WO2022140929A1 - 自动驾驶视觉标定装置 - Google Patents

自动驾驶视觉标定装置 Download PDF

Info

Publication number
WO2022140929A1
WO2022140929A1 PCT/CN2020/140216 CN2020140216W WO2022140929A1 WO 2022140929 A1 WO2022140929 A1 WO 2022140929A1 CN 2020140216 W CN2020140216 W CN 2020140216W WO 2022140929 A1 WO2022140929 A1 WO 2022140929A1
Authority
WO
WIPO (PCT)
Prior art keywords
adjustment
assembly
module
vision
automatic driving
Prior art date
Application number
PCT/CN2020/140216
Other languages
English (en)
French (fr)
Inventor
李喆洋
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/140216 priority Critical patent/WO2022140929A1/zh
Priority to CN202080074809.2A priority patent/CN114930797A/zh
Publication of WO2022140929A1 publication Critical patent/WO2022140929A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules

Definitions

  • the present application relates to the technical field of vehicle performance assistance testing, and in particular, to a visual calibration device for automatic driving.
  • Unmanned vehicles are in a period of rapid development, and continue to put forward more and higher requirements in terms of functional requirements.
  • the embodiment of the present application provides a visual calibration device for automatic driving, so as to solve the problem of high calibration cost in the prior art.
  • an embodiment of the present application provides a visual calibration device for automatic driving, including:
  • a vision module for simulating the vehicle's vision sensors and performing vision calibration, and,
  • the vision module is used for connecting with the vision adjustment module
  • the vision adjustment module includes a vision adjustment assembly and an installation part, the vision adjustment assembly is connected with the installation part, and the vision module is used for connecting with the vision adjustment assembly;
  • the visual adjustment assembly is used to drive the visual module to move relative to the mounting portion in a preset space.
  • an embodiment of the present application further provides a visual calibration device for automatic driving, including a vehicle body assembly module, where the vehicle body assembly module is used to simulate a vehicle body;
  • the vehicle body self-assembly module includes an assembly main body, a functional component and a functional adjustment assembly, the assembly main body is used to carry the functional assembly, the functional adjustment assembly is movably connected to the assembly main body, and the functional assembly is installed on the Adjustable position of the function adjustment component;
  • the function adjustment component is used to adjust the position of the function component.
  • the setting of the vision module in the above structure can simulate the vision sensor of the vehicle and perform visual calibration, and the vision adjustment module can change the position of the vision module, and then adjust the line of sight of the vision module, further simulating different The visual sensor of the vehicle, and perform visual calibration.
  • the vision adjustment component can cooperate with the installation part to make the vision module move in the preset space, so that the vision module can be adjusted to the area to be simulated as required, and the area to be simulated is smaller than the preset space. The area to be simulated will change according to different simulation requirements.
  • the cooperation of the vision module and the vision adjustment module can make the automatic driving vision calibration device have a wider range of applications, stronger applicability, and reduce the total cost of calibration work.
  • the embodiments of the present application have the beneficial effects of stronger applicability of the automatic driving visual calibration device and reduction of the total cost of calibration work.
  • Fig. 1 shows the structural schematic diagram of the automatic driving visual calibration device in the prior art
  • Fig. 2 shows the top view of the automatic driving visual calibration device in the prior art
  • FIG. 3 shows a schematic structural diagram of the vision module and the vision adjustment module provided in the embodiment of the present application when they cooperate;
  • FIG. 4 shows a front view of a vision module provided by an embodiment of the present application
  • FIG. 5 shows a side view of a vision module provided by an embodiment of the present application
  • Fig. 6 shows the back view of the vision module provided by the embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a vehicle body self-assembly module provided by an embodiment of the present application.
  • Fig. 8 shows the front exploded view of the automatic driving visual calibration device in the prior art
  • FIG. 9 shows an exploded side view of the visual calibration device for automatic driving in the prior art.
  • an embodiment of the present application provides a visual calibration device for automatic driving, including:
  • a vision module 10 for simulating a vehicle's vision sensor and performing vision calibration and,
  • the vision module 10 is used for connecting with the vision adjustment module 20;
  • the vision adjustment module 20 includes a vision adjustment assembly 21 and a mounting portion 22, the vision adjustment assembly 21 is connected with the mounting portion 22, and the vision module 10 is used for connecting with the vision adjustment assembly 21;
  • the visual adjustment assembly 21 is used to drive the visual module 10 to move relative to the mounting portion 22 in a preset space.
  • the setting of the vision module 10 in the above structure can simulate the vision sensor of the vehicle and perform visual calibration
  • the vision adjustment module 20 can change the position of the vision module 10, thereby adjusting the line of sight of the vision module 10. , to further simulate the visual sensors of different vehicles, and perform visual calibration.
  • the visual adjustment component 21 can cooperate with the mounting part 22 to make the visual module 10 move in the preset space, so that the visual module 10 can be adjusted to the area to be simulated as required, and the area to be simulated is smaller than the preset space. The area to be simulated will be changed according to different simulation requirements.
  • the cooperation of the vision module 10 and the vision adjustment module 20 can make the automatic driving vision calibration device have a wider application range, stronger applicability, and reduce the total cost of calibration work.
  • the embodiments of the present application have the beneficial effects of stronger applicability of the automatic driving visual calibration device and reduction of the total cost of calibration work.
  • the visual adjustment assembly 21 includes at least one adjustment part, and the movement mode of the adjustment part includes at least one of linear motion, curvilinear motion and rotational motion.
  • the above-mentioned structure may have more adjustment modes of the visual adjustment component 21, which are specifically selected according to needs.
  • a mechanical arm with at least two joints, a sliding rod group with multiple moving directions, a link-slider combination mechanism, a combination mechanism of a sliding pair and a rotating pair, etc. can be selected, as long as the mechanism that can move in space can be used.
  • the above-mentioned linear motion, curved motion and rotational motion in the realization of space activities may be a combination of multiple identical motion modes or a combination of different motion modes.
  • the visual adjustment assembly 21 includes a first adjustment part 211 and a second adjustment part 212, the first adjustment part 211 is movably connected to the second adjustment part 212, and the direction of movement is is the first direction;
  • the second adjusting portion 212 is movably connected to the mounting portion 22, and the moving direction is the second direction;
  • the vision module 10 is movably connected to the first adjusting portion 211, and the moving direction is the third direction;
  • the vision module 10 is driven to move in the preset space.
  • the arrangement of the first adjustment part 211 and the second adjustment part 212 in the above structure can be used in conjunction with the installation part 22 , so that the vision module 10 can perform the first direction and the second adjustment relative to the installation part 22 .
  • the movement in the direction and the third direction when the first direction, the second direction and the third direction are movement directions of different dimensions respectively, the vision module 10 can be moved relative to the mounting portion 22 in space.
  • the first direction, the second direction and the third direction can be respectively located in the X-axis, Y-axis and Z-axis of the space coordinate system.
  • the first direction, the second direction and the third direction are not in the same Just flat.
  • the first adjusting portion 211 and the second adjusting portion 212 are both rod-shaped structures.
  • the first adjusting portion 211 is substantially perpendicular to the second adjusting portion 212 .
  • the first regulating part 211 and the second regulating part 212 generally form an "L" shape or a "T" shape structure.
  • the arrangement of the rod-shaped structure can make the arrangement positions of the first adjustment part 211 and the second adjustment part 212 tend to the coordinate axes X-axis, Y-axis, and Z-axis in the space coordinate system.
  • the two coordinate axes that are perpendicular to each other can be made to correspond to each other, and after the installation portion 22 is matched, the first direction, the second direction and the third direction can be made to correspond to the spatial coordinates respectively.
  • the X-axis, Y-axis, and Z-axis in the system can facilitate the positioning of the vision module 10, so that the adjustment precision of the vision module 10 is higher.
  • a reinforcing link can be provided on the part of the first adjusting part 211 close to the second adjusting part 212 as required, so that the cooperation between the first adjusting part 211 and the second adjusting part 212 is more stable and reliable.
  • the end of the first adjusting portion 211 close to the second adjusting portion 212 is slidably connected to the second adjusting portion 212, and the sliding direction is parallel to the second adjusting portion 212.
  • the second adjusting portion 212 is slidably connected to the mounting portion 22, and the sliding direction is substantially perpendicular to the length direction of the second adjusting portion 212;
  • the vision module 10 is slidably connected to the first adjusting portion 211 , and the sliding direction is parallel to the length direction of the first adjusting portion 211 .
  • the vision module 10 can be moved in the preset space through a simple sliding manner.
  • the movement in the preset space can be realized by means of rotation, swing, etc. as required, and the structure of the visual adjustment module 20 can be adaptively adjusted according to the movement method.
