WO2022138881A1 - ジルコニア仮焼体 - Google Patents

ジルコニア仮焼体 Download PDF

Info

Publication number
WO2022138881A1
WO2022138881A1 PCT/JP2021/048065 JP2021048065W WO2022138881A1 WO 2022138881 A1 WO2022138881 A1 WO 2022138881A1 JP 2021048065 W JP2021048065 W JP 2021048065W WO 2022138881 A1 WO2022138881 A1 WO 2022138881A1
Authority
WO
WIPO (PCT)
Prior art keywords
zirconia
less
powder
stabilizer
particle size
Prior art date
Application number
PCT/JP2021/048065
Other languages
English (en)
French (fr)
Inventor
貴理博 中野
信介 樫木
恭敬 工藤
承央 伊藤
Original Assignee
クラレノリタケデンタル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by クラレノリタケデンタル株式会社 filed Critical クラレノリタケデンタル株式会社
Priority to CN202180086939.2A priority Critical patent/CN116635332A/zh
Priority to EP21911020.2A priority patent/EP4269354A1/en
Priority to KR1020237017983A priority patent/KR20230122001A/ko
Priority to US18/269,300 priority patent/US20240067570A1/en
Priority to JP2022571659A priority patent/JPWO2022138881A1/ja
Publication of WO2022138881A1 publication Critical patent/WO2022138881A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/0003Making bridge-work, inlays, implants or the like
    • A61C13/0022Blanks or green, unfinished dental restoration parts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/08Artificial teeth; Making same
    • A61C13/083Porcelain or ceramic teeth
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/08Artificial teeth; Making same
    • A61C13/082Cosmetic aspects, e.g. inlays; Determination of the colour
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C5/00Filling or capping teeth
    • A61C5/70Tooth crowns; Making thereof
    • A61C5/77Methods or devices for making crowns
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3246Stabilised zirconias, e.g. YSZ or cerium stabilised zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/549Particle size related information the particle size being expressed by crystallite size or primary particle size
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/781Nanograined materials, i.e. having grain sizes below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/782Grain size distributions
    • C04B2235/783Bimodal, multi-modal or multi-fractional
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron

