valent nickel, and at least one kind of multi-coordinated phosphite ligands selected from a specific structure.
  • WO1999052632A1 discloses the hydrocyanation of alkenes and the isomerization of non-conjugated 2-alkyl-3-monoalkenenitriles. Also disclosed is a process for the hydrocyanation of diolefins and olefinic compounds comprising reacting an acyclic aliphatic diene compound or acyclic aliphatic olefin with a source of HCN in the presence of a catalyst precursor composition, the catalyst precursor being The composition comprises zero-valent nickel and at least one bidentate phosphoramide ligand selected from the group consisting of a specific structure.
  • the monodentate phosphite, bidentate phosphite or bidentate phosphoramidite ligands described in the above-mentioned patent documents can be used for the hydrocyanation of olefins.
  • the reaction system for the production of adiponitrile by diene hydrocyanation In the reaction system for the production of adiponitrile by diene hydrocyanation.
  • the above-mentioned catalysts are all homogeneous catalytic systems, the later separation and recovery of the catalysts are difficult, thus considerably increasing the cost for recovery.
  • Non-patent literature (“Boosting the hydrolytic stability of phosphite ligand in hydroformylation by the construction of superhydrophobic porous framework", Yongquan Tang et al., Molecular Catalysis 474 (2019) 110408, pp. 1-6) discloses the use of internal olefins Catalyst for the hydroformylation reaction.
  • the catalyst includes Rh species and a polymer with a superhydrophobic porous framework obtained by polymerizing tris(2-tert-butyl-4-vinyl-phenyl)phosphite. The catalyst has improved durability and is easy to recover and recycle.
  • the present invention provides a porous polymer containing phosphorus ligands and a preparation method thereof, a porous polymer-nickel catalyst, and a preparation method of adiponitrile.
  • the porous polymer-nickel catalyst can efficiently catalyze the hydrocyanation of butadiene to prepare adiponitrile, has high catalytic activity, high reaction selectivity, and high linearity in the reaction, and can be separated by simple filtration Recycle for recycling.
  • the present invention provides a porous polymer containing phosphorus ligands, wherein the pore volume of the porous polymer is 0.3-2.5 cm 3 /g, preferably 0.5-2.0 cm 3 /g;
  • the porous polymer includes pores with a first pore size and pores with a second pore size, and the pore volume ratio of the pores with the first pore size to the pores with the second pore size is 1 ⁇ 10:1, preferably 2 ⁇ 1. 8:1,
  • the pore size of the pores with the first pore size measured by the nitrogen adsorption method using the NLDFT model is less than 10 nm, preferably 2 to 6 nm; the pore size of the pores with the second pore size measured by the nitrogen adsorption method using the NLDFT model is greater than 15 nm, preferably greater than 20nm;
  • the porous polymer is obtained by self-polymerization or copolymerization of at least one phosphorus ligand, and the phosphorus content of the porous polymer is 1-5 mmol/g, preferably 1.7-3.9 mmol/g.
  • the present invention also provides a method for preparing the porous polymer containing phosphorus ligands provided by the present invention, wherein in the presence of a free radical initiator, at least one of the phosphorus ligands is self-polymerized or copolymerized.
  • the present invention also provides a porous polymer-nickel catalyst, comprising the porous polymer containing phosphorus ligands provided according to the present invention, and zero-valent nickel, and the content of the zero-valent nickel is relative to the amount of the catalyst It is 0.1 ⁇ 2mmol/g.
  • the present invention also provides a method for preparing adiponitrile, which comprises, in the presence of the porous polymer-nickel catalyst provided according to the present invention, successively performing a hydrocyanation reaction of butadiene, a branched mono Isomerization of Nitriles and Secondary Hydrocyanation of Linear Mononitriles.
  • the porous polymer containing phosphorus ligands provided according to the present invention has super-hydrophobicity, and the use of the porous polymer-nickel catalyst formed by the porous polymer and nickel can significantly increase the water resistance, reduce the consumption of phosphorus ligands, and save energy.
  • the steps of removing raw materials and water and controlling water in the reaction system greatly save the investment in process equipment.
  • porous polymer-nickel catalyst when used in the primary hydrocyanation of butadiene, the isomerization of branched mononitrile and the secondary hydrocyanation of linear mononitrile, it has high catalytic activity, It has high reaction selectivity, and is easy to recover and recycle.
  • the linearity of the two-step reaction of butadiene primary hydrocyanation and linear mononitrile secondary hydrocyanation can reach more than 87.5%. Due to the realization of high linearity, the amount of branched mononitrile products can be greatly reduced from the process, thereby significantly reducing equipment investment and separation energy costs.
  • the porous polymer-nickel catalyst provided by the invention is a heterogeneous catalyst, has high hydrolysis resistance, can realize the cyclic application of the catalyst in the reaction system through simple separation, simplifies the separation and recovery steps of the catalyst, and has a large number of repeated application of the catalyst. The magnitude increases and the catalyst cost is reduced.
  • the porous polymer containing phosphorus ligands includes pores with a first pore size and pores with a second pore size, and the pores with the first pore size and the pores with the second pore size are The pore volume ratio is 1-10:1, preferably 2-8:1,
  • the pore size of the pores with the first pore size measured by the nitrogen adsorption method using the NLDFT model is less than 10 nm, preferably 2 to 6 nm; the pore size of the pores with the second pore size measured by the nitrogen adsorption method using the NLDFT model is greater than 15 nm, preferably greater than 20nm;
  • the porous polymer is obtained by self-polymerization or copolymerization of at least one phosphorus ligand, and the phosphorus content of the porous polymer is 1-5 mmol/g, preferably 1.7-3.9 mmol/g.
  • the smaller pore size ( ⁇ 10 nm, preferably 2-6 nm) is beneficial to increase the pore volume and specific surface area, and can be limited by micropores during the hydrocyanation reaction Change the spatial structure of the catalyst to increase the linearity of the product; larger pore size (>15nm, preferably greater than 20nm) is conducive to the transport and internal diffusion of reactants and products, improve the utilization of phosphorus atoms, increase the reaction speed, and improve the activity of the catalyst .
  • the catalyst formed by the phosphorus ligand-containing porous polymer and nickel provided by the present invention is particularly beneficial to the preparation of linear adiponitrile, can increase the linearity of the product, and has high catalytic activity. Therefore, the pore volume distribution of the phosphorus ligand-containing porous polymer of the present invention should be such that the ratio of pore volumes of pores ⁇ 10 nm to pores >15 nm is 1-10:1, preferably 2-8:1.
  • the porous polymer of the present invention has a BET specific surface area of 100 to 2000 m 2 /g, preferably 500 to 1700 m 2 /g.
  • the pore volume of the porous polymer is within the above-mentioned range, which can be beneficial to provide a reaction site and realize the balance between the in and out of reactants and products.
  • the BET specific surface area of the porous polymer of the present invention is in the above range, so that there are more catalytic sites per unit volume, which is more conducive to improving the overall catalytic effect.
  • the phosphorus ligands are represented by the following general formula (1):
  • n 1 ⁇ 4;
  • Ar represents a group having a substituted aromatic ring structure
  • X and Y are the same or different, and each independently represents an aryloxy group or a nitrogen-containing heterocyclic group, and X and Y may form a ring via a single bond or a methylene group.
  • the phosphorus ligand is a polydentate phosphorus ligand, and X and Y are the same or different, and each independently represents Nitrogen-containing heterocyclic group;
  • Ar is The condition is that when both X and Y represent When X and Y do not form a ring; when both X and Y represent a nitrogen-containing heterocyclic group, X and Y do not form a ring or form a ring through a single bond or methylene; and when X is When and Y is a nitrogen-containing heterocyclic group, X and Y form a ring through methylene;
  • the nitrogen-containing heterocyclic group is N-containing heterocyclic group
  • R 1 is selected from hydrogen atom, vinyl group, propenyl group, acryloyl group, acrylate group or methacryloyl group;
  • R 2 is selected from hydrogen atom, halogen atom, nitrile group, C 1 -C 10 alkyl group, C 1 -C 10 alkoxy group, C 1 -C 10 alkanoyl group, C 1 -C 10 ester group or C 1 -C 10 sulfonate group;
  • Rx is selected from hydrogen atom, vinyl group, propenyl group, acryloyl group, acrylate group or methacryloyl group;
  • Ry is selected from hydrogen atom, halogen atom, nitrile group, C 1 -C 10 alkyl group, C 1 -C 10 alkoxy group, C 1 -C 10 alkanoyl group, C 1 -C 10 ester group or C 1 -C 10 sulfonate group.
  • the phosphorus ligand is selected from compounds having the following structural formulae (2) to (18):
  • R 1 , R 2 , Rx and Ry are the same as those in the general formula (1), X and Y are the same, and both represent nitrogen-containing heterocyclic groups.
  • both X and Y are nitrogen-containing heterocyclic groups, and the structural positions of the two through single bond or methylene ring are selected from any one of the following:
  • the porous polymer is obtained by self-polymerization of any one of the phosphorus ligands.
  • the porous polymer is a random copolymer obtained by copolymerizing any two phosphorus ligands, and the molar ratio between the two phosphorus ligands is 0.01-3:1 , preferably 0.05 to 2.5:1.
  • the porous polymer is a random copolymer obtained by copolymerizing any of three or more of the phosphorus ligands.
  • the combination of its monomers can be divided into the following groups:
  • the porous polymer is a homopolymer or a copolymer containing a monomer unit derived from a monodentate phosphorus ligand represented by the formula (2), which is exemplified by the following: the homopolymer of the formula (2); and the formula (2) ) and (3), (2) and (4), (2) and (5), (2) and (6), (2) and (7), and (2) and (8) , formula (2) and (9), formula (2) and (10), formula (2) and (11), formula (2) and (12), formula (2) and (13), formula (2) and (14), formula (2) and (15), formula (2) and (16), formula (2) and (17), formula (2) and (18) copolymer; and three or more phosphorus Ligand copolymer.
  • the porous polymer is a homopolymer or a copolymer containing a monomer unit derived from a polydentate phosphorus ligand represented by the formula (3), which is exemplified by the following: the homopolymer of the formula (3); and the formula (3) ) and (4), (3) and (5), (3) and (6), (3) and (7), (3) and (8), and (3) and (9) , formula (3) and (10), formula (3) and (11), formula (3) and (12), formula (3) and (13), formula (3) and (14), formula (3) and (15), formula (3) and (16), formula (3) and (17), formula (3) and (18) copolymers; and copolymers of three or more phosphorus ligands.
  • the porous polymer is a homopolymer or copolymer containing a monomer unit derived from a polydentate phosphorus ligand represented by the formula (4), which is exemplified by the following: the homopolymer of the formula (4); and the formula (4) ) and (5), (4) and (6), (4) and (7), (4) and (8), (4) and (9), and (4) and (10) , formula (4) and (11), formula (4) and (12), formula (4) and (13), formula (4) and (14), formula (4) and (15), formula (4) and (16), formulae (4) and (17), formulae (4) and (18) copolymers; and copolymers of three or more phosphorus ligands.
  • the formula (4) which is exemplified by the following: the homopolymer of the formula (4); and the formula (4) ) and (5), (4) and (6), (4) and (7), (4) and (8), (4) and (9), and (4) and (10) ,
  • the porous polymer is a homopolymer or a copolymer containing a monomer unit derived from a polydentate phosphorus ligand represented by the formula (5), which is exemplified by the following: the homopolymer of the formula (5); and the formula (5) ) and (6), (5) and (7), (5) and (8), (5) and (9), (5) and (10), and (5) and (11) , formula (5) and (12), formula (5) and (13), formula (5) and (14), formula (5) and (15), formula (5) and (16), formula (5) and (17), formulas (5) and (18); and copolymers of three or more phosphorus ligands.
  • the porous polymer is a homopolymer or a copolymer containing a monomer unit derived from a polydentate phosphorus ligand represented by the formula (6), which is exemplified by the following: the homopolymer of the formula (6); and the formula (6) ) and (7), (6) and (8), (6) and (9), (6) and (10), (6) and (11), and (6) and (12) , formula (6) and (13), formula (6) and (14), formula (6) and (15), formula (6) and (16), formula (6) and (17), formula (6) and (18); and copolymers of three or more phosphorus ligands.
  • the porous polymer is a homopolymer or copolymer containing a monomer unit derived from a polydentate phosphorus ligand represented by the formula (7), which is exemplified by the following: the homopolymer of the formula (7); and the formula (7) ) and (8), (7) and (9), (7) and (10), (7) and (11), (7) and (12), and (7) and (13) , copolymers of formula (7) and (14), formula (7) and (15), formula (7) and (16), formula (7) and (17), formula (7) and (18); and Copolymers of three or more phosphorus ligands.
  • the formula (7) which is exemplified by the following: the homopolymer of the formula (7); and the formula (7) ) and (8), (7) and (9), (7) and (10), (7) and (11), (7) and (12), and (7) and (13) , copolymers of formula (7) and (14), formula (7) and (15), formula (7) and (16), formula
  • the porous polymer is a homopolymer or a copolymer containing a monomer unit derived from a polydentate phosphorus ligand represented by the formula (8), which is exemplified by the following: the homopolymer of the formula (8); and the formula (8) ) and (9), (8) and (10), (8) and (11), (8) and (12), (8) and (13), and (8) and (14) , copolymers of formula (8) and (15), formula (8) and (16), formula (8) and (17), formula (8) and (18); and copolymerization of three or more phosphorus ligands thing.
  • the porous polymer is a homopolymer or copolymer containing a monomer unit derived from a polydentate phosphorus ligand represented by the formula (9), which is exemplified by the following: the homopolymer of the formula (9); and the formula (9) ) and (10), (9) and (11), (9) and (12), (9) and (13), (9) and (14), and (9) and (15) , copolymers of formulas (9) and (16), formulas (9) and (17), formulas (9) and (18); and copolymers of three or more phosphorus ligands.
  • the formula (9) which is exemplified by the following: the homopolymer of the formula (9); and the formula (9) ) and (10), (9) and (11), (9) and (12), (9) and (13), (9) and (14), and (9) and (15) , copolymers of formulas (9) and (16), formulas (9) and (17), formulas (9) and (18); and copolymers of three or more phospho
  • the porous polymer is a homopolymer or a copolymer containing a monomer unit derived from a polydentate phosphorus ligand represented by the formula (10), which is exemplified by the following: the homopolymer of the formula (10); and the formula (10) ) and (11), (10) and (12), (10) and (13), (10) and (14), (10) and (15), and (10) and (16) , copolymers of formulae (10) and (17), formulae (10) and (18); and copolymers of three or more phosphorus ligands.
  • the formula (10) which is exemplified by the following: the homopolymer of the formula (10); and the formula (10) ) and (11), (10) and (12), (10) and (13), (10) and (14), (10) and (15), and (10) and (16) , copolymers of formulae (10) and (17), formulae (10) and (18); and copolymers of three or more phosphorus ligands.
  • the porous polymer is a homopolymer or copolymer containing a monomer unit derived from a polydentate phosphorus ligand represented by the formula (11), which is exemplified by the following: the homopolymer of the formula (11); and the formula (11) ) and (12), (11) and (13), (11) and (14), (11) and (15), (11) and (16), and (11) and (17) , copolymers of formulae (11) and (18); and copolymers of three or more phosphorus ligands.
  • the formula (11) which is exemplified by the following: the homopolymer of the formula (11); and the formula (11) ) and (12), (11) and (13), (11) and (14), (11) and (15), (11) and (16), and (11) and (17) , copolymers of formulae (11) and (18); and copolymers of three or more phosphorus ligands.
  • the porous polymer is a homopolymer or a copolymer containing a monomer unit derived from a polydentate phosphorus ligand represented by the formula (12), which is exemplified by the following: the homopolymer of the formula (12); and the formula (12) ) and (13), (12) and (14), (12) and (15), (12) and (16), (12) and (17), and (12) and (18) The copolymer; and the copolymer of three or more phosphorus ligands.
  • the porous polymer is a homopolymer or a copolymer containing a monomer unit derived from a polydentate phosphorus ligand represented by the formula (13), which is exemplified by the following: the homopolymer of the formula (13); and the formula (13) ) and (14), formulas (13) and (15), formulas (13) and (16), formulas (13) and (17), and copolymers of formulas (13) and (18); and three or more Copolymers of phosphorus ligands;
  • the porous polymer is a homopolymer or a copolymer containing a monomer unit derived from a polydentate phosphorus ligand represented by the formula (14), which is exemplified by the following: the homopolymer of the formula (14); and the formula (14) ) and (15), formulas (14) and (16), formulas (14) and (17), and copolymers of formulas (14) and (18); and copolymers of three or more phosphorus ligands.
  • the porous polymer is a homopolymer or a copolymer containing a monomer unit derived from a polydentate phosphorus ligand represented by the formula (15), which is exemplified by the following: the homopolymer of the formula (15); and the formula (15) ) and (16), copolymers of formulae (15) and (17), formulae (15) and (18); and copolymers of three or more phosphorus ligands.
  • the porous polymer is a homopolymer or a copolymer containing a monomer unit derived from a polydentate phosphorus ligand represented by the formula (16), which is exemplified by the following: the homopolymer of the formula (16); and (16) and (17), copolymers of formulae (16) and (18); and copolymers of three or more phosphorus ligands.
  • the porous polymer is a homopolymer or a copolymer containing a monomer unit derived from a polydentate phosphorus ligand represented by the formula (17), which is exemplified by the following: the homopolymer of the formula (17); and the formula (17) ) and (18); and copolymers of three or more phosphorus ligands.
  • the porous polymer is a homopolymer composed of monomer units derived from the polydentate phosphorus ligand represented by the formula (18), which is exemplified by the following: the homopolymer of the formula (18).
  • the ratio of specific surface area to pore volume of secondary channels, the charge on the phosphorus atom in the phosphorus ligand, and the steric hindrance of the phosphorus ligand are selected to affect the reactivity and linearity. According to the evaluation results of practical application, a porous polymer formed by a phosphorus ligand containing a nitrogen-containing polydentate phosphorus ligand is preferred.
  • the polymer formed by at least one of the above phosphorus ligand monomers, wherein the ligand phosphorus is enriched on the surface of the pore channels is conducive to the formation of a specific spatial structure and increases phosphorus
  • the coordination effect of the ligands contributes to the catalyst by increasing the reactivity and improving the selectivity of the reaction.
  • the overall effect that can be obtained is that the catalyst has high reactivity. , high selectivity and high linearity of the product.
  • the present invention also provides a method for preparing a porous polymer containing phosphorus ligands, wherein at least one of the phosphorus ligands is self-polymerized or copolymerized in the presence of a free radical initiator.
  • the method specifically includes pre-polymerizing at least one of the phosphorus ligands in the presence of a first organic solvent to obtain a prepolymer, at least one of the phosphorus ligands and the first organic solvent
  • the difference between the solubility parameters of the first and second organic solvents is 1.0 to 2.5 [MPa] 1/2 ; the second organic solvent is added to the obtained prepolymer, so that the solubility parameter of the mixed solvent of the first and second organic solvents is the same as that of the prepolymer.
  • the difference in solubility parameters is less than 0.5 [MPa] 1/2 , allowing the prepolymer to swell and cure.
  • the temperature of the pre-polymerization is 50-80° C.
  • the time of the pre-polymerization is 2-10 hours
  • the temperature of swelling and curing is At 85 to 110°C, the time is 2 to 10 hours.
  • any one of the phosphorus ligands is self-polymerized.
  • any two kinds of phosphorus ligands are copolymerized, and the molar ratio of the two kinds of phosphorus ligands is 0.01-3:1 , preferably 0.05 to 2.5:1.
  • any three or more of the phosphorus ligands are copolymerized.
  • selecting an organic solvent with a large difference in the solubility parameter of the porous polymer can make the polymer form a smaller pore size ( ⁇ 10 nm, preferably 2-6nm), which is beneficial to increase the pore volume and specific surface area, and is beneficial to increase the linearity of the product during the reaction; in the second-stage polymerization, selecting an organic solvent with a smaller difference from the solubility parameter of the prepolymer can make the prepolymerization
  • the low cross-linked part of the polymer is fully swollen, and the pore size of the polymer is enlarged (>15nm, preferably greater than 20nm), thereby facilitating the transport and internal diffusion of reactants and products, increasing the reaction speed and improving the activity of the catalyst.
  • the free radical initiator is selected from 2,2'-azobisisobutyronitrile and 2,2'-azobis(2- at least one of methylpropionitrile).
  • the first organic solvent and the second organic solvent are the same or different, and are selected from n-pentane, n-hexane, n-heptane, dodecane Alkane, cyclohexane, isobutyl acetate, benzonitrile, methyl isobutyl ketone, n-butyl acetate, cyclopentane, 3-pentanone, p-xylene, toluene, methyl propyl ketone, tetrahydrofuran, Ethyl acetate, benzene, chloroform, 1,1,2-trichloroethane, methyl acetate, 1,2-dichloroethane, acetone, cyclohexanone, 1,4-dioxane, cyclohexanone
  • the present invention also provides a porous polymer-nickel catalyst, comprising the porous polymer containing phosphorus ligands provided according to the present invention, and zero-valent nickel, and the content of the zero-valent nickel is relative to the amount of the catalyst It is 0.1 ⁇ 2mmol/g.
  • the present invention also provides a method for preparing a porous polymer-nickel catalyst, wherein the method comprises, under an inert gas atmosphere, at 20-100° C., mixing the porous polymer containing phosphorus ligands according to the present invention with The active nickel species is mixed in an organic solvent for 6 to 24 hours, and the active nickel species is cyclooctadiene nickel.
  • the molar ratio of phosphorus in the porous polymer to cyclooctadiene nickel is 2-20:1, preferably 2-10:1.
  • the present invention also provides a method for preparing adiponitrile, the method comprising, in the presence of the porous polymer-nickel catalyst according to the present invention, sequentially performing a hydrocyanation reaction, an isomerization reaction and Secondary hydrocyanation reaction.
  • the method comprises the following steps:
  • the molar ratio of the butadiene to hydrocyanic acid is 1.0-1.5, and the mole number of the hydrocyanic acid is the same as that of the hydrocyanic acid.
  • the molar ratio of the catalyst in terms of zero-valent nickel is 100-1:1, preferably 70-10:1, the reaction temperature is 60-140°C, and the reaction pressure is 0.3-5.0MPa;
  • the branched mononitrile mixture isolated from the product obtained in the above step (1) is subjected to an isomerization reaction, wherein the number of moles of the branched mononitrile mixture and the catalyst are zero-valent
  • the molar ratio of nickel is 300-20:1, preferably 200-50:1, the reaction temperature is 80-170°C, and the reaction pressure is 0.3-5.0MPa;
  • the linear mononitrile mixture isolated from the products obtained in the above steps (1) and (2) is subjected to a secondary hydrocyanation reaction with hydrocyanic acid, wherein the linear mononitrile mixture and hydrogen
  • the molar ratio of cyanic acid is 1.0 to 1.5
  • the ratio of the moles of hydrocyanic acid to the moles of the catalyst in terms of zero-valent nickel is 1000 to 20:1, preferably 500 to 20:1
  • the reaction temperature is 30 to 120 °C
  • the reaction pressure is 0.3 to 5.0 MPa.
  • the secondary hydrocyanation reaction is carried out in the presence of a promoter, and the ratio of the number of moles of the promoter to the number of moles of the catalyst in terms of zero-valent nickel is 0.05-2.5:1;
  • the accelerator is a Lewis acid;
  • the Lewis acid is selected from one or more salts of elements from Groups Ib, IIb, IIIa, IIIb, IVa, IVb, Va, Vb, VIb, VIIb and VIII of the Periodic Table of the Elements;
  • Described salt is selected from a kind of in halide, sulfate, sulfonate, haloalkyl sulfonate, perhaloalkyl sulfonate, haloalkyl acetate, perhaloalkyl acetate, carboxylate and phosphate or more;
  • the Lewis acid is selected from zinc chloride, zinc bromide, zinc iodide, manganese chloride, manganese bromide, cadmium chloride, cadmium bromide, stannous chloride, stannous bromide, sulfite Tin, stannous tartrate, indium trifluoromethanesulfonate, indium trifluoroacetate, zinc trifluoroacetate, rare earth elements such as lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, hafnium, erbium, thallium , one or more of ytterbium and lutetium chloride or bromide, cobalt chloride, ferrous chloride and yttrium chloride;
  • the Lewis acid is one or more of zinc chloride and ferric chloride.
  • the preparation method of adiponitrile further comprises recycling the porous polymer-nickel catalyst, which comprises the following method (a) or (b):
  • the specific surface area and pore volume of the obtained porous polymer A were tested by the BET test method.
  • the pore size distribution of Porous Polymer A was determined using a Micromeritics ASAP 2020 automated physical adsorption instrument using the Nonlocal Density Function Theory (NLDFT) model, i.e., the ratio of the pore volume of pores with pore sizes ⁇ 10 nm and >15 nm, respectively.
  • NLDFT Nonlocal Density Function Theory
  • the P content was determined by ammonium molybdate spectrophotometry. The specific results are shown in Table 2-1.
  • Porous Polymer A (52.9 g, P amount of 150 mmol) and bis-(1,5-cyclooctadiene)nickel (8.3 g, 30 mmol) were added to 1500 mL of 3-pentenenitrile. Next, stirring was continued at room temperature for 12 hours. After stirring, the insoluble cake in the mixed solution was filtered, washed, and dried under vacuum to obtain porous polymer-nickel catalyst A (54.7 g). The content of Ni in catalyst A was measured by inductively coupled plasma optical emission spectrometer (ICP-OES). The specific results are shown in Table 2-1.
  • ICP-OES inductively coupled plasma optical emission spectrometer
  • step (i) From the reaction product of step (i), 2M3BN is obtained by separation, 2M3BN 64.90g (0.80mol) is added into the reactor equipped with porous polymer-nickel catalyst A (Ni content 10mmol), and the reaction temperature is 150 ° C and the reaction pressure is The reaction was carried out under the condition of 0.6MPa for 2.5h. After the reaction, the product was released from the bottom of the reactor. After separating the catalyst by filtration, sampling was performed and the ratio of the products 3PN and 2M3BN was analyzed by GC (with valeronitrile as the internal standard). The results are shown in Table 2-1.