  • the relative movement among the vision module 10 , the first adjustment part 211 , the second adjustment part 212 and the installation part 22 can be matched by corresponding transmission mechanisms, such as a rack and pinion mechanism, a screw nut mechanism, Linkage mechanism or telescopic mechanism, etc.
  • the drive mode can be electric drive, hydraulic drive or pneumatic drive. Air cylinders, hydraulic cylinders, electric cylinders, etc. can also be used to coordinate activities.
  • the vision module 10 includes a module body 11 and a camera 12 disposed on the module body 11 .
  • the module body 11 is configured to carry the camera 12, and the camera 12 is configured to receive visual information of a preset direction, so as to facilitate the calibration of the corresponding visual sensor.
  • the vision module 10 further includes an adjustment base, the module body 11 is installed on the adjustment base, and the adjustment base is movably connected or detachably connected to the vision adjustment module 20 .
  • two groups of the cameras 12 are provided, the two groups of the cameras 12 are arranged at intervals, and the two groups of the cameras 12 are located on the same side of the module body 11 .
  • the cooperative arrangement of the two sets of cameras 12 can better simulate human eyes, and when the two sets of cameras 12 are located on the same side of the module body 11 , the visual sensors of the vehicle can be simulated more conveniently, and visual Calibration, for example, visual calibration of the relative pose relationship between the vision sensor and the vehicle.
  • the camera 12 of the present application may include at least one of a camera lens, a light-filling lens, a focusing lens, and the like, and each group of cameras 12 may include two or more lenses.
  • a vehicle body complete module 30 is further included, the vehicle body complete module 30 is used for simulating a vehicle body, and the vision module 10 is located in the vehicle body complete module 30;
  • the vision module 10 and the vision adjustment module 20 cooperate with the vehicle body assembly module 30 to simulate the vision sensors at different positions of the vehicle, and perform visual calibration respectively.
  • the vehicle body assembly module 30 is used to simulate the vehicle body
  • the vision module 10 is used to simulate the visual sensor of the vehicle and perform visual calibration. Simulates the vision of the vision sensor in the car.
  • the setting of the vision adjustment module 20 can be adjusted so that the vision module 10 can be adjusted, specifically, it can simulate vision sensors in different positions. After the vision module 10 and the vision adjustment module 20 cooperate with the vehicle body assembly module 30, the vision of the corresponding vision sensor can be simulated, so that the calibration work is more real and reliable, so as to obtain more accurate experimental data.
  • the vehicle body complete assembly module 30 includes an assembly body 31, a function adjustment component 32 and a function assembly 33, the function adjustment assembly 32 is movably connected to the assembly body 31, and the function adjustment assembly 32 is movably connected to the assembly body 31.
  • the functional component 33 is installed on the functional adjustment component 32;
  • the function adjustment component 32 is used to adjust the function component 33 to a preset position.
  • the assembly body 31 in the above structure is used to carry the function adjustment assembly 32 and the function assembly 33.
  • the function adjustment assembly 32 is movably connected to the assembly body 31, and then the function assembly 33 is installed on the function adjustment assembly. 32 , in this way, the relative position of the functional component 33 and the assembling body 31 can be adjusted through the relative movement between the function adjusting component 32 and the assembling body 31 .
  • the function adjustment assembly 32 can move in the following manner: slidingly connected to the assembling body 31 , rotatably connected to the assembling body 31 , or rotatably also slidably connected to the assembling body 31 .
  • the specific mode of cooperation between the function adjustment component 32 and the assembly main body 31 may include pin-hole cooperation, snap-fit, slide rail and chute cooperation, shaft connection, ratchet and pawl cooperation, and the like.
  • the corresponding matching mode is selected according to the visual needs, and is not limited to the above-mentioned modes.
  • one side of the function adjustment assembly 32 is rotatably connected to the assembly main body 31 , and the relative rotation angle of the function adjustment assembly 32 and the assembly main body 31 satisfies a preset angle. scope.
  • the above structure can make the function adjustment component 32 and the assembly main body 31 rotatably connected, and then adjust the relative angle between the function adjustment component 32 and the assembly main body 31 by means of rotation. The relative angle between the functional component 33 and the assembly body 31 is changed.
  • the above-mentioned embodiments enumerate the relative angle adjustment method between the function adjustment assembly 32 and the assembly body 31; the relative position between the function adjustment assembly 32 and the assembly body 31 can also be adjusted in other ways; the function adjustment assembly
  • the relative adjustment between 32 and the assembly body 31 may include linear displacement, spatial displacement, and angle adjustment.
  • the function adjustment assembly 32 includes an adjustment body 321 and an adjustment shaft 322 , and the adjustment body 321 is rotatably connected to the assembly body 31 through the adjustment shaft 322 .
  • the adjustment body 321 is arranged to carry the functional component 33, and the functional component 33 can change the relative angle with the movement of the adjustment body 321, and the adjustment shaft 322 is arranged to make the adjustment body 321 rotatably connected to the
  • the main body 31 is assembled.
  • the change of the position of the adjusting body 321 can be driven by setting a corresponding driving structure.
  • the driving structure can be set as a motor connected to the adjusting shaft 322, or can be set as a telescopic structure.
  • the telescopic structure is located on the side of the adjusting main body 321 away from the adjusting rotating shaft 322, or can be set to other driving structures, as long as the adjusting main body 321 can be driven relative to the assembly.
  • the main body 31 can be active.
  • the function adjustment assembly 32 further includes a locking structure, and the locking structure is used to lock the adjustment main body 321 and the assembly main body 31 in the preset position .
  • the setting of the locking structure can fix the relative positions of the adjusting body 321 and the assembling body 31 .
  • the locking structure may be configured as a latch structure, a snap connection structure, or the like, and the relative positions of the adjusting body 321 and the assembling body 31 may also be locked by fixing parts such as bolts.
  • the functional component 33 includes a windshield, and the windshield is fixedly connected to the functional adjustment component 32 .
  • the setting of the windshield is used to simulate the windshield on a vehicle, such as a front windshield, a rear windshield, a door glass, a sunroof glass, and the like.
  • the functional component 33 may include a front windshield.
  • the functional component 33 may be a rear windshield, a door glass, a sunroof glass, or the like.
  • the functional components 33 can also be set as rear-view mirrors, instrument panels, driving recorders, vehicle-mounted display screens, and the like according to experimental requirements.
  • the relative position of the windshield glass and the assembly body 31 is adjusted by the function adjustment component 32 .
  • different vehicles may have differences in the angle or position of the windshield, and the setting of the function adjustment component 32 can simulate different vehicles, and then can simulate a variety of vehicle models through a set of devices, and then it can be obtained Different experimental data, reduce the cost of calibration work.
  • an embodiment of the present application further provides a visual calibration device for automatic driving, including a vehicle body integrated module 30, and the vehicle body integrated module 30 is used to simulate a vehicle body;
  • the body self-assembly module 30 includes an assembly body 31 , a function assembly 33 and a function adjustment assembly 32 .
  • the assembly body 31 is used to carry the function assembly 33
  • the function adjustment assembly 32 is movably connected to the assembly body 31 .
  • the functional component 33 is installed in an adjustable position of the functional adjustment component 32;
  • the function adjustment component 32 is used to adjust the position of the function component 33 .
  • the assembly body 31 in the above structure is used to carry the function adjustment assembly 32 and the function assembly 33.
  • the function adjustment assembly 32 is movably connected to the assembly body 31, and then the function assembly 33 is installed on the function adjustment assembly. 32 , in this way, the relative position of the functional component 33 and the assembling body 31 can be adjusted through the relative movement between the function adjusting component 32 and the assembling body 31 .
  • a set of devices can be used to simulate a variety of vehicle models, and different experimental data can be obtained, thereby reducing the cost of calibration work.
  • one side of the function adjustment assembly 32 is rotatably connected to the assembly main body 31 , and the relative rotation angle of the function adjustment assembly 32 and the assembly main body 31 satisfies a preset angle. scope.
  • the above structure can make the function adjustment component 32 and the assembly main body 31 rotatably connected, and then adjust the relative angle between the function adjustment component 32 and the assembly main body 31 by means of rotation. The relative angle between the functional component 33 and the assembly body 31 is changed.
  • the above-mentioned embodiments enumerate the relative angle adjustment method between the function adjustment assembly 32 and the assembly body 31; the relative position between the function adjustment assembly 32 and the assembly body 31 can also be adjusted in other ways; the function adjustment assembly
  • the relative adjustment between 32 and the assembly body 31 may include linear displacement, spatial displacement, and angle adjustment.
  • the function adjustment assembly 32 includes an adjustment body 321 and an adjustment shaft 322 , and the adjustment body 321 is rotatably connected to the assembly body 31 through the adjustment shaft 322 .
  • the adjustment body 321 is arranged to carry the functional component 33, and the functional component 33 can change the relative angle with the movement of the adjustment body 321, and the adjustment shaft 322 is arranged to make the adjustment body 321 rotatably connected to the
  • the main body 31 is assembled.