Definitions

  • the present invention relates to a calcined body for obtaining a zirconia (zirconium oxide (IV); ZrO2) sintered body having both high strength and high translucency, and a method for producing the same.
  • a zirconia zirconium oxide (IV); ZrO2) sintered body having both high strength and high translucency
  • Ceramic sintering is generally a substance transfer phenomenon in which the free energy of the system decreases, and when ceramic powder is solid-phase sintered, the primary particles contained in the powder are the particle size and firing temperature. Depending on the firing time, the grain grows while the surface area or the interface decreases. It is known that grain growth is more likely to occur as the particle size contained in the powder is smaller and the difference from the particle size of the mass transfer destination is larger.
  • the ceramic sintered body has higher translucency as the number of voids contained in the sintered body is smaller, and higher translucency as the particle size contained in the sintered body contains more particles smaller than the wavelength of visible light. It is also known that
  • the sintered body has a high density with few voids and that the particle size contained in the sintered body is kept small.
  • Some of the voids existing between the ceramic particles are discharged to the outside of the sintered body while being united as the grains grow, but some of them stay inside the sintered body, and the grain growth is particularly fast. As a result, the number of voids remaining inside the sintered body increases, so it has been a problem to obtain a high-density sintered body. Further, when the ceramic is polymorphic, the density changes due to the increase or decrease in volume due to the phase transformation depending on the temperature, so that the control of voids has been an issue.
  • zirconia sintered body in which a small amount of yttria ( yttrium oxide; Y2O3) is solid - dissolved as a stabilizer (hereinafter, “partially stabilized zirconia sintered body”). ") Is used.
  • Patent Document 1 discloses a translucent partially stabilized zirconia sintered body containing yttria exceeding 4.0 mol% and 6.5 mol% or less.
  • a large particle (A) having a median diameter D50 of 0.2 to 12 ⁇ m and a small particle (B) having a median diameter D50 of 0.01 to 0.3 ⁇ m have the maximum ratio of median diameters (B).
  • Patent Document 1 only small particles having a primary particle diameter of 32 to 38 nm of the raw material powder are used, and secondary agglomerates having an average particle diameter of 0.4 ⁇ m to 0.5 ⁇ m are obtained. It was found that the density did not increase and the translucency was insufficient. Further, when the ratio of the median diameters of the large particles (A) and the small particles (B) is too large as in Patent Document 2, the small particles (B) are immediately absorbed by the large particles (A) during firing. It was found that coarse particles derived from the large particles (A) remained before the voids were discharged, a high-density sintered body could not be obtained, and a high-strength and highly translucent sintered body could not be obtained.
  • an object of the present invention is to provide a calcined body for obtaining a zirconia sintered body capable of achieving both high strength and high translucency, and a method for producing the same.
  • the present inventors have obtained a zirconia calcined product containing zirconia and a stabilizer capable of suppressing the phase transition of zirconia, in terms of average particle size. It has been found that a zirconia calcined product containing secondary aggregates of 275 nm or less and the aggregates having particles having an average particle diameter of 100 to 200 nm and 10 to 50 nm can solve the above-mentioned problems, and further studies are conducted. Repeatedly, the present invention has been completed.
  • the present invention includes the following inventions.
  • the secondary aggregate contains zirconia and a stabilizer capable of suppressing the phase transition of zirconia, and the secondary aggregate is a large particle having an average primary particle diameter of 100 nm or more and 200 nm or less, and an average primary particle.
  • a zirconia calcined body composed of small particles having a diameter of 10 nm or more and less than 60 nm.
  • the content of the stabilizer is 3.0 to 7.5 mol% with respect to the total mol of the zirconia and the stabilizer.
  • the average crystal grain size of the crystal particles contained in the sintered body when fired at a firing temperature of 1,500 ° C. or lower for 2 hours is 0.70 ⁇ m or less [1].
  • the density of the sintered body when fired at a firing temperature of 1,500 ° C. or lower for 2 hours is 5.8 g / cm 3 or more, according to [1] to [6].
  • the first peak having two peaks and representing the most frequent particle size is 10 nm or more.
  • the powder (A) containing the secondary aggregate is Contains 15 to 85% by mass of powder (a1) having an average primary particle size of 100 nm or more and 200 nm or less.
  • the content of the stabilizer is 3.0 to 7.5 mol% with respect to the total mol of the zirconia and the stabilizer.
  • the zirconia calcined body of the present invention can be fired to obtain a zirconia sintered body having both high strength and high translucency suitable for dental materials.
  • the zirconia powder and the zirconia-containing composition obtained by the method for producing a powder of the present invention are excellent in shape retention because the occurrence of chipping (defect) can be suppressed in the zirconia molded body obtained at the time of molding.
  • the zirconia calcined product of the present invention contains a secondary aggregate having an average particle size of 275 nm or less, and the secondary aggregate can suppress the phase transition of zirconia and zirconia (hereinafter, simply ".
  • the secondary aggregate is composed of large particles having an average primary particle diameter of 100 nm or more and 200 nm or less, and small particles having an average primary particle diameter of 10 nm or more and less than 60 nm. It is a calcined body.
  • the zirconia calcined body of the present invention will be described.
  • the zirconia calcined body can be a precursor (intermediate product) of the zirconia sintered body.
  • the zirconia calcined body is a semi-sintered body in which zirconia particles (powder) are necked (fixed) and blocked in a state where they are not completely sintered.
  • the zirconia calcined product of the present invention contains secondary aggregates having an average particle size of 275 nm or less.
  • the secondary aggregate contains primary particles of large particles having an average particle diameter of 100 nm or more and 200 nm or less, and small particles having an average particle diameter of 10 nm or more and less than 60 nm, and they are aggregated.
  • the average primary particle size of the large particles affects the density of the sintered body, it is 100 nm or more and 200 nm or less, preferably 104 nm or more and 175 nm or less, more preferably 108 nm or more and 150 nm or less, and further preferably 110 nm or more and 135 nm or less. If the average primary particle size of large particles is less than 100 nm, aggregation with small particles is strong and a high-density sintered body may not be obtained. If the average primary particle size is larger than 200 nm, transparency after sintering There is a risk of reduced lightness.
  • the average primary particle size of the small particles affects the average crystal grain size of the sintered body, and therefore, from the viewpoint of strength or translucency, it is 10 nm or more and less than 60 nm, preferably 15 nm or more and 50 nm or less, and 20 nm or more. 50 nm or less is more preferable, and 25 nm or more and 50 nm or less is further preferable. If the average primary particle size of the small particles is less than 10 nm, the strength or translucency may be lowered, and if the average primary particle size is 60 nm or more, the translucency may be lowered.
  • the average particle size of the secondary aggregate is 275 nm or less, preferably 265 nm or less, preferably 255 nm, from the viewpoint of shape retention (shape retention) of the molded body, density, translucency, and strength of the sintered body. The following is more preferable, and 245 nm or less is further preferable. Further, from the viewpoint of obtaining a high-density calcined body and a sintered body, a form in which the small particles are attached around the large particles is preferable. The morphology to which the particles are attached can be confirmed.
  • the average particle size and the average primary particle size of the present invention can be calculated by, for example, image analysis of imaging with an electron microscope.
  • the average primary particle diameters of the raw material powder, the molded body obtained by molding the raw material powder, and the secondary aggregates, large particles, and small particles contained in the calcined body thereof are, for example, by the method described in Examples described later. Can be measured.
  • the primary particles in the present invention refer to a bulk of the smallest unit, and include zirconia particles and stabilizer particles.
  • the secondary aggregated particles are defined as large particles having an average primary particle diameter of 100 nm or more and 200 nm or less and small particles having an average primary particle diameter of 10 nm or more and less than 60 nm.
  • Large particles contain zirconia and / or stabilizers, small particles contain zirconia and / or stabilizers, and at least one of the large or small particles contains a stabilizer.
  • One preferred embodiment is a zirconia calcined body in which the large particles include zirconia particles and stabilizer particles (preferably ittria particles) and the small particles have secondary aggregated particles composed of zirconia particles. Be done.
  • Another preferred embodiment is a zirconia calcined body in which the large particles are composed of zirconia particles and the small particles have secondary aggregated particles containing zirconia particles and stabilizer particles (preferably ittoria particles). Be done.
  • the zirconia calcined product of the present invention contains the large particles in the secondary aggregate from the viewpoint of keeping the average crystal grain size of the sintered body small and increasing the translucency and strength of the sintered body.
  • the ratio is preferably 15 to 85% by volume, more preferably 18 to 83% by volume, still more preferably 20 to 80% by volume.
  • the zirconia calcined product of the present invention preferably contains 15 to 85% by volume of small particles, more preferably 17 to 82% by volume, still more preferably 20 to 80% by volume.
  • the average particle size of the secondary agglomeration becomes 275 nm or less, the density of the calcined body is increased, and the strength and translucency of the sintered body can be increased.
  • the content of the large particles and the small particles of the present invention can be calculated, for example, by image analysis of an image taken by an electron microscope.
  • the zirconia calcined product of the present invention contains zirconia and a stabilizer capable of suppressing the phase transition of zirconia.
  • the stabilizer is preferably capable of forming partially stabilized zirconia.
  • examples of the stabilizer include calcium oxide (CaO), magnesium oxide (MgO), yttrium oxide (Y 2 O 3 ), cerium oxide (CeO 2 ), scandium oxide (Sc 2 O 3 ), and niobium oxide (Nb).
  • the content of the stabilizer in the zirconia calcined product of the present invention and the sintered body thereof is measured by, for example, inductively coupled plasma (ICP) emission spectroscopic analysis, fluorescent X-ray analysis (XRF), or the like. be able to.
  • ICP inductively coupled plasma
  • XRF fluorescent X-ray analysis
  • the content of the stabilizer is the total mol of the zirconia and the stabilizer from the viewpoint of the strength and translucency of the sintered body.
  • the content of yttrium is 3.0 mol% or more, the translucency of the sintered body can be enhanced, and when it is 7.5 mol% or less, the decrease in strength of the sintered body can be suppressed.
  • the zirconia calcined product of the present invention it is preferable that at least a part of the stabilizer is not dissolved in zirconia. That is, it is preferable that at least a part of the zirconia crystals is present in a monoclinic system. It can be confirmed by, for example, an X-ray diffraction (XRD) pattern that a part of the stabilizer is not dissolved in zirconia. When a peak derived from the stabilizer is confirmed in the XRD pattern of the zirconia calcined body, it means that the stabilizer that is not dissolved in zirconia is present in the zirconia calcined body.
  • XRD X-ray diffraction
  • the stabilizer When the entire amount of the stabilizer is dissolved, basically no peak derived from the stabilizer is confirmed in the XRD pattern. However, depending on the conditions such as the crystal state of the stabilizer, the stabilizer may not be dissolved in zirconia even when the peak of the stabilizer does not exist in the XRD pattern. If the main crystal system of zirconia is tetragonal and / or cubic and there is no stabilizer peak in the XRD pattern, then most, basically all, of the stabilizer is solidified in zirconia. It is considered to be melted. In the zirconia calcined product of the present invention, not all of the stabilizers may be dissolved in zirconia. In the present invention, the solid solution of the stabilizer means, for example, that the element (atom) contained in the stabilizer is solid-solved in zirconia.
  • the abundance rate fy of yttrium that is not solid-solved in zirconia (hereinafter, may be referred to as “unsolid -dissolved yttrium”) shall be calculated based on the following formula (1). Can be done.
  • the abundance rate fy of the undissolved yttrium is preferably larger than 0%, more preferably 1% or more, further preferably 2% or more, and particularly preferably 3% or more.
  • the upper limit of the abundance rate fy of undissolved yttrium depends on the content of yttrium in the calcined product. When the content of yttrium is 7.5 mol% or less with respect to the total mol of zirconia and yttrium, fy can be 15% or less. For example, when the content of ytria is 3.0 mol% or more and less than 4.5 mol%, fy can be 7% or less.
  • fy When the content of ytria is 4.5 mol% or more and less than 5.5 mol%, fy can be 10% or less. When the content of ytria is 5.5 mol% or more and less than 6.5 mol%, fy can be 11% or less. When the content of ytria is 6.5 mol% or more and 7.5 mol% or less, fy can be 15% or less.
  • phy is preferably 2% or more, more preferably 3% or more, still more preferably 4% or more. It is particularly preferable that it is 5% or more.
  • the phy is preferably 3% or more, more preferably 4% or more, still more preferably 5% or more. , 6% or more is more preferable, and 7% or more is particularly preferable.
  • the phy is preferably 4% or more, more preferably 5% or more, still more preferably 6% or more. , 7% or more is more preferable, and 8% or more is particularly preferable.
  • tetragonal and cubic peaks may not be substantially detected.
  • the density of the zirconia calcined body of the present invention is preferably 2.75 g / cm 3 or more, more preferably 2.85 g / cm 3 or more, and 2.95 g, from the viewpoint of enhancing the strength and translucency of the sintered body. / Cm 3 or more is more preferable.
  • the density of the zirconia calcined body is 2.75 g / cm 3 or more
  • the translucency of the zirconia sintered body is 8.6 or more
  • the biaxial bending strength of the zirconia sintered body is 850 MPa or more. be able to.
  • the method for measuring the translucency and the biaxial bending strength of the zirconia sintered body can be measured by the method described in Examples described later.
  • the average crystal grain size of the crystal particles contained in the sintered body when fired at a firing temperature of 1,500 ° C. or lower for 2 hours is preferably 0.70 ⁇ m or less, preferably 0.68 ⁇ m or less. More preferably, it is more preferably 0.65 ⁇ m or less.
  • the average particle size of the particles contained in the sintered body is 0.70 ⁇ m or less
  • the translucency of the zirconia sintered body is 8.6 or more
  • the biaxial bending strength of the zirconia sintered body is 850 MPa or more. Can be.
  • the zirconia calcined product of the present invention preferably has a sintered body density of 5.8 g / cm 3 or more when fired at a firing temperature of 1,500 ° C. or lower for 2 hours.
  • the zirconia calcined body of the present invention has high intensity when the average particle size is measured by image analysis of, for example, imaging with an electron microscope (for example, SEM) as in the method described in Examples described later.
  • an electron microscope for example, SEM
  • a peak is obtained in a number-based particle size distribution measured using images of large particles and small particles that are primary particles taken with an electron microscope. Those having two are preferable.
  • the peak means that the frequency is at least 5% or more, and 6% or more is preferable, 7% or more is more preferable, and 8% or more is preferable from the viewpoint of obtaining more excellent strength and translucency. More preferred.
  • the first peak representing the most frequent particle size (mode diameter) is 10 nm or more and less than 60 nm, and the second peak is 60 nm or more and 200 nm or less. It is more preferable that the first peak has an average particle diameter of 10 nm or more and 50 nm or less and the frequency of the second peak is 8% or more, from the viewpoint of obtaining more excellent strength and translucency. Is more preferably 10 nm or more and 50 nm or less, and the second peak is 9% or more.
  • the zirconia-containing composition for producing the zirconia calcined body of the present invention and the powder used for producing the zirconia-containing composition will be described.
  • the zirconia-containing composition is a precursor of the above-mentioned zirconia calcined product of the present invention.