  • step (i) and step (ii) separation Collect the 3PN product obtained by step (i) and step (ii) separation, add 3PN 81.12g (1.0mol) and the promoter anhydrous zinc chloride 1.02g (7.5mmol) into the porous polymer-nickel catalyst A (Ni In the reactor with a content of 5 mmol), 22.41 g (0.83 mol) of HCN was added dropwise within 5 hours, and the reaction was carried out for 10.0 h under the conditions of a reaction temperature of 65 °C and a reaction pressure of 0.3 MPa.
  • the monomer 2-a (23.3 g, 60 mmol) and the monomer 3-b (45.3 g, 60 mmol) were dissolved in 1000 mL of chloroform (the difference between the solubility parameter of the solvent and the mixed monomer was 2.28 MPa 1/2 ), and added 1.0 g of azobisisobutyronitrile (AIBN) was prepolymerized with stirring at 50°C for 4 hours to obtain a prepolymer; then 200 mL of isobutyl acetate was added (so that the difference between the solubility parameters of the mixed solvent and the prepolymer was 0.39 MPa 1/2 ), and then the porous polymer B (63.1 g) was obtained in the same manner as in Example 1.
  • AIBN azobisisobutyronitrile
  • Example 2 The test was carried out in the same manner as in Example 1, and the various performance parameters of the porous polymer B are shown in Table 2-1.
  • Porous Polymer B (57.1 g, P amount of 150 mmol) and bis-(1,5-cyclooctadiene)nickel (8.3 g, 30 mmol) were added to 1500 mL of 3-pentenenitrile. Subsequently, catalyst B (58.9 g) was obtained in the same manner as in Example 1, and the Ni content in catalyst B measured in the same manner is shown in Table 2-1.
  • Monomer 2-a (23.3g, 60mmol) and monomer 3-c (43.3g, 60mmol) were dissolved in 1000mL of benzene (the difference between the solubility parameter of the solvent and the mixed monomer was 2.46MPa 1/2 ), and 1.0g was added.
  • Azobisisobutyronitrile (AIBN) and stirred for 4 hours at 50 ° C for prepolymerization to obtain a prepolymer; then add 1000 mL of dodecane (so that the difference between the solubility parameters of the mixed solvent and the prepolymer is 0.05MPa 1 /2 ), the porous polymer C (58.6 g) was obtained in the same manner as in Example 1.
  • Example 2 The test was carried out in the same manner as in Example 1, and various performance parameters of the obtained porous polymer C are shown in Table 2-1.
  • porous polymer C (22.2 g, P amount of 60 mmol) and bis-(1,5-cyclooctadiene)nickel (8.3 g, 30 mmol) were added to 1500 mL of 3-pentenenitrile. Subsequently, catalyst C (24.0 g) was obtained in the same manner as in Example 1, and the Ni content in catalyst C measured in the same manner is shown in Table 2-1.
  • the monomer 2-a (23.3 g, 60 mmol) and the monomer 3-d (53.4 g, 60 mmol) were dissolved in 1200 mL of trichloroethane (the difference between the solubility parameter of the solvent and the mixed monomer was 2.25 MPa 1/2 ), Continue to add 1.0 g of azobisisobutyronitrile (AIBN), and carry out prepolymerization with stirring at 50 ° C for 4 hours to obtain a prepolymer; then add 400 mL of benzonitrile (making the difference between the solubility parameters of the mixed solvent and the prepolymer) 0.48 MPa 1/2 ), a porous polymer D (70.6 g) was obtained in the same manner as in Example 1.
  • AIBN azobisisobutyronitrile
  • Example 2 The test was carried out in the same manner as in Example 1, and various performance parameters of the obtained porous polymer D are shown in Table 2-1.
  • porous polymer D (63.9 g, P amount of 150 mmol) and bis-(1,5-cyclooctadiene)nickel (8.3 g, 30 mmol) were added to 1500 mL of 3-pentenenitrile. Subsequently, catalyst D (65.7 g) was obtained in the same manner as in Example 1, and the Ni content in catalyst D measured in the same manner is shown in Table 2-1.
  • Example 2 The test was carried out in the same manner as in Example 1, and various performance parameters of the obtained porous polymer E are shown in Table 2-1.
  • porous polymer E (57.9 g, P amount of 150 mmol) and bis-(1,5-cyclooctadiene)nickel (8.3 g, 30 mmol) were added to 1500 mL of 3-pentenenitrile. Subsequently, catalyst E (59.7 g) was obtained in the same manner as in Example 1. The content of Ni in the catalyst E measured in the same way is shown in Table 2-1.
  • Example 2 The test was carried out in the same manner as in Example 1, and various performance parameters of the obtained porous polymer F are shown in Table 2-1.
  • porous polymer F 58.1 g, P amount of 180 mmol
  • bis-(1,5-cyclooctadiene)nickel 8.3 g, 30 mmol
  • catalyst F 60.9 g was obtained in the same manner as in Example 1, and the Ni content in catalyst F measured in the same manner is shown in Table 2-1.
  • Example 2 The test was carried out in the same manner as in Example 1, and various performance parameters of the obtained porous polymer G are shown in Table 2-1.
  • porous polymer G (45.7 g, P amount of 150 mmol) and bis-(1,5-cyclooctadiene)nickel (8.3 g, 30 mmol) were added to 1500 mL of 3-pentenenitrile. Subsequently, catalyst G (47.5 g) was obtained in the same manner as in Example 1, and the Ni content in catalyst G measured in the same manner is shown in Table 2-1.
  • Monomer 2-a (23.3 g, 60 mmol) and monomer 7-c (57.7 g, 60 mmol) were dissolved in 1200 mL of 1,2-dichloroethane (the difference between the solubility parameter of the solvent and the mixed monomer was 2.15 MPa 1/ 2 ), add 1.0 g of azobisisobutyronitrile (AIBN), and carry out prepolymerization with stirring at 50° C. for 4 hours to obtain a prepolymer; then add 300 mL of propionitrile (so that the solubility parameter of the mixed solvent and the prepolymer is The difference was 0.22 MPa 1/2 ), and a porous polymer H (73.7 g) was obtained in the same manner as in Example 1.
  • AIBN azobisisobutyronitrile
  • Example 2 The test was carried out in the same manner as in Example 1, and various performance parameters of the obtained porous polymer H are shown in Table 2-1.
  • porous polymer H (67.5 g, P amount of 150 mmol) and bis-(1,5-cyclooctadiene)nickel (8.3 g, 30 mmol) were added to 1500 mL of 3-pentenenitrile. Subsequently, catalyst H (69.3 g) was obtained in the same manner as in Example 1, and the Ni content in catalyst H measured in the same manner is shown in Table 2-1.
  • Monomer 2-a (23.3g, 60mmol) and monomer 7-d (60.9g, 60mmol) were dissolved in 1500mL 1,4-dioxane (the difference between the solubility parameter of solvent and mixed monomer was 2.23MPa 1/ 2 ), add 1.0 g of azobisisobutyronitrile (AIBN), and carry out prepolymerization with stirring at 50 ° C for 4 hours to obtain a prepolymer; then add 300 mL of cyclohexanone (so that the solubility of the mixed solvent and the prepolymer is The difference in parameters was 0.48 MPa 1/2 ), and the porous polymer I (73.2 g) was obtained in the same manner as in Example 1.
  • AIBN azobisisobutyronitrile
  • Example 2 The test was carried out in the same manner as in Example 1, and various performance parameters of the obtained porous polymer I were shown in Table 2-1.
  • Porous Polymer I (70.1 g, P amount of 150 mmol) and bis-(1,5-cyclooctadiene)nickel (8.3 g, 30 mmol) were added to 1500 mL of 3-pentenenitrile. Subsequently, a catalyst I sample (71.9 g) was obtained in the same manner as in Example 1, and the Ni content in the catalyst I measured in the same manner is shown in Table 2-1.
  • Monomer 2-a (23.3 g, 60 mmol) and monomer 8-a (39.7 g, 60 mmol) were dissolved in 800 mL of chloroform (the difference between the solubility parameter of the solvent and the mixed monomer was 1.91 MPa 1/2 ), and continued Add 1.0 g of azobisisobutyronitrile (AIBN), and carry out prepolymerization with stirring at 50 ° C for 4 hours to obtain a prepolymer; then add 200 mL of methyl propyl ketone (so that the solubility parameter of the mixed solvent and the prepolymer is equal to the solubility parameter) The difference was 0.36 MPa 1/2 ), and a porous polymer J (58.0 g) was obtained in the same manner as in Example 1.
  • AIBN azobisisobutyronitrile
  • Example 2 The test was carried out in the same manner as in Example 1, and various performance parameters of the obtained porous polymer J are shown in Table 2-1.
  • porous polymer J (52.5 g, P amount of 150 mmol) and bis-(1,5-cyclooctadiene)nickel (8.3 g, 30 mmol) were added to 1500 mL of 3-pentenenitrile. Subsequently, a catalyst J sample (54.3 g) was obtained in the same manner as in Example 1, and the Ni content in the catalyst J measured in the same manner is shown in Table 2-1.
  • Example 2 The test was carried out in the same manner as in Example 1, and various performance parameters of the obtained porous polymer K are shown in Table 2-1.
  • porous polymer K (42.5 g, P amount of 150 mmol) and bis-(1,5-cyclooctadiene)nickel (8.3 g, 30 mmol) were added to 1500 mL of 3-pentenenitrile. Subsequently, the catalyst K (44.3 g) was carried out in the same manner as in Example 1, and the Ni content in the catalyst K measured in the same manner is shown in Table 2-1.
  • Example 2 The test was carried out in the same manner as in Example 1, and various performance parameters of the obtained porous polymer L are shown in Table 2-1.
  • porous polymer L (70.5 g, P amount of 270 mmol) and bis-(1,5-cyclooctadiene)nickel (7.5 g, 27 mmol) were added to 1500 mL of 3-pentenenitrile. Subsequently, the catalyst L (72.3 g) was obtained in the same manner as in Example 1, and the Ni content in the catalyst L measured in the same manner is shown in Table 2-1.
  • Example 2 The test was carried out in the same manner as in Example 1, and various performance parameters of the obtained porous polymer M are shown in Table 2-1.
  • porous polymer M (47.3 g, P amount of 150 mmol) and bis-(1,5-cyclooctadiene)nickel (8.3 g, 30 mmol) were added to 1500 mL of 3-pentenenitrile. Subsequently, a catalyst M sample (49.1 g) was obtained in the same manner as in Example 1, and the Ni content in the catalyst M measured in the same manner is shown in Table 2-1.
  • the monomer 2-a (23.3 g, 60 mmol) and the monomer 12-b (41.2 g, 60 mmol) were dissolved in 800 mL of chloroform (the difference between the solubility parameter of the solvent and the mixed monomer was 1.74 MPa 1/2 ), and added 1.0 g of azobisisobutyronitrile (AIBN) was prepolymerized with stirring at 50°C for 4 hours to obtain a prepolymer; then 200 mL of methyl propyl ketone was added (to make the difference between the solubility parameters of the mixed solvent and the prepolymer) 0.03 MPa 1/2 ), a porous polymer N (56.7 g) was obtained in the same manner as in Example 1.
  • AIBN azobisisobutyronitrile
  • Example 2 The test was carried out in the same manner as in Example 1, and various performance parameters of the obtained porous polymer N are shown in Table 2-1.
  • porous polymer N 53.7 g, the amount of P was 150 mmol
  • bis-(1,5-cyclooctadiene)nickel 8.3 g, 30 mmol
  • catalyst N 55.5 g was obtained in the same manner as in Example 1, and the content of Ni in catalyst N measured in the same manner is shown in Table 2-1.
  • the monomer 2-a (23.3 g, 60 mmol) and the monomer 13-d (53.2 g, 60 mmol) were dissolved in 1000 mL of chloroform (the difference between the solubility parameter of the solvent and the mixed monomer was 1.8 MPa 1/2 ), and added 1.0 g of azobisisobutyronitrile (AIBN) was prepolymerized with stirring at 50°C for 4 hours to obtain a prepolymer; then 250 mL of methyl propyl ketone was added (to make the difference between the solubility parameters of the mixed solvent and the prepolymer) 0.06 MPa 1/2 ), the porous polymer O (66.5 g) was obtained in the same manner as in Example 1.
  • AIBN azobisisobutyronitrile
  • Example 2 The test was carried out in the same manner as in Example 1, and various performance parameters of the obtained porous polymer O are shown in Table 2-1.
  • porous polymer O 47.8 g, P amount of 150 mmolP
  • bis-(1,5-cyclooctadiene)nickel 8.3 g, 30 mmol
  • a catalyst O sample 49.6 g was obtained in the same manner as in Example 1, and the Ni content in the catalyst O measured in the same manner is shown in Table 2-1.
  • Example 2 The test was carried out in the same manner as in Example 1, and various performance parameters of the obtained porous polymer P are shown in Table 2-1.
  • porous polymer P (40.6 g, amount of phosphorus 150 mmol) and bis-(1,5-cyclooctadiene)nickel (8.3 g, 30 mmol) were added to 1500 mL of 3-pentenenitrile. Subsequently, the catalyst P (42.4 g) was obtained in the same manner as in Example 1, and the Ni content in the catalyst P measured in the same manner is shown in Table 2-1.
  • Monomer 2-a (23.3g, 60mmol) and monomer 15-a (38.4g, 60mmol) were dissolved in 800mL of toluene (the difference between the solubility parameter of the solvent and the mixed monomer was 1.51MPa 1/2 ), and 1.0g was added.
  • Azobisisobutyronitrile (AIBN) and stirred for 4 hours at 50 ° C for prepolymerization to obtain a prepolymer; then add 800 mL of p-xylene (so that the difference between the solubility parameters of the mixed solvent and the prepolymer is 0.2MPa 1 /2 ), the porous polymer Q (55.5 g) was obtained in the same manner as in Example 1.
  • Example 2 The test was carried out in the same manner as in Example 1, and various performance parameters of the obtained porous polymer Q are shown in Table 2-1.
  • porous polymer Q (51.4 g, amount of phosphorus 150 mmol) and bis-(1,5-cyclooctadiene)nickel (8.3 g, 30 mmol) were added to 1500 mL of 3-pentenenitrile. Subsequently, catalyst Q (53.2 g) was obtained in the same manner as in Example 1, and the Ni content in catalyst Q measured in the same manner is shown in Table 2-1.
  • porous polymer R (56.4 g, amount of phosphorus 150 mmol) and bis-(1,5-cyclooctadiene)nickel (8.3 g, 30 mmol) were added to 1500 mL of 3-pentenenitrile. Subsequently, the catalyst R (58.2 g) was obtained in the same manner as in Example 1, and the Ni content in the catalyst R measured in the same manner is shown in Table 2-1.
  • Example 2 The test was carried out in the same manner as in Example 1, and various performance parameters of the obtained porous polymer S are shown in Table 2-2.
  • porous polymer S 47.7 g, amount of phosphorus 150 mmol
  • bis-(1,5-cyclooctadiene)nickel 8.3 g, 30 mmol
  • the catalyst S 49.5 g was obtained in the same manner as in Example 1, and the Ni content in the catalyst S measured in the same manner is shown in Table 2-2.
  • Example 2 The test was carried out in the same manner as in Example 1, and various performance parameters of the obtained porous polymer T are shown in Table 2-2.
  • porous polymer T (45.4 g, amount of phosphorus 150 mmol) and bis-(1,5-cyclooctadiene)nickel (8.3 g, 30 mmol) were added to 1500 mL of 3-pentenenitrile. Subsequently, the catalyst T (47.2 g) was obtained in the same manner as in Example 1, and the Ni content in the catalyst T measured in the same manner is shown in Table 2-2.
  • Example 2 The test was carried out in the same manner as in Example 1, and various performance parameters of the porous polymer A1 are shown in Table 2-2.
  • porous polymer A1 (55.0 g, amount of phosphorus 150 mmol) and bis-(1,5-cyclooctadiene)nickel (8.3 g, 30 mmol) were added to 1500 mL of 3-pentenenitrile. Subsequently, the catalyst A1 (56.8 g) was obtained in the same manner as in Example 1, and the Ni content in the catalyst A1 measured in the same manner is shown in Table 2-2.
  • Example 2 The test was carried out in the same manner as in Example 1, and various performance parameters of the obtained porous polymer A2 are shown in Table 2-2.
  • porous polymer A2 (59.2 g, phosphorus amount 150 mmol) and bis-(1,5-cyclooctadiene)nickel (8.3 g, 30 mmol) were added to 1500 mL of 3-pentenenitrile. Subsequently, catalyst A2 (61.0 g) was obtained in the same manner as in Example 1, and the Ni content in catalyst A2 measured in the same manner is shown in Table 2-2.
  • the monomer 2-d (33.4 g, 60 mmol) and the monomer 3-a (40.2 g, 60 mmol) were dissolved in 800 mL of tetrahydrofuran (the difference between the solubility parameter of the solvent and the mixed monomer was 1.44 MPa 1/2 ), and 1.0 g of Azobisisobutyronitrile (AIBN), and stirred for 4 hours at 50 ° C for prepolymerization to obtain a prepolymer; then add 133 mL of n-heptane (so that the difference between the solubility parameters of the mixed solvent and the prepolymer is 0.3MPa 1 /2 ), the porous polymer A3 (67.7 g) was obtained in the same manner as in Example 1.
  • AIBN Azobisisobutyronitrile
  • Example 2 The test was carried out in the same manner as in Example 1, and various performance parameters of the obtained porous polymer A3 are shown in Table 2-2.
  • porous polymer A3 (61.3 g, amount of phosphorus 150 mmol) and bis-(1,5-cyclooctadiene)nickel (8.3 g, 30 mmol) were added to 1500 mL of 3-pentenenitrile. Subsequently, catalyst A3 (63.1 g) was obtained in the same manner as in Example 1, and the Ni content in catalyst A3 measured in the same manner is shown in Table 2-2.
  • Monomer 2-a (69.9 g, 180 mmol) was dissolved in 1200 mL of tetrahydrofuran (the difference between the solubility parameter of the solvent and the monomer was 2.41 MPa 1/2 ), 1.5 g of azobisisobutyronitrile (AIBN) was added, and the mixture was heated at 50 The prepolymerization was carried out under stirring for 4 hours to obtain a prepolymer; then 300 mL of n-heptane was added (so that the difference between the solubility parameters of the mixed solvent and the prepolymer was 0.3MPa 1/2 ), and obtained in the same manner as in Example 1 Porous Polymer U (62.3 g).
  • AIBN azobisisobutyronitrile
  • Example 2 The test was carried out in the same manner as in Example 1, and various performance parameters of the obtained porous polymer U are shown in Table 2-2.
  • porous polymer U (58.2 g, amount of phosphorus 150 mmol) and bis-(1,5-cyclooctadiene)nickel (8.3 g, 30 mmol) were added to 1500 mL of 3-pentenenitrile. Subsequently, the catalyst U (59.9 g) was obtained in the same manner as in Example 1, and the Ni content in the catalyst U measured in the same manner is shown in Table 2-2.
  • porous polymer V (50.3 g, amount of phosphorus 150 mmol) and bis-(1,5-cyclooctadiene)nickel (8.3 g, 30 mmol) were added to 1500 mL of 3-pentenenitrile. Subsequently, catalyst V (52.1 g) was obtained in the same manner as in Example 1, and the Ni content in catalyst V measured in the same manner is shown in Table 2-2.
  • Monomer 9-d (44.8 g, 60 mmol) was dissolved in 600 mL of benzonitrile (the difference between the solvent and monomer solubility parameter was 1.39 MPa 1/2 ), 0.5 g of azobisisobutyronitrile (AIBN) was added, and The prepolymerization was carried out with stirring at 50°C for 4 hours to obtain a prepolymer; then 300 mL of n-heptane was added (so that the difference between the solubility parameters of the mixed solvent and the prepolymer was 0.1 MPa 1/2 ), and the same amount as in Example 1 was obtained. In this way, porous polymer W (41.0 g) was obtained.
  • AIBN azobisisobutyronitrile
  • Example 2 The test was carried out in the same manner as in Example 1, and various performance parameters of the obtained porous polymer W are shown in Table 2-2.
  • porous polymer W (37.3 g, amount of phosphorus 150 mmol) and bis-(1,5-cyclooctadiene)nickel (8.3 g, 30 mmol) were added to 1500 mL of 3-pentenenitrile. Subsequently, the catalyst W (39.1 g) was obtained in the same manner as in Example 1, and the Ni content in the catalyst W measured in the same manner is shown in Table 2-2.
  • Example 2 The test was carried out in the same manner as in Example 1, and various performance parameters of the obtained porous polymer X are shown in Table 2-2.
  • porous polymer X (42.3 g, amount of phosphorus 150 mmol) and bis-(1,5-cyclooctadiene)nickel (8.3 g, 30 mmol) were added to 1500 mL of 3-pentenenitrile. Subsequently, catalyst X (44.1 g) was obtained in the same manner as in Example 1, and the Ni content in catalyst X measured in the same manner is shown in Table 2-2.
  • Example 2 The test was carried out in the same manner as in Example 1, and various performance parameters of the obtained porous polymer Y are shown in Table 2-2.
  • porous polymer Y (47.2 g, amount of phosphorus 150 mmol) and bis-(1,5-cyclooctadiene)nickel (8.3 g, 30 mmol) were added to 1500 mL of 3-pentenenitrile. Subsequently, catalyst Y (48.9 g) was obtained in the same manner as in Example 1, and the Ni content in catalyst Y measured in the same manner is shown in Table 2-2.
  • Example 2 The test was carried out in the same manner as in Example 1, and various performance parameters of the porous polymer Z are shown in Table 2-2.
  • porous polymer Z 39.7 g, amount of phosphorus 150 mmol
  • bis-(1,5-cyclooctadiene)nickel 8.3 g, 30 mmol
  • the catalyst Z 41.5 g was obtained in the same manner as in Example 1, and the Ni content in the catalyst Z measured in the same manner is shown in Table 2-2.
  • Example 2 The test was carried out in the same manner as in Example 1, and various performance parameters of the obtained porous polymer A11 are shown in Table 2-2.
  • the porous polymer A11 (31.7 g, the amount of phosphorus was 90 mmol) and bis-(1,5-cyclooctadiene)nickel (5.0 g, 18 mmol) were added to 1500 mL of 3-pentenenitrile. Subsequently, the catalyst A11 (32.8 g) was obtained in the same manner as in Example 1, and the Ni content in the catalyst A11 was determined in the same manner as shown in Table 2-2.
  • the monomer 2-a (23.3 g, 60 mmol) and the monomer 3-a (402.1 g, 600 mmol) were dissolved in 8000 mL of tetrahydrofuran (the difference between the solubility parameter of the solvent and the mixed monomer was 2.3 MPa 1/2 ), and 10 g of dihydrogen was added.
  • Azodiisobutyronitrile (AIBN) and stirred at 50 ° C for 4 hours to obtain a prepolymer; then add 1330 mL of n-heptane (so that the difference between the solubility parameters of the mixed solvent and the prepolymer is 0.14MPa 1/ 2 ), the porous polymer A12 (387.1 g) was obtained in the same manner as in Example 1.
  • Example 2 The test was carried out in the same manner as in Example 1, and various performance parameters of the obtained porous polymer A12 are shown in Table 2-2.
  • porous polymer A12 (52.9 g, amount of phosphorus 150 mmol) and bis-(1,5-cyclooctadiene)nickel (8.3 g, 30 mmol) were added to 1500 mL of 3-pentenenitrile. Subsequently, the catalyst A12 (54.7 g) was obtained in the same manner as in Example 1, and the Ni content in the catalyst A12 measured in the same manner is shown in Table 2-2.
  • Example 2 The test was carried out in the same manner as in Example 1, and various performance parameters of the obtained porous polymer A13 are shown in Table 2-2.
  • porous polymer A13 (52.9 g, amount of phosphorus 150 mmol) and bis-(1,5-cyclooctadiene)nickel (8.3 g, 30 mmol) were added to 1500 mL of 3-pentenenitrile. Subsequently, the catalyst A13 (54.7 g) was obtained in the same manner as in Example 1, and the Ni content in the catalyst A13 measured in the same manner is shown in Table 2-2.
  • Example 2 The test was carried out in the same manner as in Example 1, and the performance parameters of the porous polymer A14 are shown in Table 2-2.
  • porous polymer A14 (56.15 g, amount of phosphorus 180 mmol) and bis-(1,5-cyclooctadiene)nickel (8.3 g, 30 mmol) were added to 1500 mL of 3-pentenenitrile.
  • the catalyst A13 (58.7 g) was obtained in the same manner as in Example 1, and the Ni content in the catalyst A13 was determined in the same manner as shown in Table 2-2.
  • Example 2 The test was carried out in the same manner as in Example 1, and various performance parameters of the obtained porous polymer U1 are shown in Table 2-2.
  • porous polymer U1 13.91 g, amount of phosphorus 25 mmol
  • bis-(1,5-cyclooctadiene)nickel 1.38 g, 5 mmol
  • the catalyst U1 (12.78 g) was obtained in the same manner as in Example 1, and the Ni content in the catalyst U1 measured in the same manner is shown in Table 2-2.
  • the monomer (100.1 g, 180 mmol) was dissolved in 1001 ml of tetrahydrofuran and 2.5 g of azobisisobutyronitrile (AIBN) was added.
  • AIBN azobisisobutyronitrile
  • the obtained mixed solution was transferred into an autoclave and reacted at 100° C. for 24 hours.
  • the solid product was rinsed with dichloromethane and dried in vacuum to obtain porous polymer b (64.1 g). Characterized by BET test, the specific surface area and pore volume of the obtained porous polymer b are 1.20 cm 3 /g, and the ratio of pore volume and P content of pores with pore diameters of ⁇ 10 nm and >15 nm, respectively, are shown in Table 2-2.
  • porous polymer b 14.56 g, P amount of 25 mmol
  • bis-(1,5-cyclooctadiene)nickel 1.38 g, 5 mmol
  • catalyst b (12.68 g) was obtained in the same manner as in Example 1, and the Ni content in catalyst b measured in the same manner is shown in Table 2-2.
  • the porous polymers obtained by the preparation method of the porous polymer of the present invention in Examples 1 to 34 have a specific range of pore volume ratios of secondary pore channels, and are satisfied by
  • the porous polymer-nickel catalyst obtained from the porous polymer of all technical features of this application has excellent catalytic activity, high reaction selectivity, and high linearity of the product.
  • the selectivity of linear ADN is above 87.5%, the optimal of 95.9%.
  • Comparing Example 34 of the present application with Comparative Example 1 it can be seen that compared with the parameters in Example 34 of the present application and Comparative Example 1, the specific surface area, pore volume ratio and P content are relatively close, but the porous polymer of Example 34
  • the pore volume ratio of the pores of ⁇ 10nm and >15nm is 7.9:1, while the ratio of the pore volume of the pores ⁇ 10nm and >15nm of the porous polymer prepared by the method of solvothermal polymerization in Comparative Example 1 is 21.2 : 1, which is not within the scope of this application. Therefore, when the porous polymer-nickel catalyst obtained from Comparative Example 1 was used for the preparation of adiponitrile, both the reaction selectivity and the linear AND selectivity were lower.
  • Example 1 The catalyst A in Example 1 was reacted with different water content systems, as follows:
  • Example 3 Using the catalyst A (Ni content 10mmol) prepared in Example 1, according to the same preparation method of adiponitrile as in Example 1, the reaction was carried out in systems with different water contents (100ppm, 500ppm, 1000ppm, 2000ppm) respectively. , and the compositional content of the product was analyzed by GC. The specific experimental results are shown in Table 3.
  • Example 1 Use the phosphorus ligand monomer used in Example 1 to prepare catalyst a, and evaluate the performance of catalyst a with different water content systems, as follows :
  • Inventive Example 35 using the catalyst made from the porous polymer of the invention has better performance compared to Comparative Example 2 using the catalyst made from the phosphorus ligand that has not been polymerized.
  • the catalyst of the invention has excellent water resistance, so that the separation and recovery steps of the catalyst can be simplified, and the number of times of recycling the catalyst can be greatly increased.
  • Adopt catalyst A Ni content 0.549mmol/g prepared in Example 1, react according to the preparation method of adiponitrile in Example 1, analyze the composition content of the product by GC, and by inductively coupled plasma emission spectrometer ( ICP-OES) to determine the Ni content in the catalyst. After the reaction, the catalyst A was separated and recovered from the reaction solution by filtration, and after cleaning, it was used for subsequent recycling, and the recycling was repeated 30 times. The product composition content was measured after not applying, applying for the 10th time, applying the 20th time and applying the 30th time, and measuring the Ni content in the catalyst after not applying and applying the 30th time. The results are shown in Table 5.
  • the catalyst A Ni content 0.549mmol/g prepared in Example 1 was adopted, except that the preparation method of adiponitrile in Example 35 was changed to a continuous reaction mode, and a precision filtration device was installed at the discharge port of the continuous reaction to Catalyst A was guaranteed to remain in the reaction system, and the tests and evaluations were performed in the same manner as in Example 35 except for 0 hours of operation, 100 hours of continuous operation, 150 hours and 200 hours, respectively, and the results are shown in Table 6.
  • the porous polymer-nickel catalyst made of the porous polymer of the present invention can be used for multiple cycles and stable operation for a long time, and in the process of multiple applications It still maintains excellent catalytic activity.