  • the change of the position of the adjusting body 321 can be driven by setting a corresponding driving structure.
  • the driving structure can be set as a motor connected to the adjusting shaft 322, or can be set as a telescopic structure.
  • the telescopic structure is located on the side of the adjusting main body 321 away from the adjusting rotating shaft 322, or can be set to other driving structures, as long as the adjusting main body 321 can be driven relative to the assembly.
  • the main body 31 can be active.
  • the function adjustment assembly 32 further includes a locking structure, and the locking structure is used to lock the adjustment main body 321 and the assembly main body 31 in the preset position .
  • the setting of the locking structure can fix the relative positions of the adjusting body 321 and the assembling body 31 .
  • the locking structure may be configured as a latch structure, a snap connection structure, or the like, and the relative positions of the adjusting body 321 and the assembling body 31 may also be locked by fixing parts such as bolts.
  • the functional component 33 includes a windshield, and the windshield is fixedly connected to the functional adjustment component 32 .
  • the setting of the windshield is used to simulate the windshield on a vehicle, such as a front windshield, a rear windshield, a door glass, a sunroof glass, and the like.
  • the functional component 33 may include a front windshield.
  • the functional component 33 may be a rear windshield, a door glass, a sunroof glass, or the like.
  • the functional components 33 can also be set as rear-view mirrors, instrument panels, driving recorders, vehicle-mounted display screens, and the like according to experimental requirements.
  • the relative position of the windshield glass and the assembly body 31 is adjusted by the function adjustment component 32 .
  • different vehicles may have differences in the angle or position of the windshield, and the setting of the function adjustment component 32 can simulate different vehicles, and then can simulate a variety of vehicle models through a set of devices, and then it can be obtained Different experimental data, reduce the cost of calibration work.
  • a vision module 10 is further included, which is used to simulate the vision sensor of the vehicle and perform visual calibration, and,
  • the vision module 10 is used for connecting with the vision adjustment module 20;
  • the vision adjustment module 20 includes a vision adjustment assembly 21 and a mounting portion 22, the vision adjustment assembly 21 is connected with the mounting portion 22, and the vision module 10 is used for connecting with the vision adjustment assembly 21;
  • the visual adjustment assembly 21 is used to drive the visual module 10 to move relative to the mounting portion 22 in a preset space
  • the vision module 10 is located in the vehicle body assembly module 30; the vision module 10 and the vision adjustment module 20 cooperate with the vehicle body assembly module 30 to simulate the vision sensors at different positions of the vehicle, and carry out Visual calibration.
  • the vision module 10 is used to simulate the vision sensor of the vehicle and perform visual calibration. After the vision module 10 is located in the vehicle body assembly module 30, the vision of the vision sensor in the vehicle can be simulated. .
  • the setting of the vision adjustment module 20 can be adjusted so that the vision module 10 can be adjusted, specifically, it can simulate vision sensors in different positions. After the vision module 10 and the vision adjustment module 20 cooperate with the vehicle body assembly module 30, the vision in the driving process of the vision sensor can be simulated, so that the simulation effect is more realistic and reliable, and more accurate experimental data can be obtained.
  • the visual adjustment component 21 can cooperate with the mounting part 22 to make the visual module 10 move in the preset space, so that the visual module 10 can be adjusted to the area to be simulated as required, and the area to be simulated is smaller than the preset space.
  • the area to be simulated will be changed according to different simulation requirements.
  • the cooperation of the vision module 10 and the vision adjustment module 20 can make the automatic driving vision calibration device have a wider application range, stronger applicability, and reduce the total cost of calibration work.
  • the embodiments of the present application have the beneficial effects of stronger applicability of the automatic driving visual calibration device and reduction of the total cost of calibration work.
  • the visual adjustment assembly 21 includes at least one adjustment part, and the movement mode of the adjustment part includes at least one of linear motion, curvilinear motion and rotational motion.
  • the above-mentioned structure may have more adjustment modes of the visual adjustment component 21, which are specifically selected according to needs.
  • a mechanical arm with at least two joints, a sliding rod group with multiple moving directions, a link-slider combination mechanism, a combination mechanism of a sliding pair and a rotating pair, etc. can be selected, as long as the mechanism that can move in space can be used.
  • the above-mentioned linear motion, curved motion and rotational motion in the realization of space activities may be a combination of multiple identical motion modes or a combination of different motion modes.
  • the visual adjustment assembly 21 includes a first adjustment part 211 and a second adjustment part 212, the first adjustment part 211 is movably connected to the second adjustment part 212, and the direction of movement is is the first direction;
  • the second adjusting portion 212 is movably connected to the mounting portion 22, and the moving direction is the second direction;
  • the vision module 10 is movably connected to the first regulating portion 211, and the movement direction is the third direction;
  • the vision module 10 is driven to move in the preset space.
  • the arrangement of the first adjustment part 211 and the second adjustment part 212 in the above structure can be used in conjunction with the installation part 22 , so that the vision module 10 can perform the first direction and the second adjustment relative to the installation part 22 .
  • the movement in the direction and the third direction when the first direction, the second direction and the third direction are movement directions of different dimensions respectively, the vision module 10 can be moved relative to the mounting portion 22 in space.
  • the first direction, the second direction and the third direction can be respectively located in the X-axis, Y-axis and Z-axis of the space coordinate system.
  • the first direction, the second direction and the third direction are not in the same Just flat.
  • the first adjusting portion 211 and the second adjusting portion 212 are both rod-shaped structures.
  • the first adjusting portion 211 is substantially perpendicular to the second adjusting portion 212 .
  • the first regulating part 211 and the second regulating part 212 generally form an "L" shape or a "T" shape structure.
  • the arrangement of the rod-shaped structure can make the arrangement positions of the first adjustment part 211 and the second adjustment part 212 tend to the coordinate axes X-axis, Y-axis, and Z-axis in the space coordinate system.
  • the two coordinate axes that are perpendicular to each other can be made to correspond to each other, and after the installation portion 22 is matched, the first direction, the second direction and the third direction can be made to correspond to the spatial coordinates respectively.
  • the X-axis, Y-axis, and Z-axis in the system can facilitate the positioning of the vision module 10, so that the adjustment precision of the vision module 10 is higher.
  • a reinforcing link can be provided on the part of the first adjusting part 211 close to the second adjusting part 212 as required, so that the cooperation between the first adjusting part 211 and the second adjusting part 212 is more stable and reliable.
  • the end of the first adjusting portion 211 close to the second adjusting portion 212 is slidably connected to the second adjusting portion 212, and the sliding direction is parallel to the second adjusting portion 212.
  • the second adjusting portion 212 is slidably connected to the mounting portion 22, and the sliding direction is substantially perpendicular to the length direction of the second adjusting portion 212;
  • the vision module 10 is slidably connected to the first adjusting portion 211 , and the sliding direction is parallel to the length direction of the first adjusting portion 211 .
  • the vision module 10 can be moved in the preset space through a simple sliding manner.
  • the movement in the preset space can be realized by means of rotation, swing, etc. as required, and the structure of the visual adjustment module 20 can be adaptively adjusted according to the movement method.
  • the relative movement among the vision module 10 , the first adjustment part 211 , the second adjustment part 212 and the installation part 22 can be matched by corresponding transmission mechanisms, such as a rack and pinion mechanism, a screw nut mechanism, Linkage mechanism or telescopic mechanism, etc.
  • the drive mode can be electric drive, hydraulic drive or pneumatic drive. Air cylinders, hydraulic cylinders, electric cylinders, etc. can also be used to coordinate activities.
  • the vision module 10 includes a module body 11 and a camera 12 disposed on the module body 11 .
  • the module body 11 is configured to carry the camera 12, and the camera 12 is configured to receive visual information of a preset direction, that is, to simulate the visual information of the visual sensor when driving.
  • the vision module 10 further includes an adjustment base, the module body 11 is installed on the adjustment base, and the adjustment base is movably connected or detachably connected to the vision adjustment module 20 .
  • two groups of the cameras 12 are provided, the two groups of the cameras 12 are arranged at intervals, and the two groups of the cameras 12 are located on the same side of the module body 11 .
  • the cooperative arrangement of the two sets of cameras 12 can better simulate human eyes, and when the two sets of cameras 12 are located on the same side of the module body 11 , the visual sensors of the vehicle can be simulated more conveniently, and visual Calibration.
  • the position or orientation of the camera 12 can be adjusted to simulate the rotation of the human eye.
  • the distance between the two sets of cameras 12 can be set to be adjustable, and the focal length of the cameras 12 can be adjusted to simulate vision with different vision sensors.
  • the camera 12 of the present application may include at least one of a camera lens, a light-filling lens, a focusing lens, and the like, and each group of cameras 12 may include two or more lenses.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Fittings On The Vehicle Exterior For Carrying Loads, And Devices For Holding Or Mounting Articles (AREA)

