WO2023106410A1 - 回路接続用接着剤フィルム、並びに回路接続構造体及びその製造方法 - Google Patents

回路接続用接着剤フィルム、並びに回路接続構造体及びその製造方法 Download PDF

Info

Publication number
WO2023106410A1
WO2023106410A1 PCT/JP2022/045506 JP2022045506W WO2023106410A1 WO 2023106410 A1 WO2023106410 A1 WO 2023106410A1 JP 2022045506 W JP2022045506 W JP 2022045506W WO 2023106410 A1 WO2023106410 A1 WO 2023106410A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
adhesive layer
component
adhesive film
circuit connection
Prior art date
Application number
PCT/JP2022/045506
Other languages
English (en)
French (fr)
Inventor
孝 中澤
和也 成冨
剛幸 市村
敏光 森谷
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Publication of WO2023106410A1 publication Critical patent/WO2023106410A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits

Definitions

  • the present disclosure relates to a circuit connection adhesive film, a circuit connection structure, and a method for manufacturing the same.
  • liquid crystal display panels, organic EL panels, etc. have been used as various display means for televisions, PC monitors, mobile phones, smart phones, etc.
  • COG chip on glass
  • a driving IC is directly mounted on the glass substrate of the display panel, is adopted from the viewpoint of finer pitch, lighter weight, and the like.
  • a semiconductor element such as a liquid crystal driving IC is connected on a transparent substrate (such as a glass substrate) having a plurality of transparent electrodes (such as ITO (indium tin oxide)).
  • a transparent substrate such as a glass substrate
  • transparent electrodes such as ITO (indium tin oxide)
  • a circuit-connecting adhesive film having conductive particles dispersed in an adhesive and having anisotropic conductivity is used.
  • the liquid crystal driving IC has a plurality of electrode terminals corresponding to transparent electrodes on its mounting surface, and an adhesive for circuit connection having anisotropic conductivity is used.
  • a flexible plastic substrate such as a polyimide substrate
  • various electronic components such as a driving IC are also mounted on the plastic substrate.
  • COP chip on plastic
  • connection resistance between circuits tends to decrease as the resin fluidity of the adhesive film increases.
  • high resin fluidity means that conductive particles also flow easily at the same time. Poor connection may occur.
  • the adhesive component of the circuit-connecting adhesive film may be cured by heat or light to reduce the fluidity of the conductive particles before the manufacturing process of the circuit-connecting adhesive film or circuit connection. being considered.
  • the ability to remove the resin in the adhesive component is also lowered, which may increase the connection resistance of the circuit connection structure.
  • Resin expulsion can be allowed in principle by mounting at high pressure.
  • organic EL panels have been becoming flexible displays, and the bottom surface of a plastic substrate (polyimide substrate, etc.) is usually coated with an adhesive layer such as a pressure-sensitive resin, PET (polyethylene terephthalate), PEN (polyethylene phthalate) and other films are arranged.
  • an adhesive layer such as a pressure-sensitive resin, PET (polyethylene terephthalate), PEN (polyethylene phthalate) and other films are arranged.
  • PET polyethylene terephthalate
  • PEN polyethylene phthalate
  • the reduced elasticity of the substrate associated with these flexible displays may lead to the problem of circuit breakage due to the accumulation of stress in the circuit electrodes when the driver IC is mounted, causing cracks to occur in the outermost titanium layer. Therefore, in COP mounting, mounting at a low pressure (for example, an area-converted pressure of 0.1 to 50 MPa at the bump electrode) is desired.
  • the present disclosure can improve the trapping rate of conductive particles between the opposing electrodes of the circuit connection structure and reduce the connection resistance of the circuit connection structure even when mounted at low pressure.
  • the main object is to provide an adhesive film for circuit connection.
  • the adhesive film for circuit connection includes a first adhesive layer containing conductive particles, a cured product of a photocurable resin component, and a first thermosetting resin component, and provided on the first adhesive layer. and a second adhesive layer containing a second thermosetting resin component applied thereto.
  • the photocurable resin component contains a radically polymerizable compound and a photoradical polymerization initiator.
  • Photoradical polymerization initiators include compounds having an oxime ester structure. By including a compound having an oxime ester structure in the photoradical polymerization initiator, it is possible to improve the trapping rate of conductive particles between the facing electrodes of the circuit connection structure and reduce the connection resistance of the circuit connection structure. becomes.
  • the thickness of the first adhesive layer may be 5.0 ⁇ m or less, and the ratio of the thickness of the first adhesive layer to the average particle size of the conductive particles may be 0.50 or more.
  • the monodispersity of the conductive particles in the circuit connection adhesive film may be 90% or more.
  • the monodispersity ratio means the ratio of conductive particles present in a state (monodisperse state) separated from other conductive particles.
  • the first thermosetting resin component and the second thermosetting resin component may contain a cationic polymerizable compound and a thermal cationic polymerization initiator. At this time, the first thermosetting resin component and the second thermosetting resin component have cationic curability, and the photocurable resin component has radical curability. According to the studies of the present inventors, when such a combination of the first thermosetting resin component and the second thermosetting resin component and the photocurable resin component is such a combination, for example, all the curable resin components It tends to be superior in terms of connection resistance compared to the case where it has cationic curability. The inventors of the present disclosure speculate as follows as the reason why such an effect is produced.
  • cationic active species remain when the cured product of the photocurable resin component is formed. It is believed that this is because the curing reaction of the second thermosetting resin component in the second adhesive layer proceeds due to the cationic active species and the expulsion of the resin decreases. . Therefore, if the photocurable resin component has radical curability, cationic active species are not generated when the cured product of the photocurable resin component is formed. It is expected that the progress of the curing reaction of the thermosetting resin component can be suppressed, the deterioration of the expulsion of the resin can be suppressed, and the connection resistance can be reduced.
  • the cationically polymerizable compound may be at least one selected from the group consisting of oxetane compounds and alicyclic epoxy compounds.
  • the thermal cationic polymerization initiator may be a salt compound having an anion containing boron as a constituent element.
  • the adhesive film for circuit connection further comprises a third adhesive layer containing a third thermosetting resin component provided on the opposite side of the first adhesive layer to the second adhesive layer.
  • the third thermosetting resin component may contain a cationic polymerizable compound and a thermal cationic polymerization initiator.
  • the method for manufacturing the circuit connection structure includes interposing the circuit connection adhesive film between a first circuit member having a first electrode and a second circuit member having a second electrode, Thermocompression bonding the first circuit member and the second circuit member to electrically connect the first electrode and the second electrode to each other.
  • the circuit connection structure is arranged between a first circuit member having a first electrode, a second circuit member having a second electrode, and the first circuit member and the second circuit member, and a circuit connection portion electrically connecting the first electrode and the second electrode to each other.
  • the circuit connecting part contains the cured body of the circuit connecting adhesive film.
  • the present disclosure provides the circuit-connecting adhesive film described in [1] to [8], the method for manufacturing the circuit-connected structure described in [9], and the circuit-connected structure described in [10].
  • An adhesive film for circuit connection comprising a compound having [2]
  • the thickness of the first adhesive layer is 5.0 ⁇ m or less, and the ratio of the thickness of the first adhesive layer to the average particle size of the conductive particles is 0.50 or more.
  • the adhesive film for circuit connection [3] The circuit-connecting adhesive film according to [1] or [2], wherein the monodisperse rate of the conductive particles in the circuit-connecting adhesive film is 90% or more. [4] The circuit according to any one of [1] to [3], wherein the first thermosetting resin component and the second thermosetting resin component contain a cationic polymerizable compound and a thermal cationic polymerization initiator. Adhesive film for connection. [5] The adhesive film for circuit connection according to [4], wherein the cationic polymerizable compound is at least one selected from the group consisting of oxetane compounds and alicyclic epoxy compounds.
  • a circuit connection structure comprising a step of electrically connecting the first electrode and the second electrode to each other by thermocompression bonding the first circuit member and the second circuit member with a film interposed. manufacturing method.
  • a circuit-connected structure including a body.
  • a circuit-connecting adhesive film is disclosed.
  • Such an adhesive film for circuit connection can be suitably used for COP mounting.
  • a circuit connection structure using such an adhesive film for circuit connection and a method for manufacturing the same are disclosed.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of an adhesive film for circuit connection.
  • FIG. 2 is a schematic cross-sectional view showing another embodiment of an adhesive film for circuit connection.
  • FIG. 3 is a schematic cross-sectional view of a substrate used for manufacturing the circuit-connecting adhesive film of FIG.
  • FIG. 4 is a diagram showing a state in which conductive particles are arranged in the recesses of the base shown in FIG. 5(a) and 5(b) are schematic cross-sectional views showing one step of the method for producing the circuit-connecting adhesive film of FIG. 6(a) and 6(b) are schematic cross-sectional views showing one step of the method for producing the circuit-connecting adhesive film of FIG.
  • FIG. 7 is a schematic cross-sectional view showing one embodiment of the circuit connection structure.
  • 8A and 8B are schematic cross-sectional views showing an embodiment of a method for manufacturing a circuit connection structure.
  • the numerical range indicated using “-” indicates the range including the numerical values before and after "-" as the minimum and maximum values, respectively.
  • the upper limit value or lower limit value of the numerical range at one step may be replaced with the upper limit value or lower limit value of the numerical range at another step.
  • the upper and lower limits of the numerical ranges may be replaced with the values shown in the examples.
  • the upper limit value and the lower limit value described individually can be combined arbitrarily.
  • both numerical values A and B are included in the numerical range as lower and upper limits, respectively.
  • the description “10 or more” means “10” and “a numerical value exceeding 10”, and this applies even when the numerical values are different.
  • the description “10 or less” means “10” and “a numerical value less than 10”, and this applies even if the numerical values are different.
  • “(meth)acrylate” means at least one of acrylate and methacrylate corresponding thereto. The same applies to other similar expressions such as “(meth)acryloyl” and “(meth)acrylic acid”.
  • “A or B” may include either one of A and B, or may include both. Materials exemplified below may be used singly or in combination of two or more unless otherwise specified.
  • the content of each component in the composition means the total amount of the plurality of substances present in the composition unless otherwise specified when there are multiple substances corresponding to each component in the composition.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of the circuit-connecting adhesive film, and is a view schematically showing a longitudinal cross-section of the circuit-connecting adhesive film.
  • the circuit-connecting adhesive film 10A shown in FIG. 1 contains a plurality of conductive particles 4, and an adhesive component 3 containing a cured product of a photocurable resin component and a (first) thermosetting resin component. It comprises a first adhesive layer 1 and a second adhesive layer 2 containing a (second) thermosetting resin component provided on the first adhesive layer 1 .
  • the term "longitudinal section” means a section (section in the thickness direction) perpendicular to the main surface (for example, the circuit-connecting adhesive film 10A).
  • the first thermosetting resin component and the second thermosetting resin component mean the thermosetting resin components contained in the first adhesive layer and the second adhesive layer, respectively.
  • the circuit-connecting adhesive film 10A includes a first region containing a plurality of conductive particles 4, and an adhesive component 3 containing a cured photocurable resin component and a (first) thermosetting resin component. , and a second region containing a (second) thermosetting resin component provided adjacent to the first region.
  • At least some of the plurality of conductive particles 4 may be arranged in the horizontal direction in the vertical cross section of the circuit connection adhesive film 10A with adjacent conductive particles separated from each other.
  • the circuit-connecting adhesive film 10A in its vertical cross-section, has a central region 10a in which the conductive particles 4 are arranged in a horizontal direction separated from the adjacent conductive particles, and the conductive particles 4 are present. It may be configured by surface side regions 10b and 10c that do not.
  • the "horizontal direction” means a direction parallel to the main surface of the circuit-connecting adhesive film (horizontal direction in FIG. 1). In FIG.
  • part of the conductive particles 4 are exposed from the surface of the first adhesive layer 1 (for example, protrude toward the second adhesive layer 2), but the conductive particles 4 are The entire conductive particles 4 may be embedded in the first adhesive layer 1 so as not to be exposed from the surface of the adhesive layer 1 .
  • the conductive particles 4 may be dispersed in the first adhesive layer 1 of the circuit connection adhesive film 10A. Therefore, the circuit-connecting adhesive film 10A can be a circuit-connecting adhesive film having anisotropic conductivity (anisotropically conductive adhesive film).
  • the circuit-connecting adhesive film 10A is interposed between a first circuit member having a first electrode and a second circuit member having a second electrode, so that the first circuit member and the second circuit It may be used to thermocompress members to electrically connect the first electrode and the second electrode to each other.
  • anisotropically conductive means to conduct in the pressurized direction and maintain insulation in the non-pressurized direction.
  • the first adhesive layer 1 is composed of conductive particles 4 (hereinafter sometimes referred to as "(A) component”) and a photocurable resin component (hereinafter sometimes referred to as “(B) component”). and a thermosetting resin component (hereinafter sometimes referred to as “(C) component”).
  • the cured product of component (B) may be a cured product obtained by completely curing component (B) or a cured product obtained by partially curing component (B).
  • Component (C) is a component that can flow when connected, and is, for example, an uncured curable component (eg, resin component).
  • Components other than the conductive particles 4 that constitute the first adhesive layer 1 are, for example, non-conductive components (eg, insulating resin components).
  • component (A) component conductive particles
  • the component (A) is not particularly limited as long as it is a particle having conductivity, metal particles composed of metals such as Au, Ag, Pd, Ni, Cu, solder, conductive carbon It may be a conductive carbon particle or the like composed of.
  • Component (A) is a coated conductive particle comprising a nucleus containing non-conductive glass, ceramic, plastic (such as polystyrene), etc., and a coating layer containing the metal or the conductive carbon and covering the nucleus, good too.
  • the component (A) one type of various conductive particles may be used alone, or a plurality thereof may be used in combination.
  • the component (A) is preferably formed of a coated conductive particle comprising a core containing plastic and a coating layer containing metal or conductive carbon and covering the core, or a heat-fusible metal. metal particles.
  • the cured product of the thermosetting resin component can be easily deformed by heating or pressing. ) can increase the contact area with the component and further improve the electrical conductivity between the electrodes.
  • the component (A) is metal particles made of a heat-fusible metal, the connection between the electrodes tends to be stronger. This tendency is remarkable when solder particles are used as the component (A).
  • the solder particles may contain at least one selected from the group consisting of tin, tin alloys, indium, and indium alloys from the viewpoint of achieving both connection strength and low melting point.
  • the solder particles are selected from In--Bi alloys, In--Sn alloys, In--Sn--Ag alloys, Sn--Au alloys, Sn-- At least one selected from the group consisting of Bi alloys, Sn--Bi--Ag alloys, Sn--Ag--Cu alloys and Sn--Cu alloys may be included.
  • Component (A) is an insulation-coated conductive particle comprising the metal particles, the conductive carbon particles, or the coated conductive particles, and an insulating material such as a resin, and an insulating layer covering the surface of the particles. good too.
  • the component (A) is an insulating coating conductive particle, even if the content of the component (A) is large, the surface of the particle is provided with an insulating layer, so the short circuit due to the contact between the components (A) The occurrence can be suppressed, and the insulation between adjacent electrode circuits can be improved.
  • the maximum particle size of component (A) must be smaller than the minimum distance between electrodes (the shortest distance between adjacent electrodes).
  • the maximum particle size of component (A) may be 1.0 ⁇ m or more, 2.0 ⁇ m or more, or 2.5 ⁇ m or more from the viewpoint of excellent dispersibility and conductivity.
  • the maximum particle size of component (A) is 30.0 ⁇ m or less, 25.0 ⁇ m or less, 20.0 ⁇ m or less, 15.0 ⁇ m or less, 10.0 ⁇ m or less, or 5.0 ⁇ m or less from the viewpoint of excellent dispersibility and conductivity.
  • the particle size of the component (A) is the diameter of a circle circumscribing the conductive particles in the SEM image.
  • the average particle size of component (A) may be 1.0 ⁇ m or more, 2.0 ⁇ m or more, 2.5 ⁇ m or more, or 3.0 ⁇ m or more from the viewpoint of excellent dispersibility and conductivity.
  • the average particle diameter of component (A) may be 20.0 ⁇ m or less, 10.0 ⁇ m or less, 7.0 ⁇ m or less, or 5.0 ⁇ m or less from the viewpoint of excellent dispersibility and conductivity.
  • the particle size is measured by observation using a scanning electron microscope (SEM) for any 300 (pcs) of component (A) in the first adhesive layer, and the obtained particle size Let the average value be the average particle size.
  • Component (A) is preferably dispersed uniformly in the first adhesive layer 1 .
  • the particle density of the component (A) in the circuit connection adhesive film 10A is 100 particles/mm 2 or more, 1000 particles/mm 2 or more, 3000 particles/mm 2 or more, 5000 particles. / mm2 or more, 7000/ mm2 or more, 10000/mm2 or more , or 12000/mm2 or more.
  • the particle density of the component (A) in the circuit-connecting adhesive film 10A is 100,000 particles/mm 2 or less, 70,000 particles/mm 2 or less, or 50,000 particles/mm 2 or less, from the viewpoint of improving the insulation between adjacent electrodes. , 30,000/mm 2 or less, or 20,000/mm 2 or less.
  • the monodispersity of the component (A) in the circuit-connecting adhesive film 10A may be 90% or more. When the monodispersity of component (A) is within this range, short circuits between adjacent circuits are less likely to occur, and a circuit connection structure with sufficiently high connection reliability tends to be easily obtained.
  • the monodispersity of component (A) may be 92% or higher, 94% or higher, 96% or higher, 97% or higher, 98% or higher, or 99% or higher.
  • the upper limit of monodispersity can be 100%.
  • the monodispersity is obtained by observing the circuit-connecting adhesive film 10A from the first adhesive layer side at a magnification of 200 using a metallurgical microscope, and measuring the component (A) in the circuit-connecting adhesive film 10A.
  • Monodisperse rate (%) (Number of conductive particles in a monodispersed state (separated from other conductive particles) in 2500 ⁇ m 2 / Number of conductive particles in 2500 ⁇ m 2 ) x 100
  • the content of component (A) is 1% by mass or more, 5% by mass or more, or 10% by mass or more, based on the total mass of the first adhesive layer, from the viewpoint of being able to further improve the conductivity. It's okay.
  • the content of component (A) may be 60% by mass or less, 50% by mass or less, or 40% by mass or less based on the total mass of the first adhesive layer, from the viewpoint of easily suppressing short circuits.
  • the content of component (A) is within the above range, the effects of the present disclosure tend to be remarkably exhibited.
  • the content of component (A) in the composition or composition layer (based on the total mass of the composition or composition layer) may be the same as the above range.
  • Component (B) Photocurable resin component
  • Component (B) is not particularly limited as long as it is a resin component that cures when irradiated with light.
  • the component may be a radical-curing resin component from the viewpoint of better connection resistance.
  • Component (B) includes, for example, a radically polymerizable compound (hereinafter sometimes referred to as "(B1) component”) and a photoradical polymerization initiator (hereinafter sometimes referred to as "(B2) component”). You can stay.
  • the (B) component can be a component consisting of the (B1) component and the (B2) component.
  • the (B1) component is a compound that polymerizes by radicals generated from the (B2) component by irradiation with light (for example, ultraviolet light).
  • the component (B1) may be either a monomer or a polymer (or oligomer) obtained by polymerizing one or more monomers.
  • (B1) component may be used individually by 1 type, and may be used in combination of plurality.
  • the (B1) component is a compound having a radically polymerizable group that reacts with radicals.
  • radically polymerizable groups include (meth)acryloyl groups, vinyl groups, allyl groups, styryl groups, alkenyl groups, alkenylene groups, maleimide groups and the like.
  • the number of radically polymerizable groups (number of functional groups) of the component (B1) is 2 or more from the viewpoint that the desired melt viscosity is easily obtained after polymerization, the effect of reducing the connection resistance is further improved, and the connection reliability is excellent. from the viewpoint of suppressing curing shrinkage during polymerization, it may be 10 or less.
  • a compound having the number of radically polymerizable groups outside the above range may also be used in order to balance the crosslink density and cure shrinkage. good.
  • the (B1) component may contain, for example, a polyfunctional (bifunctional or higher) (meth)acrylate from the viewpoint of suppressing the flow of the conductive particles.
  • the polyfunctional (bifunctional or higher) (meth)acrylate may be a bifunctional (meth)acrylate, and the bifunctional (meth)acrylate may be a bifunctional aromatic (meth)acrylate.
  • polyfunctional (meth)acrylates include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, tetraethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate.
  • acrylate propylene glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, tetrapropylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, ethoxylated polypropylene glycol Di(meth)acrylate, 1,3-butanediol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, 3-methyl-1,5-pentanediol di(meth)acrylate (meth)acrylate, 1,6-hexanediol di(meth)acrylate, 2-butyl-2-ethyl-1,3-propanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, 1 , 10-decanedi
  • the content of the polyfunctional (difunctional or higher) (meth)acrylate is, for example, 40 to 100 based on the total mass of the component (B1), from the viewpoint of achieving both the effect of reducing connection resistance and suppressing particle flow. % by weight, 50-100% by weight, or 60-100% by weight.
  • the (B1) component may further contain a monofunctional (meth)acrylate in addition to the polyfunctional (bifunctional or higher) (meth)acrylate.
  • Monofunctional (meth)acrylates include, for example, (meth)acrylic acid; methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, isobutyl (meth)acrylate, tert-butyl (meth)acrylate, butoxyethyl (meth)acrylate, isoamyl (meth)acrylate, hexyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, heptyl (meth)acrylate, octylheptyl (meth)acrylate, nonyl (meth)acrylate, decyl (meth)acrylate acrylates 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-chloro-2-
  • the content of monofunctional (meth)acrylate may be, for example, 0 to 60% by mass, 0 to 50% by mass, or 0 to 40% by mass based on the total mass of component (B1).
  • the cured product of component (B) may have, for example, a polymerizable group that reacts with something other than radicals.
  • Polymerizable groups that react by means other than radicals may be, for example, cationically polymerizable groups that react by means of cations.
  • Examples of cationic polymerizable groups include epoxy groups such as glycidyl groups, alicyclic epoxy groups such as epoxycyclohexylmethyl groups, and oxetanyl groups such as ethyloxetanylmethyl groups.
  • the cured product of the component (B) having a polymerizable group that reacts by means other than radicals is, for example, a (meth)acrylate having an epoxy group, a (meth)acrylate having an alicyclic epoxy group, or a (meth)acrylate having an oxetanyl group. It can be introduced by using a (meth)acrylate having a polymerizable group that reacts by means other than radicals such as (B) as the component (B).
  • (B1) Mass ratio of (meth) acrylate having a polymerizable group that reacts with a non-radical to the total mass of the component (mass of (meth) acrylate having a polymerizable group that reacts with a non-radical (amount charged)/(B1)
  • the total mass (amount charged) of the components may be, for example, 0 to 0.7, 0 to 0.5, or 0 to 0.3 from the viewpoint of improving reliability.
  • the (B1) component may contain other radically polymerizable compounds in addition to polyfunctional (difunctional or higher) and monofunctional (meth)acrylates.
  • Other radically polymerizable compounds include, for example, maleimide compounds, vinyl ether compounds, allyl compounds, styrene derivatives, acrylamide derivatives, nadimide derivatives and the like.
  • the content of other radically polymerizable compounds may be, for example, 0 to 40% by mass based on the total mass of component (B1).