Abstract

一种多孔聚合物,其孔隙容积为0.3~2.5cm 3/g;包括具有第一孔径的孔以及具有第二孔径的孔,具有第一孔径的孔与具有第二孔径的孔的孔隙容积的比例为1~10:1,该多孔聚合物由至少一种磷配体自聚或共聚而得到,其磷含量为1~5mmol/g。由多孔聚合物制成的多孔聚合物-镍催化剂,耐水性显著增加,可以减少磷配体消耗,省去原料除水、反应体系控水的步骤,大大节省了工艺设备投资。并且在用于丁二烯制备己二腈时,具有高催化活性、高反应选择性以及高线性度,且易于回收并循环套用。

Description

多孔聚合物及其制备方法、催化剂以及己二腈的制备方法 技术领域
本发明涉及含有磷配体的多孔聚合物及其制备方法、多孔聚合物-镍催化剂以及己二腈的制备方法。具体而言,本发明涉及由至少一种磷配体自聚或共聚形成的多孔聚合物,该多孔聚合物与镍配位形成的催化剂能高效催化丁二烯氢氰化、支化单腈异构化及线性单腈二次氢氰化从而制备己二腈。
背景技术
己二腈(ADN),是一种重要的有机化工中间体,其为无色透明的油状液体,有轻微苦味,易燃,分子式为NC(CH 2) 4CN。在工业上己二腈主要用于加氢生产己二胺,再由己二胺和己二酸进行聚合反应而生产聚己二酰己二胺(尼龙66)。尼龙66的材质与尼龙6相比具有更好的强度、耐热性、结晶度、耐磨性和更低的吸水性,被广泛应用于汽车、机械工业、电子电器、精密仪器等领域。
制备己二腈的工艺路线主要有丙烯腈电解二聚法、己二酸催化氨化法和丁二烯氢氰化法。其中,丁二烯氢氰化法是美国杜邦公司在丁二烯氯化氰化法的基础上开发而来。该方法克服了丁二烯氯化氰化法需要大规模的配套氯碱工程、严重的设备腐蚀等问题,相较于己二腈的其它制备方法,具有原料易得、成本低、能耗低、产品收率高等优势。丁二烯氢氰化法制备己二腈是目前全世界公认的最先进的己二腈生产工艺。
对于丁二烯氢氰化法生产己二腈的工艺,寻求选择性更高、更稳定的催化剂类型及解决催化剂在反应体系里的循环回收问题是决定能否顺利产业化的关键。
目前的现有技术中,公开了多种用于氢氰化反应的催化剂。
CN1387534A公开了用于以技术上简单且经济性的方式使不饱和有机化合物氢氰化的催化剂,该催化剂使用具有以下通式I的亚磷酸酯作为配体,还公开了过渡金属配合物催化剂,及它们的制备方法,以及作为催化剂的用途:
P(O-R 1),(O-R 2) y(O-R 3) z(O-R 4)。      I。
CN1159799A公开了氢氰化方法及所用多配位亚磷酸酯和镍催化剂复合物。该氢氰化方法包括在Lewis酸、零价镍和选自具有特定结构的双齿亚磷酸酯配体的催化剂复合物存在下,将无环、脂肪族、单烯基不饱和化合物与HCN源反应。并且催化剂复合物主要由零价镍、和至少一种选自由特定结构表示的多配位亚磷酸酯配体组成。
WO1999052632A1公开了烯烃的氢氰化反应及非共轭2-烷基-3-单烯腈的异构化反应。并公开了二烯烃和烯烃化合物的氢氰化方法包括,在催化剂前体组合物的存在下使非环的脂族二烯烃化合物或非环的脂族烯烃与HCN源反应,所述催化剂前体组合物包含零价镍和选自至少一种具有特定结构的双齿磷酰胺配体。
上述专利文献中记载的单齿亚磷酸酯、双齿亚磷酸酯或双齿亚磷酰胺配体与零价镍形成的配合物催化剂均可用于烯烃的氢氰化反应,并且也非常适用于丁二烯氢氰化法生产己二腈的反应体系中。但是由于上述催化剂均为均相催化体系,催化剂的后期分离与回收存在困难,因而相当大地增加了用 于回收的成本。
专利文献CN107207406A、CN1914160A、CN103189351A、CN1914154A、CN101043946A公开的技术中分别涉及通过液-液萃取的方法来回收磷配体催化剂的分离工艺。但是这些工艺均较为复杂,且有机磷配体存在容易水解的问题。而磷配体的水解又会进一步加剧催化剂分离与回收的困难,所以需要严格控制反应体系的含水量。尽管原料需要经过除水、干燥等预处理步骤,但是在反应过程中还是会存在少量的水,在进行了多批次的反应后水会逐渐地积聚,所以在反应过程中要进行一定的控水措施。因此,必然会增加一定的设备成本。
非专利文献(“Boosting the hydrolytic stability of phosphite ligand in hydroformylation by the construction of superhydrophobic porous framework”,Yongquan Tang等人,Molecular Catalysis 474(2019)110408,第1~6页)中公开了用于内烯烃的氢甲酰化反应的催化剂。该催化剂包括Rh种类和使三(2-叔丁基-4-乙烯基-苯基)亚磷酸酯聚合得到的具有超疏水性多孔框架的聚合物。该催化剂具有提高的耐久性且容易回收和循环使用。
但是,上述非专利文献仅记载了该催化剂在用于内烯烃的氢甲酰化反应时的优势,而未记载其是否适用于丁二烯的氢氰化反应,以及应用于丁二烯的氢氰化反应时的催化活性、反应选择性以及制成的产品己二腈的高的线性度。
发明内容
发明要解决的问题
为了解决上述现有技术中存在的问题,本发明提供一种含有磷配体的多孔聚合物及其制备方法、多孔聚合物-镍催化剂、以及己二腈的制备方法。该多孔聚合物-镍催化剂能高效催化丁二烯氢氰化制备己二腈,具有高的催化活性、高反应选择性,以及在反应中的高的线性度,且通过简单的过滤分离即可回收进行循环套用。
用于解决问题的方案
本发明提供了一种含有磷配体的多孔聚合物,所述多孔聚合物的孔隙容积为0.3~2.5cm 3/g,优选0.5~2.0cm 3/g;
所述多孔聚合物包括具有第一孔径的孔以及具有第二孔径的孔,所述具有第一孔径的孔与具有第二孔径的孔的孔隙容积的比例为1~10:1,优选2~8:1,
所述具有第一孔径的孔采用氮吸附法利用NLDFT模型而测量的孔径小于10nm、优选2~6nm;所述具有第二孔径的孔采用氮吸附法利用NLDFT模型而测量的孔径大于15nm、优选大于20nm;
所述多孔聚合物由至少一种磷配体自聚或共聚而得到,且所述多孔聚合物的磷含量为1~5mmol/g,优选1.7~3.9mmol/g。
本发明还提供了一种根据本发明提供的含有磷配体的多孔聚合物的制备方法,其中,在自由基引发剂的存在下,使至少一种所述磷配体自聚或共聚。
本发明还提供了一种多孔聚合物-镍催化剂,其包括根据本发明提供的含有磷配体的多孔聚合物、和零价镍,且所述零价镍的含量相对于所述催化剂的量为0.1~2mmol/g。
本发明还提供了一种己二腈的制备方法,所述方法包括,在根据本发明提供的多孔聚合物-镍催化剂的存在下,依次进行丁二烯的一次氢氰化反应、支化单腈的异构化反应和线性单腈的二次氢氰化反应。
发明的效果
根据本发明提供的含有磷配体的多孔聚合物,具有超疏水性,使用由该多孔聚合物与镍形成的多孔聚合物-镍催化剂,耐水性显著增加,可以减少磷配体消耗,可以省去原料除水、反应体系控水的 步骤,大大节省了工艺设备投资。
根据本发明提供的多孔聚合物-镍催化剂,其在用于丁二烯一次氢氰化、支化单腈的异构化和线性单腈的二次氢氰化反应时,具有高催化活性、高反应选择性,且易于回收并循环套用,丁二烯一次氢氰化和线性单腈二次氢氰化两步反应的线性度均可达到87.5%以上。由于高线性度的实现,可从工艺上大幅减少支化单腈产物的量,从而显著降低设备投资和分离能耗成本。
本发明提供的多孔聚合物-镍催化剂,为非均相催化剂,具有高的耐水解性,通过简单分离即可实现催化剂在反应体系里的循环套用,简化催化剂分离回收步骤,而且催化剂套用次数大幅度增加,减少催化剂成本。
具体实施方式
以下对本发明的具体实施方式进行进一步详细地说明。
根据本发明提供的含有磷配体的多孔聚合物,所述多孔聚合物包括具有第一孔径的孔以及具有第二孔径的孔,所述具有第一孔径的孔与具有第二孔径的孔的孔隙容积的比例为1~10:1,优选2~8:1,
所述具有第一孔径的孔采用氮吸附法利用NLDFT模型而测量的孔径小于10nm、优选2~6nm;所述具有第二孔径的孔采用氮吸附法利用NLDFT模型而测量的孔径大于15nm、优选大于20nm;
所述多孔聚合物由至少一种磷配体自聚或共聚而得到,且所述多孔聚合物的磷含量为1~5mmol/g,优选1.7~3.9mmol/g。
根据本发明提供的含有磷配体的多孔聚合物,较小的孔径(<10nm,优选2~6nm)有利于增加孔隙容积和比表面积,在氢氰化反应时则可通过微孔的限制作用改变催化剂空间结构,增加产物的线性度;较大的孔径(>15nm,优选大于20nm)有利于反应物和产物的输送和内扩散,提高磷原子的利用率,增加反应速度,提高催化剂的活性。由本发明提供的含有磷配体的多孔聚合物与镍形成的催化剂尤其有利于线性己二腈的制备,可以增加产物的线性度,并且催化活性较高。因而,本发明的含有磷配体的多孔聚合物的孔隙容积分布应当为,<10nm的孔与>15nm的孔的孔隙容积的比例为1~10:1,优选2~8:1。
并且,在优选情况下,本发明的多孔聚合物的BET比表面积为100~2000m 2/g,优选为500~1700m 2/g。
根据本发明提供的含有磷配体的多孔聚合物,多孔聚合物的孔隙容积在上述范围内,能够有利于提供反应场所,且有利于实现反应物与生成物的进出平衡。
此外,本发明的多孔聚合物的BET比表面积在上述范围,使得单位体积的催化位点多,更有利于提升整体的催化效果。
根据本发明提供的含有磷配体的多孔聚合物,所述磷配体由以下通式(1)表示:
Figure PCTCN2021118766-appb-000001
其中:n=1~4;
Ar表示具有取代的芳环结构的基团;
X和Y相同或不同,且各自独立地表示芳氧基或含氮杂环基团,X和Y可以经由单键或亚甲基成环。
通式(1)中:n为1时,所述磷配体为单齿磷配体,且X和Y均为
Figure PCTCN2021118766-appb-000002
Ar为
Figure PCTCN2021118766-appb-000003
n为2~4时,所述磷配体为多齿磷配体,X和Y相同或不同,且各自独立地表示
Figure PCTCN2021118766-appb-000004
含氮杂环基团;Ar为
Figure PCTCN2021118766-appb-000005
条件是,当X和Y均表示
Figure PCTCN2021118766-appb-000006
时,X和Y不成环;当X和Y二者均表示含氮杂环基团时,X与Y不成环或者经由单键或亚甲基成环;并且当X为
Figure PCTCN2021118766-appb-000007
和Y为含氮杂环基团时,X与Y经由亚甲基成环;
所述含氮杂环基团为
Figure PCTCN2021118766-appb-000008
上述中,R 1选自氢原子、乙烯基、丙烯基、丙烯酰基、丙烯酸酯基或甲基丙烯酰基;
R 2选自氢原子、卤素原子、腈基、C 1~C 10的烷基、C 1~C 10的烷氧基、C 1~C 10的烷酰基、C 1~C 10的酯基或C 1~C 10的磺酸酯基;
Rx选自氢原子、乙烯基、丙烯基、丙烯酰基、丙烯酸酯基或甲基丙烯酰基;
Ry选自氢原子、卤素原子、腈基、C 1~C 10的烷基、C 1~C 10的烷氧基、C 1~C 10的烷酰基、C 1~C 10的酯基或C 1~C 10的磺酸酯基。
在优选情况下,所述磷配体选自具有以下结构式(2)~(18)的化合物:
Figure PCTCN2021118766-appb-000009
Figure PCTCN2021118766-appb-000010
其中,R 1、R 2、Rx、Ry的定义均与所述通式(1)中的相同,X与Y相同,均表示含氮杂环基团。
在优选情况下,所述磷配体中,X和Y二者均为含氮杂环基团且二者经由单键或亚甲基成环的结构部位选自以下任意一种:
Figure PCTCN2021118766-appb-000011
根据本发明的一个实施方案,所述多孔聚合物由任意一种所述磷配体自聚而得到。
根据本发明的另一实施方案,所述多孔聚合物为由任意两种所述磷配体共聚而得到的无规共聚物,且两种磷配体之间的摩尔比为0.01~3:1,优选为0.05~2.5:1。
根据本发明的又一实施方案,其中,所述多孔聚合物为由三种以上的任意所述磷配体共聚而得到的无规共聚物。
根据本发明提供的含有磷配体的多孔聚合物,其单体的组合可以分为以下几组:
1、多孔聚合物为含有源自由式(2)表示的单齿磷配体的单体单元的均聚物或共聚物,其示例于以下:式(2)的均聚物;以及式(2)和(3)、式(2)和(4)、式(2)和(5)、式(2)和(6)、式(2)和(7)、式(2)和(8)、式(2)和(9)、式(2)和(10)、式(2)和(11)、式(2)和(12)、式(2)和(13)、式(2)和(14)、式(2)和(15)、式(2)和(16)、式(2)和(17)、式(2)和(18)的共聚物;以及三种以上的磷配体的共聚物。
2、多孔聚合物为含有源自由式(3)表示的多齿磷配体的单体单元的均聚物或共聚物,其示例于以下:式(3)的均聚物;以及式(3)和(4)、式(3)和(5)、式(3)和(6)、式(3)和(7)、式(3)和(8)、式(3)和(9)、式(3)和(10)、式(3)和(11)、式(3)和(12)、式(3)和(13)、式(3)和(14)、式(3)和(15)、式(3)和(16)、式(3)和(17)、式(3)和(18)的共聚物;以及三种以上的磷配体的共聚物。
3、多孔聚合物为含有源自由式(4)表示的多齿磷配体的单体单元的均聚物或共聚物,其示例于以下:式(4)的均聚物;以及式(4)和(5)、式(4)和(6)、式(4)和(7)、式(4)和(8)、式(4)和(9)、式(4)和(10)、式(4)和(11)、式(4)和(12)、式(4)和(13)、式(4)和(14)、式(4)和(15)、式(4)和(16)、式(4)和(17)、式(4)和(18)的共聚物;以及三种以上的磷配体的共聚物。
4、多孔聚合物为含有源自由式(5)表示的多齿磷配体的单体单元的均聚物或共聚物,其示例于以下:式(5)的均聚物;以及式(5)和(6)、式(5)和(7)、式(5)和(8)、式(5)和(9)、式(5)和(10)、式(5)和(11)、 式(5)和(12)、式(5)和(13)、式(5)和(14)、式(5)和(15)、式(5)和(16)、式(5)和(17)、式(5)和(18);以及三种以上的磷配体的共聚物。
5、多孔聚合物为含有源自由式(6)表示的多齿磷配体的单体单元的均聚物或共聚物,其示例于以下:式(6)的均聚物;以及式(6)和(7)、式(6)和(8)、式(6)和(9)、式(6)和(10)、式(6)和(11)、式(6)和(12)、式(6)和(13)、式(6)和(14)、式(6)和(15)、式(6)和(16)、式(6)和(17)、式(6)和(18)的共聚物;以及三种以上的磷配体的共聚物。
6、多孔聚合物为含有源自由式(7)表示的多齿磷配体的单体单元的均聚物或共聚物,其示例于以下:式(7)的均聚物;以及式(7)和(8)、式(7)和(9)、式(7)和(10)、式(7)和(11)、式(7)和(12)、式(7)和(13)、式(7)和(14)、式(7)和(15)、式(7)和(16)、式(7)和(17)、式(7)和(18)的共聚物;以及三种以上的磷配体的共聚物。
7、多孔聚合物为含有源自由式(8)表示的多齿磷配体的单体单元的均聚物或共聚物,其示例于以下:式(8)的均聚物;以及式(8)和(9)、式(8)和(10)、式(8)和(11)、式(8)和(12)、式(8)和(13)、式(8)和(14)、式(8)和(15)、式(8)和(16)、式(8)和(17)、式(8)和(18)的共聚物;以及三种以上的磷配体的共聚物。
8、多孔聚合物为含有源自由式(9)表示的多齿磷配体的单体单元的均聚物或共聚物,其示例于以下:式(9)的均聚物;以及式(9)和(10)、式(9)和(11)、式(9)和(12)、式(9)和(13)、式(9)和(14)、式(9)和(15)、式(9)和(16)、式(9)和(17)、式(9)和(18)的共聚物;以及三种以上的磷配体的共聚物。
9、多孔聚合物为含有源自由式(10)表示的多齿磷配体的单体单元的均聚物或共聚物,其示例于以下:式(10)的均聚物;以及式(10)和(11)、式(10)和(12)、式(10)和(13)、式(10)和(14)、式(10)和(15)、式(10)和(16)、式(10)和(17)、式(10)和(18)的共聚物;以及三种以上的磷配体的共聚物。
10、多孔聚合物为含有源自由式(11)表示的多齿磷配体的单体单元的均聚物或共聚物,其示例于以下:式(11)的均聚物;以及式(11)和(12)、式(11)和(13)、式(11)和(14)、式(11)和(15)、式(11)和(16)、式(11)和(17)、式(11)和(18)的共聚物;以及三种以上的磷配体的共聚物。
11、多孔聚合物为含有源自由式(12)表示的多齿磷配体的单体单元的均聚物或共聚物,其示例于以下:式(12)的均聚物;以及式(12)和(13)、式(12)和(14)、式(12)和(15)、式(12)和(16)、式(12)和(17)、式(12)和(18)的共聚物;以及三种以上的磷配体的共聚物。
12、多孔聚合物为含有源自由式(13)表示的多齿磷配体的单体单元的均聚物或共聚物,其示例于以下:式(13)的均聚物;以及式(13)和(14)、式(13)和(15)、式(13)和(16)、式(13)和(17)、式(13)和(18)的共聚物;以及三种以上的磷配体的共聚物;
13、多孔聚合物为含有源自由式(14)表示的多齿磷配体的单体单元的均聚物或共聚物,其示例于以下:式(14)的均聚物;以及式(14)和(15)、式(14)和(16)、式(14)和(17)、式(14)和(18)的共聚物;以及三种以上的磷配体的共聚物。
14、多孔聚合物为含有源自由式(15)表示的多齿磷配体的单体单元的均聚物或共聚物,其示例于以下:式(15)的均聚物;以及式(15)和(16)、式(15)和(17)、式(15)和(18)的共聚物;以及三种以上的磷配体的共聚物。
15、多孔聚合物为含有源自由式(16)表示的多齿磷配体的单体单元的均聚物或共聚物,其示例于以下:式(16)的均聚物;以及(16)和(17)、式(16)和(18)的共聚物;以及三种以上的磷配体的共聚物。
16、多孔聚合物为含有源自由式(17)表示的多齿磷配体的单体单元的均聚物或共聚物,其示例于以下:式(17)的均聚物;以及式(17)和(18)的共聚物;以及三种以上的磷配体的共聚物。
17、多孔聚合物为源自由式(18)表示的多齿磷配体的单体单元构成的均聚物,其示例于以下:式(18)的均聚物。
在上述第1~17组中仅示例性的列出各种磷配体的组合,但是本发明的多孔聚合物中单体单元的组合并不限于以上列出的那些,所有的各种组合包括一种、两种、三种、四种或更多种单体单元的组合均在本发明限定的范围内。