  • the content of zirconia and the stabilizer in the zirconia-containing composition is calculated from the content of the predetermined zirconia calcined body, and the content in the zirconia-containing composition and the zirconia calcined body is the same. Also in the zirconia-containing composition, the method for measuring the content of the stabilizer can be measured by the same measuring method as for the zirconia calcined product.
  • the zirconia-containing composition also includes a powder, a fluid obtained by adding the powder to a solvent, and a molded body obtained by molding the powder into a predetermined shape.
  • a powder form it may be an aggregate of powders.
  • the powder is formed by agglomeration of primary particles.
  • the primary particle in the present invention means the bulk of the smallest unit.
  • a primary particle is a sphere in which the primary particles are not bonded to each other and appear to be separable in an electron microscope (for example, a scanning electron microscope).
  • Primary particles include zirconia particles and stabilizer particles. Further, the aggregated primary particles are referred to as secondary particles.
  • the particles constituting the zirconia-containing composition in the present invention are mainly secondary aggregates (secondary aggregate particles).
  • the term "mainly" means that the content of the secondary aggregate in the zirconia-containing composition may be 50% by mass or more, preferably 60% by mass or more, more preferably 70% by mass or more, and 80% by mass. The above is further preferable, and 90% by mass or more is particularly preferable.
  • the average particle size of the secondary aggregated particles is preferably 100 nm or more and 275 nm or less, more preferably 100 nm or more and 265 nm or less, further preferably 100 nm or more and 255 nm or less, and particularly preferably 100 nm or more and 245 nm or less.
  • the average particle size of the secondary aggregated particles is 100 nm or more, it is possible to suppress an increase in the adhesive force of the secondary aggregated particles, and it is possible to prevent the secondary aggregated particles from gathering together and eventually causing the secondary aggregated particles to enlarge.
  • the average particle size of the secondary aggregated particles exceeds 275 nm, the density of the molded body does not increase due to the skeleton effect (the effect that the particles come into contact with each other and support each other) during press molding, and the strength after sintering and / or It is not preferable because it reduces the translucency.
  • the method for measuring the average particle size of the secondary aggregated particles is as described in Examples described later.
  • the particles constituting the secondary agglomerated particles include large particles having an average primary particle diameter of 100 nm or more and 200 nm or less, and small particles having an average primary particle diameter of 10 nm or more and less than 60 nm.
  • the average primary particle size of the large particles is preferably 104 nm or more and 175 nm or less, more preferably 108 nm or more and 150 nm, and further preferably 110 nm or more and 135 nm or less.
  • the method for measuring the average primary particle size of the large particles and the small particles is as described in Examples described later.
  • the average primary particle size of the large particles is less than 100 nm, the aggregation with the small particles becomes strong, a hard shell may be formed on the powder surface, and a high-density composition may not be obtained.
  • the diameter is larger than 200 nm, the sintering ability of the calcined material will be low, and unless the sintering temperature is raised to a high temperature, it is difficult for the density to increase after firing, and there is a risk that high translucency and high strength cannot be obtained. There is.
  • the average primary particle size of the small particles is preferably 15 nm or more and 50 nm or less, more preferably 20 nm or more and 50 nm or less, and further preferably 25 nm or more and 50 nm or less. If the average primary particle size of the small particles is less than 10 nm, a hard shell is formed on the powder surface and a high-density composition cannot be obtained. Therefore, it is not preferable. If the average particle size of the small particles is larger than 50 nm, the firing temperature. It is not preferable because the temperature cannot be lowered. Further, for example, in the visual confirmation of an electron microscope image, a form in which small particles are attached around large particles is preferable. Further, in order to arrange the small particles around the large particles, it is preferable to control the surface potentials of the large particles and the small particles in the opposite sign and design them so that they are attracted to each other.
  • the content of the particles in the large secondary agglomerates is preferably 15 to 85% by mass, preferably 18 to 18 to. 83% by mass is more preferable, and 20 to 80% by mass is further preferable. If the large particles are larger than 85% by mass, the adhesion of the small particles to the large particles may be reduced, and if it is less than 15% by mass, the proportion of the small particles is too large and a hard shell is formed on the powder surface, which is high. There is a risk that a dense composition cannot be obtained.
  • zirconia in the zirconia-containing composition 50% or more, preferably 70% or more, more preferably 80% or more, still more preferably 90% or more of zirconia can take the form of powder.
  • the light bulk density of the zirconia-containing composition is preferably 1.0 g / cm 3 or more, more preferably 1.1 g / cm 3 or more, and further preferably 1.2 g / cm 3 or more. , 1.3 g / cm 3 or more is particularly preferable.
  • Light bulk density can be measured according to JIS R 9301-2-3.
  • the bulk density of the zirconia-containing composition is preferably 1.3 g / cm 3 or more, more preferably 1.4 g / cm 3 or more, and further preferably 1.5 g / cm 3 or more. preferable.
  • the bulk density can be measured according to JIS R 9301-2-3.
  • the zirconia-containing composition may contain a binder.
  • the binder examples include an organic binder.
  • the organic binder include commonly used acrylic binders, acrylic acid binders, paraffin binders, fatty acid binders, polyvinyl alcohol binders and the like.
  • acrylic binders for example, polyacrylic acid, etc.
  • polyacrylic acid salts having water solubility are further preferable.
  • the polyacrylic acid salt may be a copolymer of acrylic acid or methacrylic acid and maleic acid, may contain sulfonic acid, and examples of the salt cation include sodium and ammonium.
  • the content of the binder contained in the zirconia-containing composition is important because the distance between the primary particles is adjusted in the zirconia-containing composition.
  • the binder content is preferably 1.0 to 3.0% by mass, more preferably 1.2 to 2.8% by mass, and further preferably 1.4 to 2.6% by mass in the entire zirconia-containing composition. preferable. If the binder content is less than 1.0% by mass in the entire zirconia-containing composition, the molded product may be chipped (defected). On the other hand, if it is more than 3.0% by mass, the density of the molded body may not be improved, and the strength and / or translucency of the sintered body may be lowered.
  • the zirconia-containing composition may contain a colorant (including a pigment, a composite pigment and a fluorescent agent), an alumina (Al 2 O 3 ), titanium oxide (TIO 2 ), silica (SiO 2 ), and a dispersant (poly), if necessary.
  • a colorant including a pigment, a composite pigment and a fluorescent agent
  • Al 2 O 3 alumina
  • TiO 2 titanium oxide
  • SiO 2 silica
  • dispersant poly
  • Additives such as acrylic acid, 3-phenylpropionic acid), antifoaming agents and the like can be contained. These components may be used alone or in combination of two or more.
  • the pigment for example, at least selected from the group of Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Y, Zr, Sn, Sb, Bi, Ce, Sm, Eu, Gd, and Er.
  • the oxide of one element can be mentioned.
  • Examples of the composite pigment include (Zr, V) O 2 , Fe (Fe, Cr) 2 O 4 , (Ni, Co, Fe) (Fe, Cr) 2 O 4 ⁇ ZrSiO 4 , (Co, Zn). Examples thereof include Al 2 O 4 and the like.
  • Examples of the fluorescent agent include Y 2 SiO 5 : Ce, Y 2 SiO 5 : Tb, (Y, Gd, Eu) BO 3 , Y 2 O 3 : Eu, YAG: Ce, ZnGa 2 O 4 : Zn, BaMgAl 10 O 17 : Eu and the like can be mentioned.
  • the additive may be added at the time of mixing or pulverization, or may be added after pulverization.
  • a powder (a1) having an average primary particle diameter of 100 nm or more and 200 nm or less and a powder (a2) having an average primary particle diameter of 10 nm or more and less than 60 nm are contained, and the average particles are contained.
  • a production method may be mentioned in which a powder (A) containing a secondary aggregate having a diameter of 275 nm or less is used, and the secondary aggregate contains zirconia and a stabilizer capable of suppressing the phase transition of zirconia.
  • the powder manufacturing process will be described.
  • the method for producing the powder (A) is not particularly limited, and for example, a breakdown process in which coarse particles are pulverized into fine particles, a building-up process in which atoms or ions are synthesized by a nucleation and growth process, and the like can be adopted. ..
  • a method for producing the powder (A) for example, a powder (a1) having an average primary particle diameter of 100 nm or more and 200 nm or less and a powder (a2) having an average primary particle diameter of 10 nm or more and less than 60 nm are contained, and the average particles are contained.
  • Examples thereof include a method of producing a slurry containing secondary agglomerates having a diameter of 275 nm or less, spray-drying and granulating the mixture to obtain a powder (A).
  • the powder (a1) may be a zirconia powder, a stabilizer powder, or a powder containing both. Further, when the powder (a1) contains a zirconia powder, the powder (a2) preferably contains a stabilizer powder.
  • the powder (a2) preferably contains a zirconia powder when the powder (a1) contains a stabilizer powder.
  • the powder (a1) corresponds to the large particles.
  • the powder (a2) corresponds to the small particles.
  • the secondary aggregate contains particles consisting of zirconia and a stabilizer capable of suppressing the phase transition of zirconia.
  • zirconia and a stabilizer are mixed at a predetermined ratio to prepare a mixture (mixing step).
  • a powder of a predetermined raw material compound is selected so that a powder (a1) having an average primary particle diameter of 100 nm or more and 200 nm or less and a powder (a2) having an average primary particle diameter of 10 nm or more and less than 60 nm can be obtained.
  • the stabilizer is yttrium
  • the mixing ratio of zirconia and yttrium can be mixed so as to have the above-mentioned content of yttrium.
  • the mixing of the powder (a1) and the powder (a2) may be a dry type mixing or a wet type mixing.
  • the zirconia-containing composition can be pulverized so that the particles contained in the slurry have a desired particle size (for example, about 100 nm) (pulverization step).
  • the mixing step and the crushing step can be performed in the same step.
  • the pulverization can be performed, for example, by dispersing the composition and the binder in a solvent such as water (dispersion step), and then using a ball mill, a bead mill, or the like to pulverize the composition.
  • the mixture can be dried by spray drying with a spray dryer or the like to form a powder as described above (drying step).
  • drying step drying step
  • the number-based particle size distribution measured using an image of the powder (A) taken with an electron microscope preferably has two peaks.
  • the peak of the powder (A) has a frequency of at least 3% or more, and is preferably 4% or more, more preferably 5% or more, and 6% from the viewpoint of obtaining more excellent strength and translucency. The above is more preferable.
  • the first peak representing the most frequent particle size (mode diameter) is 10 nm or more and less than 60 nm
  • the second peak is 60 nm or more and 200 nm or less.
  • the first peak has an average particle diameter of 10 nm or more and 50 nm or less, and the frequency of the second peak is 4% or more, more preferably. It is more preferable that the first peak has an average particle diameter of 10 nm or more and 50 nm or less, and the second peak has an average particle diameter of 5% or more. Further, in the particle size distribution of the powder (A) based on the number of particles, the difference in frequency (%) between the first peak representing the most frequent particle size (mode diameter) and the second peak is 20% or less. It is preferably 18% or less, more preferably 15% or less, and even more preferably 15% or less. Further, the difference in frequency (%) is preferably more than 0%, more preferably 0.5% or more, and further preferably 1.0% or more.
  • pulverization step it is preferable to use a pulverized medium having a small size, and for example, it is preferable to use a pulverized medium having a size of 100 ⁇ m or less. Further, it is preferable to classify after pulverization.
  • zirconia and stabilizer are not precipitated at the same time (in the same process), but the zirconia preparation process (for example, the manufacturing process) and the stabilizer preparation process (for example, the manufacturing process) are independent and separate. It is preferable that the process is. As a result, it is possible to prevent the stabilizer from being dissolved in zirconia in the process of manufacturing the calcined product, which will be described later.
  • the powder (A) can be formed into a molded product by applying an external force.
  • the molding method is not limited to a specific method, and a suitable method can be appropriately selected depending on the intended purpose.
  • it can be molded by press molding, injection molding, stereolithography, or the like.
  • multi-step molding may be performed.
  • the zirconia-containing composition may be press-molded and then further subjected to CIP treatment.
  • the molded body can have a disk shape, a rectangular parallelepiped shape, or a dental product shape (for example, a crown shape).
  • the surface pressure of press molding is preferably 30 to 200 MPa.
  • the surface pressure of the press is 30 MPa or more, the shape retention of the molded body is excellent, and when it is 200 MPa or less, the density of the molded body does not increase too much and it is easier to prevent it from becoming hard.
  • the molded product also includes a molded product densified by a high-temperature pressure treatment such as CIP (Cold Isostatic Pressing) treatment.
  • the water pressure is preferably 30 to 200 MPa from the same viewpoint as described above.
  • the zirconia calcined product of the present invention is a precursor (intermediate product) of the zirconia sintered body.
  • the calcined body also includes a molded body.
  • the zirconia calcined body according to the present invention also includes, for example, a dental product (for example, a crown-shaped prosthesis) obtained by processing a calcined zirconia disc with a CAD / CAM (Computer-Aided Design / Computer-Aided Manufacturing) system. ..
  • the content of zirconia and the stabilizer in the zirconia calcined product of the present invention is the same as the content in the zirconia-containing composition or molded body before producing the zirconia calcined product.
  • yttrium is preferable as the stabilizer.
  • the molded product is obtained by molding (for example, press molding) a zirconia-containing composition, and the content of zirconia and the stabilizer can be equated with the zirconia-containing composition.
  • the unsolidified ratio of the stabilizer in the zirconia calcined product of the present invention is calculated by the abundance rate of unsolidified yttrium, and depends on the calcined temperature.
  • the calcination temperature in the method for producing a zirconia calcination body of the present invention is preferably 830 to 1080 ° C, more preferably 850 to 1050 ° C, and even more preferably 895 to 1000 ° C.
  • the calcining temperature is less than 830 ° C., the calcining body strength and hardness are not sufficient, and the machinability may be deteriorated.
  • the calcining temperature is higher than 1080 ° C., the strength and hardness of the calcined body may be improved and the machinability may be lowered, and the amount of the stabilizer solid-dissolved depending on the content of the stabilizer. May generate a phase that undergoes a phase transition to a tetragonal system and / or a cubic system due to heat.
  • the calcined body it is preferable to keep the calcined body at the maximum calcining temperature for a certain period of time because the hardness of the calcined body is in a preferable range and the machinability may be good.
  • the calcining conditions depend on the density of the calcined body, the average particle size of the calcined body, and the amount of the binder, but it is preferable to keep the calcined body at the maximum calcining temperature for 30 minutes to 6 hours. Further, the temperature rising rate and the temperature lowering rate are preferably 300 ° C./min or less.
  • the zirconia calcined body of the present invention can be machined to produce a machined body.
  • the cutting method is not limited to a specific method, and a suitable method can be appropriately selected according to the purpose.
  • a zirconia disc which is also a calcined body, can be machined into the shape of a dental product (for example, a crown-shaped prosthesis) with a CAD / CAM system to produce a machined body.
  • the surface smoothness of the machined body may be enhanced by a tool such as an abrasive (for example, Pearl Surface (registered trademark), manufactured by Kuraray Noritake Dental Co., Ltd.).
  • a tool such as an abrasive (for example, Pearl Surface (registered trademark), manufactured by Kuraray Noritake Dental Co., Ltd.).
  • the zirconia calcined body of the present invention, or a machined product thereof, is subjected to a sintering step of firing at a temperature at which the zirconia particles reach sintering to obtain a zirconia sintered body (hereinafter, simply "zirconia sintered body” or “baked body”). It may be referred to as “knot”).
