WO2022138404A1 - 疎水性シリカ粒子及びその用途、並びに疎水性シリカ粒子の製造方法 - Google Patents

疎水性シリカ粒子及びその用途、並びに疎水性シリカ粒子の製造方法 Download PDF

Info

Publication number
WO2022138404A1
WO2022138404A1 PCT/JP2021/046393 JP2021046393W WO2022138404A1 WO 2022138404 A1 WO2022138404 A1 WO 2022138404A1 JP 2021046393 W JP2021046393 W JP 2021046393W WO 2022138404 A1 WO2022138404 A1 WO 2022138404A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica particles
hydrophobic silica
higher alcohol
alcohol
carbon atoms
Prior art date
Application number
PCT/JP2021/046393
Other languages
English (en)
French (fr)
Inventor
慎之介 有光
直之 泉
Original Assignee
Agcエスアイテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agcエスアイテック株式会社 filed Critical Agcエスアイテック株式会社
Priority to KR1020237021014A priority Critical patent/KR20230122605A/ko
Priority to JP2022572246A priority patent/JPWO2022138404A1/ja
Priority to EP21910552.5A priority patent/EP4269340A1/en
Priority to CN202180086977.8A priority patent/CN116783252A/zh
Publication of WO2022138404A1 publication Critical patent/WO2022138404A1/ja
Priority to US18/338,725 priority patent/US20230348283A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/124Preparation of adsorbing porous silica not in gel form and not finely divided, i.e. silicon skeletons, by acidic treatment of siliceous materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/25Silicon; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • A61K8/342Alcohols having more than seven atoms in an unbroken chain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3063Treatment with low-molecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/10General cosmetic use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/60Particulates further characterized by their structure or composition
    • A61K2800/61Surface treated
    • A61K2800/612By organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/60Particulates further characterized by their structure or composition
    • A61K2800/65Characterized by the composition of the particulate/core
    • A61K2800/651The particulate/core comprising inorganic material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/19Oil-absorption capacity, e.g. DBP values

Definitions

  • the present invention relates to hydrophobic silica particles and their uses, and a method for producing hydrophobic silica particles.
  • Particulate matter is used as a filler in various fields.
  • spherical fine powder is applied for the purpose of improving the slipperiness and feel of cosmetics on the skin, covering skin spots, freckles, acne, etc., and improving the skin tone and make-up effect. It is added to the ingredients.
  • Fine particle powder made of synthetic resin such as urethane, silicone, nylon, acrylic, polystyrene, and polyethylene has a good feel and is widely used in powder cosmetics such as foundation and body powder.
  • microplastic beads made by atomizing synthetic resin have a light specific gravity, are persistently decomposable, and are hydrophobic, so they are easily released into the environment without being sufficiently removed by sewage treatment equipment, etc., and marine organisms. It is easy to be bioaccumulated because it is easily ingested by mistake, and it is easy to take harmful substances into the food chain because it is easy to adsorb hydrophobic harmful substances. In recent years, there are concerns about the impact of such microplastic beads on the natural environment, and efforts are being made worldwide to reduce the amount of microplastic generated.
  • fine particle powder using inorganic materials such as talc, mica, kaolin, silica, calcium carbonate, and aluminum oxide is attracting attention. Since the fine particle powder made of an inorganic material has a poorer feel when touching the skin than the fine particle powder made of a synthetic resin, the surface of the fine particles is modified to improve the feel.
  • the inorganic material is coated with silicone, a silylating agent, or the like.
  • Patent Document 1 a higher alcohol is added to a solvent phase in which porous silica particles are dispersed, dried in a vacuum state, and the hydrophilic groups of the porous silica particles are condensed with the higher alcohol to cause the porous silica particles. It is described that the surface of the material is modified to be hydrophobic.
  • the hydrophobic porous silica particles described in Patent Document 1 is modified to be hydrophobic and has excellent water repellency and oil hygroscopicity.
  • the hydrophobic porous silica particles described in Patent Document 1 have a small binding force of the higher alcohol to the silica particles, and the higher alcohol is easily desorbed in oil, so that the hydrophobicity is difficult to be maintained.
  • the present invention has been made in view of the above problems, and to provide a new particulate material which is a particle composed of a naturally derived raw material, has high hydrophobicity, and can be stably dispersed in an oil phase. Is the subject.
  • the present inventors have found that the silica particles carry a higher alcohol having 19 or more carbon atoms, and the above-mentioned problems can be solved by the hydrophobic silica particles having a higher alcohol bond degree of 70% or more as measured by the bond degree measurement. And have completed the present invention.
  • the present invention relates to the following ⁇ 1> to ⁇ 10>.
  • ⁇ 1> A hydrophobic silica particle in which a higher alcohol having 19 or more carbon atoms is supported on the silica particles, and the degree of binding of the higher alcohol to the silica particles measured by the following measuring method is 70% or more. Measuring method: 1 g of hydrophobic silica particles were dispersed in 10 mL of tetrahydrofuran, the dispersed state was maintained for 5 minutes, and then the filtered residue was washed with 20 mL of tetrahydrofuran and 20 mL of hexane and dried.
  • the ratio of the carbon content of the hydrophobic silica particles after washing to the carbon content of the previous hydrophobic silica particles is defined as the degree of binding.
  • Coupling (%) Carbon content of hydrophobic silica particles after washing (%) / Carbon content of hydrophobic silica particles before washing (%) x 100 ...
  • ⁇ 2> The hydrophobic silica particles according to ⁇ 1>, wherein the supported amount of the higher alcohol is 1.0 ⁇ mol / m 2 or more.
  • ⁇ 4> The hydrophobic silica particles according to any one of ⁇ 1> to ⁇ 3>, wherein the hydrophobic silica particles have an average particle diameter of 1 to 500 ⁇ m.
