WO2022138747A1 - 回路接続用接着剤フィルム、並びに、回路接続構造体及びその製造方法 - Google Patents

回路接続用接着剤フィルム、並びに、回路接続構造体及びその製造方法 Download PDF

Info

Publication number
WO2022138747A1
WO2022138747A1 PCT/JP2021/047653 JP2021047653W WO2022138747A1 WO 2022138747 A1 WO2022138747 A1 WO 2022138747A1 JP 2021047653 W JP2021047653 W JP 2021047653W WO 2022138747 A1 WO2022138747 A1 WO 2022138747A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive layer
circuit connection
electrode
component
adhesive
Prior art date
Application number
PCT/JP2021/047653
Other languages
English (en)
French (fr)
Inventor
智陽 山崎
剛幸 市村
亮太 小林
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to CN202180084529.4A priority Critical patent/CN116601250A/zh
Priority to JP2022571571A priority patent/JPWO2022138747A1/ja
Priority to KR1020237023899A priority patent/KR20230125230A/ko
Publication of WO2022138747A1 publication Critical patent/WO2022138747A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/35Heat-activated
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/20Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself
    • C09J2301/208Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive itself the adhesive layer being constituted by at least two or more adjacent or superposed adhesive layers, e.g. multilayer adhesive

Definitions

  • the present invention relates to an adhesive film for circuit connection, a circuit connection structure, and a method for manufacturing the same.
  • an adhesive material for, for example, a connection between a liquid crystal display and a tape carrier package (TCP), a connection between a flexible printed wiring board (FPC) and TCP, or a connection between an FPC and a printed wiring board
  • the conductive material is contained in an adhesive.
  • a circuit connection adhesive film in which particles are dispersed for example, a circuit connection adhesive film having idirectional conductivity
  • COG chip-on-glass
  • An adhesive film for example, an adhesive film for circuit connection having anisotropic conductivity
  • anisotropic conductivity means that it conducts in the pressurized direction and maintains the insulating property in the non-pressurized direction.
  • connection structure in which the distance between the connection electrodes is, for example, 15 ⁇ m or less is required, and the bump electrode of the connection member has also been reduced in area.
  • the bump electrode of the connection member In order to obtain a stable electrical connection in a bump connection with a small area, it is necessary that a sufficient number of conductive particles are interposed between the bump electrode and the circuit electrode on the substrate side.
  • Patent Document 1 proposes a two-layer adhesive film in which an adhesive layer (conductive particle layer) in which conductive particles are dispersed and a layer containing only an adhesive (adhesive layer) are laminated.
  • the adhesive component of the circuit connection adhesive film located between the opposing electrodes is extruded and extruded during thermocompression bonding at the time of manufacturing the circuit connection structure.
  • Conductive particles may flow depending on the agent component. As a result, conductive particles may aggregate between adjacent electrodes, causing a short circuit.
  • the present inventors suppressed the flow of the conductive particles at the time of circuit connection (during thermal pressure bonding) by pre-curing the adhesive in the region where the conductive particles are unevenly distributed, and conducted conductivity.
  • one object of the present invention is to manufacture a circuit connection structure in which the connection resistance between the opposing electrodes is sufficiently low while suppressing the occurrence of a short circuit due to the aggregation of conductive particles.
  • the present inventors have heat-bonded the resin cured layer formed by curing the adhesive layer containing the conductive particles so as to have a structure in which the resin cured layer is bent convexly between adjacent electrodes of the circuit connection structure (for the electrode connection portion). If this can be done, the adhesive component located between the facing electrodes will be reduced in the process of bending, and the connection resistance can be reduced while keeping the conductive particles between the adjacent electrodes separated from each other. I got the idea of not having it.
  • the present inventors have conducted studies based on such an idea, and by setting the flow rate of the adhesive layer containing conductive particles within a specific range, it is possible to form a resin cured layer having the above-mentioned convexly bent structure. And completed the present invention.
  • one aspect of the present invention relates to a method for manufacturing a circuit connection structure shown below.
  • a first adhesive layer containing conductive particles and a second adhesive layer provided on the first adhesive layer are provided, and the procedure (A1) to (A4) below is provided.
  • a step of preparing an adhesive film for circuit connection in which the flow rate of the first adhesive layer to be measured is 130 to 250%, and a first circuit member having a first electrode and a second electrode.
  • the circuit connection adhesive film is interposed between the first circuit member and the second circuit member so that the adhesive layer 2 is on the second circuit member side.
  • the first electrode and the second electrode are electrically attached to each other via the conductive particles in the thermal crimping step.
  • the first adhesive layer is bent so as to be connected to form an electrode connecting portion and to be convex toward the first circuit member side or the second circuit member side between adjacent electrode connecting portions.
  • a method for manufacturing a circuit connection structure which cures the circuit connection adhesive film. (A1) The circuit connection adhesive film is punched out in the thickness direction with the base material attached on both main surfaces of the circuit connection adhesive film, and the diameter R (unit: mm) is 0.
  • a disk-shaped evaluation adhesive film having a diameter of 1 to 1 mm is obtained.
  • the evaluation adhesive film After peeling the base material on the first adhesive layer side from the evaluation adhesive film, the evaluation adhesive film is attached to a glass having a thickness of 0.15 mm from the first adhesive layer side. It is placed on a plate and thermocompression-bonded under the conditions of a crimping temperature of 60 ° C., a crimping pressure of 1 MPa, and a crimping time of 0.1 s to obtain a temporary fixed body.
  • A3 After peeling the base material from the temporary fixing body, a glass plate having a thickness of 0.15 mm is placed on the second adhesive layer under the conditions of a crimping temperature of 170 ° C., a crimping pressure of 80 MPa, and a crimping time of 5 s.
  • Thermocompression bonding is performed to obtain a pressure-bonded body.
  • thermosetting component contains a (meth) acrylate compound as a thermosetting compound.
  • thermosetting component contains an organic peroxide as a curing agent for the thermosetting compound.
  • thermosetting component contains an epoxy compound or an oxetane compound as the thermosetting compound.
  • thermosetting component contains a sulfonium salt or an ammonium salt as a curing agent for the thermosetting compound.
  • the flow rate of the first adhesive layer is 250% or less, it is difficult for conductive particles to flow during thermocompression bonding, and the first adhesive layer after thermocompression bonding is difficult to occur.
  • the film shape is easy to maintain. Therefore, according to the method for manufacturing the circuit connection structure on the side surface, the occurrence of a short circuit due to aggregation of conductive particles is suppressed. Further, in the method for manufacturing the circuit connection structure on the side surface, since the flow rate of the first adhesive layer is 130% or more, the first adhesive layer is bent at the time of thermocompression bonding. Then, the bending causes the first adhesive layer to be stretched to reduce the adhesive component between the facing electrodes. Therefore, according to the method for manufacturing the circuit connection structure on the side surface, it is possible to manufacture a circuit connection structure in which the connection resistance between the opposing electrodes is sufficiently low.
  • Another aspect of the present invention relates to the following circuit connection adhesive film.
  • a first adhesive layer containing conductive particles and a second adhesive layer provided on the first adhesive layer are provided, and the procedure (A1) to (A4) below is provided.
  • An adhesive film for circuit connection wherein the flow ratio of the first adhesive layer to be measured is 130 to 250%.
  • the circuit connection adhesive film is punched out in the thickness direction with the base material attached on both main surfaces of the circuit connection adhesive film, and the diameter R (unit: mm) is 0.
  • a disk-shaped evaluation adhesive film having a diameter of 1 to 1 mm is obtained.
  • A2 After peeling the base material on the first adhesive layer side from the evaluation adhesive film, the evaluation adhesive film is attached to a glass having a thickness of 0.15 mm from the first adhesive layer side.
  • a glass plate having a thickness of 0.15 mm is placed on the second adhesive layer under the conditions of a crimping temperature of 170 ° C., a crimping pressure of 80 MPa, and a crimping time of 5 s. Thermocompression bonding is performed to obtain a pressure-bonded body.
  • a circuit connection adhesive film comprising a first adhesive layer containing conductive particles and a second adhesive layer provided on the first adhesive layer.
  • the first electrode of the first circuit member having the electrode of the above and the second electrode of the second circuit member having the second electrode are electrically connected to each other via the conductive particles.
  • the electrode connecting portion is formed, and the first adhesive layer is bent so as to be convex toward the first circuit member side or the second circuit member side between adjacent electrode connecting portions.
  • circuit connection adhesive film on the side surface it is possible to suppress the occurrence of a short circuit due to aggregation of conductive particles. Further, it is possible to manufacture a circuit connection structure in which the connection resistance between the facing electrodes is sufficiently low.
  • Another aspect of the present invention relates to the circuit connection structure shown below.
  • the electrode and the second electrode are electrically connected to each other via conductive particles, and a circuit connection portion for adhering a first circuit member and a second circuit member is provided, and the circuit connection portion is conductive.
  • the first resin cured layer includes a first resin cured layer containing particles and a second resin cured layer located on the side opposite to the first circuit member side of the first resin cured layer.
  • a plurality of electrode connecting portions for electrically connecting the first electrode and the second electrode to each other by conductive particles interposed between the first electrode and the second electrode are included, and between the adjacent electrode connecting portions.
  • a circuit connection structure that is bent so as to be convex toward the first circuit member side or the second circuit member side.
  • the circuit connection structure on the side surface can be manufactured by using the adhesive film for circuit connection on the side surface, and the structure of the first resin cured layer (adjacent to each other) characteristic of the circuit connection structure on the side surface.
  • a structure that is bent so as to be convex toward the first circuit member side or the second circuit member side between the electrode connection portions) is a novel structure that cannot be obtained when a conventional circuit connection adhesive film is used. Structure.
  • connection resistance between the facing electrodes is sufficiently low while suppressing the occurrence of a short circuit due to the aggregation of conductive particles.
  • FIG. 1 is a schematic cross-sectional view showing an adhesive film for circuit connection according to an embodiment.
  • FIG. 2 is a schematic cross-sectional view showing a main part of the adhesive film for circuit connection shown in FIG.
  • FIG. 3 is a schematic cross-sectional view showing an adhesive film for circuit connection according to another embodiment.
  • FIG. 4 is a schematic cross-sectional view showing a circuit connection structure of one embodiment.
  • FIG. 5 is a schematic cross-sectional view showing a manufacturing process of the circuit connection structure of one embodiment.
  • FIG. 6 is a schematic cross-sectional view showing a circuit connection structure of another embodiment.
  • FIG. 7 is an SEM (scanning electron microscope) photograph showing a cross-sectional structure of the circuit connection structure of the embodiment.
  • (meth) acrylate means at least one of acrylate and the corresponding methacrylate.
  • a or B may include either A or B, and may include both.
  • normal temperature means 25 ° C.
  • each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified.
  • the numerical range indicated by using "-" indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value of the numerical range of one step may be replaced with the upper limit value or the lower limit value of the numerical range of another step.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • the upper limit value and the lower limit value described individually can be arbitrarily combined.
  • One aspect of this embodiment is an adhesive film for circuit connection. Further, one aspect of the present embodiment is a circuit connection structure. Further, one aspect of the present embodiment is a method of manufacturing a circuit connection structure. Further, one aspect of this embodiment is the application of an adhesive film or a cured product thereof to a circuit connection. Further, one aspect of the present embodiment is the application of an adhesive film or a cured product thereof to a circuit connection structure or its manufacture.
  • the circuit connection film of one embodiment includes a first adhesive layer containing conductive particles and a second adhesive layer provided on the first adhesive layer, and includes the following (A1) to A circuit connection adhesive film having a flow rate of the first adhesive layer measured in the procedure (A4) of 130 to 250%.
  • A1 The circuit connection adhesive film is punched out in the thickness direction with the base material attached on both main surfaces of the circuit connection adhesive film, and the diameter R (unit: mm) is 0.1.
  • a disk-shaped evaluation adhesive film having a diameter of about 1 mm is obtained.
  • A2 After peeling the base material on the first adhesive layer side from the evaluation adhesive film, the evaluation adhesive film is placed on a glass plate having a thickness of 0.15 mm from the first adhesive layer side.
  • Thermocompression bonding is performed under the conditions of a crimping temperature of 60 ° C., a crimping pressure of 1 MPa, and a crimping time of 0.1 s to obtain a temporary fixed body.
  • A3 After peeling the base material from the temporary fixing body, a glass plate having a thickness of 0.15 mm is placed on the second adhesive layer, and thermocompression bonding is performed under the conditions of a pressure bonding temperature of 170 ° C., a pressure bonding pressure of 80 MPa, and a pressure bonding time of 5 s. And obtain a crimped body.
  • the circuit connection film of another embodiment includes a first adhesive layer containing conductive particles and a second adhesive layer provided on the first adhesive layer, and the first.
  • the first electrode of the first circuit member having an electrode and the second electrode of the second circuit member having a second electrode are electrically connected to each other via conductive particles to connect the electrodes.
  • a circuit connection adhesive film is formed by forming a portion and bending the first adhesive layer so as to be convex toward the first circuit member side or the second circuit member side between adjacent electrode connection portions.
  • An adhesive film for circuit connection that is cured to form a circuit connection structure.
  • the circuit connection film of this embodiment may be the circuit connection adhesive film of the above embodiment.
  • FIG. 1 is a diagram schematically showing a vertical cross section of an adhesive film for circuit connection (hereinafter, also simply referred to as “adhesive film”) of one embodiment.
  • the adhesive film 1a shown in FIG. 1 includes a first adhesive layer 2 containing conductive particles 4 and an adhesive component 5, and a second adhesive layer 3 provided on the first adhesive layer 2.
  • the conductive particles 4 are present in the vertical cross section of the adhesive film 1a so as to be arranged in the horizontal direction (left-right direction in FIG. 1) with adjacent conductive particles separated from each other.
  • the "longitudinal cross section” means a cross section (cross section in the stacking direction) substantially orthogonal to the main surface (for example, the main surface of the adhesive film 1a).
  • the adhesive film 1a is an adhesive film for circuit connection.
  • for circuit connection means that it is used for connecting circuit members.
  • the adhesive film 1a is interposed between, for example, a first circuit member having a first electrode and a second circuit member having a second electrode, and is interposed between the first circuit member and the second circuit member. Is hot-bonded to be used to electrically connect the first electrode and the second electrode to each other via conductive particles.
  • the adhesive film 1a may or may not have anisotropic conductivity. That is, the adhesive film 1a may be an anisotropically conductive adhesive film or a non-anisotropically conductive (for example, isotropically conductive) adhesive film.
  • FIG. 2 is an enlarged view of a main part of the adhesive film 1a shown in FIG.
  • the adhesive film 1a includes a region (existing region) R1 in which the conductive particles 4 are present and R2 in which the conductive particles 4 are not present (absent region) when the vertical cross section thereof is viewed.
  • the first adhesive layer 2 is configured so that the first adhesive component 5, the conductive particles 4, and the first adhesive component 5 are arranged in this order in the stacking direction.
  • a second adhesive layer 3 is laminated on the adhesive layer 3. That is, the first adhesive component 5 is present between the surface 2a of the first adhesive layer 2 opposite to the second adhesive layer 3 and the conductive particles 4, and the conductive particles.
  • the first adhesive component 5 is also present on the surface of the fourth adhesive layer 3 on the side of the second adhesive layer 3 so as to cover the surface.
  • the shortest distance D from the surface 2a of the first adhesive layer 2 opposite to the second adhesive layer 3 to the surface of the conductive particles 4 suppresses an increase in connection resistance in a high temperature and high humidity environment, and makes a circuit connection. From the viewpoint of suppressing the flow of conductive particles at the time (during thermocompression bonding), it may be more than 0 ⁇ m and not more than 1 ⁇ m. From the same viewpoint, the shortest distance D may be 0.1 ⁇ m or more, 0.2 ⁇ m or more, or 0.8 ⁇ m or less.
  • the shortest distance d11 from the interface S of the first adhesive layer 2 and the second adhesive layer 3 to the surface of the conductive particles 4 may be, for example, 0.1 ⁇ m or more, 3.0 ⁇ m or less, 2.0 ⁇ m or less. It may be less than or equal to or less than 1.0 ⁇ m.
  • the first adhesive component 5 may not be present on the surface of the conductive particles 4 on the second adhesive layer 3 side. That is, it can be said that the shortest distance d11 may be 0 ⁇ m or more.
  • the shortest distance d21 from the interface S of the first adhesive layer 2 and the second adhesive layer 3 to the surface 3a of the second adhesive layer 3 opposite to the first adhesive layer 2 in the existing region R1. May be, for example, 3.0 ⁇ m or more, 5.0 ⁇ m or more, or 10.0 ⁇ m or more, and may be 50 ⁇ m or less.
  • the first adhesive component 5 exists so as to cover the surface of the conductive particles 4 (including the surface on the second adhesive layer 3 side), the first adhesive layer 2 and The interface S of the second adhesive layer 3 has a curved surface that follows the surface shape of the conductive particles 4 in the vicinity of the conductive particles 4 in the non-existent region R2, and the first is as the distance from the conductive particles 4 increases.
  • the surface 2a on the opposite side of the adhesive layer 2 from the second adhesive layer 3 and the surface 3a on the opposite side to the first adhesive layer 2 of the second adhesive layer 3 are substantially parallel to each other. Become.
  • the thickness of the first adhesive layer 2 is the thickest in the vicinity of the conductive particles 4, and becomes thinner as the distance from the conductive particles 4 increases.
  • the thickness of the second adhesive layer 3 is the thinnest in the vicinity of the conductive particles 4, and becomes thicker as the distance from the conductive particles 4 increases.
  • the thickness of the first adhesive layer 2 and the thickness of the second adhesive layer 3 are the thickness of the first adhesive layer 2 in the absent region R2 in which the conductive particles 4 do not exist and the thickness of the second adhesive layer 3. Each is defined as the thickness of the second adhesive layer 3. Further, a preferable range of the thickness of the first adhesive layer 2 and the thickness of the second adhesive layer 3 will be described below, but the following describes the first adhesion at an arbitrary position of the absent region R2.
  • the thickness of the agent layer 2 (for example, both the thickness d12 in the vicinity of the conductive particles 4 and the thickness d13 at a position away from the conductive particles 4) and the thickness of the second adhesive layer 3 (for example, in the vicinity of the conductive particles 4). It means that the thickness d22 and the thickness d23 at a position away from the thickness d22) may be within the range shown below.
  • the thickness of the first adhesive layer 2 is smaller than the average particle size of the conductive particles 4. Specifically, the thickness of the first adhesive layer 2 makes it easier for the conductive particles 4 to be captured between the electrodes facing each other, and from the viewpoint of further reducing the connection resistance, the average particle size of the conductive particles 4 is 0. It may be 6 times or more, 0.7 times or more, or 0.8 times or more. The thickness of the first adhesive layer 2 is such that when the conductive particles are sandwiched between the electrodes facing each other during thermal pressure bonding, the conductive particles are more easily crushed and the connection resistance can be further reduced. It may be less than 1.0 times, 0.9 times or less, or 0.8 times or less the average particle size. From these viewpoints, the thickness of the first adhesive layer 2 is 0.6 times or more and less than 1.0 times, 0.7 to 0.9 times, 0.7 to 0 times the average particle size of the conductive particles 4. It may be 0.8 times or 0.8 to 0.9 times.
  • the ratio of the thickness of the second adhesive layer 3 to the total thickness of the first adhesive layer 2 and the second adhesive layer 3 may be less than 96% from the viewpoint of suppressing the flow of the conductive particles 4 at the time of circuit connection (during thermal pressure bonding).
  • the above ratio may be 94% or less, 93% or less, 88% or less, or 86% or less from the viewpoint of further suppressing the flow of the conductive particles 4 at the time of circuit connection (thermocompression bonding).
  • the above ratio may be, for example, 75% or more, 78% or more, or 80% or more.
  • the thickness of the first adhesive layer 2 may be, for example, 1.0 ⁇ m or more, 2.0 ⁇ m or more, or 3.0 ⁇ m or more from the viewpoint of being able to capture conductive particles more efficiently. It may be 0 ⁇ m or less, 5.0 ⁇ m or less, or 4.0 ⁇ m or less, and may be 1.0 to 6.0 ⁇ m, 2.0 to 5.0 ⁇ m, or 3.0 to 4.0 ⁇ m.
  • the thickness of the second adhesive layer 3 is 5.0 ⁇ m or more and 8.0 ⁇ m from the viewpoint that the space between the electrodes can be sufficiently filled to seal the electrodes and better reliability can be obtained. It may be 15.0 ⁇ m or more or 10.0 ⁇ m or more, 15.0 ⁇ m or less, 13.0 ⁇ m or less, 12.0 ⁇ m or less, 11.0 ⁇ m or less, or 8.0 ⁇ m or less, 5.0 to 15.0 ⁇ m, 8. It may be 0 to 13.0 ⁇ m, 10.0 to 11.0 ⁇ m, 6.0 to 8.0 ⁇ m, 9.0 to 11.0 ⁇ m or 10.0 to 12.0 ⁇ m.
  • the total thickness of the first adhesive layer 2 and the second adhesive layer 3 is, for example, 6.0 ⁇ m or more, 8.0 ⁇ m or more, 10.0 ⁇ m or more, and 12.0 ⁇ m. It may be more than or equal to 14.0 ⁇ m, and may be 18.0 ⁇ m or less, 16.0 ⁇ m or less, 14.0 ⁇ m or less, or 10.0 ⁇ m or less, 6.0 to 18.0 ⁇ m, 8.0 to 16.0 ⁇ m. It may be 10.0 to 14.0 ⁇ m, 8.0 to 10.0 ⁇ m, 12.0 to 14.0 ⁇ m or 14.0 to 16.0 ⁇ m.
  • the thickness of the first adhesive layer 2 and the thickness of the second adhesive layer 3 described above are, for example, a bisphenol A type epoxy resin obtained by sandwiching an adhesive film between two sheets of glass (thickness: about 1 mm).
  • a resin composition consisting of 100 g (trade name: JER811, manufactured by Mitsubishi Chemical Co., Ltd.) and 10 g of a curing agent (trade name: Epomount curing agent, manufactured by Refine Tech Co., Ltd.) is cast and then cross-sectionald using a polishing machine. It can be obtained by polishing and measuring using a scanning electron microscope (SEM, trade name: SU-8000, manufactured by Hitachi High-Tech Science Co., Ltd.).
  • the first adhesive layer 2 has a flow rate of 130 to 250%.
  • the flow rate is an index indicating the fluidity (flow) at the time of thermocompression bonding, and specifically, it is measured by the following methods (A1) to (A4).
  • A1 The adhesive film 1a is punched in the thickness direction with the base material attached on both main surfaces of the adhesive film 1a, and a circle having a diameter R (unit: mm) of 0.1 to 1 mm. Obtain a plate-shaped evaluation adhesive film.
  • A2 After peeling the base material on the first adhesive layer side from the evaluation adhesive film, the evaluation adhesive film is applied from the first adhesive layer side to a glass plate having a thickness of 0.15 mm (first).
  • a glass plate (second glass plate) having a thickness of 0.15 mm is placed on the second adhesive layer, and the pressure bonding temperature is 170 ° C., the pressure bonding pressure is 80 MPa, and the pressure bonding is performed. Thermocompression bonding is performed under the condition of time 5s to obtain a pressure-bonded body.
  • an evaluation adhesive film having a diameter R (unit: mm) of 0.1 to 1 mm is obtained.
  • the diameter R (unit: mm) may be 1 mm, and when the width of the adhesive film 1a is less than 1 mm, the adhesive film 1a
  • the diameter R may be adjusted according to the width.
  • the above steps do not prevent the adhesive film 1a from having a disk shape of 0.1 to 1 mm.
  • the details of the evaluation method are shown in Examples.
  • the second adhesive layer 3 may have a minimum melt viscosity of, for example, 200 to 4000 Pa ⁇ s.
  • the minimum melt viscosity of the second adhesive layer 3 may be less than 200 Pa ⁇ s, but when the minimum melt viscosity of the second adhesive layer 3 is 200 Pa ⁇ s or more, the flow of conductive particles due to resin flow. Is suppressed, and conductive particles tend to be easily captured between the electrodes.
  • the minimum melt viscosity of the second adhesive layer 3 may be larger than 4000 Pa ⁇ s, but when the minimum melt viscosity of the second adhesive layer 3 is 4000 Pa ⁇ s or less, better resin exclusion property is obtained. And the connection resistance tends to be lower.
  • the minimum melt viscosity of the second adhesive layer 3 may be 500 Pa ⁇ s or more or 800 Pa ⁇ s or more, 3000 Pa ⁇ s or less, 2500 Pa ⁇ s or less, 2000 Pa ⁇ s or less, or 1500 Pa ⁇ s. It may be less than or equal to 500 to 2500 Pa ⁇ s or 800 to 1500 Pa ⁇ s.
  • the minimum melt viscosity of the second adhesive layer 3 can be measured by the method described in Examples.
  • the temperature at which the minimum melt viscosity of the second adhesive layer 3 is reached may be, for example, 50 to 100 ° C.
  • the minimum melt viscosity reaching temperature of the second adhesive layer 3 may be less than 50 ° C., but when the minimum melt viscosity reaching temperature of the second adhesive layer 3 is 50 ° C. or higher, the storage stability of the film is stable. Also tends to be improved, and hardening during temporary crimping tends to be suppressed.
  • the temperature at which the minimum melt viscosity of the second adhesive layer 3 is reached may be higher than 100 ° C., but when the temperature at which the minimum melt viscosity of the second adhesive layer 3 is reached is 100 ° C. or lower, the temperature is 130 to 180 ° C.
  • the minimum melt viscosity reaching temperature of the second adhesive layer 3 may be 60 ° C. or higher, 70 ° C. or higher, or 75 ° C. or higher, and 90 ° C. or lower, 85 ° C. or lower, or 80 ° C. or lower. It may be 60 to 90 ° C, 70 to 90 ° C, 75 to 85 ° C or 75 to 80 ° C.
  • the first adhesive layer 2 is, for example, conductive particles 4 (hereinafter, may be referred to as “(A) component”) and a thermosetting component (hereinafter, may be referred to as “(B) component”). And a cured product (photo-cured product) of a photocurable component (hereinafter, may be referred to as “(C) component”).
  • the component (B) is a component that can flow at the time of connection, and is, for example, an uncured curable component (for example, a resin component).
  • the cured product of the component (C) may be a cured product obtained by completely curing the component (C), or may be a cured product obtained by curing a part of the component (C).
  • the first adhesive layer 2 does not have to contain the cured product of the component (C).
  • the components other than the component (A) constituting the first adhesive layer 2 are, for example, non-conductive components (for example, an insulating resin component).
  • the component (A) is not particularly limited as long as it is conductive particles, such as metal particles made of metal such as Au, Ag, Ni, Cu, and solder, and conductive carbon particles made of conductive carbon. May be.
  • the component (A) may be a coated conductive particle containing a nucleus containing non-conductive glass, ceramic, plastic (polystyrene, etc.) and the like, and a coating layer containing the metal or conductive carbon and covering the nucleus. good.
  • coated conductive particles including metal particles formed of a heat-meltable metal or a nucleus containing plastic and a coating layer containing metal or conductive carbon and covering the nucleus is used.
  • the adhesive layer can be easily deformed by heating or pressurizing. Therefore, when the electrodes are electrically connected to each other, the contact area between the electrodes and the component (A) can be increased, and the conductivity between the electrodes can be further improved.
  • the component (A) may be an insulating coated conductive particle including the above-mentioned metal particles, conductive carbon particles, or coated conductive particles and an insulating material such as a resin and having an insulating layer covering the surface of the particles. good.
  • the component (A) is an insulating coated conductive particle, even when the content of the component (A) is large, the surface of the particle is coated with the resin, so that the component (A) is short-circuited due to contact with each other. The generation can be suppressed, and the insulation between adjacent electrode circuits can be improved.
  • one of the above-mentioned various conductive particles may be used alone or in combination of two or more.
  • the maximum particle size of the component (A) is smaller than the minimum distance between the electrodes (the shortest distance between adjacent electrodes).
  • the maximum particle size of the component (A) may be 2.5 ⁇ m or more, 3.0 ⁇ m or more, or 3.5 ⁇ m or more from the viewpoint of excellent dispersibility and conductivity.
  • the maximum particle size of the component (A) may be 6.0 ⁇ m or less, 5.0 ⁇ m or less, 4.5 ⁇ m or less, or 4.0 ⁇ m from the viewpoint of excellent dispersibility and conductivity. It may be: From these viewpoints, the maximum particle size of the component (A) may be 2.5 to 6.0 ⁇ m, 3.0 to 5.0 ⁇ m, or 3.0 to 4.0 ⁇ m. , 3.5-4.5 ⁇ m.
  • the particle size of any 300 conductive particles (pcs) is measured by observation using a scanning electron microscope (SEM), and the largest value obtained is the maximum particle size of the component (A). And.
  • the particle size of the component (A) is the diameter of a circle circumscribing the conductive particles in the SEM image.
  • the average particle size of the component (A) may be 2.5 ⁇ m or more, 3.0 ⁇ m or more, or 3.5 ⁇ m or more from the viewpoint of excellent dispersibility and conductivity.
  • the average particle size of the component (A) may be 6.0 ⁇ m or less, 5.0 ⁇ m or less, 4.5 ⁇ m or less, or 4.0 ⁇ m from the viewpoint of excellent dispersibility and conductivity. It may be: From these viewpoints, the average particle size of the component (A) may be 2.5 to 6.0 ⁇ m, 3.0 to 5.0 ⁇ m, or 3.0 to 4.0 ⁇ m. , 3.5-4.5 ⁇ m.
  • the particle size of any 300 conductive particles is measured by observation using a scanning electron microscope (SEM), and the average value of the obtained particle sizes is taken as the average particle size.
  • the particle density of the component (A) in the first adhesive layer 2 may be 5000 pieces / mm 2 or more, and may be 10000 pieces / mm 2 or more, from the viewpoint that stable connection resistance can be easily obtained. It may be 20000 pieces / mm 2 or more.
  • the particle density of the component (A) in the first adhesive layer 2 may be 50,000 pieces / mm 2 or less, and 40,000 pieces / mm 2 or less, from the viewpoint of improving the insulating property between adjacent electrodes. It may be 30,000 pieces / mm 2 or less. From these viewpoints, the particle density of the component (A) may be 5000 to 50,000 pieces / mm 2 , 10,000 to 40,000 pieces / mm 2 or 20,000 to 30,000 pieces / mm 2 .
  • the content of the component (A) is, for example, 5% by mass or more, 15% by mass or more, or 20% by mass or more based on the total mass of the first adhesive layer from the viewpoint of further improving the conductivity. It may be there.
  • the content of the component (A) may be, for example, 50% by mass or less, 40% by mass or less, or 30% by mass or less based on the total mass of the first adhesive layer from the viewpoint of easily suppressing a short circuit. From these viewpoints, the content of the component (A) may be, for example, 5 to 50% by mass, 10 to 40% by mass, or 20 to 30% by mass based on the total mass of the first adhesive layer.
  • the content of the component (A) in the composition for forming the first adhesive layer 2 (the first adhesive composition described later) (based on the total mass of the composition) is the same as the above range. It may be there.
  • the component (B) is not particularly limited as long as it is a component that is cured by heat.
  • the component (B) is, for example, a resin component, and is a thermosetting compound (hereinafter, may be referred to as “(B1) component”) and a curing agent for the thermosetting compound (hereinafter, “(B2)). It may be referred to as "ingredient").
  • Thermosetting compound The component (B1) is a compound that reacts and crosslinks by heating in the coexistence with the component (B2).