在上述记载的具有各种组合的多孔聚合物中,比表面积和二级孔道的孔隙容积的比例、磷配体中磷原子上的电荷、磷配体的位阻是影响反应活性和线性度选择性的主要因素,根据实际应用评价结果,优选由包含含氮多齿磷配体的磷配体所形成的多孔聚合物。
上述第1~17组多孔聚合物中具体的磷配体单体见以下表1。
Figure PCTCN2021118766-appb-000012
Figure PCTCN2021118766-appb-000013
Figure PCTCN2021118766-appb-000014
Figure PCTCN2021118766-appb-000015
Figure PCTCN2021118766-appb-000016
Figure PCTCN2021118766-appb-000017
根据本发明提供的含有磷配体的多孔聚合物,通过由至少一种上述磷配体单体形成的聚合物,其中配体磷富集在孔道表面,有利于形成特定的空间结构,增加磷配体的配位效果,对于催化剂的贡献是增加了反应活性、提高了反应的选择性,与其特定的孔径分布的二级孔道结构结合在一起,可以获得的整体的效果是催化剂具有高反应活性、高选择性与产物的高线性度。
本发明还提供了一种含有磷配体的多孔聚合物的制备方法,其中,在自由基引发剂的存在下,使至少一种所述磷配体自聚或共聚。
在优选情况下,所述方法具体地包括,使至少一种所述磷配体在第一有机溶剂存在下进行预聚合,得到预聚物,至少一种磷配体与所述第一有机溶剂的溶解度参数之差为1.0~2.5[MPa] 1/2;向所得到的预聚物添加第二有机溶剂,使第一和第二有机溶剂的混合溶剂的溶解度参数与所述预聚物的溶解度参数之差小于0.5[MPa] 1/2,使预聚物溶胀和固化。
根据本发明提供的含有磷配体的多孔聚合物的制备方法,在优选情况下,所述预聚合的温度为50~80℃,预聚合的时间为2~10小时;溶胀和固化的温度为85~110℃下,时间为2~10小时。
根据本发明提供的含有磷配体的多孔聚合物的制备方法,在优选情况下,使任意一种所述磷配体自聚。
根据本发明提供的含有磷配体的多孔聚合物的制备方法,在优选情况下,使任意的二种所述磷配体共聚,二种所述磷配体的摩尔比为0.01~3:1,优选0.05~2.5:1。
根据本发明提供的含有磷配体的多孔聚合物的制备方法,在优选情况下,使任意的三种以上的所述磷配体共聚。
上述含有磷配体的多孔聚合物的制备方法中,在第一阶段的预聚合中,选择与多孔聚合物溶解度参数相差较大的有机溶剂可使聚合物形成较小的孔径(<10nm,优选2~6nm),有利于增加孔容和比表面积,在反应时有利于增加产物的线性度;在第二阶段的聚合中,选择与预聚物溶解度参数相差较小的有机溶剂可使预聚物低交联部分充分溶胀,扩大聚合物的孔径(>15nm,优选大于20nm),从而有利于反应物和产物的输送和内扩散,增加反应速度,提高催化剂的活性。
根据本发明提供的含有磷配体的多孔聚合物的制备方法,其中,所述自由基引发剂选自2,2’-偶氮二异丁腈和2,2’-偶氮双(2-甲基丙腈)中的至少一种。
根据本发明提供的含有磷配体的多孔聚合物的制备方法,其中,所述第一有机溶剂和第二有机溶剂相同或不同,且选自正戊烷、正己烷、正庚烷、十二烷、环己烷、乙酸异丁酯、苯甲腈、甲基异丁基酮、乙酸正丁酯、环戊烷、3-戊酮、对二甲苯、甲苯、甲基丙基酮、四氢呋喃、乙酸乙酯、苯、三氯甲烷、1,1,2-三氯乙烷、乙酸甲酯、1,2-二氯乙烷、丙酮、环己酮、1,4-二氧六环、环戊酮、丙腈、乙醇、二甲亚砜、甲醇和水中的一种或多种。
本发明还提供了一种多孔聚合物-镍催化剂,其包括根据本发明提供的含有磷配体的多孔聚合物、和零价镍,且所述零价镍的含量相对于所述催化剂的量为0.1~2mmol/g。
本发明还提供了一种多孔聚合物-镍催化剂的制备方法,其中,该方法包括,在惰性气体气氛下,在20~100℃下,将根据本发明的含有磷配体的多孔聚合物与活性镍物种在有机溶剂中混合6~24小时,所述活性镍物种为环辛二烯镍。
根据本发明提供的多孔聚合物-镍催化剂的制备方法,其中,所述多孔聚合物中磷的摩尔数与环辛二烯镍的摩尔比为2~20:1,优选2~10:1。
本发明还提供了一种己二腈的制备方法,所述方法包括,在根据本发明的多孔聚合物-镍催化剂存在下,使丁二烯依次进行一次氢氰化反应、异构化反应和二次氢氰化反应。
根据本发明提供的己二腈的制备方法,其中,所述方法包括以下步骤:
(1)一次氢氰化反应
在所述催化剂存在下,使丁二烯和氢氰酸进行一次氢氰化反应,所述丁二烯与氢氰酸的摩尔比为1.0~1.5,所述氢氰酸的摩尔数与所述催化剂以零价镍计的摩尔数的比例为100~1:1,优选为70~10:1,反应温度为60~140℃,反应压力为0.3~5.0MPa;
(2)支化单腈异构化反应
在所述催化剂存在下,使上述步骤(1)中获得的产物中分离出的支化单腈混合物进行异构化反应,其中所述支化单腈混合物的摩尔数与所述催化剂以零价镍计的摩尔数的比例为300~20:1,优选为200~50:1,反应温度为80~170℃,反应压力为0.3~5.0MPa;
(3)二次氢氰化反应
在所述催化剂存在下,使上述步骤(1)和(2)中得到产物中分离出的线性单腈混合物与氢氰酸进行二次氢氰化反应,其中,所述线性单腈混合物与氢氰酸的摩尔比为1.0~1.5,氢氰酸的摩尔数与所述催化剂以零价镍计的摩尔数的比例为1000~20:1,优选500~20:1,反应温度为30~120℃,反应压力为0.3~5.0MPa。
在优选情况下,所述二次氢氰化反应在促进剂的存在下进行,所述促进剂的摩尔数与所述催化剂以零价镍计的摩尔数的比例为0.05~2.5:1;
所述促进剂为路易斯酸;所述路易斯酸选自元素周期表第Ib、IIb、IIIa、IIIb、IVa、IVb、Va、Vb、VIb、VIIb和VIII族元素的一种或多种盐;所述盐选自卤化物、硫酸盐、磺酸盐、卤代烷基磺酸盐、全卤代烷基磺酸盐、卤代烷基乙酸盐、全卤代烷基乙酸盐、羧酸盐和磷酸盐中的一种或多种;
优选地,所述的路易斯酸选自氯化锌、溴化锌、碘化锌、氯化锰、溴化锰、氯化镉、溴化镉、氯化亚锡、溴化亚锡、硫酸亚锡、酒石酸亚锡、三氟甲基磺酸铟、三氟乙酸铟、三氟乙酸锌、稀土元素如镧、铈、镨、钕、钐、铕、钆、铽、镝、铪、铒、铊、镱和镥的氯化物或溴化物、氯化钴、氯化亚铁和氯化钇中的一种或多种;
更优选的,所述的路易斯酸为氯化锌和氯化铁中的一种或多种。
根据本发明的一个实施方案,所述己二腈的制备方法还包括将所述多孔聚合物-镍催化剂循环套用,其包括以下方法(a)或者(b):
(a)将至少部分所述多孔聚合物-镍催化剂随反应产物一起出料,经过滤分离、清洗后重新套用至下一批反应中;或者
(b)将至少部分所述多孔聚合物-镍催化剂不随反应产物一起出料,仍然留在反应体系里循环套用。
实施例
以下采用具体实施例的方式进一步详细地说明本发明,然而,本发明不限于以下所述的实施例。
实施例1
(1)多孔聚合物A的制备
Figure PCTCN2021118766-appb-000018
将单体2-a(23.3g,60mmol)与单体3-a(40.2g,60mmol)溶解于800mL四氢呋喃(溶剂与混合单体的溶解度参数之差为2.35MPa 1/2)中,加入1.0g偶氮二异丁腈(AIBN),在50℃下搅拌进行预聚合4小时,得到预聚物;然后加入133mL正庚烷(使得混合溶剂与预聚物的溶解度参数之差为0.3MPa 1/2),升温到85℃继续反应4小时,使预聚物溶胀并充分固化。反应结束,降温到常温,过滤,用3-戊烯腈洗涤,真空干燥得到多孔聚合物A(58.4g)。
采用BET测试方法进行测试所得多孔聚合物A的比表面积和孔隙容积。采用Micromeritics ASAP 2020自动物理吸附仪利用非定域密度函数理论(NLDFT)模型测定多孔聚合物A的孔径分布,即,孔径分别为<10nm与>15nm的孔的孔隙容积的比例。样品消解后,采用钼酸铵分光光度法测定的P含量。具体结果见表2-1。
(2)多孔聚合物-镍催化剂A的制备
在氮气氛围下,将多孔聚合物A(52.9g,P的量为150mmol)和双-(1,5-环辛二烯)镍(8.3g,30mmol) 加入到1500mL 3-戊烯腈中。接着,在室温下继续搅拌12小时。搅拌结束后,将混合液中的不溶物滤饼过滤、清洗,并在真空下干燥得到多孔聚合物-镍催化剂A(54.7g)。用电感耦合等离子体发射光谱仪(ICP-OES)测定催化剂A中Ni的含量,具体结果见表2-1。
(3)己二腈的制备
(i)丁二烯的氢氰化反应
向装有多孔聚合物-镍催化剂A(Ni含量10mmol)的反应器中加入丁二烯(BD)20.16g(0.40mol)、在0.5小时内滴加HCN 8.91g(0.33mol),在反应温度为75℃和反应压力为1.2MPa的条件下进行反应1h,反应结束后,从反应器底部放出产物,经过滤分离催化剂后,取样,通过GC分析产物的分布,测定起始HCN被转化成3-戊烯腈(3PN)与2-甲基-3-丁烯腈(2M3BN)的转化率、3-戊烯腈(3PN)与2-甲基-3-丁烯腈(2M3BN)的比例(3PN/2M3BN)。结果见表2-1。
(ii)2-甲基-3-丁烯腈(2M3BN)的异构化:
从步骤(i)的反应产物分离得到2M3BN,将2M3BN 64.90g(0.80mol)加入装有多孔聚合物-镍催化剂A(Ni含量10mmol)的反应器中,在反应温度为150℃和反应压力为0.6MPa的条件下反应2.5h,反应结束后,从反应器底部放出产物,经过滤分离催化剂后,取样,用GC(以戊腈为内标)分析产物3PN和2M3BN的比例。结果见表2-1。
(iii)3-戊烯腈(3PN)的二次氢氰化反应:
收集步骤(i)和步骤(ii)分离得到的3PN产物,将3PN 81.12g(1.0mol)和促进剂无水氯化锌1.02g(7.5mmol)加入装有多孔聚合物-镍催化剂A(Ni含量5mmol)的反应器中,在5小时内滴加HCN 22.41g(0.83mol),在反应温度为65℃和反应压力为0.3MPa的条件下反应10.0h。反应结束后,从反应器底部放出产物,经过滤分离催化剂后,取样,通过GC分析产物的分布,测定转为己二腈(ADN)产物的基于HCN的转化率,以及对线性己二腈的选择性以反应混合物中ADN的百分比。结果见表2-1。
实施例2
(1)多孔聚合物B的制备
Figure PCTCN2021118766-appb-000019
将单体2-a(23.3g,60mmol)与单体3-b(45.3g,60mmol)溶解于1000mL三氯甲烷(溶剂与混合单体溶解度参数之差为2.28MPa 1/2)中,加入1.0g偶氮二异丁腈(AIBN),在50℃下搅拌进行预聚合4小时,得到预聚物;然后加入200mL乙酸异丁酯(使得混合溶剂与预聚物的溶解度参数之差为0.39MPa 1/2),随后以与实施例1相同的方式得到多孔聚合物B(63.1g)。
以与实施例1相同的方式进行测试,多孔聚合物B的各项性能参数见表2-1。
(2)多孔聚合物-镍催化剂B的制备
在氮气氛围下,将多孔聚合物B(57.1g,P的量为150mmol)和双-(1,5-环辛二烯)镍(8.3g,30mmol)加入到1500mL 3-戊烯腈中。随后以与实施例1相同的方式得到催化剂B(58.9g),并相同地测定的催化剂B中Ni的含量见表2-1。
(3)己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂B。以与实施例1相同的方式进行分析,结果见表2-1。
实施例3
(1)多孔聚合物C的制备
Figure PCTCN2021118766-appb-000020
将单体2-a(23.3g,60mmol)与单体3-c(43.3g,60mmol)溶解于1000mL苯(溶剂与混合单体溶解度参数之差为2.46MPa 1/2)中,加入1.0g偶氮二异丁腈(AIBN),并在50℃下搅拌进行预聚合4小时,得到预聚物;然后加入1000mL十二烷(使得混合溶剂与预聚物的溶解度参数之差为0.05MPa 1/2),以与实施例1相同的方式得到多孔聚合物C(58.6g)。
以与实施例1相同的方式进行测试,所得多孔聚合物C的各项性能参数见表2-1。
(2)多孔聚合物-镍催化剂C的制备
在氮气氛围下,将多孔聚合物C(22.2g,P的量为60mmol)和双-(1,5-环辛二烯)镍(8.3g,30mmol)加入到1500mL 3-戊烯腈中。随后以与实施例1相同的方式得到催化剂C(24.0g),并相同地测定的催化剂C中Ni的含量见表2-1。
(3)己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂C。以与实施例1相同的方式进行分析,结果见表2-1。
实施例4
(1)多孔聚合物D的制备
Figure PCTCN2021118766-appb-000021
将单体2-a(23.3g,60mmol)与单体3-d(53.4g,60mmol)溶解于1200mL三氯乙烷(溶剂与混合单体溶解度参数之差为2.25MPa 1/2)中,继续加入1.0g偶氮二异丁腈(AIBN),并在50℃下搅拌进行预聚合4小时,得到预聚物;然后加入400mL苯甲腈(使得混合溶剂与预聚物的溶解度参数之差为0.48MPa 1/2),以与实施例1相同的方式得到多孔聚合物D(70.6g)。
以与实施例1相同的方式进行测试,所得多孔聚合物D的各项性能参数见表2-1。
(2)多孔聚合物-镍催化剂D的制备
在氮气氛围下,将多孔聚合物D(63.9g,P的量为150mmol)和双-(1,5-环辛二烯)镍(8.3g,30mmol)加入到1500mL 3-戊烯腈中。随后以与实施例1相同的方式得到催化剂D(65.7g),并相同地测定的催化剂D中Ni的含量见表2-1。
(3)己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂D。以与实施例1相同的方式进行分析,结果见表2-1。
实施例5
(1)多孔聚合物E的制备
Figure PCTCN2021118766-appb-000022
将单体2-a(23.3g,60mmol)与单体4-a(46.2g,60mmol)溶解于800mL乙酸乙酯(溶剂与混合单体溶解度参数之差为1.77MPa 1/2)中,加入1.0g偶氮二异丁腈(AIBN),并在50℃下搅拌进行预聚合4小时,得到预聚物;然后加入200mL甲基异丁基酮(使得混合溶剂与预聚物的溶解度参数之差为0.04MPa 1/2),以与实施例1相同的方式得到多孔聚合物E(62.0g)。
以与实施例1相同的方式进行测试,所得多孔聚合物E的各项性能参数见表2-1。
(2)多孔聚合物-镍催化剂E的制备
在氮气氛围下,将多孔聚合物E(57.9g,P的量为150mmol)和双-(1,5-环辛二烯)镍(8.3g,30mmol)加入到1500mL 3-戊烯腈中。随后以与实施例1相同的方式得到催化剂E(59.7g)。并相同地测定的催化剂E中Ni的含量见表2-1。
(3)己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂E。以与实施例1相同的方式进行分析,结果见表2-1。
实施例6
(1)多孔聚合物F的制备
Figure PCTCN2021118766-appb-000023
将单体2-a(23.3g,60mmol)与单体5-a(54.1g,60mmol)溶解于1200mL 3-戊酮(溶剂与混合单体溶解度参数之差为2.2MPa 1/2)中,加入1.0g偶氮二异丁腈(AIBN),并在50℃下搅拌进行预聚合4小时,得到预聚物;然后加入300mL乙酸正丁酯(使得混合溶剂与预聚物的溶解度参数之差为0.23MPa 1/2),以与实施例1相同的方式得到多孔聚合物F(68.1g)。
以与实施例1相同的方式进行测试,所得多孔聚合物F的各项性能参数见表2-1。
(2)多孔聚合物-镍催化剂F的制备
在氮气氛围下,将多孔聚合物F(58.1g,P的量为180mmol)和双-(1,5-环辛二烯)镍(8.3g,30mmol)加入到1500mL 3-戊烯腈中。随后以与实施例1相同的方式得到催化剂F(59.9g),并相同地测定的催化剂F中Ni的含量见表2-1。
(3)己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂F。以与实施例1相同的方式进行分析,结果见表2-1。
实施例7
(1)多孔聚合物G的制备
Figure PCTCN2021118766-appb-000024
将单体2-a(23.3g,60mmol)与单体6-a(68.1g,60mmol)溶解于1500mL对二甲苯(溶剂与混合单体溶解度参数之差为2.00MPa 1/2)中,加入1.0g偶氮二异丁腈(AIBN),并在50℃下搅拌进行预聚合4小时,得到预聚物;然后加入500mL乙酸异丁酯(使得混合溶剂与预聚物的溶解度参数之差为0.03MPa 1/2),以与实施例1相同的方式得到多孔聚合物G(80.4g)。
以与实施例1相同的方式进行测试,所得多孔聚合物G的各项性能参数见表2-1。
(2)多孔聚合物-镍催化剂G的制备
在氮气氛围下,将多孔聚合物G(45.7g,P的量为150mmol)和双-(1,5-环辛二烯)镍(8.3g,30mmol)加入到1500mL 3-戊烯腈中。随后以与实施例1相同的方式得到催化剂G(47.5g),并相同地测定的催化剂G中Ni的含量见表2-1。
(3)己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂G。以与实施例1相同的方式进行分析,结果见表2-1。
实施例8
(1)多孔聚合物H的制备
Figure PCTCN2021118766-appb-000025
将单体2-a(23.3g,60mmol)与单体7-c(57.7g,60mmol)溶解于1200mL 1,2-二氯乙烷(溶剂与混合单体溶解度参数之差为2.15MPa 1/2)中,加入1.0g偶氮二异丁腈(AIBN),并在50℃下搅拌进行预聚合4小时,得到预聚物;然后加入300mL丙腈(使得混合溶剂与预聚物的溶解度参数之差为0.22MPa 1/2),以与实施例1相同的方式得到多孔聚合物H(73.7g)。
以与实施例1相同的方式进行测试,所得多孔聚合物H的各项性能参数见表2-1。
(2)多孔聚合物-镍催化剂H的制备
在氮气氛围下,将多孔聚合物H(67.5g,P的量为150mmol)和双-(1,5-环辛二烯)镍(8.3g,30mmol)加入到1500mL 3-戊烯腈中。随后以与实施例1相同的方式得到催化剂H(69.3g),并相同地测定的催化剂H中Ni的含量见表2-1。
(3)己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂H。以与实施例1相同的方式进行分析,结果见表2-1。
