WO2022140890A1 - 复合碳纳米管膜、其制备方法及层状发热器件 - Google Patents

复合碳纳米管膜、其制备方法及层状发热器件 Download PDF

Info

Publication number
WO2022140890A1
WO2022140890A1 PCT/CN2020/139886 CN2020139886W WO2022140890A1 WO 2022140890 A1 WO2022140890 A1 WO 2022140890A1 CN 2020139886 W CN2020139886 W CN 2020139886W WO 2022140890 A1 WO2022140890 A1 WO 2022140890A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
film
composite
carbon
slurry
Prior art date
Application number
PCT/CN2020/139886
Other languages
English (en)
French (fr)
Inventor
刘畅
辛培培
张玲
王峰
邓飞
Original Assignee
深圳烯湾科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳烯湾科技有限公司 filed Critical 深圳烯湾科技有限公司
Priority to CN202080047054.7A priority Critical patent/CN114206775A/zh
Priority to PCT/CN2020/139886 priority patent/WO2022140890A1/zh
Publication of WO2022140890A1 publication Critical patent/WO2022140890A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • C09D127/02Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D127/12Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C09D127/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular

Definitions

  • the present application relates to the technical field of carbon materials, and in particular, to a composite carbon nanotube film, a preparation method thereof, and a layered heating device.
  • Carbon nanotubes are a typical one-dimensional nanomaterial with extremely high strength, electrical conductivity and thermal conductivity in the length direction of carbon nanotubes.
  • carbon nanotubes often need to be further fabricated into macro-sized products before they can be used further, such as carbon nanotube films further fabricated from many carbon nanotubes.
  • Carbon nanotube film has the advantages of light weight, high strength, can be bent at will, can be cut into any shape, small footprint, high temperature resistance, corrosion resistance, long service life, not easy to deform at high temperature, and high thermal conductivity.
  • carbon nanotube films can be used to prepare heating core layer materials for heating devices, efficiently convert electrical energy into thermal energy and dissipate the thermal energy in time.
  • the present invention provides a preparation method of a composite carbon nanotube film with higher electrical conductivity and a corresponding composite carbon nanotube film.
  • the preparation method of the nanotube film is as follows.
  • a preparation method of a composite carbon nanotube film which comprises the following steps:
  • the carbon nanotube base film includes a layer of carbon nanotube films or a multi-layer stacked carbon nanotube film, and the carbon nanotube film has first carbon nanotubes arranged in an orientation;
  • the carbon nanotube slurry comprising a solvent, a second carbon nanotube uniformly dispersed in the solvent, and a binder;
  • the carbon nanotube slurry is coated on the surface of the carbon nanotube base film, and the solvent in the carbon nanotube slurry is removed to prepare the composite carbon nanotube film.
  • the viscosity of the carbon nanotube slurry is 4000cp ⁇ 8000cp.
  • the mass ratio of the second carbon nanotubes is 0.3%-20%, and the mass ratio of the binder is 0.1%-5% .
  • the carbon nanotube slurry further includes a dispersant in a proportion of 0.1% to 5% by mass, and the dispersant is used to promote the dispersion of the second carbon nanotubes in the solvent sex.
  • the binder is selected from polyvinylidene fluoride, and/or the dispersant is selected from polyvinylpyrrolidone.
  • the carbon nanotube-based film includes multiple layers of the carbon nanotube thin film
  • the method for preparing the carbon nanotube-based film includes the steps of: laminating a plurality of single-layer carbon nanotube thin films and rolling to obtain the densified multilayered carbon nanotube-based film.
  • the step of infiltrating the carbon nanotube films with alcohol liquid is further included.
  • the pressure of the pressing roller on the carbon nanotube film is 0.2 MPa to 1 MPa, and the moving speed of the pressing roller is 0.1 m /min ⁇ 6m/min.
  • the carbon nanotube-based film includes multiple layers of the carbon nanotube films, and the included angle between the orientations of any two layers of the carbon nanotube films is ⁇ 15°.
  • the thickness of the carbon nanotube-based film is 1 ⁇ m ⁇ 50 ⁇ m.
  • a kind of composite carbon nanotube film it comprises:
  • a carbon nanotube base film includes one or more layers of carbon nanotube films, and the carbon nanotube films have first carbon nanotubes in alignment;
  • Carbon nanotube reinforced layer the carbon nanotube reinforced layer includes second carbon nanotubes and a binder, and the second carbon nanotubes in the carbon nanotube reinforced layer are bonded to the carbon nanotubes through the binder.
  • the surface of the carbon nanotube base film, or, the second carbon nanotubes in the carbon nanotube reinforcing layer are bonded to the surface of the carbon nanotube base film through the binder and have a part of the The second carbon nanotubes are inserted into the surface layer of the carbon nanotube base film.
  • the composite carbon nanotube film is prepared by the preparation method according to any one of the above embodiments.
  • a layered heating device includes a heating core layer that converts electrical energy into thermal energy, and the heating core layer includes the composite carbon nanotube film according to any one of the above embodiments.
  • the composite carbon nanotube film of the above embodiment has an oriented carbon nanotube film, and the oriented carbon nanotube film has significantly higher conductivity in the orientation direction than the traditional carbon nanotube film with random distribution of carbon nanotubes, Therefore, its heat generation performance can also be significantly improved. Moreover, in the orientation direction, the thermal conductivity and mechanical properties of the carbon nanotube films are also significantly better than those of the conventional carbon nanotube films.
  • the tensile strength of the composite carbon nanotube film prepared by the preparation method of the composite carbon nanotube film of the above embodiment can be significantly improved in the vertical orientation direction.
  • the second carbon nanotubes and the binder act as intermediate connectors, so that the first carbon nanotubes arranged side by side are connected more closely.
  • the originally side-by-side first carbon nanotubes are connected to the second carbon nanotubes, and at the same time, the second carbon nanotubes are also fixedly connected to other second carbon nanotubes through a binder, and an external force acts on the carbon nanotubes in a non-oriented direction.
  • the nanotube base film When the nanotube base film is used, it is also necessary to overcome the bonding force between the first carbon nanotube and the second carbon nanotube, so that the tensile strength of the composite carbon nanotube film in the non-oriented direction is significantly improved.
  • the conductivity between the carbon nanotube-based films still remains similar to the original one, and will not be significantly reduced due to the introduction of other non-insulating substances.
  • FIG. 1 is a schematic structural diagram of a composite carbon nanotube film according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of the surface morphology of the composite carbon nanotube film of Example 1 of the present invention.
  • Traditional carbon nanotube films are often prepared by coating carbon nanotube slurry or pressing carbon nanotube powders.
  • the carbon nanotubes in the carbon nanotube film prepared in this way are randomly arranged, and the single carbon nanotubes conduct electricity.
  • the performance and thermal conductivity are high, but the electrical conductivity of the overall carbon nanotube film formed by its random arrangement is poor. This is because the carbon nanotube film has many interfaces on the microscopic level, and these interfaces increase the resistance of the carbon nanotube film.
  • an embodiment of the present invention proposes to replace the traditional carbon nanotube film with an oriented carbon nanotube film to obtain a carbon nanotube film with higher conductivity.
  • the oriented carbon nanotube film also has some problems, which makes it unable to directly replace the traditional carbon nanotube film for application. Details are as follows.
  • the carbon nanotubes in the carbon nanotube film formed by pulling out the carbon nanotube array have a certain orientation, that is, the oriented carbon nanotube film.
  • the carbon nanotube film as a whole has remarkably high electrical conductivity, thermal conductivity and mechanical strength, so the oriented carbon nanotube film can meet the application occasions with higher performance requirements.
  • this oriented carbon nanotube film needs to rely on the van der Waals force between adjacent carbon nanotubes in the non-oriented direction, especially perpendicular to the orientation direction, which leads to the non-oriented carbon nanotube film in the non-oriented direction.
  • the strength in the direction is much lower than the strength in the orientation direction, which makes it extremely easy to be damaged in the process of processing and preparation. This not only imposes extremely high requirements on the processing process, but also limits the actual use scenarios of oriented carbon nanotube thin film products.