  • ⁇ 5> The hydrophobic silica particles according to any one of ⁇ 1> to ⁇ 4>, wherein the silica particles as the base material have a specific surface area of 5 to 1000 m 2 / g.
  • ⁇ 6> The hydrophobic silica particles according to any one of ⁇ 1> to ⁇ 5>, wherein the oil absorption amount is 20 mL / 100 g or more.
  • ⁇ 7> The hydrophobic silica particle according to any one of ⁇ 1> to ⁇ 6>, wherein the degree of binding is 80% or more.
  • ⁇ 8> The cosmetic containing the hydrophobic silica particles according to any one of ⁇ 1> to ⁇ 7>.
  • ⁇ 9> A method for producing hydrophobic silica particles, in which silica particles to which a higher alcohol having 14 or more carbon atoms is attached are heated at 160 ° C. or higher.
  • ⁇ 10> The above ⁇ 9>, wherein the higher alcohol having 14 or more carbon atoms and silica particles are heated and mixed without using a solvent to obtain silica particles to which the higher alcohol having 14 or more carbon atoms is attached.
  • Method for producing hydrophobic silica particles Method for producing hydrophobic silica particles.
  • the hydrophobic silica particles of the present invention have a high binding force of higher alcohols, the hydrophobicity is maintained and the stability in oil is improved. Therefore, stable water repellency can be maintained. Further, since the hydrophobic silica particles of the present invention are composed of naturally derived raw materials, they have the effect of being friendly to the environment and the human body. Further, when applied to the skin, a silky slippery sensation (powdery sensation) can be imparted. Therefore, it can be suitably used for skin compositions such as cosmetics, oral compositions, adsorbent compositions, pharmaceutical compositions and the like.
  • supporting means a state in which a higher alcohol is bound to the surface and / or the inner surface of the pores of the silica particles.
  • masses is synonymous with “weight”.
  • the hydrophobic silica particles of the present invention are those in which a higher alcohol having 19 or more carbon atoms is supported on the silica particles, and the degree of binding of the higher alcohol to the silica particles measured by the following measuring method is 70% or more. .. Measuring method: When 1 g of hydrophobic silica particles were dispersed in 10 mL of tetrahydrofuran, the dispersed state was maintained for 5 minutes, and the filtered residue was washed with 20 mL of tetrahydrofuran and 20 mL of hexane and dried, the washing represented by the following formula (1) was carried out.
  • the ratio of the carbon content of the hydrophobic silica particles after washing to the carbon content of the previous hydrophobic silica particles is defined as the degree of binding.
  • Coupling (%) Carbon content of hydrophobic silica particles after washing (%) / Carbon content of hydrophobic silica particles before washing (%) x 100 ... (1) That is, the "bonding degree” indicates the residual amount of higher alcohol having 19 or more carbon atoms remaining in the hydrophobic silica particles after washing when the hydrophobic silica particles are washed by the above method.
  • the carbon content of the hydrophobic silica particles can be measured by an elemental analyzer (for example, "CHN-2400” manufactured by PerkinElmer Co., Ltd.).
  • the degree of binding to the silica particles which are the base material of the higher alcohol having 19 or more carbon atoms is 70% or more, the stability of the hydrophobic silica particles in oil is improved and the dispersed state can be maintained.
  • the degree of binding is 70% or more, preferably 75% or more, more preferably 80% or more, further preferably 85% or more, and particularly preferably 90% or more.
  • the upper limit of the degree of binding is not particularly limited, and is most preferably 100%.
  • Examples of higher alcohols having 19 or more carbon atoms carried on silica particles include kimil alcohol, arachidyl alcohol, octyldodecanol, ethylene glycol monostearate, monoethanolamide stearate, glycerol monostearate, and ceracyl alcohol. , Batyl alcohol, behenyl alcohol, decyltetradecanol, carnervir alcohol and the like.
  • the higher alcohol having 19 or more carbon atoms is preferably an higher alcohol having 19 to 36 carbon atoms from the viewpoint of being easily available industrially and imparting sufficient water repellency to the hydrophobic silica particles.
  • the carbon number of the higher alcohol is more preferably 30 or less, further preferably 28 or less, and particularly preferably 24 or less.
  • the higher alcohol having 19 or more carbon atoms may be either a straight chain or a branched chain, and may be saturated or unsaturated.
  • the number of hydroxyl groups of the higher alcohol having 19 or more carbon atoms may be 1 or more. Practically, the number of hydroxyl groups is preferably 5 or less, and more preferably 3 or less.
  • the higher alcohol having 19 or more carbon atoms may have a long-chain alkyl group which may be unsaturated and a hydroxyl group. However, it may have a linking group between the long-chain alkyl group and the hydroxyl group, which may be unsaturated. Examples of the linking group include an ester bond, an etheric oxygen atom, an amide bond and the like.
  • Higher alcohols having 19 or more carbon atoms include kimil alcohol, arachidyl alcohol, octyldodecanol, ethylene glycol monostearate, monoethanolamide stearate, glycerol monostearate, ceracyl alcohol, batyl alcohol, behenyl alcohol and decyltetradeca. It is more preferable that the amount is one or more selected from the group consisting of nols.
  • the fact that the higher alcohol having 19 or more carbon atoms is supported on the surface of the silica particles is based on the chemical shift obtained by the solid nuclear magnetic resonance measurement ( 13 C-NMR, CP / MAS method) of the hydrophobic silica particles.
  • 13 C-NMR, CP / MAS method solid nuclear magnetic resonance measurement
  • it can be confirmed from the mass chromatogram obtained by decomposing the hydrophobic silica particles with an alkaline aqueous solution or the like and measuring the GC-MS of the solvent-extracted higher alcohol solution.