  • Photoradical polymerization initiator Component (B2) is light containing a wavelength within the range of 150 to 750 nm, preferably light containing a wavelength within the range of 254 to 405 nm, more preferably light containing a wavelength of 365 nm. It is a compound that generates radicals by irradiation with light containing (for example, ultraviolet light).
  • the (B2) component contains a compound having an oxime ester structure.
  • Examples of compounds having an oxime ester structure include compounds represented by the following general formula (I).
  • R 1 , R 2 and R 3 each independently represent an organic group containing a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an aromatic hydrocarbon group.
  • compounds having an oxime ester structure include 1-phenyl-1,2-butanedione-2-(o-methoxycarbonyl)oxime, 1-phenyl-1,2-propanedione-2-(o-methoxycarbonyl ) oxime, 1-phenyl-1,2-propanedione-2-(o-ethoxycarbonyl)oxime, 1-phenyl-1,2-propanedione-2-o-benzoyloxime, 1,3-diphenylpropanetrione- 2-(o-ethoxycarbonyl)oxime, 1-phenyl-3-ethoxypropanetrione-2-(o-benzoyl)oxime, 1,2-octanedione, 1-[4-(phenylthio)phenyl-,2-( o-benzoyloxime)], ethanone, 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-, 1-(o-o-
  • Irgacure-OXE01 Irgacure-OXE02, Irgacure-OXE03, Irgacure-OXE04 (trade names, all manufactured by BASF), Adeka Arkles N-1919T, Adeka Arkles NCI- 831E, Adeka Arkles NCI-930, Adeka Arkles NCI-730 (trade names, all manufactured by ADEKA Corporation), and the like.
  • the (B2) component may or may not contain compounds having other structures in addition to compounds having an oxime ester structure.
  • Compounds having other structures include, for example, a bisimidazole structure, an acridine structure, an ⁇ -aminoalkylphenone structure, an aminobenzophenone structure, an N-phenylglycine structure, an acylphosphine oxide structure, a benzyldimethylketal structure, and an ⁇ -hydroxyalkylphenone. Examples include compounds having structures such as structures.
  • the (B2) component preferably does not contain compounds having other structures.
  • the content of component (B2) is, for example, 0.1 to 10 parts by mass, 0.3 to 7 parts by mass, or 0 with respect to 100 parts by mass of component (B1) from the viewpoint of suppressing the flow of conductive particles. .5 to 5 parts by mass.
  • the content of the cured product of component (B) is 1% by mass or more, 5% by mass or more, or 10% by mass or more based on the total mass of the first adhesive layer.
  • the content of the cured product of component (B) is 50% by mass or less, 40% by mass or less, or 30% by mass, based on the total mass of the first adhesive layer, from the viewpoint of expressing low resistance in low-pressure mounting. may be:
  • the content of the cured product of component (B) is within the above range, the effects of the present disclosure tend to be remarkably exhibited.
  • the content of component (B) in the composition or composition layer (based on the total mass of the composition or composition layer) may be the same as the above range.
  • thermosetting resin component is not particularly limited as long as it is a resin component that is cured by heat. may be a cationic curable resin component from the viewpoint of superior connection resistance.
  • Component (C) includes, for example, a cationic polymerizable compound (hereinafter sometimes referred to as "(C1) component”) and a thermal cationic polymerization initiator (hereinafter sometimes referred to as "(C2) component”). You can stay.
  • Component (C) may be a component consisting of component (C1) and component (C2).
  • the first thermosetting resin component, the second thermosetting resin component, and the third thermosetting resin component are the first adhesive layer, the second adhesive layer, and the third thermosetting resin component, respectively.
  • thermosetting resin component contained in the adhesive layer and components contained in the first thermosetting resin component, the second thermosetting resin component, and the third thermosetting resin component (for example, (C1) component, (C2) component, etc.) and contents may be the same or different.
  • (C1) component cationic polymerizable compound
  • the (C1) component is a compound that crosslinks by reacting with the (C2) component by heat.
  • the (C1) component means a compound that does not have a radically polymerizable group that reacts with radicals, and the (C1) component is not included in the (B1) component.
  • (C1) Component includes, for example, compounds having a cyclic ether group such as oxetane compounds and epoxy compounds.
  • (C1) component may be used individually by 1 type, and may be used in combination of plurality.
  • the component (C1) may contain, for example, at least one selected from the group consisting of an oxetane compound and an alicyclic epoxy compound, from the viewpoint of further improving the effect of reducing the connection resistance and improving the connection reliability. .
  • the component (C1) preferably contains both at least one oxetane compound and at least one alicyclic epoxy compound from the viewpoint of easily obtaining a desired melt viscosity.
  • the oxetane compound as the component (C1) can be used without any particular limitation as long as it has an oxetanyl group and does not have a radically polymerizable group.
  • examples of commercially available oxetane compounds include ETERNACOLL OXBP (trade name, 4,4'-bis[(3-ethyl-3-oxetanyl)methoxymethyl]biphenyl, manufactured by Ube Industries, Ltd.), OXSQ, OXT-121, OXT-221, OXT-101, OXT-212 (trade name, manufactured by Toagosei Co., Ltd.) and the like.
  • One of these compounds may be used alone, or two or more of them may be used in combination.
  • the alicyclic epoxy compound as the (C1) component can be used without particular limitation as long as it has an alicyclic epoxy group (eg, epoxycyclohexyl group) and does not have a radically polymerizable group.
  • Examples of commercially available alicyclic epoxy compounds include EHPE3150, EHPE3150CE, Celoxide 8010, Celoxide 2021P, Celoxide 2081 (trade name, manufactured by Daicel Corporation). One of these compounds may be used alone, or two or more of them may be used in combination.
  • Component (C2) Thermal Cationic Polymerization Initiator
  • the component (C2) is a thermal polymerization initiator that initiates polymerization by generating an acid or the like upon heating.
  • the (C2) component may be a salt compound composed of a cation and an anion.
  • Component (C2) is, for example, BF 4 ⁇ , BR 4 ⁇ (R represents a phenyl group substituted with two or more fluorine atoms or two or more trifluoromethyl groups), PF 6 ⁇ , SbF 6 ⁇ and onium salts such as sulfonium salts, phosphonium salts, ammonium salts (quaternary ammonium salts), diazonium salts, iodonium salts, anilinium salts and pyridium salts having anions such as AsF 6 — . These may be used individually by 1 type, and may be used in combination of plurality.
  • the component (C2) is, for example, an anion containing boron as a constituent element, that is, BF 4 ⁇ or BR 4 ⁇ (R is 2 or more fluorine atoms or 2 or more trifluoromethyl groups). represents a substituted phenyl group).
  • the anion containing boron as a constituent element may be BR 4 — , more specifically tetrakis(pentafluorophenyl)borate.
  • the onium salt as the (C2) component may be, for example, a quaternary ammonium salt or anilinium salt, since it has resistance to substances that can inhibit cationic curing.
  • anilinium salt compounds include N,N-dialkylanilinium salts such as N,N-dimethylanilinium salts and N,N-diethylanilinium salts.
  • the (C2) component may be a quaternary ammonium salt or anilinium salt having an anion containing boron as a constituent element.
  • Commercially available products of such salt compounds include, for example, CXC-1821 (trade name, manufactured by King Industries).
  • the content of component (C2) is, for example, 0.1 to 20 parts by mass, 1 18 parts by weight, 3 to 15 parts by weight, or 5 to 12 parts by weight.
  • the content of component (C) is 5% by mass or more, 10% by mass or more, and 15% by mass, based on the total mass of the first adhesive layer. or more, or 20% by mass or more. From the viewpoint of ensuring the formability of the first adhesive layer, the content of component (C) is 70% by mass or less, 60% by mass or less, and 50% by mass, based on the total mass of the first adhesive layer. or less, or 40% by mass or less.
  • the content of component (C) is within the above range, the effects of the present disclosure tend to be remarkably exhibited.
  • the content of component (C) in the composition or composition layer (based on the total mass of the composition or composition layer) may be the same as the above range.
  • the first adhesive layer 1 may further contain other components in addition to the (A) component, the cured product of the (B) component, and the (C) component.
  • Other components include, for example, a thermoplastic resin (hereinafter sometimes referred to as "(D) component”), a coupling agent (hereinafter sometimes referred to as “(E) component”), a filler (hereinafter sometimes referred to as “(E) component”), , and may be referred to as “(F) component”).
  • component (D) examples include phenoxy resins, polyester resins, polyamide resins, polyurethane resins, polyester urethane resins, acrylic rubbers, and epoxy resins (solid at 25°C). These may be used individually by 1 type, and may be used in combination of plurality.
  • a composition layer (further the first adhesive layer 1) is formed from the composition containing the components (A), (B), and (C) by further containing the component (D). can be easily formed.
  • the (D) component may be, for example, a phenoxy resin.
  • the content of component (D) may be 1% by mass or more, 5% by mass or more, or 10% by mass or more, and 70% by mass or less, or 50% by mass, based on the total mass of the first adhesive layer. or less, or 30% by mass or less.
  • the content of component (D) in the composition or composition layer (based on the total mass of the composition or composition layer) may be the same as the above range.
  • component (E) examples include silane coupling agents having organic functional groups such as (meth)acryloyl groups, mercapto groups, amino groups, imidazole groups and epoxy groups, silane compounds such as tetraalkoxysilanes, and tetraalkoxytitanate derivatives. , polydialkyl titanate derivatives and the like. These may be used individually by 1 type, and may be used in combination of plurality. By including the component (E) in the first adhesive layer 1, the adhesiveness can be further improved.
  • the (E) component may be, for example, a silane coupling agent.
  • the content of component (E) may be 0.1 to 10% by mass based on the total mass of the first adhesive layer.
  • the content of component (E) in the composition or composition layer (based on the total mass of the composition or composition layer) may be the same as the above range.
  • (F) component includes, for example, non-conductive fillers (eg, non-conductive particles).
  • Component may be either an inorganic filler or an organic filler.
  • inorganic fillers include metal oxide fine particles such as silica fine particles, alumina fine particles, silica-alumina fine particles, titania fine particles and zirconia fine particles; and inorganic fine particles such as metal nitride fine particles.
  • organic filler include organic fine particles such as silicone fine particles, methacrylate/butadiene/styrene fine particles, acryl/silicone fine particles, polyamide fine particles, and polyimide fine particles. These may be used individually by 1 type, and may be used in combination of plurality.
  • the (F) component may be silica fine particles, for example.
  • the content of component (F) may be 0.1 to 10% by mass based on the total mass of the first adhesive layer.
  • the content of component (F) in the composition or composition layer (based on the total mass of the composition or composition layer) may be the same as the above range.
  • the first adhesive layer 1 may further contain other additives such as softeners, accelerators, antidegradants, colorants, flame retardants, and thixotropic agents.
  • the content of other additives may be, for example, 0.1 to 10% by mass based on the total mass of the first adhesive layer.
  • the content of other additives in the composition or composition layer (based on the total mass of the composition or composition layer) may be the same as the above range.
  • the thickness d1 of the first adhesive layer 1 may be, for example, 30.0 ⁇ m or less, 20.0 ⁇ m or less, 15.0 ⁇ m or less, 10.0 ⁇ m or less, 8.0 ⁇ m or less, 5.0 ⁇ m or less, 4 .5 ⁇ m or less, 4.0 ⁇ m or less, 3.5 ⁇ m or less, 3.0 ⁇ m or less, or 2.5 ⁇ m or less.
  • the thickness d1 of the first adhesive layer 1 is 30.0 ⁇ m or less, the amount of resin between the opposing circuits is reduced, and an increase in the connection resistance between the opposing circuits can be suppressed. Such a tendency is more pronounced when the thickness d1 of the first adhesive layer 1 is 5.0 ⁇ m or less.
  • the thickness d1 of the first adhesive layer 1 may be, for example, 0.1 ⁇ m or more or 0.7 ⁇ m or more.
  • the first The first adhesive layer 1 and the second adhesive layer 2 located in the spaced part between the adjacent conductive particles 4, 4 are separated from the surface 1a of the adhesive layer 1 opposite to the second adhesive layer 2 side. is the thickness of the first adhesive layer 1, and the exposed portion of the conductive particles 4 is included in the thickness of the first adhesive layer 1.
  • the length of the exposed portion of the conductive particles 4 may be, for example, 0.1 ⁇ m or more and 5.0 ⁇ m or less.
  • the thickness d1 of the first adhesive layer 1 can be obtained, for example, by the method described in Examples. Specifically, the adhesive film for circuit connection is sandwiched between two sheets of glass (thickness: about 1 mm), and 100 g of bisphenol A type epoxy resin (trade name: JER811, manufactured by Mitsubishi Chemical Corporation) and a curing agent (trade name: JER811). Name: Epomount Curing Agent, manufactured by Refinetech Co., Ltd.) After casting with a resin composition consisting of 10 g, the cross section is polished using a polishing machine, and a scanning electron microscope (SEM, product name: SU-8020, stock manufactured by Hitachi High-Tech Science). Such an operation may be performed multiple times and the average value thereof may be used as the thickness d1 of the first adhesive layer 1 .
  • SEM scanning electron microscope
  • the ratio of the thickness of the first adhesive layer 1 to the average particle size of the conductive particles 4 may be 0.50 or more. , for example, 0.55 or more, or 0.60 or more. When the ratio is 0.50 or more, the amount of resin between the opposing circuits is reduced, and it is possible to suppress an increase in the connection resistance between the opposing circuits.
  • the ratio may be, for example, 2.00 or less, 1.50 or less, 1.20 or less, 1.00 or less, or 0.80 or less.
  • the second adhesive layer 2 may be, for example, an insulating adhesive layer composed of a non-conductive component (insulating resin component).
  • the second adhesive layer 2 contains at least component (C).
  • the (C1) component and (C2) component used in the (C) component (that is, the second thermosetting resin component) in the second adhesive layer 2 are (C) in the first adhesive layer 1 Since it is the same as the components (C1) and (C2) used in the component (that is, the first thermosetting resin component), detailed description is omitted here.
  • the second thermoset resin component may be the same as or different from the first thermoset resin component.
  • the content of component (C) is 5% by mass or more, 10% by mass or more, 15% by mass or more, or 20% by mass or more based on the total mass of the second adhesive layer.
  • the content of component (C) is 80% by mass or less, 70% by mass or less, based on the total mass of the second adhesive layer, from the viewpoint of preventing resin seepage problems in the reel, which is one mode of the supply form. , 60% by mass or less, or 50% by mass or less.
  • the second adhesive layer 2 may further contain other components and other additives in the first adhesive layer 1. Preferred aspects of other components and other additives are the same as those of the first adhesive layer 1 .
  • the content of component (D) may be 1% by mass or more, 3% by mass or more, or 5% by mass or more, and 60% by mass or less, or 40% by mass, based on the total mass of the second adhesive layer. or less, or 20% by mass or less.
  • the content of component (E) may be 0.1 to 10% by mass based on the total mass of the second adhesive layer.
  • the content of component (F) may be 1% by mass or more, 10% by mass or more, or 30% by mass or more, and 90% by mass or less, or 70% by mass, based on the total mass of the second adhesive layer. or less, or 50% by mass or less.
  • the content of other additives may be, for example, 0.1 to 10% by mass based on the total mass of the second adhesive layer.
  • the thickness d2 of the second adhesive layer 2 may be appropriately set according to the height of the electrodes of the circuit members to be adhered.
  • the thickness d2 of the second adhesive layer 2 is 5.0 ⁇ m or more or 7 ⁇ m or more from the viewpoint of sufficiently filling the space between the electrodes to seal the electrodes and obtaining better connection reliability. 0 ⁇ m or more, and may be 30.0 ⁇ m or less, 20.0 ⁇ m or less, 15.0 ⁇ m or less, or 13.0 ⁇ m or less.
  • the first adhesive layer 2 when a part of the conductive particles 4 is exposed from the surface of the first adhesive layer 1 (for example, protruding to the second adhesive layer 2 side), the first The distance from the surface 2a opposite to the adhesive layer 1 side to the boundary S between the first adhesive layer 1 and the second adhesive layer 2 located in the spaced portion between the adjacent conductive particles 4, 4 ( The distance indicated by d2 in FIG. 1) is the thickness of the second adhesive layer 2 .
  • the thickness d2 of the second adhesive layer 2 can be obtained, for example, in the same manner as the thickness d1 of the first adhesive layer 1 described above.
  • the thickness of the circuit-connecting adhesive film 10A (total thickness of all layers constituting the circuit-connecting adhesive film 10A; in FIG. 1, the thickness d1 of the first adhesive layer 1 and the thickness of the second The total thickness d2 of the adhesive layer 2) may be, for example, 5.0 ⁇ m or more or 8.0 ⁇ m or more, 60.0 ⁇ m or less, 40.0 ⁇ m or less, 30.0 ⁇ m or less, or 20.0 ⁇ m or less. It's okay.
  • the circuit-connecting adhesive film 10A is an adhesive film used for circuit connection.
  • the circuit-connecting adhesive film 10A may or may not have anisotropic conductivity. That is, the circuit-connecting adhesive film may be an anisotropically conductive adhesive film or a non-anisotropically conductive (for example, isotropically conductive) adhesive film.
  • the circuit-connecting adhesive film 10A includes a first circuit member having a first electrode (the surface on which the first electrode is provided) and a second circuit member having the second electrode (the The surface on which the second electrode is provided), and the first circuit member and the second circuit member are thermocompression bonded (the first circuit member, the circuit connection adhesive film 10A, and The laminate including the second circuit member is heated while being pressed in the thickness direction of the laminate), and the first electrode and the second electrode are connected (via the conductive particles (or the melted and solidified conductive particles) ) may be used to electrically connect to each other.
  • thermosetting resin component secures the expulsion of the resin at the time of connection, while the cured product of the photo-curable resin component suppresses the fluidity of the conductive particles at the time of connection, thereby achieving connection. It is possible to improve the trapping rate of the conductive particles between the electrodes. Therefore, according to the circuit connection adhesive film 10A, it is possible to reduce the connection resistance of the circuit connection structure.
  • circuit connection adhesive film of the present embodiment has been described above, the present disclosure is not limited to the above embodiment.
  • FIG. 2 is a schematic cross-sectional view showing another embodiment of the circuit-connecting adhesive film, which schematically shows a longitudinal cross-section of the circuit-connecting adhesive film.
  • the circuit-connecting adhesive film may be composed of, for example, two layers of a first adhesive layer and a second adhesive layer. It may be composed of three or more layers including two layers.
  • the circuit-connecting adhesive film is provided on the opposite side of the first adhesive layer to the second adhesive layer, for example, like the circuit-connecting adhesive film 10B shown in FIG. 3)
  • a third adhesive layer 5 containing a thermosetting resin component may be further provided.
  • the circuit-connecting adhesive film 10B further includes a third region containing a (third) thermosetting resin component, provided adjacent to the first region on the opposite side of the second region. It can also be said that
  • the third adhesive layer 5 contains at least component (C).
  • the (C1) component and (C2) component used in the (C) component (that is, the third thermosetting resin component) in the third adhesive layer are the (C) component in the first adhesive layer 1 (that is, the first thermosetting resin component), the detailed description is omitted here because it is the same as the components (C1) and (C2) used in the first thermosetting resin component.
  • the third thermoset resin component may be the same as or different from the first thermoset resin component.
  • the third thermoset resin component may be the same as or different from the second thermoset resin component.
  • the content of component (C) is 5% by mass or more, 10% by mass or more, or 15% by mass or more, based on the total mass of the third adhesive layer, from the viewpoint of imparting good transferability and peeling resistance. , or 20% by mass or more.
  • the content of component (C) is 70% by mass or less, based on the total mass of the third adhesive layer, from the viewpoint of imparting good half-cutting properties and anti-blocking properties (suppression of resin exudation from the reel). It may be 60% by mass or less, 50% by mass or less, or 40% by mass or less.
  • the third adhesive layer 5 may further contain other components and other additives in the first adhesive layer 1. Preferred aspects of other components and other additives are the same as those of the first adhesive layer 1 .
  • the content of component (D) may be 10% by mass or more, 20% by mass or more, or 30% by mass or more, and 80% by mass or less, or 70% by mass, based on the total mass of the third adhesive layer. or less, or 60% by mass or less.
  • the content of component (E) may be 0.1 to 10% by mass based on the total mass of the third adhesive layer.
  • the content of component (F) may be 1% by mass or more, 3% by mass or more, or 5% by mass or more, and 50% by mass or less, or 40% by mass, based on the total mass of the third adhesive layer. or less, or 30% by mass or less.
  • the content of other additives may be, for example, 0.1 to 10% by mass based on the total mass of the third adhesive layer.
  • the thickness d3 of the third adhesive layer 5 may be appropriately set according to the height of the electrodes of the circuit members to be adhered.
  • the thickness d3 of the third adhesive layer 5 is 0.2 ⁇ m or more or 0.2 ⁇ m or more from the viewpoint of sufficiently filling the space between the electrodes to seal the electrodes and obtaining better connection reliability. .5 ⁇ m or more, and may be 5.0 ⁇ m or less, or 2.5 ⁇ m or less.
  • the thickness d3 of the third adhesive layer 5 is measured from the surface 5a of the third adhesive layer 5 opposite to the first adhesive layer 1 to the second adhesion It is the distance to the surface 1a on the side opposite to the agent layer 2 side (the distance indicated by d3 in FIG. 2).
  • the thickness d3 of the third adhesive layer 5 can be obtained, for example, in the same manner as the thickness d1 of the first adhesive layer 1 described above.
  • the thickness of the circuit-connecting adhesive film may be the same as the possible thickness range of the circuit-connecting adhesive film 10A.
  • a method for manufacturing an adhesive film for circuit connection of one embodiment comprises a predetermined first adhesive layer and a predetermined second adhesive layer provided on the first adhesive layer.
  • the surface has a plurality of recesses, and each of the plurality of recesses A step of preparing a substrate on which the component (A) is arranged (preparation step), and on the surface of the substrate (the surface on which the recess is formed), the component (B) and the first thermosetting resin component A step of transferring the component (A) to the composition layer (transfer step) by providing a composition layer containing A step of forming a first adhesive layer containing a cured product of and (C) component (first thermosetting resin component) (light irradiation step), and on one side of the first adhesive layer and a step of providing a
  • FIG. 3 is a schematic cross-sectional view of a substrate used for manufacturing the circuit-connecting adhesive film of FIG.
  • FIG. 4 is a diagram showing a state in which conductive particles are arranged in the recesses of the base shown in FIG.
  • FIG. 5 is a schematic cross-sectional view showing one step of the method for producing the circuit-connecting adhesive film of FIG. 1, and is a cross-sectional view schematically showing an example of the transfer step.
  • FIG. 6 is a schematic cross-sectional view showing one step of the method for manufacturing the adhesive film for circuit connection of FIG. 1, and is a cross-sectional view schematically showing an example of the light irradiation step.
  • a substrate 6 having a plurality of recesses 7 on its surface is prepared (see FIG. 3).
  • Base 6 has a plurality of recesses 7 .
  • the plurality of recesses 7 are, for example, regularly arranged in a predetermined pattern (for example, a pattern corresponding to the electrode pattern of the circuit member).
  • the conductive particles 4 are transferred to the composition layer in a predetermined pattern. Therefore, the circuit-connecting adhesive film 10A in which the conductive particles 4 are regularly arranged in a predetermined pattern can also be obtained.
  • the recess 7 of the base 6 is tapered such that the opening area increases from the bottom 7a side of the recess 7 toward the surface 6a of the base 6 . That is, the width of the bottom portion 7a of the recess 7 (width a in FIG. 3) is narrower than the width of the opening of the recess 7 (width b in FIG. 3).
  • the size (width a, width b, volume, taper angle, depth, etc.) of the recesses 7 can be set according to the intended size of the conductive particles and the position of the conductive particles in the circuit-connecting adhesive film. For example, the width (width b) of the opening of the recess 7 may be larger than the maximum particle size of the conductive particles 4 and may be less than twice the maximum particle size of the conductive particles.
  • the shape of the opening of the recess 7 may be circular, elliptical, triangular, quadrangular, polygonal, or the like.
  • the recesses 7 of the substrate 6 can be formed by known methods such as lithography and machining. With these methods, the size and shape of the recess can be freely designed.
  • Materials constituting the base 6 include, for example, inorganic materials such as silicon, various ceramics, glass, metals (stainless steel, etc.), and organic materials such as various resins.
  • the conductive particles 4 can be arranged in the recesses 7 of the substrate 6 by forming the conductive particles 4 in the recesses 7 of the substrate 6.
  • the substrate 6 may be made of a heat-resistant material that does not deteriorate at the melting temperature of the fine particles (for example, solder fine particles) used to form the conductive particles 4 .