实施例9
(1)多孔聚合物I的制备
Figure PCTCN2021118766-appb-000026
将单体2-a(23.3g,60mmol)与单体7-d(60.9g,60mmol)溶解于1500mL 1,4-二氧六环(溶剂与混合单体溶解度参数之差为2.23MPa 1/2)中,加入1.0g偶氮二异丁腈(AIBN),并在50℃下搅拌进行预聚合4小时,得到预聚物;然后加入300mL环己酮(使得混合溶剂与预聚物的溶解度参数之差为0.48MPa 1/2),以与实施例1相同的方式得到多孔聚合物I(73.2g)。
以与实施例1相同的方式进行测试,所得多孔聚合物I的各项性能参数见表2-1。
(2)多孔聚合物-镍催化剂I的制备
在氮气氛围下,将多孔聚合物I(70.1g,P的量为150mmol)和双-(1,5-环辛二烯)镍(8.3g,30mmol)加入到1500mL 3-戊烯腈中。随后以与实施例1相同的方式得到催化剂I样品(71.9g),并相同地测定的催化剂I中Ni的含量见表2-1。
(3)己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂I。以与实施例1相同的方式进行分析,结果见表2-1。
实施例10
(1)多孔聚合物J的制备
Figure PCTCN2021118766-appb-000027
将单体2-a(23.3g,60mmol)与单体8-a(39.7g,60mmol)溶解于800mL三氯甲烷(溶剂与混合单体溶解度参数之差为1.91MPa 1/2)中,继续加入1.0g偶氮二异丁腈(AIBN),并在50℃下搅拌进行预聚合4小时,得到预聚物;然后加入200mL甲基丙基酮(使得混合溶剂与预聚物的溶解度参数之差为0.36MPa 1/2),以与实施例1相同的方式得到多孔聚合物J(58.0g)。
以与实施例1相同的方式进行测试,所得多孔聚合物J的各项性能参数见表2-1。
(2)多孔聚合物-镍催化剂J的制备
在氮气氛围下,将多孔聚合物J(52.5g,P的量为150mmol)和双-(1,5-环辛二烯)镍(8.3g,30mmol)加入到1500mL 3-戊烯腈中。随后以与实施例1相同的方式得到催化剂J样品(54.3g),并相同地测定的催化剂J中Ni的含量见表2-1。
(3)己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂J。以与实施例1相同的方式进行分析,结果见表2-1。
实施例11
(1)多孔聚合物K的制备
Figure PCTCN2021118766-appb-000028
将单体2-a(23.3g,60mmol)与单体9-d(44.8g,60mmol)溶解于800mL对二甲苯(溶剂与混合单体溶解度参数之差为2.00MPa 1/2)中,加入1.0g偶氮二异丁腈(AIBN),并在50℃下搅拌进行预聚合4小时,得到预聚物;然后加入800mL乙酸异丁酯(使得混合溶剂与预聚物的溶解度参数之差为0.30MPa 1/2),以与实施例1相同的方式得到多孔聚合物K(61.3g)。
以与实施例1相同的方式进行测试,所得多孔聚合物K的各项性能参数见表2-1。
(2)多孔聚合物-镍催化剂K的制备
在氮气氛围下,将多孔聚合物K(42.5g,P的量为150mmol)和双-(1,5-环辛二烯)镍(8.3g,30mmol)加入到1500mL 3-戊烯腈中。随后以与实施例1相同的方式催化剂K(44.3g),并相同地测定的催化剂K中Ni的含量见表2-1。
(3)己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂K。以与实施例1相同的方式进行分析,结果见表2-1。
实施例12
(1)多孔聚合物L的制备
Figure PCTCN2021118766-appb-000029
将单体2-a(23.3g,60mmol)与单体10-a(55.1g,60mmol)溶解于1200mL乙酸乙酯(溶剂与混合单体溶解度参数之差为1.96MPa 1/2)中,加入1.0g偶氮二异丁腈(AIBN),并在50℃搅拌预聚合4小时,得到预聚物;然后加入300mL甲基异丁基酮(使得混合溶剂与预聚物的溶解度参数之差为0.2MPa 1/2),以与实施例1相同的方式得到多孔聚合物L(71.5g)。
以与实施例1相同的方式进行测试,所得多孔聚合物L的各项性能参数见表2-1。
(2)多孔聚合物-镍催化剂L的制备
在氮气氛围下,将多孔聚合物L(70.5g,P的量为270mmol)和双-(1,5-环辛二烯)镍(7.5g,27mmol)加入到1500mL 3-戊烯腈中。随后以与实施例1相同的方式得到催化剂L(72.3g),并相同地测定的催化剂L中Ni的含量见表2-1。
(3)己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂L。以与实施例1相同的方式进行分析,结果见表2-1。
实施例13
(1)多孔聚合物M的制备
Figure PCTCN2021118766-appb-000030
将单体2-a(23.3g,60mmol)与单体11-a(33.5g,60mmol)溶解于800mL甲基丙基酮(溶剂与混合单体溶解度参数之差为1.34MPa 1/2)中,加入1.0g偶氮二异丁腈(AIBN),并在50℃下搅拌进行预聚合4小时,得到预聚物;然后加入800mL甲苯(使得混合溶剂与预聚物的溶解度参数之差为0.14MPa 1/2),以与实施例1相同的方式得到多孔聚合物M(51.7g)。
以与实施例1相同的方式进行测试,所得多孔聚合物M的各项性能参数见表2-1。
(2)多孔聚合物-镍催化剂M的制备
在氮气氛围下,将多孔聚合物M(47.3g,P的量为150mmol)和双-(1,5-环辛二烯)镍(8.3g,30mmol)加入到1500mL 3-戊烯腈中。随后以与实施例1相同的方式得到催化剂M样品(49.1g),并相同地测定的催化剂M中Ni的含量见表2-1。
(3)己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂M。以与实施例1相同的方式进行分析,结果见表2-1。
实施例14
(1)多孔聚合物N的制备
Figure PCTCN2021118766-appb-000031
将单体2-a(23.3g,60mmol)与单体12-b(41.2g,60mmol)溶解于800mL三氯甲烷(溶剂与混合单体溶解度参数之差为1.74MPa 1/2)中,加入1.0g偶氮二异丁腈(AIBN),并在50℃下搅拌进行预聚合4小时,得到预聚物;然后加入200mL甲基丙基酮(使得混合溶剂与预聚物的溶解度参数之差为0.03MPa 1/2),以与实施例1相同的方式得到多孔聚合物N(56.7g)。
以与实施例1相同的方式进行测试,所得多孔聚合物N的各项性能参数见表2-1。
(2)多孔聚合物-镍催化剂N的制备
在氮气氛围下,将多孔聚合物N(53.7g,P的量为150mmol)和双-(1,5-环辛二烯)镍(8.3g,30mmol)加入到1500mL 3-戊烯腈中。随后以与实施例1相同的方式得到催化剂N(55.5g),并相同地测定的催化剂N中Ni的含量见表2-1。
(3)己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂N。以与实施例1相同的方式进行分析,结果见表2-1。
实施例15
(1)多孔聚合物O的制备
Figure PCTCN2021118766-appb-000032
将单体2-a(23.3g,60mmol)与单体13-d(53.2g,60mmol)溶解于1000mL三氯甲烷(溶剂与混合单体溶解度参数之差为1.8MPa 1/2)中,加入1.0g偶氮二异丁腈(AIBN),并在50℃下搅拌进行预聚合4小时,得到预聚物;然后加入250mL甲基丙基酮(使得混合溶剂与预聚物的溶解度参数之差为0.06MPa 1/2),以与实施例1相同的方式得到多孔聚合物O(66.5g)。
以与实施例1相同的方式进行测试,所得多孔聚合物O的各项性能参数见表2-1。
(2)多孔聚合物-镍催化剂O的制备
在氮气氛围下,将多孔聚合物O(47.8g,P的量为150mmolP)和双-(1,5-环辛二烯)镍(8.3g,30mmol)加入到1500mL 3-戊烯腈中。随后以与实施例1相同的方式得到催化剂O样品(49.6g),并相同地测定的催化剂O中Ni的含量见表2-1。
(3)己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂O。以与实施例1相同的方式进行分析,结果见表2-1。
实施例16
(1)多孔聚合物P的制备
Figure PCTCN2021118766-appb-000033
将单体2-a(23.3g,60mmol)与单体14-b(58.0g,60mmol)溶解于1000mL三氯甲烷(溶剂与混合单体溶解度参数之差为1.74MPa 1/2)中,加入1.0g偶氮二异丁腈(AIBN),并在50℃下搅拌进行预聚合4小时,得到预聚物;然后加入250mL甲基丙基酮(使得混合溶剂与预聚物的溶解度参数之差为0.34MPa 1/2),以与实施例1相同的方式得到多孔聚合物P(69.9g)。
以与实施例1相同的方式进行测试,所得多孔聚合物P的各项性能参数见表2-1。
(2)多孔聚合物-镍催化剂P的制备
在氮气氛围下,将多孔聚合物P(40.6g,磷的量为150mmol)和双-(1,5-环辛二烯)镍(8.3g,30mmol)加入到1500mL 3-戊烯腈中。随后以与实施例1相同的方式得到催化剂P(42.4g),并相同地测定的催化剂P中Ni的含量见表2-1。
(3)己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂P。以与实施例1相同的方式进行分析,结果见表2-1。
实施例17
(1)多孔聚合物Q的制备
Figure PCTCN2021118766-appb-000034
将单体2-a(23.3g,60mmol)与单体15-a(38.4g,60mmol)溶解于800mL甲苯(溶剂与混合单体溶解度参数之差为1.51MPa 1/2)中,加入1.0g偶氮二异丁腈(AIBN),并在50℃下搅拌进行预聚合4小时,得到预聚物;然后加入800mL对二甲苯(使得混合溶剂与预聚物的溶解度参数之差为0.2MPa 1/2),以与实施例1相同的方式得到多孔聚合物Q(55.5g)。
以与实施例1相同的方式进行测试,所得多孔聚合物Q的各项性能参数见表2-1。
(2)多孔聚合物-镍催化剂Q的制备
在氮气氛围下,将多孔聚合物Q(51.4g,磷的量为150mmol)和双-(1,5-环辛二烯)镍(8.3g,30mmol)加入到1500mL 3-戊烯腈中。随后以与实施例1相同的方式得到催化剂Q(53.2g),并相同地测定的催化剂Q中Ni的含量见表2-1。
(3)己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂Q。以与实施例1相同的方式进行分析,结果见表2-1。
实施例18
(1)多孔聚合物R的制备
Figure PCTCN2021118766-appb-000035
将单体2-a(23.3g,60mmol)与单体16-a(44.4g,60mmol)溶解于800mL四氢呋喃(溶剂与混合单体溶解度参数之差为1.48MPa 1/2)中,加入1.0g偶氮二异丁腈(AIBN),并在50℃下搅拌进行预聚合4小时,得到预聚物;然后加入200mL正庚烷(使得混合溶剂与预聚物的溶解度参数之差为0.47MPa 1/2),以与实施例1相同的方式得到多孔聚合物R(60.2g)。
以与实施例1相同的方式进行测试,所得多孔聚合物R的各项性能参数见表2-1。
(2)多孔聚合物-镍催化剂R的制备
在氮气氛围下,将多孔聚合物R(56.4g,磷的量为150mmol)和双-(1,5-环辛二烯)镍(8.3g,30mmol)加入到1500mL 3-戊烯腈中。随后以与实施例1相同的方式得到催化剂R(58.2g),并相同地测定的催化剂R中Ni的含量见表2-1。
(3)己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂R。以与实施例1相同的方式进行分析,结果见表2-1。
实施例19
(1)多孔聚合物S的制备
Figure PCTCN2021118766-appb-000036
将单体2-a(23.3g,60mmol)与单体17-a(53.0g,60mmol)溶解于1000mL四氢呋喃(溶剂与混合单体溶解度参数之差为1.65MPa 1/2)中,加入1.0g偶氮二异丁腈(AIBN),并在50℃下搅拌进行预聚合4小时,得到预聚物;然后加入250mL正庚烷(使得混合溶剂与预聚物的溶解度参数之差为0.05MPa 1/2),以与实施例1相同的方式得到多孔聚合物S(66.4g)。
以与实施例1相同的方式进行测试,所得多孔聚合物S的各项性能参数见表2-2。
(2)多孔聚合物-镍催化剂S的制备
在氮气氛围下,将多孔聚合物S(47.7g,磷的量为150mmol)和双-(1,5-环辛二烯)镍(8.3g,30mmol)加入到1500mL 3-戊烯腈中。随后以与实施例1相同的方式得到催化剂S(49.5g),并相同地测定的催化剂S中Ni的含量见表2-2。
(3)己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂S。以与实施例1相同的方式进行分析,结果见表2-2。
实施例20
(1)多孔聚合物T的制备
Figure PCTCN2021118766-appb-000037
将单体2-a(23.3g,60mmol)与单体18-a(67.6g,60mmol)溶解于1500mL四氢呋喃(溶剂与混合单体溶解度参数之差为1.58MPa 1/2)中,加入1.0g偶氮二异丁腈(AIBN),并在50℃下搅拌进行预聚合4小时,得到预聚物;然后加入300mL正庚烷(使得混合溶剂与预聚物的溶解度参数之差为0.34MPa 1/2),以与实施例1相同的方式得到多孔聚合物T(82.6g)。
以与实施例1相同的方式进行测试,所得多孔聚合物T的各项性能参数见表2-2。
(2)多孔聚合物-镍催化剂T的制备
在氮气氛围下,将多孔聚合物T(45.4g,磷的量为150mmol)和双-(1,5-环辛二烯)镍(8.3g,30mmol)加入到1500mL 3-戊烯腈中。随后以与实施例1相同的方式得到催化剂T(47.2g),并相同地测定的催化剂T中Ni的含量见表2-2。
(3)己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂T。以与实施例1相同的方式进行分析,结果见表2-2。
实施例21
(1)多孔聚合物A1的制备
Figure PCTCN2021118766-appb-000038
将单体2-b(25.8g,60mmol)与单体3-a(40.2g,60mmol)溶解于800mL四氢呋喃(溶剂与混合单体溶解度参数之差为1.59MPa 1/2)中,加入1.0g偶氮二异丁腈(AIBN),并在50℃下搅拌进行预聚合4小时,得到预聚物;然后加入133mL正庚烷(使得混合溶剂与预聚物的溶解度参数之差为0.22MPa 1/2),以与实施例1相同的方式得到多孔聚合物A1(58.7g)。
以与实施例1相同的方式进行测试,多孔聚合物A1的各项性能参数见表2-2。
(2)多孔聚合物-镍催化剂A1的制备
在氮气氛围下,将多孔聚合物A1(55.0g,磷的量为150mmol)和双-(1,5-环辛二烯)镍(8.3g,30mmol)加入到1500mL 3-戊烯腈中。随后以与实施例1相同的方式得到催化剂A1(56.8g),并相同地测定的催化剂A1中Ni的含量见表2-2。
(3)己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂A1。以与实施例1相同的方式进行分析,结果见表2-2。
实施例22
(1)多孔聚合物A2的制备
Figure PCTCN2021118766-appb-000039
将单体2-c(30.9g,60mmol)与单体3-a(40.2g,60mmol)溶解于800mL四氢呋喃(溶剂与混合单体溶解度参数之差为1.37MPa 1/2)中,加入1.0g偶氮二异丁腈(AIBN),并在50℃下搅拌进行预聚合4小时,得到预聚物;然后加入133mL正庚烷(使得混合溶剂与预聚物的溶解度参数之差为0.43MPa 1/2),以与实施例1相同的方式得到多孔聚合物A2(63.2g)。
以与实施例1相同的方式进行测试,所得多孔聚合物A2的各项性能参数见表2-2。
(2)多孔聚合物-镍催化剂A2的制备
在氮气氛围下,将多孔聚合物A2(59.2g,磷的量为150mmol)和双-(1,5-环辛二烯)镍(8.3g,30mmol)加入到1500mL 3-戊烯腈中。随后以与实施例1相同的方式得到催化剂A2(61.0g),并相同地测定的催化剂A2中Ni的含量见表2-2。
(3)己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂A2。以与实施例1相同的方式进行分析,结果见表2-2。
实施例23
(1)多孔聚合物A3的制备
Figure PCTCN2021118766-appb-000040
将单体2-d(33.4g,60mmol)与单体3-a(40.2g,60mmol)溶解于800mL四氢呋喃(溶剂与混合单体溶解度参数之差为1.44MPa 1/2)中,加入1.0g偶氮二异丁腈(AIBN),并在50℃下搅拌进行预聚合4小时,得到预聚物;然后加入133mL正庚烷(使得混合溶剂与预聚物的溶解度参数之差为0.3MPa 1/2),以与实施例1相同的方式得到多孔聚合物A3(67.7g)。
以与实施例1相同的方式进行测试,所得多孔聚合物A3的各项性能参数见表2-2。
(2)多孔聚合物-镍催化剂A3的制备
在氮气氛围下,将多孔聚合物A3(61.3g,磷的量为150mmol)和双-(1,5-环辛二烯)镍(8.3g,30mmol)加入到1500mL 3-戊烯腈中。随后以与实施例1相同的方式得到催化剂A3(63.1g),并相同地测定的催化剂A3中Ni的含量见表2-2。
(3)己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂A3。以与实施例1相同的方式进行分析,结果见表2-2。
实施例24
(1)多孔聚合物U的制备
Figure PCTCN2021118766-appb-000041