  • the mechanical properties of the carbon nanotube film can also be improved by some traditional technical means, for example, a coating of a polymer material layer is used, and the mechanical properties of the polymer material are used to assist the shaping of the carbon nanotube film; for example, in the carbon nanotube film
  • the surface of the film is coated with a binder to enhance the overall tensile strength of the carbon nanotube film.
  • the composite carbon nanotube films formed by these methods usually have their overall electrical properties significantly reduced, making it difficult to continue to be used as a material for the heating core layer.
  • a method for preparing a composite carbon nanotube film includes the following steps.
  • step S1 a carbon nanotube base film is obtained, and the carbon nanotube base film includes one layer of carbon nanotube films or carbon nanotube films stacked in multiple layers. Wherein, the carbon nanotube film has the first carbon nanotubes that are aligned.
  • the carbon nanotube-based film includes multiple layers of carbon nanotube films, and the multiple layers of carbon nanotube films are stacked.
  • the thickness of a layer of oriented carbon nanotube base film is relatively limited, resulting in relatively large bulk resistance and low overall strength, which is not suitable for some application scenarios. Therefore, a thicker overall can be formed by stacking multiple layers of carbon nanotube films of carbon nanotube-based films.
  • the number of layers of the oriented carbon nanotube film is 20 to 500 layers. The number of film layers can be selected according to actual needs. Generally, the greater the number of carbon nanotube thin film layers, the lower the resistance of the entire carbon nanotube base film composed of them.
  • the carbon nanotube base film includes a multi-layer oriented carbon nanotube thin film, and the orientation angle is less than or equal to 15°. More preferably, the angle between the orientations in any two carbon nanotube films is ⁇ 15°. That is, taking the orientation of the first carbon nanotubes in one of the carbon nanotube films as the reference direction, the included angle between the orientation of the first carbon nanotubes in the other carbon nanotube films and the reference direction is ⁇ 15°. More preferably, the orientations of the multilayer oriented carbon nanotube films in the carbon nanotube base film are the same. Setting the orientation of the multilayered carbon nanotube films to be the same has the following advantages. On the one hand, carbon nanotube films with the same orientation are more convenient to operate and lower in cost.
  • the carbon nanotube-based film includes a multi-layer oriented carbon nanotube film
  • the method for preparing the carbon nanotube-based film includes rolling the multi-layer carbon nanotube film to densify the carbon nanotube film ization steps.
  • the pressure applied by the pressing roll is 0.2-1 MPa.
  • an alcohol liquid can also be used to wet the stacked multilayer oriented carbon nanotube films, so as to enhance the bonding force between the carbon nanotube films.
  • the alcoholic liquid can be selected from ethanol.
  • the speed of the pressing roller may be selected from 0.1 m/min to 6 m/min. When the roller speed exceeds this range, the alcohol is not easily evaporated completely.
  • the alcohol liquid can also be removed by drying at the same time.
  • the drying temperature can be 100°C ⁇ 200°C, and the drying temperature is set according to the speed of the pressing roller. When the pressing roller speed is low, a lower temperature can be used for drying; when the pressing roller speed is high, a higher temperature drying is required to make the film dry.
  • the dry alcohol can be completely evaporated.
  • the thickness of the carbon nanotube base film is 0.5 ⁇ m ⁇ 100 ⁇ m. Further optionally, the thickness of the carbon nanotube base film is 1 ⁇ m ⁇ 50 ⁇ m.
  • the carbon nanotube thin film can be prepared from a carbon nanotube array.
  • a carbon nanotube array is an aggregate of a plurality of carbon nanotubes grown in a specific direction. Since the growth direction of the carbon nanotube arrays is uniform, the carbon nanotubes in them have orientation properties, and the carbon nanotube films further prepared from the carbon nanotube arrays also have certain orientation properties.
  • the length of the carbon nanotubes in the carbon nanotube array can be selected according to actual preparation conditions. For example, the length of the carbon nanotube array is 100 ⁇ m to 1000 ⁇ m, and the diameter of the carbon nanotubes in the carbon nanotube array is 6 nm to 15 nm.
  • the method for preparing an oriented carbon nanotube thin film by using a carbon nanotube array may be: clipping carbon nanotubes from the carbon nanotube array, and dragging along the direction perpendicular to the growth direction of the carbon nanotube array to prepare the carbon nanotubes. Carbon nanotube films. When the carbon nanotubes are stretched by the clamping tool, the modified carbon nanotube arrays are continuously pulled out by the van der Waals force. Intrinsic orientation.
  • the carbon nanotube array may be a carbon nanotube array grown by chemical vapor deposition. More specifically, for example, an electron beam evaporation method is used to deposit the catalyst layer, and the material of the catalyst layer can be selected from at least one of iron, cobalt and nickel. The thickness of the catalyst layer may be 20 nm to 23 nm.
  • the carbon source gas may include ethylene and hexane, and the gas partial pressure ratio of ethylene and hexane is 1.25:1 to 8:1.
  • the flow rate of the carbon source gas is 5mL/min ⁇ 15mL/min, and the time for the carbon source gas to react is 10min ⁇ 25min.
  • the mechanical properties of the carbon nanotube arrays prepared by this preparation method are good.
  • the carbon nanotube arrays grown by chemical vapor method have a highly oriented structure. Due to the van der Waals forces between carbon nanotubes, adjacent carbon nanotubes can be pulled from the carbon nanotube array along a specific direction to form end-to-end aligned carbon nanotubes. membrane.
  • the use of carbon nanotube films to strengthen composites is more processable and can effectively improve the fracture toughness of composites.
  • Step S2 carbon nanotube slurry is spread on the surface of the carbon nanotube base film, the carbon nanotube slurry includes a solvent and a dispersoid dispersed in the solvent, and the dispersoid includes the second carbon nanotubes and a binder.
  • solvent and “solute” are generally understood in a broad sense, that is, in a mixture formed by dispersing a solid in a liquid, the liquid is a “solvent”, and the solid is a “solvent”. Solutes”, and solids can exist in the form of dissolved in a liquid, or they can exist in the form of smaller particles suspended in a liquid.
  • the carbon nanotube slurry is simultaneously distributed on the surfaces of the two opposite sides of the carbon nanotube base film.
  • the method of distributing the carbon nanotube slurry can be coating.
  • a doctor blade is used to coat the carbon nanotube slurry on the surface of the carbon nanotube base film. More specifically, double-sided coating is performed by a small roll-to-roll doctor blade cast coating roll system. The coating speed may be 0.1 m/min to 0.8 m/min.
  • the step of removing the solvent in the carbon nanotube slurry after coating the carbon nanotube slurry is also included.
  • the way to remove the solvent can be drying.
  • the drying temperature may be 100°C to 200°C.
  • the coating speed matches the drying temperature. When the coating speed is low, low temperature drying is required; when the coating speed is high, high temperature drying is required to completely volatilize the solvent in the slurry.
  • the viscosity of the carbon nanotube slurry is 4000cp ⁇ 8000cp, for example, 4000cp, 5000cp, 6000cp, 7000cp, 8000cp or a range between the above-mentioned viscosities.
  • the viscosity is too low, the slurry is thinner, and when it is coated on the carbon nanotube film, the slurry is not easy to bond with each other and will spread out, resulting in a low slurry sizing rate and an excessively thin coating.
  • the viscosity is too high, the slurry is too easy to bond and the coating effect is poor.
  • the mass proportion of carbon nanotubes is 0.3%-20%, and the mass proportion of the binder is 0.1%-5%.
  • the carbon nanotube slurry further includes a dispersant in a proportion of 0.1% to 5% by mass.
  • the dispersing agent may be a surfactant, and the dispersing agent is used to improve the dispersibility of carbon nanotubes in a solvent.
  • the carbon nanotube slurry includes 0.3%-20% of carbon nanotubes, 0.1%-5% of a binder, 0.1%-5% of a dispersant and the balance in terms of mass ratio solvent.
  • the binder may be selected from viscous substances such as polyvinylidene fluoride (PVDF) or sodium alginate.
  • the solvent may be selected from one or more of nitrogen methylpyrrolidone (NMP), ethanol and water.
  • NMP nitrogen methylpyrrolidone
  • the solvent can be selected from the lipophilic solvent nitrogen methyl pyrrolidone, and the binder can be selected from polyvinylidene fluoride.
  • the dispersant may be selected from polyvinylpyrrolidone.