  • the conductive particles 4 (component (A) above) are placed (accommodated) in each of the plurality of recesses 7 of the substrate 6 (see FIG. 4).
  • the arrangement method of the conductive particles 4 is not particularly limited.
  • the arrangement method may be either dry or wet.
  • the conductive particles 4 are placed on the surface 6a of the substrate 6, and a squeegee or a slightly adhesive roller is used to rub the surface 6a of the substrate 6, thereby removing the excess conductive particles 4 and filling the concave portions 7 with the conductive particles. 4 can be placed. If the width b of the opening of the recess 7 is greater than the depth of the recess 7 , the conductive particles may fly out of the opening of the recess 7 . By using a squeegee, the conductive particles protruding from the openings of the recesses 7 can be removed.
  • Methods for removing excess conductive particles include, for example, a method of blowing compressed air, a method of rubbing the surface 6a of the substrate 6 with a nonwoven fabric or a bundle of fibers, and the like. These methods are preferable for handling easily deformable particles (for example, solder particles) as conductive particles because the physical force is weaker than that of squeegees. Moreover, in these methods, the conductive particles protruding from the openings of the recesses 7 can be left in the recesses 7 .
  • the conductive particles 4 are solder particles
  • the conductive particles 4 are formed in the recesses 7 of the substrate 6 so that the conductive particles 4 are formed in the recesses. 7 may be placed.
  • fine particles (solder fine particles) for forming the conductive particles 4 are accommodated in the recesses 7 .
  • the conductive particles 4 can be formed in the recesses 7 by melting and fusing the fine particles accommodated in the recesses 7 .
  • the fine particles accommodated in the recesses 7 are united by melting and spheroidized by surface tension. At this time, the molten metal follows the bottom of the recesses 7 at the contact area. . Therefore, for example, when the bottom of the concave portion 7 is flat, the conductive particle 4 has a flat portion 4a on a part of the surface.
  • the substrate 6 After placing the conductive particles 4 in the recesses 7 , the substrate 6 can be handled with the conductive particles 4 placed (accommodated) in the recesses 7 .
  • the conductive particles 4 especially soft conductive particles such as solder particles
  • the conductive particles 4 can be easily taken out. Therefore, it tends to be easy to prevent deformation when the conductive particles 4 are collected and subjected to surface treatment. .
  • the photocurable resin component (component (B) above) and the first thermosetting resin component (component (C) above) are applied onto the surface of the substrate 6 (the surface on which the recesses 7 are formed).
  • the conductive particles 4 are transferred to the composition layer 9 (see FIG. 5).
  • a laminated film 12 is produced by forming a composition layer 9 containing components (B) and (C) on a support 11 .
  • the surface of the substrate 6 on which the recesses 7 are formed (the surface 6a of the substrate 6) and the surface of the laminate film 12 on the composition layer 9 side (the surface 9a of the composition layer 9 on the side opposite to the support 11). are opposed to each other to bring the substrate 6 and the composition layer 9 close to each other (see FIG. 5(a)).
  • the composition layer 9 is brought into contact with the surface 6a of the substrate 6 (the surface where the recesses 7 are formed), and the conductive particles 4 are transferred to the composition layer 9. do.
  • the particle transfer layer 13 including the composition layer 9 and the conductive particles 4 at least partially embedded in the composition layer 9 is obtained (see FIG. 5(b)).
  • the conductive particles 4 have a flat portion 4a corresponding to the shape of the bottom of the concave portion 7, and the flat portion 4a faces the side opposite to the support 11. It is arranged in the composition layer 9 in a state.
  • the composition layer 9 is prepared by dissolving or dispersing components (B) and (C), and other components added as necessary, in an organic solvent by stirring, mixing, kneading, or the like. , a varnish composition (varnish-like first adhesive composition). Specifically, for example, the varnish composition is applied onto the support 11 (for example, a base material subjected to a release treatment) using a knife coater, roll coater, applicator, comma coater, die coater, or the like. Then, the composition layer 9 can be formed by volatilizing the organic solvent by heating. At this time, the thickness of the finally obtained first adhesive layer can be adjusted by adjusting the coating amount of the varnish composition.
  • the organic solvent used in the preparation of the varnish composition is not particularly limited as long as it has the property of uniformly dissolving or dispersing each component.
  • examples of such organic solvents include toluene, acetone, methyl ethyl ketone, methyl isobutyl ketone, ethyl acetate, propyl acetate, butyl acetate and the like. These organic solvents can be used individually by 1 type or in combination of 2 or more types.
  • Stirring and mixing or kneading during preparation of the varnish composition can be performed using, for example, a stirrer, a kneader, a three-roll mill, a ball mill, a bead mill, a homodisper, or the like.
  • the support 11 is not particularly limited as long as it has heat resistance that can withstand the heating conditions when volatilizing the organic solvent.
  • the support 11 may be a plastic film or a metal foil.
  • Examples of the support 11 include oriented polypropylene (OPP), polyethylene terephthalate (PET), polyethylene naphthalate, polyethylene isophthalate, polybutylene terephthalate, polyolefin, polyacetate, polycarbonate, polyphenylene sulfide, polyamide, polyimide, cellulose, ethylene/ Substrates (for example, films) made of vinyl acetate copolymers, polyvinyl chloride, polyvinylidene chloride, synthetic rubbers, liquid crystal polymers, and the like are included.
  • OPP oriented polypropylene
  • PET polyethylene terephthalate
  • PET polyethylene naphthalate
  • polyethylene isophthalate polybutylene terephthalate
  • polyolefin polyacetate
  • polycarbonate polypheny
  • the heating conditions for volatilizing the organic solvent from the varnish composition applied to the support 11 can be appropriately set according to the organic solvent used.
  • the heating conditions may be, for example, 40 to 120° C. for 0.1 to 10 minutes.
  • Examples of methods for bonding the laminated film 12 and the substrate 6 include hot pressing, roll lamination, and vacuum lamination. Lamination can be performed, for example, under temperature conditions of 0 to 80°C.
  • the composition layer 9 may be formed by directly applying the varnish composition to the substrate 6, but by using the laminated film 12, the support 11, the composition layer 9 and the conductive particles 4 are integrated. It becomes easy to obtain the particle transfer layer 13 having a high density, and there is a tendency that the light irradiation step to be described later can be easily performed.
  • the composition layer 9 (particle transfer layer 13) is irradiated with light (actinic rays) to cure the component (B) in the composition layer 9 and form the first adhesive layer 1. (see Figure 6).
  • irradiation light containing wavelengths within the range of 150 to 750 nm (eg, ultraviolet light) may be used.
  • Light irradiation can be performed using, for example, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a xenon lamp, a metal halide lamp, an LED light source, or the like.
  • the integrated amount of light to be irradiated can be appropriately set, and may be, for example, 500 to 3000 mJ/cm 2 .
  • the light is irradiated from the side opposite to the support 11 (the side of the composition layer 9 to which the conductive particles 4 are transferred), but the support 11 receives the light.
  • the light may be irradiated from the support 11 side.
  • the light irradiation is performed after the substrate 6 and the particle transfer layer 13 are separated, but the light irradiation may be performed before the substrate 6 is separated. In this case, light irradiation may be performed after the support 11 is peeled off.
  • the second adhesive layer 2 is provided on the surface of the first adhesive layer 1 opposite to the support 11 (the side of the composition layer 9 to which the conductive particles 4 are transferred). Thereby, the circuit-connecting adhesive film 10A shown in FIG. 1 can be obtained.
  • the second adhesive layer 2 contains, instead of the first adhesive composition, a second thermosetting resin component (component (C) above) and other components added as necessary, organic
  • a method of providing a composition layer 9 on a substrate 6, except for using a varnish composition (second adhesive composition) prepared by dissolving or dispersing by stirring, mixing, kneading, or the like in a solvent. can be provided on the first adhesive layer 1 in the same manner as in . That is, the second adhesive layer is formed on the first adhesive layer 1 by laminating the laminated film obtained by forming the second adhesive layer 2 on the support and the first adhesive layer 1. 2 may be provided, and the second adhesive layer 2 may be provided on the first adhesive layer 1 by directly applying the second adhesive composition to the first adhesive layer 1 .
  • the lamination step by providing the second adhesive layer 2 on the surface opposite to the support 11, the adhesion of the circuit connection adhesive film to the circuit member is improved and the peeling during connection is suppressed. I can expect it.
  • the second adhesive layer 2 may be provided on the surface on which the support 11 was provided. In this case, the lamination step may be performed before the light irradiation step, or may be performed before the transfer step.
  • the method for producing an adhesive film for circuit connection includes providing a third adhesive layer on the surface of the first adhesive layer opposite to the second adhesive layer (second laminating step ) may be further provided.
  • a circuit-connecting adhesive film for example, the circuit-connecting adhesive film 10B shown in FIG. 2 further comprising a third adhesive layer.
  • the third adhesive layer contains, instead of the second adhesive composition, a third thermosetting resin component (component (C) above) and other components added as necessary in an organic solvent.
  • a third thermosetting resin component component (C) above
  • the above laminate for providing the second adhesive layer except for using a varnish composition (third adhesive composition) prepared by dissolving or dispersing by stirring, mixing, kneading, etc. in A third adhesive layer can be provided on the first adhesive layer in the same manner as in the step (first lamination step).
  • the second lamination step may be performed before the first lamination step.
  • circuit connection structure and its manufacturing method a circuit connection structure and its manufacturing method
  • a circuit connection structure and a method for producing the same will be described, taking as an example an aspect in which the circuit connection adhesive film 10A is used as a circuit connection material.
  • FIG. 7 is a schematic cross-sectional view showing one embodiment of the circuit connection structure.
  • the circuit connection structure 100 includes a first circuit board 21 and a first circuit member 23 having a first electrode 22 formed on a main surface 21 a of the first circuit board 21 .
  • a second circuit member 26 having a second circuit board 24 and a second electrode 25 formed on the main surface 24a of the second circuit board 24, and a cured body of the circuit-connecting adhesive film 10A.
  • a circuit connection portion 27 for electrically connecting and bonding the first circuit member 23 and the second circuit member 26 is provided.
  • the first circuit member 23 and the second circuit member 26 may be the same or different.
  • the first circuit member 23 and the second circuit member 26 may be a glass substrate or plastic substrate on which electrodes are formed, a printed wiring board, a ceramic wiring board, a flexible wiring board, an IC chip, or the like.
  • the first circuit board 21 and the second circuit board 24 may be made of an inorganic material such as semiconductor, glass, or ceramic, an organic material such as polyimide or polycarbonate, a composite material such as glass/epoxy, or the like.
  • the first circuit member 23 is a plastic substrate made of an organic substance such as polyimide, polycarbonate, polyethylene terephthalate, cycloolefin polymer, or the like.
  • the second circuit board 24 may be, for example, an IC chip.
  • the first electrode 22 and the second electrode 25 are metals such as gold, silver, tin, ruthenium, rhodium, palladium, osmium, iridium, platinum, copper, aluminum, molybdenum, titanium, indium tin oxide (ITO), Electrodes may include oxides such as indium zinc oxide (IZO), indium gallium zinc oxide (IGZO), and the like.
  • the first electrode 22 and the second electrode 25 may be electrodes formed by stacking two or more of these metals, oxides, and the like.
  • the electrode formed by laminating two or more kinds may have two or more layers, or may have three or more layers.
  • the first electrode 22 may be an electrode having a titanium layer on its outermost surface.
  • the first electrode 22 and the second electrode 25 may be circuit electrodes or bump electrodes. At least one of the first electrode 22 and the second electrode 25 may be a bump electrode.
  • the circuit connection structure shown in FIG. 7 is of a mode in which the first electrodes 22 are circuit electrodes and the second electrodes 25 are bump electrodes.
  • the circuit connection portion 27 includes a cured body of the circuit connection adhesive film 10A.
  • the circuit connection portion 27 may be made of a cured body of the circuit connection adhesive film 10A.
  • the circuit connection portion 27 is positioned, for example, on the first circuit member 23 side in the direction in which the first circuit member 23 and the second circuit member 26 face each other (hereinafter, “opposing direction”), and A first cured body region 28 made of a cured body derived from the first adhesive layer of and located on the second circuit member 26 side in the opposite direction and composed of a cured body derived from the second adhesive layer
  • the second cured body region 29 and the conductive particles 4 interposed between at least the first electrode 22 and the second electrode 25 to electrically connect the first electrode 22 and the second electrode 25 to each other have.
  • the circuit connection portion 27 may not have two distinct cured regions, a first cured region 28 and a second cured region 29.
  • a cured body derived from the adhesive layer and a cured body derived from the second adhesive layer may be mixed to form one cured body region.
  • FIG. 8 is a schematic cross-sectional view showing one embodiment of a method for manufacturing a circuit connection structure.
  • 8A and 8B are schematic cross-sectional views showing each step.
  • the first circuit board 21 and the first circuit member 23 including the first electrodes 22 formed on the main surface 21a of the first circuit board 21, and the second circuit board 24 and a second circuit member 26 having a second electrode 25 formed on the main surface 24a of the second circuit board 24 are prepared.
  • the first circuit member 23 and the second circuit member 26 are arranged so that the first electrode 22 and the second electrode 25 face each other, and the first circuit member 23 and the second circuit member 26, the adhesive film 10A for circuit connection is arranged.
  • the circuit connecting adhesive film 10A is placed on the first circuit member 23 so that the first adhesive layer 1 faces the main surface 21a of the first circuit board 21. Laminate on top.
  • the circuit-connecting adhesive film 10A was laminated so that the first electrodes 22 on the first circuit board 21 and the second electrodes 25 on the second circuit board 24 faced each other.
  • a second circuit member 26 is placed on the first circuit member 23 .
  • the conductive particles 4 are fixed in the first adhesive layer 1.
  • the first adhesive layer 1 hardly flows during thermocompression bonding and the conductive particles are efficiently captured between the facing electrodes, the first electrode 22 and the second electrode facing each other 25 is reduced.
  • the thickness of the first adhesive layer is 5.0 ⁇ m or less, and the ratio of the thickness of the first adhesive layer to the average particle size of the conductive particles is 0.50 or more. It is possible to suppress the increase in the connection resistance between the opposing circuits by reducing the amount of resin between them.
  • the heating temperature for thermocompression bonding can be set as appropriate, and may be, for example, 50 to 190°C.
  • the pressure is not particularly limited as long as it does not damage the adherend.
  • the area conversion pressure at the bump electrode may be 0.1 to 50 MPa, and 0.1 to 40 MPa.
  • the area-converted pressure at the bump electrode may be 10 to 100 MPa.
  • the following materials were used as the (B1) component, (B2) component, (b2) component, (C1) component, (C2) component, (D) component, (E) component, and ( F) Used as a component.
  • Thermoplastic resin D-1 Phenotote FX-293 (phenoxy resin, manufactured by Nippon Steel Chemical & Materials Co., Ltd.)
  • Thermoplastic resin D-2 Phenotote YP-50S (phenoxy resin, manufactured by Nippon Steel Chemical & Materials Co., Ltd.)
  • Thermoplastic resin D-3 Phenotote ZX-1356-2 (phenoxy resin, manufactured by Nippon Steel Chemical & Materials Co., Ltd.)
  • Coupling agent E-1 SH-6040 (3-glycidoxypropyltrimethoxysilane, manufactured by Dow Corning Toray Co., Ltd.)
  • F Component: Filler Filler F-1: Aerosil R805 (silica fine particles, manufactured by Evonik Industries AG) Filler F-2: ADMAFINE SE2050 (silica fine particles, manufactured by Admatechs Co., Ltd.)
  • the concave portion has a truncated cone shape with an opening area that expands toward the surface of the base (the center of the bottom and the center of the opening are the same when viewed from the top of the opening), and the diameter of the opening is 4.3 ⁇ m ⁇ and the diameter of the bottom is 4. 0 ⁇ m ⁇ , depth: 4.0 ⁇ m.
  • the plurality of recesses were regularly formed in a three-sided arrangement at intervals of 8.0 ⁇ m (center-to-center distance between the bottoms) so that the density of the conductive particles was 18,000 per 1 mm 2 (18,000/mm 2 ). .
  • conductive particles A-1 (average particle size: 3.2 ⁇ m) are obtained by Ni-plating the surface of the plastic core and displacing the outermost surface with Pd. ) was prepared and placed on the surface of the base on which the recesses were formed. Then, the surface of the substrate on which the recesses are formed was rubbed with a slightly adhesive roller to remove excess conductive particles, which were placed only in the recesses.
  • the average particle diameter of the conductive particles A-1 is obtained by cutting the first adhesive layer prepared through the steps (b) and (c) described later into 10 cm ⁇ 10 cm, and on the surface on which the conductive particles are arranged. It is a value measured by SEM observation of 300 conductive particles after Pt sputtering.
  • the (B1) component, (B2) component, (C1) component, (C2) component, (D) component, and (E) component shown in Table 1 are was mixed with an organic solvent (2-butanone) at a compounding amount (unit: parts by mass, solid content) shown in , to obtain a varnish-like first adhesive composition.
  • the first adhesive composition was applied to a PET film having a thickness of 38 ⁇ m that had been subjected to silicone release treatment, and dried with hot air at 60° C. for 3 minutes to form a composition layer having a thickness of 2.0 ⁇ m on the PET film. was made.
  • Step (b2) transfer of conductive particles
  • a UV curing furnace UVC-2534/1MNLC3-XJ01, manufactured by Ushio Inc.
  • the integrated light amount is 1700 mJ. /cm 2 (wavelength: 365 nm) to activate component (B2) and polymerize component (B1).
  • the photocurable components ((B1) component and (B2) component) in the composition layer were cured to form the first adhesive layer 1A.
  • the components (C1), (C2), (D), (E), and (F) shown in Table 2 are shown in Table 2. It was mixed with an organic solvent (2-butanone) in a blending amount (unit: parts by mass, solid content) to obtain a varnish-like second adhesive composition.
  • the second adhesive composition is applied to a PET film having a thickness of 50 ⁇ m that has been subjected to a silicone release treatment, and dried with hot air at 60° C. for 3 minutes to form a second adhesive layer 2A on the PET film. bottom.
  • the first adhesive layer 1A produced in the step (c) and the second adhesive layer 2A produced in the step (d1) were heated at 50°C. They were laminated while applying heat. As a result, an adhesive film for circuit connection having a two-layer structure was obtained.
  • the components (C1), (C2), (D), (E) and (F) shown in Table 3 are combined as shown in Table 3.
  • a varnish-like third adhesive composition was obtained by mixing with an organic solvent (2-butanone) in an amount (unit: parts by mass, solid content). Then, the third adhesive composition is applied to a PET film having a thickness of 50 ⁇ m that has been subjected to a silicone release treatment, and dried with hot air at 60° C. for 3 minutes to form a third adhesive layer 3A on the PET film. bottom.
  • Step (e2) Lamination of third adhesive layer Exposed by peeling off the PET film on the first adhesive layer 1A side of the two-layer circuit connection adhesive film produced in step (d2)
  • the first adhesive layer 1A and the third adhesive layer 3A prepared in the step (e1) were laminated while applying a temperature of 50°C.
  • an adhesive film for circuit connection having a three-layer structure of Example 1 was obtained.
  • the thicknesses of the first adhesive layer, the second adhesive layer, and the third adhesive layer were measured.
  • the adhesive film for circuit connection was sandwiched between two sheets of glass (thickness: about 1 mm), and 100 g of bisphenol A type epoxy resin (trade name: JER811, manufactured by Mitsubishi Chemical Corporation) and a curing agent (trade name: Epomount curing agent, manufactured by Refinetech Co., Ltd.) 10 g of the resin composition is cast, the cross section is polished using a polishing machine, and a scanning electron microscope (SEM, trade name: SE-8020, Hitachi, Ltd.) is used. Hitech Science) was used to measure the thickness of the first adhesive layer, the second adhesive layer, and the third adhesive layer.
  • the first adhesive layer, second adhesive layer, and third adhesive layer were 2.0 ⁇ m, 12.0 ⁇ m, and 1.0 ⁇ m, respectively.
  • Example 2 to 6 and Comparative Examples 1 and 2 Varnish-like varnish was prepared in the same manner as in Example 1, except that in step (b1), the type and/or amount of the material to be blended and in step (c), the integrated amount of light was changed as shown in Table 4.
  • a first adhesive composition was prepared to produce first adhesive layers 1B-1H.
  • a second adhesive layer 2A and a third adhesive layer 3A were laminated on the first adhesive layers 1B to 1H, respectively, and Examples 2 to 6 and Comparative Example
  • An adhesive film for circuit connection having a three-layer configuration of 1 and 2 was produced.
  • the thickness of each adhesive layer and the monodispersity of the conductive particles were determined in the same manner as in Example 1. Table 5 shows the results.
  • a wiring pattern (pattern Width: 19 ⁇ m, space between electrodes: 5 ⁇ m) was prepared.
  • an IC chip in which bump electrodes are arranged in two rows in a zigzag pattern (outer shape: 0.9 mm ⁇ 20.3 mm, thickness: 0.3 mm, size of bump electrodes: 70 ⁇ m ⁇ 12 ⁇ m, bump electrodes space: 12 ⁇ m, bump electrode thickness: 9 ⁇ m).
  • circuit-connecting adhesive films of Examples 1-6 and Comparative Examples 1 and 2 were produced.
  • the circuit-connecting adhesive film was placed on the first circuit member such that the third adhesive layer of the circuit-connecting adhesive film and the first circuit member were in contact with each other.
  • a thermocompression bonding device (BS-17U, manufactured by Ohashi Seisakusho Co., Ltd.) consisting of a stage consisting of a ceramic heater and a tool (8 mm ⁇ 50 mm), under the conditions of 70 ° C. and 0.98 MPa (10 kgf / cm 2 ).
  • the circuit-connecting adhesive film was adhered to the first circuit member by applying heat and pressure for 2 seconds, and the release film on the opposite side of the circuit-connecting adhesive film to the first circuit member was peeled off. Next, after aligning the bump electrodes of the first circuit member and the circuit electrodes of the second circuit member, the measured maximum temperature of the adhesive film for circuit connection was 170° C., and the area conversion pressure at the bump electrodes was 30 MPa.
  • the second adhesive layer of the circuit connection adhesive film is attached to the second circuit member by heating and pressing for 5 seconds under the conditions of Examples 1 to 6 and Comparative Examples 1 and 2.
  • the circuit connection structure made the body.
  • the trapping rate of conductive particles between the bump electrodes and the circuit electrodes was evaluated.
  • the capture rate of the conductive particles means the ratio of the conductive particle density on the bump electrode to the conductive particle density in the adhesive film, and was calculated from the following formula.
  • the average number of conductive particles on the bump electrode was obtained by observing the mounted circuit member from the polyimide substrate using a differential interference microscope and measuring the number of conductive particles captured per bump through the metal electrode. asked.
  • Capture rate of conductive particles (%) (average number of conductive particles on bump electrode/(bump electrode area x density of conductive particles in adhesive film)) x 100
  • connection resistance was evaluated.
  • the connection resistance was evaluated by the four-terminal measurement method immediately after the circuit connection structure was produced and after the high-temperature and high-humidity test, and the average value of the connection resistance values measured at 14 points was used for evaluation.
  • the high-temperature and high-humidity test was performed by treating the circuit connection structure for 500 hours in a high-temperature and high-humidity test chamber at a temperature of 85° C. and a humidity of 85% RH.
  • a multimeter (MLR21, manufactured by Kusumoto Kasei Co., Ltd.) was used to measure the connection resistance.
  • connection resistance value was less than 0.5 ⁇
  • connection resistance value was 0.5 ⁇ or more and less than 1.0 ⁇
  • a case where the resistance value was 1.0 ⁇ or more was evaluated as "B” judgment.
  • the circuit-connecting adhesive films of Examples 1 to 6 were lower in the mounting pressure than the circuit-connecting adhesive films of Comparative Examples 1 and 2. It was excellent in both respects of connection resistance. From these results, the circuit connection adhesive film of the present disclosure improves the capture rate of conductive particles between the opposing electrodes of the circuit connection structure even when mounted at a low pressure, and the circuit connection structure It was confirmed that it is possible to reduce the connection resistance of
  • SYMBOLS 1 First adhesive layer, 2... Second adhesive layer, 3... Adhesive component, 4... Conductive particles, 5... Third adhesive layer, 6... Substrate, 7... Recess, 9... Composition Layers 10A, 10B... Adhesive film for circuit connection 21... First circuit board 22... First electrode (circuit electrode) 23... First circuit member 24... Second circuit board 25... Second electrode (bump electrode) 26 Second circuit member 27 Circuit connection part 100 Circuit connection structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