Abstract

一种自动驾驶视觉标定装置,包括:视觉模块(10),用于模拟车辆的视觉传感器,并进行视觉标定;以及视觉调节模块(20),视觉模块(10)用于和视觉调节模块(20)连接;视觉调节模块(20)包括视觉调节组件(21)和安装部(22),视觉调节组件(21)与安装部(22)连接。该自动驾驶视觉标定装置具有自动驾驶视觉标定装置适用性更强、降低标定工作总成本的有益效果。

Description

自动驾驶视觉标定装置 技术领域
本申请涉及车辆性能辅助测试技术领域,尤其涉及一种自动驾驶视觉标定装置。
背景技术
无人驾驶车辆,正在处于高速发展的时期,在功能要求上持续提出了更多,更高的要求。
在先技术中,为了保证无人驾驶车辆中视觉系统的正常工作,需要进行标定工作,针对多种多样的视觉系统,需要针对每种车型分别进行视觉标定工作。
但是,这种针对不同车型的视觉标定工作较为复杂,每种车型需要开发一套装置,费时费力,且耗费成本较高。
发明内容
本申请实施例提供一种自动驾驶视觉标定装置,以解决在先技术中标定工作成本较高的问题。
为了解决上述技术问题,本申请是这样实现的:
第一方面,本申请实施例提供一种自动驾驶视觉标定装置,包括:
视觉模块,用于模拟车辆的视觉传感器,并进行视觉标定,以及,
视觉调节模块,所述视觉模块用于和视觉调节模块连接;
所述视觉调节模块包括视觉调节组件和安装部,所述视觉调节组件与所述安装部连接,所述视觉模块用于与所述视觉调节组件连接;
所述视觉调节组件用于带动所述视觉模块相对于所述安装部在预设空间内活动。
第二方面,本申请实施例还提供了一种自动驾驶视觉标定装置,包括车身整装模块,所述车身整装模块用于模拟车身;
所述车身整装模块包括装配主体、功能组件和功能调节组件,所述装配主体用于承载所述功能组件,所述功能调节组件活动连接于所述装配主体, 所述功能组件安装于所述功能调节组件的可调节位置;
其中,所述功能调节组件用于调节所述功能组件的位置。
在本申请实施例中,上述结构中视觉模块的设置可以模拟车辆的视觉传感器,并进行视觉标定,视觉调节模块可以对视觉模块的位置进行改变,进而可以调节视觉模块的视线范围,进一步模拟不同车辆的视觉传感器,并进行视觉标定。其中,视觉调节组件可以配合安装部使视觉模块在预设空间内活动,这样就可以根据需要将视觉模块调节至待模拟区域,待模拟区域小于预设空间。待模拟区域会根据不同的模拟需求来改变,视觉模块和视觉调节模块的配合可以使自动驾驶视觉标定装置应用范围更广,适用性更强,降低标定工作的总成本。本申请的实施例具有自动驾驶视觉标定装置适用性更强、降低标定工作总成本的有益效果。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1表示在先技术中的自动驾驶视觉标定装置的结构示意图;
图2表示在先技术中的自动驾驶视觉标定装置的俯视图;
图3表示本申请实施例提供的视觉模块和视觉调节模块配合时的结构示意图;
图4表示本申请实施例提供的视觉模块的正视图;
图5表示本申请实施例提供的视觉模块的侧视图;
图6表示本申请实施例提供的视觉模块的背视图;
图7表示本申请实施例提供的车身整装模块的结构示意图;
图8表示在先技术中的自动驾驶视觉标定装置的正视爆炸图;
图9表示在先技术中的自动驾驶视觉标定装置的侧视爆炸图。
附图标记说明:
10、视觉模块;11、模块主体;12、摄像头;20、视觉调节模块;21、视觉调节组件;211、第一调节部;212、第二调节部;22、安装部;30、车身整装模块;31、装配主体;32、功能调节组件;321、调节主体;322、调节转轴;33、功能组件。
具体实施例
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
在本申请的各种实施例中,应理解,下述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
参见图1至图9,本申请实施例提供了一种自动驾驶视觉标定装置,包括:
视觉模块10,用于模拟车辆的视觉传感器,并进行视觉标定,以及,
视觉调节模块20,所述视觉模块10用于和视觉调节模块20连接;
所述视觉调节模块20包括视觉调节组件21和安装部22,所述视觉调节组件21与所述安装部22连接,所述视觉模块10用于与所述视觉调节组件21连接;
所述视觉调节组件21用于带动所述视觉模块10相对于所述安装部22在预设空间内活动。
在本申请实施例中,上述结构中视觉模块10的设置可以模拟车辆的视 觉传感器,并进行视觉标定,视觉调节模块20可以对视觉模块10的位置进行改变,进而可以调节视觉模块10的视线范围,进一步模拟不同车辆的视觉传感器,并进行视觉标定。其中,视觉调节组件21可以配合安装部22使视觉模块10在预设空间内活动,这样就可以根据需要将视觉模块10调节至待模拟区域,待模拟区域小于预设空间。待模拟区域会根据不同的模拟需求来改变,视觉模块10和视觉调节模块20的配合可以使自动驾驶视觉标定装置应用范围更广,适用性更强,降低标定工作的总成本。本申请的实施例具有自动驾驶视觉标定装置适用性更强、降低标定工作总成本的有益效果。
可选地,在本申请的实施例中,所述视觉调节组件21包括至少一个调节部,所述调节部的活动方式包括直线运动、曲线运动和旋转运动中的至少一者。
在本申请实施例中,上述结构可以是视觉调节组件21的调节方式更多,具体根据根据需要进行选定。比如,可以选用至少两个关节的机械臂、具有多个活动方向的滑动杆组、连杆滑块组合机构、滑动副和转动副的组合机构等等,只要可以实现在空间内活动的机构都可以。上述实现空间活动中的直线运动、曲线运动和旋转运动,可以是多个相同运动方式的组合,也可以不同运动方式的组合。
可选地,在本申请的实施例中,所述视觉调节组件21包括第一调节部211和第二调节部212,所述第一调节部211活动连接于第二调节部212,且活动方向为第一方向;
所述第二调节部212活动连接于所述安装部22,且活动方向为第二方向;
所述视觉模块10活动连接于所述第一调节部211,且活动方向为第三方向;
其中,所述第一方向、所述第二方向和所述第三方向配合后,带动所述视觉模块10在所述预设空间内活动。
在本申请实施例中,上述结构中第一调节部211和第二调节部212的设置,可以与安装部22配合使用,继而使视觉模块10相对于安装部22可以进行第一方向、第二方向和第三方向的运动,当第一方向、第二方向和第三 方向分别为不同维度的运动方向后,就可以使视觉模块10相对于安装部22在空间内运动。比如,可以使第一方向、第二方向和第三方向分别处于空间坐标系中的坐标轴X轴、Y轴、Z轴,当然,只要第一方向、第二方向和第三方向不处于同一平面即可。
可选地,在本申请的实施例中,所述第一调节部211和所述第二调节部212均为杆状结构。可选地,所述第一调节部211基本垂直于所述第二调节部212。可选地,所述第一调节部211和所述第二调节部212大致形成“L”形或“T”形结构。
在本申请实施例中,杆状结构的设置可以将第一调节部211和第二调节部212的设置位置趋于空间坐标系中的坐标轴X轴、Y轴、Z轴。在第一调节部211基本垂直于第二调节部212后,可以使对应相互垂直的两个坐标轴,配合安装部22后,可以使第一方向、第二方向和第三方向分别对应空间坐标系中的坐标轴X轴、Y轴、Z轴,进而可以方便对视觉模块10进行定位,使视觉模块10的调节精度更高。可以根据需要在第一调节部211靠近第二调节部212的部分设置加强连杆,使第一调节部211和第二调节部212的配合更加稳定可靠。
可选地,在本申请的实施例中,所述第一调节部211靠近所述第二调节部212的端部滑动连接于所述第二调节部212,且滑动方向平行于所述第二调节部212的长度方向;
可选地,所述第二调节部212滑动连接于所述安装部22,且滑动方向基本垂直于所述第二调节部212的长度方向;
可选地,所述视觉模块10滑动连接于所述第一调节部211,且滑动方向平行于所述第一调节部211的长度方向。