  • the polyvinylpyrrolidone can better promote the dispersibility of the second carbon nanotubes in the nitrogen methyl pyrrolidone, so that the second carbon nanotubes can be sufficiently separated, and finally evenly distributed on the surface layer of the carbon nanotube base film.
  • the thickness of the coated carbon nanotube slurry is 50 ⁇ m ⁇ 400 ⁇ m. This thickness is the thickness of the applied wet film. After drying, the coating will have different coating thicknesses due to differences in solids content and viscosity. Generally speaking, the higher the solids content and the higher the viscosity, the higher the coating thickness after drying. Too thick coating will cause the cured film to be stiff and inflexible, and in the subsequent process of solvent removal, the coating will be easily cracked due to uneven solvent volatilization.
  • another embodiment of the present invention also provides a composite carbon nanotube film prepared by the above-mentioned method for preparing a composite carbon nanotube film.
  • the carbon nanotube film includes: a carbon nanotube base film 120, the carbon nanotube base film 120 includes one or more layers of carbon nanotube films, and the carbon nanotube film has a first oriented carbon nanotube film. a carbon nanotube; and
  • Carbon nanotube reinforcement layer the carbon nanotube reinforcement layer includes second carbon nanotubes and a binder, and the second carbon nanotubes in the carbon nanotube reinforcement layer are bonded to the surface of the carbon nanotube base film through the binder, or , the second carbon nanotubes in the carbon nanotube reinforcing layer are bonded to the surface of the carbon nanotube base film through a binder, and some of the second carbon nanotubes are inserted into the surface layer of the carbon nanotube base film.
  • the first carbon nanotube reinforcing layer 110 and the second carbon nanotube reinforcing layer 130 are simultaneously provided on the opposite side surfaces of the carbon nanotube base film 120 . In other embodiments, it can also be provided on one side surface thereof.
  • a portion of the second carbon nanotubes are disposed in contact with the first carbon nanotubes located in the carbon nanotube base film.
  • the tensile strength of the composite carbon nanotube film prepared by the preparation method of the composite carbon nanotube film in the above embodiment can be significantly improved in the direction perpendicular to the carbon orientation.
  • the binder in the carbon nanotube reinforcing layer will penetrate into the carbon nanotube base film 120 to connect the first carbon tubes, and during the process of volatilization of the solvent, It will make the film shrink slightly, shorten the distance between the first carbon tubes side by side, and improve the van der Waals force; at the same time, in the composite carbon nanotube film, the second carbon nanotubes play the role of intermediate connectors, which were originally side by side.
  • the first carbon nanotubes are connected with the second carbon nanotubes, and the second carbon nanotubes are also fixedly connected with other second carbon nanotubes through the adhesive, and the second carbon nanotubes are irregularly overlapped together to form a network.
  • the strength of the carbon nanotube reinforcement layer is similar in all directions, and after being bonded with the first carbon tube by the binder, it also helps to improve the tensile strength of the composite carbon nanotube film in the non-oriented direction.
  • the non-oriented direction acts on the carbon nanotube base film, it is also necessary to overcome the bonding force between the first carbon nanotube and the second carbon nanotube, so that the tensile strength of the composite carbon nanotube film in the non-oriented direction is obtained. significantly improved.
  • the second carbon nanotube not only acts as an intermediate connector to enhance the tensile strength of the carbon nanotube film in the non-oriented direction, but also acts as an intermediate conductor at the same time. It is ensured that the carbon nanotube reinforcement layer will not significantly affect the electrical properties of the carbon nanotube base film.
  • the carbon nanotube reinforcing layer can improve the tensile strength perpendicular to the orientation direction of the carbon nanotube base film on the basis of ensuring that the composite carbon nanotube film has electrical properties at least similar to the carbon nanotube base film.
  • the present invention also provides the following more specific and detailed embodiments for reference.
  • the advantages of the present invention will also be more apparent from the descriptions and performance results of the following specific examples and comparative examples.
  • the obtained carbon nanotube base film is coated with carbon nanotube slurry on both sides through a small roll-to-roll scraper type casting coating and rolling system; wherein, according to the mass ratio, the carbon nanotube slurry ratio is: 5 % of carbon nanotubes, 1% of PVP; 2.2% of PVDF and the balance of NMP; the viscosity of the carbon nanotube slurry is 4520cp; the blade coating thickness is 200 ⁇ m; the blade coating speed is 0.2m/min , the drying temperature is 150 °C.
  • the obtained carbon nanotube base film is coated with carbon nanotube slurry on both sides through a small roll-to-roll scraper type casting coating and rolling system; wherein, according to the mass ratio, the carbon nanotube slurry ratio is: 10 % of carbon nanotubes, 3.2% of PVP; 2.5% of PVDF and the balance of NMP; the viscosity of the carbon nanotube slurry is 7558cp; the blade coating thickness is 200 ⁇ m; the blade coating speed is 0.2m/min , the drying temperature is 150 °C.
  • the obtained carbon nanotube base film is coated with carbon nanotube slurry on both sides through a small roll-to-roll scraper type casting coating and rolling system; wherein, in terms of mass ratio, the ratio of carbon nanotube slurry is: 7.5 % carbon nanotubes, 2% PVP, 2.2% PVDF and the balance NMP, the viscosity of the carbon nanotube slurry is 5953cp; the blade coating thickness is 200 ⁇ m; the blade coating speed is 0.2m/min , the drying temperature is 150 °C.
  • the obtained carbon nanotube base film is coated with carbon nanotube slurry on both sides through a small roll-to-roll scraper type casting coating and rolling system; wherein, according to the mass ratio, the carbon nanotube slurry ratio is: 1 % of carbon nanotubes, 0.5% of PVP; 0.5% of PVDF and the balance of NMP; the viscosity of the carbon nanotube slurry is 2137cp; the blade coating thickness is 200 ⁇ m; the blade coating speed is 0.2m/min , the drying temperature is 150 °C.
  • the obtained carbon nanotube base film is coated with carbon nanotube slurry on both sides through a small roll-to-roll scraper type casting coating and rolling system; wherein, according to the mass ratio, the carbon nanotube slurry ratio is: 5 % of carbon nanotubes, 1% of PVP; 2.2% of PVDF and the balance of NMP; the viscosity of the carbon nanotube slurry is 4520cp; the blade coating thickness is 200 ⁇ m; the blade coating speed is 0.2m/min , the drying temperature is 150 °C.
  • the obtained carbon nanotube base film is coated with carbon nanotube slurry on both sides through a small roll-to-roll scraper type casting coating and rolling system; wherein, according to the mass ratio, the carbon nanotube slurry ratio is: 5 % of carbon nanotubes, 2.2% of PVDF and the balance of NMP; the blade coating thickness is 200 ⁇ m; the blade coating speed is 0.2 m/min, and the drying temperature is 150 °C.
  • the obtained carbon nanotube base film is coated with carbon nanotube slurry on both sides through a small roll-to-roll scraper type casting coating and rolling system; wherein, according to the mass ratio, the ratio of the binder slurry is: 5 % of carbon nanotubes, 1% of PVP and the balance of NMP; the blade coating thickness is 200 ⁇ m; the blade coating speed is 0.2 m/min, and the drying temperature is 150°C.
  • the obtained carbon nanotube base film is coated with graphene slurry on both sides through a small roll-to-roll doctor blade type casting coating and rolling system; wherein, according to the mass ratio, the ratio of the binder slurry is: 5% 1% of PVP, 2.2% of PVDF and the balance of NMP; the coating thickness of the blade is 200 ⁇ m; the coating speed of the blade is 0.2 m/min, and the drying temperature is 150 °C.
  • Example 1 the difference between Example 1 and Comparative Example 1 is whether carbon nanotube slurry is coated on the surface of the carbon nanotube base film, and there is no significant increase in the electrical conductivity of Example 1 and Comparative Example 1. Under the premise of , the tensile strength in the vertical orientation direction is significantly improved.
  • Comparative Example 2 the coated carbon nanotube slurry did not contain a binder, and its electrical conductivity did not significantly improve, indicating that the introduction of the binder can improve the bonding force between the second carbon nanotubes and the first carbon nanotubes. The bonding force between the second carbon nanotubes and the first carbon nanotubes significantly improves the tensile strength of the carbon nanotube-based film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种复合碳纳米管膜的制备方法、复合碳纳米管膜及层状发热器件。该复合碳纳米管膜的制备方法包括如下步骤:获取碳纳米管基膜(120),碳纳米管基膜(120)中包括一层碳纳米管薄膜或多层层叠设置的碳纳米管薄膜,碳纳米管薄膜具有取向排列的第一碳纳米管;获取碳纳米管浆料,碳纳米管浆料包括溶剂和均匀分散于溶剂中的第二碳纳米管和粘结剂;在碳纳米管基膜(120)的表面涂覆碳纳米管浆料,去除碳纳米管浆料中的溶剂,以制备复合碳纳米管膜。该制备方法制备所得的复合碳纳米管膜成功实现了采用取向型的碳纳米管薄膜作为基材的复合碳纳米管膜,其导电性显著高于传统的碳纳米管薄膜。