  • the component (B1) may be, for example, a radically polymerizable compound (hereinafter, may be referred to as “(B1-1) component”) and a cationically polymerizable compound (hereinafter, referred to as “(B1-2) component”). In some cases).
  • a radically polymerizable compound hereinafter, may be referred to as “(B1-1) component”
  • (B1-2) component a cationically polymerizable compound
  • As the component (B1) one type may be used alone, or a plurality of types may be used in combination.
  • Component (B1-1) Radical Polymerizable Compound
  • the component (B1-1) has at least one radically polymerizable group.
  • the radically polymerizable group include a (meth) acryloyl group, a vinyl group, an allyl group, a styryl group, an alkenyl group, an alkenylene group, a maleimide group and the like.
  • the number of radically polymerizable groups (number of functional groups) of the component (B1) is 2 or more from the viewpoint that the desired melt viscosity can be easily obtained after polymerization, the effect of reducing the connection resistance is further improved, and the connection reliability is superior. It may be 10 or less from the viewpoint of suppressing curing shrinkage during polymerization. Further, in order to balance the crosslink density and the curing shrinkage, in addition to the compound having the number of radically polymerizable groups within the above range, a compound having the number of radically polymerizable groups outside the above range may be used. good
  • the component (B1-1) may contain a (meth) acrylate compound as a radically polymerizable compound from the viewpoint of suppressing the flow of conductive particles.
  • the (meth) aclate compound may be a monofunctional (meth) acrylate having one (meth) acryloyl group, or may be a polyfunctional (meth) acrylate having two or more (meth) acryloyl groups. , These may be used together.
  • the component (B1-1) may be a polyfunctional (meth) acrylate from the viewpoint of further suppressing the flow of conductive particles.
  • Examples of the monofunctional (meth) acrylate include (meth) acrylic acid; methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, and tert-butyl (meth) acrylate.
  • examples thereof include (meth) acrylate having an oxetanyl group such as (3-ethyloxetane-3-yl) methyl (meth) acrylate.
  • polyfunctional (meth) acrylate examples include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, and polyethylene glycol di (meth) acrylate.
  • the content of the monofunctional (meth) acrylate may be, for example, 0 to 60% by mass, 0 to 50% by mass, or 0 to 40% by mass based on the total mass of the component (B1-1).
  • the content of the polyfunctional (bifunctional or higher) (meth) acrylate is, for example, 40, based on the total mass of the component (B1-1), from the viewpoint of achieving both the effect of reducing the connection resistance and the suppression of particle flow. It may be up to 100% by mass, 50 to 100% by mass, or 60 to 100% by mass.
  • the component (B1-1) may be an epoxy (meth) acrylate from the viewpoint that a first adhesive layer having a flow rate of 250% or less can be easily obtained. From the same viewpoint, the component (B1-1) may be an aromatic epoxy (meth) acrylate as described above.
  • the content of the epoxy (meth) acrylate may be, for example, 40 to 100% by mass, 50 to 100% by mass, or 60 to 100% by mass based on the total mass of the component (B1-1).
  • the component (B1-1) has a tricyclodecane structure, a crosslinked structure such as norbornane structure, and / or an aromatic structure from the viewpoint that a first adhesive layer having a flow rate of 250% or less can be easily obtained. You can do it.
  • a (meth) acrylate having a tricyclodecane structure, a crosslinked structure such as norbornane structure, and / or an aromatic structure is used as the component (B1-1), the first adhesive having a flow rate of 250% or less. Layers are easier to obtain.
  • the content of the (meth) acrylate having a tricyclodecane structure, a crosslinked structure such as norbornane structure, and / or an aromatic structure is, for example, 40 to 100% by mass based on the total mass of the component (B1-1). , 50-100% by mass or 60-100% by mass.
  • the component (B1-1) may contain a compound having a weight average molecular weight of 300 to 4000 from the viewpoint that a first adhesive layer having a flow rate of 130 to 250% can be easily obtained.
  • the content of the compound having a weight average molecular weight of 300 to 4000 may be, for example, 20% by mass or more, 30% by mass or more, or 40% by mass or more, based on the total mass of the component (B1-1), 100. It may be 0% by mass or less, 80% by mass or less, or 60% by mass or less, and may be 20 to 100% by mass, 30 to 80% by mass, or 40 to 60% by mass.
  • the weight average molecular weight of all (B1-1) components may be 300 to 4000.
  • the weight average molecular weight in the present specification means a value measured by a gel permeation chromatograph (GPC) using a calibration curve using standard polystyrene.
  • the component (B1-1) may contain other radically polymerizable compounds in addition to the (meth) acrylate compound.
  • examples of other radically polymerizable compounds include maleimide compounds, vinyl ether compounds, allyl compounds, styrene derivatives, acrylamide derivatives, nadiimide derivatives and the like.
  • the content of the other radically polymerizable compound may be, for example, 0 to 40% by mass based on the total mass of the component (B1).
  • Component (B1-2) Cationicly polymerizable compound
  • the component (B1-2) may be a compound having a cyclic ether group from the viewpoint of further improving the effect of reducing the connection resistance and improving the connection reliability.
  • the effect of reducing the connection resistance tends to be further improved.
  • the component (B1-2) may be a compound having a plurality of cyclic ether groups.
  • the epoxy compound is a compound having an epoxy group, for example, having two or more epoxy groups in one molecule.
  • Epoxy compounds include an epoxy resin derived from bisphenol A and epichlorohydrin (bisphenol A type epoxy resin) and an epoxy compound having an alicyclic epoxy group (3', 4'-epoxycyclohexylmethyl-3,4. -Epoxycyclohexanecarboxylate, etc.) can be used.
  • an epoxy compound having an alicyclic epoxy group it is easy to obtain a first adhesive layer having a flow rate of 250% or less. From the viewpoint that a first adhesive layer having a flow rate of 130 to 250% can be easily obtained, the functional group equivalent of the epoxy compound may be 100 to 500 g / eq.
  • Examples of commercially available epoxy compounds include YL-980 (trade name, manufactured by Mitsubishi Chemical Co., Ltd.), jER1007 (trade name, manufactured by Mitsubishi Chemical Co., Ltd.), which is a bisphenol A type epoxy resin, and an alicyclic epoxy compound.
  • Examples thereof include EHPE3150, EHPE3150CE, CEL (celloxide) 8010, CEL (celloxide) 2021P, CEL (celloxside) 2081 (trade name, manufactured by Daicel Co., Ltd.). These may use one kind of compound alone or may use a plurality of kinds in combination.
  • the oxetane compound is a compound having an oxetaneyl group, for example, having two or more oxetanel groups in one molecule.
  • the functional group equivalent of the oxetane compound may be 100 to 500 g / eq.
  • the oxetane compound may be used in combination with an epoxy compound having an alicyclic epoxy group. In this case, it becomes easier to obtain a first adhesive layer having a flow rate of 250% or less.
  • Examples of commercially available oxetane compounds include ETERNACOLL OXBP (trade name, 4,4'-bis [(3-ethyl-3-oxetanyl) methoxymethyl] biphenyl, manufactured by Ube Kosan Co., Ltd.), OXSQ, OXT-121, and the like. Examples thereof include OXT-221, OXT-101, and OXT-212 (trade name, manufactured by Toagosei Corporation). These may use one kind of compound alone or may use a plurality of kinds in combination.
  • Component (B2) Curing agent of component (B1)
  • the component (B2) is, for example, a thermal polymerization initiator.
  • the component (B2) may be, for example, a thermal radical generator (hereinafter, may be referred to as “(B2-1) component”) and a thermal acid generator (hereinafter, referred to as “(B2-2) component”). In some cases).
  • the component (B2) may be selected according to the type of the component (B1).
  • a thermal radical generator thermal radical polymerization initiator
  • a thermal acid generator thermal cation polymerization initiator
  • Component (B2-1) Thermal radical generator
  • the component (B2-1) is decomposed by heat to generate free radicals. That is, the component (B2-1) is a compound that generates radicals by applying thermal energy from the outside.
  • the component (B2-1) can be arbitrarily selected from conventionally known organic peroxides and azo compounds.
  • the component (B2-1) may be an organic peroxide from the viewpoint of further improving the effect of suppressing the flow of conductive particles and the effect of suppressing peeling after transfer, and is more stable, reactive and compatible. From a good viewpoint, it may be an organic peroxide having a 1-minute half-life temperature of 90 to 175 ° C. and a weight average molecular weight of 180 to 1000.
  • the 1-minute half-life temperature of the organic peroxide is within the above range, the storage stability tends to be further excellent, and a sufficiently high radical polymerizable property can be obtained, so that the organic peroxide can be cured in a short time.
  • the 1-minute half-life temperature of the component (B2-1) is 90 to 175 ° C., it becomes easy to obtain a first adhesive layer having a flow rate of 250% or less.
  • component (B2-1) examples include 1,1,3,3-tetramethylbutylperoxyneodecanoate, di (4-t-butylcyclohexyl) peroxydicarbonate, and di (2-ethylhexyl).
  • the content of the component (B2-1) is, for example, (B1-1) from the viewpoint of excellent quick-curing property, and further improving the effect of suppressing the flow of conductive particles and the effect of suppressing exfoliation after transfer.
  • it may be 0.1 to 20 parts by mass, 1 to 18 parts by mass, 3 to 15 parts by mass, or 5 to 12 parts by mass with respect to 100 parts by mass of the component.
  • the (B2-2) component is a thermal polymerization initiator (thermal latent cation generator) that generates an acid or the like by heating to initiate polymerization.
  • the component (B2-2) may be a salt compound composed of a cation and an anion.
  • Examples thereof include onium salts such as sulfonium salts, phosphonium salts, ammonium salts, diazonium salts, iodonium salts and anilinium salts having anions such as SbF 6 ⁇ and AsF 6 ⁇ . These may be used individually by 1 type, and may be used in combination of a plurality of types.
  • the component (B2-2) may be, for example, a salt compound having an anion containing boron as a constituent element from the viewpoint of quick curing.
  • a salt compound having BF 4- or BR 4- R indicates a phenyl group substituted with two or more fluorine atoms or two or more trifluoromethyl groups). Be done.
  • the anion containing boron as a constituent element may be BR 4- , and more specifically, tetrakis (pentafluorophenyl) borate.
  • the component (B2-2) may be a sulfonium salt or an ammonium salt from the viewpoint of storage stability.
  • the sulfonium salt may be, for example, a salt compound having a cation represented by the following formula (I).
  • R 5 and R 6 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an organic group containing a substituent or an unsubstituted aromatic hydrocarbon group.
  • R 7 represent an alkyl group having 1 to 6 carbon atoms.
  • the salt compound having a cation represented by the formula (I) may be an aromatic sulfonium salt compound from the viewpoint of achieving both storage stability and low temperature activity. That is, at least one of R5 and R6 in the formula (I) may be an organic group having a substituent or containing an unsubstituted aromatic hydrocarbon group.
  • the anion in the salt compound having a cation represented by the formula (I) may be an anion containing antimony as a constituent element, and may be, for example, hexafluoroantimonate (hexafluoroantimonic acid).
  • Specific examples of the compound having a cation represented by the formula (I) include 1-naphthylmethyl-p-hydroxyphenylsulfonium hexafluoroantimonate (manufactured by Sanshin Chemical Co., Ltd., SI-60 main agent).
  • the ammonium salt may be, for example, a salt compound having a cation represented by the following formula (II).
  • R 8 and R 9 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an organic group containing a substituent or an unsubstituted aromatic hydrocarbon group.
  • R 10 and R 11 each independently represent an alkyl group having 1 to 6 carbon atoms.
  • the salt compound having a cation represented by the formula (II) may be, for example, an anilinium salt compound because it has resistance to a substance that can cause curing inhibition to cation curing. That is, at least one of R 8 and R 9 in the formula (II) may be an organic group having a substituent or containing an unsubstituted aromatic hydrocarbon group.
  • the anilinium salt compound include N, N-dialkylanilinium salts such as N, N-dimethylanilinium salt and N, N-diethylanilinium salt.
  • the anion in the salt compound having a cation represented by the formula (II) may be an anion containing boron as a constituent element, and may be, for example, tetrakis (pentafluorophenyl) borate.
  • the compound having a cation represented by the formula (II) may be an anilinium salt having an anion containing boron as a constituent element.
  • anilinium salt compounds include CXC-1821 (trade name, manufactured by King Industries) and the like.
  • the content of the component (B2-2) is based on 100 parts by mass of the component (B1-2) from the viewpoint of ensuring the formability and curability of the adhesive film for forming the first adhesive layer.
  • it may be 0.1 to 20 parts by mass, 1 to 18 parts by mass, 3 to 15 parts by mass, or 5 to 12 parts by mass.
  • the component (B) is not limited to the combination of the component (B1) and the component (B2).
  • the component (B1) contains the above-mentioned epoxy compound and / or oxetane compound
  • a known amine-based curing agent or imidazole-based curing agent may be used as the component (B2).
  • the content of the component (B) is the adhesive component (first adhesive layer) in the first adhesive layer from the viewpoint of ensuring the curability of the adhesive film for forming the first adhesive layer. Based on the total amount of the components (components other than the component (A)) in the mixture, for example, it may be 5% by mass or more, 10% by mass or more, 15% by mass or more, or 20% by mass or more.
  • the content of the component (B) is the adhesive component (first adhesive layer) in the first adhesive layer from the viewpoint of ensuring the formability of the adhesive film for forming the first adhesive layer.
  • the content of the component (B) is, for example, based on the total amount of the adhesive components (components other than the component (A) in the first adhesive layer) in the first adhesive layer. It may be 5 to 70% by mass, 10 to 60% by mass, 15 to 50% by mass, or 20 to 40% by mass.
  • the content of the component (B) in the composition for forming the first adhesive layer 2 (the first adhesive composition described later) (based on the total amount of the adhesive components in the composition) is It may be the same as the above range.
  • the component (C) is not particularly limited as long as it is a component that is cured by light.
  • the component (C) is, for example, a resin component, and is a photocurable compound (hereinafter, may be referred to as “(C1) component”) and a curing agent for the photocurable compound (hereinafter, “(C2)). It may be referred to as "ingredient").
  • the cured product of the component (C) has a thermosetting property
  • the cured product does not correspond to the component (B).
  • Component (C1) Photocurable compound
  • the component (C1) is a compound that reacts and crosslinks by irradiating with light in the coexistence with the component (C2).
  • the component (C1) may be, for example, a radically polymerizable compound (hereinafter, may be referred to as “(C1-1) component”) and a cationically polymerizable compound (hereinafter, referred to as “(C1-2) component”). In some cases).
  • the component (C1) is a compound having a radically polymerizable group and a cationically polymerizable group such as a (meth) acrylate having an epoxy group and a (meth) acrylate having an oxetanyl group ((C1-1) component and (C1-2). It may be a compound corresponding to both of the components).
  • the component (C1-1) the compound described in detail as the component (B1-1) can be used, and the details (preferable aspects for setting the content ratio and the flow rate to 130 to 250%, etc.) are (B1). -1) It is the same as the case of the component.
  • the compound described in detail as the component (B1-2) can be used, and the details thereof (content ratio, preferred embodiment for setting the flow rate to 130 to 250%, etc.). Is the same as in the case of the (B1-2) component.
  • the component (C1) one type may be used alone, or a plurality of types may be used in combination.
  • Component (C2) Curing agent of component (C1)
  • the component (C2) is, for example, a photopolymerization initiator.
  • the component (C2) may be, for example, a photoradical generator (hereinafter, may be referred to as “(C2-1) component”) and a photoacid generator (hereinafter, referred to as “(C2-2) component”). In some cases).
  • the component (C2) may be selected according to the type of the component (C1).
  • a photoradical generator photoradical polymerization initiator
  • the component (C1) is a cationically polymerizable compound, (C2).
  • a photoacid generator (photocationic polymerization initiator) may be used as a component.
  • the component (C2) is a component that does not function as a curing agent for the component (B1).
  • the component (C2) is a compound that does not generate radicals by light (for example, a photocationic polymerization initiator)
  • the component (B) is a cationically polymerizable compound.
  • (C2) component is a compound that does not generate a cation by light (for example, a photoradical polymerization initiator).
  • the (C2-1) component is light containing a wavelength in the range of 150 to 750 nm, preferably light containing a wavelength in the range of 254 to 405 nm, and more preferably light containing a wavelength in the range of 254 to 405 nm. It is a photopolymerization initiator that generates radicals by irradiation with light containing a wavelength (for example, ultraviolet light).
  • a wavelength for example, ultraviolet light.
  • the component (C2-1) one type may be used alone, or a plurality of types may be used in combination.
  • the (C2-1) component is decomposed by light to generate free radicals. That is, the component (C2-1) is a compound that generates radicals by applying light energy from the outside.
  • the component (C2-1) is an oxime ester structure, a bisimidazole structure, an acridine structure, an ⁇ -aminoalkylphenone structure, an aminobenzophenone structure, an N-phenylglycine structure, an acylphosphine oxide structure, a benzyldimethylketal structure, and an ⁇ -hydroxyalkyl. It may be a compound having a structure such as a phenone structure.
  • the component (C2-1) is composed of a group consisting of an oxime ester structure, an ⁇ -aminoalkylphenone structure, and an acylphosphine oxide structure from the viewpoint that the desired melt viscosity can be easily obtained and the effect of reducing the connection resistance is superior. It may be a compound having at least one structure selected.
  • the compound having an oxime ester structure examples include 1-phenyl-1,2-butandion-2- (o-methoxycarbonyl) oxime and 1-phenyl-1,2-propanedione-2- (o-methoxycarbonyl).
  • the compound having an ⁇ -aminoalkylphenone structure include 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1-one and 2-benzyl-2-dimethylamino-1. -Morphorinophenyl) -butanone-1 and the like.
  • compounds having an acylphosphine oxide structure include bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphine oxide and bis (2,4,6, -trimethylbenzoyl) -phenylphosphine.
  • examples thereof include oxides, 2,4,6-trimethylbenzoyl-diphenylphosphine oxide and the like.
  • the content of the component (C2-1) is 100 parts by mass of the component (C1-1) from the viewpoint of easily obtaining a first adhesive layer having a flow rate of 130 to 250% and suppressing the flow of conductive particles.
  • it may be 0.1 to 10 parts by mass, 0.3 to 7 parts by mass, or 0.5 to 5 parts by mass.
  • the (C2-2) component is light containing a wavelength in the range of 150 to 750 nm, preferably light containing a wavelength in the range of 254 to 405 nm, and more preferably light containing a wavelength in the range of 254 to 405 nm. It is a photopolymerization initiator that generates a cationic species by irradiation with light containing a wavelength (for example, ultraviolet light).
  • a wavelength for example, ultraviolet light.
  • one type may be used alone, or a plurality of types may be used in combination.
  • Examples of the (C2-2) component include onium salts such as aromatic diazonium salt, aromatic sulfonium salt, aliphatic sulfonium salt, aromatic iodonium salt, phosphonium salt, pyridinium salt, and selenonium salt, metal arene complex, and silanol /.
  • Examples thereof include complex compounds such as aluminum complexes, benzointosylate, o-nitrobenzyltosylate and the like.
  • aromatic sulfonium salts for example, triarylsulfonium salts
  • sulfonium salts such as aliphatic sulfonium salts
  • iodinenium salts such as aromatic iodinenium salts
  • iron-alene complexes have high efficiency of cation species generation. Therefore, good reactivity can be easily obtained.
  • the component (C2-2) is an onium salt and the counter anion is hexafluoroantimonate, hexafluorophosphonate, tetrafluoroborate, tetrakis (pentafluorophenyl) borate or the like, better reactivity can be easily obtained. ..
  • the component (C2-2) is BF 4- , BR 4- ( R is 2 or more fluorine atoms or 2 or more birds) from the viewpoint that a first adhesive layer having a flow rate of 250% or less can be easily obtained. It indicates a phenyl group substituted with a fluoromethyl group.), A sulfonium salt, a phosphonium salt, an ammonium salt, a diazonium salt, an iodonium salt, an anilinium salt having anions such as PF 6 ⁇ , SbF 6 ⁇ , AsF 6 ⁇ . It's okay.
  • component (C2-2) light irradiation or heating of a triarylsilyl peroxide derivative, an acylsilane derivative, an ⁇ -sulfonyloxyketone derivative, an ⁇ -hydroxymethylbenzoin derivative, a nitrobenzyl ester derivative, an ⁇ -sulfonylacetophenone derivative, etc.
  • Derivatives that generate organic acids can also be used.
  • CPI series manufactured by Sun Apro Co., Ltd. Adecaoptomer SP series manufactured by Asahi Denka Kogyo Co., Ltd., Adeka Opton CP series manufactured by Asahi Denka Kogyo Co., Ltd., Union Carbide Co., Ltd.
  • CyracureUVI series manufactured by Cyracure UVI and IRGACURE series manufactured by Ciba Specialty Chemicals are preferably used.
  • a known singlet sensitizer or triplet sensitizer typified by anthracene, thioxanthone derivative and the like can be used in combination.
  • the content of the component (C2-2) is 100 parts by mass of the component (C1-2) from the viewpoint of easily obtaining a first adhesive layer having a flow rate of 130 to 250% and suppressing the flow of conductive particles.
  • it may be 0.1 to 10 parts by mass, 0.3 to 7 parts by mass, or 0.5 to 5 parts by mass.
  • the content of the cured product of the component (C) is the entire content of the first adhesive layer from the viewpoint of easily obtaining the first adhesive layer having a flow rate of 130% or more and suppressing the flow of conductive particles. It may be 1% by mass or more, 5% by mass or more, or 10% by mass or more based on the mass.
  • the content of the cured product of the component (C) is the content of the first adhesive layer from the viewpoint of easily obtaining the first adhesive layer having a flow rate of 250% or less and from the viewpoint of developing low resistance in low-pressure mounting. Based on the total mass, it may be 50% by mass or less, 40% by mass or less, or 30% by mass or less.
  • the content of the cured product of the component (C) is, for example, 1 to 50% by mass, 5 to 40% by mass, or 10 to 30% by mass, based on the total mass of the first adhesive layer. It may be there.
  • the content of the component (C) in the composition for forming the first adhesive layer 2 (the first adhesive composition described later) (based on the total mass of the composition) is the same as the above range. It may be there.
  • the first adhesive layer 2 may further contain other components in addition to the cured product of the component (A), the component (B) and the component (C).
  • other components include a thermoplastic resin (hereinafter, may be referred to as “(D) component”), a coupling agent (hereinafter, may be referred to as “(E) component”), and a filler. (Hereinafter, it may be referred to as "(F) component”.) And the like.
  • a resin that functions as a film-forming component can be used.
  • the component (D) include phenoxy resin, polyester resin, polyamide resin, polyurethane resin, polyester urethane resin, acrylic rubber, epoxy resin (solid at 25 ° C.) and the like. These may be used individually by 1 type, and may be used in combination of a plurality of types.
  • the film formability is improved by using the component (D). Among these, when the component (D) is a phenoxy resin, the film formability is more likely to be improved.
  • the weight average molecular weight (Mw) of the component (D) is, for example, 5000 to 200,000 from the viewpoint of easily obtaining a first adhesive layer having a flow rate of 130 to 250% and resin exclusion during mounting. It may be 10,000 to 100,000, 20,000 to 80,000, 40,000 to 70,000 or 40,000 to 60,000.
  • Mw means a value measured by gel permeation chromatography (GPC) and converted using the calibration curve by standard polystyrene.
  • the glass transition temperature Tg of the component (D) may be, for example, 80 to 160 ° C. from the viewpoint that a first adhesive layer having a flow rate of 130 to 250% can be easily obtained.
  • the glass transition temperature Tg of the component (D) is a value measured using a differential scanning calorimeter (DSC). Specifically, for example, using DSC, differential scanning calorimetry from room temperature (25 ° C.) to 270 ° C. is performed for two cycles at a heating rate of 10 ° C./min, and Tg is performed from the baseline shift in the second cycle. Can be asked.
  • DSC differential scanning calorimeter
  • the elastic modulus of the component (D) at room temperature (25 ° C.) is, for example, 1.5 to 2.3 GPa from the viewpoint that a first adhesive layer having a flow rate of 130 to 250% can be easily obtained. good.
  • the content of the component (D) is such that the first adhesive layer having a flow rate of 130 to 250% can be easily obtained, the film formability, and the resin exclusion property at the time of mounting. Based on the total mass of the agent layer, it may be 1% by mass or more, 5% by mass or more, 10% by mass or more or 20% by mass or more, and 70% by mass or less, 60% by mass or less, 50% by mass or less or 40% by mass. It may be less than or equal to%.
  • the content of the component (D) in the composition for forming the first adhesive layer 2 (the first adhesive composition described later) (based on the total mass of the composition) is the same as the above range. It may be there.
  • the ratio of the content of the component (B) to the content of the component (D) is, for example, 0.8 to 0.95 from the viewpoint that a first adhesive layer having a flow rate of 130 to 250% can be easily obtained. May be.
  • the component (E) examples include a silane coupling agent having an organic functional group such as a (meth) acryloyl group, a mercapto group, an amino group, an imidazole group and an epoxy group, a silane compound such as tetraalkoxysilane, and a tetraalkoxy titanate derivative. , Polydialkyl titanate derivatives and the like. These may be used individually by 1 type, and may be used in combination of a plurality of types. When the first adhesive layer 2 contains the component (E), the adhesiveness can be further improved.
  • the component (E) may be, for example, a silane coupling agent.
  • the content of the component (E) may be 0.1 to 10% by mass based on the total mass of the first adhesive layer.
  • the content of the component (E) in the composition for forming the first adhesive layer 2 (the first adhesive composition described later) (based on the total mass of the composition) is the same as the above range. It may be there.
  • the component (F) include non-conductive fillers (for example, non-conductive particles).
  • the component (F) may be either an inorganic filler or an organic filler.
  • the inorganic filler include metal oxide fine particles such as silica fine particles, alumina fine particles, silica-alumina fine particles, titania fine particles, and zirconia fine particles; and inorganic fine particles such as metal nitride fine particles.
  • the organic filler include organic fine particles such as silicone fine particles, methacrylate / butadiene / styrene fine particles, acrylic / silicone fine particles, polyamide fine particles, and polyimide fine particles. These may be used individually by 1 type, and may be used in combination of a plurality of types.
  • the component (F) can be appropriately blended as long as the effect of the present invention is not impaired.
  • the first adhesive layer 2 may further contain other additives such as a softener, an accelerator, a deterioration inhibitor, a colorant, a flame retardant, and a thixotropic agent as other components.
  • the content (total amount) of the other additives may be, for example, 0.1 to 10% by mass based on the total mass of the first adhesive layer.
  • the content of other additives (based on the total mass of the composition) in the composition for forming the first adhesive layer 2 (the first adhesive composition described later) is the same as the above range. It may be there.
  • the second adhesive layer 3 contains, for example, a thermosetting component (component (B)).
  • component (B) The details of the component (B) are the same as those of the component (B) contained in the first adhesive layer 2.
  • the content of the component (B) is 5% by mass or more, 10% by mass or more, 15% by mass or more, or 20% by mass or more based on the total mass of the second adhesive layer from the viewpoint of maintaining reliability. It may be there.
  • the content of the component (B) is 70% by mass or less and 60% by mass or less based on the total mass of the second adhesive layer from the viewpoint of preventing the resin seepage problem in the reel, which is one aspect of the supply form. , 50% by mass or less, or 40% by mass or less. From these viewpoints, the content of the component (B) is, for example, 5 to 70% by mass, 10 to 60% by mass, 15 to 50% by mass, or 20 to 40, based on the total mass of the second adhesive layer. It may be% by mass.
  • the content of the component (B) in the composition for forming the second adhesive layer 3 (the second adhesive composition described later) (based on the total mass of the composition) is the same as the above range. It may be there.
  • the second adhesive layer 3 may further contain a filler (component (F)).
  • the details of the component (F) are the same as those of the component (F) contained in the first adhesive layer 2.
  • the second adhesive layer 3 contains an inorganic filler as the component (F) from the viewpoint of facilitating the adjustment of fluidity, the viewpoint of improving the elastic modulus after curing, and the viewpoint of lowering the coefficient of linear expansion. good.
  • a silica filler such as silica fine particles can be used from the viewpoint of improving reliability.
  • the content of silica in the silica filler may be 99% by mass or more, or 100% by mass, based on the total amount of the silica filler.
  • the average particle size (primary particle size) of the inorganic filler may be 0.01 ⁇ m or more, 0.03 ⁇ m or more, 0.05 ⁇ m or more, 0.1 ⁇ m or more, or 0.3 ⁇ m or more from the viewpoint of excellent dispersibility.
  • the average particle size (primary particle size) of the inorganic filler may be 5.0 ⁇ m or less, 1.0 ⁇ m or less, or 0.5 ⁇ m or less from the viewpoint of excellent dispersibility. From these viewpoints, the average particle size of the inorganic filler is 0.01 to 5.0 ⁇ m, 0.03 to 1.0 ⁇ m, 0.05 to 0.5 ⁇ m, 0.05 to 5.0 ⁇ m, 0.1 to 0. It may be .5 ⁇ m or 0.3-0.5 ⁇ m.
  • the content of the inorganic filler may be 20% by mass or more, 30% by mass or more, or 40% by mass or more based on the total mass of the second adhesive layer from the viewpoint of improving the elastic modulus after curing.
  • the content of the inorganic filler is 60% by mass or less, 50% by mass or less, or 40% by mass or less based on the total mass of the second adhesive layer from the viewpoint of improving film formation and thermosetting property. It's okay. From these viewpoints, the content of the inorganic filler is 20 to 60% by mass, 30 to 50% by mass, 20 to 40% by mass or 40 to 50% by mass, based on the total mass of the second adhesive layer. It's okay.
  • the content of the inorganic filler (based on the total mass of the composition) in the composition for forming the second adhesive layer 3 is the same as the above range. good.
  • the second adhesive layer 3 may further contain other components other than the component (F) in the first adhesive layer 2.
  • the details of the other components are the same as the details of the other components in the first adhesive layer 2.
  • the content of the component (D) may be 1% by mass or more, 5% by mass or more or 10% by mass or more, and 80% by mass or less and 60% by mass or less, based on the total mass of the second adhesive layer. Alternatively, it may be 40% by mass or less.
  • the content of the component (D) in the composition for forming the second adhesive layer 3 (the second adhesive composition described later) (based on the total mass of the composition) is the same as the above range. It may be there.
  • the content of the component (E) may be 0.1 to 10% by mass based on the total mass of the second adhesive layer.
  • the content of the component (E) in the composition for forming the second adhesive layer 3 (the second adhesive composition described later) (based on the total mass of the composition) is the same as the above range. It may be there.
  • the content of the other additives may be, for example, 0.1 to 10% by mass based on the total mass of the second adhesive layer.
  • the content of other additives (based on the total mass of the composition) in the composition for forming the second adhesive layer 3 (the second adhesive composition described later) is the same as the above range. It may be there.
  • the content of the conductive particles (component (A)) in the second adhesive layer 3 is, for example, 1% by mass or less, even if it is 0% by mass, based on the total mass of the second adhesive layer. good. That is, the second adhesive layer 3 does not have to contain the component (A).
  • the content of the component (A) in the composition for forming the second adhesive layer 3 (the second adhesive composition described later) (based on the total mass of the composition) is the same as the above range. It may be there.
  • the adhesive film 1a is a first adhesive containing, for example, a component (A), a component (B) (a first thermosetting component), and a component (C), and if necessary, other components.
  • the step of irradiating the layer made of the composition with light to form the first adhesive layer 2 (first step) and the component (B) component (second) on the first adhesive layer 2 It is manufactured by a method including a step (second step) of laminating a second adhesive layer 3 composed of a second adhesive composition containing a thermosetting component) and, if necessary, other components. Can be done.
  • the first step it is not necessary to include the component (C) in the first adhesive composition. In this case, the light irradiation in the first step does not have to be performed.