回路接続用接着剤フィルムが開示される。当該回路接続用接着剤フィルムは、導電粒子、光硬化性樹脂成分の硬化物、及び第1の熱硬化性樹脂成分を含有する第1の接着剤層と、第1の接着剤層上に設けられた、第2の熱硬化性樹脂成分を含有する第2の接着剤層とを備える。光硬化性樹脂成分は、ラジカル重合性化合物及び光ラジカル重合開始剤を含む。光ラジカル重合開始剤は、オキシムエステル構造を有する化合物を含む。

Description

回路接続用接着剤フィルム、並びに回路接続構造体及びその製造方法
 本開示は、回路接続用接着剤フィルム、並びに回路接続構造体及びその製造方法に関する。
 従来、テレビ、PCモニタ、携帯電話、スマートホン等の各種表示手段として、液晶表示パネル、有機ELパネル等が用いられている。このような表示装置においては、ファインピッチ化、軽量薄型化等の観点から、駆動用ICを直接表示パネルのガラス基板上に実装するいわゆるCOG(chip on glass)実装が採用されている。
 COG実装方式が採用された液晶表示パネルにおいては、例えば、透明電極(ITO(酸化インジウムスズ)等)を複数有する透明基板(ガラス基板等)上に、液晶駆動用IC等の半導体素子が接続される。半導体素子の電極端子と透明電極との接続のための接着材料として、接着剤中に導電粒子が分散された異方導電性を有する回路接続用接着剤フィルムが使用されている。例えば、半導体素子として液晶駆動用ICを実装する場合、液晶駆動用ICは、その実装面に透明電極に対応した複数の電極端子を有しており、異方導電性を有する回路接続用接着剤フィルムを介して液晶駆動用ICを透明基板上に熱圧着することによって、電極端子と透明電極とが接続されて、回路接続構造体を得ることができる。
 近年、曲面を有するディスプレイ(フレキシブルディスプレイ)が提案されている。このようなフレキシブルディスプレイでは、基板としてガラス基板に替えて可撓性を有するプラスチック基板(ポリイミド基板等)が用いられるため、駆動用IC等の各種電子部品もプラスチック基板に実装されることとなる。そのような実装の方法として、異方導電性を有する回路接続用接着剤フィルムを用いるCOP(chip on plastic)実装が検討されている(例えば、特許文献1参照)。
特開2016-054288号公報
 ところで、表示パネルには、最表層にチタン層を有する回路電極を有する基板が用いられているが、最表層にチタン層を有する回路電極は、その表面に酸化被膜を有しており、回路接続用接着剤フィルムの樹脂流動性が高くなるほど、回路間の接続抵抗が低くなり易い傾向にある。しかしながら、樹脂流動性が高いということは、同時に導電粒子も流動し易いことを意味し、対向する回路電極間に捕捉される導電粒子数が減少し、回路接続構造体の接続抵抗が上昇して接続不良が発生するおそれがある。
 一方で、例えば、回路接続用接着剤フィルムの製造工程又は回路接続の前に、回路接続用接着剤フィルムの接着剤成分を熱又は光によって硬化させて、導電粒子の流動性を低下させることが検討されている。しかし、この場合、接着剤成分中の樹脂排除性も低下してしまうことから、回路接続構造体の接続抵抗が上昇する場合がある。
 樹脂排除性は、高圧で実装することによって原理的に許容することができる。しかしながら、近年、有機ELパネルはフレキシブルディスプレイ化が進められており、プラスチック基板(ポリイミド基板等)の下面には、通常、感圧樹脂等の粘着剤層とPET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)等のフィルムとが配置されている。これらのフレキシブルディスプレイ化に伴う基板の低弾性化は、ドライバIC実装時に回路電極に応力が蓄積して最表層のチタン層にひび割れが発生し、回路が断線するという不具合が生じるおそれがある。そのため、COP実装においては、低圧(例えば、バンプ電極での面積換算圧力0.1~50MPa)での実装が望まれている。
 そこで、本開示は、低圧で実装した場合であっても、回路接続構造体の対向する電極間における導電粒子の捕捉率を向上させ、かつ回路接続構造体の接続抵抗を低減させることが可能な回路接続用接着剤フィルムを提供することを主な目的とする。
 本開示の一側面は、回路接続用接着剤フィルムに関する。当該回路接続用接着剤フィルムは、導電粒子、光硬化性樹脂成分の硬化物、及び第1の熱硬化性樹脂成分を含有する第1の接着剤層と、第1の接着剤層上に設けられた、第2の熱硬化性樹脂成分を含有する第2の接着剤層とを備える。光硬化性樹脂成分は、ラジカル重合性化合物及び光ラジカル重合開始剤を含む。光ラジカル重合開始剤は、オキシムエステル構造を有する化合物を含む。光ラジカル重合開始剤がオキシムエステル構造を有する化合物を含むことにより、回路接続構造体の対向する電極間における導電粒子の捕捉率を向上させ、かつ回路接続構造体の接続抵抗を低減させることが可能となる。
 第1の接着剤層の厚さは、5.0μm以下であってよく、導電粒子の平均粒径に対する第1の接着剤層の厚さの比は、0.50以上であってよい。このような条件を満たすことにより、対向回路間の樹脂分が少なくなり、対向回路間の接続抵抗が上昇することを抑制することができる。そのため、また、本開示の回路接続用接着剤フィルムは、低圧(例えば、バンプ電極での面積換算圧力0.1~50MPa)で実装することができ、COP実装に好適に用いることができる。
 回路接続用接着剤フィルム中の導電粒子の単分散率は、90%以上であってよい。本明細書において、単分散率とは、導電粒子が他の導電粒子と離間した状態(単分散状態)で存在している比率を意味する。導電粒子の単分散率が90%以上であると、隣接回路間のショート不良が起こり難くなり、接続信頼性が充分に高い回路接続構造体が得られ易い傾向にある。
 第1の熱硬化性樹脂成分及び第2の熱硬化性樹脂成分は、カチオン重合性化合物及び熱カチオン重合開始剤を含んでいてもよい。このとき、第1の熱硬化性樹脂成分及び第2の熱硬化性樹脂成分はカチオン硬化性を有し、光硬化性樹脂成分はラジカル硬化性を有している。本発明者らの検討によると、第1の熱硬化性樹脂成分及び第2の熱硬化性樹脂成分と光硬化性樹脂成分とがこのような組み合わせであると、例えば、全ての硬化性樹脂成分がカチオン硬化性を有している場合に比べて、接続抵抗の点でより優れる傾向にある。このような効果が奏する理由として、本開示の発明者らは、以下のように推察している。すなわち、全ての硬化性樹脂成分がカチオン硬化性成分を有していると、例えば、第1の接着剤層において、光硬化性樹脂成分の硬化物を形成する際にカチオン性活性種が残留してしまう場合があり、このカチオン性活性種によって第2の接着剤層における第2の熱硬化性樹脂成分の硬化反応が進行して樹脂の排除性が低下してしまうためであると考えている。そのため、光硬化性樹脂成分がラジカル硬化性を有していると、光硬化性樹脂成分の硬化物を形成する際にカチオン性活性種が発生しないことから、第2の接着剤層における第2の熱硬化性樹脂成分の硬化反応の進行を抑制でき、樹脂の排除性の低下を抑えて接続抵抗が低減すると期待される。
 カチオン重合性化合物は、オキセタン化合物及び脂環式エポキシ化合物からなる群より選ばれる少なくとも1種であってよい。熱カチオン重合開始剤は、構成元素としてホウ素を含むアニオンを有する塩化合物であってよい。
 回路接続用接着剤フィルムは、第1の接着剤層の第2の接着剤層とは反対側に設けられた、第3の熱硬化性樹脂成分を含有する第3の接着剤層をさらに備えていてもよい。第3の熱硬化性樹脂成分は、カチオン重合性化合物及び熱カチオン重合開始剤を含んでいてもよい。
 本開示の他の一側面は、回路接続構造体の製造方法に関する。当該回路接続構造体の製造方法は、第1の電極を有する第1の回路部材と、第2の電極を有する第2の回路部材との間に、上記回路接続用接着剤フィルムを介在させ、第1の回路部材及び第2の回路部材を熱圧着して、第1の電極及び第2の電極を互いに電気的に接続する工程を備える。
 本開示の他の一側面は、回路接続構造体に関する。当該回路接続構造体は、第1の電極を有する第1の回路部材と、第2の電極を有する第2の回路部材と、第1の回路部材及び第2の回路部材の間に配置され、第1の電極及び第2の電極を互いに電気的に接続する回路接続部とを備える。回路接続部は、上記回路接続用接着剤フィルムの硬化体を含む。
 本開示は、[1]~[8]に記載の回路接続用接着剤フィルム、[9]に記載の回路接続構造体の製造方法、及び[10]に記載の回路接続構造体を提供する。
[1]導電粒子、光硬化性樹脂成分の硬化物、及び第1の熱硬化性樹脂成分を含有する第1の接着剤層と、前記第1の接着剤層上に設けられた、第2の熱硬化性樹脂成分を含有する第2の接着剤層とを備え、前記光硬化性樹脂成分がラジカル重合性化合物及び光ラジカル重合開始剤を含み、前記光ラジカル重合開始剤がオキシムエステル構造を有する化合物を含む、回路接続用接着剤フィルム。
[2]前記第1の接着剤層の厚さが5.0μm以下であり、前記導電粒子の平均粒径に対する前記第1の接着剤層の厚さの比が0.50以上である、[1]に記載の回路接続用接着剤フィルム。
[3]前記回路接続用接着剤フィルム中の前記導電粒子の単分散率が90%以上である、[1]又は[2]に記載の回路接続用接着剤フィルム。
[4]前記第1の熱硬化性樹脂成分及び前記第2の熱硬化性樹脂成分がカチオン重合性化合物及び熱カチオン重合開始剤を含む、[1]~[3]のいずれかに記載の回路接続用接着剤フィルム。
[5]前記カチオン重合性化合物が、オキセタン化合物及び脂環式エポキシ化合物からなる群より選ばれる少なくとも1種である、[4]に記載の回路接続用接着剤フィルム。
[6]前記熱カチオン重合開始剤が、構成元素としてホウ素を含むアニオンを有する塩化合物である、[4]又は[5]に記載の回路接続用接着剤フィルム。
[7]前記第1の接着剤層の前記第2の接着剤層とは反対側に設けられた、第3の熱硬化性樹脂成分を含有する第3の接着剤層をさらに備える、[1]~[6]のいずれかに記載の回路接続用接着剤フィルム。
[8]前記第3の熱硬化性樹脂成分がカチオン重合性化合物及び熱カチオン重合開始剤を含む、[7]に記載の回路接続用接着剤フィルム。
[9]第1の電極を有する第1の回路部材と、第2の電極を有する第2の回路部材との間に、[1]~[8]のいずれかに記載の回路接続用接着剤フィルムを介在させ、前記第1の回路部材及び前記第2の回路部材を熱圧着して、前記第1の電極及び前記第2の電極を互いに電気的に接続する工程を備える、回路接続構造体の製造方法。
[10]第1の電極を有する第1の回路部材と、第2の電極を有する第2の回路部材と、前記第1の回路部材及び前記第2の回路部材の間に配置され、前記第1の電極及び前記第2の電極を互いに電気的に接続する回路接続部とを備え、前記回路接続部が、[1]~[8]のいずれかに記載の回路接続用接着剤フィルムの硬化体を含む、回路接続構造体。
 本開示によれば、低圧で実装した場合であっても、回路接続構造体の対向する電極間における導電粒子の捕捉率を向上させ、かつ回路接続構造体の接続抵抗を低減させることが可能な回路接続用接着剤フィルムが開示される。このような回路接続用接着剤フィルムは、COP実装に好適に用いることができる。また、本開示によれば、このような回路接続用接着剤フィルムを用いた回路接続構造体及びその製造方法が開示される。
図1は、回路接続用接着剤フィルムの一実施形態を示す模式断面図である。 図2は、回路接続用接着剤フィルムの他の実施形態を示す模式断面図である。 図3は、図1の回路接続用接着剤フィルムの製造に用いられる基体の模式断面図である。 図4は、図3の基体の凹部に導電粒子が配置された状態を示す図である。 図5(a)及び図5(b)は、図1の回路接続用接着剤フィルムの製造方法の一工程を示す模式断面図である。 図6(a)及び図6(b)は、図1の回路接続用接着剤フィルムの製造方法の一工程を示す模式断面図である。 図7は、回路接続構造体の一実施形態を示す模式断面図である。 図8(a)及び図8(b)は、回路接続構造体の製造方法の一実施形態を示す模式断面図である。
 以下、図面を参照しながら本開示の実施形態について詳細に説明する。以下の説明では、同一又は相当部分には同一符号を付し、重複する説明は省略する。なお、本開示は以下の実施形態に限定されるものではない。
 本明細書中、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。また、個別に記載した上限値及び下限値は任意に組み合わせ可能である。数値範囲「A~B」という表記においては、両端の数値A及びBがそれぞれ下限値及び上限値として数値範囲に含まれる。本明細書において、例えば、「10以上」という記載は、「10」と「10を超える数値」とを意味し、数値が異なる場合もこれに準ずる。また、例えば、「10以下」という記載は、「10」と「10未満の数値」とを意味し、数値が異なる場合もこれに準ずる。また、本明細書において、「(メタ)アクリレート」とは、アクリレート、及び、それに対応するメタクリレートの少なくとも一方を意味する。「(メタ)アクリロイル」、「(メタ)アクリル酸」等の他の類似の表現においても同様である。また、「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。また、以下で例示する材料は、特に断らない限り、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
[回路接続用接着剤フィルム]
 図1は、回路接続用接着剤フィルムの一実施形態を示す模式断面図であり、回路接続用接着剤フィルムの縦断面を模式的に示す図である。図1に示される回路接続用接着剤フィルム10Aは、複数の導電粒子4、並びに、光硬化性樹脂成分の硬化物及び(第1の)熱硬化性樹脂成分を含む接着剤成分3を含有する第1の接着剤層1と、第1の接着剤層1上に設けられた、(第2の)熱硬化性樹脂成分を含有する第2の接着剤層2とを備える。本明細書において、「縦断面」とは、主面(例えば、回路接続用接着剤フィルム10A)に対して直交する断面(厚さ方向の断面)を意味する。また、第1の熱硬化性樹脂成分及び第2の熱硬化性樹脂成分は、それぞれ第1の接着剤層及び第2の接着剤層に含有される熱硬化性樹脂成分を意味する。回路接続用接着剤フィルム10Aは、複数の導電粒子4、並びに、光硬化性樹脂成分の硬化物及び(第1の)熱硬化性樹脂成分を含む接着剤成分3を含有する第1の領域と、第1の領域に隣接して設けられた、(第2の)熱硬化性樹脂成分を含有する第2の領域とを備えているということもできる。
 複数の導電粒子4の少なくとも一部は、回路接続用接着剤フィルム10Aの縦断面において、隣り合う導電粒子同士が互いに離隔した状態で横方向に並んでいてもよい。換言すると、回路接続用接着剤フィルム10Aは、その縦断面において、隣りに位置する導電粒子と離隔した状態の導電粒子4が横方向に列をなしている中央領域10aと、導電粒子4が存在しない表面側領域10b,10cとによって構成されていてもよい。ここで、「横方向」とは、回路接続用接着剤フィルムの主面と平行な方向(図1における左右方向)を意味する。なお、図1では、導電粒子4の一部が第1の接着剤層1の表面から露出(例えば、第2の接着剤層2側に突出)しているが、導電粒子4が第1の接着剤層1の表面から露出しないように、導電粒子4の全体が第1の接着剤層1中に埋め込まれていてもよい。
 回路接続用接着剤フィルム10Aは、導電粒子4が第1の接着剤層1中に分散されていてもよい。そのため、回路接続用接着剤フィルム10Aは、異方導電性を有する回路接続用接着剤フィルム(異方導電性接着剤フィルム)であり得る。回路接続用接着剤フィルム10Aは、第1の電極を有する第1の回路部材と、第2の電極を有する第2の回路部材との間に介在させ、第1の回路部材及び第2の回路部材を熱圧着して、第1の電極及び第2の電極を互いに電気的に接続するために用いられるものであってよい。なお、「異方導電性」とは、加圧方向には導通し、非加圧方向では絶縁性を保つことを意味する。
<第1の接着剤層>
 第1の接着剤層1は、導電粒子4(以下、「(A)成分」という場合がある。)、光硬化性樹脂成分(以下、「(B)成分」という場合がある。)の硬化物、及び熱硬化性樹脂成分(以下、「(C)成分」という場合がある。)を含有する。(B)成分の硬化物は、(B)成分を完全に硬化させた硬化物であってもよく、(B)成分の一部を硬化させた硬化物であってもよい。(C)成分は、接続時に流動可能な成分であり、例えば、未硬化の硬化性成分(例えば、樹脂成分)である。第1の接着剤層1を構成する導電粒子4以外の成分は、例えば、導電性を有しない成分(例えば、絶縁性樹脂成分)である。
(A)成分:導電粒子
 (A)成分は、導電性を有する粒子であれば特に制限されず、Au、Ag、Pd、Ni、Cu、はんだ等の金属で構成された金属粒子、導電性カーボンで構成された導電性カーボン粒子などであってよい。(A)成分は、非導電性のガラス、セラミック、プラスチック(ポリスチレン等)などを含む核と、上記金属又は上記導電性カーボンを含み、核を被覆する被覆層とを備える被覆導電粒子であってもよい。(A)成分は、各種導電粒子の1種を単独で用いてもよく、複数を組み合わせて用いてもよい。これらの中でも、(A)成分は、好ましくは、プラスチックを含む核と、金属若しくは導電性カーボンを含み、核を被覆する被覆層とを備える被覆導電粒子、又は、熱溶融性の金属で形成された金属粒子である。
 (A)成分が被覆導電粒子である場合、熱硬化性樹脂成分の硬化物を加熱又は加圧により変形させることが容易となるため、電極同士を電気的に接続する際に、電極と(A)成分との接触面積を増加させ、電極間の導電性をより向上させることができる。
 (A)成分が熱溶融性の金属で形成された金属粒子である場合、電極間の接続がより強固となる傾向にある。この傾向は、(A)成分としてはんだ粒子を用いる場合に顕著である。
 はんだ粒子は、接続強度と低融点との両立の観点から、スズ、スズ合金、インジウム、及びインジウム合金からなる群より選択される少なくとも1種を含んでいてもよい。また、はんだ粒子は、高温高湿試験時及び熱衝撃試験時により高い信頼性が得られる観点から、In-Bi合金、In-Sn合金、In-Sn-Ag合金、Sn-Au合金、Sn-Bi合金、Sn-Bi-Ag合金、Sn-Ag-Cu合金及びSn-Cu合金からなる群より選択される少なくとも一種を含んでよい。
 (A)成分は、上記金属粒子、上記導電性カーボン粒子、又は上記被覆導電粒子と、樹脂等の絶縁材料を含み、該粒子の表面を被覆する絶縁層とを備える絶縁被覆導電粒子であってもよい。(A)成分が絶縁被覆導電粒子であると、(A)成分の含有量が多い場合であっても、粒子の表面に絶縁層を備えているため、(A)成分同士の接触による短絡の発生を抑制でき、また、隣り合う電極回路間の絶縁性を向上させることもできる。
 (A)成分の最大粒径は、電極の最小間隔(隣り合う電極間の最短距離)よりも小さいことが必要である。(A)成分の最大粒径は、分散性及び導電性に優れる観点から、1.0μm以上、2.0μm以上、又は2.5μm以上であってよい。(A)成分の最大粒径は、分散性及び導電性に優れる観点から、30.0μm以下、25.0μm以下、20.0μm以下、15.0μm以下、10.0μm以下、又は5.0μm以下であってよい。本明細書では、第1の接着剤層中の任意の(A)成分300個(pcs)について、走査型電子顕微鏡(SEM)を用いた観察により粒径を測定し、得られた最も大きい値を(A)成分の最大粒径とする。なお、(A)成分が突起を有する場合等、(A)成分が球形ではない場合、(A)成分の粒径は、SEMの画像における導電粒子に外接する円の直径とする。
 (A)成分の平均粒径は、分散性及び導電性に優れる観点から、1.0μm以上、2.0μm以上、2.5μm以上、又は3.0μm以上であってよい。(A)成分の平均粒径は、分散性及び導電性に優れる観点から、20.0μm以下、10.0μm以下、7.0μm以下、又は5.0μm以下であってよい。本明細書では、第1の接着剤層中の任意の(A)成分300個(pcs)について、走査型電子顕微鏡(SEM)を用いた観察により粒径を測定し、得られた粒径の平均値を平均粒径とする。
 第1の接着剤層1において、(A)成分は均一に分散されていることが好ましい。回路接続用接着剤フィルム10Aにおける(A)成分の粒子密度は、安定した接続抵抗が得られる観点から、100個/mm以上、1000個/mm以上、3000個/mm以上、5000個/mm以上、7000個/mm以上、10000個/mm以上、又は12000個/mm以上であってよい。回路接続用接着剤フィルム10Aにおける(A)成分の粒子密度は、隣り合う電極間の絶縁性を向上する観点から、100000個/mm以下、70000個/mm以下、50000個/mm以下、30000個/mm以下、又は20000個/mm以下であってよい。
 回路接続用接着剤フィルム10A中の(A)成分の単分散率は、90%以上であってよい。(A)成分の単分散率がこのような範囲にあると、隣接回路間のショート不良が起こり難くなり、接続信頼性が充分に高い回路接続構造体が得られ易い傾向にある。(A)成分の単分散率は、92%以上、94%以上、96%以上、97%以上、98%以上、又は99%以上であってよい。単分散率の上限値は、100%であり得る。単分散率は、例えば、金属顕微鏡を用いて、200倍の倍率で回路接続用接着剤フィルム10Aを第1の接着剤層側から観察し、回路接続用接着剤フィルム10A中の(A)成分数を実測し、下記式にしたがって求めることができる。
 単分散率(%)=(2500μm中の単分散状態(他の導電粒子と離間した状態)の導電粒子数/2500μm中の導電粒子数)×100
 (A)成分の含有量は、導電性をより向上させることができる観点から、第1の接着剤層の全質量を基準として、1質量%以上、5質量%以上、又は10質量%以上であってよい。(A)成分の含有量は、短絡を抑制し易い観点から、第1の接着剤層の全質量を基準として、60質量%以下、50質量%以下、又は40質量%以下であってよい。(A)成分の含有量が上記範囲にあると、本開示の効果が顕著に奏される傾向にある。なお、組成物又は組成物層中の(A)成分の含有量(組成物又は組成物層の全質量基準)は上記範囲と同様であってよい。