  • the hydrophobic silica particles of the present invention preferably have a loading amount (supporting density) of a higher alcohol having 19 or more carbon atoms of 1.0 ⁇ mol / m 2 or more.
  • a loading amount (supporting density) of a higher alcohol having 19 or more carbon atoms of 1.0 ⁇ mol / m 2 or more.
  • the supported amount of the higher alcohol having 19 or more carbon atoms is more preferably 1.2 ⁇ mol / m 2 or more, further preferably 1.3 ⁇ mol / m 2 or more, and particularly preferably 1.5 ⁇ mol / m 2 or more.
  • the upper limit is not particularly limited, but the maximum density of silanol groups present on the surface of the amorphous silica particles that can be bonded to the higher alcohol is 6 ⁇ mol / m 2 , so that it may be 6 ⁇ mol / m 2 or less. It is preferable, 5 ⁇ mol / m 2 or less is more preferable, and 4.5 ⁇ mol / m 2 or less is further preferable.
  • the supported amount (supported density) of the higher alcohol having 19 or more carbon atoms is calculated by the following formula using the molecular weight of the higher alcohol and the specific surface area of the raw material silica particles based on the carbon content measured by the element analyzer. Can be calculated by
  • the shape of the hydrophobic silica particles of the present invention is not particularly limited.
  • the circularity of the hydrophobic silica particles is, for example, preferably 0.85 or more, more preferably 0.88 or more. When the circularity is 0.85 or more, the filling efficiency is improved when used as various fillers.
  • the shape is preferably a true sphere or a substantially spherical shape from the viewpoint of improving the feel when in contact with the skin.
  • the circularity of the hydrophobic silica particles is preferably 0.95 or more, more preferably 0.97 or more, and more preferably 0.98 or more, from the viewpoint of improving the tactile sensation. More preferably, 0.99 or more is particularly preferable. When the circularity of the hydrophobic silica particles is 0.95 or more, the feel when applied to the skin becomes smooth, so that it can be suitably used for cosmetics.
  • the upper limit of the circularity is not particularly limited, and is most preferably 1.
  • the circularity of the hydrophobic silica particles can be measured by observation with a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the maximum diameter in the X-axis direction and the maximum diameter in the Y-axis direction of the particles photographed at 10000 times with a scanning electron microscope (for example, an electric field emission scanning electron microscope "JSM-6701F” manufactured by Nippon Denshi Co., Ltd.) were obtained, and the values were large.
  • the diameter in the direction is the major axis
  • the diameter in the direction with the smaller value is the minor axis, and it can be calculated from the following formula based on each value.
  • Circularity minor axis ( ⁇ m) / major axis ( ⁇ m)
  • the average particle size of the hydrophobic silica particles of the present invention is preferably 1 to 500 ⁇ m.
  • the average particle size is more preferably 2 ⁇ m or more, further preferably 3 ⁇ m or more, further preferably 300 ⁇ m or less, further preferably 100 ⁇ m or less, and particularly preferably 25 ⁇ m or less.
  • the average particle size of the hydrophobic silica particles can be measured by observing with a scanning electron microscope (for example, a field emission scanning electron microscope "JSM-6701F” manufactured by Nippon Denshi Co., Ltd.).
  • the hydrophobic silica particles are fixed to carbon tape and then coated with platinum (Pt), and are photographed with an acceleration voltage of 1 kV and an emission current of 10 ⁇ A.
  • Thirty particles are randomly extracted from the SEM image taken at 1000 times, and the average value of the X-axis constant direction diameter (Krumbine diameter) is taken as the average particle diameter.
  • the hydrophobic silica particles of the present invention may be porous or non-porous, but are porous from the viewpoint of having a large amount of oil absorption and being able to absorb excess sebum when applied to the skin. Is preferable.
  • the porosity of the hydrophobic silica particles depends on the specific surface area of the raw material silica particles as the base material, and can be confirmed by measuring the specific surface area of the raw material silica particles.
  • the hydrophobic silica particles of the present invention preferably have an oil absorption of 20 mL / 100 g or more.
  • the oil absorption of the hydrophobic silica particles is more preferably 22 mL / 100 g or more, further preferably 25 mL / 100 g or more, and the upper limit is not particularly limited, but from the viewpoint of maintaining the particle strength, 500 mL / 100 g or less. It is preferably 450 mL / 100 g or less, more preferably 400 mL / 100 g or less.
  • the oil absorption amount can be measured in accordance with JIS K 5101-13-1 (2004).
  • the hydrophobic silica particles of the present invention preferably have a dynamic friction coefficient of 0.75 or less.
  • the dynamic friction coefficient is more preferably 0.60 or less, further preferably 0.50 or less, and particularly preferably 0.40 or less.
  • the lower limit of the dynamic friction coefficient is not particularly limited, but is preferably 0.05 or more, more preferably 0.10 or more, still more preferably 0.15 or more.
  • the coefficient of static friction of the hydrophobic silica particles of the present invention is preferably 0.75 or less.
  • the coefficient of static friction is more preferably 0.70 or less, further preferably 0.65 or less, particularly preferably 0.60 or less, and most preferably 0.55 or less.
  • the lower limit of the static friction coefficient is not particularly limited, but is more preferably 0.01 or more, further preferably 0.05 or more, and particularly preferably 0.10 or more.
  • the dynamic friction coefficient can be measured using a static / dynamic friction measuring machine (for example, "TL201Tt" (trade name) manufactured by Trinity Lab). Specifically, a urethane pseudo-finger is used as the contact, and artificial leather is used as the coating substrate, and hydrophobic silica particles are coated on the artificial leather so that the amount of adhesion is 0.8 ⁇ L / cm 2 as the bulk volume per unit area. Then, the friction coefficient is measured by operating with a load of 30 gf and a scanning distance of 40 mm, and the average value in the range of 1,000 msec to 4,000 msec is taken as the dynamic friction coefficient. For the static friction coefficient, the friction coefficient is measured by the same method as described above, and the maximum value in the range of 0 msec to 1,000 msec is taken as the static friction coefficient.