在本申请实施例中,上述结构中通过单纯的滑动方式可以实现视觉模块10在预设空间内进行活动。可以根据需要配合转动、摆动等方式实现预设空间内的活动,可以根据活动方式适应性调整视觉调节模块20的结构。
需要说明的是,视觉模块10、第一调节部211、第二调节部212和安装部22之间的相对活动都可以采用相应的传动机构进行配合,比如齿轮齿条机构、丝杠螺母机构、连杆机构或伸缩机构等。驱动方式可以为电驱动、液 压驱动或者气压驱动。也可以采用气缸、液压缸、电缸等配合活动。
可选地,在本申请的实施例中,所述视觉模块10包括模块主体11和设置于所述模块主体11上的摄像头12。
在本申请实施例中,模块主体11的设置用于承载摄像头12,摄像头12的设置用于接收预设方向的视觉信息,以便于对相应的视觉传感器进行标定工作。
需要说明的是,视觉模块10还包括调节座,模块主体11安装于调节座,调节座于视觉调节模块20活动连接或者可拆卸地连接。
可选地,在本申请的实施例中,所述摄像头12设置有两组,两组所述摄像头12相间隔地设置,两组所述摄像头12处于所述模块主体11的同一侧。
在本申请实施例中,两组摄像头12的配合设置可以更好地模拟人眼,两组摄像头12处于所述模块主体11的同一侧后,可以更加方便地模拟车辆的视觉传感器,并进行视觉标定,例如,对于视觉传感器与车辆之间的相对位姿关系进行视觉标定。
需要说明的是,本申请的摄像头12可以包括摄像镜头、补光镜头、聚集镜头等中的至少一个,每组摄像头12可以包括两个及以上的镜头。
可选地,在本申请的实施例中,还包括车身整装模块30,所述车身整装模块30用于模拟车身,所述视觉模块10处于所述车身整装模块30内;
所述视觉模块10、所述视觉调节模块20配合所述车身整装模块30模拟所述车辆不同位置的视觉传感器,并分别进行视觉标定。
在本申请实施例中,上述结构中车身整装模块30用于模拟车身,视觉模块10用于模拟车辆的视觉传感器,并进行视觉标定,在视觉模块10处于车身整装模块30内之后,可以模拟视觉传感器在车内的视觉。视觉调节模块20的设置可以是视觉模块10能够调节,具体可以模拟不同位置的视觉传感器。在视觉模块10、视觉调节模块20配合车身整装模块30后,可以模拟对应视觉传感器的视觉,使标定工作更加真实可靠,以得到更准确的实验数据。
可选地,在本申请的实施例中,所述车身整装模块30包括装配主体31、 功能调节组件32和功能组件33,所述功能调节组件32活动连接于所述装配主体31,所述功能组件33安装于所述功能调节组件32;
所述功能调节组件32用于将所述功能组件33调节至预设位置。
在本申请实施例中,上述结构中装配主体31用于承载功能调节组件32和功能组件33,具体通过将功能调节组件32活动连接于装配主体31,然后再将功能组件33安装于功能调节组件32,这样可以通过功能调节组件32与装配主体31之间的相对活动,来调节功能组件33相对与装配主体31的位置。功能调节组件32的活动方式可以为:滑动连接于装配主体31,转动连接于装配主体31,或者即转动也滑动地连接于装配主体31。功能调节组件32和装配主体31的具体配合方式可以包括销孔配合、卡扣配合、滑轨滑槽配合、转轴连接、棘轮棘爪配合等。具体根据视觉需要选用相应的配合方式,不限于上述列举的方式。
可选地,在本申请的实施例中,所述功能调节组件32的一侧转动连接于所述装配主体31,所述功能调节组件32与所述装配主体31相对的转动角度满足预设角度范围。
在本申请实施例中,上述结构可以使功能调节组件32和装配主体31转动连接,进而通过转动的方式来调节功能调节组件32与装配主体31的相对夹角,通过功能调节组件32的调节可以改变功能组件33相对与装配主体31的相对夹角。
需要说明的是,上述实施例进列举了功能调节组件32与装配主体31的相对夹角调节方式;也可以通过其他方式来调节功能调节组件32与装配主体31之间的相对位置;功能调节组件32与装配主体31的相对调节可以包括线性位移、空间位移及角度调节等。
可选地,在本申请的实施例中,所述功能调节组件32包括调节主体321和调节转轴322,所述调节主体321通过所述调节转轴322转动连接于所述装配主体31。
在本申请实施例中,调节主体321的设置用于承载功能组件33,功能组件33可以随着调节主体321的活动来改变位相对角度,调节转轴322的设置用于使调节主体321转动连接于装配主体31。可以通过设置相应的驱动结 构来带动调节主体321位置的改变。驱动结构可以设置为与调节转轴322连接的电机,也可以设置为伸缩结构,伸缩结构处于调节主体321背离调节转轴322一侧的,或者设置为其他驱动结构,只要可以带动调节主体321相对于装配主体31活动即可。
可选地,在本申请的实施例中,所述功能调节组件32还包括锁止结构,所述锁止结构用于将所述调节主体321与所述装配主体31锁定于所述预设位置。
在本申请实施例中,锁止结构的设置可以将调节主体321与装配主体31的相对位置固定下来。锁止结构可以设置为插销结构、卡接结构等,也可以通过螺栓等固定件来锁定调节主体321与装配主体31的相对位置。
可选地,在本申请的实施例中,所述功能组件33包括挡风玻璃,所述挡风玻璃固定连接于所述功能调节组件32。
在本申请实施例中,挡风玻璃的设置用于模拟车辆上的挡风玻璃,比如前挡风玻璃、后挡风玻璃、车门玻璃、天窗玻璃等。比如,当需要对朝向前方的视觉传感器进行标定工作时,功能组件33可以包括前挡风玻璃。对乘客的视觉进行模拟时,功能组件33可以为后挡风玻璃、车门玻璃、天窗玻璃等。
需要说明的是,功能组件33也可以根据实验需求设置为后视镜、仪表盘、行车记录仪、车载显示屏等。
可选地,在本申请的实施例中,所述挡风玻璃与所述装配主体31的相对位置通过所述功能调节组件32调节。
在本申请实施例中,不同的车辆会出现挡风玻璃角度或位置的差异,功能调节组件32的设置可以对不同的车辆进行模拟,进而可以通过一套装置模拟多种车型,进而可以得出不同的实验数据,降低标定工作的成本。
参见图1至图9,本申请实施例还提供了一种一种自动驾驶视觉标定装置,包括车身整装模块30,所述车身整装模块30用于模拟车身;
所述车身整装模块30包括装配主体31、功能组件33和功能调节组件32,所述装配主体31用于承载所述功能组件33,所述功能调节组件32活动连接于所述装配主体31,所述功能组件33安装于所述功能调节组件32的可 调节位置;
其中,所述功能调节组件32用于调节所述功能组件33的位置。
在本申请实施例中,上述结构中装配主体31用于承载功能调节组件32和功能组件33,具体通过将功能调节组件32活动连接于装配主体31,然后再将功能组件33安装于功能调节组件32,这样可以通过功能调节组件32与装配主体31之间的相对活动,来调节功能组件33相对与装配主体31的位置。进而可以通过一套装置模拟多种车型,进而可以得出不同的实验数据,降低标定工作的成本。
可选地,在本申请的实施例中,所述功能调节组件32的一侧转动连接于所述装配主体31,所述功能调节组件32与所述装配主体31相对的转动角度满足预设角度范围。
在本申请实施例中,上述结构可以使功能调节组件32和装配主体31转动连接,进而通过转动的方式来调节功能调节组件32与装配主体31的相对夹角,通过功能调节组件32的调节可以改变功能组件33相对与装配主体31的相对夹角。
需要说明的是,上述实施例进列举了功能调节组件32与装配主体31的相对夹角调节方式;也可以通过其他方式来调节功能调节组件32与装配主体31之间的相对位置;功能调节组件32与装配主体31的相对调节可以包括线性位移、空间位移及角度调节等。
可选地,在本申请的实施例中,所述功能调节组件32包括调节主体321和调节转轴322,所述调节主体321通过所述调节转轴322转动连接于所述装配主体31。