(B)成分:光硬化性樹脂成分
 (B)成分は、光照射によって硬化する樹脂成分であれば特に制限されないが、(C)成分がカチオン硬化性を有する樹脂成分である場合、(B)成分は、接続抵抗がより優れる観点から、ラジカル硬化性を有する樹脂成分であってよい。(B)成分は、例えば、ラジカル重合性化合物(以下、「(B1)成分」という場合がある。)及び光ラジカル重合開始剤(以下、「(B2)成分」という場合がある。)を含んでいてもよい。(B)成分は、(B1)成分及び(B2)成分からなる成分であり得る。
・(B1)成分:ラジカル重合性化合物
 (B1)成分は、光(例えば、紫外光)の照射によって(B2)成分から発生したラジカルによって重合する化合物である。(B1)成分は、モノマー、又は、1種若しくは2種以上のモノマーが重合してなるポリマー(又はオリゴマー)のいずれであってもよい。(B1)成分は、1種を単独で用いてもよく、複数を組み合わせて用いてもよい。
 (B1)成分は、ラジカルによって反応するラジカル重合性基を有する化合物である。ラジカル重合性基としては、例えば、例えば、(メタ)アクリロイル基、ビニル基、アリル基、スチリル基、アルケニル基、アルケニレン基、マレイミド基等が挙げられる。(B1)成分が有するラジカル重合性基の数(官能基数)は、重合後、所望の溶融粘度が得られ易く、接続抵抗の低減効果がより向上し、接続信頼性により優れる観点から、2以上であってよく、重合時の硬化収縮を抑制する観点から、10以下であってよい。また、架橋密度と硬化収縮とのバランスをとるために、ラジカル重合性基の数が上記範囲内にある化合物に加えて、ラジカル重合性基の数が上記範囲外にある化合物を使用してもよい。
 (B1)成分は、導電粒子の流動を抑制する観点から、例えば、多官能(2官能以上)の(メタ)アクリレートを含んでいてもよい。多官能(2官能以上)の(メタ)アクリレートは、2官能の(メタ)アクリレートであってよく、2官能の(メタ)アクリレートは、2官能の芳香族(メタ)アクリレートであってよい。
 多官能の(メタ)アクリレートとしては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、エトキシ化ポリプロピレングリコールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、2-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリシクロデカンジメタノール(メタ)アクリレート、エトキシ化2-メチル-1,3-プロパンジオールジ(メタ)アクリレート等の脂肪族(メタ)アクリレート;エトキシ化ビスフェノールA型ジ(メタ)アクリレート、プロポキシ化ビスフェノールA型ジ(メタ)アクリレート、エトキシ化プロポキシ化ビスフェノールA型ジ(メタ)アクリレート、エトキシ化ビスフェノールF型ジ(メタ)アクリレート、プロポキシ化ビスフェノールF型ジ(メタ)アクリレート、エトキシ化プロポキシ化ビスフェノールF型ジ(メタ)アクリレート、エトキシ化フルオレン型ジ(メタ)アクリレート、プロポキシ化フルオレン型ジ(メタ)アクリレート、エトキシ化プロポキシ化フルオレン型ジ(メタ)アクリレート等の芳香族(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、エトキシ化プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化ペンタエリスリトールトリ(メタ)アクリレート、プロポキシ化ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化プロポキシ化ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、プロポキシ化ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化プロポキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の脂肪族(メタ)アクリレート;ビスフェノール型エポキシ(メタ)アクリレート、フェノールノボラック型エポキシ(メタ)アクリレート、クレゾールノボラック型エポキシ(メタ)アクリレート等の芳香族エポキシ(メタ)アクリレートなどが挙げられる。
 多官能(2官能以上)の(メタ)アクリレートの含有量は、接続抵抗の低減効果と粒子流動の抑制とを両立させる観点から、(B1)成分の全質量を基準として、例えば、40~100質量%、50~100質量%、又は60~100質量%であってよい。
 (B1)成分は、多官能(2官能以上)の(メタ)アクリレートに加えて、単官能の(メタ)アクリレートをさらに含んでいてもよい。単官能の(メタ)アクリレートとしては、例えば、(メタ)アクリル酸;メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、イソアミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチルヘプチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、エトキシポリエチレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、エトキシポリプロピレングリコール(メタ)アクリレート、モノ(2-(メタ)アクリロイロキシエチル)スクシネート等の脂肪族(メタ)アクリレート;ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、o-ビフェニル(メタ)アクリレート、1-ナフチル(メタ)アクリレート、2-ナフチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、p-クミルフェノキシエチル(メタ)アクリレート、o-フェニルフェノキシエチル(メタ)アクリレート、1-ナフトキシエチル(メタ)アクリレート、2-ナフトキシエチル(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、フェノキシポリプロピレングリコール(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-(o-フェニルフェノキシ)プロピル(メタ)アクリレート、2-ヒドロキシ-3-(1-ナフトキシ)プロピル(メタ)アクリレート、2-ヒドロキシ-3-(2-ナフトキシ)プロピル(メタ)アクリレート等の芳香族(メタ)アクリレート;グリシジル(メタ)アクリレート等のエポキシ基を有する(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート等の脂環式エポキシ基を有する(メタ)アクリレート、(3-エチルオキセタン-3-イル)メチル(メタ)アクリレート等のオキセタニル基を有する(メタ)アクリレートなどが挙げられる。
 単官能の(メタ)アクリレートの含有量は、(B1)成分の全質量を基準として、例えば、0~60質量%、0~50質量%、又は0~40質量%であってよい。
 (B)成分の硬化物は、例えば、ラジカル以外によって反応する重合性基を有していてもよい。ラジカル以外によって反応する重合性基は、例えば、カチオンによって反応するカチオン重合性基であってよい。カチオン重合性基としては、例えば、グリシジル基等のエポキシ基、エポキシシクロヘキシルメチル基等の脂環式エポキシ基、エチルオキセタニルメチル基等のオキセタニル基等が挙げられる。ラジカル以外によって反応する重合性基を有する(B)成分の硬化物は、例えば、エポキシ基を有する(メタ)アクリレート、脂環式エポキシ基を有する(メタ)アクリレート、オキセタニル基を有する(メタ)アクリレート等のラジカル以外によって反応する重合性基を有する(メタ)アクリレートを(B)成分として使用することによって導入することができる。(B1)成分の全質量に対するラジカル以外によって反応する重合性基を有する(メタ)アクリレートの質量比(ラジカル以外によって反応する重合性基を有する(メタ)アクリレートの質量(仕込み量)/(B1)成分の全質量(仕込み量))は、信頼性向上の観点から、例えば、0~0.7、0~0.5、又は0~0.3であってよい。
 (B1)成分は、多官能(2官能以上)及び単官能の(メタ)アクリレートに加えて、その他のラジカル重合性化合物を含んでいてもよい。その他のラジカル重合性化合物としては、例えば、マレイミド化合物、ビニルエーテル化合物、アリル化合物、スチレン誘導体、アクリルアミド誘導体、ナジイミド誘導体等が挙げられる。その他のラジカル重合性化合物の含有量は、(B1)成分の全質量を基準として、例えば、0~40質量%であってよい。
・(B2)成分:光ラジカル重合開始剤
 (B2)成分は、150~750nmの範囲内の波長を含む光、好ましくは254~405nmの範囲内の波長を含む光、さらに好ましくは365nmの波長を含む光(例えば紫外光)の照射によってラジカルを発生するラジカルを発生する化合物である。
 (B2)成分は、オキシムエステル構造を有する化合物を含む。オキシムエステル構造を有する化合物としては、例えば、下記一般式(I)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 式(I)中、R、R、及びRは、それぞれ独立して、水素原子、炭素数1~20のアルキル基、又は芳香族系炭化水素基を含む有機基を示す。
 オキシムエステル構造を有する化合物の具体例としては、1-フェニル-1,2-ブタンジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-o-ベンゾイルオキシム、1,3-ジフェニルプロパントリオン-2-(o-エトキシカルボニル)オキシム、1-フェニル-3-エトキシプロパントリオン-2-(o-ベンゾイル)オキシム、1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル-,2-(o-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(o-アセチルオキシム)等が挙げられる。オキシムエステル構造を有する化合物は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 オキシムエステル構造を有する化合物の市販品としては、Irgacure-OXE01、Irgacure-OXE02、Irgacure-OXE03、Irgacure-OXE04(商品名、いずれもBASF社製)、アデカアークルズN-1919T、アデカアークルズNCI-831E、アデカアークルズNCI-930、アデカアークルズNCI-730(商品名、いずれも株式会社ADEKA製)等が挙げられる。
 (B2)成分は、オキシムエステル構造を有する化合物に加えて、他の構造を有する化合物を含んでいてもよく、含んでいなくてもよい。他の構造を有する化合物としては、例えば、ビスイミダゾール構造、アクリジン構造、α-アミノアルキルフェノン構造、アミノベンゾフェノン構造、N-フェニルグリシン構造、アシルホスフィンオキサイド構造、ベンジルジメチルケタール構造、α-ヒドロキシアルキルフェノン構造等の構造を有する化合物などが挙げられる。(B2)成分は、他の構造を有する化合物を含んでいないことが好ましい。
 (B2)成分の含有量は、導電粒子の流動抑制の観点から、(B1)成分の100質量部に対して、例えば、0.1~10質量部、0.3~7質量部、又は0.5~5質量部であってよい。
 (B)成分の硬化物の含有量は、導電粒子の流動を抑制する観点から、第1の接着剤層の全質量を基準として、1質量%以上、5質量%以上、又は10質量%以上であってよい。(B)成分の硬化物の含有量は、低圧実装において低抵抗を発現させる観点から、第1の接着剤層の全質量を基準として、50質量%以下、40質量%以下、又は30質量%以下であってよい。(B)成分の硬化物の含有量が上記範囲にあると、本開示の効果が顕著に奏される傾向にある。なお、組成物又は組成物層中の(B)成分の含有量(組成物又は組成物層の全質量基準)は上記範囲と同様であってよい。
(C)成分:熱硬化性樹脂成分
 (C)成分は、熱によって硬化する樹脂成分であれば特に制限されないが、(B)成分がラジカル硬化性を有する樹脂成分である場合、(C)成分は、接続抵抗の点により優れる観点から、カチオン硬化性を有する樹脂成分であってよい。(C)成分は、例えば、カチオン重合性化合物(以下、「(C1)成分」という場合がある。)及び熱カチオン重合開始剤(以下、「(C2)成分」という場合がある。)を含んでいてもよい。(C)成分は、(C1)成分及び(C2)成分からなる成分であり得る。なお、第1の熱硬化性樹脂成分、第2の熱硬化性樹脂成分、及び第3の熱硬化性樹脂成分は、それぞれ第1の接着剤層、第2の接着剤層、及び第3の接着剤層に含有される熱硬化性樹脂成分を意味し、第1の熱硬化性樹脂成分、第2の熱硬化性樹脂成分、及び第3の熱硬化性樹脂成分に含まれる成分(例えば、(C1)成分、(C2)成分等)及び含有量は、互いに同一であってもよく、異なっていてもよい。
・(C1)成分:カチオン重合性化合物
 (C1)成分は、熱によって(C2)成分と反応することによって架橋する化合物である。なお、(C1)成分は、ラジカルによって反応するラジカル重合性基を有しない化合物を意味し、(C1)成分は、(B1)成分に包含されない。(C1)成分としては、例えば、オキセタン化合物、エポキシ化合物等の環状エーテル基を有する化合物が挙げられる。(C1)成分は、1種を単独で用いてもよく、複数を組み合わせて用いてもよい。(C1)成分は、接続抵抗の低減効果がさらに向上し、接続信頼性により優れる観点から、例えば、オキセタン化合物及び脂環式エポキシ化合物からなる群より選ばれる少なくとも1種を含んでいていてもよい。(C1)成分は、所望の溶融粘度が得られ易い観点から、オキセタン化合物の少なくとも1種及び脂環式エポキシ化合物の少なくとも1種の両方を含むことが好ましい。
 (C1)成分としてのオキセタン化合物は、オキセタニル基を有し、かつラジカル重合性基を有しない化合物であれば特に制限なく使用することができる。オキセタン化合物の市販品としては、例えば、ETERNACOLL OXBP(商品名、4,4’-ビス[(3-エチル-3-オキセタニル)メトキシメチル]ビフェニル、宇部興産株式会社製)、OXSQ、OXT-121、OXT-221、OXT-101、OXT-212(商品名、東亜合成株式会社製)等が挙げられる。これらは、1種の化合物を単独で用いてもよく、複数を組み合わせて用いてもよい。
 (C1)成分としての脂環式エポキシ化合物は、脂環式エポキシ基(例えば、エポキシシクロヘキシル基)を有し、かつラジカル重合性基を有しない化合物であれば特に制限なく使用することができる。脂環式エポキシ化合物の市販品としては、例えば、EHPE3150、EHPE3150CE、セロキサイド8010、セロキサイド2021P、セロキサイド2081(商品名、株式会社ダイセル株式会社製)等が挙げられる。これらは、1種の化合物を単独で用いてもよく、複数を組み合わせて用いてもよい。
・(C2)成分:熱カチオン重合開始剤
 (C2)成分は、加熱により酸等を発生して重合を開始する熱重合開始剤である。(C2)成分はカチオンとアニオンとから構成される塩化合物であってよい。(C2)成分は、例えば、BF 、BR (Rは、2以上のフッ素原子又は2以上のトリフルオロメチル基で置換されたフェニル基を示す。)、PF 、SbF 、AsF 等のアニオンを有する、スルホニウム塩、ホスホニウム塩、アンモニウム塩(第四級アンモニウム塩)、ジアゾニウム塩、ヨードニウム塩、アニリニウム塩、ピリジウム塩等のオニウム塩などが挙げられる。これらは、1種を単独で用いてもよく、複数を組み合わせて用いてもよい。
 (C2)成分は、保存安定性の観点から、例えば、構成元素としてホウ素を含むアニオン、すなわち、BF 又はBR (Rは、2以上のフッ素原子又は2以上のトリフルオロメチル基で置換されたフェニル基を示す。)を有する塩化合物であってよい。構成元素としてホウ素を含むアニオンは、BR であってよく、より具体的には、テトラキス(ペンタフルオロフェニル)ボレートであってもよい。
 (C2)成分としてのオニウム塩は、カチオン硬化に対する硬化阻害を起こし得る物質に対する耐性を有することから、例えば、第四級アンモニウム塩又はアニリニウム塩であってよい。アニリニウム塩化合物としては、例えば、N,N-ジメチルアニリニウム塩、N,N-ジエチルアニリニウム塩等のN,N-ジアルキルアニリニウム塩などが挙げられる。
 (C2)成分は、構成元素としてホウ素を含むアニオンを有する第四級アンモニウム塩又はアニリニウム塩であってよい。このような塩化合物の市販品としては、例えば、CXC-1821(商品名、King Industries社製)等が挙げられる。
 (C2)成分の含有量は、第1の接着剤層の形成性及び硬化性を担保する観点から、(C1)成分の100質量部に対して、例えば、0.1~20質量部、1~18質量部、3~15質量部、又は5~12質量部であってよい。
 (C)成分の含有量は、第1の接着剤層の硬化性を担保する観点から、第1の接着剤層の全質量を基準として、5質量%以上、10質量%以上、15質量%以上、又は20質量%以上であってよい。(C)成分の含有量は、第1の接着剤層の形成性を担保する観点から、第1の接着剤層の全質量を基準として、70質量%以下、60質量%以下、50質量%以下、又は40質量%以下であってよい。(C)成分の含有量が上記範囲にあると、本開示の効果が顕著に奏される傾向にある。なお、組成物又は組成物層中の(C)成分の含有量(組成物又は組成物層の全質量基準)は上記範囲と同様であってよい。
その他の成分
 第1の接着剤層1は、(A)成分、(B)成分の硬化物、及び(C)成分以外にその他の成分をさらに含有していてもよい。その他の成分としては、例えば、熱可塑性樹脂(以下、「(D)成分」という場合がある。)、カップリング剤(以下、「(E)成分」という場合がある。)、充填材(以下、「(F)成分」という場合がある。)等が挙げられる。
 (D)成分としては、例えば、フェノキシ樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリウレタン樹脂、ポリエステルウレタン樹脂、アクリルゴム、エポキシ樹脂(25℃で固形)等が挙げられる。これらは、1種を単独で用いてもよく、複数を組み合わせて用いてもよい。(A)成分、(B)成分、及び(C)成分を含有する組成物が(D)成分をさらに含有することによって、当該組成物から組成物層(さらには第1の接着剤層1)を容易に形成することができる。これらの中でも、(D)成分は、例えば、フェノキシ樹脂であってよい。(D)成分の含有量は、第1の接着剤層の全質量を基準として、1質量%以上、5質量%以上、又は10質量%以上であってよく、70質量%以下、50質量%以下、又は30質量%以下であってよい。なお、組成物又は組成物層中の(D)成分の含有量(組成物又は組成物層の全質量基準)は上記範囲と同様であってよい。
 (E)成分としては、例えば、(メタ)アクリロイル基、メルカプト基、アミノ基、イミダゾール基、エポキシ基等の有機官能基を有するシランカップリング剤、テトラアルコキシシラン等のシラン化合物、テトラアルコキシチタネート誘導体、ポリジアルキルチタネート誘導体などが挙げられる。これらは、1種を単独で用いてもよく、複数を組み合わせて用いてもよい。第1の接着剤層1が(E)成分を含有することによって、接着性をさらに向上させることができる。(E)成分は、例えば、シランカップリング剤であってよい。(E)成分の含有量は、第1の接着剤層の全質量を基準として、0.1~10質量%であってよい。なお、組成物又は組成物層中の(E)成分の含有量(組成物又は組成物層の全質量基準)は上記範囲と同様であってよい。
 (F)成分としては、例えば、非導電性のフィラー(例えば、非導電粒子)が挙げられる。(F)成分は、無機フィラー及び有機フィラーのいずれであってもよい。無機フィラーとしては、例えば、シリカ微粒子、アルミナ微粒子、シリカ-アルミナ微粒子、チタニア微粒子、ジルコニア微粒子等の金属酸化物微粒子;金属窒化物微粒子などの無機微粒子が挙げられる。有機フィラーとしては、例えば、シリコーン微粒子、メタアクリレート・ブタジエン・スチレン微粒子、アクリル・シリコーン微粒子、ポリアミド微粒子、ポリイミド微粒子等の有機微粒子が挙げられる。これらは、1種を単独で用いてもよく、複数を組み合わせて用いてもよい。(F)成分は、例えば、シリカ微粒子であってよい。(F)成分の含有量は、第1の接着剤層の全質量を基準として、0.1~10質量%であってよい。なお、組成物又は組成物層中の(F)成分の含有量(組成物又は組成物層の全質量基準)は上記範囲と同様であってよい。
その他の添加剤
 第1の接着剤層1は、軟化剤、促進剤、劣化防止剤、着色剤、難燃化剤、チキソトロピック剤等のその他の添加剤をさらに含有していてもよい。その他の添加剤の含有量は、第1の接着剤層の全質量を基準として、例えば、0.1~10質量%であってよい。なお、組成物又は組成物層中のその他の添加剤の含有量(組成物又は組成物層の全質量基準)は上記範囲と同様であってよい。
 第1の接着剤層1の厚さd1は、例えば、30.0μm以下であってよく、20.0μm以下、15.0μm以下、10.0μm以下、8.0μm以下、5.0μm以下、4.5μm以下、4.0μm以下、3.5μm以下、3.0μm以下、又は2.5μm以下であってもよい。第1の接着剤層1の厚さd1が30.0μm以下であることによって、対向回路間の樹脂分が少なくなり、対向回路間の接続抵抗が上昇することを抑制することができる。このような傾向は、第1の接着剤層1の厚さd1が5.0μm以下であるときにより顕著である。第1の接着剤層1の厚さd1は、例えば、0.1μm以上又は0.7μm以上であってよい。なお、図1に示されるように、導電粒子4の一部が第1の接着剤層1の表面から露出(例えば、第2の接着剤層2側に突出)している場合、第1の接着剤層1における第2の接着剤層2側とは反対側の面1aから、隣り合う導電粒子4,4の離間部分に位置する第1の接着剤層1と第2の接着剤層2との境界Sまでの距離(図1においてd1で示す距離)が第1の接着剤層1の厚さであり、導電粒子4の露出部分は第1の接着剤層1の厚さには含まれない。導電粒子4の露出部分の長さは、例えば、0.1μm以上であってよく、5.0μm以下であってよい。