  • the first adhesive composition is dissolved or dispersed by stirring and mixing in an organic solvent, kneading, or the like, and the varnish composition (varnish-like first adhesive) is used.
  • Composition is prepared.
  • the varnish composition is applied onto the mold-released substrate using a knife coater, roll coater, applicator, comma coater, die coater, etc., and then the organic solvent is volatilized by heating to form the substrate.
  • the thickness of the first adhesive layer can be adjusted by adjusting the coating amount of the varnish composition.
  • the layer composed of the first adhesive composition is irradiated with light to cure the component (C) in the layer. Let me.
  • the first adhesive layer 2 is formed on the base material, and the first adhesive film provided with the first adhesive layer 2 is obtained.
  • the organic solvent used in the preparation of the varnish composition is not particularly limited as long as it has the property of being able to dissolve or disperse each component substantially uniformly.
  • examples of such an organic solvent include toluene, acetone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, propyl acetate, butyl acetate and the like. These organic solvents can be used alone or in combination of two or more.
  • Stirring and mixing or kneading in the preparation of the varnish composition can be carried out by using, for example, a stirrer, a raider, a three-roll, a ball mill, a bead mill, a homodisper or the like.
  • the base material is not particularly limited as long as it has heat resistance that can withstand the heating conditions when volatilizing the organic solvent.
  • a substrate examples include stretched polypropylene (OPP), polyethylene terephthalate (PET), polyethylene naphthalate, polyethylene isophthalate, polyvinylidene terephthalate, polyolefin, polyacetate, polycarbonate, polyvinylidene sulfide, polyamide, polyimide, cellulose, and the like.
  • a substrate (for example, a film) made of an ethylene / vinyl acetate copolymer, polyvinyl chloride, polyvinylidene chloride, a synthetic rubber system, a liquid crystal polymer or the like can be used.
  • the heating conditions for volatilizing the organic solvent from the varnish composition applied to the base material can be appropriately set according to the organic solvent to be used and the like.
  • the heating conditions may be, for example, 40 to 120 ° C. for 0.1 to 10 minutes.
  • a part of the solvent may remain on the first adhesive layer 2 without being removed.
  • the content of the solvent in the first adhesive layer 2 may be, for example, 10% by mass or less based on the total mass of the first adhesive layer.
  • irradiation light for example, ultraviolet light
  • Light irradiation can be performed using, for example, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a xenon lamp, a metal halide lamp, an LED light source, or the like.
  • the integrated light amount of light irradiation can be appropriately set, but may be, for example, 500 to 3000 mJ / cm 2 .
  • the second step is a step of laminating the second adhesive layer 3 on the first adhesive layer 2.
  • the base is the same as in the first step except that the second adhesive composition is used instead of the first adhesive composition and the light irradiation is not performed.
  • the obtained second adhesive film and the first adhesive film are bonded to each other to form a second adhesive on the first adhesive layer 2.
  • the agent layer 3 is laminated.
  • Examples of the method of adhering the first adhesive film and the second adhesive film include a method of heat pressing, roll laminating, vacuum laminating and the like. Lamination can be performed, for example, under temperature conditions of 0 to 80 ° C.
  • a varnish-like second adhesive composition is applied onto the first adhesive layer 2 and the organic solvent is volatilized to cause a second on the first adhesive layer 2.
  • the adhesive layer 3 of the above may be laminated.
  • a part of the solvent may remain on the second adhesive layer 3 without being removed.
  • the content of the solvent in the second adhesive layer 3 may be, for example, 10% by mass or less based on the total mass of the second adhesive layer.
  • the adhesive film 1a described above since the flow rate of the first adhesive layer 2 is 250% or less, it is difficult for conductive particles to flow during thermocompression bonding, and the film of the first adhesive layer after thermocompression bonding is performed. The shape is easy to maintain. Therefore, according to the adhesive film 1a, it is possible to suppress the occurrence of a short circuit due to aggregation of conductive particles. Further, since the adhesive film 1a has a flow rate of 130% or more of the first adhesive layer, the adhesive film 1a is bent during thermocompression bonding, and the bending causes the first adhesive layer to be stretched between the facing electrodes. Adhesive component is reduced.
  • the flow rate of the first adhesive layer 2 may be 150% or more, 160% or more, 170% or more or 180% or more, and 230% or less or 200%. It may be 150 to 230% or 180 to 200%.
  • the flow rate of the first adhesive layer 2 is, for example, the content of the cured product of the component (A), the component (B) and the component (C), and the components (C1) and (C2) in the component (C). It can be adjusted according to the type and amount of the above, the type and content of any component (particularly the component (D)), and the like.
  • the cured product of the component (C) is contained in the first adhesive layer 2, for example, by adjusting the curing rate of the component (C) by adjusting the light irradiation amount, the flow rate in the above range can be easily obtained. It is also possible to obtain the first adhesive layer 2 having the above.
  • the flow rate is higher than 250% in the conventional adhesive composition, but the weight average molecular weight of the component (D) is 40,000 or more.
  • a thermoplastic resin having a glass transition temperature of 70,000, a glass transition temperature of 80 to 160 ° C., and an elastic modulus of 1.5 to 2.3 GPa at room temperature (25 ° C.) with respect to the content of the component (D).
  • the first adhesive layer 2 having a flow rate in the above range can be obtained by a method such as setting the ratio of the content of the components to 0.8 to 0.95.
  • circuit connection adhesive film of one embodiment and the method for manufacturing the same have been described above, the circuit connection adhesive film of the present invention is not limited to the above embodiment.
  • the circuit connection adhesive film may be composed of three or more layers including layers other than the first adhesive layer 2 and the second adhesive layer 3.
  • the adhesive film for circuit connection may be the adhesive film 1b shown in FIG.
  • the adhesive film 1b has the same configuration as the adhesive film 1a except that the third adhesive layer 6 is laminated on the side of the first adhesive layer 2 opposite to the second adhesive layer 3. Has.
  • the third adhesive layer 6 contains, for example, a thermosetting component (component (B)).
  • component (B) thermosetting component
  • the details of the component (B) are the same as those of the component (B) contained in the first adhesive layer 2.
  • the component (B) (third thermosetting component) contained in the third adhesive layer 6 may be the same as or different from the first thermosetting component, and the second heat may be different. It may be the same as or different from the curable component.
  • the content of the component (B) is 5% by mass or more, 10% by mass or more, and 15% by mass or more based on the total mass of the third adhesive layer from the viewpoint of imparting good transferability and peeling resistance. Alternatively, it may be 20% by mass or more.
  • the content of the component (B) is 70% by mass or less based on the total mass of the third adhesive layer from the viewpoint of imparting good half-cut property and blocking resistance (suppression of resin seepage of the reel). It may be 60% by mass or less, 50% by mass or less, or 40% by mass or less. From these viewpoints, the content of the component (B) is, for example, 5 to 70% by mass, 10 to 60% by mass, 15 to 50% by mass, or 20 to 40, based on the total mass of the third adhesive layer. It may be% by mass.
  • the third adhesive layer 6 may further contain other components in the first adhesive layer 2.
  • the content of the component (D) may be 10% by mass or more, 20% by mass or more or 30% by mass or more, and 80% by mass or less and 70% by mass or less, based on the total mass of the third adhesive layer. Alternatively, it may be 60% by mass or less.
  • the content of the component (E) may be 0.1 to 10% by mass based on the total mass of the third adhesive layer.
  • the content of the component (F) can be appropriately set as long as the effect of the present invention is not impaired.
  • the content of the other additives may be, for example, 0.1 to 10% by mass based on the total mass of the third adhesive layer.
  • the thickness of the third adhesive layer 6 may be appropriately set according to the minimum melt viscosity of the adhesive film, the height of the electrodes of the circuit members to be adhered, and the like.
  • the thickness of the third adhesive layer 6 is preferably smaller than the thickness of the second adhesive layer 3.
  • the thickness of the third adhesive layer 6 is 0.5 ⁇ m or more from the viewpoint that the space between the electrodes can be sufficiently filled to seal the electrodes and better connection reliability can be obtained. It may be 0 ⁇ m or more or 1.2 ⁇ m or more, 2.0 ⁇ m or less, 1.8 ⁇ m or less, or 1.5 ⁇ m or less, 0.5 to 2.0 ⁇ m, 1.0 to 1.8 ⁇ m, or 1.2. It may be up to 1.6 ⁇ m.
  • the thickness of the third adhesive layer 6 can be obtained, for example, by the same method as the method for measuring the thickness of the first adhesive layer 2 and the thickness of the second adhesive layer 3.
  • the thickness of the adhesive film 1b (the sum of the thickness of the first adhesive layer 2, the thickness of the second adhesive layer 3 and the thickness of the third adhesive layer 6) is, for example, 6.0 ⁇ m. As described above, it may be 8.0 ⁇ m or more, 10.0 ⁇ m or more, 12.0 ⁇ m or more, or 14.0 ⁇ m or more, 18.0 ⁇ m or less, 16.0 ⁇ m or less, 14.0 ⁇ m or less, or 10.0 ⁇ m or less. It may be 6.0 to 18.0 ⁇ m, 10.0 to 16.0 ⁇ m, 8.0 to 10.0 ⁇ m, 12.0-14.0 ⁇ m or 14.0 to 16.0 ⁇ m.
  • the adhesive film 1b is, for example, on the opposite side of the first adhesive layer 2 from the second adhesive layer 3 in addition to the first step and the second step in the method for producing the adhesive film 1a.
  • the second step may be performed first, or the third step may be performed first.
  • the third adhesive layer 6 is laminated on the side opposite to the side where the second adhesive layer 3 of the first adhesive layer 2 is to be laminated.
  • the method for laminating the third adhesive layer 6 in the third step is the same as the method for laminating the second adhesive layer 3 in the second step.
  • the circuit connection structure of one embodiment is located between a first circuit member having a first electrode, a second circuit member having a second electrode, and a first circuit member and a second circuit member. Arranged, the first electrode and the second electrode are electrically connected to each other via conductive particles, and a circuit connection portion for adhering the first circuit member and the second circuit member is provided, and the circuit connection is provided.
  • the portion includes a first resin cured layer containing conductive particles and a second resin cured layer located on the side opposite to the first circuit member side of the first resin cured layer, and is the first.
  • the resin cured layer includes a plurality of electrode connecting portions for electrically connecting the first electrode and the second electrode to each other by conductive particles interposed between the first electrode and the second electrode, and the adjacent electrode connecting portions. It is a circuit connection structure that is bent so as to be convex toward the first circuit member side or the second circuit member side.
  • the method for manufacturing the circuit connection structure of one embodiment includes a first adhesive layer containing conductive particles and a second adhesive layer provided on the first adhesive layer, and comprises the following ( A step of preparing an adhesive film for circuit connection, wherein the flow rate of the first adhesive layer measured in the procedures A1) to (A4) is 130 to 250%, and a first having a first electrode.
  • the first circuit connection adhesive film is interposed between the first circuit member and the second circuit member so that the second adhesive layer is on the side and the second circuit member side.
  • the first electrode and the second electrode are electrically connected to each other via conductive particles to form an electrode connection portion.
  • the first adhesive layer is bent so as to be convex toward the first circuit member side or the second circuit member side between the adjacent electrode connection portions, and the circuit connection adhesive film is cured.
  • a method for manufacturing a circuit connection structure (A1) The circuit connection adhesive film is punched out in the thickness direction with the base material attached on both main surfaces of the circuit connection adhesive film, and the diameter R (unit: mm) is 0.1. A disk-shaped evaluation adhesive film having a diameter of about 1 mm is obtained.
  • the evaluation adhesive film After peeling the base material on the first adhesive layer side from the evaluation adhesive film, the evaluation adhesive film is placed on a glass plate having a thickness of 0.15 mm from the first adhesive layer side. Thermocompression bonding is performed under the conditions of a crimping temperature of 60 ° C., a crimping pressure of 1 MPa, and a crimping time of 0.1 s to obtain a temporary fixed body.
  • the first adhesive layer may contain a first thermosetting component.
  • the first thermosetting component may contain a (meth) acrylate compound as the thermosetting compound.
  • the first thermosetting component may contain an organic peroxide as a curing agent for the thermosetting compound.
  • the first adhesive layer may contain a cured product of a photocurable component.
  • the density of the conductive particles in the first adhesive layer may be 5000 to 50,000 pieces / mm 2 .
  • the thickness of the first adhesive layer may be 0.6 times or more and less than 1.0 times the average particle size of the conductive particles.
  • the thickness of the first adhesive layer may be 1.0 to 6.0 ⁇ m.
  • the average particle size of the conductive particles may be 2.5 to 6.0 ⁇ m.
  • the second adhesive layer may contain a second thermosetting component.
  • the second thermosetting component may contain an epoxy compound or an oxetane compound as the thermosetting compound.
  • the second thermosetting component may contain a sulfonium salt or an ammonium salt as a curing agent for the thermosetting compound.
  • the second adhesive layer may contain an inorganic filler.
  • the average particle size of the inorganic filler may be 0.05 to 5.0 ⁇ m.
  • the content of the inorganic filler may be 20 to 60% by mass based on the total mass of the second adhesive layer.
  • FIG. 4 is a schematic cross-sectional view showing an embodiment of a circuit connection structure.
  • the circuit connection structure 10a includes a first circuit member 13 having a first electrode 12 formed on the main surface 11a of the first circuit board 11 and the first circuit board 11.
  • a second circuit member 16 having a second electrode 15 formed on the main surface 14a of the second circuit board 14 and the second circuit board 14, and the first circuit member 13 and the second circuit member. It is arranged between 16 and includes a circuit connection portion 17a that electrically connects the first electrode 12 and the second electrode 15 to each other via the conductive particles 4.
  • the first circuit member 13 and the second circuit member 16 may be the same or different from each other.
  • the first circuit member 13 and the second circuit member 16 are a glass substrate or a plastic substrate on which a circuit electrode is formed; a printed wiring board; a ceramic wiring board; a flexible wiring board; an IC chip such as a drive IC, or the like. It's okay.
  • the first circuit board 11 and the second circuit board 14 may be formed of an inorganic substance such as semiconductor, glass, or ceramic, an organic substance such as polyimide or polycarbonate, or a composite such as glass / epoxy.
  • the first circuit board 11 may be a plastic substrate.
  • the first circuit member 13 may be, for example, a plastic substrate on which a circuit electrode is formed (a plastic substrate made of an organic substance such as polyimide, polycarbonate, polyethylene terephthalate, or cycloolefin polymer), and the second circuit member 16 may be.
  • a plastic substrate on which a circuit electrode is formed a plastic substrate made of an organic substance such as polyimide, polycarbonate, polyethylene terephthalate, or cycloolefin polymer
  • the second circuit member 16 may be.
  • it may be an IC chip such as a drive IC.
  • a display region is formed by regularly arranging a pixel drive circuit such as an organic TFT or a plurality of organic EL elements R, G, and B on the plastic substrate in a matrix. It may be the one.
  • the first electrode 12 and the second electrode 15 are made of a metal such as gold, silver, tin, ruthenium, rhodium, palladium, osmium, iridium, platinum, copper, aluminum, molybdenum, titanium, indium tin oxide (ITO), and the like. It may be an electrode containing an oxide such as indium zinc oxide (IZO) or indium gallium zinc oxide (IGZO).
  • the first electrode 12 and the second electrode 15 may be electrodes formed by laminating two or more of these metals, oxides, and the like. The electrode formed by stacking two or more types may have two or more layers, and may have three or more layers.
  • the first electrode 12 and the second electrode 15 may be circuit electrodes or bump electrodes. At least one of the first electrode 12 and the second electrode 15 may be a bump electrode. In FIG. 4, the first electrode 12 is a circuit electrode and the second electrode 15 is a bump electrode.
  • the circuit connection portion 17a contains the cured product of the adhesive film 1a described above.
  • the circuit connection portion 17 may be made of the cured product of the adhesive film 1a described above.
  • the circuit connection portion 17 is, for example, a first resin curing located on the first circuit member 13 side in a direction in which the first circuit member 13 and the second circuit member 16 face each other (hereinafter, “opposite direction”).
  • the layer 18 includes a second resin cured layer 19 located on the side opposite to the first circuit member side of the first resin cured layer 18 (the second circuit member 16 side in the facing direction).
  • the first resin cured layer 18 is a layer formed by curing the first adhesive layer 2 in the adhesive film 1a, and cures the conductive particles 4 and the components other than the conductive particles 4 in the first adhesive. Including things. At least a part of the conductive particles 4 in the first resin cured layer 18 is interposed between the first electrode 12 and the second electrode 15, and electrically connects the first electrode 12 and the second electrode 15 to each other. Consists of the electrode connecting portion 21 to be connected. That is, the first resin cured layer 18 includes a plurality of electrode connecting portions 21.
  • the first resin cured layer 18 is in the form of a film that spreads in a direction substantially perpendicular to the facing direction of the circuit connection structure 10a, and is convex toward the second circuit member side between the adjacent electrode connection portions 21. (For example, it is arched when viewed from the cross section of the circuit connection structure in the opposite direction).
  • the first resin cured layer 18 can be bent so as to be convex toward the first circuit member between the adjacent electrode connecting portions 21 by adjusting the electrode height or the like.
  • the second resin cured layer 19 is a layer formed by curing the second adhesive layer 3 in the adhesive film 1a, and contains a cured product of the components in the second adhesive layer 3.
  • the second resin cured layer 19 fills between the second circuit member 16 and the first resin cured layer 18.
  • the method for manufacturing the circuit connection structure 10a includes a step of preparing an adhesive film 1a, a first circuit member 13 having a first electrode 12, and a second circuit member 16 having a second electrode 15. , The step of arranging the first electrode 12 and the second electrode 15 so as to face each other, and the first adhesive layer 2 is on the first circuit member 13 side, and the second adhesive layer 3 is the second. The first circuit member 13 and the second circuit member 16 are placed in a state where the adhesive film 1a is interposed between the first circuit member 13 and the second circuit member 16 so as to be on the circuit member 16 side. It is provided with a process of thermal crimping.
  • the first circuit member 13 and the first circuit member 13 are prepared.
  • the circuit member 16 of 2 is arranged so that the first electrode 12 and the second electrode 15 face each other, and the adhesive film 1a is arranged between the first circuit member 13 and the second circuit member 16. do.
  • the adhesive film 1a is placed on the first circuit member 13 so that the first adhesive layer 2 side faces the main surface 11a of the first circuit board 11. Temporarily crimping is performed, whereby the adhesive film 1a is temporarily fixed on the first circuit member 13.
  • the adhesive film 1a is laminated so that the first electrode 12 on the first circuit board 11 and the second electrode 15 on the second circuit board 14 face each other.
  • the second circuit member 16 is arranged on the circuit member 13.
  • the method of temporary crimping is not particularly limited, but it may be a method of laminating using a roll laminator, a diaphragm type laminator, a vacuum roll laminator, a vacuum diaphragm type laminator, etc., and after temporary laminating, crimping is performed using a thermocompression bonding device. It may be a method.
  • the conditions for temporary crimping may be appropriately set according to the type of crimping device (laminator or the like) to be used, the base material, the first circuit member 13, the second circuit member 16, and the like.
  • the crimping temperature at the time of temporary crimping may be, for example, 50 to 90 ° C.
  • the crimping pressure at the time of temporary crimping may be, for example, 0.5 to 1.5 MPa.
  • the crimping time at the time of temporary crimping may be, for example, 0.5 to 1.5 seconds.
  • the first circuit member 13 and the second circuit member 16 are heated while heating the first circuit member 13, the adhesive film 1a, and the second circuit member 16.
  • the first circuit member 13 and the second circuit member 16 are thermocompression-bonded to each other.
  • the second adhesive layer 3 has a flowable uncured thermosetting component
  • the second electrodes 15 are connected to each other. It flows so as to fill the voids of the above, and is cured by the above heating.
  • the first adhesive layer 2 has a flow rate of 130 to 250%, the conductive particles hardly flow during thermocompression bonding, and the film shape of the first adhesive layer 2 is maintained.
  • the temperature and time at the time of thermocompression bonding are temperatures at which the adhesive film 1a can be sufficiently cured and the first circuit member 13 and the second circuit member 16 can be adhered to each other.
  • the thermocompression bonding temperature (the maximum temperature reached by the adhesive film 1a) may be, for example, 150 to 200 ° C.
  • the thermocompression bonding time may be, for example, 4 to 7 seconds.
  • the pressurization is not particularly limited as long as it does not damage the adherend, and may be, for example, 20 to 80 MPa in terms of the area-equivalent pressure of the adhesive film 1a.
  • circuit connection structure of one embodiment and the method for manufacturing the same have been described above, the circuit connection structure of the present invention is not limited to the above embodiment.
  • the circuit connection structure 10b shown in FIG. 6 is a circuit connection structure except that the circuit connection portion 17b has a third resin cured layer 20 on the side opposite to the second resin cured layer 19 of the first resin cured layer 18. It has the same configuration as 10a.
  • the third resin cured layer 20 is a layer formed by curing the third adhesive layer 6 in the adhesive film 1b, and contains a cured product of the components in the third adhesive layer 6.
  • the third resin cured layer 20 has a chevron shape so as to fill the space between the first circuit member 13 and the first resin cured layer 18 between the adjacent electrode connecting portions 21.
  • a varnish-like first adhesive composition (first varnish composition) by mixing each component shown in Table 1 with 2-butanone (methyl ethyl ketone) in the blending amount (unit: parts by mass) shown in the same table. 1 to 6 were prepared respectively. Further, by mixing each component shown in Table 2 with 2-butanone (methyl ethyl ketone) in the blending amount (unit: parts by mass) shown in the same table, a varnish-like second adhesive composition (second varnish composition) is formed. Thing) 1 was prepared. In addition, "-" in the table means not compounded.
  • Sun Aid SI-60 manufactured by Sanshin Chemical Co., Ltd.
  • Thermal acid generator ⁇ Sun Aid SI-60 (aromatic sulfonium salt, manufactured by Sanshin Kagaku Co., Ltd.)
  • Inorganic filler -Silica particle 1 (SE-2050, manufactured by Admatex, average particle size: 500 nm)
  • -Silica particles 2 YA-050C, manufactured by Admatex, average particle size: 50 nm
  • Conductive particles -The conductive particles produced in Production Example 1 below (average particle size: 3.8 ⁇ m, maximum particle size: 4.0 ⁇ m, specific gravity: 2.6).
  • ⁇ Production example 1> (Preparation of conductive particles) A layer made of nickel was formed on the surface of the crosslinked polystyrene particles so that the thickness of the layer was 0.1 ⁇ m. In this way, conductive particles having an average particle size of 3.8 ⁇ m, a maximum particle size of 4.0 ⁇ m, and a specific gravity of 2.6 were obtained.
  • the first adhesive films 1 to 7 were prepared by using the first varnish compositions 1 to 6 obtained above, respectively.
  • the first varnish compositions 1 and 3 to 6 were used for producing the first adhesive films 1, 4 to 7, respectively, and the first varnish composition was used for producing the first adhesive films 2 and 3, respectively.
  • the thing 2 was used.
  • the first varnish composition is placed on a PET film (manufactured by Toyobo Film Solutions Co., Ltd.) having a thickness of 38 ⁇ m, the layer thickness after drying is 3 ⁇ m, and the number of conductive particles is 22000 particles / mm 2 .
  • the film was formed so as to be.
  • the obtained coating film was dried in an oven at 60 ° C. for 3 minutes.
  • the coating film after drying (first).
  • the layer made of the adhesive composition) was irradiated with ultraviolet rays using an ultraviolet irradiation device.
  • the irradiation amount of ultraviolet rays was 3000 mJ / cm 2 when the first adhesive films 1, 2, 4, 6 and 7 were produced, and 2400 mJ / cm 2 when the first adhesive film 3 was produced.
  • the photocurable component in the layer made of the first adhesive composition was cured to obtain the first adhesive layer.
  • the first varnish composition 4 is used (at the time of producing the first adhesive film 5)
  • the above-mentioned ultraviolet irradiation is not performed, and the dried coating film (layer composed of the first adhesive composition) is used.
  • the first adhesive layer was used as the first adhesive layer.
  • the first adhesive films 1 to 7 having the first adhesive layer were obtained.
  • the thickness of the first adhesive layer was 2 ⁇ m in each case. Since the thickness of the first adhesive layer is smaller than the thickness (diameter) of the conductive particles, the thickness of the conductive particles is reflected when the thickness of the layer is measured using a contact type thickness gauge. The thickness of the area where the conductive particles are present is measured. Therefore, after producing a circuit connection adhesive film having a two-layer structure in which the first adhesive layer and the second adhesive layer are laminated, the first adhesive is located at a separated portion of adjacent conductive particles. The thickness of the layer was measured.
  • an adhesive film for circuit connection is sandwiched between two pieces of glass (thickness: about 1 mm), and 100 g of bisphenol A type epoxy resin (trade name: JER811, manufactured by Mitsubishi Chemical Co., Ltd.) and a curing agent (cure agent) ( Product name: Epomount curing agent, manufactured by Refine Tech Co., Ltd.)
  • the resin composition was cast with 10 g.
  • the cross section is polished using a polishing machine, and a scanning electron microscope (SEM, trade name: SU-8000, manufactured by Hitachi High-Tech Science Co., Ltd.) is used to perform the first section located at the separated portion of the adjacent conductive particles.
  • SEM scanning electron microscope
  • the second adhesive film 1 was prepared using the second varnish composition 1 obtained above.
  • the second varnish composition 1 was formed on a PET film (manufactured by Toyobo Film Solutions Co., Ltd.) having a thickness of 38 ⁇ m so that the layer thickness after drying was 12 ⁇ m.
  • the obtained coating film was dried in an oven at 60 ° C. for 3 minutes.
  • a second adhesive layer (a layer composed of the second adhesive composition) was formed, and a second adhesive film including the second adhesive layer was obtained.
  • the minimum melt viscosity of the second adhesive layer was measured by the following method. Specifically, first, the second adhesive film was laminated with a roll laminator while heating at 40 ° C., so that a plurality of second adhesive layers were laminated so that the total thickness was 400 ⁇ m. Then, it was cut into 0.8 cm ⁇ to obtain a test piece. Next, the obtained test piece was measured for melt viscosity using a melt viscosity measuring device (trade name: ARES-G2, manufactured by TA Instruments). The measurement conditions were measurement temperature: 0 to 200 ° C., temperature rise rate: 10 ° C./min, frequency: 10 Hz, strain: 0.5%. The minimum melt viscosity was 1000 Pa ⁇ s.
  • the evaluation adhesive film is applied from the first adhesive layer side to the cover glass manufactured by Matsunami Glass Industry (thickness 0. Placed on a 15 mm, width 18 mm, depth 18 mm), using a thermal crimping device LD-06 manufactured by Ohashi Seisakusho, the second adhesive layer side under the conditions of a crimping temperature of 60 ° C., a crimping pressure of 1 MPa, and a crimping time of 0.1 s.
  • a temporary fixing body (cover glass / evaluation adhesive film / PET film) was obtained by heat-pressing from the above.
  • the crimping temperature is the temperature reached when crimping for 1 second
  • the crimping pressure is the area-converted pressure of the evaluation adhesive film.
  • a cover glass manufactured by Matsunami Glass Industry Co., Ltd. (thickness 0.15 mm, width 18 mm, depth 18 mm) is placed on the second adhesive layer.
  • the laminate was thermocompression-bonded from the second adhesive layer side under the conditions of a crimping temperature of 170 ° C., a crimping pressure of 80 MPa, and a crimping time of 5 s to obtain a crimped body. rice field.
  • the crimping temperature is the maximum temperature reached by the evaluation adhesive film
  • the crimping pressure is the area-converted pressure of the evaluation adhesive film.
  • a dummy sample (the same laminate as the evaluation laminate) is prepared separately, and a thin temperature sensor (rationalization) is provided between the adhesive film of the dummy sample and the cover glass on the first adhesive layer side. It was adjusted by hot-pressing with ST-50) manufactured by Kogyo Co., Ltd. sandwiched between them and measuring the maximum temperature reached of the adhesive film in the dummy sample in advance.
  • circuit connection structure (Manufacturing and evaluation of circuit connection structure) Using the circuit connection adhesive films of Examples 1 to 5 and Comparative Examples 1 and 2 obtained above, a circuit connection structure is produced by the following method, and at the time of producing the circuit connection structure, the circuit connection is used. The transferability of the adhesive film was evaluated. First, a circuit board having an ITO circuit electrode (pattern width 31 ⁇ m, space between electrodes 7 ⁇ m) formed on the surface of a glass substrate (Corning: # 1737, 38 mm ⁇ 28 mm, thickness 0.3 mm) was prepared.
  • the circuit connection adhesive film is cut into a rectangular shape of 2.0 mm ⁇ 23 mm, the PET film on the first adhesive layer side of the circuit connection adhesive film is peeled off, and then the circuit connection adhesive film No. 1 is used.
  • the circuit connection adhesive film was temporarily pressure-bonded to the circuit board so that the adhesive layer of No. 1 was in contact with the surface of the circuit board on which the circuit electrodes were formed.
  • Temporary crimping was performed by heating and pressurizing the circuit connection adhesive film for 1 second under the conditions of the measured maximum temperature of the circuit connection adhesive film of 60 ° C. and the adhesive film area conversion pressure of 1 MPa. After temporary crimping, the PET film on the second adhesive layer side was pinched with tweezers and peeled off from the second adhesive layer.
  • transferability A floating occurs between the circuit connection adhesive film and the glass substrate, or the circuit
  • transferability B The case where the connecting adhesive film was completely peeled off from the glass substrate.
  • an IC chip in which the bump electrodes are arranged (outer diameter 2 mm ⁇ 20 mm, thickness 0.3 mm, bump electrode area 840 ⁇ m 2 (length 70 ⁇ m ⁇ width 12 ⁇ m), space between bump electrodes 12 ⁇ m, bump electrode height 15 ⁇ m) is prepared.
  • After aligning the bump electrode of the IC chip with the circuit electrode of the glass substrate heat for 5 seconds under the conditions of the measured maximum reached temperature of 130 ° C. of the adhesive film for circuit connection and the area conversion pressure of 40 MPa at the bump electrode. And pressure was applied to attach the second adhesive layer to the IC chip. As a result, a circuit connection structure was obtained.
  • connection resistance The resistance value between the facing electrodes of the circuit connection structure (between the bump electrode and the circuit electrode) was measured by a four-terminal measurement method using a multimeter (MLR21, manufactured by Kusumoto Kasei Co., Ltd.), and 14 points were measured. The connection resistance was evaluated by comparing the average values of the measured values.
  • the circuit connection structure was polished to expose the cross section of the circuit connection structure in the opposite direction.
  • the exposed surface is observed with a scanning electron microscope (SEM, trade name: SU-8000), and the conductive particles observed between the adjacent bump electrodes (between the connection portion between the bump electrode and the circuit electrode) are adjacent to each other.
  • SEM scanning electron microscope
  • the distance between the centers of the conductive particles to be measured is measured. The longer the distance between adjacent particles, the less the risk of short circuit due to connection, and the insulation reliability can be ensured.
  • the average value of the center-to-center distance was taken as the post-mounting particle distance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Combinations Of Printed Boards (AREA)