  • the firing temperature is preferably, for example, 1300 to 1600 ° C, more preferably 1350 to 1550 ° C, and 1350 to 1450 ° C from the viewpoint of controlling grain growth to obtain a highly translucent and high-strength sintered body. More preferred.
  • the average crystal grain size of the crystal particles contained in the sintered body is 0.7 ⁇ m or less
  • the density of the sintered body is 5.8 g / cm 3 or more
  • high translucency and high strength are obtained. Be done.
  • the holding time at the sintering temperature is preferably less than 120 minutes, more preferably 90 minutes or less, still more preferably 75 minutes or less. It is more preferably 60 minutes or less, particularly preferably 45 minutes or less, and most preferably 30 minutes or less.
  • the holding time is preferably 1 minute or longer, more preferably 5 minutes or longer, and even more preferably 10 minutes or longer.
  • the firing time for producing the sintered body can be shortened without lowering the translucency and strength of the produced zirconia sintered body.
  • the holding time at the maximum firing temperature for producing a sintered body can be shortened (short-time sintering).
  • production efficiency can be improved, and when the zirconia calcined body of the present invention is applied to a dental product, the dimensions of the dental product used for treatment are determined, cut, and then the dental product is used. It is possible to shorten the time until the product can be treated, and it is possible to reduce the time burden on the patient. In addition, energy costs can be reduced.
  • the holding time at the sintering temperature (for example, the maximum firing temperature) may be, for example, 25 minutes or less, 20 minutes or less, or 15 minutes or less.
  • the temperature rising rate and the temperature lowering rate in the sintering step are set so that the time required for the sintering step is shortened.
  • the heating rate can be set so as to reach the maximum firing temperature in the shortest time according to the performance of the firing furnace.
  • the rate of temperature rise to the maximum temperature shall be, for example, 10 ° C / min or higher, 50 ° C / min or higher, 100 ° C / min or higher, 120 ° C / min or higher, 150 ° C / min or higher, or 200 ° C / min or higher.
  • the temperature lowering rate is preferably set so that defects such as cracks do not occur in the sintered body. For example, after the heating is completed, the sintered body can be allowed to cool at room temperature.
  • the zirconia calcined body of the present invention or the zirconia sintered body obtained by sintering the machined body thereof will be described.
  • the zirconia sintered body can be said to be, for example, one in which zirconia particles have reached a sintered state.
  • the relative density of the zirconia sintered body is preferably 99.5% or more.
  • the relative density can be calculated as the ratio of the measured density measured by the Archimedes method to the theoretical density.
  • the relative density is the density d1 of the sintered body obtained by firing the molded body at a high temperature in a molded body in which powder is filled in a specific mold and formed into a specific shape by pressure, theoretically (without voids inside) zirconia. It means the value divided by the density d2.
  • the zirconia sintered body is not only a sintered body obtained by sintering molded zirconia particles under normal pressure or non-pressurization, but also high-temperature pressurization such as HIP (Hot Isostatic Pressing) treatment. Sintered bodies densified by treatment are also included.
  • HIP Hot Isostatic Pressing
  • the density of the zirconia sintered body is preferably 5.80 g / cm 3 or more, preferably 5.82 g / cm, because the higher the density, the smaller the internal voids and the less likely it is to scatter light. It is more preferably cm 3 or more, and even more preferably 5.87 g / cm 3 or more. It is particularly preferable that the zirconia sintered body contains substantially no voids.
  • the average crystal grain size of the crystal particles contained in the zirconia sintered body is preferable because the more particles smaller than the wavelength of visible light are contained, the higher the translucency and the higher the intensity.
  • the range is preferably 0.70 ⁇ m or less, more preferably 0.68 ⁇ m or less, still more preferably 0.65 ⁇ m or less.
  • the average crystal grain size of the crystal particles contained in the zirconia sintered body can be measured by the method described in Examples described later.
  • the content ratio of zirconia and the stabilizer in the zirconia sintered body is the same as the content ratio in the composition and / or the calcined body before producing the sintered body.
  • the ratio of the monoclinic system is preferably 10% or less, more preferably 5% or less, and substantially not contained (0%). Can be regarded) is even more preferable.
  • the crystal system other than the monoclinic system is a tetragonal system and / or a cubic system.
  • the solid solution ratio of the stabilizer in the zirconia sintered body it is preferable that 95% or more of the contained stabilizer is solid-solved in zirconia, and substantially all the stabilizers are solid-dissolved. It is more preferable to have it.
  • the abundance rate fy of the undissolved yttrium is preferably 5% or less, more preferably 1% or less, and further preferably substantially all solid-dissolved (0%).
  • the biaxial bending strength is preferably 800 MPa or more, more preferably 820 MPa or more, and even more preferably 840 MPa or more.
  • the biaxial bending strength can be measured according to ISO 6872: 2015, and can be measured, for example, by the method described in Examples described later.
  • the translucency of the zirconia sintered body is preferably 8.6 or more, more preferably 10 or more, and further preferably 11 or more.
  • Translucency here means the L * value of lightness (color space) in the L * a * b * color system (JIS Z 8781-4: 2013), and the background of a 1.2 mm thick sample is white.
  • the L * value measured in The value obtained by subtracting the second L * value from the first L * value.
  • a powder (composition) is press-molded so that the thickness of the sintered body is 1.2 mm, and then CIP molding is performed to prepare a disk-shaped molded body having a diameter of, for example, 19 mm. can do.
  • the molded product can be fired under predetermined firing conditions to prepare a sintered body having a thickness of 1.2 mm as a sample.
  • a color difference meter for example, dental color measuring device "Crystal Eye CE100-DC / JP", analysis software “Crystal Eye” (manufactured by Olympus Corporation)
  • a contact liquid for example, a liquid having a refractive index nD measured at a measurement wavelength of 589 nm (sodium D line) can be used.
  • the zirconia sintered body may be a molded body having a predetermined shape.
  • the sintered body can have a disc shape, a rectangular parallelepiped shape, and a dental product shape (for example, a crown shape).
  • the method for producing the composition, powder, molded body, calcined body, machined body, and sintered body described in the present specification is not limited to the above as long as the desired constitution and effect of the present invention can be obtained. Various known methods are applicable.
  • the calcined body of the present invention can be suitably used for zirconia-processed products that require strength and / or aesthetics after firing, such as dental materials, optical fiber cable connectors, smartphone housings, and the like.
  • the average particle size obtained by Image-Pro Plus is the diameter passing through the center of gravity of the particles
  • the average particle size is the length of the line segment connecting the outer lines passing through the center of gravity obtained from the outer lines of the particles. It is measured and averaged in 2 degree increments centered on. The average value of 10 fields of view for one sample of each Example and Comparative Example was taken as the average particle size of the powder.
  • the particle size distribution based on the number has two peak tops, the peaks are separated and the average particle size of each is obtained. And the "average particle size" of small particles.
  • the particle size distribution data obtained from the image analysis was fitted as two peaks using the Gaussian function and the Lorenz function, and the average particle size of each single peak was calculated.
  • the "peak separation" file linked below can be used. https://www.jie.or.jp/publics/index/497/
  • the particle size distribution (number basis) of the powder according to Example 1 is shown in FIG. 5A, and the particle size distribution (number basis) of the powder according to Comparative Example 4 is shown in FIG. 5B.
  • the vertical axis shows the frequency (%)
  • the horizontal axis shows the particle size (nm).
  • the median diameter D50 was obtained by ultrasonically irradiating a slurry diluted with water for 30 minutes using a laser diffraction / scattering particle size distribution measuring device (trade name “Partica LA-950”) manufactured by Horiba Seisakusho Co., Ltd., and then ultrasonically irradiating the slurry. It was measured on a volume basis while applying ultrasonic waves. The particle size at which the cumulative frequency in the obtained measurement results was 50% was calculated on the software and used as the median diameter D50.
  • a laser diffraction / scattering particle size distribution measuring device (trade name “Partica LA-950”) manufactured by Horiba Seisakusho Co., Ltd.
  • FIG. 1 shows an imaging of the zirconia calcined body according to Example 1 with a scanning electron microscope. The particle size distribution (number basis) of the zirconia calcined body according to Example 1 is shown in FIG.
  • FIG. 6A and the particle size distribution (number basis) of the zirconia calcined body according to Comparative Example 4 is shown in FIG. 6B.
  • the vertical axis shows the frequency (%), and the horizontal axis shows the particle size (nm) of the primary particles contained in the zirconia calcined body.
  • the zirconia calcined body is manufactured as a 2 mm flat plate, and the flat plate is fully automated horizontal multipurpose X-ray diffraction. Measurements were performed under the following conditions using an apparatus (SmartLab, manufactured by Rigaku Co., Ltd.) and X-ray analysis integrated software (SmartLab Studio II, manufactured by Rigaku Co., Ltd.), and the presence or absence of a peak near 29 ° was confirmed. ..
  • Optical system Centralized method Detector: High-speed one-dimensional X-ray detector (D / teX Ultra250) Monochromatic: K ⁇ filter Tube voltage: 40kV Tube current: 30mA Scan axis: 2 ⁇ / ⁇ Scan speed: 0.2 ° / min Sampling step: 0.01 °
  • volume of each particle was calculated from the particle size of each particle obtained by Image-Pro Plus. Since the particle size distribution has two peak tops, the peaks were separated and the volume% of each was obtained.
  • ⁇ Measuring method of average crystal grain size in sintered body> In the sintered body obtained in the following Example or Comparative Example, a surface image was obtained with a scanning electron microscope (trade name "VE-9800", manufactured by KEYENCE CORPORATION). The average crystal grain size of the obtained image was calculated by image analysis. Image analysis software "Image-Pro Plus” manufactured by Hakuto Co., Ltd. is used to measure the average crystal grain size, the captured SEM image is binarized, the brightness range is adjusted so that the grain boundaries become clear, and the field of view. Particles were recognized from (region).
  • the crystal grain size obtained by Image-Pro Plus is the diameter passing through the center of gravity of the crystal particles
  • the average crystal grain size is the length of the line connecting the outer shells passing through the center of gravity obtained from the outer shell of the particles. It is measured and averaged in increments of 2 degrees around the center of gravity.
  • the average value of 10 fields of view for one sample of each Example and Comparative Example was taken as the average crystal grain size in the sintered body.
  • FIG. 7 shows the measurement results of the particle size distribution (number basis) of the average crystal grain size in the zirconia sintered body according to Example 1.
  • the vertical axis represents the number and the horizontal axis represents the diameter ( ⁇ m).
  • the sintered body obtained in the following example or comparative example is polished into a flat plate sample having a thickness of 1.2 mm and measured using a spectrocolorimeter (trade name "Crystal Eye") manufactured by Olympus Co., Ltd.
  • the average value of the measured values is shown in Tables 1 to 3.
  • the translucency ⁇ L * (WB) was evaluated as “ ⁇ ” for 11 or more, “ ⁇ ” for 8.6 or more and less than 11, and “ ⁇ ” for less than 8.6.
  • a sintered body having a diameter of 15 mm and a thickness of 1.2 mm was obtained by the method of the following Example or Comparative Example.
  • the obtained sintered body was subjected to a crosshead speed of 0.5 mm using a universal precision testing machine Autograph (trade name "AG-I 100 kN") manufactured by Shimadzu Corporation in accordance with JIS T 6526: 2012.
  • the biaxial bending strength was evaluated as " ⁇ " for 840 MPa or more and "x" for less than 840 MPa.
  • Examples 1 to 18, Comparative Examples 1 to 6, 12, and 13> The separately prepared zirconia raw material and yttrium raw material were weighed so as to have the mass% shown in Table 1 and put into water. This and zirconia beads were placed in a rotary container, and the raw materials were mixed and pulverized so that the particles contained in the slurry had a desired particle size by ball mill pulverization. The particle size was determined by ultrasonically irradiating the slurry diluted with water for 30 minutes using a laser diffraction / scattering type particle size distribution measuring device (trade name "Partica LA-950”) manufactured by Horiba Seisakusho Co., Ltd. It was measured on a volume basis while applying ultrasonic waves.
  • Partica LA-950 laser diffraction / scattering type particle size distribution measuring device
  • FIG. 4 shows the particle size distribution (volume basis) of the slurry measured by the laser diffraction / scattering type particle size distribution measuring device for the slurry according to Examples 1 to 10 and Comparative Examples 1 to 3.
  • the vertical axis shows the frequency (%) which is a value obtained by dividing each particle size by the total number of particles.
  • the slurries used in Comparative Examples 1 to 3 had a small peak on the large particle side and large particles in the vicinity of 1 ⁇ m.
  • Example 1 the surface was imaged with a scanning electron microscope according to the above-mentioned measurement of the average particle size of the powder and the average particle size in the calcined body, and the obtained image was obtained by image analysis to obtain the average particles.
  • the diameter was measured to obtain the average particle size of the secondary agglomerates of the powder and the average particle size of the secondary agglomerates of the calcined product.
  • FIGS. 5A and 6A The results are shown in FIGS. 5A and 6A.
  • FIG. 5A shows the particle size distribution (number basis) of the zirconia powder according to Example 1
  • FIG. 6A shows the particle size distribution (number basis) of the zirconia calcined body.
  • an organic binder was added to the obtained slurry and stirred with a rotary blade.
  • the slurry after stirring was dried and granulated with a spray dryer to obtain a powder.
  • the average particle size of the powder was 40 ⁇ m.
  • This powder was poured into a columnar die, uniaxially pressure-pressed at a pressure of 33 MPa, and then further CIP-treated at 170 MPa to obtain a molded product.
  • the molded product was placed in an electric furnace, heated from room temperature at 10 ° C./min, moored at 500 ° C. for 2 hours to degreas the organic components, held at 1000 ° C. for 2 hours, and held at ⁇ 0.4 ° C./min.
  • the calcined body was obtained by slowly cooling in.
  • the obtained calcined body was heated to the firing temperature shown in Table 2 at 10 ° C./min and moored for 2 hours to obtain a sintered body.
  • the following raw materials 1 to 6 were used as raw materials for zirconia and yttrium.
  • zirconia was wet-ground in water and then spray-dried to obtain dry powder.
  • the monoclinic system was 99% or more, the average primary particle size was 100 nm, and the BET specific surface area was 7.8 m 2 / g.
  • Raw material 2 was obtained by wet pulverization and classification of zirconia. During the wet pulverization, 2% by mass of polyacrylic acid was added and spray-dried to obtain a dry powder.
  • the monoclinic system was 99% or more, the average primary particle size was 40 nm, and the BET specific surface area was 60 m 2 / g.
  • surface-modified nanozirconia was obtained by liquid phase synthesis.
  • Zirconium hydride obtained by hydrating zirconium oxychloride was placed in an aqueous nitric acid solution and irradiated with ultrasonic waves to disperse it until it became transparent.
  • the monoclinic system was 99% or more, the average primary particle size was 15 nm, and the BET specific surface area was 90 m 2 / g.
  • itria Y2O3
  • the average primary particle size was 200 nm and the BET specific surface area was 6.5 m 2 / g.
  • the raw material 5 As the raw material 5, a commercially available CIK Nanotech Co., Ltd .; NanoTek Y2 O 3 was used. The average primary particle size was 15 nm and the BET specific surface area was 32 m 2 / g.
  • Tables 1 and 2 show the measurement results of each example and comparative example.
  • the yttrium content (mass%) in Table 1 is converted into mol%, the yttrium content is the total of zirconia and the stabilizer in Examples 1 to 10, Comparative Examples 1 to 6 and 10 to 13. It was 3.8 mol% with respect to mol. Further, in Comparative Examples 7 to 9, the content of yttrium was 3.1 mol% with respect to the total mol of zirconia and the stabilizer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本発明は、高強度と高透光性を両立可能なジルコニア焼結体を得るための仮焼体、及びその製造方法とを提供する。本発明は、平均粒子径が275nm以下である二次凝集体を含み、前記二次凝集体が、ジルコニア、及びジルコニアの相転移を抑制可能な安定化剤を含み、かつ前記二次凝集体が、平均一次粒子径が100nm以上200nm以下である大粒子、及び平均一次粒子径が10nm以上60nm未満である小粒子からなる、ジルコニア仮焼体に関する。