 第1の接着剤層1の厚さd1は、例えば、実施例に記載の方法で求めることができる。具体的には、回路接続用接着剤フィルムを2枚のガラス(厚さ:1mm程度)で挟み込み、ビスフェノールA型エポキシ樹脂(商品名:JER811、三菱ケミカル株式会社製)100gと、硬化剤(商品名:エポマウント硬化剤、リファインテック株式会社製)10gとからなる樹脂組成物で注型後に、研磨機を用いて断面研磨を行い、走査型電子顕微鏡(SEM、商品名:SU-8020、株式会社日立ハイテクサイエンス製)を用いることによって測定することができる。このような操作を複数回行い、その平均値を第1の接着剤層1の厚さd1としてもよい。
 導電粒子4の平均粒径に対する第1の接着剤層1の厚さの比(第1の接着剤層1の厚さ/導電粒子4の平均粒径)は、0.50以上であってよく、例えば、0.55以上又は0.60以上であってもよい。当該比が0.50以上であることによって、対向回路間の樹脂分が少なくなり、対向回路間の接続抵抗が上昇することを抑制することができる。当該比は、例えば、2.00以下、1.50以下、1.20以下、1.00以下、又は0.80以下であってよい。
<第2の接着剤層>
 第2の接着剤層2は、例えば、導電性を有しない成分(絶縁性樹脂成分)で構成されている絶縁性接着剤層であってよい。第2の接着剤層2は、少なくとも(C)成分を含有する。
 第2の接着剤層2における(C)成分(すなわち、第2の熱硬化性樹脂成分)で使用される(C1)成分及び(C2)成分は、第1の接着剤層1における(C)成分(すなわち、第1の熱硬化性樹脂成分)で使用される(C1)成分及び(C2)成分と同様であることから、ここでは詳細な説明は省略する。第2の熱硬化性樹脂成分は、第1の熱硬化性樹脂成分と同一であっても、異なっていてもよい。
 (C)成分の含有量は、信頼性を維持する観点から、第2の接着剤層の全質量を基準として、5質量%以上、10質量%以上、15質量%以上、又は20質量%以上であってよい。(C)成分の含有量は、供給形態の一態様であるリールにおける樹脂染み出し不具合を防止する観点から、第2の接着剤層の全質量を基準として、80質量%以下、70質量%以下、60質量%以下、又は50質量%以下であってよい。
 第2の接着剤層2は、第1の接着剤層1におけるその他の成分及びその他の添加剤をさらに含有していてもよい。その他の成分及びその他の添加剤の好ましい態様は、第1の接着剤層1の好ましい態様と同様である。
 (D)成分の含有量は、第2の接着剤層の全質量を基準として、1質量%以上、3質量%以上、又は5質量%以上であってよく、60質量%以下、40質量%以下、又は20質量%以下であってよい。
 (E)成分の含有量は、第2の接着剤層の全質量を基準として、0.1~10質量%であってよい。
 (F)成分の含有量は、第2の接着剤層の全質量を基準として、1質量%以上、10質量%以上、又は30質量%以上であってよく、90質量%以下、70質量%以下、又は50質量%以下であってよい。
 その他の添加剤の含有量は、第2の接着剤層の全質量を基準として、例えば、0.1~10質量%であってよい。
 第2の接着剤層2の厚さd2は、接着する回路部材の電極の高さ等に応じて適宜設定してよい。第2の接着剤層2の厚さd2は、電極間のスペースを充分に充填して電極を封止することができ、より良好な接続信頼性が得られる観点から、5.0μm以上又は7.0μm以上であってよく、30.0μm以下、20.0μm以下、15.0μm以下、又は13.0μm以下であってよい。なお、導電粒子4の一部が第1の接着剤層1の表面から露出(例えば、第2の接着剤層2側に突出)している場合、第2の接着剤層2における第1の接着剤層1側とは反対側の面2aから、隣り合う導電粒子4,4の離間部分に位置する第1の接着剤層1と第2の接着剤層2との境界Sまでの距離(図1においてd2で示す距離)が第2の接着剤層2の厚さである。
 第2の接着剤層2の厚さd2は、例えば、上記の第1の接着剤層1の厚さd1の測定方法と同様にして求めることができる。
 回路接続用接着剤フィルム10Aの厚さ(回路接続用接着剤フィルム10Aを構成するすべての層の厚さの合計、図1においては、第1の接着剤層1の厚さd1及び第2の接着剤層2の厚さd2の合計)は、例えば、5.0μm以上又は8.0μm以上であってよく、60.0μm以下、40.0μm以下、30.0μm以下、又は20.0μm以下であってよい。
 回路接続用接着剤フィルム10Aは、回路の接続に用いられる接着剤フィルムである。回路接続用接着剤フィルム10Aは、異方導電性を有していてもよいし、異方導電性を有していなくてもよい。すなわち、回路接続用接着剤フィルムは、異方導電性の接着剤フィルムであっても、非異方導電性(例えば、等方導電性)の接着剤フィルムであってもよい。回路接続用接着剤フィルム10Aは、第1の電極を有する第1の回路部材(の当該第1の電極が設けられている面)と、第2の電極を有する第2の回路部材(の当該第2の電極が設けられている面)との間に介在させ、第1の回路部材及び第2の回路部材を熱圧着して(第1の回路部材、回路接続用接着剤フィルム10A、及び第2の回路部材を含む積層体を積層体の厚さ方向に押圧した状態で加熱して)、第1の電極及び第2の電極を(導電粒子(あるいは導電粒子の溶融固化物)を介して)互いに電気的に接続するために用いられるものであってよい。
 回路接続用接着剤フィルム10Aによれば、熱硬化性樹脂成分によって接続時の樹脂の排除性を確保しながら、光硬化性樹脂成分の硬化物によって接続時の導電粒子の流動性を抑え、接続される電極間における導電粒子の捕捉率を向上させることができる。そのため、回路接続用接着剤フィルム10Aによれば、回路接続構造体の接続抵抗を低減させることが可能となる。
 以上、本実施形態の回路接続用接着剤フィルムについて説明したが、本開示は上記実施形態に限定されない。
 図2は、回路接続用接着剤フィルムの他の実施形態を示す模式断面図であり、回路接続用接着剤フィルムの縦断面を模式的に示す図である。回路接続用接着剤フィルムは、例えば、第1の接着剤層及び第2の接着剤層の二層から構成されるものであってよく、第1の接着剤層及び第2の接着剤層の二層を含む三層以上から構成されるものであってもよい。回路接続用接着剤フィルムは、図2に示される回路接続用接着剤フィルム10Bのように、例えば、第1の接着剤層の第2の接着剤層とは反対側に設けられた、(第3の)熱硬化性樹脂成分を含有する第3の接着剤層5をさらに備えていてもよい。回路接続用接着剤フィルム10Bは、第1の領域の第2の領域とは反対側に隣接して設けられた、(第3の)熱硬化性樹脂成分を含有する第3の領域をさらに備えているということもできる。
 第3の接着剤層5は、少なくとも(C)成分を含有する。第3の接着剤層における(C)成分(すなわち、第3の熱硬化性樹脂成分)で使用される(C1)成分及び(C2)成分は、第1の接着剤層1における(C)成分(すなわち、第1の熱硬化性樹脂成分)で使用される(C1)成分及び(C2)成分と同様であることから、ここでは詳細な説明は省略する。第3の熱硬化性樹脂成分は、第1の熱硬化性樹脂成分と同一であっても、異なっていてもよい。第3の熱硬化性樹脂成分は、第2の熱硬化性樹脂成分と同一であっても、異なっていてもよい。
 (C)成分の含有量は、良好な転写性及び耐剥離性を付与する観点から、第3の接着剤層の全質量を基準として、5質量%以上、10質量%以上、15質量%以上、又は20質量%以上であってよい。(C)成分の含有量は、良好なハーフカット性及び耐ブロッキング性(リールの樹脂染み出し抑制)を付与する観点から、第3の接着剤層の全質量を基準として、70質量%以下、60質量%以下、50質量%以下、又は40質量%以下であってよい。
 第3の接着剤層5は、第1の接着剤層1におけるその他の成分及びその他の添加剤をさらに含有していてもよい。その他の成分及びその他の添加剤の好ましい態様は、第1の接着剤層1の好ましい態様と同様である。
 (D)成分の含有量は、第3の接着剤層の全質量を基準として、10質量%以上、20質量%以上、又は30質量%以上であってよく、80質量%以下、70質量%以下、又は60質量%以下であってよい。
 (E)成分の含有量は、第3の接着剤層の全質量を基準として、0.1~10質量%であってよい。
 (F)成分の含有量は、第3の接着剤層の全質量を基準として、1質量%以上、3質量%以上、又は5質量%以上であってよく、50質量%以下、40質量%以下、又は30質量%以下であってよい。
 その他の添加剤の含有量は、第3の接着剤層の全質量を基準として、例えば、0.1~10質量%であってよい。
 第3の接着剤層5の厚さd3は、接着する回路部材の電極の高さ等に応じて適宜設定してよい。第3の接着剤層5の厚さd3は、電極間のスペースを充分に充填して電極を封止することができ、より良好な接続信頼性が得られる観点から、0.2μm以上又は0.5μm以上であってよく、5.0μm以下又は2.5μm以下であってよい。第3の接着剤層5の厚さd3は、第3の接着剤層5における第1の接着剤層1側とは反対側の面5aから、第1の接着剤層1における第2の接着剤層2側とは反対側の面1aまでの距離(図2においてd3で示す距離)である。
 第3の接着剤層5の厚さd3は、例えば、上記の第1の接着剤層1の厚さd1の測定方法と同様にして求めることができる。
 回路接続用接着剤フィルムが第1の接着剤層及び第2の接着剤層以外の層(例えば、第3の接着剤層)を有する場合、回路接続用接着剤フィルムの厚さ(回路接続用接着剤フィルムを構成するすべての層の厚さの合計)は、上記回路接続用接着剤フィルム10Aの厚さが取り得る範囲と同じであってよい。
[回路接続用接着剤フィルムの製造方法]
 一実施形態の回路接続用接着剤フィルムの製造方法は、所定の第1の接着剤層と、第1の接着剤層上に設けられた、所定の第2の接着剤層とを備える回路接続用接着剤フィルムが得られるのであれば特に制限されないが、単分散率の高い回路接続用接着剤フィルムが得られ易い観点から、例えば、表面に複数の凹部を有し、当該複数の凹部のそれぞれに(A)成分が配置された基体を用意する工程(準備工程)と、基体の表面(凹部が形成されている面)上に、(B)成分、及び第1の熱硬化性樹脂成分を含有する組成物層を設けることにより、組成物層に(A)成分を転写する工程(転写工程)と、組成物層に光を照射することにより、複数の(A)成分、(B)成分の硬化物、及び(C)成分(第1の熱硬化性樹脂成分)を含有する第1の接着剤層を形成する工程(光照射工程)と、第1の接着剤層の一方面上に、第2の熱硬化性樹脂成分を含有する第2の接着剤層を設ける工程(積層工程)とを備える方法であってよい。
 以下、回路接続用接着剤フィルム10Aの製造方法を例に挙げて、図3~図6を参照しながら、回路接続用接着剤フィルムの製造方法について説明する。
 図3は、図1の回路接続用接着剤フィルムの製造に用いられる基体の模式断面図である。図4は、図3の基体の凹部に導電粒子が配置された状態を示す図である。図5は、図1の回路接続用接着剤フィルムの製造方法の一工程を示す模式断面図であり、転写工程の一例を模式的に示す断面図である。図6は、図1の回路接続用接着剤フィルムの製造方法の一工程を示す模式断面図であり、光照射工程の一例を模式的に示す断面図である。
(準備工程)
 準備工程では、まず、表面に複数の凹部7を有する基体6を用意する(図3参照)。基体6は、複数の凹部7を有している。複数の凹部7は、例えば、所定のパターン(例えば、回路部材の電極パターンに対応するパターン)で規則的に配置されている。凹部7が所定のパターンで配置されている場合、導電粒子4が所定のパターンで組成物層に転写されることとなる。そのため、導電粒子4が所定のパターンで規則的に配置された回路接続用接着剤フィルム10Aも得ることができる。
 基体6の凹部7は、例えば、図3に示されるように、凹部7の底部7a側から基体6の表面6a側に向けて開口面積が拡大するテーパ状に形成されている。すなわち、凹部7の底部7aの幅(図3における幅a)は、凹部7の開口の幅(図3における幅b)よりも狭い。凹部7のサイズ(幅a、幅b、容積、テーパ角度、深さ等)は、目的とする導電粒子のサイズ、回路接続用接着剤フィルムにおける導電粒子の位置に応じて設定することができる。例えば、凹部7の開口の幅(幅b)は、導電粒子4の最大粒径よりも大きくてよく、導電粒子の最大粒径の2倍未満であってよい。
 凹部7の開口の形状は、円形、楕円形、三角形、四角形、多角形等であってよい。
 基体6の凹部7は、リソグラフィー、機械加工等の公知の方法によって形成することができる。これらの方法では、凹部のサイズ及び形状を自在に設計可能である。
 基体6を構成する材料としては、例えば、シリコン、各種セラミックス、ガラス、金属(ステンレススチール等)等の無機材料、各種樹脂等の有機材料などが挙げられる。後述のとおり、本実施形態の回路接続用接着剤フィルムの製造方法では、導電粒子4を基体6の凹部7内で形成することにより基体6の凹部7に導電粒子4を配置することもできるが、この場合、基体6は、導電粒子4の形成に使用する微粒子(例えば、はんだ微粒子)の溶融温度で変質しない耐熱性を有する材料からなっていてもよい。
 次に、基体6の複数の凹部7のそれぞれに導電粒子4(上記(A)成分)を配置(収容)する(図4参照)。
 導電粒子4の配置方法は特に限定されない。配置方法は、乾式、湿式のいずれであってもよい。例えば、導電粒子4を基体6の表面6a上に配置し、スキージ又は微粘着ローラーを用いて、基体6の表面6aを擦ることで、余分な導電粒子4を除去しつつ、凹部7に導電粒子4を配置することができる。凹部7の開口の幅bが凹部7の深さより大きい場合、凹部7の開口から導電粒子が飛び出す場合がある。スキージを用いることにより、凹部7の開口から飛び出ている導電粒子を除去することができる。余分な導電粒子を除去する方法としては、例えば、圧縮空気を吹き付ける方法、不織布又は繊維の束で基体6の表面6aを擦る方法等も挙げられる。これらの方法は、スキージと比べて物理的な力が弱いため、導電粒子として、変形し易い粒子(例えば、はんだ粒子)を扱う上で好ましい。また、これらの方法では、凹部7の開口から飛び出ている導電粒子を凹部7に残すこともできる。
 導電粒子4がはんだ粒子である場合、本実施形態の回路接続用接着剤フィルムの製造方法では、基体6の凹部7内で導電粒子4(はんだ粒子)を形成することにより、導電粒子4を凹部7に配置してもよい。具体的には、導電粒子4を形成するための微粒子(はんだ微粒子)を凹部7内に収容する。次いで、凹部7に収容された微粒子を溶融・融合させることで、凹部7内で導電粒子4を形成することができる。凹部7内に収容された微粒子は、溶融することで合一化し、表面張力によって球状化するが、このとき、凹部7の底部との接触部では、溶融した金属が底部に追従した形状となる。そのため、例えば、凹部7の底部が平坦な形状である場合、導電粒子4は、表面の一部に平面部4aを有するものとなる。
 導電粒子4を凹部7に配置した後は、導電粒子4が凹部7に配置(収容)された状態で基体6を取り扱うことができる。例えば、基体6を導電粒子4が凹部7に配置(収容)された状態で運搬・保管等する場合、導電粒子4(特に、はんだ粒子等の柔らかい導電粒子)の変形を防止することができる。また、導電粒子4が凹部7に配置(収容)された状態では、導電粒子4の取り出しが容易であるため、導電粒子4を回収・表面処理等を行う際の変形も防止し易い傾向にある。
(転写工程)
 転写工程では、基体6の表面(凹部7が形成されている面)上に、光硬化性樹脂成分(上記(B)成分)及び第1の熱硬化性樹脂成分(上記(C)成分)を含有する組成物層9を設けることにより、組成物層9に導電粒子4を転写する(図5参照)。
 具体的には、まず、支持体11上に、(B)成分及び(C)成分を含有する組成物層9を形成して積層フィルム12を作製する。次いで、基体6の凹部7が形成されている面(基体6の表面6a)と、積層フィルム12の組成物層9側の面(組成物層9の支持体11とは反対側の面9a)とを対向させて、基体6と組成物層9とを近づける(図5(a)参照)。次に、積層フィルム12と基体6とを貼り合わせることで組成物層9を基体6の表面6a(凹部7が形成されている面)に接触させて、組成物層9に導電粒子4を転写する。これにより、組成物層9と、少なくとも一部が組成物層9中に埋め込まれた導電粒子4とを備える粒子転写層13が得られる(図5(b)参照)。この際、凹部7の底部が平坦である場合、導電粒子4が凹部7の底部の形状に対応して平面部4aを有することとなり、当該平面部4aが支持体11とは反対側を向いた状態で、組成物層9中に配置される。
 組成物層9は、(B)成分及び(C)成分、並びに必要に応じて添加されるその他の成分を、有機溶媒中で撹拌混合、混練等を行うことによって溶解又は分散させて調製される、ワニス組成物(ワニス状の第1の接着剤組成物)を用いて形成することができる。具体的には、例えば、支持体11(例えば、離型処理を施した基材)上に、ワニス組成物をナイフコーター、ロールコーター、アプリケーター、コンマコーター、ダイコーター等を用いて塗布する。次いで、加熱によって有機溶媒を揮発させることで、組成物層9を形成することができる。このとき、ワニス組成物の塗布量を調整することによって、最終的に得られる第1の接着剤層の厚さを調整することができる。
 ワニス組成物の調製において使用される有機溶媒は、各成分を均一に溶解又は分散し得る特性を有するものであれば特に制限されない。このような有機溶媒としては、例えば、トルエン、アセトン、メチルエチルケトン、メチルイソブチルケトン、酢酸エチル、酢酸プロピル、酢酸ブチル等が挙げられる。これらの有機溶媒は、1種単独で又は2種以上を組み合わせて使用することができる。ワニス組成物の調製の際の撹拌混合又は混練は、例えば、撹拌機、らいかい機、3本ロール、ボールミル、ビーズミル、ホモディスパー等を用いて行うことができる。
 支持体11は、有機溶媒を揮発させる際の加熱条件に耐え得る耐熱性を有するものであれば特に制限されない。支持体11はプラスチックフィルムであってもよいし、金属箔であってもよい。支持体11としては、例えば、延伸ポリプロピレン(OPP)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、ポリエチレンイソフタレート、ポリブチレンテレフタレート、ポリオレフィン、ポリアセテート、ポリカーボネート、ポリフェニレンサルファイド、ポリアミド、ポリイミド、セルロース、エチレン・酢酸ビニル共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン、合成ゴム系、液晶ポリマー等からなる基材(例えば、フィルム)などが挙げられる。
 支持体11へ塗布したワニス組成物から有機溶媒を揮発させる際の加熱条件は、使用する有機溶媒等に合わせて適宜設定することができる。加熱条件は、例えば、40~120℃で0.1~10分であってよい。
 積層フィルム12と基体6とを貼り合わせる方法としては、例えば、加熱プレス、ロールラミネート、真空ラミネート等の方法が挙げられる。ラミネートは、例えば、0~80℃の温度条件下で行うことができる。
 転写工程では、ワニス組成物を基体6に直接塗布することで組成物層9を形成してもよいが、積層フィルム12を用いることで、支持体11と組成物層9と導電粒子4が一体となった粒子転写層13が得られ易くなり、後述の光照射工程を簡便に実施できる傾向にある。
(光照射工程)
 光照射工程では、組成物層9(粒子転写層13)に光(活性光線)を照射することにより、組成物層9中の(B)成分を硬化させ、第1の接着剤層1を形成する(図6参照)。
 光の照射には、150~750nmの範囲内の波長を含む照射光(例えば、紫外光)を用いてよい。光の照射は、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノンランプ、メタルハライドランプ、LED光源等を使用して行うことができる。照射する光の積算光量は、適宜設定することができるが、例えば、500~3000mJ/cmであってよい。
 図6(a)では、矢印で示すように、支持体11とは反対側(組成物層9における導電粒子4が転写された側)から光を照射しているが、支持体11が光を透過する場合には、支持体11側から光を照射してもよい。また、図6(a)では、基体6と粒子転写層13とを分離した後に光の照射を行っているが、基体6の分離前に光の照射を行ってもよい。この場合、支持体11を剥離した後に光の照射を行ってもよい。
(積層工程)
 積層工程では、第1の接着剤層1の支持体11とは反対側(組成物層9における導電粒子4が転写された側)の面上に第2の接着剤層2を設ける。これにより、図1に示される回路接続用接着剤フィルム10Aを得ることができる。
 第2の接着剤層2は、第1の接着剤組成物に代えて、第2の熱硬化性樹脂成分(上記(C)成分)、並びに必要に応じて添加されるその他の成分を、有機溶媒中で撹拌混合、混練等を行うことによって溶解又は分散させて調製される、ワニス組成物(第2の接着剤組成物)を用いること以外は、組成物層9を基体6上に設ける方法と同様にして、第1の接着剤層1上に設けることができる。すなわち、第2の接着剤層2を支持体上に形成して得られる積層フィルムと第1の接着剤層1とを貼り合わせることで第1の接着剤層1上に第2の接着剤層2を設けてもよく、第2の接着剤組成物を第1の接着剤層1に直接塗布することで第1の接着剤層1上に第2の接着剤層2を設けてもよい。
 積層工程では、支持体11とは反対側の面上に第2の接着剤層2を設けることで、回路部材への回路接続用接着剤フィルムの貼り付け性の向上及び接続時の剥離抑制が期待できる。積層工程では、支持体11を剥離した後に当該支持体11が設けられていた側の面上に第2の接着剤層2を設けてもよい。この場合、積層工程は、光照射工程の前に行ってよく、転写工程の前に行ってもよい。