  • a static / dynamic friction measuring machine for example, "TL201Tt" (trade name) manufactured by Trinity Lab. Specifically, a urethane pseudo-finger is used as the contact, and
  • the present invention also provides a method for producing hydrophobic silica particles.
  • the hydrophobic silica particles of the present invention are obtained by heating silica particles to which a higher alcohol having 14 or more carbon atoms is attached at 160 ° C. or higher.
  • the silanol group on the surface of the silica particles and the hydroxyl group of the higher alcohol having 14 or more carbon atoms are dehydrated and condensed to form a covalent bond, so that the bond between the particle surface of the silica particles and the higher alcohol having 14 or more carbon atoms is strong.
  • the silica particles to which the higher alcohol having 14 or more carbon atoms are attached can be obtained by mixing the silica particles as the base material and the higher alcohol having 14 or more carbon atoms.
  • adheresion may be a chemical bond, but mainly means a physical bond, and means, for example, a physical bond such as adhesion. Whether or not the silica particles and the higher alcohol having 14 or more carbon atoms are uniformly adhered to each other and mixed can be determined by comparing the circularity of the particles before and after mixing using a scanning electron microscope or the like.
  • the raw material silica particles may be porous or non-porous.
  • Porous silica particles are secondary particles in which primary particles of silicon dioxide are gathered to continuously form fine pores such as a mesh.
  • the shape of the silica particles is not particularly limited.
  • the circularity of the silica particles is, for example, preferably 0.85 or more, and more preferably 0.88 or more. When the circularity is 0.85 or more, the filling efficiency is improved when the hydrophobic silica particles of the present invention are used as various fillers.
  • the shape is preferably a true sphere or a substantially spherical shape from the viewpoint of improving the feel when in contact with the skin.
  • the circularity of the silica particles is preferably 0.95 or more, more preferably 0.97 or more, further preferably 0.98 or more, and particularly preferably 0.99 or more. .. When the circularity of the silica particles is 0.95 or more, the circularity of the obtained hydrophobic silica particles is likely to be 0.95 or more.
  • the upper limit of the circularity is not particularly limited, and is most preferably 1.
  • the method for measuring the circularity is as described above.
  • the average particle size of the raw material silica particles is preferably 1 to 500 ⁇ m.
  • the average particle size is more preferably 2 ⁇ m or more, further preferably 3 ⁇ m or more, further preferably 300 ⁇ m or less, further preferably 100 ⁇ m or less, and particularly preferably 25 ⁇ m or less.
  • the average particle size can be calculated by obtaining the average value of the directional diameter by SEM observation in the same manner as the above-mentioned measurement of the average particle size of the hydrophobic silica particles.
  • the specific surface area of the raw material silica particles is preferably 5 to 1000 m 2 / g.
  • the specific surface area of the silica particles is 5 m 2 / g or more, there are sufficient silanol groups necessary for binding a higher alcohol having 14 or more carbon atoms.
  • the specific surface area of the silica particles is large, the amount of higher alcohol that can be supported can be increased, but if the specific surface area is too large, the amount of higher alcohol used increases and the manufacturing cost becomes too high, so the specific surface area is 1000 m 2 /. It is preferably g or less.
  • the specific surface area is preferably 5 m 2 / g or more, more preferably 10 m 2 / g or more, further preferably 15 m 2 / g or more, still more preferably 800 m 2 / g or less, and more preferably 600 m 2 / g. G or less is particularly preferable.
  • the specific surface area can be calculated by using the BET method by the nitrogen adsorption method.
  • the pore volume of the raw material silica particles is preferably 0 to 2.5 mL / g.
  • the pore volume is more preferably 0.1 mL / g or more, further preferably 0.15 mL / g or more, particularly preferably 0.2 mL / g or more, and more preferably 2.5 mL / g or less. More preferably, 2.2 mL / g or less is further preferable, and 2.0 mL / g or less is particularly preferable.
  • the pore volume can be calculated by using the BJH method by the nitrogen adsorption method.
  • the silica particles as a raw material preferably have an oil absorption of 20 mL / 100 g.
  • the oil absorption amount is 20 mL / 100 g or more, sebum can be absorbed when applied to the skin, so that it can be suitably used for cosmetics.
  • the oil absorption amount is more preferably 22 mL / 100 g or more, further preferably 25 mL / 100 g or more, and the upper limit is not particularly limited, but is preferably 500 mL / 100 g or less, more preferably 450 mL / 100 g or less. 400 mL / 100 g or less is more preferable.
  • the oil absorption amount can be measured in accordance with JIS K 5101-13-1 (2004).
  • silica particles can be used, for example, trade names "Sunsphere NP-30”, “Sunsphere L-51”, “Sunsphere L-52”, “FB-82” manufactured by AGC SI-Tech Co., Ltd. And so on.
  • Examples of higher alcohols having 14 or more carbon atoms include myristyl alcohol, cetyl alcohol (cetanol), 2-hexyldecanol, stearyl alcohol, cetostearyl alcohol, oleyl alcohol, linoleil alcohol, linolenyl alcohol, isostearyl alcohol, and kimil.
  • Examples thereof include alcohols, arachidyl alcohols, octyldodecanols, ethylene glycol monostearate, monoethanolamide stearate, glycerol monostearate, seraquil alcohols, batyl alcohols, behenyl alcohols, decyltetradecanols, carnervir alcohols and the like.
  • the higher alcohol having 14 or more carbon atoms is preferably an higher alcohol having 14 to 36 carbon atoms from the viewpoint of being easily available industrially and imparting water repellency to the surface of silica particles.