将单体2-a(69.9g,180mmol)溶解于1200mL四氢呋喃(溶剂与单体溶解度参数之差为2.41MPa 1/2)中,加入1.5g偶氮二异丁腈(AIBN),并在50℃下搅拌进行预聚合4小时,得到预聚物;然后加入300mL正庚烷(使得混合溶剂与预聚物的溶解度参数之差为0.3MPa 1/2),以与实施例1相同的方式得到多孔聚合物U(62.3g)。
以与实施例1相同的方式进行测试,所得多孔聚合物U的各项性能参数见表2-2。
(2)多孔聚合物-镍催化剂U的制备
在氮气氛围下,将多孔聚合物U(58.2g,磷的量为150mmol)和双-(1,5-环辛二烯)镍(8.3g,30mmol)加入到1500mL 3-戊烯腈中。随后以与实施例1相同的方式得到催化剂U(59.9g),并相同地测定的催化剂U中Ni的含量见表2-2。
(3)己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂U。以与实施例1相同的方式进行分析,结果见表2-2。
实施例25
(1)多孔聚合物V的制备
Figure PCTCN2021118766-appb-000042
将单体3-a(80.4g,120mmol)溶解于1200mL四氢呋喃(溶剂与单体溶解度参数之差为2.29MPa 1/2)中,加入1.0g偶氮二异丁腈(AIBN),并在50℃下搅拌进行预聚合4小时,得到预聚物;然后加入300mL正庚烷(使得混合溶剂与预聚物的溶解度参数之差为0.1MPa 1/2),以与实施例1相同的方式得到多孔聚合物V(71.6g)。
以与实施例1相同的方式进行测试,所得多孔聚合物V的各项性能参数见表2-2。
(2)多孔聚合物-镍催化剂V的制备
在氮气氛围下,将多孔聚合物V(50.3g,磷的量为150mmol)和双-(1,5-环辛二烯)镍(8.3g,30mmol)加入到1500mL 3-戊烯腈中。随后以与实施例1相同的方式得到催化剂V(52.1g),并相同地测定的催化剂V中Ni的含量见表2-2。
(3)己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂V。以与实施例1相同的方式进行分析,结果见表2-2。
实施例26
(1)多孔聚合物W的制备
Figure PCTCN2021118766-appb-000043
将单体9-d(44.8g,60mmol)溶解于600mL苯甲腈(溶剂与单体溶解度参数之差为1.39MPa 1/2)中,加入0.5g偶氮二异丁腈(AIBN),并在50℃下搅拌进行预聚合4小时,得到预聚物;然后加入300mL正庚烷(使得混合溶剂与预聚物的溶解度参数之差为0.1MPa 1/2),以与实施例1相同的方式得到多孔聚合物W(41.0g)。
以与实施例1相同的方式进行测试,所得多孔聚合物W的各项性能参数见表2-2。
(2)多孔聚合物-镍催化剂W的制备
在氮气氛围下,将多孔聚合物W(37.3g,磷的量为150mmol)和双-(1,5-环辛二烯)镍(8.3g,30mmol)加入到1500mL 3-戊烯腈中。随后以与实施例1相同的方式得到催化剂W(39.1g),并相同地测定的催化剂W中Ni的含量见表2-2。
(3)己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂W。以与实施例1相同的方式进行分析,结果见表2-2。
实施例27
(1)多孔聚合物X的制备
Figure PCTCN2021118766-appb-000044
将单体18-a(67.6g,60mmol)溶解于750mL三氯甲烷(溶剂与单体溶解度参数之差为1.15MPa 1/2)中,加入0.5g偶氮二异丁腈(AIBN),并在50℃下搅拌进行预聚合4小时,得到预聚物;然后加入187.5mL甲基丙基酮(使得混合溶剂与预聚物的溶解度参数之差为0.12MPa 1/2),以与实施例1相同的方式得到多孔聚合物X(57.5g)。
以与实施例1相同的方式进行测试,所得多孔聚合物X的各项性能参数见表2-2。
(2)多孔聚合物-镍催化剂X的制备
在氮气氛围下,将多孔聚合物X(42.3g,磷的量为150mmol)和双-(1,5-环辛二烯)镍(8.3g,30mmol)加入到1500mL 3-戊烯腈中。随后以与实施例1相同的方式得到催化剂X(44.1g),并相同地测定的催化剂X中Ni的含量见表2-2。
(3)己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂X。以与实施例1相同的方式进行分析,结果见表2-2。
实施例28
(1)多孔聚合物Y的制备
Figure PCTCN2021118766-appb-000045
将单体3-a(40.2g,60mmol)与单体5-a(54.1g,60mmol)溶解于1200mL 3-戊酮(溶剂与混合单体溶解度参数之差为2.11MPa 1/2)中,加入1.0g偶氮二异丁腈(AIBN),并在50℃下搅拌进行预聚合4小时,得到预聚物;然后加入300mL乙酸正丁酯(使得混合溶剂与预聚物的溶解度参数之差为0.03MPa 1/2),以与实施例1相同的方式得到多孔聚合物Y(82.0g)。
以与实施例1相同的方式进行测试,所得多孔聚合物Y的各项性能参数见表2-2。
(2)多孔聚合物-镍催化剂Y的制备
在氮气氛围下,将多孔聚合物Y(47.2g,磷的量为150mmol)和双-(1,5-环辛二烯)镍(8.3g,30mmol)加入到1500mL 3-戊烯腈中。随后以与实施例1相同的方式得到催化剂Y(48.9g),并相同地测定的催化剂Y中Ni的含量见表2-2。
(3)己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂Y。以与实施例1相同的方式进行分析,结果见表2-2。
实施例29
(1)多孔聚合物Z的制备
Figure PCTCN2021118766-appb-000046
将单体3-a(40.2g,60mmol)与单体10-a(55.1g,60mmol)溶解于1200mL乙酸乙酯(溶剂与混合单体溶解度参数之差为1.9MPa 1/2)中,加入1.0g偶氮二异丁腈(AIBN),并在50℃下搅拌进行预聚合4小时,得到预聚物;然后加入300mL甲基异丁基酮(使得混合溶剂与预聚物的溶解度参数之差为0.4MPa 1/2),以与实施例1相同的方式得到多孔聚合物Z(85.7g)。
以与实施例1相同的方式进行测试,多孔聚合物Z的各项性能参数见表2-2。
(2)多孔聚合物-镍催化剂Z的制备
在氮气氛围下,将多孔聚合物Z(39.7g,磷的量为150mmol)和双-(1,5-环辛二烯)镍(8.3g,30mmol)加入到1500mL 3-戊烯腈中。随后以与实施例1相同的方式得到催化剂Z(41.5g),并相同地测定的催化剂Z中Ni的含量见表2-2。
(3)己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂Z。以与实施例1相同的方式进行分析,结果见表2-2。
实施例30
(1)多孔聚合物A11的制备
Figure PCTCN2021118766-appb-000047
将单体2-a(23.3g,60mmol)与单体3-a(13.4g,20mmol)溶解于600mL四氢呋喃(溶剂与混合单体溶解度参数之差为2.38MPa 1/2)中,加入0.7g偶氮二异丁腈(AIBN),并在50℃下搅拌进行预聚合4小时,得到预聚物;然后加入100mL正庚烷(使得混合溶剂与预聚物的溶解度参数之差为0.4MPa 1/2),以与实施例1相同的方式得到多孔聚合物A11(33.0g)。
以与实施例1相同的方式进行测试,所得多孔聚合物A11的各项性能参数见表2-2。
(2)多孔聚合物-镍催化剂A11的制备
在氮气氛围下,将多孔聚合物A11(31.7g,磷的量为90mmol)和双-(1,5-环辛二烯)镍(5.0g,18mmol)加入到1500mL 3-戊烯腈中。随后以与实施例1相同的方式得到催化剂A11(32.8g),并相同地测定催化剂A11中Ni的含量见表2-2。
(3)己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂A11。以与实施例1相同的方式进行分析,结果见表2-2。
实施例31
(1)多孔聚合物A12的制备
Figure PCTCN2021118766-appb-000048
将单体2-a(23.3g,60mmol)与单体3-a(402.1g,600mmol)溶解于8000mL四氢呋喃(溶剂与混合单体溶解度参数之差为2.3MPa 1/2)中,加入10g偶氮二异丁腈(AIBN),并在50℃下搅拌进行预聚合4小时,得到预聚物;然后加入1330mL正庚烷(使得混合溶剂与预聚物的溶解度参数之差为0.14MPa 1/2),以与实施例1相同的方式得到多孔聚合物A12(387.1g)。
以与实施例1相同的方式进行测试,所得多孔聚合物A12的各项性能参数见表2-2。
(2)多孔聚合物-镍催化剂A12的制备
在氮气氛围下,将多孔聚合物A12(52.9g,磷的量为150mmol)和双-(1,5-环辛二烯)镍(8.3g,30mmol)加入到1500mL 3-戊烯腈中。随后以与实施例1相同的方式得到催化剂A12(54.7g),并相同地测定的催化剂A12中Ni的含量见表2-2。
(3)己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂A12。以与实施例1相同的方式进行分析,结果见表2-2。
实施例32
(1)多孔聚合物A13的制备
Figure PCTCN2021118766-appb-000049
将单体2-a(2.33g,6mmol)与单体3-a(80.42g,120mmol)溶解于1600mL四氢呋喃(溶剂与混合单体溶解度参数之差为2.3MPa 1/2)中,继续加入2.0g偶氮二异丁腈(AIBN),并在50℃下搅拌进行预聚合4小时,得到预聚物;然后加入266mL正庚烷(使得混合溶剂与预聚物的溶解度参数之差为0.12MPa 1/2),以与实施例1相同的方式得到多孔聚合物A13(73.6g)。
以与实施例1相同的方式进行测试,所得多孔聚合物A13的各项性能参数见表2-2。
(2)多孔聚合物-镍催化剂A13的制备
在氮气氛围下,将多孔聚合物A13(52.9g,磷的量为150mmol)和双-(1,5-环辛二烯)镍(8.3g,30mmol)加入到1500mL 3-戊烯腈中。随后以与实施例1相同的方式得到催化剂A13(54.7g),并相同地测定的催化剂A13中Ni的含量见表2-2。
(3)己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂A13。以与实施例1相同的方式进行分析,结果见表2-2。
实施例33
(1)多孔聚合物A14的制备
Figure PCTCN2021118766-appb-000050
将单体2-a(23.3g,60mmol)、单体3-a(40.2g,60mmol)与单体9-d(44.8g,60mmol)溶解于1600mL四氢呋喃(溶剂与混合单体溶解度参数之差为2.1MPa 1/2)中,加入2.0g偶氮二异丁腈(AIBN),并在50℃下搅拌进行预聚合4小时,得到预聚物;然后加入400mL正庚烷(使得混合溶剂与预聚物的溶解度参数之差为0.18MPa 1/2),以与实施例1相同的方式得到多孔聚合物A14(96.39g)。
以与实施例1相同的方式进行测试,多孔聚合物A14的性能参数见表2-2。
(2)多孔聚合物-镍催化剂A14的制备
在氮气氛围下,将多孔聚合物A14(56.15g,磷的量为180mmol)和双-(1,5-环辛二烯)镍(8.3g,30mmol)加入到1500mL 3-戊烯腈中。随后以与实施例1相同的方式得到催化剂A13(58.7g),并相同地测定催化剂A13中Ni的含量见表2-2。
(3)己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂A13。以与实施例1相同的方式进行分析,结果见表2-2。
实施例34
(1)多孔聚合物U1的制备
Figure PCTCN2021118766-appb-000051
将单体(2-d)(100.1g,180mmol)溶解于1200mL 1,2-二氯乙烷(溶剂与单体溶解度参数之差为2.09MPa 1/2)中,加入1.5g偶氮二异丁腈(AIBN),并在50℃下搅拌进行预聚合4小时,得到预聚物;然后加入600mL苯甲腈(使得混合溶剂与预聚物的溶解度参数之差为0.31MPa 1/2),以与实施例1相同的方式得到多孔聚合物U1(80.1g)。
以与实施例1相同的方式进行测试,所得多孔聚合物U1的各项性能参数见表2-2。
(2)多孔聚合物-镍催化剂U1的制备
在氮气氛围下,将多孔聚合物U1(13.91g,磷的量为25mmol)和双-(1,5-环辛二烯)镍(1.38g,5mmol)加入到250mL 3-戊烯腈中。随后以与实施例1相同的方式得到催化剂U1(12.78g),并相同地测定的催化剂U1中Ni的含量见表2-2。
(3)己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂U1。以与实施例1相同的方式进行分析,结果见表2-2。
比较例1
Figure PCTCN2021118766-appb-000052
将单体(100.1g,180mmol)溶解于1001ml四氢呋喃,并加入2.5g偶氮二异丁腈(AIBN)。所得混合液转入高压釜中,在100℃下反应24小时,反应结束后,固体产物经二氯甲烷淋洗、真空干燥得到多孔聚合物b(64.1g)。经BET试验表征,所得到的多孔聚合物b的比表面积、孔隙容积为1.20cm 3/g、孔径分别为<10nm与>15nm的孔的孔隙容积的比例以及P含量见表2-2。
(2)多孔聚合物-镍催化剂b的制备
在氮气氛围下,将多孔聚合物b(14.56g,P的量为25mmol)和双-(1,5-环辛二烯)镍(1.38g,5mmol)加入到250mL 3-戊烯腈中。随后以与实施例1相同的方式得到催化剂b(12.68g),并相同地测定的催化剂b中Ni的含量见表2-2。
(3)己二腈的制备
以与实施例1相同的方式进行制备和分析,不同之处仅在于采用催化剂b。以与实施例1相同的方式进行分析,结果见表2-2。
以上实施例1~34和比较例1的各项测试结果列于下表2-1和表2-2中。
Figure PCTCN2021118766-appb-000053
Figure PCTCN2021118766-appb-000054
从以上表2-1和2-2可以看出,实施例1~34中采用本发明的多孔聚合物的制备方法得到的多孔聚合物具有特定范围的二级孔道的孔隙容积比例,并且由满足本申请全部技术特征的多孔聚合物获得的多孔聚合物-镍催化剂具有优异的催化活性,高的反应选择性,并且产品的线性度较高,线性ADN的选择性均在87.5%以上,最优的达到95.9%。并且从以上实施例可以看出,二级孔道的孔隙容积比例与比表面积、共聚物中各磷配体之间的比例、磷原子上的电荷、磷配体的位阻等因素都会影响反应活性和线性度,只有达到较佳组合才能达到最优效果;实施例16代表了较佳的组合。
而将本申请实施例34与比较例1相比可见,本申请实施例34与比较例1中的参数相比,比表面积、孔隙容积比例和P含量较为接近,但是实施例34的多孔聚合物中<10nm和>15nm的孔的孔隙容积比例为7.9:1,而比较例1中采用溶剂热聚合的方法制备得到的多孔聚合物,其<10nm和>15nm的孔的孔隙容积的比例为21.2:1,不在本申请限定的范围内。因此当由比较例1获得的多孔聚合物-镍催化剂用于制备己二腈时,在反应选择性和线性AND选择性均较低。
实施例35
使实施例1中的催化剂A与不同含水量体系反应,具体如下:
使用实施例1中制备得到的催化剂A(Ni含量10mmol),按照与实施例1中相同的己二腈的制备方法,分别在不同含水量(100ppm、500ppm、1000ppm、2000ppm)的体系中进行反应,并通过GC分析产物的组成含量。具体的实验结果如表3所示。
表3
Figure PCTCN2021118766-appb-000055
比较例2
使用实施例1中所用的磷配体单体制备催化剂a,以不同含水量体系评价催化剂a的性能,具体如
(1)催化剂a的制备
在氮气氛围下,将等摩尔量(60mmol)的单体2-a和3-a与双-(1,5-环辛二烯)镍(17g,70mmol)加入到1500mL 3-戊烯腈中,接着,在室温下继续搅拌24h。搅拌结束后,在真空条件下减压脱除溶剂,得到催化剂a(78.1g)。用电感耦合等离子体发射光谱仪(ICP-OES)测定催化剂a中Ni的含量为0.895mmol/g。
(2)评价催化剂a在不同含水量体系中的性能
采用催化剂a(Ni含量10mmol),按照与实施例1中相同己二腈的制备方法,分别在不同含水量(100ppm、500ppm、1000ppm、2000ppm)的体系中进行反应,通过取样、过滤、GC分析产物的组成含量。具体的实验结果如表4所示。
表4
Figure PCTCN2021118766-appb-000056
从以上表3和表4可以看出,采用本发明的多孔聚合物制成的催化剂的本发明实施例35与采用由未进行聚合的磷配体制成的催化剂的比较例2相比,本发明的催化剂具有优异的耐水性,从而可以简化催化剂的分离回收步骤,且催化剂的回收套用次数可以大大增加。
实施例36
采用实施例1制备得到的催化剂A(Ni含量0.549mmol/g),按照实施例1中的己二腈的制备方法进行反应,通过GC分析产物的组成含量,并且通过电感耦合等离子体发射光谱仪(ICP-OES)测定催化剂中的Ni含量。在反应结束后,通过过滤从反应液中分离回收催化剂A,经清洗后用于后续循环套用,如此循环套用30次。在未套用、套用第10次、套用第20次和套用第30次之后分别测定产物组成含量,且在未套用和套用第30次之后测定催化剂中的Ni含量,结果示于表5中。
表5
Figure PCTCN2021118766-appb-000057
实施例37
采用实施例1制备得到的催化剂A(Ni含量0.549mmol/g),除了将实施例35中的己二腈的制备方法改为连续反应模式,且在连续反应的出料口安装精密过滤设备以保证催化剂A保留在反应体系内,并且分别在运行0小时、连续运行100小时、150小时和200小时以外,以与实施例35相同的方式进行测试和评价,结果示于表6中。
表6
Figure PCTCN2021118766-appb-000058
从以上实施例36和37以及表5和表6可见,采用由本发明的多孔聚合物制成的多孔聚合物-镍催化剂可以进行多次循环套用和长时间的稳定运行,并且在多次套用过程中仍保持优异的催化活性。