Abstract

導電粒子を含有する第1の接着剤層と、第1の接着剤層上に設けられた第2の接着剤層と、を備え、第1の接着剤層のフロー率が、130~250%である、回路接続用接着剤フィルムを用意する工程と、第1の電極を有する第1の回路部材と第2の電極を有する第2の回路部材とを、第1の電極と第2の電極とが対向するように配置する工程と、第1の接着剤層が第1の回路部材側となり第2の接着剤層が第2の回路部材側となるように第1の回路部材と第2の回路部材との間に回路接続用接着剤フィルムを介在させた状態で、第1の回路部材及び第2の回路部材を熱圧着する工程と、を備え、熱圧着する工程において、第1の電極及び第2の電極を導電粒子を介して互いに電気的に接続して電極接続部分を形成するとともに、隣り合う電極接続部分の間において第1の回路部材側又は第2の回路部材側に凸となるように第1の接着剤層を屈曲させて回路接続用接着剤フィルムを硬化させる、回路接続構造体の製造方法。

Description

回路接続用接着剤フィルム、並びに、回路接続構造体及びその製造方法
 本発明は、回路接続用接着剤フィルム、並びに、回路接続構造体及びその製造方法に関する。
 従来、例えば、液晶ディスプレイとテープキャリアパッケージ(TCP)との接続、フレキシブルプリント配線基板(FPC)とTCPとの接続又はFPCとプリント配線板との接続のための接着材料として、接着剤中に導電粒子が分散された回路接続用接着剤フィルム(例えば異方導電性を有する回路接続用接着剤フィルム)が使用されている。また、半導体シリコンチップを基板に実装する場合にも、従来のワイヤーボンディングに代えて、半導体シリコンチップを基板に直接実装する、いわゆるチップオンガラス(COG)が行われており、ここでも回路接続用接着剤フィルム(例えば異方導電性を有する回路接続用接着剤フィルム)が用いられている。ここで、「異方導電性」とは、加圧方向には導通し、非加圧方向では絶縁性を保つという意味である。
 近年では、電子機器の発達に伴い、配線の高密度化及び回路の高機能化が進んでいる。その結果、接続電極間の間隔が例えば15μm以下となるような接続構造体が要求され、接続部材のバンプ電極も小面積化されてきている。小面積化されたバンプ接続において安定した電気的接続を得るためには、充分な数の導電粒子がバンプ電極と基板側の回路電極との間に介在している必要がある。
 これに対し、例えば特許文献1では、導電粒子を分散した接着剤層(導電粒子層)と接着剤のみの層(接着剤層)を積層した二層構成の接着剤フィルムが提案されている。
特開平8-279371号公報
 しかしながら、特許文献1の手法では、回路接続構造体の製造時の熱圧着の際に、対向する電極間に位置していた回路接続用接着剤フィルムの接着剤成分が押し出され、押し出された接着剤成分によって導電粒子が流動するおそれがある。その結果、隣り合う電極間において導電粒子が凝集し、短絡が発生する可能性がある。
 これに対し、本発明者らは、鋭意検討の結果、導電粒子が偏在している領域の接着剤を予め硬化させることで回路接続時(熱圧着時)の導電粒子の流動を抑制し、導電粒子による短絡の発生を抑制する手法を見出した。しかしながら、近年、対向する電極間の接続抵抗を更に低くすることが求められるようになってきており、上記手法では、接続抵抗の低減要求を満たすことが難しくなってきている。
 そこで、本発明は、導電粒子の凝集による短絡の発生を抑制しつつ、対向する電極間の接続抵抗が充分に低い回路接続構造体を製造することを一つの目的とする。
 本発明者らは、導電粒子を含む接着剤層が硬化してなる樹脂硬化層が回路接続構造体の隣り合う電極間(電極接続部分間)において凸状に屈曲した構造となるように熱圧着を行うことができれば、上記屈曲の過程で対向する電極間に位置している接着剤成分が少なくなり、隣り合う電極間における導電粒子を互いに離間した状態としたままで接続抵抗を低減できるのではないかとの着想を得た。本発明者らは、このような着想に基づき検討を行い、導電粒子を含む接着剤層のフロー率を特定の範囲とすることで上記凸状に屈曲した構造の樹脂硬化層を形成し得ることを見出し、本発明を完成させた。
 すなわち、本発明の一側面は、以下に示す回路接続構造体の製造方法に関する。
[1]導電粒子を含有する第1の接着剤層と、前記第1の接着剤層上に設けられた第2の接着剤層と、を備え、下記(A1)~(A4)の手順で測定される前記第1の接着剤層のフロー率が、130~250%である、回路接続用接着剤フィルムを用意する工程と、第1の電極を有する第1の回路部材と第2の電極を有する第2の回路部材とを、前記第1の電極と前記第2の電極とが対向するように配置する工程と、前記第1の接着剤層が前記第1の回路部材側となり前記第2の接着剤層が前記第2の回路部材側となるように前記第1の回路部材と前記第2の回路部材との間に前記回路接続用接着剤フィルムを介在させた状態で、前記第1の回路部材及び前記第2の回路部材を熱圧着する工程と、を備え、前記熱圧着する工程において、前記第1の電極及び前記第2の電極を前記導電粒子を介して互いに電気的に接続して電極接続部分を形成するとともに、隣り合う前記電極接続部分の間において前記第1の回路部材側又は前記第2の回路部材側に凸となるように前記第1の接着剤層を屈曲させて前記回路接続用接着剤フィルムを硬化させる、回路接続構造体の製造方法。
(A1)前記回路接続用接着剤フィルムを、当該回路接続用接着剤フィルムの両主面上に基材が貼り付けられた状態で厚さ方向に打ち抜き、直径R(単位:mm)が0.1~1mmの円板状の評価用接着剤フィルムを得る。
(A2)前記評価用接着剤フィルムから第1の接着剤層側の前記基材を剥離した後、前記評価用接着剤フィルムを前記第1の接着剤層側から、厚さ0.15mmのガラス板上に載せ、圧着温度60℃、圧着圧力1MPa、圧着時間0.1sの条件で熱圧着し、仮固定体を得る。
(A3)前記仮固定体から前記基材を剥離した後、第2の接着剤層上に厚さ0.15mmのガラス板を載せ、圧着温度170℃、圧着圧力80MPa、圧着時間5sの条件で熱圧着し、圧着体を得る。
(A4)前記圧着体における、硬化後の前記第1の接着剤層と前記ガラス板との接着面積S1(単位:mm)を求め、下記式(a)に基づき、フロー率を算出する。
フロー率[%]=(接着面積S1)/(0.25π×(直径R))×100・・・(a)
[2]前記第1の接着剤層が、第1の熱硬化性成分を含有する、[1]に記載の回路接続構造体の製造方法。
[3]前記第1の熱硬化性成分が、熱硬化性化合物として、(メタ)アクリレート化合物を含む、[2]に記載の回路接続構造体の製造方法。
[4]前記第1の熱硬化性成分が、前記熱硬化性化合物用の硬化剤として、有機過酸化物を含む、[3]に記載の回路接続構造体の製造方法。
[5]前記第1の接着剤層が、光硬化性成分の硬化物を含有する、[2]~[4]のいずれかに記載の回路接続構造体の製造方法。
[6]前記第1の接着剤層における前記導電粒子の密度が、5000~50000個/mmである、[1]~[5]のいずれかに記載の回路接続構造体の製造方法。
[7]前記第1の接着剤層の厚さが、前記導電粒子の平均粒径の0.6倍以上1.0倍未満である、[1]~[6]のいずれかに記載の回路接続構造体の製造方法。
[8]前記第1の接着剤層の厚さが、1.0~6.0μmである、[1]~[7]のいずれかに記載の回路接続構造体の製造方法。
[9]前記導電粒子の平均粒径が、2.5~6.0μmである、[1]~[8]のいずれかに記載の回路接続構造体の製造方法。
[10]前記第2の接着剤層が、第2の熱硬化性成分を含有する、[1]~[9]のいずれかに記載の回路接続構造体の製造方法。
[11]前記第2の熱硬化性成分が、熱硬化性化合物として、エポキシ化合物又はオキセタン化合物を含む、[10]に記載の回路接続構造体の製造方法。
[12]前記第2の熱硬化性成分が、前記熱硬化性化合物用の硬化剤として、スルホニウム塩又はアンモニウム塩を含む、[11]に記載の回路接続構造体の製造方法。
[13]前記第2の接着剤層が、無機フィラーを含有する、[1]~[12]のいずれかに記載の回路接続構造体の製造方法。
[14]前記無機フィラーの平均粒径が、0.05~5.0μmである、[13]に記載の回路接続構造体の製造方法。
[15]前記無機フィラーの含有量が、前記第2の接着剤層の全質量を基準として、20~60質量%である、[13]又は[14]に記載の回路接続構造体の製造方法。
 上記側面の回路接続構造体の製造方法では、第1の接着剤層のフロー率が250%以下であるため、熱圧着時の導電粒子の流動が起こり難く、熱圧着後に第1の接着剤層のフィルム形状が維持されやすい。そのため、上記側面の回路接続構造体の製造方法によれば、導電粒子の凝集による短絡の発生が抑制される。また、上記側面の回路接続構造体の製造方法では、第1の接着剤層のフロー率が130%以上であるため、当該第1の接着剤層が熱圧着時に屈曲する。そして、当該屈曲により第1の接着剤層が引き延ばされて対向する電極間の接着剤成分が少なくなる。そのため、上記側面の回路接続構造体の製造方法によれば、対向する電極間の接続抵抗が充分に低い回路接続構造体を製造することができる。
 本発明の他の一側面は、以下に示す回路接続用接着剤フィルムに関する。
[16]導電粒子を含有する第1の接着剤層と、前記第1の接着剤層上に設けられた第2の接着剤層と、を備え、下記(A1)~(A4)の手順で測定される前記第1の接着剤層のフロー率が、130~250%である、回路接続用接着剤フィルム。
(A1)前記回路接続用接着剤フィルムを、当該回路接続用接着剤フィルムの両主面上に基材が貼り付けられた状態で厚さ方向に打ち抜き、直径R(単位:mm)が0.1~1mmの円板状の評価用接着剤フィルムを得る。
(A2)前記評価用接着剤フィルムから第1の接着剤層側の前記基材を剥離した後、前記評価用接着剤フィルムを前記第1の接着剤層側から、厚さ0.15mmのガラス板上に載せ、圧着温度60℃、圧着圧力1MPa、圧着時間0.1sの条件で熱圧着し、仮固定体を得る。
(A3)前記仮固定体から前記基材を剥離した後、第2の接着剤層上に厚さ0.15mmのガラス板を載せ、圧着温度170℃、圧着圧力80MPa、圧着時間5sの条件で熱圧着し、圧着体を得る。
(A4)前記圧着体における、硬化後の前記第1の接着剤層と前記ガラス板との接着面積S1(単位:mm)を求め、下記式(a)に基づき、フロー率を算出する。
フロー率[%]=(接着面積S1)/(0.25π×(直径R))×100・・・(a)
[17]導電粒子を含有する第1の接着剤層と、前記第1の接着剤層上に設けられた第2の接着剤層と、を備える回路接続用接着剤フィルムであって、第1の電極を有する第1の回路部材の前記第1の電極と、第2の電極を有する第2の回路部材の前記第2の電極とを、前記導電粒子を介して互いに電気的に接続して電極接続部分を形成するとともに、隣り合う前記電極接続部分の間において前記第1の回路部材側又は前記第2の回路部材側に凸となるように前記第1の接着剤層を屈曲させて前記回路接続用接着剤フィルムを硬化させ回路接続構造体を形成する、回路接続用接着剤フィルム。
 上記側面の回路接続用接着剤フィルムによれば、導電粒子の凝集による短絡の発生を抑制することができる。また、対向する電極間の接続抵抗が充分に低い回路接続構造体を製造することができる。
 本発明の他の一側面は、以下に示す回路接続構造体に関する。
[18]第1の電極を有する第1の回路部材と、第2の電極を有する第2の回路部材と、前記第1の回路部材及び前記第2の回路部材の間に配置され、第1の電極及び第2の電極を導電粒子を介して互いに電気的に接続するとともに、第1の回路部材及び第2の回路部材を接着する回路接続部と、を備え、前記回路接続部が、導電粒子を含有する第1の樹脂硬化層と、第1の樹脂硬化層の第1の回路部材側とは反対側に位置する第2の樹脂硬化層と、を含み、前記第1の樹脂硬化層が、第1の電極及び第2の電極間に介在する導電粒子によって第1の電極及び第2の電極を互いに電気的に接続する電極接続部分を複数含み、隣り合う前記電極接続部分の間において、前記第1の回路部材側又は前記第2の回路部材側に凸となるように屈曲している、回路接続構造体。
 上記側面の回路接続構造体は、上記側面の回路接続用接着剤フィルムを用いることで製造可能であり、上記側面の回路接続構造体に特徴的な、第1の樹脂硬化層の構造(隣り合う電極接続部分の間において第1の回路部材側又は第2の回路部材側に凸となるように屈曲している構造)は、従来の回路接続用接着剤フィルムを用いる場合には得られない新規な構造である。
 本発明によれば、導電粒子の凝集による短絡の発生を抑制しつつ、対向する電極間の接続抵抗が充分に低い回路接続構造体を製造することができる。
図1は、一実施形態の回路接続用接着剤フィルムを示す模式断面図である。 図2は、図1に示した回路接続用接着剤フィルムの要部を示す模式断面図である。 図3は、他の一実施形態の回路接続用接着剤フィルムを示す模式断面図である。 図4は、一実施形態の回路接続構造体を示す模式断面図である。 図5は、一実施形態の回路接続構造体の製造工程を示す模式断面図である。 図6は、他の一実施形態の回路接続構造体を示す模式断面図である。 図7は、実施例の回路接続構造体の断面構造を示すSEM(走査型電子顕微鏡)写真である。
 本明細書において、「(メタ)アクリレート」とは、アクリレート、及び、それに対応するメタクリレートの少なくとも一方を意味する。「(メタ)アクリル」、「(メタ)アクリロイル」等の他の類似の表現においても同様である。また、「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。また、「常温」とは、25℃を意味する。
 以下で例示する材料は、特に断らない限り、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。また、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。また、個別に記載した上限値及び下限値は任意に組み合わせ可能である。
 以下、本発明の実施形態について説明するが、本発明はこれらの実施形態に何ら限定されるものではない。
 本実施形態の一側面は、回路接続用接着剤フィルムである。また、本実施形態の一側面は、回路接続構造体である。また、本実施形態の一側面は、回路接続構造体の製造方法である。また、本実施形態の一側面は、回路接続への接着剤フィルム又はその硬化物の応用である。また、本実施形態の一側面は、回路接続構造体又はその製造への接着剤フィルム又はその硬化物の応用である。
<回路接続用接着剤フィルム>
 一実施形態の回路接続用フィルムは、導電粒子を含有する第1の接着剤層と、第1の接着剤層上に設けられた第2の接着剤層と、を備え、下記(A1)~(A4)の手順で測定される第1の接着剤層のフロー率が、130~250%である、回路接続用接着剤フィルムである。
(A1)回路接続用接着剤フィルムを、当該回路接続用接着剤フィルムの両主面上に基材が貼り付けられた状態で厚さ方向に打ち抜き、直径R(単位:mm)が0.1~1mmの円板状の評価用接着剤フィルムを得る。
(A2)評価用接着剤フィルムから第1の接着剤層側の基材を剥離した後、評価用接着剤フィルムを第1の接着剤層側から、厚さ0.15mmのガラス板上に載せ、圧着温度60℃、圧着圧力1MPa、圧着時間0.1sの条件で熱圧着し、仮固定体を得る。
(A3)仮固定体から基材を剥離した後、第2の接着剤層上に厚さ0.15mmのガラス板を載せ、圧着温度170℃、圧着圧力80MPa、圧着時間5sの条件で熱圧着し、圧着体を得る。
(A4)圧着体における、硬化後の第1の接着剤層とガラス板との接着面積S1(単位:mm)を求め、下記式(a)に基づき、フロー率を算出する。
フロー率[%]=(接着面積S1)/(0.25π×(直径R))×100・・・(a)
 他の一実施形態の回路接続用フィルムは、導電粒子を含有する第1の接着剤層と、第1の接着剤層上に設けられた第2の接着剤層と、を備え、第1の電極を有する第1の回路部材の該第1の電極と、第2の電極を有する第2の回路部材の該第2の電極とを、導電粒子を介して互いに電気的に接続して電極接続部分を形成するとともに、隣り合う電極接続部分の間において第1の回路部材側又は第2の回路部材側に凸となるように第1の接着剤層を屈曲させて回路接続用接着剤フィルムを硬化させ回路接続構造体を形成する、回路接続用接着剤フィルムである。この実施形態の回路接続用フィルムは、上記実施形態の回路接続用接着剤フィルムであってよい。
 図1は、一実施形態の回路接続用接着剤フィルム(以下、単に「接着剤フィルム」ともいう。)の縦断面を模式的に示す図である。図1に示される接着剤フィルム1aは、導電粒子4及び接着剤成分5を含む第1の接着剤層2と、第1の接着剤層2上に設けられた第2の接着剤層3とを備える。導電粒子4は、接着剤フィルム1aの縦断面において、隣り合う導電粒子同士が互いに離隔した状態で横方向(図1における左右方向)に並ぶように存在している。なお、「縦断面」とは、主面(例えば接着剤フィルム1aの主面)に対して略直交する断面(積層方向の断面)を意味する。
 接着剤フィルム1aは、回路接続用接着剤フィルムである。ここで、回路接続用とは、回路部材の接続に用いられることを意味する。接着剤フィルム1aは、例えば、第1の電極を有する第1の回路部材と、第2の電極を有する第2の回路部材との間に介在させ、第1の回路部材及び第2の回路部材を熱圧着して、第1の電極及び第2の電極を導電粒子を介して互いに電気的に接続するために用いられる。接着剤フィルム1aは、異方導電性を有していてもよいし、異方導電性を有していなくてもよい。すなわち、接着剤フィルム1aは、異方導電性の接着剤フィルムであっても、非異方導電性(例えば等方導電性)の接着剤フィルムであってもよい。
 図2は、図1に示す接着剤フィルム1aの要部拡大図である。接着剤フィルム1aは、その縦断面をみたときに、導電粒子4が存在する領域(存在領域)R1と、導電粒子4が存在しない(不存在領域)R2とを含む。
 接着剤フィルム1aの存在領域R1においては、第1の接着剤成分5、導電粒子4及び第1の接着剤成分5がこの順で積層方向に並ぶように第1の接着剤層2が構成されており、その上に第2の接着剤層3が積層されている。すなわち、第1の接着剤層2の第2の接着剤層3と反対側の表面2aと、導電粒子4との間には、第1の接着剤成分5が存在しているとともに、導電粒子4の第2の接着剤層3側の表面にも、該表面を覆うように第1の接着剤成分5が存在している。
 第1の接着剤層2の第2の接着剤層3と反対側の表面2aから導電粒子4の表面までの最短距離Dは、高温高湿環境下における接続抵抗の上昇を抑制し、回路接続時(熱圧着時)の導電粒子の流動も抑制できる観点から、0μmを超え1μm以下であってよい。最短距離Dは、同様の観点から、0.1μm以上又は0.2μm以上であってもよく、0.8μm以下であってもよい。
 第1の接着剤層2及び第2の接着剤層3の界面Sから導電粒子4の表面までの最短距離d11は、例えば、0.1μm以上であってよく、3.0μm以下、2.0μm以下又は1.0μm以下であってよい。他の一実施形態では、導電粒子4の第2の接着剤層3側の表面には、第1の接着剤成分5が存在していなくてもよい。すなわち、上記最短距離d11は、0μm以上であってよいということもできる。
 存在領域R1において、第1の接着剤層2及び第2の接着剤層3の界面Sから第2の接着剤層3の第1の接着剤層2と反対側の表面3aまでの最短距離d21は、例えば、3.0μm以上、5.0μm以上又は10.0μm以上であってよく、50μm以下であってよい。
 上述したとおり、第1の接着剤成分5は、導電粒子4の表面(第2の接着剤層3側の表面を含む)を覆うように存在しているため、第1の接着剤層2及び第2の接着剤層3の界面Sは、不存在領域R2において、導電粒子4の近傍では導電粒子4の表面形状に追従するような曲面となっており、導電粒子4から遠ざかるにつれて、第1の接着剤層2の第2の接着剤層3と反対側の表面2a及び第2の接着剤層3の第1の接着剤層2と反対側の表面3aのそれぞれと略平行な略平面となる。
 第1の接着剤層2の厚さは、導電粒子4の近傍で最も厚くなっており、導電粒子4から遠ざかるにつれて薄くなっている。第2の接着剤層3の厚さは、導電粒子4の近傍で最も薄くなっており、導電粒子4から遠ざかるにつれて厚くなっている。本明細書において、第1の接着剤層2の厚さ及び第2の接着剤層3の厚さは、導電粒子4が存在しない不存在領域R2における第1の接着剤層2の厚さ及び第2の接着剤層3の厚さとしてそれぞれ定義される。また、第1の接着剤層2の厚さ及び第2の接着剤層3の厚さの好適な範囲について以下で説明するが、以下は、不存在領域R2の任意の位置における第1の接着剤層2の厚さ(例えば、導電粒子4の近傍の厚さd12及びそこから遠ざかった位置における厚さd13の両方)及び第2の接着剤層3の厚さ(例えば、導電粒子4の近傍の厚さd22及びそこから遠ざかった位置における厚さd23の両方)が以下で示される範囲内であってよいことを意味する。
 図2では、第1の接着剤層2の厚さは、導電粒子4の平均粒径より小さくなっている。具体的には、第1の接着剤層2の厚さは、導電粒子4が対向する電極間で捕捉されやすくなり、接続抵抗を一層低減できる観点では、導電粒子4の平均粒径の0.6倍以上、0.7倍以上又は0.8倍以上であってよい。第1の接着剤層2の厚さは、熱圧着時に導電粒子が対向する電極間ではさまれた際に、より導電粒子が潰れやすくなり、接続抵抗を一層低減できる観点では、導電粒子4の平均粒径の1.0倍未満、0.9倍以下又は0.8倍以下であってよい。これらの観点から、第1の接着剤層2の厚さは、導電粒子4の平均粒径の0.6倍以上1.0倍未満、0.7~0.9倍、0.7~0.8倍又は0.8~0.9倍であってよい。
 第1の接着剤層2及び第2の接着剤層3の合計厚さに対する第2の接着剤層3の厚さの比(第2の接着剤層3の厚さ/第1の接着剤層2及び第2の接着剤層3の合計厚さ)は、回路接続時(熱圧着時)の導電粒子4の流動を抑制する観点から、96%未満であってよい。上記比は、回路接続時(熱圧着時)の導電粒子4の流動を更に抑制する観点から、94%以下、93%以下、88%以下又は86%以下であってもよい。上記比は、例えば、75%以上、78%以上又は80%以上であってよい。
 第1の接着剤層2の厚さは、例えば、導電粒子をより効率的に捕捉できるようになる観点から、1.0μm以上、2.0μm以上又は3.0μm以上であってよく、6.0μm以下、5.0μm以下又は4.0μm以下であってよく、1.0~6.0μm、2.0~5.0μm又は3.0~4.0μmであってよい。
 第2の接着剤層3の厚さは、電極間のスペースを充分に充填して電極を封止することができ、より良好な信頼性が得られる観点から、5.0μm以上、8.0μm以上又は10.0μm以上であってよく、15.0μm以下、13.0μm以下、12.0μm以下、11.0μm以下又は8.0μm以下であってよく、5.0~15.0μm、8.0~13.0μm、10.0~11.0μm、6.0~8.0μm、9.0~11.0μm又は10.0~12.0μmであってよい。
 第1の接着剤層2及び第2の接着剤層3の合計厚さ(接着剤フィルム1の厚さ)は、例えば、6.0μm以上、8.0μm以上、10.0μm以上、12.0μm以上又は14.0μm以上であってよく、18.0μm以下、16.0μm以下、14.0μm以下又は10.0μm以下であってよく、6.0~18.0μm、8.0~16.0μm、10.0~14.0μm、8.0~10.0μm、12.0~14.0μm又は14.0~16.0μmであってよい。
 上述した第1の接着剤層2の厚さ及び第2の接着剤層3の厚さは、例えば、接着剤フィルムを2枚のガラス(厚さ:1mm程度)で挟み込み、ビスフェノールA型エポキシ樹脂(商品名:JER811、三菱ケミカル株式会社製)100gと、硬化剤(商品名:エポマウント硬化剤、リファインテック株式会社製)10gとからなる樹脂組成物で注型後に、研磨機を用いて断面研磨を行い、走査型電子顕微鏡(SEM、商品名:SU-8000、株式会社日立ハイテクサイエンス製)を用いて測定することによって求めることができる。
 第1の接着剤層2は、130~250%のフロー率を有する。ここで、フロー率とは、熱圧着時の流動性(フロー)を示す指標であり、具体的には、下記(A1)~(A4)の方法で測定される。
(A1)接着剤フィルム1aを、当該接着剤フィルム1aの両主面上に基材が貼り付けられた状態で厚さ方向に打ち抜き、直径R(単位:mm)が0.1~1mmの円板状の評価用接着剤フィルムを得る。
(A2)評価用接着剤フィルムから第1の接着剤層側の基材を剥離した後、評価用接着剤フィルムを第1の接着剤層側から、厚さ0.15mmのガラス板(第1のガラス板)上に載せ、圧着温度60℃、圧着圧力1MPa、圧着時間0.1sの条件で熱圧着し、仮固定体を得る。
(A3)仮固定体から基材を剥離した後、第2の接着剤層上に厚さ0.15mmのガラス板(第2のガラス板)を載せ、圧着温度170℃、圧着圧力80MPa、圧着時間5sの条件で熱圧着し、圧着体を得る。
(A4)圧着体における、硬化後の第1の接着剤層とガラス板(第1のガラス板)との接着面積S1(単位:mm)を求め、下記式(a)に基づき、フロー率を算出する。
フロー率[%]=(接着面積S1[mm])/(評価用接着剤フィルムの第1の接着剤層の面積(=0.25π×(直径R))[mm])×100・・・(a)
 上記方法では、まず、直径R(単位:mm)が0.1~1mmの評価用接着剤フィルムを得る。接着剤フィルム1aの幅が1mm以上である場合には、直径R(単位:mm)を1mmとすればよく、接着剤フィルム1aの幅が1mm未満である場合には、該接着剤フィルム1aの幅に合わせて直径Rを調整すればよい。なお、上記工程は、接着剤フィルム1aが0.1~1mmの円板状であることを妨げるものではない。また、評価方法の詳細は実施例に示す。
 第2の接着剤層3は、例えば、200~4000Pa・sの最低溶融粘度を有してよい。第2の接着剤層3の最低溶融粘度は200Pa・s未満であってもよいが、第2の接着剤層3の最低溶融粘度が200Pa・s以上であると、樹脂流動による導電粒子の流動が抑制され、導電粒子が電極間に捕捉されやすくなる傾向がある。また、第2の接着剤層3の最低溶融粘度は4000Pa・sより大きくてもよいが、第2の接着剤層3の最低溶融粘度が4000Pa・s以下であると、より良好な樹脂排除性が得られ接続抵抗がより低くなる傾向がある。上記観点から、第2の接着剤層3の最低溶融粘度は、500Pa・s以上又は800Pa・s以上であってもよく、3000Pa・s以下、2500Pa・s以下、2000Pa・s以下又は1500Pa・s以下であってもよく、500~2500Pa・s又は800~1500Pa・sであってもよい。第2の接着剤層3の最低溶融粘度は、実施例に記載の方法で測定することができる。
 第2の接着剤層3の最低溶融粘度到達温度は、例えば、50~100℃であってよい。第2の接着剤層3の最低溶融粘度到達温度は50℃未満であってもよいが、第2の接着剤層3の最低溶融粘度到達温度が50℃以上であると、フィルムの保存安定性が向上する傾向があり、また、仮圧着時の硬化が抑制される傾向がある。また、第2の接着剤層3の最低溶融粘度到達温度は100℃より大きくてもよいが、第2の接着剤層3の最低溶融粘度到達温度が100℃以下であると、130~180℃の加熱実装において良好な流動性が得られやすくなり、実装時に接続安定性がより向上する傾向がある。上記観点から、第2の接着剤層3の最低溶融粘度到達温度は、60℃以上、70℃以上又は75℃以上であってもよく、90℃以下、85℃以下又は80℃以下であってもよく、60~90℃、70~90℃、75~85℃又は75~80℃であってもよい。
 次に、第1の接着剤層2及び第2の接着剤層3を構成する各成分について説明する。
(第1の接着剤層)