  • the carbon number of the higher alcohol is more preferably 16 or more, further preferably 18 or more, particularly preferably 19 or more, most preferably 20 or more, still more preferably 30 or less, still more preferably 28 or less. , 24 or less is particularly preferable.
  • the higher alcohol may be either a straight chain or a branched chain, and may be saturated or unsaturated.
  • the number of hydroxyl groups of the higher alcohol having 14 or more carbon atoms may be 1 or more. Practically, the number of hydroxyl groups is preferably 5 or less, and more preferably 3 or less.
  • the higher alcohol having 14 or more carbon atoms may have a long-chain alkyl group which may be unsaturated and a hydroxyl group. However, it may have a linking group between the long-chain alkyl group and the hydroxyl group, which may be unsaturated. Examples of the linking group include an ester bond, an etheric oxygen atom, an amide bond and the like.
  • Higher alcohols having 14 or more carbon atoms include kimil alcohol, arachidyl alcohol, octyldodecanol, ethylene glycol monostearate, monoethanolamide stearate, glycerol monostearate, ceracyl alcohol, batyl alcohol, behenyl alcohol and decyltetradeca. It is more preferable that the amount is one or more selected from the group consisting of nols.
  • the silica particles and the higher alcohol having 14 or more carbon atoms are mixed, and the higher alcohol having 14 or more carbon atoms is attached to the surface of the silica particles (mixing step). Since a higher alcohol having 14 or more carbon atoms is a solid or viscous liquid at room temperature, it is preferable to dissolve or reduce the viscosity of the higher alcohol having 14 or more carbon atoms by heating and mix it with silica particles.
  • the reaction temperature and reaction time in the mixing step can be appropriately set as long as the higher alcohol having 14 or more carbon atoms melts and adheres to the silica particles.
  • the higher alcohol having 14 or more carbon atoms is mixed so as to be 1 to 6 ⁇ mol / m 2 in the carrying amount per unit ratio area of the silica particles. Is preferable.
  • the loading amount of the higher alcohol having 14 or more carbon atoms is 1 ⁇ mol / m 2 or more, hydrophobic silica particles having sufficient hydrophobicity can be obtained. If the amount of the higher alcohol having 14 or more carbon atoms used is too large, the amount of the higher alcohol remaining without adhering to the silica particles increases, so that the amount is preferably 6 ⁇ mol / m 2 or less.
  • the higher alcohol having 14 or more carbon atoms is more preferably mixed so that the amount of silica particles supported per unit ratio area is 1.2 mol / m 2 or more, and more preferably 1.5 ⁇ mol / m 2 or more. Further, it is more preferably 5 ⁇ mol / m 2 or less, further preferably 4 ⁇ mol / m 2 or less.
  • the higher alcohol having 14 or more carbon atoms is attached to the silica particles substantially without using a solvent.
  • substantially no solvent is used means that the solvent is not intentionally added in the mixing step, and it means that the case where the solvent is unavoidably mixed is excluded.
  • the solvent include water, methanol, ethanol, propanol and the like, and the solvent may have a content of 10% by mass or less with respect to 100% by mass of the higher alcohol having 14 or more carbon atoms as a raw material. It is preferably 5% by mass or less, and most preferably not contained.
  • heat treatment is performed at a temperature of 160 ° C. or higher to bond the higher alcohol having 14 or more carbon atoms to the surface of the silica particles (bonding step). ).
  • the silica particles may be continuously heated to 160 ° C. or higher without lowering the temperature, or after the mixing step is completed, the silica particles to which the higher alcohol having 14 or more carbon atoms are attached are once returned to room temperature. You may use the one.
  • the reaction temperature in the bonding step is 160 ° C. or higher, more preferably 165 ° C. or higher, and even more preferably 170 ° C. or higher.
  • the upper limit is not particularly limited, but is preferably 300 ° C. or lower, more preferably 250 ° C. or lower, from the viewpoint of suppressing thermal decomposition of the higher alcohol having 14 or more carbon atoms as a raw material.
  • the heating method a conventionally known method may be used, and examples thereof include a method of heating with a heating device, and examples thereof include a Henschel mixer, a double cone dryer, a Nauter mixer, and a vibration dryer.
  • the heat treatment is preferably carried out under an inert gas atmosphere or under reduced pressure.
  • the reaction time in the binding step is preferably 2 to 8 hours.
  • the reaction time is 2 hours or more, the condensation reaction between the silica particles and the higher alcohol having 14 or more carbon atoms proceeds appropriately, and when the reaction time is 8 hours or less, high productivity can be produced.
  • the reaction time is preferably 2 hours or more, more preferably 3 hours or more, more preferably 8 hours or less, and even more preferably 7 hours or less.
  • the particles After heating, the particles are allowed to cool to obtain hydrophobic silica particles carrying a higher alcohol having 14 or more carbon atoms.
  • the hydrophobic silica particles of the present invention are suitably used for, for example, skin compositions, oral compositions, adsorbent compositions, pharmaceutical compositions and the like.
  • the skin composition include foundations, body powders, cosmetics such as lipsticks, hair wash products such as shampoos and conditioners, facial cleansers, and cosmetic waters.
  • cosmetics such as foundations, face colors, loose powders, and concealers, softness and moistness can be imparted.
  • the oral composition include powder toothpaste and toothpaste. Specifically, by adding the hydrophobic silica particles of the present invention to these, a milder polishing action can be given.
  • the specific surface area and pore volume of the raw material silica particles are determined by the BET method and BJH method based on the nitrogen adsorption method using the specific surface area / pore distribution measuring device "BELSORP-miniII" (trade name, manufactured by Microtrac Bell Co., Ltd.). Asked by.