在本申请实施例中,调节主体321的设置用于承载功能组件33,功能组件33可以随着调节主体321的活动来改变位相对角度,调节转轴322的设置用于使调节主体321转动连接于装配主体31。可以通过设置相应的驱动结构来带动调节主体321位置的改变。驱动结构可以设置为与调节转轴322连接的电机,也可以设置为伸缩结构,伸缩结构处于调节主体321背离调节转轴322一侧的,或者设置为其他驱动结构,只要可以带动调节主体321相对于装配主体31活动即可。
可选地,在本申请的实施例中,所述功能调节组件32还包括锁止结构,所述锁止结构用于将所述调节主体321与所述装配主体31锁定于所述预设位置。
在本申请实施例中,锁止结构的设置可以将调节主体321与装配主体31的相对位置固定下来。锁止结构可以设置为插销结构、卡接结构等,也可以通过螺栓等固定件来锁定调节主体321与装配主体31的相对位置。
可选地,在本申请的实施例中,所述功能组件33包括挡风玻璃,所述挡风玻璃固定连接于所述功能调节组件32。
在本申请实施例中,挡风玻璃的设置用于模拟车辆上的挡风玻璃,比如前挡风玻璃、后挡风玻璃、车门玻璃、天窗玻璃等。比如,当需要对朝向前方的视觉传感器进行标定工作时,功能组件33可以包括前挡风玻璃。对乘客的视觉进行模拟时,功能组件33可以为后挡风玻璃、车门玻璃、天窗玻璃等。
需要说明的是,功能组件33也可以根据实验需求设置为后视镜、仪表盘、行车记录仪、车载显示屏等。
可选地,在本申请的实施例中,所述挡风玻璃与所述装配主体31的相对位置通过所述功能调节组件32调节。
在本申请实施例中,不同的车辆会出现挡风玻璃角度或位置的差异,功能调节组件32的设置可以对不同的车辆进行模拟,进而可以通过一套装置模拟多种车型,进而可以得出不同的实验数据,降低标定工作的成本。
可选地,在本申请的实施例中,还包括视觉模块10,用于模拟车辆的视觉传感器,并进行视觉标定,以及,
视觉调节模块20,所述视觉模块10用于和视觉调节模块20连接;
所述视觉调节模块20包括视觉调节组件21和安装部22,所述视觉调节组件21与所述安装部22连接,所述视觉模块10用于与所述视觉调节组件21连接;
所述视觉调节组件21用于带动所述视觉模块10相对于所述安装部22在预设空间内活动;
其中,所述视觉模块10处于所述车身整装模块30内;所述视觉模块10、 所述视觉调节模块20配合所述车身整装模块30模拟所述车辆不同位置的视觉传感器,并分别进行视觉标定。
在本申请实施例中,上述结构中视觉模块10用于模拟车辆的视觉传感器,并进行视觉标定,在视觉模块10处于所述车身整装模块30内之后,可以模拟视觉传感器在车内的视觉。视觉调节模块20的设置可以是视觉模块10能够调节,具体可以模拟不同位置的视觉传感器。在视觉模块10、视觉调节模块20配合车身整装模块30后,可以模拟视觉传感器驾驶过程中的视觉,使模拟效果更加真实可靠,以得到更准确的实验数据。其中,视觉调节组件21可以配合安装部22使视觉模块10在预设空间内活动,这样就可以根据需要将视觉模块10调节至待模拟区域,待模拟区域小于预设空间。待模拟区域会根据不同的模拟需求来改变,视觉模块10和视觉调节模块20的配合可以使自动驾驶视觉标定装置应用范围更广,适用性更强,降低标定工作的总成本。本申请的实施例具有自动驾驶视觉标定装置适用性更强、降低标定工作总成本的有益效果。
可选地,在本申请的实施例中,所述视觉调节组件21包括至少一个调节部,所述调节部的活动方式包括直线运动、曲线运动和旋转运动中的至少一者。
在本申请实施例中,上述结构可以是视觉调节组件21的调节方式更多,具体根据根据需要进行选定。比如,可以选用至少两个关节的机械臂、具有多个活动方向的滑动杆组、连杆滑块组合机构、滑动副和转动副的组合机构等等,只要可以实现在空间内活动的机构都可以。上述实现空间活动中的直线运动、曲线运动和旋转运动,可以是多个相同运动方式的组合,也可以不同运动方式的组合。
可选地,在本申请的实施例中,所述视觉调节组件21包括第一调节部211和第二调节部212,所述第一调节部211活动连接于第二调节部212,且活动方向为第一方向;
所述第二调节部212活动连接于所述安装部22,且活动方向为第二方向;
所述视觉模块10活动连接于所述第一调节部211,且活动方向为第三方 向;
其中,所述第一方向、所述第二方向和所述第三方向配合后,带动所述视觉模块10在所述预设空间内活动。
在本申请实施例中,上述结构中第一调节部211和第二调节部212的设置,可以与安装部22配合使用,继而使视觉模块10相对于安装部22可以进行第一方向、第二方向和第三方向的运动,当第一方向、第二方向和第三方向分别为不同维度的运动方向后,就可以使视觉模块10相对于安装部22在空间内运动。比如,可以使第一方向、第二方向和第三方向分别处于空间坐标系中的坐标轴X轴、Y轴、Z轴,当然,只要第一方向、第二方向和第三方向不处于同一平面即可。
可选地,在本申请的实施例中,所述第一调节部211和所述第二调节部212均为杆状结构。可选地,所述第一调节部211基本垂直于所述第二调节部212。可选地,所述第一调节部211和所述第二调节部212大致形成“L”形或“T”形结构。
在本申请实施例中,杆状结构的设置可以将第一调节部211和第二调节部212的设置位置趋于空间坐标系中的坐标轴X轴、Y轴、Z轴。在第一调节部211基本垂直于第二调节部212后,可以使对应相互垂直的两个坐标轴,配合安装部22后,可以使第一方向、第二方向和第三方向分别对应空间坐标系中的坐标轴X轴、Y轴、Z轴,进而可以方便对视觉模块10进行定位,使视觉模块10的调节精度更高。可以根据需要在第一调节部211靠近第二调节部212的部分设置加强连杆,使第一调节部211和第二调节部212的配合更加稳定可靠。
可选地,在本申请的实施例中,所述第一调节部211靠近所述第二调节部212的端部滑动连接于所述第二调节部212,且滑动方向平行于所述第二调节部212的长度方向;
可选地,所述第二调节部212滑动连接于所述安装部22,且滑动方向基本垂直于所述第二调节部212的长度方向;
可选地,所述视觉模块10滑动连接于所述第一调节部211,且滑动方向平行于所述第一调节部211的长度方向。
在本申请实施例中,上述结构中通过单纯的滑动方式可以实现视觉模块10在预设空间内进行活动。可以根据需要配合转动、摆动等方式实现预设空间内的活动,可以根据活动方式适应性调整视觉调节模块20的结构。
需要说明的是,视觉模块10、第一调节部211、第二调节部212和安装部22之间的相对活动都可以采用相应的传动机构进行配合,比如齿轮齿条机构、丝杠螺母机构、连杆机构或伸缩机构等。驱动方式可以为电驱动、液压驱动或者气压驱动。也可以采用气缸、液压缸、电缸等配合活动。
可选地,在本申请的实施例中,所述视觉模块10包括模块主体11和设置于所述模块主体11上的摄像头12。
在本申请实施例中,模块主体11的设置用于承载摄像头12,摄像头12的设置用于接收预设方向的视觉信息,也就是模拟视觉传感器在驾驶时的视觉信息。
需要说明的是,视觉模块10还包括调节座,模块主体11安装于调节座,调节座于视觉调节模块20活动连接或者可拆卸地连接。
可选地,在本申请的实施例中,所述摄像头12设置有两组,两组所述摄像头12相间隔地设置,两组所述摄像头12处于所述模块主体11的同一侧。
在本申请实施例中,两组摄像头12的配合设置可以更好地模拟人眼,两组摄像头12处于所述模块主体11的同一侧后,可以更加方便地模拟车辆的视觉传感器,并进行视觉标定。
需要说明的是,可以将摄像头12的位置或朝向设置地可调节,以模拟人眼转动。可以将两组摄像头12之间的间距设置地可调节,以及摄像头12的焦距可调节,以模拟具有不同视觉传感器的视觉。本申请的摄像头12可以包括摄像镜头、补光镜头、聚集镜头等中的至少一个,每组摄像头12可以包括两个及以上的镜头。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的 情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对在先技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (27)