 第1の接着剤層2は、例えば、導電粒子4(以下、「(A)成分」という場合がある。)と、熱硬化性成分(以下、「(B)成分」という場合がある。)と、光硬化性成分(以下、「(C)成分」という場合がある。)の硬化物(光硬化物)と、を含有する。(B)成分は、接続時に流動可能な成分であり、例えば、未硬化の硬化性成分(例えば樹脂成分)である。(C)成分の硬化物は、(C)成分を完全に硬化させた硬化物であってもよく、(C)成分の一部を硬化させた硬化物であってもよい。第1の接着剤層2は、(C)成分の硬化物を含有しなくてもよい。第1の接着剤層2を構成する(A)成分以外の成分は、例えば、導電性を有しない成分(例えば、絶縁性樹脂成分)である。
[(A)成分:導電粒子]
 (A)成分は、導電性を有する粒子であれば特に制限されず、Au、Ag、Ni、Cu、はんだ等の金属で構成された金属粒子、導電性カーボンで構成された導電性カーボン粒子などであってよい。(A)成分は、非導電性のガラス、セラミック、プラスチック(ポリスチレン等)などを含む核と、上記金属又は導電性カーボンを含み、核を被覆する被覆層とを備える被覆導電粒子であってもよい。これらの中でも、熱溶融性の金属で形成された金属粒子、又はプラスチックを含む核と、金属又は導電性カーボンを含み、核を被覆する被覆層とを備える被覆導電粒子を用いる場合、第1の接着剤層を加熱又は加圧により変形させることが容易となる。そのため、電極同士を電気的に接続する際に、電極と(A)成分との接触面積を増加させ、電極間の導電性をより向上させることができる。
 (A)成分は、上記の金属粒子、導電性カーボン粒子、又は被覆導電粒子と、樹脂等の絶縁材料を含み、該粒子の表面を被覆する絶縁層とを備える絶縁被覆導電粒子であってもよい。(A)成分が絶縁被覆導電粒子であると、(A)成分の含有量が多い場合であっても、粒子の表面が樹脂で被覆されているため、(A)成分同士の接触による短絡の発生を抑制でき、また、隣り合う電極回路間の絶縁性を向上させることもできる。(A)成分は、上述した各種導電粒子の1種を単独で又は2種以上を組み合わせて用いられる。
 (A)成分の最大粒径は、電極の最小間隔(隣り合う電極間の最短距離)よりも小さい。(A)成分の最大粒径は、分散性及び導電性に優れる観点から、2.5μm以上、3.0μm以上又は3.5μm以上であってよい。(A)成分の最大粒径は、分散性及び導電性に優れる観点から、6.0μm以下であってよく、5.0μm以下であってよく、4.5μm以下であってよく、4.0μm以下であってよい。これらの観点から、(A)成分の最大粒径は、2.5~6.0μmであってよく、3.0~5.0μmであってよく、3.0~4.0μmであってよく、3.5~4.5μmであってよい。本明細書では、任意の導電粒子300個(pcs)について、走査型電子顕微鏡(SEM)を用いた観察により粒径の測定を行い、得られた最も大きい値を(A)成分の最大粒径とする。なお、(A)成分が突起を有するなどの球形ではない場合、(A)成分の粒径は、SEMの画像における導電粒子に外接する円の直径とする。
 (A)成分の平均粒径は、分散性及び導電性に優れる観点から、2.5μm以上、3.0μm以上又は3.5μm以上であってよい。(A)成分の平均粒径は、分散性及び導電性に優れる観点から、6.0μm以下であってよく、5.0μm以下であってよく、4.5μm以下であってよく、4.0μm以下であってよい。これらの観点から、(A)成分の平均粒径は、2.5~6.0μmであってよく、3.0~5.0μmであってよく、3.0~4.0μmであってよく、3.5~4.5μmであってよい。本明細書では、任意の導電粒子300個について、走査型電子顕微鏡(SEM)を用いた観察により粒径の測定を行い、得られた粒径の平均値を平均粒径とする。
 第1の接着剤層2における(A)成分の粒子密度は、安定した接続抵抗が得られやすい観点から、5000個/mm以上であってよく、10000個/mm以上であってよく、20000個/mm以上であってよい。第1の接着剤層2における(A)成分の粒子密度は、隣り合う電極間の絶縁性を向上させる観点から、50000個/mm以下であってよく、40000個/mm以下であってよく、30000個/mm以下であってよい。これらの観点から、(A)成分の粒子密度は、5000~50000個/mm、10000~40000個/mm又は20000~30000個/mmであってよい。
 (A)成分の含有量は、導電性をより向上させることができる観点では、例えば、第1の接着剤層の全質量基準で、5質量%以上、15質量%以上又は20質量%以上であってよい。(A)成分の含有量は、短絡を抑制しやすい観点では、例えば、第1の接着剤層の全質量基準で、50質量%以下、40質量%以下又は30質量%以下であってよい。これらの観点から、(A)成分の含有量は、例えば、第1の接着剤層の全質量基準で、5~50質量%、10~40質量%又は20~30質量%であってよい。なお、第1の接着剤層2を形成するための組成物(後述する第1の接着剤組成物)中の(A)成分の含有量(組成物の全質量基準)は上記範囲と同様であってよい。
[(B)成分:熱硬化性成分]
 (B)成分は、熱によって硬化する成分であれば特に制限されない。(B)成分は、例えば、樹脂成分であり、熱硬化性化合物(以下、「(B1)成分」という場合がある。)と、当該熱硬化性化合物用の硬化剤(以下、「(B2)成分」という場合がある。)とを含む。
(B1)成分:熱硬化性化合物
 (B1)成分は、(B2)成分との共存下で加熱することによって反応し架橋する化合物である。(B1)成分は、例えば、ラジカル重合性化合物(以下、「(B1-1)成分」という場合がある。)であってよく、カチオン重合性化合物(以下、「(B1-2)成分」という場合がある。)であってもよい。(B1)成分は、1種を単独で用いてもよく、複数種を組み合わせて用いてもよい。
(B1-1)成分:ラジカル重合性化合物
 (B1-1)成分は、少なくとも一つのラジカル重合性基を有する。ラジカル重合性基としては、例えば、(メタ)アクリロイル基、ビニル基、アリル基、スチリル基、アルケニル基、アルケニレン基、マレイミド基等が挙げられる。(B1)成分が有するラジカル重合性基の数(官能基数)は、重合後、所望の溶融粘度が得られ易く、接続抵抗の低減効果がより向上し、接続信頼性により優れる観点から、2以上であってよく、重合時の硬化収縮を抑制する観点から、10以下であってよい。また、架橋密度と硬化収縮とのバランスをとるために、ラジカル重合性基の数が上記範囲内にある化合物に加えて、ラジカル重合性基の数が上記範囲外にある化合物を使用してもよい。
 (B1-1)成分は、導電粒子の流動を抑制する観点から、ラジカル重合性化合物として、(メタ)アクリレート化合物を含んでいてよい。(メタ)アクレート化合物は、(メタ)アクリロイル基を一つ有する単官能の(メタ)アクリレートであってよく、(メタ)アクリロイル基を二つ以上有する多官能の(メタ)アクリレートであってもよく、これらを併用してもよい。(B1-1)成分は、導電粒子の流動をより抑制する観点では、多官能の(メタ)アクリレートであってよい。
 単官能の(メタ)アクリレートとしては、例えば、(メタ)アクリル酸;メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、イソアミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチルヘプチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、エトキシポリエチレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、エトキシポリプロピレングリコール(メタ)アクリレート、モノ(2-(メタ)アクリロイロキシエチル)スクシネート等の脂肪族(メタ)アクリレート;ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、o-ビフェニル(メタ)アクリレート、1-ナフチル(メタ)アクリレート、2-ナフチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、p-クミルフェノキシエチル(メタ)アクリレート、o-フェニルフェノキシエチル(メタ)アクリレート、1-ナフトキシエチル(メタ)アクリレート、2-ナフトキシエチル(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、フェノキシポリプロピレングリコール(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-(o-フェニルフェノキシ)プロピル(メタ)アクリレート、2-ヒドロキシ-3-(1-ナフトキシ)プロピル(メタ)アクリレート、2-ヒドロキシ-3-(2-ナフトキシ)プロピル(メタ)アクリレート等の芳香族(メタ)アクリレート;グリシジル(メタ)アクリレート等のエポキシ基を有する(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート等の脂環式エポキシ基を有する(メタ)アクリレート、(3-エチルオキセタン-3-イル)メチル(メタ)アクリレート等のオキセタニル基を有する(メタ)アクリレートなどが挙げられる。
 多官能の(メタ)アクリレートとしては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、エトキシ化ポリプロピレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、2-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリシクロデカンジメタノール(メタ)アクリレート、エトキシ化2-メチル-1,3-プロパンジオールジ(メタ)アクリレート等の脂肪族(メタ)アクリレート;エトキシ化ビスフェノールA型ジ(メタ)アクリレート、プロポキシ化ビスフェノールA型ジ(メタ)アクリレート、エトキシ化プロポキシ化ビスフェノールA型ジ(メタ)アクリレート、エトキシ化ビスフェノールF型ジ(メタ)アクリレート、プロポキシ化ビスフェノールF型ジ(メタ)アクリレート、エトキシ化プロポキシ化ビスフェノールF型ジ(メタ)アクリレート、エトキシ化フルオレン型ジ(メタ)アクリレート、プロポキシ化フルオレン型ジ(メタ)アクリレート、エトキシ化プロポキシ化フルオレン型ジ(メタ)アクリレート等の芳香族(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、エトキシ化プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化ペンタエリスリトールトリ(メタ)アクリレート、プロポキシ化ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化プロポキシ化ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、プロポキシ化ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化プロポキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の脂肪族(メタ)アクリレート;ビスフェノール型エポキシ(メタ)アクリレート(例えばビスフェノールA型エポキシ(メタ)アクリレート)、フェノールノボラック型エポキシ(メタ)アクリレート、クレゾールノボラック型エポキシ(メタ)アクリレート等の芳香族エポキシ(メタ)アクリレートなどが挙げられる。
 単官能の(メタ)アクリレートの含有量は、(B1-1)成分の全質量を基準として、例えば、0~60質量%、0~50質量%又は0~40質量%であってよい。
 多官能(2官能以上)の(メタ)アクリレートの含有量は、接続抵抗の低減効果と粒子流動の抑制とを両立させる観点から、(B1-1)成分の全質量を基準として、例えば、40~100質量%、50~100質量%又は60~100質量%であってよい。
 (B1-1)成分は、250%以下のフロー率を有する第1の接着剤層が得られやすい観点では、エポキシ(メタ)アクリレートであってよい。同様の観点から、(B1-1)成分は、上述したような芳香族エポキシ(メタ)アクリレートであってよい。エポキシ(メタ)アクリレートの含有量は、(B1-1)成分の全質量を基準として、例えば、40~100質量%、50~100質量%又は60~100質量%であってよい。
 (B1-1)成分は、250%以下のフロー率を有する第1の接着剤層が得られやすい観点では、トリシクロデカン構造、ノルボルナン構造等の架橋構造、及び/又は、芳香族構造を有していてよい。(B1-1)成分として、トリシクロデカン構造、ノルボルナン構造等の架橋構造、及び/又は、芳香族構造を有する(メタ)アクリレートを用いる場合、250%以下のフロー率を有する第1の接着剤層がより得られやすくなる。トリシクロデカン構造、ノルボルナン構造等の架橋構造、及び/又は、芳香族構造を有する(メタ)アクリレートの含有量は、(B1-1)成分の全質量を基準として、例えば、40~100質量%、50~100質量%又は60~100質量%であってよい。
 (B1-1)成分は、130~250%のフロー率を有する第1の接着剤層が得られやすい観点では、重量平均分子量が300~4000の化合物を含んでいてよい。重量平均分子量が300~4000の化合物の含有量は、(B1-1)成分の全質量を基準として、例えば、20質量%以上、30質量%以上又は40質量%以上であってもよく、100質量%以下、80質量%以下又は60質量%以下であってもよく、20~100質量%、30~80質量%又は40~60質量%であってよい。(B1-1)成分が複数存在する場合、全ての(B1-1)成分の重量平均分子量が300~4000であってもよい。なお、本明細書中の重量平均分子量は、ゲル浸透クロマトグラフ(GPC)より標準ポリスチレンによる検量線を用いて測定した値をいう。
 (B1-1)成分は、(メタ)アクリレート化合物に加えて、その他のラジカル重合性化合物を含んでいてもよい。その他のラジカル重合性化合物としては、例えば、マレイミド化合物、ビニルエーテル化合物、アリル化合物、スチレン誘導体、アクリルアミド誘導体、ナジイミド誘導体等が挙げられる。その他のラジカル重合性化合物の含有量は、(B1)成分の全質量を基準として、例えば、0~40質量%であってよい。
(B1-2)成分:カチオン重合性化合物
 (B1-2)成分は、接続抵抗の低減効果が更に向上し、接続信頼性により優れる観点から、環状エーテル基を有する化合物であってよい。環状エーテル基を有する化合物の中でも、エポキシ化合物及びオキセタン化合物からなる群より選ばれる少なくとも1種を用いる場合、接続抵抗の低減効果が一層向上する傾向がある。250%以下のフロー率を有する第1の接着剤層が得られやすい観点では、(B1-2)成分は、環状エーテル基を複数有する化合物であってよい。
 エポキシ化合物は、エポキシ基を有する化合物であり、例えば、1分子中に2個以上のエポキシ基を有する。エポキシ化合物としては、ビスフェノールAとエピクロロヒドリンとから誘導されるエポキシ樹脂(ビスフェノールA型エポキシ樹脂)、脂環式エポキシ基を有するエポキシ化合物(3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート等)などを用いることができる。脂環式エポキシ基を有するエポキシ化合物を用いる場合、250%以下のフロー率を有する第1の接着剤層が得られやすい。130~250%のフロー率を有する第1の接着剤層が得られやすい観点では、エポキシ化合物の官能基当量は、100~500g/eqであってよい。エポキシ化合物の市販品としては、例えば、ビスフェノールA型エポキシ樹脂であるYL-980(三菱ケミカル株式会社製、商品名)、jER1007(三菱ケミカル株式会社製、商品名)、脂環式エポキシ化合物であるEHPE3150、EHPE3150CE、CEL(セロキサイド)8010、CEL(セロキサイド)2021P、CEL(セロキサイド)2081(商品名、株式会社ダイセル株式会社製)等が挙げられる。これらは、1種の化合物を単独で用いてもよく、複数種を組み合わせて用いてもよい。
 オキセタン化合物は、オキセタニル基を有する化合物であり、例えば、1分子中に2個以上のオキセタニル基を有する。130~250%のフロー率を有する第1の接着剤層が得られやすい観点では、オキセタン化合物の官能基当量は、100~500g/eqであってよい。オキセタン化合物は、脂環式エポキシ基を有するエポキシ化合物と組み合わせて用いてよい。この場合、250%以下のフロー率を有する第1の接着剤層がより得られやすくなる。オキセタン化合物の市販品としては、例えば、ETERNACOLL OXBP(商品名、4,4’-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビフェニル、宇部興産株式会社製)、OXSQ、OXT-121、OXT-221、OXT-101、OXT-212(商品名、東亜合成株式会社製)等が挙げられる。これらは、1種の化合物を単独で用いてもよく、複数種を組み合わせて用いてもよい。
(B2)成分:(B1)成分の硬化剤
 (B2)成分は、例えば、熱重合開始剤である。(B2)成分は、例えば、熱ラジカル発生剤(以下、「(B2-1)成分」という場合がある。)であってよく、熱酸発生剤(以下、「(B2-2)成分」という場合がある。)であってもよい。(B2)成分は、(B1)成分の種類に応じて選択してよい。(B1)成分がラジカル重合性化合物である場合、(B2)成分として熱ラジカル発生剤(熱ラジカル重合開始剤)を使用してよく、(B1)成分がカチオン重合性化合物である場合、(B2)成分として熱酸発生剤(熱カチオン重合開始剤)を使用してよい。
(B2-1)成分:熱ラジカル発生剤
 (B2-1)成分は、熱により分解して遊離ラジカルを発生する。つまり、(B2-1)成分は、外部からの熱エネルギーの付与によりラジカルを発生する化合物である。(B2-1)成分としては、従来から知られている有機過酸化物及びアゾ化合物から任意に選択することができる。(B2-1)成分は、導電粒子の流動抑制効果、及び、転写後の剥離の抑制効果が更に向上する観点では、有機過酸化物であってよく、安定性、反応性及び相溶性がより良好となる観点では、1分間半減期温度が90~175℃であり、且つ、重量平均分子量が180~1000の有機過酸化物であってよい。有機過酸化物の1分間半減期温度が上記範囲にある場合、貯蔵安定性に更に優れる傾向があり、充分に高いラジカル重合性が得られることから、短時間で硬化させることも可能となる。(B2-1)成分の1分間半減期温度が90~175℃である場合、250%以下のフロー率を有する第1の接着剤層が得られやすくなる。
 (B2-1)成分の具体例としては、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、ジ(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ(2-エチルヘキシル)パーオキシジカーボネート、クミルパーオキシネオデカノエート、ジラウロイルパーオキサイド、1-シクロヘキシル-1-メチルエチルパーオキシネオデカノエート、t-ヘキシルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエート、t-ブチルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、2,5-ジメチル-2,5-ジ(2-エチルヘキサノイルパーオキシ)ヘキサン、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシネオヘプタノエート、t-アミルパーオキシ-2-エチルヘキサノエート、ジ-t-ブチルパーオキシヘキサヒドロテレフタレート、t-アミルパーオキシ-3,5,5-トリメチルヘキサノエート、3-ヒドロキシ-1,1-ジメチルブチルパーオキシネオデカノエート、t-アミルパーオキシネオデカノエート、ジ(3-メチルベンゾイル)パーオキサイド、ジベンゾイルパーオキサイド、ジ(4-メチルベンゾイル)パーオキサイド、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシマレイン酸、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシラウレート、2,5-ジメチル-2,5-ジ(3-メチルベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ヘキシルパーオキシベンゾエート、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシベンゾエート、ジブチルパーオキシトリメチルアジペート、t-アミルパーオキシノルマルオクトエート、t-アミルパーオキシイソノナノエート、t-アミルパーオキシベンゾエート等の有機過酸化物;2,2’-アゾビス-2,4-ジメチルバレロニトリル、1,1’-アゾビス(1-アセトキシ-1-フェニルエタン)、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、4,4’-アゾビス(4-シアノバレリン酸)、1,1’-アゾビス(1-シクロヘキサンカルボニトリル)等のアゾ化合物などが挙げられる。
 (B2-1)成分の含有量は、速硬化性に優れる観点、並びに、導電粒子の流動抑制効果、及び、転写後の剥離の抑制効果が更に向上する観点では、例えば、(B1-1)成分100質量部に対して、例えば、0.1~20質量部、1~18質量部、3~15質量部又は5~12質量部であってよい。
(B2-2)成分:熱酸発生剤
 (B2-2)成分は、加熱により酸等を発生して重合を開始する熱重合開始剤(熱潜在性カチオン発生剤)である。(B2-2)成分はカチオンとアニオンとから構成される塩化合物であってよい。(B2-2)成分としては、例えば、BF 、BR (Rは、2以上のフッ素原子又は2以上のトリフルオロメチル基で置換されたフェニル基を示す。)、PF 、SbF 、AsF 等のアニオンを有する、スルホニウム塩、ホスホニウム塩、アンモニウム塩、ジアゾニウム塩、ヨードニウム塩、アニリニウム塩等のオニウム塩などが挙げられる。これらは、1種を単独で用いてもよく、複数種を組み合わせて用いてもよい。
 (B2-2)成分は、速硬化性の観点から、例えば、構成元素としてホウ素を含むアニオンを有する塩化合物であってよい。このような塩化合物としては、例えば、BF 又はBR (Rは、2以上のフッ素原子又は2以上のトリフルオロメチル基で置換されたフェニル基を示す。)を有する塩化合物が挙げられる。構成元素としてホウ素を含むアニオンは、BR であってよく、より具体的には、テトラキス(ペンタフルオロフェニル)ボレートであってもよい。
 (B2-2)成分は、保存安定性の観点から、スルホニウム塩又はアンモニウム塩であってよい。
 スルホニウム塩は、例えば、下記式(I)で表されるカチオンを有する塩化合物であってよい。
Figure JPOXMLDOC01-appb-C000001
 式(I)中、R及びRは、それぞれ独立して、水素原子、炭素数1~20のアルキル基又は置換基を有する若しくは無置換の芳香族系炭化水素基を含む有機基を示し、Rは、炭素数1~6のアルキル基を示す。
 式(I)で表されるカチオンを有する塩化合物は、保存安定性と低温活性の両立観点から、芳香族スルホニウム塩化合物であってよい。すなわち、式(I)におけるR及びRの少なくとも一方が置換基を有する若しくは無置換の芳香族系炭化水素基を含む有機基であってよい。式(I)で表されるカチオンを有する塩化合物におけるアニオンは、構成元素としてアンチモンを含むアニオンであってよく、例えば、ヘキサフルオロアンチモネート(ヘキサフルオロアンチモン酸)であってよい。
 式(I)で表されるカチオンを有する化合物の具体例としては、1-ナフチルメチル-p-ヒドロキシフェニルスルホニウムヘキサフルオロアンチモネート(三新化学株式会社製、SI-60主剤)等が挙げられる。
 アンモニウム塩は、例えば、下記式(II)で表されるカチオンを有する塩化合物であってよい。
Figure JPOXMLDOC01-appb-C000002
 式(II)中、R及びRは、それぞれ独立して、水素原子、炭素数1~20のアルキル基又は置換基を有する若しくは無置換の芳香族系炭化水素基を含む有機基を示し、R10及びR11は、それぞれ独立して、炭素数1~6のアルキル基を示す。
 式(II)で表されるカチオンを有する塩化合物は、カチオン硬化に対する硬化阻害を起こし得る物質に対する耐性を有することから、例えば、アニリニウム塩化合物であってよい。すなわち、式(II)におけるR及びRの少なくとも一方が置換基を有する若しくは無置換の芳香族系炭化水素基を含む有機基であってよい。アニリニウム塩化合物としては、例えば、N,N-ジメチルアニリニウム塩、N,N-ジエチルアニリニウム塩等のN,N-ジアルキルアニリニウム塩などが挙げられる。式(II)で表されるカチオンを有する塩化合物におけるアニオンは、構成元素としてホウ素を含むアニオンであってよく、例えば、テトラキス(ペンタフルオロフェニル)ボレートであってよい。
 式(II)で表されるカチオンを有する化合物は、構成元素としてホウ素を含むアニオンを有するアニリニウム塩であってよい。このような塩化合物の市販品としては、例えば、CXC-1821(商品名、King Industries社製)等が挙げられる。
 (B2-2)成分の含有量は、第1の接着剤層を形成するための接着剤フィルムの形成性及び硬化性を担保する観点から、(B1-2)成分100質量部に対して、例えば、0.1~20質量部、1~18質量部、3~15質量部又は5~12質量部であってよい。
 (B)成分は、上記(B1)成分と(B2)成分の組み合わせに限られない。例えば、(B1)成分が上述したエポキシ化合物及び/又はオキセタン化合物を含む場合、(B2)成分として、公知のアミン系硬化剤又はイミダゾール系硬化剤を使用してもよい。
 (B)成分の含有量は、第1の接着剤層を形成するための接着剤フィルムの硬化性を担保する観点から、第1の接着剤層中の接着剤成分(第1の接着剤層中の(A)成分以外の成分)の合計量を基準として、例えば、5質量%以上、10質量%以上、15質量%以上又は20質量%以上であってよい。(B)成分の含有量は、第1の接着剤層を形成するための接着剤フィルムの形成性を担保する観点から、第1の接着剤層中の接着剤成分(第1の接着剤層中の(A)成分以外の成分)の合計量を基準として、例えば、70質量%以下、60質量%以下、50質量%以下又は40質量%以下であってよい。これらの観点から、(B)成分の含有量は、第1の接着剤層中の接着剤成分(第1の接着剤層中の(A)成分以外の成分)の合計量を基準として、例えば、5~70質量%、10~60質量%、15~50質量%又は20~40質量%であってよい。なお、第1の接着剤層2を形成するための組成物(後述する第1の接着剤組成物)中の(B)成分の含有量(組成物中の接着剤成分の合計量基準)は上記範囲と同様であってよい。
[(C)成分:光硬化性成分]
 (C)成分は、光によって硬化する成分であれば特に制限されない。(C)成分は、例えば、樹脂成分であり、光硬化性化合物(以下、「(C1)成分」という場合がある。)と、当該光硬化性化合物用の硬化剤(以下、「(C2)成分」という場合がある。)とを含む。なお、(C)成分の硬化物が熱硬化性を有する場合、当該硬化物(熱硬化性を有する硬化物)は、(B)成分には該当しないものとする。
(C1)成分:光硬化性化合物