  • the average particle size of the raw material silica particles and the average particle size of the hydrophobic silica particles were measured by a scanning electron microscope (field emission scanning electron microscope "JSM-6701F” manufactured by Nippon Denshi Co., Ltd.). The particles used were fixed to carbon tape and then coated with platinum (Pt), and were photographed with an acceleration voltage of 1 kV and an emission current of 10 ⁇ A. 30 particles were randomly selected from SEM images taken at 1000 times. It was extracted and the average value of the X-axis constant direction diameter (Krumbine diameter) was obtained.
  • Carbon content The carbon content of the hydrophobic silica particles was measured using an elemental analyzer (CHN-2400, manufactured by PerkinElmer). The sample amount was 10 mg, the combustion condition was 925 ° C. for 60 seconds, and the carbon content was measured from the produced carbon dioxide by the frontal chromatograph method.
  • the carrier density of the higher alcohol in the hydrophobic silica particles was calculated by the following formula based on the value obtained by the above-mentioned measurement of "carbon content”.
  • the coefficient of friction was determined using a static / dynamic friction measuring machine "TL201Tt" (trade name, manufactured by Trinity Lab Co., Ltd.).
  • the contact is a pseudo-finger made of urethane
  • the load is 30 gf
  • the scanning distance is 40 mm
  • the scanning speed is 10 mm / sec
  • the coated substrate is artificial leather supplere (manufactured by Ideatex Japan Co., Ltd.), and the hydrophobic silica of each example.
  • the coefficient of friction was measured with the coating amount of the particles being 0.8 ⁇ L / cm 2 as the bulk volume per unit area.
  • the average value in the range of 1,000 msec to 4,000 msec was used as the dynamic friction coefficient.
  • the static friction coefficient was obtained from the maximum value in the range of 0 msec to 1,000 msec.
  • Example 1 Hydrophobic silica particles carrying behenyl alcohol were obtained under the conditions shown in Table 1.
  • 30 g of silica particles ("Sunsphere NP-30” manufactured by AGC SI-Tech Co., Ltd., average particle diameter 4.4 ⁇ m, specific surface area 48 m 2 / g, oil absorption 38 mL / 100 g) and behenyl alcohol (“Calcol 220-80" manufactured by Kao Co., Ltd. ”) 0.9 g was weighed in a closed container, put into a hot water bath (water bath) set at 95 ° C., and heated and mixed for 2 hours. Next, 10 g of the mixture was weighed and heated at 180 ° C. for 4 hours under reduced pressure. Then, it was allowed to cool and recovered, and 9.9 g of hydrophobic silica particles were obtained.
  • Example 2 Hydrophobic silica particles were prepared in the same manner as in Example 1 except that the amount of behenyl alcohol used was 0.75 g.
  • Example 3 The silica particles were changed to "Sunsphere L-51" manufactured by AGC Si-Tech Co., Ltd. (average particle diameter 6.2 ⁇ m, specific surface area 301 m 2 / g, oil absorption 168 mL / 100 g), and 15 g of silica particles and 3.75 g of behenyl alcohol were added. Hydrophobic silica particles were prepared in the same manner as in Example 1 except that they were used.
  • Example 4 Hydrophobic silica particles were prepared in the same manner as in Example 3 except that the amount of behenyl alcohol used was 3.0 g.
  • Example 5 Hydrophobic silica particles were prepared in the same manner as in Example 1 except that the heating temperature of the mixture was 160 ° C.
  • Example 6 Hydrophobic silica particles were produced in the same manner as in Example 1 except that arachidyl alcohol (“Hynol 20SS” manufactured by Higher Alcohol Industry Co., Ltd.) was used instead of behenyl alcohol.
  • arachidyl alcohol (“Hynol 20SS” manufactured by Higher Alcohol Industry Co., Ltd.) was used instead of behenyl alcohol.
  • Example 7 Hydrophobic silica particles were prepared in the same manner as in Example 1 except that decyltetradecanol (“Risonol 24SP” manufactured by Higher Alcohol Co., Ltd.) was used instead of behenyl alcohol.
  • decyltetradecanol (“Risonol 24SP” manufactured by Higher Alcohol Co., Ltd.) was used instead of behenyl alcohol.
  • Example 8 Hydrophobic silica particles were produced in the same manner as in Example 1 except that octyldodecanol (“Risonol 20SP” manufactured by Higher Alcohol Industry Co., Ltd.) was used instead of behenyl alcohol.
  • octyldodecanol (“Risonol 20SP” manufactured by Higher Alcohol Industry Co., Ltd.) was used instead of behenyl alcohol.
  • Example 9 Hydrophobic silica in the same manner as in Example 1 except that glycerol monostearate (“NIKKOL MGS-F20V” manufactured by Nikko Chemicals Co., Ltd.) was used instead of behenyl alcohol, and 20 g of silica particles and 0.8 g of glycerol monostearate were used. Particles were made.
  • glycerol monostearate (“NIKKOL MGS-F20V” manufactured by Nikko Chemicals Co., Ltd.) was used instead of behenyl alcohol, and 20 g of silica particles and 0.8 g of glycerol monostearate were used. Particles were made.
  • Example 10 Hydrophobic as in Example 1 except that ethylene glycol monostearate (“NIKKOL EGMS-70V” manufactured by Nikko Chemicals Co., Ltd.) was used instead of behenyl alcohol, and 20 g of silica particles and 0.8 g of ethylene glycol monostearate were used. Sexual silica particles were prepared.
  • ethylene glycol monostearate (“NIKKOL EGMS-70V” manufactured by Nikko Chemicals Co., Ltd.) was used instead of behenyl alcohol, and 20 g of silica particles and 0.8 g of ethylene glycol monostearate were used. Sexual silica particles were prepared.