  1. 一种自动驾驶视觉标定装置,其特征在于,包括:
    视觉模块(10),用于模拟车辆的视觉传感器,并进行视觉标定;以及,
    视觉调节模块(20),所述视觉模块(10)用于和视觉调节模块(20)连接;
    所述视觉调节模块(20)包括视觉调节组件(21)和安装部(22),所述视觉调节组件(21)与所述安装部(22)连接,所述视觉模块(10)用于与所述视觉调节组件(21)连接;
    所述视觉调节组件(21)用于带动所述视觉模块(10)相对于所述安装部(22)在预设空间内活动。
  2. 根据权利要求1所述的自动驾驶视觉标定装置,其特征在于,所述视觉调节组件(21)包括至少一个调节部,所述调节部的活动方式包括直线运动、曲线运动和旋转运动中的至少一者。
  3. 根据权利要求1所述的自动驾驶视觉标定装置,其特征在于,所述视觉调节组件(21)包括第一调节部(211)和第二调节部(212),所述第一调节部(211)活动连接于第二调节部(212),且活动方向为第一方向;
    所述第二调节部(212)活动连接于所述安装部(22),且活动方向为第二方向;
    所述视觉模块(10)活动连接于所述第一调节部(211),且活动方向为第三方向;
    其中,所述第一方向、所述第二方向和所述第三方向配合后,带动所述视觉模块(10)在所述预设空间内活动。
  4. 根据权利要求3所述的自动驾驶视觉标定装置,其特征在于,所述第一调节部(211)和所述第二调节部(212)均为杆状结构;和/或,
    所述第一调节部(211)基本垂直于所述第二调节部(212);和/或,
    所述第一调节部(211)和所述第二调节部(212)大致形成“L”形或 “T”形结构。
  5. 根据权利要求3所述的自动驾驶视觉标定装置,其特征在于,所述第一调节部(211)靠近所述第二调节部(212)的端部滑动连接于所述第二调节部(212),且滑动方向平行于所述第二调节部(212)的长度方向;和/或,
    所述第二调节部(212)滑动连接于所述安装部(22),且滑动方向基本垂直于所述第二调节部(212)的长度方向;和/或,
    所述视觉模块(10)滑动连接于所述第一调节部(211),且滑动方向平行于所述第一调节部(211)的长度方向。
  6. 根据权利要求1所述的自动驾驶视觉标定装置,其特征在于,所述视觉模块(10)包括模块主体(11)和设置于所述模块主体(11)上的摄像头(12)。
  7. 根据权利要求6所述的自动驾驶视觉标定装置,其特征在于,所述摄像头(12)设置有两组,两组所述摄像头(12)相间隔地设置,两组所述摄像头(12)处于所述模块主体(11)的同一侧。
  8. 根据权利要求1所述的自动驾驶视觉标定装置,其特征在于,还包括车身整装模块(30),所述车身整装模块(30)用于模拟车身,所述视觉模块(10)处于所述车身整装模块(30)内;
    所述视觉模块(10)、所述视觉调节模块(20)配合所述车身整装模块(30)模拟所述车辆不同位置的视觉传感器,并分别进行视觉标定。
  9. 根据权利要求8所述的自动驾驶视觉标定装置,其特征在于,所述车身整装模块(30)包括装配主体(31)、功能调节组件(32)和功能组件(33),所述功能调节组件(32)活动连接于所述装配主体(31),所述功能组件(33)安装于所述功能调节组件(32);
    所述功能调节组件(32)用于将所述功能组件(33)调节至预设位置。
  10. 根据权利要求9所述的自动驾驶视觉标定装置,其特征在于,所述功能调节组件(32)的一侧转动连接于所述装配主体(31),所述功能调节组件(32)与所述装配主体(31)相对的转动角度满足预设角度范围。
  11. 根据权利要求9所述的自动驾驶视觉标定装置,其特征在于,所述功能调节组件(32)包括调节主体(321)和调节转轴(322),所述调节主体(321)通过所述调节转轴(322)转动连接于所述装配主体(31)。
  12. 根据权利要求11所述的自动驾驶视觉标定装置,其特征在于,所述功能调节组件(32)还包括锁止结构,所述锁止结构用于将所述调节主体(321)与所述装配主体(31)锁定于所述预设位置。
  13. 根据权利要求9所述的自动驾驶视觉标定装置,其特征在于,所述功能组件(33)包括挡风玻璃,所述挡风玻璃固定连接于所述功能调节组件(32)。
  14. 根据权利要求13所述的自动驾驶视觉标定装置,其特征在于,所述挡风玻璃与所述装配主体(31)的相对位置通过所述功能调节组件(32)调节。
  15. 一种自动驾驶视觉标定装置,其特征在于,包括车身整装模块(30),所述车身整装模块(30)用于模拟车身;
    所述车身整装模块(30)包括装配主体(31)、功能组件(33)和功能调节组件(32),所述装配主体(31)用于承载所述功能组件(33),所述功能调节组件(32)活动连接于所述装配主体(31),所述功能组件(33)安装于所述功能调节组件(32)的可调节位置;
    其中,所述功能调节组件(32)用于调节所述功能组件(33)的位置。
  16. 根据权利要求15所述的自动驾驶视觉标定装置,其特征在于,所述功能调节组件(32)的一侧转动连接于所述装配主体(31),所述功能调节组件(32)与所述装配主体(31)相对的转动角度满足预设角度范围。
  17. 根据权利要求15所述的自动驾驶视觉标定装置,其特征在于,所述功能调节组件(32)包括调节主体(321)和调节转轴(322),所述调节主体(321)通过所述调节转轴(322)转动连接于所述装配主体(31)。
  18. 根据权利要求17所述的自动驾驶视觉标定装置,其特征在于,所述功能调节组件(32)还包括锁止结构,所述锁止结构用于将所述调节主体(321)与所述装配主体(31)锁定于所述预设位置。
  19. 根据权利要求15所述的自动驾驶视觉标定装置,其特征在于,所述功能组件(33)包括挡风玻璃,所述挡风玻璃固定连接于所述功能调节组件(32)。
  20. 根据权利要求19所述的自动驾驶视觉标定装置,其特征在于,所述挡风玻璃与所述装配主体(31)的相对位置通过所述功能调节组件(32)调节。
  21. 根据权利要求15所述的自动驾驶视觉标定装置,其特征在于,还包括视觉模块(10),用于模拟车辆的视觉传感器,并进行视觉标定,以及,
    视觉调节模块(20),所述视觉模块(10)用于和视觉调节模块(20)连接;
    所述视觉调节模块(20)包括视觉调节组件(21)和安装部(22),所述视觉调节组件(21)与所述安装部(22)连接,所述视觉模块(10)用于与所述视觉调节组件(21)连接;
    所述视觉调节组件(21)用于带动所述视觉模块(10)相对于所述安装 部(22)在预设空间内活动;
    其中,所述视觉模块(10)处于所述车身整装模块(30)内;所述视觉模块(10)、所述视觉调节模块(20)配合所述车身整装模块(30)模拟所述车辆不同位置的视觉传感器,并分别进行视觉标定。
  22. 根据权利要求21所述的自动驾驶视觉标定装置,其特征在于,所述视觉调节组件(21)包括至少一个调节部,所述调节部的活动方式包括直线运动、曲线运动和旋转运动中的至少一者。
  23. 根据权利要求21所述的自动驾驶视觉标定装置,其特征在于,所述视觉调节组件(21)包括第一调节部(211)和第二调节部(212),所述第一调节部(211)活动连接于第二调节部(212),且活动方向为第一方向;
    所述第二调节部(212)活动连接于所述安装部(22),且活动方向为第二方向;
    所述视觉模块(10)活动连接于所述第一调节部(211),且活动方向为第三方向;
    其中,所述第一方向、所述第二方向和所述第三方向配合后,带动所述视觉模块(10)在所述预设空间内活动。
  24. 根据权利要求23所述的自动驾驶视觉标定装置,其特征在于,所述第一调节部(211)和所述第二调节部(212)均为杆状结构;和/或,
    所述第一调节部(211)基本垂直于所述第二调节部(212);和/或,
    所述第一调节部(211)和所述第二调节部(212大致形成“L”形或“T”形结构。
  25. 根据权利要求23所述的自动驾驶视觉标定装置,其特征在于,所述第一调节部(211)靠近所述第二调节部(212)的端部滑动连接于所述第二调节部(212),且滑动方向平行于所述第二调节部(212)的长度方向;和/或,
    所述第二调节部(212)滑动连接于所述安装部(22),且滑动方向基本垂直于所述第二调节部(212)的长度方向;和/或,
    所述视觉模块(10)滑动连接于所述第一调节部(211),且滑动方向平行于所述第一调节部(211)的长度方向。
  26. 根据权利要求21所述的自动驾驶视觉标定装置,其特征在于,所述视觉模块(10)包括模块主体(11)和设置于所述模块主体(11)上的摄像头(12)。
  27. 根据权利要求26所述的自动驾驶视觉标定装置,其特征在于,所述摄像头(12)设置有两组,两组所述摄像头(12)相间隔地设置,两组所述摄像头(12)处于所述模块主体(11)的同一侧。
PCT/CN2020/140216 2020-12-28 2020-12-28 自动驾驶视觉标定装置 WO2022140929A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/140216 WO2022140929A1 (zh) 2020-12-28 2020-12-28 自动驾驶视觉标定装置
CN202080074809.2A CN114930797A (zh) 2020-12-28 2020-12-28 自动驾驶视觉标定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/140216 WO2022140929A1 (zh) 2020-12-28 2020-12-28 自动驾驶视觉标定装置