Description

复合碳纳米管膜、其制备方法及层状发热器件 技术领域
本申请涉及碳材料技术领域,尤其是涉及一种复合碳纳米管膜、其制备方法及层状发热器件。
背景技术
碳纳米管是一种典型的一维纳米材料,在碳纳米管的长度方向上具有极高的强度、导电性和导热性。但在许多应用场景下,碳纳米管经常需要进一步制成宏观尺寸下的产品才能够进一步使用,例如由许多根碳纳米管进一步制备而成的碳纳米管膜。碳纳米管膜具有质量轻、强度高、可随意弯折、可裁剪成任意形状、占用空间小、耐高温、耐腐蚀、使用寿命长、高温下不易变形、导热率高等诸多优点。得益于较好的导电性能和导热性能,碳纳米管膜能够用于制备发热器件的发热芯层材料,将电能高效转化为热能并且使热能及时发散。
传统的碳纳米管膜往往是由碳纳米管浆料或碳纳米管粉末压制形成的碳纳米管膜。这样的碳纳米管膜的发热性能仍然较为有限。具体地,由于其导电性不高,所以在较低的电压下能够产生的热量有限,温度上升也较为有限。因而这样的碳纳米管膜往往仍难以满足实际需求。
发明内容
基于此,为了提高碳纳米管膜的导电性能进而提高其发热性能,本发明提供了一种具有更高导电性能的复合碳纳米管膜的制备方法以及对应的复合碳纳米管膜,该复合碳纳米管膜的制备方法具体如下。
根据本发明的一个实施例,一种复合碳纳米管膜的制备方法,其包括如下步骤:
获取碳纳米管基膜,所述碳纳米管基膜中包括一层碳纳米管薄膜或多层层叠设置的碳纳米管薄膜,所述碳纳米管薄膜具有取向排列的第一碳纳米管;
获取碳纳米管浆料,所述碳纳米管浆料包括溶剂和均匀分散于所述溶剂中的第二碳纳米管和粘结剂;
在所述碳纳米管基膜的表面涂覆所述碳纳米管浆料,去除所述碳纳米管浆料中的溶剂,以制备所述复合碳纳米管膜。
在其中一个实施例中,所述碳纳米管浆料的粘稠度为4000cp~8000cp。
在其中一个实施例中,在所述碳纳米管浆料中,所述第二碳纳米管的质量占比为0.3%~20%,所述粘结剂的质量占比为0.1%~5%。
在其中一个实施例中,所述碳纳米管浆料还包括质量占比为0.1%~5%的分散剂,所述分散剂用于促进所述第二碳纳米管在所述溶剂中的分散性。
在其中一个实施例中,所述粘结剂选自聚偏氟乙烯,和/或所述分散剂选自聚乙烯吡咯烷酮。
在其中一个实施例中,所述碳纳米管基膜包括多层所述碳纳米管薄膜,制备所述碳纳米管基膜的方法包括如下步骤:将多个单层所述碳纳米管薄膜层叠后并辊压,以获得致密化的多层的所述碳纳米管基膜。
在其中一个实施例中,在将多个单层所述碳纳米管薄膜辊压的过程中,还包括采用醇类液体浸润所述碳纳米管薄膜的步骤。
在其中一个实施例中,在将多个单层所述碳纳米管薄膜辊压的过程中,压辊对所述碳纳米管薄膜的压强为0.2MPa~1MPa,压辊的移动速率为0.1m/min~6m/min。
在其中一个实施例中,所述碳纳米管基膜包括多层所述碳纳米管薄膜,任两层所述碳纳米管薄膜的取向之间的夹角≤15°。
在其中一个实施例中,所述碳纳米管基膜的厚度为1μm~50μm。
及,一种复合碳纳米管膜,其包括:
碳纳米管基膜,所述碳纳米管基膜中包括一层或多层碳纳米管薄膜,所述碳纳米管薄膜中具有取向排列的第一碳纳米管;及
碳纳米管增强层,所述碳纳米管增强层包括第二碳纳米管和粘结剂,所述碳纳米管增强层中的所述第二碳纳米管通过所述粘结剂粘结于所述碳纳米管基膜的表面,或者,所述碳纳米管增强层中的所述第二碳纳米管通过所述粘结剂粘结于所述碳纳米管基膜的表面并有部分所述第二碳纳米管插入所述碳纳米管基膜的表层。
在其中一个实施例中,所述复合碳纳米管膜由根据上述任一实施例所述的制备方法制备得到。
进一步地,一种层状发热器件,所述层状发热器件包括将电能转化为热能的发热芯层,所述发热芯层包括根据上述任一实施例所述的复合碳纳米管膜。
上述实施例的复合碳纳米管膜具有如下有益效果:
上述实施例的复合碳纳米管膜中具有取向的碳纳米管薄膜,取向的碳纳米管薄膜在取向方向上具有显著高于传统的、碳纳米管无规分布的碳纳米管薄膜的导电性,因而其发热性能也可以得到显著提升。并且,在取向方向上,碳纳米管薄膜的导热性能和机械性能也都显著优于传统的碳纳米管薄膜。
进一步地,为了满足使用需求,上述实施例的复合碳纳米管膜的制备方法制备的复合碳纳米管膜在垂直取向方向上的拉伸强度能够得到显著提升。在该复合碳纳米管膜中,第二碳纳米管和粘结剂起到了中间连接体的作用,使得并排设置的第一碳纳米管连接更加紧密。具体地,原本并排的第一碳纳米管与第二碳纳米管相连接,同时第二碳纳米管也通过粘结剂与其他第二碳纳米管固定连接,在外力以非取向方向作用于碳纳米管基膜时,还需要克服第一碳纳米管与第二碳纳米管之间的结合力,由此该复合碳纳米管膜在非取向方向上的拉伸强度得到了显著提升。同时,由于以第二碳纳米管作为中间连接体,碳纳米管基膜之间仍旧保持了与原本相似的导电性,并不会由于引入其他非绝缘物质而发生显著降低。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
在附图中:
图1为本发明一实施例的复合碳纳米管膜的结构示意图;
图2为本发明实施例1的复合碳纳米管膜的表面形貌示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有限定,在本发明的描述中,“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示方位或位置关系的术语为基于发明附图所示的方位或位置关系,其仅是为了便于和简化对发明内容进行描述,同时帮助阅读者结合附图进行理解,而不是限定或暗示所指的装置或元件必须具有的特定方位,因此不能理解为对本发明的限制。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。本文所使用的“多”表示两个或两个以上项目的组合。如未明示或本领域技术人员不对此具有通常理解,应认为本申请中的占比或浓度为质量占比或质量浓度。
传统的碳纳米管膜往往由涂布碳纳米管浆料或压制碳纳米管粉末的方式制备,这样制备的碳纳米管膜中的碳纳米管之间无规排列,单根碳纳米管的导电 性能和导热性能较高,但由其无规排列形成的整体碳纳米管膜的导电性能却较差。这是由于这种碳纳米管膜在微观上存在诸多界面,这些界面加大了碳纳米管膜的电阻。
基于此,本发明的一个实施例提出采用具有取向的碳纳米管薄膜取代传统的碳纳米管膜,以获得具有更高导电性的碳纳米管膜。然而具有取向的碳纳米管膜也存在一些问题,导致其无法直接代替传统的碳纳米管膜进行应用。具体情况如下。
相较于无规排列的碳纳米管形成的碳纳米管薄膜,由碳纳米管阵列拉出来形成的碳纳米管薄膜中的碳纳米管具有一定的取向,即取向碳纳米管薄膜。在该取向方向上,碳纳米管薄膜整体具有显著较高的导电性能、导热性能和机械强度性能,因而取向碳纳米管薄膜能够满足对性能要求更高的使用场合。但是,这种取向碳纳米管薄膜在非取向方向上,特别是垂直于取向方向上需要依赖相邻的碳纳米管之间的范德华力结合在一起,由此导致取向碳纳米管薄膜在非取向方向上的强度远远低于其取向方向上的强度,这导致其在加工制备的过程中极其容易受损。这不仅给加工过程提出了极高的要求,还限制了取向碳纳米管薄膜产品的实际使用场景。
通过一些传统的技术手段也可以提升该碳纳米管薄膜的机械性能,例如采用包覆高分子材料层,借助于高分子材料的机械性能辅助该碳纳米管薄膜定型;又如在该碳纳米管薄膜表面涂覆粘结剂,以增强碳纳米管薄膜整体的抗拉伸能力。然而,这些方法形成的复合碳纳米管膜通常都会使其整体电性能会发生显著降低,难以继续作为发热芯层的材料。
根据本发明的一个实施例,一种复合碳纳米管薄膜的制备方法,其包括如下步骤。
步骤S1,获取碳纳米管基膜,碳纳米管基膜包括一层碳纳米管薄膜或多层层叠设置的碳纳米管薄膜。其中,碳纳米管薄膜中具有取向排列的第一碳纳米管。