Description

ジルコニア仮焼体
 本発明は、高強度と高透光性を両立したジルコニア(酸化ジルコニウム(IV);ZrO2)焼結体を得るための仮焼体とその製造方法に関する。
 セラミックの焼結とは、一般的に、系の自由エネルギーが減少する方向の物質移動現象であり、セラミックス粉末を固相焼結する場合、粉末に含まれる一次粒子は、その粒子径と焼成温度に依存して、焼成時間とともに表面積、ないし界面が減少しながら粒成長する。粒成長は粉末に含まれる粒子径が小さく、かつ物質移動先の粒径との差が大きいほど起きやすいことが知られている。
 また、セラミックス焼結体は、一般的に、焼結体に含まれる空隙が少ないほど高強度となり、焼結体に含まれる粒径が小さいほど高強度となることが知られている。さらに、セラミックス焼結体は、焼結体に含まれる空隙が少ないほど高透光性となり、焼結体に含まれる粒径が可視光線の波長より小さい粒子が多く含まれるほど、高透光性となることも知られている。
 従って、セラミックスの強度と透光性の両立には、焼結体が空隙の少ない高密度であって、かつ焼結体に含まれる粒径を小さく留めることが求められている。
 このセラミック粒子間に存在する空隙は、粒成長に伴い、合一化しながら、一部は焼結体外に排出されるが、一部は焼結体内部に留まってしまい、特に、粒成長が早いと、焼結体内部に留まる空隙が増加してしまうため、高密度な焼結体を得ることは課題となっていた。また、セラミックスが多形からなる場合、温度に依存した相変態による体積の増減に伴う密度変化が生じるため、空隙の制御が課題となっていた。
 例えば、ジルコニアは、高強度、かつ高靭性を有するため、安定化剤としてイットリア(酸化イットリウム;Y)を少量固溶させたジルコニア焼結体(以下、「部分安定化ジルコニア焼結体」と称する場合もある)が用いられている。
 その中で、歯科材料として部分安定化ジルコニア焼結体を使用する場合、高強度、及び高靱性という機械的特性の観点からのみならず、審美的観点から、透光性、色調等の光学的特性も求められている。これまでに、部分安定化ジルコニア焼結体において、焼結体の密度、及び強度が高く、自然歯の模倣を目的とした透光性を有したジルコニア焼結体に関する検討がなされてきた。例えば、以下の特許文献1、2が挙げられる。
 例えば、特許文献1では、4.0mol%を超え6.5mol%以下のイットリアを含有する透光性の部分安定化ジルコニア焼結体が開示されている。
 また、特許文献2では、メディアン径D50が0.2~12μmの大粒子(A)とメディアン径D50が0.01~0.3μmの小粒子(B)とが、メディアン径の比が最大(A):(B)=40:1であって、混合比が(A):(B)=0.01:99.9~99.9:0.01の造粒物が公開されている。
特開2019-189524号公報 米国特許出願公開第2004/168610号明細書
 しかしながら、特許文献1では、原料粉末の一次粒子径が32~38nmの小粒子のみを用い、平均粒子径が0.4μm~0.5μmの二次凝集体を得ているため、仮焼体の密度が高まらず、透光性として、不十分であることがわかった。また、特許文献2のように、大粒子(A)と小粒子(B)のメディアン径の比が大き過ぎる場合、焼成中、大粒子(A)に小粒子(B)が即座に吸収され、空隙を排出する前に大粒子(A)由来の粗大粒子が残り、高密度な焼結体が得られず、高強度、かつ高透光性な焼結体が得られないことがわかった。また、メディアン径D50が0.1μm未満の小粒子(B)の割合が100質量部~85質量部の粉末の場合には、0.2~12μmの大粒子(A)と融着するため、造粒中に小粒子(B)が硬い凝集、又は硬い殻を形成し、高密度な焼結体が得られず、高強度、かつ高透光性な焼結体が得られないことがわかった。
 そこで本発明は、高強度と高透光性を両立可能なジルコニア焼結体を得るための仮焼体、及びその製造方法とを提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、ジルコニアと、ジルコニアの相転移を抑制可能な安定化剤とを含有するジルコニア仮焼体であって、平均粒子径で275nm以下の二次凝集体を含み、かつその凝集体が、平均粒子径で100~200nm、及び10~50nmの粒子からなるジルコニア仮焼体が、上記の課題を解決できることを見出し、さらに検討を重ねて本発明を完成するに至った。
 すなわち、本発明は以下の発明を包含する。
[1]平均粒子径が275nm以下である二次凝集体を含み、
 前記二次凝集体が、ジルコニア、及びジルコニアの相転移を抑制可能な安定化剤を含み、かつ
 前記二次凝集体が、平均一次粒子径が100nm以上200nm以下である大粒子、及び平均一次粒子径が10nm以上60nm未満である小粒子からなる、ジルコニア仮焼体。
[2]前記二次凝集体において、前記大粒子の含有率が15~85体積%であり、前記小粒子の含有率が15~85体積%である、[1]に記載のジルコニア仮焼体。
[3]前記安定化剤がイットリアである、[1]又は[2]に記載のジルコニア仮焼体。
[4]前記安定化剤の含有率が、ジルコニアと安定化剤の合計molに対して、3.0~7.5mol%であって、
 前記安定化剤の少なくとも一部はジルコニアに固溶されていない、[1]~[3]のいずれかに記載のジルコニア仮焼体。
[5]前記仮焼体の密度が、2.75g/cm以上である、[1]~[4]のいずれかに記載のジルコニア仮焼体。
[6]前記仮焼体であって、焼成温度1,500℃以下で2時間焼成したときの焼結体に含まれる結晶粒子の平均結晶粒径が、0.70μm以下となる、[1]~[5]のいずれかに記載のジルコニア仮焼体。
[7]前記仮焼体であって、焼成温度1,500℃以下で2時間焼成したときの焼結体の密度が、5.8g/cm以上となる、[1]~[6]のいずれかに記載のジルコニア仮焼体。
[8]前記大粒子及び小粒子を電子顕微鏡で撮像した画像を用いて測定した個数基準の粒子径分布において、2つのピークを有し、最頻度粒子径を表す第1ピークが粒子径10nm以上60nm未満にあり、第2ピークが粒子径60nm以上200nm以下にある[1]~[7]のいずれかに記載のジルコニア仮焼体。
[9]ジルコニアと、ジルコニアの相転移を抑制可能な安定化剤とを含有するジルコニア仮焼体の製造方法であって、
 平均一次粒子径が100nm以上200nm以下である粉末(a1)、及び平均一次粒子径が10nm以上60nm未満である粉末(a2)を含有し、
 平均粒子径が275nm以下である二次凝集体を含む粉末(A)を使用し、
 前記二次凝集体が、ジルコニア、及びジルコニアの相転移を抑制可能な安定化剤を含む、ジルコニア仮焼体の製造方法。
[10]前記二次凝集体を含む粉末(A)が、
平均一次粒子径が100nm以上200nm以下である粉末(a1)を15~85質量%含み、
平均一次粒子径が10nm以上60nm未満である粉末(a2)を15~85質量%含む、[9]に記載のジルコニア仮焼体の製造方法。
[11]前記安定化剤が、粉末(a1)である、[9]又は[10]に記載のジルコニア仮焼体の製造方法。
[12]前記安定化剤の含有率が、ジルコニアと安定化剤の合計molに対して、3.0~7.5mol%であって、
 安定化剤の少なくとも一部はジルコニアに固溶されていない、[9]~[11]のいずれかに記載のジルコニア仮焼体の製造方法。
[13]前記安定化剤がイットリアである、[9]~[12]のいずれかに記載のジルコニア仮焼体の製造方法。
[14][1]~[8]のいずれかに記載のジルコニア仮焼体を得るための粉末の製造方法であって、
 平均一次粒子径が100~275nmである粉末(a1)、及び平均一次粒子径が10nm以上60nm未満である粉末(a2)を含有し、
 平均粒子径275nm以下の二次凝集体を含むスラリーを製造し、
乾燥噴霧して造粒する、粉末の製造方法。
[15][1]~[8]のいずれかに記載のジルコニア仮焼体を焼成する、ジルコニア焼結体の製造方法。
 本発明のジルコニア仮焼体は、焼成することで、歯科材料に好適な高強度と高透光性を両立したジルコニア焼結体を得ることができる。また、本発明の粉末の製造方法によって得られたジルコニア粉末及びジルコニア含有組成物は、成形した際に得られるジルコニア成形体において、欠け(欠損)の発生を抑制できるため、形状保持性に優れる。
実施例1に係る二次凝集体を含むジルコニア仮焼体のSEM像である。 実施例1に係るジルコニア粉末のSEM像である。 比較例4に係る硬い殻を形成したジルコニア粉末のSEM像である。 実施例1~10及び比較例1~3に係るジルコニアスラリーの粒子径分布(体積基準)である。 実施例1に係るジルコニア粉末における粒子径分布(個数基準)である。 比較例4に係るジルコニア粉末における粒子径分布(個数基準)である。 実施例1に係るジルコニア仮焼体における粒子径分布(個数基準)である。 比較例4に係るジルコニア仮焼体における粒子径分布(個数基準)である。 実施例1に係るジルコニア焼結体における粒子径分布(個数基準)である。
 本発明のジルコニア仮焼体は、平均粒子径が275nm以下である二次凝集体を含み、前記二次凝集体が、ジルコニア、及びジルコニアの相転移を抑制可能な安定化剤(以下、単に「安定化剤」ともいう。)を含み、かつ前記二次凝集体が、平均一次粒子径が100nm以上200nm以下である大粒子、及び平均一次粒子径が10nm以上60nm未満である小粒子からなる、仮焼体である。
 本発明のジルコニア仮焼体について説明する。ジルコニア仮焼体は、ジルコニア焼結体の前駆体(中間製品)となり得るものである。本発明において、ジルコニア仮焼体とは、ジルコニア粒子(粉末)がネッキング(固着)し、完全には焼結していない状態でブロック化した半焼結体である。
 本発明のジルコニア仮焼体は、平均粒子径で275nm以下の二次凝集体を含む。二次凝集体は、平均粒子径が100nm以上200nm以下である大粒子、及び平均粒子径が10nm以上60nm未満である小粒子のそれぞれの一次粒子を含み、それらが凝集したものである。
 大粒子の平均一次粒子径は、焼結体の密度に影響するため、100nm以上200nm以下であり、104nm以上175nm以下が好ましく、108nm以上150nm以下がより好ましく、110nm以上135nm以下がさらに好ましい。大粒子の平均一次粒子径が100nm未満の場合、小粒子との凝集が強く、高密度な焼結体が得られないおそれがあり、平均一次粒子径が200nmより大きい場合、焼結後の透光性が低下するおそれがある。また、小粒子の平均一次粒子径は、焼結体の平均結晶粒径に影響するため、強度、又は透光性の観点から、10nm以上60nm未満であり、15nm以上50nm以下が好ましく、20nm以上50nm以下がより好ましく、25nm以上50nm以下がさらに好ましい。小粒子の平均一次粒子径が10nm未満の場合、強度、又は透光性を低下させるというおそれがあり、平均一次粒子径が60nm以上である場合、透光性を低下させるというおそれがある。さらに、二次凝集体の平均粒子径は、成形体の形状保持性(保形性)、焼結体の密度や透光性、強度の観点から、275nm以下であり、265nm以下が好ましく、255nm以下がより好ましく、245nm以下がさらに好ましい。また、高密度の仮焼体、及び焼結体を得る観点から、大粒子の周囲に小粒子が付着している形態が好ましく、例えば、電子顕微鏡画像の目視確認において、大粒子の周囲に小粒子が付着している形態を確認することができる。なお、本発明の平均粒子径及び平均一次粒子径は、例えば、電子顕微鏡による撮像を画像解析することにより算出することができる。原料粉末、原料粉末を成形して得られる成形体及びその仮焼体に含まれる二次凝集体、大粒子、及び小粒子の平均一次粒子径は、例えば、後記する実施例に記載の方法で測定できる。
 本発明における一次粒子とは、最小単位のバルクのことをいい、ジルコニア粒子及び安定化剤粒子が含まれる。また、二次凝集粒子とは、平均一次粒子径が100nm以上200nm以下である大粒子と、平均一次粒子径が10nm以上60nm未満である小粒子が凝集したものとする。大粒子は、ジルコニア及び/又は安定化剤を含み、小粒子は、ジルコニア及び/又は安定化剤を含み、大粒子又は小粒子の少なくとも一方が安定化剤を含む。ある好適な実施形態としては、大粒子がジルコニア粒子及び安定化剤粒子(好適にはイットリア粒子)を含み、小粒子がジルコニア粒子から構成される二次凝集粒子を有する、ジルコニア仮焼体が挙げられる。他の好適な実施形態としては、大粒子がジルコニア粒子から構成され、小粒子がジルコニア粒子及び安定化剤粒子(好適にはイットリア粒子)を含む二次凝集粒子を有する、ジルコニア仮焼体が挙げられる。
 本発明のジルコニア仮焼体は、焼結体の平均結晶粒径を小さく留めて、焼結体の透光性、及び強度を増加させる観点から、前記二次凝集体において、前記大粒子の含有率が15~85体積%であることが好ましく、18~83体積%がより好ましく、20~80体積%がさらに好ましい。また、本発明のジルコニア仮焼体は、小粒子を15~85体積%含むことが好ましく、17~82体積%がより好ましく、20~80体積%がさらに好ましい。これらの範囲であることで、二次凝集の平均粒子径が275nm以下となり、仮焼体の密度が高まり、焼結体の強度、及び透光性を高めることができる。なお、本発明の大粒子、及び小粒子の含有率は、例えば、電子顕微鏡による撮像を画像解析することにより算出することができる。
 本発明のジルコニア仮焼体は、ジルコニアと、ジルコニアの相転移を抑制可能な安定化剤と、を含有する。該安定化剤は、部分安定化ジルコニアを形成可能なものであると好ましい。該安定化剤としては、例えば、酸化カルシウム(CaO)、酸化マグネシウム(MgO)、酸化イットリウム(Y)、酸化セリウム(CeO)、酸化スカンジウム(Sc)、酸化ニオブ(Nb)、酸化ランタン(La)、酸化エルビウム(Er)、酸化プラセオジム(Pr11、Pr)、酸化サマリウム(Sm)、酸化ユウロピウム(Eu)及び酸化ツリウム(Tm)等の酸化物が挙げられ、イットリアが好ましい。本発明のジルコニア仮焼体、及びその焼結体中の安定化剤の含有率は、例えば、誘導結合プラズマ(ICP;Inductively Coupled Plasma)発光分光分析、蛍光X線分析(XRF)等によって測定することができる。
 本発明のジルコニア仮焼体及びその焼結体において、該安定化剤(好適にはイットリア)の含有率は、焼結体の強度及び透光性の観点から、ジルコニアと安定化剤の合計molに対して、3.0~7.5mol%が好ましく、3.5~7.0mol%がより好ましく、4.0~6.5mol%がさらに好ましい。イットリアの含有率が3.0mol%以上であると、焼結体の透光性を高めることができ、7.5mol%以下であると焼結体の強度低下を抑制することができる。
 本発明のジルコニア仮焼体において、前記安定化剤は、その少なくとも一部がジルコニアに固溶されていないことが好ましい。すなわち、ジルコニアの結晶のうち少なくとも一部が単斜晶系であるように存在していると好ましい。安定化剤の一部がジルコニアに固溶されていないことは、例えば、X線回折(XRD;X-Ray Diffraction)パターンによって確認することができる。ジルコニア仮焼体のXRDパターンにおいて、安定化剤に由来するピークが確認された場合には、ジルコニア仮焼体中においてジルコニアに固溶されていない安定化剤が存在していることになる。安定化剤の全量が固溶された場合には、基本的に、XRDパターンにおいて安定化剤に由来するピークは確認されない。ただし、安定化剤の結晶状態等の条件によっては、XRDパターンに安定化剤のピークが存在していない場合であっても、安定化剤がジルコニアに固溶されていないこともあり得る。ジルコニアの主たる結晶系が正方晶系及び/又は立方晶系であり、XRDパターンに安定化剤のピークが存在していない場合には、安定化剤の大部分、基本的に全部はジルコニアに固溶しているものと考えられる。本発明のジルコニア仮焼体においては、該安定化剤の全部がジルコニアに固溶されていなくてもよい。なお、本発明において、安定化剤が固溶するとは、例えば、安定化剤に含まれる元素(原子)がジルコニアに固溶することをいう。
 本発明のジルコニア仮焼体において、ジルコニアに固溶されていないイットリア(以下、「未固溶イットリア」ということがある)の存在率fは、以下の式(1)に基づいて算出することができる。
=I/(I28+I30)*100   (1)
 式(1)において、Iは、CuKα線によるXRDパターンにおける2θ=29°付近のイットリアのピーク強度を表す。
 また、I28は単斜晶系のメインピークが現れる2θ=28°付近のピーク面積を表し、I30は正方晶系または立方晶系のメインピークが現れる2θ=30°付近のピーク面積を表す。
 未固溶イットリアの存在率fは、0%より大きいと好ましく、1%以上であることがより好ましく、2%以上であることがさらに好ましく、3%以上であることが特に好ましい。未固溶イットリアの存在率fの上限は、仮焼体におけるイットリアの含有率に依存する。イットリアの含有率がジルコニアとイットリアの合計molに対して7.5mol%以下であるとき、fは15%以下とすることができる。例えば、イットリアの含有率が3.0mol%以上4.5mol%未満であるとき、fは7%以下とすることができる。イットリアの含有率が4.5mol%以上5.5mol%未満であるとき、fは10%以下とすることができる。イットリアの含有率が5.5mol%以上6.5mol%未満であるとき、fは11%以下とすることができる。イットリアの含有率が6.5mol%以上7.5mol%以下であるとき、fは15%以下とすることができる。
 イットリアの含有率が3.0mol%以上4.5mol%未満であるとき、fが2%以上であることが好ましく、3%以上であることがより好ましく、4%以上であることがさらに好ましく、5%以上であることが特に好ましい。イットリアの含有率が4.5mol%以上5.8mol%未満であるとき、fが3%以上であることが好ましく、4%以上であることがより好ましく、5%以上であることがさらに好ましく、6%以上であることがよりさらに好ましく、7%以上であることが特に好ましい。イットリアの含有率が5.8mol%以上7.5mol%以下であるとき、fが4%以上であることが好ましく、5%以上であることがより好ましく、6%以上であることがさらに好ましく、7%以上であることがよりさらに好ましく、8%以上であることが特に好ましい。
 また、本発明のジルコニア仮焼体においては、正方晶系及び立方晶系のピークが実質的に検出されなくてもよい。
 本発明のジルコニア仮焼体の密度は、焼結体の強度、及び透光性を高める観点から、2.75g/cm以上が好ましく、2.85g/cm以上がより好ましく、2.95g/cm以上がさらに好ましい。ジルコニア仮焼体の密度が2.75g/cm以上であることで、ジルコニア焼結体の透光性が8.6以上で、かつジルコニア焼結体の2軸曲げ強さが850MPa以上とすることができる。ジルコニア焼結体の透光性及び2軸曲げ強さの測定方法は後記する実施例に記載の方法で測定できる。