Claims (22)

  1. 一种含有磷配体的多孔聚合物,其特征在于,所述多孔聚合物的孔隙容积为0.3~2.5cm 3/g,优选为0.5~2.0cm 3/g;
    所述多孔聚合物包括具有第一孔径的孔以及具有第二孔径的孔,所述具有第一孔径的孔与具有第二孔径的孔的孔隙容积的比例为1~10:1,优选2~8:1,
    所述具有第一孔径的孔采用氮吸附法利用NLDFT模型而测量的孔径小于10nm、优选2~6nm;所述具有第二孔径的孔采用氮吸附法利用NLDFT模型而测量的孔径大于15nm、优选大于20nm;
    所述多孔聚合物由至少一种磷配体自聚或共聚而得到,且所述多孔聚合物的磷含量为1~5mmol/g,优选1.7~3.9mmol/g。
  2. 根据权利要求1所述的含有磷配体的多孔聚合物,其中,所述多孔聚合物的BET比表面积为100~2000m 2/g,优选为500~1700m 2/g。
  3. 根据权利要求1或2所述的含有磷配体的多孔聚合物,所述磷配体由以下通式(1)表示:
    Figure PCTCN2021118766-appb-100001
    其中:n=1~4;
    Ar表示具有取代的芳环结构的基团;
    X和Y相同或不同,且各自独立地表示芳氧基或含氮杂环基团,X和Y可以经由单键或亚甲基成环。
  4. 根据权利要求3所述的含有磷配体的多孔聚合物,通式(1)中:
    n为1时,所述磷配体为单齿磷配体,且X和Y均为
    Figure PCTCN2021118766-appb-100002
    Ar为
    Figure PCTCN2021118766-appb-100003
    n为2~4时,所述磷配体为多齿磷配体,X和Y相同或不同,且各自独立地表示
    Figure PCTCN2021118766-appb-100004
    或含氮杂环基团;Ar为
    Figure PCTCN2021118766-appb-100005
    条件是,当X和Y二者均表示
    Figure PCTCN2021118766-appb-100006
    时,X和Y不成环;当X和Y二者均表示含氮杂环基团时,X与Y不成环或者经由单键或亚甲基成环;并且当X为
    Figure PCTCN2021118766-appb-100007
    和Y为含氮杂环基团时,X与Y经由亚甲基成环;
    所述含氮杂环基团为
    Figure PCTCN2021118766-appb-100008
    Figure PCTCN2021118766-appb-100009
    上述中,R 1选自氢原子、乙烯基、丙烯基、丙烯酰基、丙烯酸酯基或甲基丙烯酰基;
    R 2选自氢原子、卤素原子、腈基、C 1~C 10的烷基、C 1~C 10的烷氧基、C 1~C 10的烷酰基、C 1~C 10的酯基或C 1~C 10的磺酸酯基;
    Rx选自氢原子、乙烯基、丙烯基、丙烯酰基、丙烯酸酯基或甲基丙烯酰基;
    Ry选自氢原子、卤素原子、腈基、C 1~C 10的烷基、C 1~C 10的烷氧基、C 1~C 10的烷酰基、C 1~C 10的酯基或C 1~C 10的磺酸酯基。
  5. 根据权利要求1~4任一项所述的含有磷配体的多孔聚合物,其中,所述磷配体选自具有以下结构式(2)~(18)的化合物:
    Figure PCTCN2021118766-appb-100010
    Figure PCTCN2021118766-appb-100011
    其中,R 1、R 2、Rx、Ry的定义均与通式(1)中的相同;并且X与Y相同,均表示含氮杂环基团。
  6. 根据权利要求4或5所述的含有磷配体的多孔聚合物,所述磷配体中,X和Y二者均为含氮杂环基团且二者经由单键或亚甲基成环的结构部位选自以下任意一种:
    Figure PCTCN2021118766-appb-100012
  7. 根据权利要求1~6任一项所述的含有磷配体的多孔聚合物,其中,所述多孔聚合物由任意一种所述磷配体自聚而得到。
  8. 根据权利要求1~6任一项所述的含有磷配体的多孔聚合物,其中,所述多孔聚合物为由任意两种所述磷配体共聚而得到的无规共聚物,且两种磷配体之间的摩尔比为0.01~3:1,优选为0.05~2.5:1。
  9. 根据权利要求1~6任一项所述的含有磷配体的多孔聚合物,其中,所述多孔聚合物为由三种以上的任意所述磷配体共聚而得到的无规共聚物。
  10. 一种根据权利要求1~9所述的含有磷配体的多孔聚合物的制备方法,其中,在自由基引发剂的存在下,使至少一种所述磷配体自聚或共聚。
  11. 根据权利要求10所述的含有磷配体的多孔聚合物的制备方法,其中,所述方法包括,使至少一种所述磷配体在第一有机溶剂的存在下进行预聚合,得到预聚物,至少一种所述磷配体与所述第一有机溶剂的溶解度参数之差为1.0~2.5[MPa] 1/2;向所得到的预聚物添加第二有机溶剂,使第一和第二有机溶剂的混合溶剂的溶解度参数与所述预聚物的溶解度参数之差小于0.5[MPa] 1/2,使预聚物溶胀和固化。
  12. 根据权利要求11所述的含有磷配体的多孔聚合物的制备方法,其中,所述预聚合的温度为50~80℃,时间为2~10小时;所述溶胀和固化的温度为85~110℃下,时间为2~10小时。
  13. 根据权利要求10~12任一项所述的含有磷配体的多孔聚合物的制备方法,其中,使任意一种所述磷配体自聚。
  14. 根据权利要求10~12任一项所述的含有磷配体的多孔聚合物的制备方法,其中,使任意的二种所述磷配体共聚,二种所述磷配体的摩尔比为0.01~3:1,优选0.05~2.5:1。
  15. 根据权利要求10~12任一项所述的含有磷配体的多孔聚合物的制备方法,其中,使任意的三种以上的所述磷配体共聚。
  16. 根据权利要求10~15任一项所述的含有磷配体的多孔聚合物的制备方法,其中,所述自由基引发剂选自2,2’-偶氮二异丁腈和2,2’-偶氮双(2-甲基丙腈)中的至少一种。
  17. 根据权利要求11~16任一项所述的含有磷配体的多孔聚合物的制备方法,其中,所述第一有机溶剂和第二有机溶剂相同或不同,且选自正戊烷、正己烷、正庚烷、十二烷、环己烷、乙酸异丁酯、苯甲腈、甲基异丁基酮、乙酸正丁酯、环戊烷、3-戊酮、对二甲苯、甲苯、甲基丙基酮、四氢呋喃、乙酸乙酯、苯、三氯甲烷、1,1,2-三氯乙烷、乙酸甲酯、1,2-二氯乙烷、丙酮、环己酮、1,4-二氧六环、环戊酮、丙腈、乙醇、二甲亚砜、甲醇和水中的一种或多种。
  18. 一种多孔聚合物-镍催化剂,其包括根据权利要求1~9任一项所述的含有磷配体的多孔聚合物、和零价镍,且所述零价镍的含量相对于所述催化剂的量为0.1~2mmol/g。
  19. 一种己二腈的制备方法,所述方法包括,在根据权利要求18所述的多孔聚合物-镍催化剂的存在下,依次进行丁二烯的一次氢氰化反应、支化单腈的异构化反应和线性单腈的二次氢氰化反应。
  20. 根据权利要求19所述的己二腈的制备方法,其中,所述方法包括以下步骤:
    (1)一次氢氰化反应
    在所述催化剂存在下,使丁二烯和氢氰酸进行一次氢氰化反应,所述丁二烯与氢氰酸的摩尔比为1.0~1.5,所述氢氰酸的摩尔数与所述催化剂以零价镍计的摩尔数的比例为100~1:1,优选为70~10:1,反应温度为60~140℃,反应压力为0.3~5.0MPa;
    (2)支化单腈的异构化反应
    在所述催化剂存在下,使上述步骤(1)中获得的产物中分离出的支化单腈混合物进行异构化反应,其中,所述支化单腈混合物的摩尔数与所述催化剂以零价镍计的摩尔数的比例为300~20:1,优选为200~50:1,反应温度为80~170℃,反应压力为0.3~5.0MPa;
    (3)二次氢氰化反应
    在所述催化剂存在下,使上述步骤(1)和(2)中得到产物中分离出的线性单腈混合物与氢氰酸进行二次氢氰化反应,其中,所述线性单腈混合物与氢氰酸的摩尔比为1.0~1.5,氢氰酸的摩尔数与所述催化剂以零价镍计的摩尔数的比例为1000~20:1,优选500~20:1,反应温度为30~120℃,反应压力为0.3~5.0MPa。
  21. 根据权利要求20所述的己二腈的制备方法,其中,所述二次氢氰化反应在促进剂的存在下进行,所述促进剂的摩尔数与所述催化剂以零价镍计的摩尔数的比例为0.05~2.5:1;所述促进剂为路易斯酸。
  22. 根据权利要求19~21中任一项所述的己二腈的制备方法,其中,所述制备方法还包括将所述多孔聚合物-镍催化剂循环套用,其包括以下方法(a)或者(b):
    (a)将至少部分所述多孔聚合物-镍催化剂随反应产物一起出料,经过滤分离、清洗后重新套用至下一批反应中;或者
    (b)将至少部分所述多孔聚合物-镍催化剂不随反应产物一起出料,仍然留在反应体系里循环套用。
PCT/CN2021/118766 2020-12-31 2021-09-16 多孔聚合物及其制备方法、催化剂以及己二腈的制备方法 WO2022142484A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/795,838 US20230094350A1 (en) 2020-12-31 2021-09-16 Porous Polymer and Method for Preparing the Same, Catalyst, and Method for Preparing Adiponitrile
EP21913231.3A EP4242242A1 (en) 2020-12-31 2021-09-16 Porous polymer, preparation method therefor, catalyst and preparation method for adiponitrile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011622863.4A CN112794948B (zh) 2020-12-31 2020-12-31 多孔聚合物及其制备方法、催化剂以及己二腈的制备方法
CN202011622863.4 2020-12-31