 (C1)成分は、(C2)成分との共存下で光を照射することによって反応し架橋する化合物である。(C1)成分は、例えば、ラジカル重合性化合物(以下、「(C1-1)成分」という場合がある。)であってよく、カチオン重合性化合物(以下、「(C1-2)成分」という場合がある。)であってもよい。(C1)成分は、エポキシ基を有する(メタ)アクリレート、オキセタニル基を有する(メタ)アクリレート等のラジカル重合性基及びカチオン重合性基を有する化合物((C1-1)成分及び(C1-2)成分の両方に該当する化合物)であってもよい。(C1-1)成分としては、(B1-1)成分として詳述した化合物を用いることができ、その詳細(含有割合、フロー率を130~250%とする上で好ましい態様等)は(B1-1)成分の場合と同じである。同様に、(C1-2)成分としては、(B1-2)成分として詳述した化合物を用いることができ、その詳細(含有割合、フロー率を130~250%とする上で好ましい態様等)は(B1-2)成分の場合と同じである。(C1)成分は、1種を単独で用いてもよく、複数種を組み合わせて用いてもよい。
(C2)成分:(C1)成分の硬化剤
 (C2)成分は、例えば、光重合開始剤である。(C2)成分は、例えば、光ラジカル発生剤(以下、「(C2-1)成分」という場合がある。)であってよく、光酸発生剤(以下、「(C2-2)成分」という場合がある。)であってもよい。(C2)成分は、(C1)成分の種類に応じて選択してよい。(C1)成分がラジカル重合性化合物である場合、(C2)成分として光ラジカル発生剤(光ラジカル重合開始剤)を使用してよく、(C1)成分がカチオン重合性化合物である場合、(C2)成分として光酸発生剤(光カチオン重合開始剤)を使用してよい。ただし、(C2)成分は、(B1)成分の硬化剤として機能しない成分である。例えば、(B1)成分がラジカル重合性化合物である場合、(C2)成分は光によってラジカルを発生しない化合物(例えば光カチオン重合開始剤)であり、(B)成分がカチオン重合性化合物である場合、(C2)成分は光によってカチオンを発生しない化合物(例えば光ラジカル重合開始剤)である。
(C2-1)成分:光ラジカル発生剤
 (C2-1)成分は、150~750nmの範囲内の波長を含む光、好ましくは254~405nmの範囲内の波長を含む光、更に好ましくは365nmの波長を含む光(例えば紫外光)の照射によってラジカルを発生する光重合開始剤である。(C2-1)成分は、1種を単独で用いてもよく、複数種を組み合わせて用いてもよい。
 (C2-1)成分は、光により分解して遊離ラジカルを発生する。つまり、(C2-1)成分は、外部からの光エネルギーの付与によりラジカルを発生する化合物である。(C2-1)成分は、オキシムエステル構造、ビスイミダゾール構造、アクリジン構造、α-アミノアルキルフェノン構造、アミノベンゾフェノン構造、N-フェニルグリシン構造、アシルホスフィンオキサイド構造、ベンジルジメチルケタール構造、α-ヒドロキシアルキルフェノン構造等の構造を有する化合物であってよい。(C2-1)成分は、所望の溶融粘度が得られ易い観点、及び、接続抵抗の低減効果により優れる観点から、オキシムエステル構造、α-アミノアルキルフェノン構造、及びアシルホスフィンオキサイド構造からなる群より選択される少なくとも1種の構造を有する化合物であってもよい。
 オキシムエステル構造を有する化合物の具体例としては、1-フェニル-1,2-ブタンジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-o-ベンゾイルオキシム、1,3-ジフェニルプロパントリオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-3-エトキシプロパントリオン-2-(o-ベンゾイル)オキシム、1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル-,2-(o-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(o-アセチルオキシム)等が挙げられる。
 α-アミノアルキルフェノン構造を有する化合物の具体例としては、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-モルフォリノフェニル)-ブタノン-1等が挙げられる。
 アシルホスフィンオキサイド構造を有する化合物の具体例としては、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルホスフィンオキサイド、ビス(2,4,6,-トリメチルベンゾイル)-フェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキサイド等が挙げられる。
 (C2-1)成分の含有量は、130~250%のフロー率を有する第1の接着剤層が得られやすい観点及び導電粒子の流動抑制の観点から、(C1-1)成分100質量部に対して、例えば、0.1~10質量部、0.3~7質量部又は0.5~5質量部であってよい。
(C2-2)成分:光酸発生剤
 (C2-2)成分は、150~750nmの範囲内の波長を含む光、好ましくは254~405nmの範囲内の波長を含む光、更に好ましくは365nmの波長を含む光(例えば紫外光)の照射によってカチオン種を発生する光重合開始剤である。(C2-2)成分は、1種を単独で用いてもよく、複数種を組み合わせて用いてもよい。
 (C2-2)成分としては、例えば、芳香族ジアゾニウム塩、芳香族スルホニウム塩、脂肪族スルホニウム塩、芳香族ヨードニウム塩、ホスホニウム塩、ピリジニウム塩、セレノニウム塩等のオニウム塩、金属アレーン錯体、シラノール/アルミニウム錯体等の錯体化合物、ベンゾイントシレート、o-ニトロベンジルトシレートなどが挙げられる。これらの中でも特に、芳香族スルホニウム塩(例えば、トリアリールスルホニウム塩)、脂肪族スルホニウム塩等のスルホニウム塩、芳香族ヨードニウム塩等のヨードニウム塩、及び、鉄-アレーン錯体はカチオン種の発生効率が高いため、良好な反応性が得られやすい。(C2-2)成分がオニウム塩である場合、対アニオンが、ヘキサフルオロアンチモネート、ヘキサフルオロホスホネート、テトラフルオロボレート、テトラキス(ペンタフルオロフェニル)ボレート等であるとより良好な反応性が得られやすい。(C2-2)成分は、250%以下のフロー率を有する第1の接着剤層が得られやすい観点では、BF 、BR (Rは、2以上のフッ素原子又は2以上のトリフルオロメチル基で置換されたフェニル基を示す。)、PF 、SbF 、AsF 等のアニオンを有する、スルホニウム塩、ホスホニウム塩、アンモニウム塩、ジアゾニウム塩、ヨードニウム塩、アニリニウム塩であってよい。
 (C2-2)成分としては、トリアリールシリルパーオキサイド誘導体、アシルシラン誘導体、α-スルホニロキシケトン誘導体、α-ヒドロキシメチルベンゾイン誘導体、ニトロベンジルエステル誘導体、α-スルホニルアセトフェノン誘導体等の光照射又は加熱によって有機酸を発生する化合物も使用することができる。具体的には、光照射又は加熱時の酸発生効率の観点から、サンアプロ株式会社製CPIシリーズ、旭電化工業株式会社製アデカオプトマーSPシリーズ、旭電化工業株式会社製アデカオプトンCPシリーズ、Union Carbide社製CyracureUVIシリーズ、チバスペシャリティケミカルズ社製IRGACUREシリーズが好適に用いられる。さらに、必要に応じて、アントラセン、チオキサントン誘導体等に代表される公知の一重項増感剤又は三重項増感剤を併用することができる。
 (C2-2)成分の含有量は、130~250%のフロー率を有する第1の接着剤層が得られやすい観点及び導電粒子の流動抑制の観点から、(C1-2)成分100質量部に対して、例えば、0.1~10質量部、0.3~7質量部又は0.5~5質量部であってよい。
 (C)成分の硬化物の含有量は、130%以上のフロー率を有する第1の接着剤層が得られやすい観点及び導電粒子の流動を抑制する観点から、第1の接着剤層の全質量を基準として、1質量%以上、5質量%以上又は10質量%以上であってよい。(C)成分の硬化物の含有量は、250%以下のフロー率を有する第1の接着剤層が得られやすい観点及び低圧実装において低抵抗を発現させる観点から、第1の接着剤層の全質量を基準として、50質量%以下、40質量%以下又は30質量%以下であってよい。これらの観点から、(C)成分の硬化物の含有量は、第1の接着剤層の全質量を基準として、例えば、1~50質量%、5~40質量%又は10~30質量%であってよい。なお、第1の接着剤層2を形成するための組成物(後述する第1の接着剤組成物)中の(C)成分の含有量(組成物の全質量基準)は上記範囲と同様であってよい。
[その他の成分]
 第1の接着剤層2は、(A)成分、(B)成分及び(C)成分の硬化物以外にその他の成分を更に含有していてもよい。その他の成分としては、例えば、熱可塑性樹脂(以下、「(D)成分」という場合がある。)、カップリング剤(以下、「(E)成分」という場合がある。)、及び、充填材(以下、「(F)成分」という場合がある。)等が挙げられる。
 (D)成分としては、フィルム形成成分として機能する樹脂を用いることができる。(D)成分としては、例えば、フェノキシ樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリエステルウレタン樹脂、アクリルゴム、エポキシ樹脂(25℃で固形)等が挙げられる。これらは、1種を単独で用いてもよく、複数種を組み合わせて用いてもよい。(D)成分を用いることでフィルム形成性が向上する。これらの中でも、(D)成分がフェノキシ樹脂であると、フィルム形成性がより向上しやすい。
 (D)成分の重量平均分子量(Mw)は、130~250%のフロー率を有する第1の接着剤層が得られやすい観点及び実装時の樹脂排除性の観点から、例えば、5000~200000、10000~100000、20000~80000、40000~70000又は40000~60000であってよい。なお、Mwは、ゲルパーミエーションクロマトグラフィー(GPC)で測定し、標準ポリスチレンによる検量線を用いて換算した値を意味する。
 (D)成分のガラス転移温度Tgは、130~250%のフロー率を有する第1の接着剤層が得られやすい観点から、例えば、80~160℃であってよい。なお、(D)成分のガラス転移温度Tgは、示差走査熱量計(DSC)を用いて測定される値である。具体的には、例えば、DSCを用いて、昇温速度10℃/minで、室温(25℃)から270℃までの示差走査熱量測定を2サイクル行い、2サイクル目のベースラインのシフトからTgを求めることができる。
 (D)成分の室温(25℃)での弾性率は、130~250%のフロー率を有する第1の接着剤層が得られやすい観点から、例えば、1.5~2.3GPaであってよい。
 (D)成分の含有量は、130~250%のフロー率を有する第1の接着剤層が得られやすい観点、フィルム形成性の観点及び実装時の樹脂排除性の観点から、第1の接着剤層の全質量を基準として、1質量%以上、5質量%以上、10質量%以上又は20質量%以上であってよく、70質量%以下、60質量%以下、50質量%以下又は40質量%以下であってよい。なお、第1の接着剤層2を形成するための組成物(後述する第1の接着剤組成物)中の(D)成分の含有量(組成物の全質量基準)は上記範囲と同様であってよい。
 (D)成分の含有量に対する(B)成分の含有量の比は、130~250%のフロー率を有する第1の接着剤層が得られやすい観点から、例えば、0.8~0.95であってよい。
 (E)成分としては、例えば、(メタ)アクリロイル基、メルカプト基、アミノ基、イミダゾール基、エポキシ基等の有機官能基を有するシランカップリング剤、テトラアルコキシシラン等のシラン化合物、テトラアルコキシチタネート誘導体、ポリジアルキルチタネート誘導体などが挙げられる。これらは、1種を単独で用いてもよく、複数種を組み合わせて用いてもよい。第1の接着剤層2が(E)成分を含有することによって、接着性を更に向上させることができる。(E)成分は、例えば、シランカップリング剤であってよい。(E)成分の含有量は、第1の接着剤層の全質量を基準として、0.1~10質量%であってよい。なお、第1の接着剤層2を形成するための組成物(後述する第1の接着剤組成物)中の(E)成分の含有量(組成物の全質量基準)は上記範囲と同様であってよい。
 (F)成分としては、例えば、非導電性のフィラー(例えば、非導電粒子)が挙げられる。(F)成分は、無機フィラー及び有機フィラーのいずれであってもよい。無機フィラーとしては、例えば、シリカ微粒子、アルミナ微粒子、シリカ-アルミナ微粒子、チタニア微粒子、ジルコニア微粒子等の金属酸化物微粒子;金属窒化物微粒子などの無機微粒子が挙げられる。有機フィラーとしては、例えば、シリコーン微粒子、メタアクリレート・ブタジエン・スチレン微粒子、アクリル・シリコーン微粒子、ポリアミド微粒子、ポリイミド微粒子等の有機微粒子が挙げられる。これらは、1種を単独で用いてもよく、複数種を組み合わせて用いてもよい。(F)成分は、本発明の効果が損なわれない範囲において、適宜配合することができる。
 第1の接着剤層2は、その他の成分として、軟化剤、促進剤、劣化防止剤、着色剤、難燃化剤、チキソトロピック剤等のその他の添加剤を更に含有していてもよい。その他の添加剤の含有量(合計量)は、第1の接着剤層の全質量を基準として、例えば、0.1~10質量%であってよい。なお、第1の接着剤層2を形成するための組成物(後述する第1の接着剤組成物)中のその他の添加剤の含有量(組成物の全質量基準)は上記範囲と同様であってよい。
(第2の接着剤層)
 第2の接着剤層3は、例えば、熱硬化性成分((B)成分)を含有する。(B)成分の詳細は、上記第1の接着剤層2に含有される(B)成分と同様である。第1の接着剤層2に含有される(B)成分(第1の熱硬化性成分)と、第2の接着剤層3に含有される(B)成分(第2の熱硬化性成分)とは同一であっても、異なっていてもよい。
 (B)成分の含有量は、信頼性を維持する観点から、第2の接着剤層の全質量を基準として、5質量%以上、10質量%以上、15質量%以上又は20質量%以上であってよい。(B)成分の含有量は、供給形態の一態様であるリールにおける樹脂染み出し不具合を防止する観点から、第2の接着剤層の全質量を基準として、70質量%以下、60質量%以下、50質量%以下又は40質量%以下であってよい。これらの観点から、(B)成分の含有量は、第2の接着剤層の全質量を基準として、例えば、5~70質量%、10~60質量%、15~50質量%又は20~40質量%であってよい。なお、第2の接着剤層3を形成するための組成物(後述する第2の接着剤組成物)中の(B)成分の含有量(組成物の全質量基準)は上記範囲と同様であってよい。
 第2の接着剤層3は、充填材((F)成分)を更に含有してよい。(F)成分の詳細は、上記第1の接着剤層2に含有される(F)成分と同様である。第2の接着剤層3は、流動性の調整が容易となる観点、硬化後の弾性率の向上の観点及び線膨張係数を低下させる観点から、(F)成分として、無機フィラーを含有してよい。無機フィラーとしては、信頼性向上の観点から、シリカ微粒子等のシリカフィラーを用いることができる。シリカフィラーにおけるシリカの含有量はシリカフィラー全量を基準として99質量%以上であってもよく、100質量%であってもよい。
 無機フィラーの平均粒径(一次粒径)は、分散性に優れる観点から、0.01μm以上、0.03μm以上、0.05μm以上、0.1μm以上又は0.3μm以上であってよい。無機フィラーの平均粒径(一次粒径)は、分散性に優れる観点から、5.0μm以下、1.0μm以下又は0.5μm以下であってよい。これらの観点から、無機フィラーの平均粒径は、0.01~5.0μm、0.03~1.0μm、0.05~0.5μm、0.05~5.0μm、0.1~0.5μm又は0.3~0.5μmであってよい。
 無機フィラーの含有量は、硬化後の弾性率の向上の観点から、第2の接着剤層の全質量を基準として、20質量%以上、30質量%以上又は40質量%以上であってよい。無機フィラーの含有量は、フィルム形成の向上及び熱硬化性の向上の観点から、第2の接着剤層の全質量を基準として、60質量%以下、50質量%以下又は40質量%以下であってよい。これらの観点から、無機フィラーの含有量は、第2の接着剤層の全質量を基準として、20~60質量%、30~50質量%、20~40質量%又は40~50質量%であってよい。なお、第2の接着剤層3を形成するための組成物(後述する第2の接着剤組成物)中の無機フィラーの含有量(組成物の全質量基準)は上記範囲と同様であってよい。
 第2の接着剤層3は、第1の接着剤層2における(F)成分以外のその他の成分を更に含有していてもよい。その他の成分の詳細は、第1の接着剤層2におけるその他の成分の詳細と同様である。
 (D)成分の含有量は、第2の接着剤層の全質量を基準として、1質量%以上、5質量%以上又は10質量%以上であってよく、80質量%以下、60質量%以下又は40質量%以下であってよい。なお、第2の接着剤層3を形成するための組成物(後述する第2の接着剤組成物)中の(D)成分の含有量(組成物の全質量基準)は上記範囲と同様であってよい。
 (E)成分の含有量は、第2の接着剤層の全質量を基準として、0.1~10質量%であってよい。なお、第2の接着剤層3を形成するための組成物(後述する第2の接着剤組成物)中の(E)成分の含有量(組成物の全質量基準)は上記範囲と同様であってよい。
 その他の添加剤の含有量は、第2の接着剤層の全質量を基準として、例えば、0.1~10質量%であってよい。なお、第2の接着剤層3を形成するための組成物(後述する第2の接着剤組成物)中のその他の添加剤の含有量(組成物の全質量基準)は上記範囲と同様であってよい。
 第2の接着剤層3における導電粒子((A)成分)の含有量は、第2の接着剤層の全質量を基準として、例えば、1質量%以下であり、0質量%であってもよい。すなわち、第2の接着剤層3は、(A)成分を含有しなくてよい。なお、第2の接着剤層3を形成するための組成物(後述する第2の接着剤組成物)中の(A)成分の含有量(組成物の全質量基準)は上記範囲と同様であってよい。
 上記接着剤フィルム1aは、例えば、(A)成分、(B)成分(第1の熱硬化性成分)、及び(C)成分、並びに必要に応じてその他の成分を含有する第1の接着剤組成物からなる層に対して光を照射し、第1の接着剤層2を形成する工程(第1の工程)と、第1の接着剤層2上に、(B)成分(第2の熱硬化性成分)及び必要に応じてその他の成分を含有する第2の接着剤組成物からなる第2の接着剤層3を積層する工程(第2の工程)とを備える方法により製造することができる。第1の工程では、第1の接着剤組成物に(C)成分を含有させなくてもよい。この場合、第1の工程における光照射は行わなくてよい。
 第1の工程では、例えば、まず、第1の接着剤組成物を、有機溶媒中で撹拌混合、混練等を行うことによって、溶解又は分散させ、ワニス組成物(ワニス状の第1の接着剤組成物)を調製する。その後、離型処理を施した基材上に、ワニス組成物をナイフコーター、ロールコーター、アプリケーター、コンマコーター、ダイコーター等を用いて塗布した後、加熱によって有機溶媒を揮発させて、基材上に第1の接着剤組成物からなる層を形成する。このとき、ワニス組成物の塗布量を調整することによって、第1の接着剤層の厚さを調整することができる。続いて、第1の接着剤組成物が(C)成分を含有する場合には、第1の接着剤組成物からなる層に対して光を照射し、当該層中の(C)成分を硬化させる。以上の操作により、基材上に第1の接着剤層2が形成され、第1の接着剤層2を備える第1の接着剤フィルムが得られる。
 ワニス組成物の調製において使用される有機溶媒は、各成分を略均一に溶解又は分散し得る特性を有するものであれば特に制限されない。このような有機溶媒としては、例えば、トルエン、アセトン、メチルエチルケトン、メチルイソブチルケトン、酢酸エチル、酢酸プロピル、酢酸ブチル等が挙げられる。これらの有機溶媒は、単独で又は2種以上を組み合わせて使用することができる。ワニス組成物の調製の際の撹拌混合又は混練は、例えば、撹拌機、らいかい機、3本ロール、ボールミル、ビーズミル、ホモディスパー等を用いて行うことができる。
 基材は、有機溶媒を揮発させる際の加熱条件に耐え得る耐熱性を有するものであれば特に制限されない。このような基材としては、例えば、延伸ポリプロピレン(OPP)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、ポリエチレンイソフタレート、ポリブチレンテレフタレート、ポリオレフィン、ポリアセテート、ポリカーボネート、ポリフェニレンサルファイド、ポリアミド、ポリイミド、セルロース、エチレン・酢酸ビニル共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン、合成ゴム系、液晶ポリマー等からなる基材(例えば、フィルム)を用いることができる。
 基材へ塗布したワニス組成物から有機溶媒を揮発させる際の加熱条件は、使用する有機溶媒等に合わせて適宜設定することができる。加熱条件は、例えば、40~120℃で0.1~10分間であってよい。
 第1の接着剤層2には、溶剤の一部が除去されずに残っていてもよい。第1の接着剤層2における溶剤の含有量は、第1の接着剤層の全質量を基準として、例えば、10質量%以下であってよい。
 硬化工程における光照射には、150~750nmの範囲内の波長を含む照射光(例えば、紫外光)を用いることが好ましい。光の照射は、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノンランプ、メタルハライドランプ、LED光源等を使用して行うことができる。光照射の積算光量は、適宜設定することができるが、例えば、500~3000mJ/cmであってよい。
 第2の工程は、第1の接着剤層2上に第2の接着剤層3を積層する工程である。第2の工程では、例えば、第1の接着剤組成物に代えて第2の接着剤組成物を用いること、及び、光照射を行わないこと以外は、第1の工程と同様にして、基材上に第2の接着剤層3を形成した後、得られた第2の接着剤フィルムと第1の接着剤フィルムとを貼り合わせることによって第1の接着剤層2上に第2の接着剤層3を積層する。
 第1の接着剤フィルムと第2の接着剤フィルムとを貼り合わせる方法としては、例えば、加熱プレス、ロールラミネート、真空ラミネート等の方法が挙げられる。ラミネートは、例えば、0~80℃の温度条件下で行うことができる。
 第2の工程では、例えば、第1の接着剤層2上にワニス状の第2の接着剤組成物を塗布し、有機溶媒を揮発させることによって、第1の接着剤層2上に第2の接着剤層3を積層してもよい。
 第2の接着剤層3には、溶剤の一部が除去されずに残っていてもよい。第2の接着剤層3における溶剤の含有量は、第2の接着剤層の全質量を基準として、例えば、10質量%以下であってよい。
 以上説明した接着剤フィルム1aは、第1の接着剤層2のフロー率が250%以下であるため、熱圧着時の導電粒子の流動が起こり難く、熱圧着後に第1の接着剤層のフィルム形状が維持されやすい。そのため、接着剤フィルム1aによれば、導電粒子の凝集による短絡の発生を抑制することができる。また、接着剤フィルム1aは、第1の接着剤層のフロー率が130%以上であるため、熱圧着時に屈曲し、当該屈曲により第1の接着剤層が引き延ばされて対向する電極間の接着剤成分が少なくなる。そのため、接着剤フィルム1aによれば、対向する電極間の接続抵抗が充分に低い回路接続構造体を製造することができる。これらの効果がより顕著に得られる観点から、第1の接着剤層2のフロー率は、150%以上、160%以上、170%以上又は180%以上であってよく、230%以下又は200%以下であってよく、150~230%又は180~200%であってよい。
 第1の接着剤層2のフロー率は、例えば、(A)成分、(B)成分及び(C)成分の硬化物の含有量、(C)成分中の(C1)成分及び(C2)成分の種類及び量、任意成分(特に(D)成分)の種類及び含有量等により調整することができる。第1の接着剤層2に(C)成分の硬化物を含有させる場合には、例えば、光照射量の調整により(C)成分の硬化率を調整することにより、容易に上記範囲のフロー率を有する第1の接着剤層2を得ることもできる。また、第1の接着剤層2に(C)成分の硬化物を含有させない場合、従来の接着剤組成ではフロー率が250%より高くなるが、(D)成分として、重量平均分子量が40000~70000、ガラス転移温度Tgが80~160℃、室温(25℃)での弾性率が1.5~2.3GPaの熱可塑性樹脂を用いた上で、(D)成分の含有量に対する(B)成分の含有量の比を0.8~0.95とする等の方法で、上記範囲のフロー率を有する第1の接着剤層2を得ることができる。
 以上、一実施形態の回路接続用接着剤フィルム及びその製造方法について説明したが、本発明の回路接続用接着剤フィルムは、上記実施形態に限定されない。
 例えば、回路接続用接着剤フィルムは、第1の接着剤層2及び第2の接着剤層3以外の層を備える、三層以上の層から構成されるものであってもよい。例えば、回路接続用接着剤フィルムは、図3に示される接着剤フィルム1bであってもよい。接着剤フィルム1bは、第1の接着剤層2の第2の接着剤層3とは反対側に第3の接着剤層6が積層されていること以外は、接着剤フィルム1aと同様の構成を有する。
 第3の接着剤層6は、例えば、熱硬化性成分((B)成分)を含有する。(B)成分の詳細は、上記第1の接着剤層2に含有される(B)成分と同様である。第3の接着剤層6に含有される(B)成分(第3の熱硬化性成分)は、第1の熱硬化性成分と同一であっても、異なっていてもよく、第2の熱硬化性成分と同一であっても、異なっていてもよい。
 (B)成分の含有量は、良好な転写性及び耐剥離性を付与する観点から、第3の接着剤層の全質量を基準として、5質量%以上、10質量%以上、15質量%以上又は20質量%以上であってよい。(B)成分の含有量は、良好なハーフカット性及び耐ブロッキング性(リールの樹脂染み出し抑制)を付与する観点から、第3の接着剤層の全質量を基準として、70質量%以下、60質量%以下、50質量%以下又は40質量%以下であってよい。これらの観点から、(B)成分の含有量は、第3の接着剤層の全質量を基準として、例えば、5~70質量%、10~60質量%、15~50質量%又は20~40質量%であってよい。
 第3の接着剤層6は、第1の接着剤層2におけるその他の成分を更に含有していてもよい。
 (D)成分の含有量は、第3の接着剤層の全質量を基準として、10質量%以上、20質量%以上又は30質量%以上であってよく、80質量%以下、70質量%以下又は60質量%以下であってよい。
 (E)成分の含有量は、第3の接着剤層の全質量を基準として、0.1~10質量%であってよい。
 (F)成分の含有量は、本発明の効果を損なわない範囲で適宜設定することができる。
 その他の添加剤の含有量は、第3の接着剤層の全質量を基準として、例えば、0.1~10質量%であってよい。
 第3の接着剤層6の厚さは、接着剤フィルムの最低溶融粘度、接着する回路部材の電極の高さ等に応じて適宜設定してよい。第3の接着剤層6の厚さは、第2の接着剤層3の厚さよりも小さいことが好ましい。第3の接着剤層6の厚さは、電極間のスペースを充分に充填して電極を封止することができ、より良好な接続信頼性が得られる観点から、0.5μm以上、1.0μm以上又は1.2μm以上であってよく、2.0μm以下、1.8μm以下又は1.5μm以下であってよく、0.5~2.0μm、1.0~1.8μm又は1.2~1.6μmであってよい。なお、第3の接着剤層6の厚さは、例えば、第1の接着剤層2の厚さ及び第2の接着剤層3の厚さの測定方法と同様の方法で求めることができる。