 本発明のジルコニア仮焼体は、焼成温度1,500℃以下で2時間焼成したときの焼結体に含まれる結晶粒子の平均結晶粒径が、0.70μm以下が好ましく、0.68μm以下がより好ましく、0.65μm以下がさらに好ましい。焼結体に含まれる粒子の平均粒子径が0.70μm以下であることで、ジルコニア焼結体の透光性が8.6以上で、かつジルコニア焼結体の2軸曲げ強さが850MPa以上とすることができる。また、平均粒子径が小さい場合でも、仮焼体の密度が2.75g/cm未満の場合は、透光性が向上しないため、好ましくない。また、本発明のジルコニア仮焼体としては、焼成温度1,500℃以下で2時間焼成したときの焼結体の密度が、5.8g/cm以上であるものが好ましい。
 本発明のジルコニア仮焼体は、後記する実施例に記載の方法のように、例えば、電子顕微鏡(例えば、SEM)による撮像を画像解析することにより平均粒子径を測定した場合に、高強度と高透光性を両立可能なジルコニア焼結体を提供可能にする点から、一次粒子である大粒子及び小粒子を電子顕微鏡で撮像した画像を用いて測定した個数基準の粒子径分布において、ピークを2つ有するものが好ましい。本発明において、ピークは、頻度が少なくとも5%以上あるものを意味し、より優れた強度と透光性が得られる点から、6%以上が好ましく、7%以上がより好ましく、8%以上がさらに好ましい。また、該個数基準での粒子径分布において、最頻度粒子径(モード径)を表す第1ピークが粒子径10nm以上60nm未満にあり、第2ピークが粒子径60nm以上200nm以下にあるものが好ましく、より優れた強度と透光性が得られる点から、前記第1ピークが平均粒子径10nm以上50nm以下にあり、第2ピークの頻度が8%以上であるものがより好ましく、前記第1ピークが平均粒子径10nm以上50nm以下にあり、第2ピークが9%以上であるものがさらに好ましい。
 続いて、本発明のジルコニア仮焼体を製造するためのジルコニア含有組成物、及びジルコニア含有組成物を製造するために使用される粉末について説明する。
 ジルコニア含有組成物は、上述の本発明のジルコニア仮焼体の前駆体となるものである。ジルコニア含有組成物におけるジルコニア、及び安定化剤の含有率は、所定のジルコニア仮焼体の含有率から計算され、ジルコニア含有組成物とジルコニア仮焼体における含有率は、同様である。ジルコニア含有組成物においても、安定化剤の含有率の測定方法は、ジルコニア仮焼体と同様の測定方法で測定できる。
 ジルコニア含有組成物には、粉体、粉体を溶媒に添加した流体、及び粉体を所定の形状に成形した成形体も含まれる。ジルコニア含有組成物が、粉末の形態を有する場合、粉末の集合体であってもよい。粉末は、一次粒子が凝集してできたものである。
 本発明における一次粒子とは、最小単位のバルクのことをいう。例えば、一次粒子は、電子顕微鏡(例えば、走査電子顕微鏡)において、一次粒子同士は結合しておらず、分離可能な状態に見える球状体のことをいう。一次粒子には、ジルコニア粒子及び安定化剤粒子が含まれる。また、一次粒子が凝集したものを二次粒子とする。
 本発明におけるジルコニア含有組成物を構成する粒子は、二次凝集体(二次凝集粒子)が主体であると好ましい。「主体である」とは、二次凝集体の含有率が、ジルコニア含有組成物において、50質量%以上であればよく、60質量%以上が好ましく、70質量%以上がより好ましく、80質量%以上さらに好ましく、90質量%以上が特に好ましい。該二次凝集粒子の平均粒子径は、100nm以上275nm以下が好ましく、100nm以上265nm以下がより好ましく、100nm以上255nm以下がさらに好ましく、100nm以上245nm以下が特に好ましい。平均粒子径が100nm以上であると、二次凝集粒子の粘着力の上昇を抑制でき、二次凝集粒子同士が集まって、結果的には二次凝集が肥大化することを防ぎ得る。二次凝集粒子の平均粒子径が275nmを超えると、プレス成形時にスケルトン効果(粒子同士が接触して支えあってしまう効果)によって成形体の密度が高まらず、焼結後の強度、及び/又は透光性が低下するので好ましくない。二次凝集粒子の平均粒子径の測定方法は、後述する実施例の記載のとおりである。
 該二次凝集粒子を構成する粒子は、平均一次粒子径が100nm以上200nm以下である大粒子、及び平均一次粒子径が10nm以上60nm未満である小粒子を含む。大粒子の平均一次粒子径は、104nm以上175nm以下が好ましく、108nm以上150nmがより好ましく、110nm以上135nm以下がさらに好ましい。大粒子、及び小粒子の平均一次粒子径の測定方法は、後述する実施例の記載のとおりである。大粒子の平均一次粒子径が100nm未満の場合、小粒子との凝集が強くなり、粉末表面に硬い殻を形成し、高密度な組成物が得られないおそれがあり、大粒子の平均一次粒子径が200nmより大きい場合、仮焼体の焼結能が低くなり、焼結温度を高温にしないと、焼成後の密度上昇が起きにくく、高透光性、かつ高強度が得られないというおそれがある。小粒子の平均一次粒子径は、15nm以上50nm以下が好ましく、20nm以上50nm以下がより好ましく、25nm以上50nm以下がさらに好ましい。小粒子の平均一次粒子径が10nm未満の場合、粉末表面に硬い殻を形成し、高密度な組成物が得られないため、好ましくなく、小粒子の平均粒子径が50nmより大きい場合、焼成温度を低温化できないため、好ましくない。また、例えば、電子顕微鏡画像の目視確認において、大粒子の周囲に小粒子が付着している形態が好ましい。さらに、大粒子の周りに小粒子を配置するのに、大粒子と小粒子の表面電位を逆符号に制御し、互いが引かれあうように設計することが好ましい。
 該二次凝集体の平均粒子径は、大粒子と小粒子の粉体の混合比によって変化するため、大前記二次凝集体において、粒子の含有率が15~85質量%が好ましく、18~83質量%がより好ましく、20~80質量%がさらに好ましい。大粒子が85質量%より大きい場合、大粒子への小粒子の付着が少なくなるおそれがあり、15質量%未満では、小粒子の割合が多すぎて、粉末表面に硬い殻を形成し、高密度な組成物が得られないおそれがある。
 ジルコニア含有組成物におけるジルコニアのうち、50%以上、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上のジルコニアが粉末の形態を採ることができる。
 ジルコニア含有組成物の軽装かさ密度は、1.0g/cm以上であることが好ましく、1.1g/cm以上であることがより好ましく、1.2g/cm以上であることがさらに好ましく、1.3g/cm以上であることが特に好ましい。軽装かさ密度は、JIS R 9301-2-3に準拠して測定することができる。
 ジルコニア含有組成物の重装かさ密度は、1.3g/cm以上であることが好ましく、1.4g/cm以上であることがより好ましく、1.5g/cm以上であることがさらに好ましい。重装かさ密度は、JIS R 9301-2-3に準拠して測定することができる。
 ジルコニア含有組成物は、バインダを含んでもよい。
 前記バインダとしては、例えば、有機バインダが挙げられる。有機バインダとしては、例えば、一般的に用いられるアクリル系バインダ、アクリル酸系バインダ、パラフィン系バインダ、脂肪酸系バインダ、ポリビニルアルコール系バインダ等が挙げられる。これらの有機バインダのうち、分子鎖中にカルボキシル基を有するもの、又はカルボン酸誘導体が好ましく、アクリル系バインダ(例えば、ポリアクリル酸等)がより好ましく、水溶性を有するポリアクリル酸塩がさらに好ましい。ポリアクリル酸塩は、アクリル酸又はメタクリル酸と、マレイン酸とを共重合したものであってもよく、スルホン酸を含んでもよく、塩のカチオンとしては、ナトリウム、アンモニウム等が挙げられる。
 ジルコニア含有組成物に含まれるバインダの含有率は、ジルコニア含有組成物において一次粒子間の距離が調節されるために重要である。バインダの含有率としては、ジルコニア含有組成物全体において、1.0~3.0質量%が好ましく、1.2~2.8質量%がより好ましく、1.4~2.6質量%がさらに好ましい。バインダの含有率がジルコニア含有組成物全体において1.0質量%未満の場合、成形体に欠け(欠損)が発生するおそれがある。また、3.0質量%より多い場合、成形体の密度が向上せず、焼結体の強度及び/又は透光性が低下するおそれがある。
 ジルコニア含有組成物は、必要に応じて、着色剤(顔料、複合顔料及び蛍光剤を含む)、アルミナ(Al)、酸化チタン(TiO)、シリカ(SiO)、分散剤(ポリアクリル酸、3-フェニルプロピオン酸等)、消泡剤等の添加剤を含むことができる。これらの成分は1種単独で使用してもよく、2種以上を併用してもよい。前記顔料としては、例えば、Ti、V、Cr、Mn、Fe、Co、Ni、Zn、Y、Zr、Sn、Sb、Bi、Ce、Sm、Eu、Gd、及びErの群から選択される少なくとも1つの元素の酸化物が挙げられる。前記複合顔料としては、例えば、(Zr,V)O、Fe(Fe,Cr)、(Ni,Co,Fe)(Fe,Cr)・ZrSiO、(Co,Zn)Al等が挙げられる。前記蛍光剤としては、例えば、YSiO:Ce、YSiO:Tb、(Y,Gd,Eu)BO、Y:Eu、YAG:Ce、ZnGa:Zn、BaMgAl1017:Eu等が挙げられる。
 前記添加剤は、混合又は粉砕時に添加してもよく、粉砕後に添加してもよい。
 ジルコニア仮焼体の製造方法としては、例えば、平均一次粒子径が100nm以上200nm以下である粉末(a1)、及び平均一次粒子径が10nm以上60nm未満である粉末(a2)を含有し、平均粒子径が275nm以下である二次凝集体を含む粉末(A)を使用し、前記二次凝集体が、ジルコニア、及びジルコニアの相転移を抑制可能な安定化剤を含む、製造方法が挙げられる。まず、粉末の製造工程について説明する。
 粉末(A)の製造方法に特に制限はなく、例えば、粗粒子を粉砕して微粉化するブレークダウンプロセス、原子ないしイオンから核形成及び成長過程により合成するビルディングアッププロセスなどを採用することができる。粉末(A)の製造方法としては、例えば、平均一次粒子径が100nm以上200nm以下である粉末(a1)、及び平均一次粒子径が10nm以上60nm未満である粉末(a2)を含有し、平均粒子径275nm以下の二次凝集体を含むスラリーを製造し、噴霧乾燥して造粒して、粉末(A)を得る方法が挙げられる。粉末(a1)はジルコニアの粉末であってもよく、安定化剤の粉末であってもよく、両方を含むものであってもよい。また、粉末(a2)は、粉末(a1)がジルコニアの粉末を含む場合、安定化剤の粉末を含むことが好ましい。粉末(a2)は、粉末(a1)が安定化剤の粉末を含む場合、ジルコニアの粉末を含むことが好ましい。粉末(a1)は前記大粒子に対応する。粉末(a2)は前記小粒子に対応する。前記二次凝集体は、ジルコニアと、ジルコニアの相転移を抑制可能な安定化剤からなる粒子を含む。
 例えば、まず、ジルコニアと安定化剤とを所定の割合で混合して混合物を作製する(混合工程)。平均一次粒子径が100nm以上200nm以下である粉末(a1)、及び平均一次粒子径が10nm以上60nm未満である粉末(a2)が得られるように所定の原料化合物の粉末を選択する。安定化剤がイットリアである場合、ジルコニアとイットリアの混合比率は、イットリアの前記含有率となるように混合することができる。粉末(a1)と粉末(a2)との混合は乾式混合であってもよいし、湿式混合であってもよい。ジルコニア含有組成物をスラリーに含まれる粒子が所望の粒子径(例えば、約100nm)になるように粉砕することができる(粉砕工程)。混合工程と粉砕工程とを同一の工程で行うことができる。粉砕は、例えば、水等の溶媒に組成物、及びバインダを分散させた後(分散工程)、ボールミル、ビーズミル等を用いて行うことができ、組成物を粉砕する。混合工程、及び/又は粉砕工程後、スプレードライヤ等で混合物を噴霧乾燥で乾燥させて、上述のような粉末形態にすることができる(乾燥工程)。これにより、本発明に係る粉末の形態のジルコニア含有組成物(粉末(A))を製造することができる。
 粉末(A)を電子顕微鏡で撮像した画像を用いて測定した個数基準の粒子径分布において、ピークを2つ有するものが好ましい。本発明において、粉末(A)のピークは、頻度が少なくとも3%以上であり、より優れた強度と透光性が得られる点から、4%以上が好ましく、5%以上がより好ましく、6%以上がさらに好ましい。また、粉末(A)の該個数基準での粒子径分布において、最頻度粒子径(モード径)を表す第1ピークが粒子径10nm以上60nm未満にあり、第2ピークが粒子径60nm以上200nm以下にあるものが好ましく、より優れた強度と透光性が得られる点から、前記第1ピークが平均粒子径10nm以上50nm以下にあり、第2ピークの頻度が4%以上であるものがより好ましく、前記第1ピークが平均粒子径10nm以上50nm以下にあり、第2ピークが5%以上であるものがさらに好ましい。また、粉末(A)の該個数基準での粒子径分布において、最頻度粒子径(モード径)を表す第1ピークと、第2ピークとの頻度(%)の差は、20%以下であることが好ましく、18%以下であることがより好ましく、15%以下であることがさらに好ましい。また、前記頻度(%)の差は、0%超であることが好ましく、0.5%以上であることがより好ましく、1.0%以上であることがさらに好ましい。
 粉砕工程においては、微小サイズの粉砕メディアを使用することが好ましく、例えば、100μm以下の粉砕メディアを使用することが好ましい。また、粉砕後に分級することが好ましい。
 ジルコニアと安定化剤とは別個に準備すると好ましい。例えば、ジルコニアと安定化剤とは、同時に(同じ工程で)析出させるのではなく、ジルコニアの準備工程(例えば製造工程)と安定化剤の準備工程(例えば製造工程)とは、それぞれ独立した別個の工程であると好ましい。これにより、後述する仮焼体の製造工程において安定化剤がジルコニアに固溶すること抑制することができる。
 粉末(A)は、外力を加えて成形体とすることができる。成形方法は特定の方法に限定されず、目的に応じて適宜好適な方法を選択することができる。例えば、プレス成形、射出成形、光造形法等によって成形することができる。また、多段階的な成形を行ってもよい。例えば、ジルコニア含有組成物をプレス成形した後に、さらにCIP処理を施したものでもよい。
 前記成形体は、円盤状、直方体形状、又は歯科製品形状(例えば歯冠形状)を有することができる。
 例えば、金型にジルコニア粉末(ジルコニア、及びジルコニアの相転移を抑制可能な安定化剤を含む前記粉末(A))を充填して、一軸加圧プレスで押し固めた柱状の成形体であってよい。プレス成形の面圧は高いほど成形体の密度が上がる。一方、成形体の密度が高すぎるとジルコニア仮焼体が硬くなる。そこで、プレス成形の面圧は、30~200MPaが好ましい。プレスの面圧が30MPa以上の場合、成形体の保形性に優れ、また、200MPa以下の場合、成形体の密度が増加しすぎず、硬くなることをより防ぎやすい。
 前記成形体は、CIP(Cold Isostatic Pressing:冷間静水等方圧プレス)処理等の高温加圧処理によって緻密化させた成形体も含まれる。水圧は、前記と同様の観点から、30~200MPaが好ましい。
 本発明のジルコニア仮焼体は、ジルコニア焼結体の前駆体(中間製品)となるものである。仮焼体には、成形加工したものも含まれる。本発明に係るジルコニア仮焼体は、例えば、仮焼したジルコニアディスクをCAD/CAM(Computer-Aided Design/Computer-Aided Manufacturing)システムで加工した歯科用製品(例えば歯冠形状の補綴物)も含む。
 本発明のジルコニア仮焼体におけるジルコニア及び安定化剤の含有率は、ジルコニア仮焼体を作製する前のジルコニア含有組成物或いは成形体における含有率と同様である。本発明のジルコニア仮焼体から作製した焼結体の強度及び透光性の観点から、安定化剤はイットリアが好ましい。成形体はジルコニア含有組成物を成形(例えば、プレス成形)したものであり、ジルコニア及び安定化剤の含有率はジルコニア含有組成物と同視し得る。
 本発明のジルコニア仮焼体における安定化剤の未固溶割合は、前記の通り、未固溶イットリアの存在率fで算出され、仮焼温度により依存する。
 本発明のジルコニア仮焼体の製造方法における仮焼温度は、830~1080℃であることが好ましく、850~1050℃であることがより好ましく、895~1000℃であることがさらに好ましい。仮焼温度が830℃未満の場合では、仮焼体強度や硬度が十分でなく、切削加工性が低下するおそれがある。また、仮焼温度が1080℃より大きい場合には、仮焼体強度や硬度が向上して切削加工性が低下するおそれや、安定化剤の含有率に応じて、安定化剤の固溶量が増加し、熱により正方晶系及び/又は立方晶系に相転移する相が生成するおそれがある。
 最高仮焼温度で一定時間保持すると、仮焼体の硬度が好ましい範囲となり、切削加工性が良好な場合があるため、好ましい。仮焼条件は、仮焼体の密度、仮焼体の平均粒子径、バインダの量に依存するが、最高仮焼温度にて30分~6時間保持することが好ましい。また、昇温速度及び降温速度は300℃/分以下であることが好ましい。
 本発明のジルコニア仮焼体は切削加工して切削加工体を作製することができる。切削加工方法は特定の方法に限定されず、目的に応じて適宜好適な方法を選択することができる。例えば、仮焼体でもあるジルコニアディスクをCAD/CAMシステムで歯科用製品(例えば歯冠形状の補綴物)の形状に切削加工して切削加工体を作製することができる。
 切削加工体は、研磨材(例えば、パールサーフェス(登録商標)、クラレノリタケデンタル株式会社製)等の工具で表面平滑性を高めてもよい。
 本発明のジルコニア仮焼体、又はその切削加工体を、ジルコニア粒子が焼結に至る温度で焼成する焼結工程を経ることでジルコニア焼結体(以下、単に「ジルコニア焼結体」又は「焼結体」と称する場合がある)を作製することができる。焼成温度は、粒成長を制御して、高透光性、かつ高強度の焼結体を得る観点から、例えば、1300~1600℃が好ましく、1350~1550℃がより好ましく、1350~1450℃がさらに好ましい。上述の範囲では、焼結体に含まれる結晶粒子の平均結晶粒径が0.7μm以下となり、焼結体の密度は5.8g/cm以上となり、高透光性、かつ高強度が得られる。
 前記焼結工程において、焼結温度(例えば、最高焼成温度)における保持時間は、120分未満であることが好ましく、90分以下であることがより好ましく、75分以下であることがさらに好ましく、60分以下であることがよりさらに好ましく、45分以下であることが特に好ましく、30分以下であることが最も好ましい。当該保持時間は1分以上であることが好ましく、5分以上であることがより好ましく、10分以上であることがさらに好ましい。