 以上、回路接続用接着剤フィルム10Aの製造方法を例に挙げて一実施形態の回路接続用接着剤フィルムの製造方法について説明したが、本開示は上記実施形態に限定されない。
 例えば、回路接続用接着剤フィルムの製造方法は、第1の接着剤層の第2の接着剤層とは反対側の面上に、第3の接着剤層を設けること(第2の積層工程)をさらに備えていてもよい。このような製造方法によれば、第3の接着剤層をさらに備える回路接続用接着剤フィルム(例えば、図2に示される回路接続用接着剤フィルム10B)を得ることができる。
 第3の接着剤層は、第2の接着剤組成物に代えて、第3の熱硬化性樹脂成分(上記(C)成分)、並びに必要に応じて添加されるその他の成分を、有機溶媒中で撹拌混合、混練等を行うことによって溶解又は分散させて調製される、ワニス組成物(第3の接着剤組成物)を用いること以外は、第2の接着剤層を設けるための上記積層工程(第1の積層工程)と同様にして、第1の接着剤層上に第3の接着剤層を設けることができる。第2の積層工程は、第1の積層工程の前に実施してもよい。
[回路接続構造体及びその製造方法]
 以下、回路接続材料として上記回路接続用接着剤フィルム10Aを用いる態様を例に挙げて、回路接続構造体及びその製造方法について説明する。
 図7は、回路接続構造体の一実施形態を示す模式断面図である。図7に示すように、回路接続構造体100は、第1の回路基板21及び第1の回路基板21の主面21a上に形成された第1の電極22を有する第1の回路部材23と、第2の回路基板24及び第2の回路基板24の主面24a上に形成された第2の電極25を有する第2の回路部材26と、回路接続用接着剤フィルム10Aの硬化体を含み、第1の回路部材23及び第2の回路部材26の間に配置され、第1の電極22と第2の電極25とを導電粒子4(あるいは導電粒子4の溶融固化物)を介して互いに電気的に接続し、第1の回路部材23と第2の回路部材26とを接着する回路接続部27とを備えている。
 第1の回路部材23及び第2の回路部材26は、互いに同一であっても異なっていてもよい。第1の回路部材23及び第2の回路部材26は、電極が形成されているガラス基板又はプラスチック基板、プリント配線板、セラミック配線板、フレキシブル配線板、ICチップ等であってよい。第1の回路基板21及び第2の回路基板24は、半導体、ガラス、セラミック等の無機物、ポリイミド、ポリカーボネート等の有機物、ガラス/エポキシ等の複合物などで形成されていてよい。これらの中でも、回路接続用接着剤フィルム10AがCOP実装に好適に用いることができることから、第1の回路部材23は、例えば、ポリイミド、ポリカーボネート、ポリエチレンテレフタレート、シクロオレフィンポリマー等の有機物からなるプラスチック基板であってよく、第2の回路基板24は、例えば、ICチップであってよい。
 第1の電極22及び第2の電極25は、金、銀、錫、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金、銅、アルミ、モリブデン、チタン等の金属、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)、インジウムガリウム亜鉛酸化物(IGZO)等の酸化物などを含む電極であってよい。第1の電極22及び第2の電極25は、これら金属、酸化物等の2種以上を積層してなる電極であってもよい。2種以上を積層してなる電極は、2層以上であってよく、3層以上であってよい。第1の回路部材23がプラスチック基板である場合、第1の電極22は、最表面にチタン層を有する電極であってよい。第1の電極22及び第2の電極25は回路電極であってよく、バンプ電極であってもよい。第1の電極22及び第2の電極25の少なくとも一方は、バンプ電極であってよい。図7で示される回路接続構造体は、第1の電極22が回路電極であり、第2の電極25がバンプ電極である態様である。
 回路接続部27は、回路接続用接着剤フィルム10Aの硬化体を含む。回路接続部27は、回路接続用接着剤フィルム10Aの硬化体からなっていてもよい。回路接続部27は、例えば、第1の回路部材23と第2の回路部材26とが互いに対向する方向(以下「対向方向」)における第1の回路部材23側に位置し、導電粒子4以外の第1の接着剤層に由来する硬化体からなる第1の硬化体領域28と、対向方向における第2の回路部材26側に位置し、第2の接着剤層に由来する硬化体からなる第2の硬化体領域29と、少なくとも第1の電極22及び第2の電極25の間に介在して第1の電極22及び第2の電極25を互いに電気的に接続する導電粒子4とを有している。回路接続部27は、図7に示されるように、第1の硬化体領域28と第2の硬化体領域29との二つの明確な硬化体領域を有していなくてもよく、第1の接着剤層に由来する硬化体と第2の接着剤層に由来する硬化体とが混在して一つの硬化体領域を有していてもよい。
 図8は、回路接続構造体の製造方法の一実施形態を示す模式断面図である。図8(a)及び図8(b)は、各工程を示す模式断面図である。図8に示すように、回路接続構造体100の製造方法は、第1の電極22を有する第1の回路部材23と、第2の電極25を有する第2の回路部材26との間に、回路接続用接着剤フィルム10Aを介在させ、第1の回路部材23及び第2の回路部材26を熱圧着して、第1の電極22及び第2の電極25を互いに電気的に接続する工程を備える。
 具体的には、まず、第1の回路基板21及び第1の回路基板21の主面21a上に形成された第1の電極22を備える第1の回路部材23と、第2の回路基板24及び第2の回路基板24の主面24a上に形成された第2の電極25を備える第2の回路部材26とを準備する。
 次に、第1の回路部材23及び第2の回路部材26を、第1の電極22及び第2の電極25が互いに対向するように配置し、第1の回路部材23と第2の回路部材26との間に回路接続用接着剤フィルム10Aを配置する。例えば、図8(a)に示すように、第1の接着剤層1側が第1の回路基板21の主面21aと対向するようにして回路接続用接着剤フィルム10Aを第1の回路部材23上にラミネートする。次に、第1の回路基板21上の第1の電極22と、第2の回路基板24上の第2の電極25とが互いに対向するように、回路接続用接着剤フィルム10Aがラミネートされた第1の回路部材23上に第2の回路部材26を配置する。
 そして、図8(b)に示すように、第1の回路部材23、回路接続用接着剤フィルム10A、及び第2の回路部材26を加熱しながら、第1の回路部材23と第2の回路部材26とを厚さ方向に加圧することで、第1の回路部材23と第2の回路部材26とを互いに熱圧着する。この際、図8(b)において矢印で示すように、第2の接着剤層2は、流動可能な未硬化の熱硬化性樹脂成分を有していることから、第2の電極25間同士の空隙を埋めるように流動するとともに、熱圧着の加熱によって硬化する。これにより、第1の電極22及び第2の電極25が導電粒子4を介して互いに電気的に接続され、また、第1の回路部材23及び第2の回路部材26が互いに接着されて、図2に示す回路接続構造体100を得ることができる。
 本実施形態の回路接続構造体100の製造方法では、光照射によって第1の接着剤層1の一部が硬化された層といえるため、導電粒子4が第1の接着剤層1中に固定されており、また、第1の接着剤層1が熱圧着時にほとんど流動せず、導電粒子が効率的に対向する電極間で捕捉されるため、対向する第1の電極22及び第2の電極25間の接続抵抗が低減される。また、第1の接着剤層の厚さが5.0μm以下であり、かつ導電粒子の平均粒径に対する第1の接着剤層の厚さの比が0.50以上であることにより、対向回路間の樹脂分が少なくなり、対向回路間の接続抵抗が上昇することを抑制することができる。
 熱圧着する場合の加熱温度は、適宜設定することができるが、例えば、50~190℃あってよい。加圧は、被着体に損傷を与えない範囲であれば特に制限されないが、COP実装の場合、例えば、バンプ電極での面積換算圧力0.1~50MPaであってよく、0.1~40MPaであってもよい。また、COG実装の場合は、例えば、バンプ電極での面積換算圧力10~100MPaであってよい。これらの加熱及び加圧の時間は、0.5~120秒間の範囲であってよい。
 以下、本開示について実施例を挙げてより具体的に説明する。ただし、本開示はこれら実施例に限定されるものではない。
 実施例及び比較例では、以下に示す材料を、(B1)成分、(B2)成分、(b2)成分、(C1)成分、(C2)成分、(D)成分、(E)成分、及び(F)成分として用いた。
(B)成分:光硬化性樹脂成分
・(B1)成分:ラジカル重合性化合物
 ラジカル重合性化合物B1-1:NKエステルA-BPEF(エトキシ化フルオレン型ジ(メタ)アクリレート(2官能)、新中村化学工業株式会社製)
 ラジカル重合性化合物B1-2:リポキシVR-90(ビスフェノールA型エポキシ(メタ)アクリレート(2官能)(ビニルエステル樹脂)、昭和電工株式会社製)
・(B2)成分:光ラジカル重合開始剤
 光ラジカル重合開始剤B2-1:Irgacure-OXE02(オキシムエステル構造を有する化合物、BASF社製)
 光ラジカル重合開始剤B2-2:Irgacure-OXE03(オキシムエステル構造を有する化合物、BASF社製)
・(b2)成分:光ラジカル重合開始剤
 光ラジカル重合開始剤b2-1:Omnirad TPO(アシルホスフィンオキサイド構造を有する化合物、IGM Resins社製)
 光ラジカル重合開始剤b2-2:Omnirad MBF(分子内水素引き抜き型、ベンゾイルギ酸メチル、IGM Resins社製)
(C)成分:熱硬化性樹脂成分
・(C1)成分:カチオン重合性化合物
 カチオン重合性化合物C1-1:ETERNACOLL OXBP(オキセタン化合物、宇部興産株式会社製)
 カチオン重合性化合物C1-2:OXSQ(オキセタン化合物、東亜合成株式会社製)
 カチオン重合性化合物C1-3:EHPE3150(脂環式エポキシ化合物、株式会社ダイセル株式会社製)
 カチオン重合性化合物C1-4:セロキサイド2021P(脂環式エポキシ化合物、株式会社ダイセル株式会社製)
 カチオン重合性化合物C1-5:jER1007(エポキシ化合物、三菱ケミカル株式会社製)
・(C2)成分:熱カチオン重合開始剤
 熱カチオン重合開始剤C2-1:CXC-1821(King Industries社製)
(D)成分:熱可塑性樹脂
 熱可塑性樹脂D-1:フェノトートFX-293(フェノキシ樹脂、日鉄ケミカル&マテリアル株式会社製)
 熱可塑性樹脂D-2:フェノトートYP-50S(フェノキシ樹脂、日鉄ケミカル&マテリアル株式会社製)
 熱可塑性樹脂D-3:フェノトートZX-1356-2(フェノキシ樹脂、日鉄ケミカル&マテリアル株式会社製)
(E)成分:カップリング剤
 カップリング剤E-1:SH-6040(3-グリシドキシプロピルトリメトキシシラン、東レ・ダウコーニング株式会社製)
(F)成分:充填材
 フィラーF-1:アエロジルR805(シリカ微粒子、Evonik Industries AG社製)
 フィラーF-2:アドマファインSE2050(シリカ微粒子、株式会社アドマテックス製)
(実施例1)
[回路接続用接着剤フィルムの作製]
<工程(a):準備工程>
・工程(a1):基体の準備
 表面に複数の凹部を有する基体(PETフィルム、厚さ:55μm)を準備した。凹部は、基体の表面側に向けて開口面積が拡大する円錐台状(開口部上面からみると、底部の中心と開口部の中心は同一)とし、開口径:4.3μmφ、底部径:4.0μmφ、深さ:4.0μmとした。また、複数の凹部は、8.0μmの間隔(各底部の中心間距離)で三方配列にて規則的に導電粒子密度が1mm当たり18000個(18000個/mm)となるように形成した。
・工程(a2):導電粒子の配置
 (A)成分として、プラスチック核体の表面にNiめっきを施し、最表面をPdで置換めっきを施した導電粒子A-1(平均粒径:3.2μm)を用意し、これを基体の凹部が形成されている面上に配置した。次いで、基体の凹部が形成されている面を微粘着ローラーで擦ることで余分な導電粒子を取り除き、凹部内のみに配置した。なお、導電粒子A-1の平均粒径は、後述の工程(b)及び(c)を経て作製した第1の接着剤層を、10cm×10cmに切り出し、導電粒子が配置されている面にPtスパッタを施した後、300個の導電粒子をSEM観察して測定された値である。
<工程(b):転写工程>
・工程(b1):組成物層の作製
 表1に示す、(B1)成分、(B2)成分、(C1)成分、(C2)成分、(D)成分、及び(E)成分を、表1に示す配合量(単位:質量部、固形分量)で有機溶媒(2-ブタノン)とともに混合し、ワニス状の第1の接着剤組成物を得た。次いで、第1の接着剤組成物をシリコーン離型処理された厚さ38μmのPETフィルムに塗布し、60℃で3分間熱風乾燥することによって、厚さ2.0μmの組成物層をPETフィルム上に作製した。
Figure JPOXMLDOC01-appb-T000002
・工程(b2):導電粒子の転写
 工程(b1)で作製した、PETフィルム上に形成された上記組成物層と、工程(a)で作製した、凹部に導電粒子が配置された基体とを向かい合わせて配置し、(A)成分の含有量が組成物層の全質量を基準として、おおよそ37質量%となるように、組成物層に導電粒子を転写した。
<工程(c):光照射工程>
 導電粒子が転写された組成物層に対して、メタルハライドランプを用いて導電粒子が転写された側からUV硬化炉(ウシオ電機株式会社製、UVC-2534/1MNLC3-XJ01)を用いて積算光量1700mJ/cm(波長:365nm)の紫外線を照射し、(B2)成分を活性化させ、(B1)成分を重合させた。これにより、組成物層中の光硬化性成分((B1)成分及び(B2)成分)を硬化させ、第1の接着剤層1Aを形成した。
<工程(d):積層工程>
・工程(d1):第2の接着剤層の作製
 表2に示す、(C1)成分、(C2)成分、(D)成分、(E)成分、及び(F)成分を、表2に示す配合量(単位:質量部、固形分量)で有機溶媒(2-ブタノン)とともに混合し、ワニス状の第2の接着剤組成物を得た。次いで、第2の接着剤組成物をシリコーン離型処理された厚さ50μmのPETフィルムに塗布し、60℃で3分間熱風乾燥することによって、第2の接着剤層2AをPETフィルム上に作製した。
Figure JPOXMLDOC01-appb-T000003
・工程(d2):第2の接着剤層の積層
 工程(c)で作製した第1の接着剤層1Aと、工程(d1)で作製した第2の接着剤層2Aとを、50℃の温度をかけながら貼り合わせた。これにより、二層構成の回路接続用接着剤フィルムを得た。
<工程(e):第2の積層工程>
・工程(e1):第3の接着剤層の作製
 表3に示す、(C1)成分、(C2)成分、(D)成分、(E)成分及び(F)成分を、表3に示す配合量(単位:質量部、固形分量)で有機溶媒(2-ブタノン)とともに混合し、ワニス状の第3の接着剤組成物を得た。次いで、第3の接着剤組成物をシリコーン離型処理された厚さ50μmのPETフィルムに塗布し、60℃で3分間熱風乾燥することによって、第3の接着剤層3AをPETフィルム上に作製した。
Figure JPOXMLDOC01-appb-T000004
・工程(e2):第3の接着剤層の積層
 工程(d2)で作製した二層構成の回路接続用接着剤フィルムの第1の接着剤層1A側のPETフィルムを剥離することによって露出した第1の接着剤層1Aと、工程(e1)で作製した第3の接着剤層3Aとを、50℃の温度をかけながら貼り合わせた。これにより、実施例1の三層構成の回路接続用接着剤フィルムを得た。
[回路接続用接着剤フィルムにおける各接着剤層の厚さの測定]
 実施例1の回路接続用接着剤フィルムについて、第1の接着剤層、第2の接着剤層、及び第3の接着剤層の厚さを測定した。測定では、回路接続用接着剤フィルムを2枚のガラス(厚さ:1mm程度)で挟み込み、ビスフェノールA型エポキシ樹脂(商品名:JER811、三菱ケミカル株式会社製)100gと、硬化剤(商品名:エポマウント硬化剤、リファインテック株式会社製)10gとからなる樹脂組成物で注型後に、研磨機を用いて断面研磨を行い、走査型電子顕微鏡(SEM、商品名:SE-8020、株式会社日立ハイテクサイエンス製)を用いて、第1の接着剤層、第2の接着剤層、及び第3の接着剤層の厚さを測定した。第1の接着剤層、第2の接着剤層、及び第3の接着剤層は、それぞれ2.0μm、12.0μm、及び1.0μmであった。
[回路接続用接着剤フィルム中の導電粒子の単分散率]
 実施例1の回路接続用接着剤フィルムについて、金属顕微鏡を用いて、200倍の倍率で第1の接着剤層側から観察し、回路接続用接着剤フィルム中の導電粒子数を実測し、下記式にしたがって求めた。導電粒子の単分散率は、99%であった。
 単分散率(%)=(2500μm中の単分散状態の導電粒子数/2500μm中の導電粒子数)×100
(実施例2~6及び比較例1、2)
 工程(b1)において、配合する材料の種類及び/又は配合量、並びに工程(c)において、積算光量を表4に示すように変更したこと以外は、実施例1と同様にして、ワニス状の第1の接着剤組成物を調製して、第1の接着剤層1B~1Hを作製した。続いて、実施例1と同様にして、第1の接着剤層1B~1Hにそれぞれ第2の接着剤層2A及び第3の接着剤層3Aを積層して、実施例2~6及び比較例1、2の三層構成の回路接続用接着剤フィルムを作製した。実施例2~6及び比較例1、2の回路接続用接着剤フィルムについて、実施例1と同様にして、各接着剤層の厚さ及び導電粒子の単分散率を求めた。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
[導電粒子の捕捉率の評価及び接続抵抗の評価]
(回路部材の準備)
 第1の回路部材として、ポリイミド基板(200H、東レ・デュポン株式会社製、外形:38mm×28mm、厚さ:0.05mm)の表面に、Ti(50nm)/Al(400nm)の配線パターン(パターン幅:19μm、電極間スペース:5μm)を形成したものを準備した。第2の回路部材として、バンプ電極を2列で千鳥状に配列したICチップ(外形:0.9mm×20.3mm、厚さ:0.3mm、バンプ電極の大きさ:70μm×12μm、バンプ電極間スペース:12μm、バンプ電極厚さ:9μm)を準備した。
(回路接続構造体の作製)
 実施例1~6及び比較例1、2の各回路接続用接着剤フィルムを用いて回路接続構造体を行った。回路接続用接着剤フィルムの第3の接着剤層と第1の回路部材とが接するように、回路接続用接着剤フィルムを第1の回路部材上に配置した。セラミックヒータからなるステージとツール(8mm×50mm)とから構成される熱圧着装置(BS-17U、株式会社大橋製作所製)を用いて、70℃、0.98MPa(10kgf/cm)の条件で2秒間加熱及び加圧して、第1の回路部材に回路接続用接着剤フィルムを貼り付け、回路接続用接着剤フィルムの第1の回路部材とは反対側の離型フィルムを剥離した。次いで、第1の回路部材のバンプ電極と第2の回路部材の回路電極との位置合わせを行った後、回路接続用接着剤フィルムの実測最高到達温度170℃、バンプ電極での面積換算圧力30MPaの条件で5秒間加熱及び加圧して、回路接続用接着剤フィルムの第2の接着剤層を第2の回路部材に貼り付けて、実施例1~6及び比較例1、2の回路接続構造体を作製した。
(導電粒子の捕捉率の評価)
 実施例1~6及び比較例1、2の回路接続構造体において、バンプ電極と回路電極との間の導電粒子の捕捉率を評価した。ここで、導電粒子の捕捉率は、接着剤フィルム中の導電粒子密度に対するバンプ電極上の導電粒子密度の比を意味し、以下の計算式から算出した。また、バンプ電極上の導電粒子数の平均は、実装した回路部材をポリイミド基板から微分干渉顕微鏡を用いて観察することによって、金属電極を介して1バンプ当たりの導電粒子の捕捉数を計測して求めた。導電粒子の捕捉率が50%以上であった場合を「S」判定、導電粒子の捕捉率が40%以上50%未満であった場合を「A」判定、導電粒子の捕捉率が40%未満であった場合を「B」判定と評価した。結果を表6及び表7に示す。
 導電粒子の捕捉率(%)=(バンプ電極上の導電粒子数の平均/(バンプ電極面積×接着剤フィルム中の導電粒子密度))×100
(接続抵抗の評価)
 実施例1~6及び比較例1、2の回路接続構造体を用いて、接続抵抗の評価を行った。接続抵抗の評価は、回路接続構造体の作製直後、及び、高温高湿試験後、四端子測定法にて実施し、14箇所の測定の接続抵抗値の平均値を用いて評価した。高温高湿試験は、温度85℃湿度85%RHの高温高湿試験槽にて回路接続構造体を500時間処理することにより行った。また、接続抵抗の測定にはマルチメータ(MLR21、楠本化成株式会社製)を用いた。回路接続構造体の作製直後において、接続抵抗値が0.5Ω未満であった場合を「S」判定、接続抵抗値が0.5Ω以上1.0Ω未満であった場合を「A」判定、接続抵抗値が1.0Ω以上であった場合を「B」判定と評価した。高温高湿試験後において、接続抵抗値が0.5Ω未満であった場合を「S」判定、接続抵抗値が0.5Ω以上1.5Ω未満であった場合を「A」判定、接続抵抗値が1.5Ω以上であった場合を「B」判定と評価した。結果を表6及び表7に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 表6及び表7に示すとおり、実施例1~6の回路接続用接着剤フィルムは、比較例1、2の回路接続用接着剤フィルムよりも、低圧での実装において、導電粒子の捕捉率及び接続抵抗の両方の点において優れていた。これらの結果から、本開示の回路接続用接着剤フィルムが、低圧で実装した場合であっても、回路接続構造体の対向する電極間における導電粒子の捕捉率を向上させ、かつ回路接続構造体の接続抵抗を低減させることが可能であることが確認された。
 1…第1の接着剤層、2…第2の接着剤層、3…接着剤成分、4…導電粒子、5…第3の接着剤層、6…基体、7…凹部、9…組成物層、10A,10B…回路接続用接着剤フィルム、21…第1の回路基板、22…第1の電極(回路電極)、23…第1の回路部材、24…第2の回路基板、25…第2の電極(バンプ電極)、26…第2の回路部材、27…回路接続部、100…回路接続構造体。