在其中一个具体示例中,碳纳米管基膜包括多层碳纳米管薄膜,且多层碳 纳米管薄膜之间层叠设置。通常一层取向碳纳米管基膜的厚度较为有限,导致其体电阻相对较大,整体强度也较低,不适用于部分应用场景,因而可以通过叠加多层碳纳米管薄膜以形成整体更厚的碳纳米管基膜。可选地,取向碳纳米管薄膜的层数为20层~500层。薄膜层数可以根据实际需求选取。通常,碳纳米管薄膜层数越多,由其组成的碳纳米管基膜整体的电阻越小。
在其中一个具体示例中,碳纳米管基膜中包括多层取向碳纳米管薄膜,的取向夹角≤15°。较为优选地,任两层碳纳米管薄膜中的取向之间的夹角≤15°。即,以其中一层碳纳米管薄膜中第一碳纳米管的取向作为基准方向,其他各层碳纳米管薄膜中第一碳纳米管的取向与该基准方向之间的夹角≤15°。较为优选地,碳纳米管基膜中的多层取向碳纳米管薄膜的取向相同。设置多层碳纳米管薄膜取向相同具有如下优点。一方面,相同取向的碳纳米管薄膜在制备时操作更为方便,成本更低。若采用不同方向叠加,特别是取向夹角为90°时,操作难度较大,效率低,且会限制基膜的实际尺寸。并且,在相同或相近方向层叠的碳纳米管薄膜,在该方向上具有更优秀的机械和电性能。
在其中一个具体示例中,碳纳米管基膜中包括多层取向碳纳米管薄膜,制备该碳纳米管基膜的方法包括将多层碳纳米管薄膜辊压以使所述碳纳米管薄膜致密化的步骤。辊压致密过程中,压辊施加的压强为0.2~1MPa。进一步地,在辊压致密的过程中,还可以采用醇类液体润湿层叠的多层取向碳纳米管薄膜,以增强碳纳米管薄膜之间的结合力。醇类液体可以选自乙醇。对应地,压辊的速度可以选自0.1m/min~6m/min。压辊速度超过该范围时,酒精不易完全挥发。同时不易及时发现辊压过程中可能出现的一些问题,影响薄膜的稳定性。进一步地,在辊压致密的过程中,还可以同时采取烘干的方式去除醇类液体。烘干温度可以是100℃~200℃,烘干温度配合压辊速度设置,压辊速度低时,采取较低温烘干即可;压辊速度高时,则需要较高温烘干,使薄膜烘干酒精完全挥发即可。
在其中一个具体示例中,碳纳米管基膜的厚度为0.5μm~100μm。进一步可选地,碳纳米管基膜的厚度为1μm~50μm。
在其中一个具体示例中,碳纳米管薄膜可以由碳纳米管阵列制备得到。碳纳米管阵列是沿特定方向进行生长的多根碳纳米管的集合体。由于碳纳米管阵列生长方向统一,因而其中的碳纳米管本身即具有取向性,由该碳纳米管阵列进一步制备得到的碳纳米管薄膜也具有一定的取向性。碳纳米管阵列中的碳纳米管长度可以根据实际需要选取实际制备条件进行选取,例如碳纳米管阵列的长度为100μm~1000μm,碳纳米管阵列中碳纳米管的直径为6nm~15nm。
更具体地,采用碳纳米管阵列制备取向碳纳米管薄膜的方法可以是:从碳纳米管阵列中夹取碳纳米管,并沿着垂直于碳纳米管阵列生长方向的方向进行拖拽,制备碳纳米管薄膜。在夹取工具拉伸碳纳米管时,碳纳米管通过范德华力带动改性碳纳米管阵列持续不断地被拉出,由此制备的碳纳米管薄膜即具有沿着碳纳米管阵列生长方向的本征取向。
在一个具体示例中,碳纳米管阵列可以是由化学气相沉积法生长的碳纳米管阵列。更具体地,例如采用电子束蒸发法沉积催化剂层,催化剂层的材料可以选自铁、钴和镍中的至少一种。催化剂层的厚度可以是20nm~23nm。将形成有催化剂层的衬底升温至550℃~900℃后,再通入碳源气体反应,可制备得到碳纳米管阵列。其中,碳源气体可以包括乙烯与己烷,乙烯与己烷的气体分压比为1.25:1~8:1。碳源气体的流速为5mL/min~15mL/min,通入碳源气体进行反应的时间为10min~25min。通过该制备方法制备所得的碳纳米管阵列的力学性能较好。
通过化学气相法生长的碳纳米管阵列具有高度取向结构,由于碳纳米管之间的范德华力,沿特定方向从碳纳米管阵列中可以拉取相邻碳纳米管形成首尾相连的取向碳纳米管膜。使用碳纳米管膜对复合材料进行加强更具备可加工性,并且能够有效提升复合材料的断裂韧性。
步骤S2,在碳纳米管基膜表面布上碳纳米管浆料,碳纳米管浆料中包括溶剂和分散于溶剂中的分散质,分散质包括第二碳纳米管与粘结剂。
可以理解的是,在碳纳米管浆料所属技术领域中,“溶剂”和“溶质”通常作广义理解,即在固体分散于液体形成的混合物中,该液体为“溶剂”,该固体 为“溶质”,且固体可以是溶解于液体中的形式存在,也可以是以较小的颗粒悬浮于液体中的形式存在。
在其中一个具体示例中,同时在碳纳米管基膜相对的两侧表面布上碳纳米管浆料。布上碳纳米管浆料的方法具体可以是涂覆。例如,采用刮刀将碳纳米管浆料涂覆于碳纳米管基膜表面。更具体地,通过小型卷对卷刮刀式流延涂布辊轧系统进行双面涂覆。涂布速度可以是0.1m/min~0.8m/min。
在其中一个具体示例中,还包括涂覆完碳纳米管浆料制后去除碳纳米管浆料中的溶剂的步骤。去除溶剂的方式可以是烘干。烘干温度可以是100℃~200℃。涂布速度与烘干温度相匹配,涂布速度低时,低温烘干;涂布速度高时,则需要高温烘干,使浆料中的溶剂完全挥发即可。
在其中一个具体示例中,碳纳米管浆料的粘稠度为4000cp~8000cp,例如4000cp、5000cp、6000cp、7000cp、8000cp或上述各粘稠度之间的范围。粘稠度过低时浆料较稀,涂覆到碳纳米管薄膜上时,浆料彼此之间不易黏结,会四处散开,导致浆料上浆率低,涂层过薄。粘稠度过高时,浆料过于容易黏结,涂层效果较差。
在其中一个具体示例中,在碳纳米管浆料中,碳纳米管的质量占比为0.3%~20%,粘结剂的质量占比为0.1%~5%。
在其中一个具体示例中,在碳纳米管浆料中,还包括质量占比为0.1%~5%的分散剂。例如,分散剂可以是表面活性剂,分散剂用于提高碳纳米管在溶剂中的分散性。
在其中一个具体示例中,以质量占比计,碳纳米管浆料包括0.3%~20%的碳纳米管,0.1%~5%的粘结剂、0.1%~5%的分散剂以及余量的溶剂。
在其中一个具体示例中,粘结剂可以选自聚偏氟乙烯(PVDF)或海藻酸钠等具有粘性的物质。在其中一个具体示例中,溶剂可以选自氮甲基吡咯烷酮(NMP)、乙醇和水中的一种或多种。例如,为了提高碳纳米管的分散性,溶剂可以选自亲油性的溶剂氮甲基吡咯烷酮,粘结剂可以选自聚偏氟乙烯。
在其中一个具体示例中,分散剂可以选自聚乙烯吡咯烷酮。聚乙烯吡咯烷 酮能够较好地促进第二碳纳米管在氮甲基吡咯烷酮中的分散性,使得第二碳纳米管能够充分分开,并最终均匀地分布于碳纳米管基膜表层。
在其中一个具体示例中,涂覆的碳纳米管浆料的厚度为50μm~400μm。该厚度为涂覆的湿膜的厚度。该涂层烘干后会由于固含量和粘稠度的不同导致有不同涂层厚度。一般来说,固含量越高、粘稠度越高,烘干后的涂层厚度越高。涂层过厚会导致固化后的薄膜僵硬没有柔软性,并且在后续去除溶剂的过程中,由于溶剂的挥发不均匀而导致涂层易裂开。
进一步地,本发明的又一实施例还提供了一种由上述复合碳纳米管膜的制备方法制备所得的复合碳纳米管膜。
例如,请参照图1,该碳纳米管膜包括:碳纳米管基膜120,该碳纳米管基膜120中包括一层或多层碳纳米管薄膜,碳纳米管薄膜中具有取向排列的第一碳纳米管;及
碳纳米管增强层,碳纳米管增强层包括第二碳纳米管和粘结剂,碳纳米管增强层中的第二碳纳米管通过粘结剂粘结于碳纳米管基膜的表面,或者,碳纳米管增强层中的第二碳纳米管通过粘结剂粘结于碳纳米管基膜的表面并有部分第二碳纳米管插入碳纳米管基膜的表层。
在本实施例中,在该碳纳米管基膜120的相对两侧表面上同时设置有第一碳纳米管增强层110和第二碳纳米管增强层130。在其他实施例中,也可以设置在其中的一侧表面上。
在其中一个具体示例中,部分第二碳纳米管与位于碳纳米管基膜中的第一碳纳米管接触设置。
上述实施例的复合碳纳米管膜的制备方法制备的复合碳纳米管膜在垂直碳取向方向上的拉伸强度能够得到显著提升。具体地,在制备该复合碳纳米管膜时,碳纳米管增强层中的粘结剂会向碳纳米管基膜120渗入一些,可以连接第一碳管,并且,溶剂在挥发的过程中,会使薄膜有轻微收缩,拉近了并排的第一碳管的距离,提高了范德华力;同时,在该复合碳纳米管膜中,第二碳纳米管起到了中间连接体的作用,原本并排的第一碳纳米管与第二碳纳米管相连接, 同时第二碳纳米管也通过粘结剂与其他第二碳纳米管固定连接,第二碳管无规律地搭接在一起形成网状,碳纳米管增强层各个方向的强度都相近,与第一碳管通过粘结剂粘结在一起后,也有助于提高复合碳纳米管膜在非取向方向上的拉伸强度,在外力以非取向方向作用于碳纳米管基膜时,还需要克服第一碳纳米管与第二碳纳米管之间的结合力,由此该复合碳纳米管膜在非取向方向上的拉伸强度得到了显著提升。