 接着剤フィルム1bの厚さ(第1の接着剤層2の厚さ、第2の接着剤層3の厚さ及び第3の接着剤層6の厚さの合計)は、例えば、6.0μm以上、8.0μm以上、10.0μm以上、12.0μm以上又は14.0μm以上であってよく、18.0μm以下、16.0μm以下、14.0μm以下又は10.0μm以下であってよく、6.0~18.0μm、10.0~16.0μm、8.0~10.0μm、12.0~14.0μm又は14.0~16.0μmであってよい。
 上記接着剤フィルム1bは、例えば、上記接着剤フィルム1aの製造方法における第1の工程及び第2の工程に加えて、第1の接着剤層2の第2の接着剤層3とは反対側上に、(B)成分(第3の熱硬化性成分)及び必要に応じてその他の成分を含有する第3の接着剤組成物からなる第3の接着剤層6を積層する工程(第3の工程)を行うことで製造することができる。この場合、第2の工程を先に行ってもよく、第3の工程を先に行ってもよい。第3の工程を先に行う場合、第1の接着剤層2の第2の接着剤層3が積層される予定の側とは反対側に第3の接着剤層6が積層される。第3の工程における第3の接着剤層6の積層方法は、第2の工程における第2の接着剤層3の積層方法と同様である。
<回路接続構造体及びその製造方法>
 一実施形態の回路接続構造体は、第1の電極を有する第1の回路部材と、第2の電極を有する第2の回路部材と、第1の回路部材及び第2の回路部材の間に配置され、第1の電極及び第2の電極を導電粒子を介して互いに電気的に接続するとともに、第1の回路部材及び第2の回路部材を接着する回路接続部と、を備え、回路接続部が、導電粒子を含有する第1の樹脂硬化層と、第1の樹脂硬化層の第1の回路部材側とは反対側に位置する第2の樹脂硬化層と、を含み、第1の樹脂硬化層が、第1の電極及び第2の電極間に介在する導電粒子によって第1の電極及び第2の電極を互いに電気的に接続する電極接続部分を複数含み、隣り合う電極接続部分の間において、第1の回路部材側又は第2の回路部材側に凸となるように屈曲している、回路接続構造体である。
 一実施形態の回路接続構造体の製造方法は、導電粒子を含有する第1の接着剤層と、第1の接着剤層上に設けられた第2の接着剤層と、を備え、下記(A1)~(A4)の手順で測定される第1の接着剤層のフロー率が、130~250%である、回路接続用接着剤フィルムを用意する工程と、第1の電極を有する第1の回路部材と第2の電極を有する第2の回路部材とを、第1の電極と第2の電極とが対向するように配置する工程と、第1の接着剤層が第1の回路部材側となり第2の接着剤層が第2の回路部材側となるように第1の回路部材と第2の回路部材との間に回路接続用接着剤フィルムを介在させた状態で、第1の回路部材及び第2の回路部材を熱圧着する工程と、を備え、熱圧着する工程において、第1の電極及び第2の電極を導電粒子を介して互いに電気的に接続して電極接続部分を形成するとともに、隣り合う電極接続部分の間において第1の回路部材側又は第2の回路部材側に凸となるように第1の接着剤層を屈曲させて回路接続用接着剤フィルムを硬化させる、回路接続構造体の製造方法である。
(A1)回路接続用接着剤フィルムを、当該回路接続用接着剤フィルムの両主面上に基材が貼り付けられた状態で厚さ方向に打ち抜き、直径R(単位:mm)が0.1~1mmの円板状の評価用接着剤フィルムを得る。
(A2)評価用接着剤フィルムから第1の接着剤層側の基材を剥離した後、評価用接着剤フィルムを第1の接着剤層側から、厚さ0.15mmのガラス板上に載せ、圧着温度60℃、圧着圧力1MPa、圧着時間0.1sの条件で熱圧着し、仮固定体を得る。
(A3)仮固定体から基材を剥離した後、第2の接着剤層上に厚さ0.15mmのガラス板を載せ、圧着温度170℃、圧着圧力80MPa、圧着時間5sの条件で熱圧着し、圧着体を得る。
(A4)圧着体における、硬化後の第1の接着剤層とガラス板との接着面積S1(単位:mm)を求め、下記式(a)に基づき、フロー率を算出する。
フロー率[%]=(接着面積S1)/(0.25π×(直径R))×100・・・(a)
 一実施形態の回路接続構造体の製造方法では、第1の接着剤層が、第1の熱硬化性成分を含有してよい。この場合、第1の熱硬化性成分が、熱硬化性化合物として、(メタ)アクリレート化合物を含んでいてよい。また、第1の熱硬化性成分が、熱硬化性化合物用の硬化剤として、有機過酸化物を含んでいてもよい。
 一実施形態の回路接続構造体の製造方法では、第1の接着剤層が、光硬化性成分の硬化物を含有してよい。
 一実施形態の回路接続構造体の製造方法では、第1の接着剤層における導電粒子の密度が、5000~50000個/mmであってよい。
 一実施形態の回路接続構造体の製造方法では、第1の接着剤層の厚さが、導電粒子の平均粒径の0.6倍以上1.0倍未満であってよい。
 一実施形態の回路接続構造体の製造方法では、第1の接着剤層の厚さが、1.0~6.0μmであってよい。
 一実施形態の回路接続構造体の製造方法では、導電粒子の平均粒径が、2.5~6.0μmであってよい。
 一実施形態の回路接続構造体の製造方法では、第2の接着剤層が、第2の熱硬化性成分を含有してよい。この場合、第2の熱硬化性成分が、熱硬化性化合物として、エポキシ化合物又はオキセタン化合物を含んでいてよい。また、第2の熱硬化性成分が、熱硬化性化合物用の硬化剤として、スルホニウム塩又はアンモニウム塩を含んでいてもよい。
 一実施形態の回路接続構造体の製造方法では、第2の接着剤層が、無機フィラーを含有してよい。この場合、無機フィラーの平均粒径が、0.05~5.0μmであってよい。また、無機フィラーの含有量が、第2の接着剤層の全質量を基準として、20~60質量%であってよい。
 図4は、回路接続構造体の一実施形態を示す模式断面図である。図4に示すように、回路接続構造体10aは、第1の回路基板11及び第1の回路基板11の主面11a上に形成された第1の電極12を有する第1の回路部材13と、第2の回路基板14及び第2の回路基板14の主面14a上に形成された第2の電極15を有する第2の回路部材16と、第1の回路部材13及び第2の回路部材16の間に配置され、第1の電極12及び第2の電極15を導電粒子4を介して互いに電気的に接続する回路接続部17aとを備えている。
 第1の回路部材13及び第2の回路部材16は、互いに同じであっても異なっていてもよい。第1の回路部材13及び第2の回路部材16は、回路電極が形成されているガラス基板又はプラスチック基板;プリント配線板;セラミック配線板;フレキシブル配線板;駆動用IC等のICチップなどであってよい。第1の回路基板11及び第2の回路基板14は、半導体、ガラス、セラミック等の無機物、ポリイミド、ポリカーボネート等の有機物、ガラス/エポキシ等の複合物などで形成されていてよい。第1の回路基板11は、プラスチック基板であってよい。第1の回路部材13は、例えば、回路電極が形成されているプラスチック基板(ポリイミド、ポリカーボネート、ポリエチレンテレフタレート、シクロオレフィンポリマー等の有機物からなるプラスチック基板)であってよく、第2の回路部材16は、例えば、駆動用IC等のICチップであってよい。電極が形成されているプラスチック基板は、プラスチック基板上に、例えば、有機TFT等の画素駆動回路又は複数の有機EL素子R、G、Bがマトリクス状に規則配列されることによって表示領域が形成されたものであってもよい。
 第1の電極12及び第2の電極15は、金、銀、錫、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金、銅、アルミ、モリブデン、チタン等の金属、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)、インジウムガリウム亜鉛酸化物(IGZO)等の酸化物などを含む電極であってよい。第1の電極12及び第2の電極15は、これら金属、酸化物等の2種以上を積層してなる電極であってもよい。2種以上を積層してなる電極は、2層以上であってよく、3層以上であってよい。第1の電極12及び第2の電極15は回路電極であってよく、バンプ電極であってもよい。第1の電極12及び第2の電極15の少なくとも一方は、バンプ電極であってよい。図4では、第1の電極12が回路電極であり、第2の電極15がバンプ電極である態様である。
 回路接続部17aは、上述の接着剤フィルム1aの硬化物を含む。回路接続部17は、上述の接着剤フィルム1aの硬化物からなっていてもよい。回路接続部17は、例えば、第1の回路部材13と第2の回路部材16とが互いに対向する方向(以下「対向方向」)における第1の回路部材13側に位置する第1の樹脂硬化層18と、第1の樹脂硬化層18の第1の回路部材側とは反対側(対向方向における第2の回路部材16側)に位置する第2の樹脂硬化層19と、を含む。
 第1の樹脂硬化層18は、接着剤フィルム1aにおける第1の接着剤層2が硬化してなる層であり、導電粒子4と、第1の接着剤中の導電粒子4以外の成分の硬化物とを含む。第1の樹脂硬化層18における導電粒子4の少なくとも一部は、第1の電極12及び第2の電極15間に介在し、第1の電極12及び第2の電極15を互いに電気的に接続する電極接続部分21を構成している。すなわち、第1の樹脂硬化層18は、電極接続部分21を複数含んでいる。第1の樹脂硬化層18は、回路接続構造体10aの対向方向に対して略垂直な方向に広がるフィルム状であり、隣り合う電極接続部分21の間において、第2の回路部材側に凸となる(例えば、回路接続構造体の対向方向の断面から視てアーチ状となる)ように屈曲している。なお、第1の樹脂硬化層18は、電極高さの調整等により、隣り合う電極接続部分21の間において、第1の回路部材側に凸となるように屈曲させることもできる。
 第2の樹脂硬化層19は、接着剤フィルム1aにおける第2の接着剤層3が硬化してなる層であり、第2の接着剤層3中の成分の硬化物を含む。第2の樹脂硬化層19は、第2の回路部材16と第1の樹脂硬化層18との間を充填している。
 上記回路接続構造体10aの製造方法は、接着剤フィルム1aを用意する工程と、第1の電極12を有する第1の回路部材13と第2の電極15を有する第2の回路部材16とを、第1の電極12と第2の電極15とが対向するように配置する工程と、第1の接着剤層2が第1の回路部材13側となり第2の接着剤層3が第2の回路部材16側となるように第1の回路部材13と第2の回路部材16との間に接着剤フィルム1aを介在させた状態で、第1の回路部材13及び第2の回路部材16を熱圧着する工程と、を備える。
 具体的には、図5の(a)に示すように、接着剤フィルム1aと、第1の回路部材13と、第2の回路部材16とを準備した後、第1の回路部材13及び第2の回路部材16を、第1の電極12及び第2の電極15が互いに対向するように配置し、第1の回路部材13と第2の回路部材16との間に接着剤フィルム1aを配置する。例えば、図5の(a)に示すように、第1の接着剤層2側が第1の回路基板11の主面11aと対向するようにして接着剤フィルム1aを第1の回路部材13上に仮圧着し、これにより、接着剤フィルム1aを第1の回路部材13上に仮固定する。次に、第1の回路基板11上の第1の電極12と、第2の回路基板14上の第2の電極15とが互いに対向するように、接着剤フィルム1aがラミネートされた第1の回路部材13上に第2の回路部材16を配置する。
 仮圧着の方法は特に制限はないが、ロールラミネータ、ダイヤフラム式ラミネータ、真空ロールラミネータ、真空ダイヤフラム式ラミネータ等を用いてラミネートする方法であってよく、仮ラミネート後、熱圧着装置を用いて圧着する方法であってもよい。
 仮圧着の条件は、使用する圧着装置(ラミネータ等)、基材、第1の回路部材13、第2の回路部材16等の種類などに応じて適宜設定してよい。仮圧着時の圧着温度は、例えば、50~90℃であってよい。仮圧着時の圧着圧力は、例えば、0.5~1.5MPaであってよい。仮圧着時の圧着時間は、例えば、0.5~1.5秒であってよい。
 次いで、図5の(b)に示すように、第1の回路部材13、接着剤フィルム1a、及び第2の回路部材16を加熱しながら、第1の回路部材13と第2の回路部材16とを対向方向に加圧することで、第1の回路部材13と第2の回路部材16とを互いに熱圧着する。この際、図5の(b)において矢印で示すように、第2の接着剤層3は、流動可能な未硬化の熱硬化性成分を有していることから、第2の電極15間同士の空隙を埋めるように流動するとともに、上記加熱によって硬化する。一方、第1の接着剤層2は、130~250%のフロー率を有することから、熱圧着時に導電粒子がほとんど流動せず、第1の接着剤層2のフィルム形状が維持されたまま、隣り合う電極接続部分21間で第2の回路部材側(又は第1の回路部材側)に凸となるように屈曲するとともに、上記加熱によって硬化する。また、上記熱圧着によって、第1の電極12及び第2の電極15を互いに電気的に接続する電極接続部分21が形成されるとともに、第1の回路部材13及び第2の回路部材16が互いに接着される。これにより、図4に示す回路接続構造体10aが得られる。
 熱圧着時の温度及び時間は、接着剤フィルム1aを充分に硬化させ、第1の回路部材13と第2の回路部材16とを接着できる温度である。熱圧着温度(接着剤フィルム1aの最高到達温度)は、例えば、150~200℃であってよい。熱圧着時間は、例えば、4~7秒であってよい。加圧は、被着体に損傷を与えない範囲であれば特に制限されず、例えば、接着剤フィルム1aの面積換算圧力で20~80MPaであってよい。
 以上、一実施形態の回路接続構造体及びその製造方法について説明したが、本発明の回路接続構造体は上記実施形態に限定されない。
 例えば、上述した接着剤フィルム1bを用いる場合、図6に示す回路接続構造体10bが得られる。回路接続構造体10bは、回路接続部17bが、第1の樹脂硬化層18の第2の樹脂硬化層19とは反対側に第3の樹脂硬化層20を有すること以外は、回路接続構造体10aと同様の構成を有する。
 第3の樹脂硬化層20は、接着剤フィルム1bにおける第3の接着剤層6が硬化してなる層であり、第3の接着剤層6中の成分の硬化物を含む。第3の樹脂硬化層20は、隣り合う電極接続部分21間では、第1の回路部材13と第1の樹脂硬化層18との間を埋めるように山型状を呈している。
 以下、本発明の内容を実施例及び比較例を用いてより詳細に説明するが、本発明は以下の実施例に限定されるものではない。
<ワニス組成物の調製>
 表1に示す各成分を同表に示す配合量(単位:質量部)で2-ブタノン(メチルエチルケトン)と混合することにより、ワニス状の第1の接着剤組成物(第1のワニス組成物)1~6をそれぞれ調製した。また、表2に示す各成分を同表に示す配合量(単位:質量部)で2-ブタノン(メチルエチルケトン)と混合することにより、ワニス状の第2の接着剤組成物(第2のワニス組成物)1を調製した。なお、表中の「-」は未配合を意味する。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1及び表2に示す成分の詳細を以下に示す。
(熱可塑性樹脂)
・YP-50S(フェノキシ樹脂、日鉄ケミカル&マテリアル社製、重量平均分子量:60000、ガラス転移温度:89℃、25℃での弾性率:1.6GPa)
(エポキシ化合物)
・CEL2021P(3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、株式会社ダイセル製)
・YL980(ビスフェノールA型エポキシ樹脂、三菱ケミカル株式会社製)
・jER1007(ビスフェノールA型エポキシ樹脂、三菱ケミカル株式会社製)
((メタ)アクリレート化合物)
・ヒタロイド7663(フェノールノボラック型エポキシアクリレート、日立化成株式会社製)
・VR-90(ビスフェノールA型エポキシメタアクリレート、昭和電工株式会社製)
(光ラジカル発生剤)
・Omnirad TPO(2,4,6-トリメチルベンゾイル-ジフェニルホスフィンオキサイド、BASF社製)
(光酸発生剤)
・CPI-101A(トリアリールスルホニウム塩、サンアプロ株式会社製)
(熱ラジカル発生剤(有機過酸化物))
・パーヘキサ25O(2,5-ジメチル-2,5-ジ(2-エチルヘキサノイルパーオキシ)ヘキサン、日油社製)を用いた。熱酸発生材としてはサンエイドSI-60(三新化学社製)を用いた。
(熱酸発生剤)
・サンエイドSI-60(芳香族スルホニウム塩、三新化学社製)
(無機フィラー)
・シリカ粒子1(SE-2050、アドマテックス社製、平均粒径:500nm)
・シリカ粒子2(YA-050C、アドマテックス社製、平均粒径:50nm)
(導電粒子)
・下記作製例1で作製した導電粒子(平均粒径:3.8μm、最大粒径:4.0μm、比重:2.6)
<作製例1>
(導電粒子の作製)
 架橋ポリスチレン粒子の表面上に、層の厚さが0.1μmとなるようにニッケルからなる層を形成した。このようにして、平均粒径が3.8μmであり、最大粒径が4.0μmであり、比重2.6である導電粒子を得た。
<第1の接着剤フィルムの製造>
 上記で得られた第1のワニス組成物1~6をそれぞれ用いて、第1の接着剤フィルム1~7をそれぞれ作製した。第1の接着剤フィルム1、4~7の作製には、第1のワニス組成物1、3~6をそれぞれ用い、第1の接着剤フィルム2及び3の作製には、第1のワニス組成物2を用いた。
 具体的には、まず、第1のワニス組成物を、厚さ38μmのPETフィルム(東洋紡フィルムソリューションズ株式会社製)上に、乾燥後の層厚が3μmとなり、導電粒子数が22000個/mmとなるように製膜した。次に、得られた塗膜をオーブンで60℃、3分間の条件で乾燥させた。
 次に、第1のワニス組成物1~3、5及び6を用いた場合(第1の接着剤フィルム1~4、6及び7の作製時)には、乾燥後の塗膜(第1の接着剤組成物からなる層)に、紫外線照射装置を用いて紫外線を照射した。紫外線の照射量は、第1の接着剤フィルム1、2、4、6及び7の作製時には3000mJ/cmとし、第1の接着剤フィルム3の作製時には2400mJ/cmとした。これにより、第1の接着剤組成物からなる層中の光硬化性成分を硬化させ、第1の接着剤層とした。第1のワニス組成物4を用いた場合(第1の接着剤フィルム5の作製時)には、上記紫外線照射は行わず、乾燥後の塗膜(第1の接着剤組成物からなる層)を第1の接着剤層とした。
 以上の操作により、第1の接着剤層を備える第1の接着剤フィルム1~7を得た。第1の接着剤層の厚さは、いずれも2μmであった。なお、第1の接着剤層の厚さは、導電粒子の厚さ(直径)より小さいことから、接触式厚み計を用いて層の厚さを測定すると、導電粒子の厚さが反映され、導電粒子が存在する領域の厚さが測定される。そのため、第1の接着剤層と第2の接着剤層とが積層された二層構成の回路接続用接着剤フィルムを作製した後に、隣り合う導電粒子の離間部分に位置する第1の接着剤層の厚さを測定した。具体的には、まず、回路接続用接着剤フィルムを2枚のガラス(厚み:1mm程度)で挟み込み、ビスフェノールA型エポキシ樹脂(商品名:JER811、三菱ケミカル株式会社製)100gと、硬化剤(商品名:エポマウント硬化剤、リファインテック株式会社製)10gとからなる樹脂組成物で注型した。次いで、研磨機を用いて断面研磨を行い、走査型電子顕微鏡(SEM、商品名:SU-8000、株式会社日立ハイテクサイエンス製)を用いて、隣り合う導電粒子の離間部分に位置する第1の接着剤層の厚さを測定した。
<第2の接着剤フィルムの製造>
 上記で得られた第2のワニス組成物1を用いて、第2の接着剤フィルム1を作製した。
 具体的には、まず、第2のワニス組成物1を、厚さ38μmのPETフィルム(東洋紡フィルムソリューションズ株式会社製)上に、乾燥後の層厚が12μmとなるように製膜した。次に、得られた塗膜をオーブンで60℃、3分間の条件で乾燥させた。これにより、第2の接着剤層(第2の接着剤組成物からなる層)を形成し、第2の接着剤層を備える第2の接着剤フィルムを得た。
<第2の接着剤層の溶融粘度測定>
 以下の方法により、第2の接着剤層の最低溶融粘度を測定した。具体的には、まず、第2の接着剤フィルムを40℃で加熱しながらロールラミネータでラミネートすることにより、総厚が400μmとなるように、第2の接着剤層を複数積層した。その後、0.8cmφに切断し試験片を得た。次いで、得られた試験片に対し、溶融粘度測定装置(商品名:ARES-G2、TAインスツルメンツ社製)を用いた溶融粘度測定を行った。測定条件は、測定温度:0~200℃、昇温速度:10℃/min、周波数:10Hz、ひずみ:0.5%とした。最低溶融粘度は、1000Pa・sであった。
<実施例1~5、比較例1~2>
(回路接続用接着剤フィルムの作製)
 上記で得られた第1の接着剤フィルムと第2の接着剤フィルムとを、表3に示す組み合わせで、それぞれの接着剤層が対向するように配置し、基材であるPETフィルムとともに50℃で加熱しながらロールラミネータでラミネートした。これにより、第1の接着剤層と第2の接着剤層とが積層された二層構成の回路接続用接着剤フィルムを備える、PETフィルム付き回路接続用接着剤フィルムを作製した。
(フロー率の測定)
 上記で得られた実施例1~5及び比較例1~2の回路接続用接着剤フィルムにおける第1の接着剤層のフロー率を、以下の方法で測定した。
 まず、生検トレパンBP-10F 1.0mm(カイ インダストリーズ株式会社製)を用いてPETフィルム付き回路接続用接着剤フィルムを厚さ方向に打ち抜き、直径1mmの円板状の評価用接着剤フィルムを得た。
 得られた評価用接着剤フィルムから第1の接着剤層側のPETフィルムを剥離した後、評価用接着剤フィルムを第1の接着剤層側から松波硝子工業製のカバーガラス(厚さ0.15mm、幅18mm、奥行18mm)上に載せ、大橋製作所製の熱圧着装置LD―06を用いて、圧着温度60℃、圧着圧力1MPa、圧着時間0.1sの条件で第2の接着剤層側から熱圧着し、仮固定体(カバーガラス/評価用接着剤フィルム/PETフィルム)を得た。なお、圧着温度は、1秒間圧着した際の到達温度であり、圧着圧力は、評価用接着剤フィルムの面積換算圧力である。
 次に、仮固定体から第2の接着剤層側のPETフィルムを剥離した後、第2の接着剤層上に松波硝子工業製のカバーガラス(厚さ0.15mm、幅18mm、奥行18mm)を載せ、積層体(カバーガラス/評価用接着剤フィルム/カバーガラス)を得た。次いで、大橋製作所製の熱圧着装置BD-06を用いて、圧着温度170℃、圧着圧力80MPa、圧着時間5sの条件で第2の接着剤層側から積層体を熱圧着し、圧着体を得た。なお、圧着温度は、評価用接着剤フィルムの最高到達温度であり、圧着圧力は、評価用接着剤フィルムの面積換算圧力である。最高到達温度は、ダミーサンプル(評価用の積層体と同一の積層体)を別途用意し、ダミーサンプルの接着剤フィルムと第1の接着剤層側のカバーガラスとの間に薄型温度センサ(理化工業株式会社製のST-50)を挟んだ状態で熱圧着を行い、ダミーサンプルにおける接着剤フィルムの最高到達温度を予め測定することにより調整した。
 圧着体を光学顕微鏡(株式会社ニコン製のL300ND)で観察し、測長ツールを用いて、圧着体における硬化後の第1の接着剤層とカバーガラスとの接着部分の面積(接着面積)S1(単位:mm)を求め、下記式(a)に基づき、フロー率を算出した。
フロー率[%]=(接着面積S1)/(0.25π)×100・・・(a)
(回路接続構造体の作製及び評価)
 上記で得られた実施例1~5及び比較例1~2の回路接続用接着剤フィルムを用いて、以下の方法で、回路接続構造体を作製するとともに回路接続構造体の作製時に回路接続用接着剤フィルムの転写性を評価した。まず、ガラス基板(コーニング社製:#1737、38mm×28mm、厚み0.3mm)の表面にITOの回路電極(パターン幅31μm、電極間スペース7μm)が形成された回路基板を用意した。次いで、回路接続用接着剤フィルムを2.0mm×23mmの長方形状に切り出し、回路接続用接着剤フィルムの第1の接着剤層側のPETフィルムを剥離した後、回路接続用接着剤フィルムの第1の接着剤層が上記回路基板の回路電極が形成されている面に接触するようにして、回路接続用接着剤フィルムを上記回路基板に仮圧着した。仮圧着は、回路接続用接着剤フィルムを、回路接続用接着剤フィルムの実測最高到達温度60℃、接着剤フィルム面積換算圧力1MPaの条件で1秒間加熱及び加圧することにより行った。仮圧着後、第2の接着剤層側のPETフィルムをピンセットでつまみ、第2の接着剤層から剥離した。この際、回路接続用接着剤フィルム(第1の接着剤層)がガラス基板に張り付いていた場合を転写性A、回路接続用接着剤フィルムとガラス基板との間に浮きが発生した又は回路接続用接着剤フィルムがガラス基板から完全に剥離した場合を転写性Bとした。結果は表3に示す。
 次に、バンプ電極を配列したICチップ(外形2mm×20mm、厚み0.3mm、バンプ電極の面積840μm(縦70μm×横12μm)、バンプ電極間スペース12μm、バンプ電極高さ15μm)を準備し、ICチップのバンプ電極とガラス基板の回路電極との位置合わせを行った後、回路接続用接着剤フィルムの実測最高到達温度130℃、及びバンプ電極での面積換算圧力40MPaの条件で5秒間加熱及び加圧して第2の接着剤層をICチップに貼り付けた。これにより、回路接続構造体を得た。
(回路接続構造体の評価)
 上記で得られた実施例1~5及び比較例1~2の回路接続構造体を用いて、以下の方法で、接続抵抗、粒子捕捉効率、絶縁信頼性及び実装後粒子間距離の評価を行った。結果は表3に示す。
[接続抵抗評価]
 回路接続構造体の対向する電極間(バンプ電極と回路電極との間)の抵抗値を、マルチメータ(MLR21、楠本化成株式会社製)を用いた四端子測定法にて測定し、14箇所の測定値の平均値を比較することにより、接続抵抗を評価した。
[絶縁信頼性評価]
 作製直後の回路接続構造体に50Vの電圧を印加し、計1440箇所の回路電極間の絶縁抵抗を一括で測定した。絶縁抵抗が1.0×10Ωより大きい場合をA判定、1.0×10Ω以下の場合をB判定とした。
[粒子捕捉効率評価]
 上記の回路接続構造体を微分干渉顕微鏡で観察し、接続端子間(対向するバンプ電極と回路電極との間)に捕捉された導電粒子の個数をカウントした。100対の接続端子(バンプ電極100箇所)について顕微鏡による観察を行い、その平均値を導電粒子の捕捉数とした。その後、以下の式に基づき粒子捕捉効率を算出した。
粒子捕捉効率(%)=(導電粒子の捕捉数/(1mm/バンプ電極の面積)/回路接続用接着剤フィルムの1mmあたりの導電粒子数)×100
[実装後粒子間距離測定]
 回路接続構造体を研磨し当該回路接続構造体の対向方向の断面を露出させた。露出面を(走査型電子顕微鏡(SEM、商品名:SU-8000)で観察し、隣り合うバンプ電極の間(バンプ電極と回路電極との接続部分の間)に観察される導電粒子について、隣接する導電粒子の中心間距離を測定した。隣接する粒子間の距離が長いほど連結によるショートリスクが低減でき、絶縁信頼性が確保できる。隣接する導電粒子が複数存在する場合、測定された複数の中心間距離の平均値を実装後粒子間距離とした。
 上記顕微鏡による断面観察の結果、実施例1~5の回路接続構造体は、隣り合うバンプ電極間において、第1の接着剤層が硬化してなる樹脂硬化層が、ICチップ側に凸となるように屈曲しており、アーチ状の断面形状を有していることが確認された。参考までに、実施例2の断面観察写真を図7に示す。
Figure JPOXMLDOC01-appb-T000005
 1a,1b…回路接続用接着剤フィルム、2…第1の接着剤層、3…第2の接着剤層、4…導電粒子、6…第3の接着剤層、10a,10b…回路接続構造体、12…回路電極(第1の電極)、13…第1の回路部材、15…バンプ電極(第2の電極)、16…第2の回路部材、17a,17b…回路接続部、18…第1の樹脂硬化層、19…第2の樹脂硬化層、20…第3の樹脂硬化層、21…電極接続部分。