 本発明のジルコニア仮焼体によれば、作製されるジルコニア焼結体の透光性及び強度を低下させることなく、焼結体を作製するための焼成時間を短縮することができる。特に、焼結体を作製するための最高焼成温度における保持時間を短縮することができる(短時間焼結)。これにより、生産効率を高めることができ、本発明のジルコニア仮焼体を歯科用製品に適用する場合に、治療に使用する歯科用製品の寸法を決定し、切削加工してから、当該歯科用製品で治療可能とするまでの時間を短縮することができ、患者の時間的負担を軽減することができる。また、エネルギーコストを低減させることができる。
 焼結工程において、焼結温度(例えば、最高焼成温度)における保持時間は、例えば、25分以下、20分以下又は15分以下とすることもできる。
 焼結工程における昇温速度、及び降温速度は、焼結工程に要する時間が短くなるように設定すると好ましい。例えば、昇温速度は、焼成炉の性能に応じて最短時間で最高焼成温度に到達するように設定することができる。最高温度までの昇温速度は、例えば、10℃/分以上、50℃/分以上、100℃/分以上、120℃/分以上、150℃/分以上、又は200℃/分以上とすることができる。降温速度は、焼結体にクラック等の欠陥が生じないような速度を設定することが好ましい。例えば、加熱終了後、焼結体を室温で放冷することができる。
 本発明のジルコニア仮焼体、又はその切削加工体を焼結して得られるジルコニア焼結体について説明する。ジルコニア焼結体とは、例えば、ジルコニア粒子が焼結状態に至ったものということができる。ジルコニア焼結体の相対密度は99.5%以上であることが好ましい。相対密度は、理論密度に対する、アルキメデス法で測定した実測密度の割合として算出することができる。相対密度は、粉末を特定型に充填し、圧力で特定形状にした成形体において、前記成形体を高温で焼成した焼結体の密度d1を、理論的に(内部に空隙を含まない)ジルコニア密度d2で割った値を意味する。
 ジルコニア焼結体には、成形したジルコニア粒子を常圧下ないし非加圧下において焼結させた焼結体のみならず、HIP(Hot Isostatic Pressing;熱間静水等方圧プレス)処理等の高温加圧処理によって緻密化させた焼結体も含まれる。
 ジルコニア焼結体の密度は、高密度ほど内部の空隙が少なく、光散乱しにくくなるため、透光性が向上する点から、5.80g/cm以上であることが好ましく、5.82g/cm以上であることがより好ましく、5.87g/cm以上であることがさらに好ましい。ジルコニア焼結体には、実質的には空隙が含有されていないことが特に好ましい。
 ジルコニア焼結体に含まれる結晶粒子の平均結晶粒径は、可視光線の波長より小さい粒子が多く含まれるほど高透光性、かつ高強度となるため好ましい。その範囲は、0.70μm以下が好ましく、0.68μm以下がより好ましく、0.65μm以下がさらに好ましい。ジルコニア焼結体に含まれる結晶粒子の平均結晶粒径は、後記する実施例に記載の方法で測定できる。
 ジルコニア焼結体におけるジルコニア、及び安定化剤の含有比率は、焼結体を作製する前の組成物、及び/又は仮焼体における含有率と同様である。焼結体におけるジルコニアの結晶系については、単斜晶系の割合は、10%以下であることが好ましく、5%以下であることがより好ましく、実質的には含有されていない(0%と見なせる)とさらに好ましい。単斜晶系以外の結晶系は、正方晶系及び/又は立方晶系である。
 ジルコニア焼結体における安定化剤の固溶割合については、含有されている安定化剤の95%以上がジルコニアに固溶されていると好ましく、実質的には全安定化剤が固溶されているとより好ましい。未固溶イットリアの存在率fは、5%以下であることが好ましく、1%以下であることがより好ましく、実質的にはすべて固溶されている(0%)とさらに好ましい。
 ジルコニア焼結体の強度は、高いほど好ましい。例えば、2軸曲げ強さにおいて、800MPa以上が好ましく、820MPa以上がより好ましく、840MPa以上がさらに好ましい。2軸曲げ強さは、ISO 6872: 2015に準拠して測定でき、例えば、後記する実施例に記載の方法で測定できる。
 ジルコニア焼結体の透光性は、8.6以上であることが好ましく、10以上であることがより好ましく、11以上であることがさらに好ましい。ここでいう透光性とは、L*a*b*表色系(JIS Z 8781-4:2013)における明度(色空間)のL*値について、厚さ1.2mmの試料の背景を白色にして測定したL*値を第1のL*値とし、第1のL*値を測定した同一の試料について、試料の背景を黒色にして測定したL*値を第2のL*値とし、第1のL*値から第2のL*値を控除した値である。試料の作製方法については、まず、焼結体の厚さが1.2mmとなるように、粉末(組成物)をプレス成形、続くCIP成形にて、例えば直径19mmの円盤状の成形体を作製することができる。次に、成形体を所定の焼成条件で焼成して、試料となる厚さ1.2mmの焼結体を作製することができる。L*値の測定については、試料の表面に接触液を塗布した後、色差計(例えば、歯科用測色装置「クリスタルアイ CE100-DC/JP」、解析ソフト「クリスタルアイ」(オリンパス株式会社製))を用いて、黒背景及び白背景のL*値を測定することができる。接触液としては、例えば、測定波長589nm(ナトリウムD線)で測定した屈折率nDが1.60のものを使用することができる。
 ジルコニア焼結体は、所定の形状を有する成形体であってもよい。例えば、焼結体は、ディスク(円盤)形状、直方体形状、歯科製品形状(例えば歯冠形状)を有することができる。
 本明細書に記載の組成物、粉末、成形体、仮焼体、切削加工体、及び焼結体の製造方法は、本発明の所望の構成及び効果が得られる限り、上記に限定されず、公知の種々の方法が適用可能である。
 本発明の仮焼体は、焼成後に強度、及び/又は審美性が求められるジルコニア加工製品、例えば、歯科材料、光ファイバーケーブルコネクタ、スマホ筐体、等、で好適に用いることができる。
 次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
<粉末の平均粒子径の測定>
 下記実施例及び比較例で得られた粉末を、2液硬化性のエポキシ樹脂(商品名「MA2+」、メイワフォーシス株式会社製)に真空中で含侵させ、12時間かけて包埋した。得られた硬化物を研磨紙で研磨して粉末断面を出した。超高分解能分析走査電子顕微鏡(商品名「SU-70」、株式会社日立製作所製)にて表面の撮像(SEM像)を得た。得られた像を画像解析にて平均粒子径を算出し、これを「粉末の二次凝集体の平均粒子径」とした。平均粒子径の計測には伯東株式会社製の画像解析ソフトウェア「Image-Pro Plus」を用い、取り込んだSEM像を二値化して、得られた像に各結晶粒子の粒界を記載した後、視野(領域)から粒子を認識させた。Image-Pro Plusで得られる粒子径とは、粒子の重心を通る直径であり、平均粒子径とは、粒子の外形線から求まる重心を通る外形線同士を結んだ線分の長さを、重心を中心として2度刻みに測定して平均化したものである。各実施例及び比較例の1つのサンプルについて10視野の平均値を、粉末の平均粒子径とした。また、二次凝集体中の粒子の一次粒子径については、本発明では、個数基準の粒子径分布が2つのピークトップを持つため、ピーク分離してそれぞれの平均粒子径を求め、大粒子、及び小粒子の「平均粒子径」とした。ピーク分離は、画像解析から得た粒度分布データから、ガウス関数及びローレンツ関数を用いて2ピークとしてフィッティングし、各単峰ピークの平均粒子径を算出した。ピーク分離には、例えば、下記リンク先の「ピーク分離」ファイルを使用することもできる。
https://www.jie.or.jp/publics/index/497/
 実施例1に係る粉末の粒子径分布(個数基準)について、図5Aに示し、比較例4に係る粉末の粒子径分布(個数基準)について、図5Bに示す。縦軸は頻度(%)を示し、横軸は粒子径(nm)を示す。
<スラリー中の粒子のメディアン径D50の測定>
 メディアン径D50は、株式会社堀場製作所製のレーザー回折/散乱式粒子径分布測定装置(商品名「Partica LA-950」)を用い、水で希釈したスラリーを30分間超音波照射して、その後、超音波を当てながら体積基準で測定した。得られた測定結果における累積頻度が50%となる粒子径をソフト上で算出し、メディアン径D50とした。
<成形体の保形性の評価方法>
 下記実施例、又は比較例で得られた粉末を柱状の金型内に充填して、上下から金型で挟み、33MPaの応力になるまで一軸プレスを実施した。プレス後に取り出した成形体において、矩形の角が欠けてないかを目視で確認した(n=5)。5個中2個以上に0.7mm以上の欠け(欠損)が発生しているものは、保形性が無いとして「×」と評価し、欠けのないものを保形性が優れるとして「○」と評価した。
<仮焼体中の平均粒子径の測定>
 下記実施例、又は比較例で得られた仮焼体を用いて、走査電子顕微鏡(商品名「VE-9800」、株式会社キーエンス製)にて表面の撮像を得た。得られた像を画像解析にて平均粒子径を測定し、これを「仮焼体の二次凝集体の平均粒子径」とした。平均粒子径の計測には伯東株式会社製の画像解析ソフトウェア「Image-Pro Plus」を用いた。Image-Pro Plusで得られる粒子径とは、粒子の重心を通る直径であり、平均粒子径とは、粒子の外形線から求まる重心を通る外形線同士を結んだ線分の長さを、重心を中心として2度刻みに測定して平均化したものである。各実施例及び比較例の1つのサンプルについて10視野の平均値を、仮焼体の平均粒子径とした。また、二次凝集体中の粒子の一次粒子径については、本発明では、粒子径分布が2つのピークトップを持つため、ピーク分離してそれぞれの平均粒子径を求め、大粒子、及び小粒子の「平均粒子径」とした。実施例1に係るジルコニア仮焼体の走査電子顕微鏡による撮像を図1に示す。また、実施例1に係るジルコニア仮焼体の粒子径分布(個数基準)について、図6Aに示し、比較例4に係るジルコニア仮焼体の粒子径分布(個数基準)について、図6Bに示す。縦軸は頻度(%)を示し、横軸はジルコニア仮焼体に含まれる一次粒子の粒子径(nm)を示す。
<ジルコニア仮焼体におけるジルコニアと安定化剤が一部は固溶していないことの判別方法>
 本発明のジルコニア仮焼体において安定化剤の少なくとも一部が固溶していないことの判別には、ジルコニア仮焼体を2mmの平板として製造し、該平板について全自動水平型多目的X線回折装置(SmartLab、株式会社リガク製)及びX線分析統合ソフトウェア(SmartLab Studio II、株式会社リガク製)を用いて、以下の条件にて測定を行い、29°付近のピークについてピークの有無を確認した。ピークの有無は、2θ=10~90°において、最も強度が高いピークを100とした時に、安定化剤のピークが1以上であれば、固溶せずに存在すると判断し「〇」、1未満であれば、固溶しており安定化剤単体としては存在しないとして「×」とした。
 X線源:Cu Kα(λ=1.54186Å)
 ゴニオメーター長:300mm
 光学系:集中法
 検出器:高速1次元X線検出器(D/teX Ultra250)
 単色化:Kβフィルター
 管電圧:40kV
 管電流:30mA
 スキャン軸:2θ/θ
 スキャンスピード:0.2°/分
 サンプリングステップ:0.01°
<仮焼体中の二次凝集体中の一次粒子の含有率[体積%]の測定方法>
 Image-Pro Plusで得られる粒子1つ1つの粒子径から、粒子1つ1つの体積を算出した。粒子径分布が2つのピークトップを持つため、ピーク分離してそれぞれの体積%を求めた。
<仮焼体の密度の測定方法>
 下記実施例、又は比較例で得られた仮焼体を14mm×14mmの底面を有する直方体形状で作製し、マイクロメーターと精密天秤にて、(仮焼体の質量)/(仮焼体の体積)にて求めた(n=3の平均値)。
<焼結体中の平均結晶粒径の測定方法>
 下記実施例、又は比較例で得られた焼結体において、走査電子顕微鏡(商品名「VE-9800」、株式会社キーエンス製)にて表面の撮像を得た。得られた像を画像解析にて平均結晶粒径を算出した。平均結晶粒径の計測には伯東株式会社製の画像解析ソフトウェア「Image-Pro Plus」を用い、取り込んだSEM像を二値化して、粒界が鮮明となるように輝度範囲を調節し、視野(領域)から粒子を認識させた。Image-Pro Plusで得られる結晶粒径とは、結晶粒子の重心を通る直径であり、平均結晶粒径とは、粒子の外郭から求まる重心を通る外郭同士を結んだ線分の長さを、重心を中心として2度刻みに測定して平均化したものである。各実施例及び比較例の1つのサンプルについて10視野の平均値を、焼結体中の平均結晶粒径とした。実施例1に係るジルコニア焼結体中の平均結晶粒径の粒子径分布(個数基準)の測定結果を図7に示す。図7では縦軸が個数を示し、横軸が直径(μm)を表す。
<焼結体の密度の測定方法>
 下記実施例、又は比較例で得られた柱状の焼結体について、マイクロメーターを用いて正確に寸法を測定し、精密天秤にて質量を測定して、(焼結体の質量)/(焼結体の体積)にて、密度を算出した(n=3の平均値)。焼結体の密度は、5.80g/cm以上を「○」、5.80g/cm未満を「×」として評価した。
<焼結体の透光性評価>
 下記実施例、又は比較例で得られた焼結体について、厚み1.2mmの平板試料に研磨加工し、オリンパス株式会社製の分光測色計(商品名「クリスタルアイ」)を用いて、測定モード 7band LED光源で、白背景にて色度を測定した場合の明度(L )と、同じ試験片で、同じ測定装置、測定モード、光源で黒背景にて色度を測定した場合の明度(L )を測定し、両者の差(ΔL=(L )-(L ))を透光性(ΔL(W-B))とした(n=3)。測定値の平均値を表1~3に示す。透光性ΔL*(W-B)は、11以上を「〇」、8.6以上11未満を「△」、8.6未満を「×」として評価した。
<焼結体の2軸曲げ強さの測定方法>
 下記実施例、又は比較例の方法にて、直径15mm、厚さ1.2mmの焼結体を得た。得られた焼結体を、JIS T 6526:2012に準拠して、島津製作所株式会社製の万能精密試験機オートグラフ(商品名「AG-I 100kN」)を用いて、クロスヘッドスピード0.5mm/分にて、2軸曲げ強さを測定した(n=5)。2軸曲げ強さは、840MPa以上を「○」、840MPa未満を「×」として評価した。
<実施例1~18、比較例1~6、12、及び13>
 別個に準備したジルコニア原料とイットリア原料とを、表1に記載の質量%となるように計量し、水に投入した。これとジルコニア製ビーズとを回転型の容器に入れて、ボールミル粉砕により、原料を、スラリーに含まれる粒子が所望の粒子径になるように混合、粉砕処理した。粒子径は、株式会社堀場製作所製のレーザー回折/散乱式粒子径分布測定装置(商品名「Partica LA-950」)を用い、水で希釈したスラリーを30分間超音波照射して、その後、超音波を当てながら体積基準で測定した。ボールミル処理時間が約20時間で所望のスラリーを得た。実施例1~10及び比較例1~3に係るスラリーについて、前記レーザー回折/散乱式粒子径分布測定装置で測定したスラリーの粒子径分布(体積基準)を図4に示す。図4では、縦軸は各粒子径を全体の個数で割った値である頻度(%)を示す。図4では、比較例1~3に用いたスラリーには、大粒子側に小さなピークがあり、1μm付近に大粒子があることが確認された。実施例1について、上記した粉末の平均粒子径の測定及び仮焼体中の平均粒子径の測定に従って、走査電子顕微鏡にて表面の撮像を得て、得られた像を画像解析にて平均粒子径を測定し、粉末の二次凝集体の平均粒子径及び仮焼体の二次凝集体の平均粒子径を得た。結果を図5A及び図6Aに示す。図5Aは実施例1に係るジルコニア粉末の粒子径分布(個数基準)を示し、図6Aはジルコニア仮焼体の粒子径分布(個数基準)を示す。
 次に、得られたスラリーに有機バインダを添加し、回転翼で攪拌した。攪拌後のスラリーを、スプレードライヤで乾燥造粒して粉末を得た。粉末の平均粒子径は40μmであった。この粉末を、柱状の金型に流し込み、33MPaの圧力で一軸加圧プレスした後、170MPaでさらにCIP処理して成形体を得た。成形体を電気炉に入れて、室温から10℃/分にて昇温して500℃で2時間係留して有機成分を脱脂し、1000℃で2時間保持し、-0.4℃/分にて徐冷して仮焼体を得た。得られた仮焼体を、表2に記載の焼成温度まで10℃/分で昇温して2時間係留して焼結体を得た。
 ジルコニア、及びイットリア原料としては、以下の原料1~6を使用した。
 原料1は、ジルコニアを水中で湿式粉砕後に、噴霧乾燥して乾粉を得た。単斜晶系が99%以上であって、平均一次粒子径が100nm、BET比表面積は7.8m/gであった。
 原料2は、ジルコニアの湿式粉砕と分級により得た。湿式粉砕中に、ポリアクリル酸を2質量%加え、噴霧乾燥して乾粉を得た。単斜晶系が99%以上であって、平均一次粒子径が40nm、BET比表面積は60m/gであった。
 原料3は、液相合成により表面修飾したナノジルコニアを得た。オキシ塩化ジルコニウムを水和して得た水酸化ジルコニウムを硝酸水溶液に入れ、超音波を当てて透明になるまで分散させた。フィルターろ過したろ液に、3-フェニルプロピオン酸とポリアクリル酸を2質量%加えて生成した沈殿物を水洗、乾燥して乾粉を得た。単斜晶系が99%以上であって、平均一次粒子径が15nm、BET比表面積は90m/gであった。
 原料4は、イットリア(Y)を水中で湿式粉砕後に、噴霧乾燥して乾粉を得た。平均一次粒子径は200nm、BET比表面積は6.5m/gであった。
 原料5は、市販のCIKナノテック株式会社製;NanoTek Yを用いた。平均一次粒子径は15nm、BET比表面積は32m/gであった。
<比較例7~9>
 市販の東ソー株式会社製;Zpex(登録商標)(原料6)を直接、一軸加圧プレスに用いた以外は、前記記載の方法と同様にして成形体、仮焼体、及び焼結体を得た。
 各実施例、及び比較例の測定結果を表1、2に示す。なお、表1のイットリアの含有量(質量%)からmol%に換算すると、イットリアの含有率は、実施例1~10、比較例1~6及び10~13では、ジルコニアと安定化剤の合計molに対して、3.8mol%であった。また、比較例7~9では、イットリアの含有率は、ジルコニアと安定化剤の合計molに対して、3.1mol%であった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、大粒子を含有せず小粒子のみを含有する比較例1~3、及び7~9では焼結体の強度が低く、二次凝集体の平均粒子径が大きい比較例4~6では焼結体の透光性が低い結果となり、いずれも高強度と高透光性が両立できなかった。さらに、比較例10~13では、焼結体の透光性が低い結果となり、比較例11では強度も低く、いずれも高強度と高透光性が両立できなかった。これに対して、実施例1~18においては、焼結体の透光性が8.0以上、かつ二軸曲げ強さが800MPa以上であり、高強度と高透光性が両立できることがわかった。