Publications (1)

Publication Number Publication Date
WO2022142484A1 true WO2022142484A1 (zh) 2022-07-07

Family

ID=75807462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/118766 WO2022142484A1 (zh) 2020-12-31 2021-09-16 多孔聚合物及其制备方法、催化剂以及己二腈的制备方法

Country Status (4)

Country Link
US (1) US20230094350A1 (zh)
EP (1) EP4242242A1 (zh)
CN (1) CN112794948B (zh)
WO (1) WO2022142484A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112794948B (zh) * 2020-12-31 2022-08-26 浙江大学 多孔聚合物及其制备方法、催化剂以及己二腈的制备方法
CN113416211A (zh) * 2021-05-28 2021-09-21 中国科学院大连化学物理研究所 一种乙烯基官能团化膦配体合成方法及膦配体和应用
CN113912516B (zh) * 2021-10-15 2023-06-27 浙江新和成股份有限公司 一种多齿亚磷酸酯配体在催化合成己二腈中的应用
CN115873221A (zh) * 2021-12-17 2023-03-31 浙江新和成股份有限公司 一种含磷聚合物及其制备方法和应用
CN114891036B (zh) * 2022-04-26 2023-12-05 浙江新和成股份有限公司 制备含磷配体的方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1159799A (zh) 1994-10-07 1997-09-17 纳幕尔杜邦公司 氢氰化方法及所用多配位亚磷酸酯和镍催化剂复合物
WO1999052632A1 (en) 1998-04-16 1999-10-21 E.I. Du Pont De Nemours And Company Hydrocyanation of olefins and isomerization of nonconjugated 2-alkyl-3-monoalkenenitriles
CN1387534A (zh) 1999-11-03 2002-12-25 巴斯福股份公司 亚磷酸酯
CN1639176A (zh) * 2001-10-12 2005-07-13 巴斯福股份公司 亚膦酸酯、它们作为过渡金属配合物中的配体的用途以及生产腈的方法
CN1914160A (zh) 2004-01-29 2007-02-14 巴斯福股份公司 通过氢氰化1,3-丁二烯制备己二腈的方法
CN1914154A (zh) 2004-01-29 2007-02-14 巴斯福股份公司 制备3-戊烯腈的方法
CN101043946A (zh) 2004-10-18 2007-09-26 巴斯福股份公司 具有降低的粉末形成的由腈混合物萃取镍(0)配合物
CN103189351A (zh) 2010-07-07 2013-07-03 因温斯特技术公司 用于制备腈的方法
CN107207406A (zh) 2014-06-27 2017-09-26 因温斯特技术公司 用增强的液‑液萃取制造腈的整合方法
CN111892514A (zh) * 2020-08-13 2020-11-06 阳泉煤业(集团)有限责任公司 一种丁二烯直接氢氰化制备己二腈的方法
CN112794948A (zh) * 2020-12-31 2021-05-14 浙江大学 多孔聚合物及其制备方法、催化剂以及己二腈的制备方法
CN113264847A (zh) * 2021-04-23 2021-08-17 浙江新和成股份有限公司 一种己二腈的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9132411B2 (en) * 2007-08-30 2015-09-15 The Regents Of The University Of Michigan Strategies, linkers and coordination polymers for high-performance sorbents
CN107537564B (zh) * 2016-06-24 2020-04-07 中国科学院大连化学物理研究所 含季鏻盐-磷配体有机多孔共聚物多相催化剂及其制备和应用
CN110330591B (zh) * 2019-07-13 2021-09-14 青岛科技大学 一类含有膦配体的多孔有机聚合物及其制备方法和应用
CN111995547B (zh) * 2020-01-19 2021-07-09 浙江新和成股份有限公司 己二腈的制备方法和装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1159799A (zh) 1994-10-07 1997-09-17 纳幕尔杜邦公司 氢氰化方法及所用多配位亚磷酸酯和镍催化剂复合物
WO1999052632A1 (en) 1998-04-16 1999-10-21 E.I. Du Pont De Nemours And Company Hydrocyanation of olefins and isomerization of nonconjugated 2-alkyl-3-monoalkenenitriles
CN1387534A (zh) 1999-11-03 2002-12-25 巴斯福股份公司 亚磷酸酯
CN1639176A (zh) * 2001-10-12 2005-07-13 巴斯福股份公司 亚膦酸酯、它们作为过渡金属配合物中的配体的用途以及生产腈的方法
CN1914160A (zh) 2004-01-29 2007-02-14 巴斯福股份公司 通过氢氰化1,3-丁二烯制备己二腈的方法
CN1914154A (zh) 2004-01-29 2007-02-14 巴斯福股份公司 制备3-戊烯腈的方法
CN101043946A (zh) 2004-10-18 2007-09-26 巴斯福股份公司 具有降低的粉末形成的由腈混合物萃取镍(0)配合物
CN103189351A (zh) 2010-07-07 2013-07-03 因温斯特技术公司 用于制备腈的方法
CN107207406A (zh) 2014-06-27 2017-09-26 因温斯特技术公司 用增强的液‑液萃取制造腈的整合方法
CN111892514A (zh) * 2020-08-13 2020-11-06 阳泉煤业(集团)有限责任公司 一种丁二烯直接氢氰化制备己二腈的方法
CN112794948A (zh) * 2020-12-31 2021-05-14 浙江大学 多孔聚合物及其制备方法、催化剂以及己二腈的制备方法
CN113264847A (zh) * 2021-04-23 2021-08-17 浙江新和成股份有限公司 一种己二腈的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SUN QI, AGUILA BRIANA, VERMA GAURAV, LIU XIAOLONG, DAI ZHIFENG, DENG FENG, MENG XIANGJU, XIAO FENG-SHOU, MA SHENGQIAN: "Superhydrophobicity: Constructing Homogeneous Catalysts into Superhydrophobic Porous Frameworks to Protect Them from Hydrolytic Degradation", CHEM, CELL PRESS, US, vol. 1, no. 4, 1 October 2016 (2016-10-01), US , pages 628 - 639, XP055948182, ISSN: 2451-9294, DOI: 10.1016/j.chempr.2016.09.008 *
WANG YUQING, YAN LI, LI CUNYAO, JIANG MIAO, ZHAO ZIANG, HOU GUANGJIN, DING YUNJIE: "Heterogeneous Rh/CPOL-BP&P(OPh)3 catalysts for hydroformylation of 1-butene: The formation and evolution of the active species", JOURNAL OF CATALYSIS, ACADEMIC PRESS, DULUTH, MN., US, vol. 368, 1 December 2018 (2018-12-01), US , pages 197 - 206, XP055948184, ISSN: 0021-9517, DOI: 10.1016/j.jcat.2018.10.012 *
YONGQUAN TANG ET AL.: "Boosting the hydrolytic stability of phosphite ligand in hydroformylation by the construction of superhydrophobic porous framework", MOLECULAR CATALYSIS, vol. 474, no. 110408, 2019, pages 1 - 6

Also Published As

Publication number Publication date
EP4242242A1 (en) 2023-09-13
CN112794948A (zh) 2021-05-14
CN112794948B (zh) 2022-08-26
US20230094350A1 (en) 2023-03-30

Similar Documents

Publication Publication Date Title
WO2022142484A1 (zh) 多孔聚合物及其制备方法、催化剂以及己二腈的制备方法
CN113264847B (zh) 一种己二腈的制备方法
Sacchi et al. Vinylic Polymerization of Norbornene by Late Transition Metal‐Based Catalysis
CA2214009C (en) Process for hydrocyanation in the presence of zero-valent nickel, a bidentate phosphorous compound and a lewis acid
JP4410774B2 (ja) 触媒組成物およびその製造ならびにエチレン性不飽和モノマーからポリマーを製造するための使用
RU2441015C2 (ru) Боргидридный металлоценовый комплекс лантаноида, включающая его каталитическая система, способ полимеризации, в которой она применяется, и сополимер этилена с бутадиеном, полученный этим способом
US3496215A (en) Hydrocyanation of olefins using selected nickel phosphite catalysts
KR101152563B1 (ko) 선형 펜텐니트릴의 제조 방법
EP3617182B1 (en) Method for producing alpha-fluoroacrylic acid ester
EP1448668A1 (en) Polymeric, phosphorous-containing compositions and their use in hydrocyanation, isomerization and hydroformylation reactions
US3522288A (en) Hydrocyanation of olefins
US3818067A (en) Preparation of organic dinitriles
WO2021143412A1 (zh) 己二腈的制备方法和装置
CN108067307B (zh) 一种多相不对称氢甲酰化催化剂的制备及应用
US5559262A (en) Process for the preparation of ruthenium complexes and their in situ use as hydrogenation catalysts
Sedláček et al. Controlled and living polymerizations induced with rhodium catalysts. A Review
CN107118288A (zh) 一种负载型后过渡金属催化剂及其制备方法
CN109400777B (zh) 基于苊醌双亚胺配体的钒配合物及其制备方法和应用
US20070155979A1 (en) Process for the hydrocyanation of unsaturated compounds
CN108530567B (zh) 一种能形成双氢键的α-二亚胺化合物和包含该化合物的金属配合物、负载物以及其应用
VATANKHAH et al. High performance bulky α-diimine nickel (II) catalysts for ethylene polymerization
WO2023060929A1 (zh) 一种多齿亚磷酸酯配体在催化合成己二腈中的应用
CN109894148B (zh) 一种多孔手性有机聚合物催化剂及其制备方法
CN113416152A (zh) 线性c5单烯腈与氰化氢反应制取己二腈的方法
JP2004059731A (ja) 触媒組成物及び該触媒組成物を用いたポリケトンの製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021913231

Country of ref document: EP

Effective date: 20230731