 

Claims (18)

  1.  導電粒子を含有する第1の接着剤層と、前記第1の接着剤層上に設けられた第2の接着剤層と、を備え、下記(A1)~(A4)の手順で測定される前記第1の接着剤層のフロー率が、130~250%である、回路接続用接着剤フィルムを用意する工程と、
     第1の電極を有する第1の回路部材と第2の電極を有する第2の回路部材とを、前記第1の電極と前記第2の電極とが対向するように配置する工程と、
     前記第1の接着剤層が前記第1の回路部材側となり前記第2の接着剤層が前記第2の回路部材側となるように前記第1の回路部材と前記第2の回路部材との間に前記回路接続用接着剤フィルムを介在させた状態で、前記第1の回路部材及び前記第2の回路部材を熱圧着する工程と、を備え、
     前記熱圧着する工程において、前記第1の電極及び前記第2の電極を前記導電粒子を介して互いに電気的に接続して電極接続部分を形成するとともに、隣り合う前記電極接続部分の間において前記第1の回路部材側又は前記第2の回路部材側に凸となるように前記第1の接着剤層を屈曲させて前記回路接続用接着剤フィルムを硬化させる、回路接続構造体の製造方法。
    (A1)前記回路接続用接着剤フィルムを、当該回路接続用接着剤フィルムの両主面上に基材が貼り付けられた状態で厚さ方向に打ち抜き、直径R(単位:mm)が0.1~1mmの円板状の評価用接着剤フィルムを得る。
    (A2)前記評価用接着剤フィルムから第1の接着剤層側の前記基材を剥離した後、前記評価用接着剤フィルムを前記第1の接着剤層側から、厚さ0.15mmのガラス板上に載せ、圧着温度60℃、圧着圧力1MPa、圧着時間0.1sの条件で熱圧着し、仮固定体を得る。
    (A3)前記仮固定体から前記基材を剥離した後、第2の接着剤層上に厚さ0.15mmのガラス板を載せ、圧着温度170℃、圧着圧力80MPa、圧着時間5sの条件で熱圧着し、圧着体を得る。
    (A4)前記圧着体における、硬化後の前記第1の接着剤層と前記ガラス板との接着面積S1(単位:mm)を求め、下記式(a)に基づき、フロー率を算出する。
    フロー率[%]=(接着面積S1)/(0.25π×(直径R))×100・・・(a)
  2.  前記第1の接着剤層が、第1の熱硬化性成分を含有する、請求項1に記載の回路接続構造体の製造方法。
  3.  前記第1の熱硬化性成分が、熱硬化性化合物として、(メタ)アクリレート化合物を含む、請求項2に記載の回路接続構造体の製造方法。
  4.  前記第1の熱硬化性成分が、前記熱硬化性化合物用の硬化剤として、有機過酸化物を含む、請求項3に記載の回路接続構造体の製造方法。
  5.  前記第1の接着剤層が、光硬化性成分の硬化物を含有する、請求項2~4のいずれか一項に記載の回路接続構造体の製造方法。
  6.  前記第1の接着剤層における前記導電粒子の密度が、5000~50000個/mmである、請求項1~5のいずれか一項に記載の回路接続構造体の製造方法。
  7.  前記第1の接着剤層の厚さが、前記導電粒子の平均粒径の0.6倍以上1.0倍未満である、請求項1~6のいずれか一項に記載の回路接続構造体の製造方法。
  8.  前記第1の接着剤層の厚さが、1.0~6.0μmである、請求項1~7のいずれか一項に記載の回路接続構造体の製造方法。
  9.  前記導電粒子の平均粒径が、2.5~6.0μmである、請求項1~8のいずれか一項に記載の回路接続構造体の製造方法。
  10.  前記第2の接着剤層が、第2の熱硬化性成分を含有する、請求項1~9のいずれか一項に記載の回路接続構造体の製造方法。
  11.  前記第2の熱硬化性成分が、熱硬化性化合物として、エポキシ化合物又はオキセタン化合物を含む、請求項10に記載の回路接続構造体の製造方法。
  12.  前記第2の熱硬化性成分が、前記熱硬化性化合物用の硬化剤として、スルホニウム塩又はアンモニウム塩を含む、請求項11に記載の回路接続構造体の製造方法。
  13.  前記第2の接着剤層が、無機フィラーを含有する、請求項1~12のいずれか一項に記載の回路接続構造体の製造方法。
  14.  前記無機フィラーの平均粒径が、0.05~5.0μmである、請求項13に記載の回路接続構造体の製造方法。
  15.  前記無機フィラーの含有量が、前記第2の接着剤層の全質量を基準として、20~60質量%である、請求項13又は14に記載の回路接続構造体の製造方法。
  16.  導電粒子を含有する第1の接着剤層と、
     前記第1の接着剤層上に設けられた第2の接着剤層と、を備え、
     下記(A1)~(A4)の手順で測定される前記第1の接着剤層のフロー率が、130~250%である、回路接続用接着剤フィルム。
    (A1)前記回路接続用接着剤フィルムを、当該回路接続用接着剤フィルムの両主面上に基材が貼り付けられた状態で厚さ方向に打ち抜き、直径R(単位:mm)が0.1~1mmの円板状の評価用接着剤フィルムを得る。
    (A2)前記評価用接着剤フィルムから第1の接着剤層側の前記基材を剥離した後、前記評価用接着剤フィルムを前記第1の接着剤層側から、厚さ0.15mmのガラス板上に載せ、圧着温度60℃、圧着圧力1MPa、圧着時間0.1sの条件で熱圧着し、仮固定体を得る。
    (A3)前記仮固定体から前記基材を剥離した後、第2の接着剤層上に厚さ0.15mmのガラス板を載せ、圧着温度170℃、圧着圧力80MPa、圧着時間5sの条件で熱圧着し、圧着体を得る。
    (A4)前記圧着体における、硬化後の前記第1の接着剤層と前記ガラス板との接着面積S1(単位:mm)を求め、下記式(a)に基づき、フロー率を算出する。
    フロー率[%]=(接着面積S1)/(0.25π×(直径R))×100・・・(a)
  17.  導電粒子を含有する第1の接着剤層と、
     前記第1の接着剤層上に設けられた第2の接着剤層と、を備える回路接続用接着剤フィルムであって、
     第1の電極を有する第1の回路部材の前記第1の電極と、第2の電極を有する第2の回路部材の前記第2の電極とを、前記導電粒子を介して互いに電気的に接続して電極接続部分を形成するとともに、隣り合う前記電極接続部分の間において前記第1の回路部材側又は前記第2の回路部材側に凸となるように前記第1の接着剤層を屈曲させて前記回路接続用接着剤フィルムを硬化させ回路接続構造体を形成する、回路接続用接着剤フィルム。
  18.  第1の電極を有する第1の回路部材と、第2の電極を有する第2の回路部材と、前記第1の回路部材及び前記第2の回路部材の間に配置され、第1の電極及び第2の電極を導電粒子を介して互いに電気的に接続するとともに、第1の回路部材及び第2の回路部材を接着する回路接続部と、を備え、
     前記回路接続部が、導電粒子を含有する第1の樹脂硬化層と、第1の樹脂硬化層の第1の回路部材側とは反対側に位置する第2の樹脂硬化層と、を含み、
     前記第1の樹脂硬化層が、第1の電極及び第2の電極間に介在する導電粒子によって第1の電極及び第2の電極を互いに電気的に接続する電極接続部分を複数含み、隣り合う前記電極接続部分の間において、前記第1の回路部材側又は前記第2の回路部材側に凸となるように屈曲している、回路接続構造体。

     
PCT/JP2021/047653 2020-12-25 2021-12-22 回路接続用接着剤フィルム、並びに、回路接続構造体及びその製造方法 WO2022138747A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180084529.4A CN116601250A (zh) 2020-12-25 2021-12-22 电路连接用黏合剂膜、以及电路连接结构体及其制造方法
JP2022571571A JPWO2022138747A1 (ja) 2020-12-25 2021-12-22
KR1020237023899A KR20230125230A (ko) 2020-12-25 2021-12-22 회로 접속용 접착제 필름, 및, 회로 접속 구조체 및그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-216997 2020-12-25
JP2020216997 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022138747A1 true WO2022138747A1 (ja) 2022-06-30

Family

ID=82159825

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047653 WO2022138747A1 (ja) 2020-12-25 2021-12-22 回路接続用接着剤フィルム、並びに、回路接続構造体及びその製造方法

Country Status (5)

Country Link
JP (1) JPWO2022138747A1 (ja)
KR (1) KR20230125230A (ja)
CN (1) CN116601250A (ja)
TW (1) TW202244219A (ja)
WO (1) WO2022138747A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003187885A (ja) * 2001-12-20 2003-07-04 Sony Corp 異方性導電フィルムおよび異方性導電フィルムの製造方法ならびに電子部品の実装体
WO2019050006A1 (ja) * 2017-09-11 2019-03-14 日立化成株式会社 回路接続用接着剤フィルム及びその製造方法、回路接続構造体の製造方法、並びに、接着剤フィルム収容セット

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3656768B2 (ja) 1995-02-07 2005-06-08 日立化成工業株式会社 接続部材および該接続部材を用いた電極の接続構造並びに接続方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003187885A (ja) * 2001-12-20 2003-07-04 Sony Corp 異方性導電フィルムおよび異方性導電フィルムの製造方法ならびに電子部品の実装体
WO2019050006A1 (ja) * 2017-09-11 2019-03-14 日立化成株式会社 回路接続用接着剤フィルム及びその製造方法、回路接続構造体の製造方法、並びに、接着剤フィルム収容セット

Also Published As

Publication number Publication date
CN116601250A (zh) 2023-08-15
KR20230125230A (ko) 2023-08-29
TW202244219A (zh) 2022-11-16
JPWO2022138747A1 (ja) 2022-06-30

Similar Documents

Publication Publication Date Title
WO2022102573A1 (ja) 回路接続用接着剤フィルム及びその製造方法、並びに回路接続構造体及びその製造方法
WO2022009846A1 (ja) 回路接続用接着剤フィルム、並びに回路接続構造体及びその製造方法
WO2021251386A1 (ja) 回路接続用接着剤フィルム、並びに回路接続構造体及びその製造方法
WO2022102672A1 (ja) 回路接続用接着剤フィルム及びその製造方法、並びに、接続構造体及びその製造方法
WO2022138747A1 (ja) 回路接続用接着剤フィルム、並びに、回路接続構造体及びその製造方法
TWI808990B (zh) 電路連接用接著劑膜及其製造方法、電路連接結構體的製造方法及接著劑膜收容套組
KR102533475B1 (ko) 회로 접속용 접착제 필름 및 그의 제조 방법, 회로 접속 구조체의 제조 방법, 그리고 접착제 필름 수용 세트
WO2022025207A1 (ja) 回路接続用接着剤フィルム、回路接続用接着剤組成物、並びに回路接続構造体及びその製造方法
JP7308028B2 (ja) 異方性導電フィルム、その硬化物および異方性導電フィルムの製造方法
WO2022065496A1 (ja) 回路接続用接着剤フィルム、無機フィラー含有組成物、並びに、回路接続構造体及びその製造方法
WO2022075370A1 (ja) 回路接続用接着剤フィルム、回路接続用材料、並びに回路接続構造体及びその製造方法
JP6894221B2 (ja) 異方性導電フィルム、これを含む積層フィルム、およびこれらの製造方法
WO2023106400A1 (ja) 回路接続用接着剤フィルム、並びに回路接続構造体及びその製造方法
JP2022061623A (ja) 回路接続用接着剤フィルム、並びに回路接続構造体及びその製造方法
WO2023106410A1 (ja) 回路接続用接着剤フィルム、並びに回路接続構造体及びその製造方法
JP2022112210A (ja) 回路接続用接着剤及び接続構造体の製造方法
WO2020184584A1 (ja) 回路接続用接着剤フィルム及びその製造方法、回路接続構造体の製造方法、並びに、接着剤フィルム収容セット
JP2022158554A (ja) 回路接続用接着剤フィルム、並びに回路接続構造体及びその製造方法
JP2023063770A (ja) 回路接続用接着剤フィルム、並びに回路接続構造体及びその製造方法
JP2023086476A (ja) 回路接続用接着剤フィルム、並びに回路接続構造体及びその製造方法
JP2024025090A (ja) 回路接続用接着剤フィルム、並びに回路接続構造体及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910887

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022571571

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180084529.4

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237023899

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910887

Country of ref document: EP

Kind code of ref document: A1