Publications (1)

Publication Number Publication Date
WO2022140929A1 true WO2022140929A1 (zh) 2022-07-07

Family

ID=82259008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140216 WO2022140929A1 (zh) 2020-12-28 2020-12-28 自动驾驶视觉标定装置

Country Status (2)

Country Link
CN (1) CN114930797A (zh)
WO (1) WO2022140929A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090059182A1 (en) * 2007-08-29 2009-03-05 Tae-Sin Ha Beam projection apparatus and method with automatic image adjustment
CN108681264A (zh) * 2018-08-10 2018-10-19 成都合纵连横数字科技有限公司 一种智能车辆数字化仿真测试装置
US20180342113A1 (en) * 2017-05-23 2018-11-29 Uber Technologies, Inc. Autonomous vehicle degradation level monitoring
CN111541990A (zh) * 2020-04-30 2020-08-14 重庆车辆检测研究院有限公司 一种车路协同系统测试数据的采集系统、方法及装置
CN111711735A (zh) * 2020-06-12 2020-09-25 高德科科技(北京)有限公司 一种双标靶式自动驾驶辅助系统标定装置
CN111862766A (zh) * 2020-08-11 2020-10-30 天津职业技术师范大学(中国职业培训指导教师进修中心) 一种缩微智能车实验装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209910947U (zh) * 2019-03-26 2020-01-07 苏州清研精准汽车科技有限公司 一种驾驶辅助视觉系统的检测装置
CN210895554U (zh) * 2019-11-27 2020-06-30 驭势科技(浙江)有限公司 车辆摄像头标定装置
CN210745407U (zh) * 2019-12-05 2020-06-12 苏州清研精准汽车科技有限公司 一种驾驶辅助视觉系统检测设备的简易标定装置
CN111521982A (zh) * 2020-04-29 2020-08-11 一汽奔腾轿车有限公司 一种用于l2级驾驶辅助系统的标定系统及标定方法
CN111599036B (zh) * 2020-06-19 2023-06-23 深圳市道通科技股份有限公司 车辆检测系统及车辆检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090059182A1 (en) * 2007-08-29 2009-03-05 Tae-Sin Ha Beam projection apparatus and method with automatic image adjustment
US20180342113A1 (en) * 2017-05-23 2018-11-29 Uber Technologies, Inc. Autonomous vehicle degradation level monitoring
CN108681264A (zh) * 2018-08-10 2018-10-19 成都合纵连横数字科技有限公司 一种智能车辆数字化仿真测试装置
CN111541990A (zh) * 2020-04-30 2020-08-14 重庆车辆检测研究院有限公司 一种车路协同系统测试数据的采集系统、方法及装置
CN111711735A (zh) * 2020-06-12 2020-09-25 高德科科技(北京)有限公司 一种双标靶式自动驾驶辅助系统标定装置
CN111862766A (zh) * 2020-08-11 2020-10-30 天津职业技术师范大学(中国职业培训指导教师进修中心) 一种缩微智能车实验装置

Also Published As

Publication number Publication date
CN114930797A (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
TWI478828B (zh) 車載影像系統及安裝有該車載影像系統的汽車
US9573524B2 (en) Inspection device and method of head up display for vehicle
KR101023275B1 (ko) 차량용 카메라 시스템의 캘리브레이션 방법 및 장치, 차량용 카메라 시스템의 각도상 오정렬을 판단하는 방법 및 이를 수행하는 전자 제어 유닛
US7036210B2 (en) Vehicle door hinge mounting system
CN106536278A (zh) 可驱动车辆单元
CN102416902B (zh) 外部镜
CN107323350B (zh) 一种用于调节客货车驾驶员视野的自动跟踪外后视镜
CN111595588A (zh) 一种汽车间接视野装置的成像系统
CN112344963A (zh) 一种基于增强现实抬头显示设备的测试方法及系统
WO2022140929A1 (zh) 自动驾驶视觉标定装置
JP2020051793A (ja) センサ軸調整方法
EP3933488A1 (en) System for vehicle or machine
CN217821048U (zh) 光学镜头组件调焦机构
DE102006056232A1 (de) Vorrichtung zur Kalibrierung einer Kamera
CN111323209A (zh) 一种hud杂散光自动测试系统与测试方法
CN108944678B (zh) 一种多功能投射显示车载系统及汽车
CN113954748B (zh) 一种自适应识别电子内后视镜智能调节方法
CN105843714A (zh) 评估车载显示屏反光炫目的装置及方法
US11927691B2 (en) Portable vehicle sensor calibration apparatus having a suction mechanism
CN221103430U (zh) 一种拍摄视角可调的测试机构
CN112238813A (zh) 用于机动车辆的光学装置
CN220440783U (zh) 一种摄像头测试移动装置
CN217994234U (zh) 一种扶手及车辆
Narayanan et al. Automotive vision & obstruction assessment for driver
CN215000814U (zh) 一种用于光学设备测试台架的显示屏组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967281

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20967281

Country of ref document: EP

Kind code of ref document: A1