  • Example 11 Hydrophobicity is the same as in Example 1 except that stearic acid monoethanolamide (“Amisol SME” manufactured by Kawaken Fine Chemical Co., Ltd.) was used instead of behenyl alcohol, and 20 g of silica particles and 0.8 g of stearic acid monoethanolamide were used. Silica particles were prepared.
  • stearic acid monoethanolamide (“Amisol SME” manufactured by Kawaken Fine Chemical Co., Ltd.) was used instead of behenyl alcohol, and 20 g of silica particles and 0.8 g of stearic acid monoethanolamide were used.
  • Silica particles were prepared.
  • Example 12 Hydrophobic silica particles were used in the same manner as in Example 1 except that 20 g of silica particles and 0.8 g of cerakil alcohol were used instead of behenyl alcohol (“NIKKOL cerakil alcohol V” manufactured by Nikko Chemicals Co., Ltd.). Was produced.
  • Example 13 Hydrophobic silica particles were prepared in the same manner as in Example 1 except that 20 g of silica particles and 0.8 g of batyl alcohol were used instead of behenyl alcohol (“NIKKOL Bacil Alcohol 100” manufactured by Nikko Chemicals Co., Ltd.). ..
  • Example 14 Hydrophobic silica particles were used in the same manner as in Example 1 except that 20 g of silica particles and 0.8 g of kimil alcohol were used instead of behenyl alcohol (“NIKKOL Kimil Alcohol 100” manufactured by Nikko Chemicals Co., Ltd.). Was produced.
  • Example 15 The silica particles were changed to "Sunsphere L-51" manufactured by AGC Si-Tech Co., Ltd. (average particle diameter 6.2 ⁇ m, specific surface area 301 m 2 / g, oil absorption 168 mL / 100 g), and ceracyl alcohol (sunlight) was replaced with behenyl alcohol. Hydrophobic silica particles were produced in the same manner as in Example 1 except that 20 g of silica particles and 5.0 g of ceracyl alcohol were used using "NIKKOL Ceraquil Alcohol V" manufactured by Chemicals Co., Ltd.
  • Example 16 The silica particles were changed to "FB-82" manufactured by AGC Si-Tech Co., Ltd. (average particle diameter 7.2 ⁇ m, specific surface area 142 m 2 / g, oil absorption 275 mL / 100 g), and 10 g of silica particles and 1.75 g of behenyl alcohol were used. Hydrophobic silica particles were produced in the same manner as in Example 1 except for the above.
  • Example 17 Hydrophobic silica particles were prepared in the same manner as in Example 16 except that the amount of behenyl alcohol used was 1.5 g.
  • Example 18 Hydrophobic silica particles were prepared in the same manner as in Example 16 except that the amount of behenyl alcohol used was 1.25 g.
  • Example 19 Hydrophobic silica particles were prepared in the same manner as in Example 16 except that the amount of behenyl alcohol used was 1.0 g.
  • Example 20 The silica particles were changed to "Sunsphere L-52" manufactured by AGC Si-Tech Co., Ltd. (average particle diameter 5.2 ⁇ m, specific surface area 216 m 2 / g, oil absorption 292 mL / 100 g), and 10 g of silica particles and 2.5 g of behenyl alcohol were added. Hydrophobic silica particles were prepared in the same manner as in Example 1 except that they were used.
  • Example 21 Hydrophobic silica particles were prepared in the same manner as in Example 20 except that the amount of behenyl alcohol used was 2.25 g.
  • Example 22 Hydrophobic silica particles were prepared in the same manner as in Example 20 except that the amount of behenyl alcohol used was 2.0 g.
  • Example 23 Hydrophobic silica particles were prepared in the same manner as in Example 1 except that the heating temperature of the mixture was 120 ° C.
  • Example 24 Hydrophobic silica particles were prepared in the same manner as in Example 1 except that the heating temperature of the mixture was 140 ° C.
  • Example 25 Hydrophobic silica particles were prepared in the same manner as in Example 3 except that the heating temperature of the mixture was 120 ° C.
  • hydrophobic silica particles of Examples 1 to 25 For the hydrophobic silica particles of Examples 1 to 25, the circularity, average particle diameter, specific surface area, oil absorption amount, carbon content, higher alcohol loading density, bond degree, dynamic friction coefficient and static friction coefficient were measured, and water repellency was measured. And the stability in oil was evaluated. The results are shown in Table 2. The number of days in water repellency and stability in oil in Table 2 indicates the number of days after which suspension or precipitation of particles was confirmed.
  • the hydrophobic silica particles of Examples 1 to 22 have a significantly higher degree of binding of the higher alcohol in the bonding degree measurement test than those of Examples 23 to 25, and the higher binding force of the higher alcohol with the silica particles is high. I understood it.