并且,在该技术方案中,第二碳纳米管不仅起到了作为中间连接体的作用,以增强碳纳米管薄膜在非取向方向上的拉伸强度,还能够同时起到中间导电体的作用,保证碳纳米管增强层不会显著影响碳纳米管基膜的电性能。实验证明,该碳纳米管增强层能够在保证复合碳纳米管膜具有至少与其中碳纳米管基膜相似的电性能的基础上,提高垂直碳纳米管基膜的取向方向上的拉伸强度。
为了更易于理解及实现本发明,本发明还提供了如下较易实施的、更为具体详细的实施例作为参考。通过下述具体实施例和对比例的描述及性能结果,本发明的优点也将更为明显。
以下各实施例和对比例中所用原料如无特殊说明,皆可从市场常规购得。
实施例1
从碳纳米管阵列中拉出宽度约为10cm的碳纳米管薄膜,重复此步骤并重叠50层碳纳米管薄膜,同时采取加入乙醇浸润及辊压的方式使叠层的碳纳米管薄膜更为致密,然后烘干处理,制备碳纳米管基膜;其中,压辊的压强为0.4MPa,压辊移动速度为2m/min;烘干温度为150℃。
将所得的碳纳米管基膜通过小型卷对卷刮刀式流延涂布辊轧系统双面涂覆碳纳米管浆料;其中,按照质量占比计,碳纳米管浆料配比为:5%的碳纳米管,1%的PVP;2.2%的PVDF以及余量的NMP;该碳纳米管浆料的粘稠度为4520cp;刮刀涂覆厚度为200μm;刮刀涂布速度为0.2m/min,烘干温度为150℃。
实施例2
从碳纳米管阵列中拉出宽度约为10cm的碳纳米管薄膜,重复此步骤并重叠50层碳纳米管薄膜,同时采取加入乙醇浸润及辊压的方式使叠层的碳纳米管薄 膜更为致密,然后烘干处理,制备碳纳米管基膜;其中,压辊的压强为0.4MPa,压辊移动速度为2m/min;烘干温度为150℃。
将所得的碳纳米管基膜通过小型卷对卷刮刀式流延涂布辊轧系统双面涂覆碳纳米管浆料;其中,按照质量占比计,碳纳米管浆料配比为:10%的碳纳米管,3.2%的PVP;2.5%的PVDF以及余量的NMP;该碳纳米管浆料的粘稠度为7558cp;刮刀涂覆厚度为200μm;刮刀涂布速度为0.2m/min,烘干温度为150℃。
实施例3
从碳纳米管阵列中拉出宽度约为10cm的碳纳米管薄膜,重复此步骤并重叠50层碳纳米管薄膜,同时采取加入乙醇浸润及辊压的方式使叠层的碳纳米管薄膜更为致密,然后烘干处理,制备碳纳米管基膜;其中,压辊的压强为0.4MPa,压辊移动速度为2m/min;烘干温度为150℃。
将所得的碳纳米管基膜通过小型卷对卷刮刀式流延涂布辊轧系统双面涂覆碳纳米管浆料;其中,按照质量占比计,碳纳米管浆料配比为:7.5%的碳纳米管、2%的PVP、2.2%的PVDF以及余量的NMP,该碳纳米管浆料的粘稠度为5953cp;刮刀涂覆厚度为200μm;刮刀涂布速度为0.2m/min,烘干温度为150℃。
实施例4
从碳纳米管阵列中拉出宽度约为10cm的碳纳米管薄膜,重复此步骤并重叠50层碳纳米管薄膜,同时采取加入乙醇浸润及辊压的方式使叠层的碳纳米管薄膜更为致密,然后烘干处理,制备碳纳米管基膜;其中,压辊的压强为0.4MPa,压辊移动速度为2m/min;烘干温度为150℃。
将所得的碳纳米管基膜通过小型卷对卷刮刀式流延涂布辊轧系统双面涂覆碳纳米管浆料;其中,按照质量占比计,碳纳米管浆料配比为:1%的碳纳米管,0.5%的PVP;0.5%的PVDF以及余量的NMP;该碳纳米管浆料的粘稠度为2137cp;刮刀涂覆厚度为200μm;刮刀涂布速度为0.2m/min,烘干温度为150℃。
实施例5
从碳纳米管阵列中拉出宽度约为10cm的碳纳米管薄膜,重复此步骤并重叠50层碳纳米管薄膜,采用辊压的方式使叠层的碳纳米管薄膜更为致密,制备碳 纳米管基膜;其中,压辊的压强为0.4MPa,压辊移动速度为2m/min;烘干温度为150℃。
将所得的碳纳米管基膜通过小型卷对卷刮刀式流延涂布辊轧系统双面涂覆碳纳米管浆料;其中,按照质量占比计,碳纳米管浆料配比为:5%的碳纳米管,1%的PVP;2.2%的PVDF以及余量的NMP;该碳纳米管浆料的粘稠度为4520cp;刮刀涂覆厚度为200μm;刮刀涂布速度为0.2m/min,烘干温度为150℃。
实施例6
从碳纳米管阵列中拉出宽度约为10cm的碳纳米管薄膜,重复此步骤并重叠50层碳纳米管薄膜,同时采取加入乙醇浸润及辊压的方式使叠层的碳纳米管薄膜更为致密,然后烘干处理,制备碳纳米管基膜;其中,压辊的压强为0.4MPa,压辊移动速度为2m/min;烘干温度为150℃。
将所得的碳纳米管基膜通过小型卷对卷刮刀式流延涂布辊轧系统双面涂覆碳纳米管浆料;其中,按照质量占比计,碳纳米管浆料配比为:5%的碳纳米管,2.2%的PVDF以及余量的NMP;刮刀涂覆厚度为200μm;刮刀涂布速度为0.2m/min,烘干温度为150℃。
对比例1
从碳纳米管阵列中拉出宽度约为10cm的碳纳米管薄膜,重复此步骤并重叠50层碳纳米管薄膜,同时采取加入乙醇浸润及辊压的方式使叠层的碳纳米管薄膜更为致密,然后烘干处理,制备碳纳米管基膜;其中,压辊的压强为0.4MPa,压辊移动速度为2m/min;烘干温度为150℃。
对比例2
从碳纳米管阵列中拉出宽度约为10cm的碳纳米管薄膜,重复此步骤并重叠50层碳纳米管薄膜,同时采取加入乙醇浸润及辊压的方式使叠层的碳纳米管薄膜更为致密,然后烘干处理,制备碳纳米管基膜;其中,压辊的压强为0.4MPa,压辊移动速度为2m/min;烘干温度为150℃。
将所得的碳纳米管基膜通过小型卷对卷刮刀式流延涂布辊轧系统双面涂覆碳纳米管浆料;其中,按照质量占比计,粘结剂浆料配比为:5%的碳纳米管, 1%的PVP以及余量的NMP;刮刀涂覆厚度为200μm;刮刀涂布速度为0.2m/min,烘干温度为150℃。
对比例3
从碳纳米管阵列中拉出宽度约为10cm的碳纳米管薄膜,重复此步骤并重叠50层碳纳米管薄膜,同时采取加入乙醇浸润及辊压的方式使叠层的碳纳米管薄膜更为致密,然后烘干处理,制备碳纳米管基膜;其中,压辊的压强为0.4MPa,压辊移动速度为2m/min;烘干温度为150℃。
将所得的碳纳米管基膜通过小型卷对卷刮刀式流延涂布辊轧系统双面涂覆石墨烯浆料;其中,按照质量占比计,粘结剂浆料配比为:5%的导电炭黑,1%的PVP,2.2%的PVDF以及余量的NMP;刮刀涂覆厚度为200μm;刮刀涂布速度为0.2m/min,烘干温度为150℃。
试验例
测试以上各实施例和对比例的碳纳米管膜在取向方向上的电阻;将以上各实施例和对比例制备的碳纳米管膜接入电路中,电流方向沿取向方向,测试该复合碳纳米管膜整体在5V电压下和12V电压下的稳定温度。另外,测试碳纳米管基膜上垂直于碳纳米管取向方向上的拉伸强度,结果可见于表1。
表1
Figure PCTCN2020139886-appb-000001
Figure PCTCN2020139886-appb-000002
如表1示出的,实施例1和对比例1之间的区别在于是否在碳纳米管基膜表面涂覆碳纳米管浆料,实施例1和对比例1在导电性能未出现显著增大的前提下,在垂直取向方向的拉伸强度出现了明显的提高。对比例2中,涂覆的碳纳米管浆料中不含粘结剂,其导电性能并未出现显著提高,说明粘结剂的引入能够通过提高第二碳纳米管之间的结合力以及第二碳纳米管和第一碳纳米管之间的结合力,显著提升碳纳米管基膜的拉伸强度。对比例3中,导电炭黑的引入不仅无法提升碳纳米管基膜的拉伸强度,甚至还导致了复合碳纳米管膜整体电性能的降低,说明碳纳米管及粘结剂同时引入能够在不降低取向碳纳米管导电性能的前提下有效提高其垂直取向方向的拉伸强度。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的一种较佳的实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (13)