Claims (15)

  1.  平均粒子径が275nm以下である二次凝集体を含み、
     前記二次凝集体が、ジルコニア、及びジルコニアの相転移を抑制可能な安定化剤を含み、かつ
     前記二次凝集体が、平均一次粒子径が100nm以上200nm以下である大粒子、及び平均一次粒子径が10nm以上60nm未満である小粒子からなる、ジルコニア仮焼体。
  2.  前記二次凝集体において、前記大粒子の含有率が15~85体積%であり、前記小粒子の含有率が15~85体積%である、請求項1に記載のジルコニア仮焼体。
  3.  前記安定化剤がイットリアである、請求項1又は2に記載のジルコニア仮焼体。
  4.  前記安定化剤の含有率が、ジルコニアと安定化剤の合計molに対して、3.0~7.5mol%であって、
     前記安定化剤の少なくとも一部はジルコニアに固溶されていない、請求項1~3のいずれか一項に記載のジルコニア仮焼体。
  5.  前記仮焼体の密度が、2.75g/cm以上である、請求項1~4のいずれか一項に記載のジルコニア仮焼体。
  6.  前記仮焼体であって、焼成温度1,500℃以下で2時間焼成したときの焼結体に含まれる結晶粒子の平均結晶粒径が、0.70μm以下となる、請求項1~5のいずれか一項に記載のジルコニア仮焼体。
  7.  前記仮焼体であって、焼成温度1,500℃以下で2時間焼成したときの焼結体の密度が、5.8g/cm以上となる、請求項1~6のいずれか一項に記載のジルコニア仮焼体。
  8.  前記大粒子及び小粒子を電子顕微鏡で撮像した画像を用いて測定した個数基準の粒子径分布において、2つのピークを有し、最頻度粒子径を表す第1ピークが粒子径10nm以上60nm未満にあり、第2ピークが粒子径60nm以上200nm以下にある請求項1~7のいずれか一項に記載のジルコニア仮焼体。
  9.  ジルコニアと、ジルコニアの相転移を抑制可能な安定化剤とを含有するジルコニア仮焼体の製造方法であって、
     平均一次粒子径が100nm以上200nm以下である粉末(a1)、及び平均一次粒子径が10nm以上60nm未満である粉末(a2)を含有し、
     平均粒子径が275nm以下である二次凝集体を含む粉末(A)を使用し、
     前記二次凝集体が、ジルコニア、及びジルコニアの相転移を抑制可能な安定化剤を含む、ジルコニア仮焼体の製造方法。
  10.  前記二次凝集体を含む粉末(A)が、
    平均一次粒子径が100nm以上200nm以下である粉末(a1)を15~85質量%含み、
    平均一次粒子径が10nm以上60nm未満である粉末(a2)を15~85質量%含む、請求項9に記載のジルコニア仮焼体の製造方法。
  11.  前記安定化剤が、粉末(a1)である、請求項9又は10に記載のジルコニア仮焼体の製造方法。
  12.  前記安定化剤の含有率が、ジルコニアと安定化剤の合計molに対して、3.0~7.5mol%であって、
     安定化剤の少なくとも一部はジルコニアに固溶されていない、請求項9~11のいずれか一項に記載のジルコニア仮焼体の製造方法。
  13.  前記安定化剤がイットリアである、請求項9~12のいずれか一項に記載のジルコニア仮焼体の製造方法。
  14.  請求項1~8のいずれか一項に記載のジルコニア仮焼体を得るための粉末の製造方法であって、
     平均一次粒子径が100~275nmである粉末(a1)、及び平均一次粒子径が10nm以上60nm未満である粉末(a2)を含有し、
     平均粒子径275nm以下の二次凝集体を含むスラリーを製造し、
    乾燥噴霧して造粒する、粉末の製造方法。
  15.  請求項1~8のいずれか一項に記載のジルコニア仮焼体を焼成する、ジルコニア焼結体の製造方法。
PCT/JP2021/048065 2020-12-24 2021-12-23 ジルコニア仮焼体 WO2022138881A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180086939.2A CN116635332A (zh) 2020-12-24 2021-12-23 氧化锆预烧体
EP21911020.2A EP4269354A1 (en) 2020-12-24 2021-12-23 Zirconia pre-sintered body
KR1020237017983A KR20230122001A (ko) 2020-12-24 2021-12-23 지르코니아 소결체
US18/269,300 US20240067570A1 (en) 2020-12-24 2021-12-23 Zirconia pre-sintered body
JP2022571659A JPWO2022138881A1 (ja) 2020-12-24 2021-12-23

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020215882 2020-12-24
JP2020-215882 2020-12-24

Publications (1)

Publication Number Publication Date
WO2022138881A1 true WO2022138881A1 (ja) 2022-06-30

Family

ID=82158072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048065 WO2022138881A1 (ja) 2020-12-24 2021-12-23 ジルコニア仮焼体

Country Status (6)

Country Link
US (1) US20240067570A1 (ja)
EP (1) EP4269354A1 (ja)
JP (1) JPWO2022138881A1 (ja)
KR (1) KR20230122001A (ja)
CN (1) CN116635332A (ja)
WO (1) WO2022138881A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023120674A1 (ja) * 2021-12-22 2023-06-29 クラレノリタケデンタル株式会社 ジルコニア組成物、ジルコニア仮焼体及びジルコニア焼結体並びにこれらの製造方法
WO2023127793A1 (ja) * 2021-12-27 2023-07-06 クラレノリタケデンタル株式会社 ジルコニア焼結体及びその製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040168610A1 (en) 2002-12-30 2004-09-02 Thomas Conrad Metal oxide powders and metal oxide-binder components with bimodal particle size distributions, ceramics made therefrom, method of producing bimodal metal oxide powders, method for producing ceramics, and dental ceramic products
CN102701279A (zh) * 2012-06-15 2012-10-03 深圳市爱尔创科技有限公司 一种掺杂纳米氧化锆粉体的后处理方法
JP2017128471A (ja) * 2016-01-20 2017-07-27 東ソー株式会社 ジルコニア粉末及びその製造方法
WO2018056330A1 (ja) * 2016-09-20 2018-03-29 クラレノリタケデンタル株式会社 ジルコニア組成物、仮焼体及び焼結体、並びにそれらの製造方法
JP2019189524A (ja) 2013-12-24 2019-10-31 東ソー株式会社 透光性ジルコニア焼結体及びジルコニア粉末、並びにその用途
US20200261322A1 (en) * 2017-03-16 2020-08-20 James R. Glidewell Dental Ceramics, Inc. Methods for Enhancing Optical and Strength Properties in Ceramic Bodies Having Applications in Dental Restorations
WO2020179877A1 (ja) * 2019-03-06 2020-09-10 クラレノリタケデンタル株式会社 短時間で焼成可能なジルコニア成形体および仮焼体

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11479510B2 (en) * 2017-07-31 2022-10-25 Kuraray Noritake Dental Inc. Method for producing zirconia particle-containing powder

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040168610A1 (en) 2002-12-30 2004-09-02 Thomas Conrad Metal oxide powders and metal oxide-binder components with bimodal particle size distributions, ceramics made therefrom, method of producing bimodal metal oxide powders, method for producing ceramics, and dental ceramic products
CN102701279A (zh) * 2012-06-15 2012-10-03 深圳市爱尔创科技有限公司 一种掺杂纳米氧化锆粉体的后处理方法
JP2019189524A (ja) 2013-12-24 2019-10-31 東ソー株式会社 透光性ジルコニア焼結体及びジルコニア粉末、並びにその用途
JP2017128471A (ja) * 2016-01-20 2017-07-27 東ソー株式会社 ジルコニア粉末及びその製造方法
WO2018056330A1 (ja) * 2016-09-20 2018-03-29 クラレノリタケデンタル株式会社 ジルコニア組成物、仮焼体及び焼結体、並びにそれらの製造方法
US20200261322A1 (en) * 2017-03-16 2020-08-20 James R. Glidewell Dental Ceramics, Inc. Methods for Enhancing Optical and Strength Properties in Ceramic Bodies Having Applications in Dental Restorations
WO2020179877A1 (ja) * 2019-03-06 2020-09-10 クラレノリタケデンタル株式会社 短時間で焼成可能なジルコニア成形体および仮焼体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOSKOVITS, M. RAVI, B.G. CHAIM, R.: "Sintering of bimodal Y"2o"3-stabilized zirconia powder mixtures with a nanocrystalline component", NANOSTRUCTURED MATERIALS., ELSEVIER, NEW YORK, NY., US, vol. 11, no. 2, 1 March 1999 (1999-03-01), US , pages 179 - 185, XP004175486, ISSN: 0965-9773, DOI: 10.1016/S0965-9773(99)00030-6 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023120674A1 (ja) * 2021-12-22 2023-06-29 クラレノリタケデンタル株式会社 ジルコニア組成物、ジルコニア仮焼体及びジルコニア焼結体並びにこれらの製造方法
WO2023127793A1 (ja) * 2021-12-27 2023-07-06 クラレノリタケデンタル株式会社 ジルコニア焼結体及びその製造方法

Also Published As

Publication number Publication date
KR20230122001A (ko) 2023-08-22
US20240067570A1 (en) 2024-02-29
EP4269354A1 (en) 2023-11-01
JPWO2022138881A1 (ja) 2022-06-30
CN116635332A (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
JP7198667B2 (ja) ジルコニア組成物、仮焼体及び焼結体、並びにそれらの製造方法
JP7145758B2 (ja) ジルコニア組成物、仮焼体及び焼結体並びにこれらの製造方法、並びに積層体
WO2022138881A1 (ja) ジルコニア仮焼体
WO2014104236A1 (ja) 着色透光性ジルコニア焼結体及びその用途
CN111511702B (zh) 适合于牙科用途的氧化锆预煅烧体
KR20120110129A (ko) 지르코니아-알루미나 복합 세라믹 재료의 제조 방법, 지르코니아-알루미나 복합 과립화 분말, 및 지르코니아 비즈
JP7062900B2 (ja) ジルコニア粉末及びその製造方法
JP6920573B1 (ja) ジルコニア組成物、ジルコニア仮焼体及びジルコニア焼結体、並びにそれらの製造方法
CN114787085A (zh) 氧化锆粉末、氧化锆烧结体以及氧化锆烧结体的制造方法
JP7469717B2 (ja) 粉末及びその製造方法
WO2022071348A1 (ja) 良切削性のジルコニア仮焼体
JP6665542B2 (ja) ジルコニア粉末及びその製造方法
JP2016500362A (ja) セラミック材料
WO2023127562A1 (ja) 高透光性アルミナ焼結体となる歯科用アルミナ仮焼体
WO2023127559A1 (ja) 優れた機械加工性を有する歯科用酸化物セラミックス仮焼体及びその製造方法
JP7444327B1 (ja) ジルコニア組成物及びその製造方法
WO2023127793A1 (ja) ジルコニア焼結体及びその製造方法
WO2023042893A1 (ja) 粉末組成物、仮焼体、焼結体及びその製造方法
JP2024063030A (ja) ジルコニア組成物及びその製造方法
JP2024028485A (ja) 粉末及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21911020

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022571659

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180086939.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18269300

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021911020

Country of ref document: EP

Effective date: 20230724