Claims (10)

  1.  導電粒子、光硬化性樹脂成分の硬化物、及び第1の熱硬化性樹脂成分を含有する第1の接着剤層と、
     前記第1の接着剤層上に設けられた、第2の熱硬化性樹脂成分を含有する第2の接着剤層と、
    を備え、
     前記光硬化性樹脂成分がラジカル重合性化合物及び光ラジカル重合開始剤を含み、
     前記光ラジカル重合開始剤がオキシムエステル構造を有する化合物を含む、
     回路接続用接着剤フィルム。
  2.  前記第1の接着剤層の厚さが5.0μm以下であり、
     前記導電粒子の平均粒径に対する前記第1の接着剤層の厚さの比が0.50以上である、
     請求項1に記載の回路接続用接着剤フィルム。
  3.  前記回路接続用接着剤フィルム中の前記導電粒子の単分散率が90%以上である、
     請求項1又は2に記載の回路接続用接着剤フィルム。
  4.  前記第1の熱硬化性樹脂成分及び前記第2の熱硬化性樹脂成分がカチオン重合性化合物及び熱カチオン重合開始剤を含む、
     請求項1又は2に記載の回路接続用接着剤フィルム。
  5.  前記カチオン重合性化合物が、オキセタン化合物及び脂環式エポキシ化合物からなる群より選ばれる少なくとも1種である、
     請求項4に記載の回路接続用接着剤フィルム。
  6.  前記熱カチオン重合開始剤が、構成元素としてホウ素を含むアニオンを有する塩化合物である、
     請求項4に記載の回路接続用接着剤フィルム。
  7.  前記第1の接着剤層の前記第2の接着剤層とは反対側に設けられた、第3の熱硬化性樹脂成分を含有する第3の接着剤層をさらに備える、
     請求項1又は2に記載の回路接続用接着剤フィルム。
  8.  前記第3の熱硬化性樹脂成分がカチオン重合性化合物及び熱カチオン重合開始剤を含む、
     請求項7に記載の回路接続用接着剤フィルム。
  9.  第1の電極を有する第1の回路部材と、第2の電極を有する第2の回路部材との間に、請求項1又は2に記載の回路接続用接着剤フィルムを介在させ、前記第1の回路部材及び前記第2の回路部材を熱圧着して、前記第1の電極及び前記第2の電極を互いに電気的に接続する工程を備える、
     回路接続構造体の製造方法。
  10.  第1の電極を有する第1の回路部材と、
     第2の電極を有する第2の回路部材と、
     前記第1の回路部材及び前記第2の回路部材の間に配置され、前記第1の電極及び前記第2の電極を互いに電気的に接続する回路接続部と、
    を備え、
     前記回路接続部が、請求項1又は2に記載の回路接続用接着剤フィルムの硬化体を含む、
     回路接続構造体。
PCT/JP2022/045506 2021-12-10 2022-12-09 回路接続用接着剤フィルム、並びに回路接続構造体及びその製造方法 WO2023106410A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-201011 2021-12-10
JP2021201011 2021-12-10

Publications (1)

Publication Number Publication Date
WO2023106410A1 true WO2023106410A1 (ja) 2023-06-15

Family

ID=86730642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/045506 WO2023106410A1 (ja) 2021-12-10 2022-12-09 回路接続用接着剤フィルム、並びに回路接続構造体及びその製造方法

Country Status (1)

Country Link
WO (1) WO2023106410A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013143292A (ja) * 2012-01-11 2013-07-22 Sekisui Chem Co Ltd 異方性導電フィルム材料、接続構造体及び接続構造体の製造方法
JP2015149127A (ja) * 2014-02-04 2015-08-20 デクセリアルズ株式会社 異方性導電フィルム及びその製造方法
JP2018168345A (ja) * 2017-03-30 2018-11-01 デクセリアルズ株式会社 異方性導電接着剤
WO2019050006A1 (ja) * 2017-09-11 2019-03-14 日立化成株式会社 回路接続用接着剤フィルム及びその製造方法、回路接続構造体の製造方法、並びに、接着剤フィルム収容セット
JP2021134262A (ja) * 2020-02-26 2021-09-13 昭和電工マテリアルズ株式会社 回路接続用接着剤フィルム、回路接続構造体及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013143292A (ja) * 2012-01-11 2013-07-22 Sekisui Chem Co Ltd 異方性導電フィルム材料、接続構造体及び接続構造体の製造方法
JP2015149127A (ja) * 2014-02-04 2015-08-20 デクセリアルズ株式会社 異方性導電フィルム及びその製造方法
JP2018168345A (ja) * 2017-03-30 2018-11-01 デクセリアルズ株式会社 異方性導電接着剤
WO2019050006A1 (ja) * 2017-09-11 2019-03-14 日立化成株式会社 回路接続用接着剤フィルム及びその製造方法、回路接続構造体の製造方法、並びに、接着剤フィルム収容セット
JP2021134262A (ja) * 2020-02-26 2021-09-13 昭和電工マテリアルズ株式会社 回路接続用接着剤フィルム、回路接続構造体及びその製造方法

Similar Documents

Publication Publication Date Title
TWI373884B (en) Anisotropic conductive film, producing method thereof and circuit connection method
JP6750197B2 (ja) 異方性導電フィルム及び接続構造体
US20190276709A1 (en) Filler-containing film
WO2021251386A1 (ja) 回路接続用接着剤フィルム、並びに回路接続構造体及びその製造方法
WO2017061539A1 (ja) 異方性導電フィルム及び接続構造体
WO2022009846A1 (ja) 回路接続用接着剤フィルム、並びに回路接続構造体及びその製造方法
WO2022102672A1 (ja) 回路接続用接着剤フィルム及びその製造方法、並びに、接続構造体及びその製造方法
WO2022102573A1 (ja) 回路接続用接着剤フィルム及びその製造方法、並びに回路接続構造体及びその製造方法
WO2023106410A1 (ja) 回路接続用接着剤フィルム、並びに回路接続構造体及びその製造方法
US20190241710A1 (en) Filler-containing film
WO2022025207A1 (ja) 回路接続用接着剤フィルム、回路接続用接着剤組成物、並びに回路接続構造体及びその製造方法
WO2023106400A1 (ja) 回路接続用接着剤フィルム、並びに回路接続構造体及びその製造方法
JP2023086476A (ja) 回路接続用接着剤フィルム、並びに回路接続構造体及びその製造方法
WO2015083809A1 (ja) 接続構造体の製造方法、及び異方性導電フィルム
WO2022107800A1 (ja) 回路接続用接着剤フィルム、並びに、接続構造体及びその製造方法
WO2022065496A1 (ja) 回路接続用接着剤フィルム、無機フィラー含有組成物、並びに、回路接続構造体及びその製造方法
WO2024034464A1 (ja) 回路接続用接着剤フィルム、並びに回路接続構造体及びその製造方法
WO2020071271A1 (ja) 異方性導電フィルム、接続構造体、接続構造体の製造方法
WO2022075370A1 (ja) 回路接続用接着剤フィルム、回路接続用材料、並びに回路接続構造体及びその製造方法
WO2022138747A1 (ja) 回路接続用接着剤フィルム、並びに、回路接続構造体及びその製造方法
KR20210033513A (ko) 이방성 도전 필름, 접속 구조체, 접속 구조체의 제조 방법
WO2024042720A1 (ja) 回路接続用接着剤フィルム及び接続構造体、並びに、それらの製造方法
JP2022061623A (ja) 回路接続用接着剤フィルム、並びに回路接続構造体及びその製造方法
WO2023189000A1 (ja) 接続構造体及びその製造方法
JP2022158554A (ja) 回路接続用接着剤フィルム、並びに回路接続構造体及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904337

Country of ref document: EP

Kind code of ref document: A1