  1. 一种复合碳纳米管膜的制备方法,其特征在于,包括如下步骤:
    获取碳纳米管基膜,所述碳纳米管基膜中包括一层碳纳米管薄膜或多层层叠设置的碳纳米管薄膜,所述碳纳米管薄膜具有取向排列的第一碳纳米管;
    获取碳纳米管浆料,所述碳纳米管浆料包括溶剂和均匀分散于所述溶剂中的第二碳纳米管和粘结剂;
    在所述碳纳米管基膜的表面涂覆所述碳纳米管浆料,去除所述碳纳米管浆料中的溶剂,以制备所述复合碳纳米管膜。
  2. 根据权利要求1所述的复合碳纳米管膜的备方法,其特征在于,所述碳纳米管浆料的粘稠度为4000cp~8000cp。
  3. 根据权利要求1所述的复合碳纳米管膜的制备方法,其特征在于,在所述碳纳米管浆料中,所述第二碳纳米管的质量占比为0.3%~20%,所述粘结剂的质量占比为0.1%~5%。
  4. 根据权利要求3所述的复合碳纳米管膜的制备方法,其特征在于,所述碳纳米管浆料还包括质量占比为0.1%~5%的分散剂,所述分散剂用于促进所述第二碳纳米管在所述溶剂中的分散性。
  5. 根据权利要求4所述的复合碳纳米管膜,其特征在于,所述粘结剂选自聚偏氟乙烯,和/或所述分散剂选自聚乙烯吡咯烷酮。
  6. 根据权利要求1~5任一项所述的复合碳纳米管膜的制备方法,其特征在于,所述碳纳米管基膜中包括多层所述碳纳米管薄膜,制备所述碳纳米管基膜的方法包括如下步骤:将多个单层所述碳纳米管薄膜层叠后并辊压,由此获得致密化的多层的所述碳纳米管基膜。
  7. 根据权利要求6所述的复合碳纳米管膜的制备方法,其特征在于,在将多层所述碳纳米管薄膜辊压的过程中,还包括采用醇类液体浸润所述碳纳米管薄膜的步骤。
  8. 根据权利要求7所述的复合碳纳米管膜的制备方法,其特征在于,在将多层所述碳纳米管薄膜辊压的过程中,压辊对所述碳纳米管薄膜的压强为0.2MPa~1MPa,压辊的移动速率为0.1m/min~6m/min。
  9. 根据权利要求1~5及7~8任一项所述的复合碳纳米管膜,其特征在于,所述碳纳米管基膜包括多层所述碳纳米管薄膜,任两层所述碳纳米管薄膜的取向之间的夹角≤15°。
  10. 根据权利要求1~5及7~8任一项所述的复合碳纳米管膜的制备方法,其特征在于,所述碳纳米管基膜的厚度为1μm~50μm。
  11. 一种复合碳纳米管膜,其特征在于,包括:
    碳纳米管基膜,所述碳纳米管基膜中包括一层或多层碳纳米管薄膜,所述碳纳米管薄膜中具有取向排列的第一碳纳米管;及
    碳纳米管增强层,所述碳纳米管增强层包括第二碳纳米管和粘结剂,所述碳纳米管增强层中的所述第二碳纳米管通过所述粘结剂粘结于所述碳纳米管基膜的表面,或者,所述碳纳米管增强层中的所述第二碳纳米管通过所述粘结剂粘结于所述碳纳米管基膜的表面并有部分所述第二碳纳米管插入所述碳纳米管基膜的表层。
  12. 根据权利要求11所述的复合碳纳米管膜,其特征在于,所述复合碳纳米管膜由根据权利要求1~10任一项所述的制备方法制备得到。
  13. 一种层状发热器件,其特征在于,所述层状发热器件包括将电能转化为热能的发热芯层,所述发热芯层包括根据权利要求11或12所述的复合碳纳米管膜。
PCT/CN2020/139886 2020-12-28 2020-12-28 复合碳纳米管膜、其制备方法及层状发热器件 WO2022140890A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080047054.7A CN114206775A (zh) 2020-12-28 2020-12-28 复合碳纳米管膜、其制备方法及层状发热器件
PCT/CN2020/139886 WO2022140890A1 (zh) 2020-12-28 2020-12-28 复合碳纳米管膜、其制备方法及层状发热器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/139886 WO2022140890A1 (zh) 2020-12-28 2020-12-28 复合碳纳米管膜、其制备方法及层状发热器件

Publications (1)

Publication Number Publication Date
WO2022140890A1 true WO2022140890A1 (zh) 2022-07-07

Family

ID=80645855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/139886 WO2022140890A1 (zh) 2020-12-28 2020-12-28 复合碳纳米管膜、其制备方法及层状发热器件

Country Status (2)

Country Link
CN (1) CN114206775A (zh)
WO (1) WO2022140890A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101286564A (zh) * 2008-05-28 2008-10-15 中国科学院上海微系统与信息技术研究所 直接甲醇燃料电池用的复合阳极及制作方法
CN101809679A (zh) * 2007-09-28 2010-08-18 东丽株式会社 导电性膜和其制造方法
CN102082060A (zh) * 2010-09-30 2011-06-01 四川虹欧显示器件有限公司 等离子显示屏及其制作方法
JP2014160041A (ja) * 2013-02-20 2014-09-04 Yamaha Corp 歪みセンサ及びその製造方法
CN104176722A (zh) * 2014-08-06 2014-12-03 北京航空航天大学 一种高取向高强度的阵列牵伸碳纳米管薄膜及其制备方法
CN110190282A (zh) * 2019-04-22 2019-08-30 深圳烯湾科技有限公司 碳纳米管导电浆料及其制备方法和应用
CN111470490A (zh) * 2020-04-15 2020-07-31 南京大学 取向碳纳米管/石墨烯复合导热膜及其制备方法、半导体器件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101465434B (zh) * 2007-12-19 2010-09-29 清华大学 燃料电池膜电极及其制备方法
CN103086351B (zh) * 2010-12-27 2015-03-11 清华大学 碳纳米管复合结构
CN211657889U (zh) * 2019-12-30 2020-10-13 深圳烯湾科技有限公司 快速加热杯

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101809679A (zh) * 2007-09-28 2010-08-18 东丽株式会社 导电性膜和其制造方法
CN101286564A (zh) * 2008-05-28 2008-10-15 中国科学院上海微系统与信息技术研究所 直接甲醇燃料电池用的复合阳极及制作方法
CN102082060A (zh) * 2010-09-30 2011-06-01 四川虹欧显示器件有限公司 等离子显示屏及其制作方法
JP2014160041A (ja) * 2013-02-20 2014-09-04 Yamaha Corp 歪みセンサ及びその製造方法
CN104176722A (zh) * 2014-08-06 2014-12-03 北京航空航天大学 一种高取向高强度的阵列牵伸碳纳米管薄膜及其制备方法
CN110190282A (zh) * 2019-04-22 2019-08-30 深圳烯湾科技有限公司 碳纳米管导电浆料及其制备方法和应用
CN111470490A (zh) * 2020-04-15 2020-07-31 南京大学 取向碳纳米管/石墨烯复合导热膜及其制备方法、半导体器件

Also Published As

Publication number Publication date
CN114206775A (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
KR102636846B1 (ko) 고도 전도성 및 배향된 그래핀 필름 및 제조 방법
US9966591B1 (en) Electrode stack production methods
US20170054149A1 (en) Method for making sulfur-graphene composite material
CN101604727B (zh) 电致伸缩复合材料及其制备方法
CN108385450B (zh) 一种碳纳米管纸及其制备方法
CN107141007A (zh) 一种基于石墨烯的复合导热膜及其制备方法
CN109788586B (zh) 一种柔性高强芳纶纳米纤维基复合电热膜及其制备方法
CN104627977A (zh) 一种氧化石墨烯增强的复合纳米碳纸及其制备方法
CN111978931A (zh) 石墨烯复合浆料、石墨散热膜结构及其制备方法
KR20160133711A (ko) 고농도 하이브리드 탄소나노튜브/그래핀 분산액의 제조 방법
CN110980703A (zh) 一种石墨烯膜的批量化生产方法及采用该方法制备得到的石墨烯膜
CN113223776A (zh) 一种自支撑MXene/MWCNT柔性复合薄膜及其制备方法和应用
CN113480328B (zh) 一种大尺度石墨烯导热卷膜及其制备方法
JP2003183994A (ja) 炭素繊維紙およびそれを用いた燃料電池用多孔質炭素電極基材
TWI440599B (zh) 奈米碳管複合膜的製備方法
TW201843102A (zh) 散熱漿料及散熱結構的製造方法
WO2022140890A1 (zh) 复合碳纳米管膜、其制备方法及层状发热器件
CN110316725B (zh) 一种高密度高强度石墨烯框架材料及其制备方法
US8834737B2 (en) Method for making carbon nanotube composite films
CN113044834A (zh) 石墨烯宏观体材料、石墨烯/聚合物复合材料及其制备方法与应用
JP5170607B2 (ja) 繊維強化粘土膜及びその製造方法
CN115746352A (zh) 一种复合导热膜及其制备方法和应用
TWI440600B (zh) 奈米碳管複合膜
US20130171436A1 (en) Carbon nanotube micro-wave absorbing films
JP2010244956A (ja) 多孔質電極基材、その製造方法、膜−電極接合体、および燃料電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20967242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT 1205A DATED 03/11/2023)