  • the hydrophobic silica particles of Examples 1 to 22 were sufficiently maintained in hydrophobicity, and were excellent in water repellency and stability in oil. Further, from the comparison of Example 1, Example 5, Example 23 and Example 24, and Example 4 and Example 25, when the degree of binding of the higher alcohol to the raw material silica particles is high, the water repellency and the stability in oil are excellent, and more than Example 10. It was found that a practically desirable water repellency and stability in oil can be obtained when the degree of binding is 70% or more.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Emergency Medicine (AREA)
  • Dermatology (AREA)
  • Dispersion Chemistry (AREA)
  • Cosmetics (AREA)
  • Silicon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、天然由来原料で構成される粒子であって、油相に安定して分散できる新たな粒子状材料を提供する。本発明の疎水性シリカ粒子は、シリカ粒子に炭素数19以上の高級アルコールが担持された疎水性シリカ粒子であって、疎水性シリカ粒子1gをテトラヒドロフラン10mLに分散させ、分散状態を5分間維持した後にろ過した残渣を、テトラヒドロフラン20mL及びヘキサン20mLで洗浄し乾燥したとき、洗浄前の疎水性シリカ粒子の炭素含有量に対する洗浄後の疎水性シリカ粒子の炭素含有量の割合で示される、高級アルコールのシリカ粒子への結合度が70%以上である。

Description

疎水性シリカ粒子及びその用途、並びに疎水性シリカ粒子の製造方法
 本発明は、疎水性シリカ粒子及びその用途、並びに疎水性シリカ粒子の製造方法に関する。
 粒子状材料は、各種分野で充填材等として利用されている。例えば、化粧品分野において、皮膚に対する化粧料の滑り性や感触性の向上、皮膚のシミやソバカス、ニキビ等の被覆、皮膚の色調やメイクアップ効果の向上等を目的として、球状の微粒子粉末を化粧料に配合することがなされる。
 ウレタン、シリコーン、ナイロン、アクリル、ポリスチレン、ポリエチレン等の合成樹脂からなる微粒子粉末は、良好な感触性を有するため、ファンデーションやボディ用パウダー等の粉体化粧料に広く使用されている。
 一方で、合成樹脂を微粒子化したマイクロプラスチックビーズは、比重が軽く難分解性でありかつ疎水的であるため、下水処理設備等において十分に除去されることなく環境中に放出されやすく、海洋生物に誤って摂食されやすいために生物濃縮されやすく、また、疎水的な有害物質を吸着しやすいために食物連鎖に有害物質を取り込ませやすい。近年、このようなマイクロプラスチックビーズによる自然環境への影響が懸念されており、世界的にマイクロプラスチックの発生量を削減する取り組みがなされている。
 そこで、タルク、マイカ、カオリン、シリカ、炭酸カルシウム、酸化アルミニウム等の無機材料を用いた微粒子粉末が注目されている。無機材料からなる微粒子粉末は合成樹脂からなる微粒子粉末に比べて肌に触れたときの感触が劣るため、微粒子の粒子表面を改質し、感触性を向上させることがなされる。例えば、無機材料をシリコーンやシリル化剤等により被覆することがなされる。
 しかし、近年のナチュラル志向の風潮から、シリコーン等を含まない天然由来の粒子が求められ、種々検討が行われている。例えば、特許文献1には、多孔質シリカ粒子が分散した溶媒相に高級アルコールを添加し、真空状態で乾燥させて、多孔質シリカ粒子の親水基と高級アルコールとの縮合反応により多孔質シリカ粒子の表面を疎水性に改質することが記載されている。
国際公開第2018/182107号
 特許文献1に記載の疎水性多孔質シリカ粒子は、表面の90%以上が疎水性に改質され、撥水性と油吸湿性に優れるものであるとされている。
 しかしながら、特許文献1に記載の疎水性多孔質シリカ粒子は、シリカ粒子に対する高級アルコールの結合力が小さく、油中では高級アルコールが脱離しやすいため、疎水性が維持され難かった。
 本発明は上記課題に鑑みてなされたものであり、天然由来原料で構成される粒子であって、高い疎水性を有し、油相に安定して分散できる新たな粒子状材料を提供することを課題とする。
 本発明者らは鋭意検討した結果、シリカ粒子に炭素数19以上の高級アルコールが担持されており、結合度測定による高級アルコールの結合度が70%以上の疎水性シリカ粒子により上記課題を解決できることを見出し、本発明を完成させるに至った。
 本発明は、下記<1>~<10>に関するものである。
<1>シリカ粒子に炭素数19以上の高級アルコールが担持されており、以下の測定方法によって測定した前記高級アルコールの前記シリカ粒子への結合度が70%以上である疎水性シリカ粒子。
測定方法:疎水性シリカ粒子1gをテトラヒドロフラン10mLに分散させ、分散状態を5分間維持した後にろ過した残渣を、テトラヒドロフラン20mL及びヘキサン20mLで洗浄し乾燥したとき、下記式(1)で表される洗浄前の疎水性シリカ粒子の炭素含有量に対する洗浄後の疎水性シリカ粒子の炭素含有量の割合を結合度とする。
 結合度(%)=洗浄後の疎水性シリカ粒子の炭素含有量(%)/洗浄前の疎水性シリカ粒子の炭素含有量(%)×100 ・・・(1)
<2>前記高級アルコールの担持量が1.0μmol/m以上である、前記<1>に記載の疎水性シリカ粒子。
<3>円形度が0.95以上である、前記<1>又は<2>に記載の疎水性シリカ粒子。
<4>前記疎水性シリカ粒子の平均粒子径が1~500μmである、前記<1>~<3>のいずれか1つに記載の疎水性シリカ粒子。
<5>母材である前記シリカ粒子の比表面積が5~1000m/gである、前記<1>~<4>のいずれか1つに記載の疎水性シリカ粒子。
<6>吸油量が20mL/100g以上である、前記<1>~<5>のいずれか1つに記載の疎水性シリカ粒子。
<7>前記結合度が80%以上である、前記<1>~<6>のいずれか1つに記載の疎水性シリカ粒子。
<8>前記<1>~<7>のいずれか1つに記載の疎水性シリカ粒子を含有する化粧料。
<9>炭素数14以上の高級アルコールが付着したシリカ粒子を160℃以上で加熱する、疎水性シリカ粒子の製造方法。
<10>炭素数14以上の高級アルコールとシリカ粒子を、実質的に溶媒を用いることなく加熱混合して、前記炭素数14以上の高級アルコールが付着したシリカ粒子を得る、前記<9>に記載の疎水性シリカ粒子の製造方法。
 本発明の疎水性シリカ粒子は、高級アルコールの結合力が高いので、疎水性が保たれ、油中での安定性が向上する。よって、安定した撥水性を維持できる。また、本発明の疎水性シリカ粒子は天然由来原料で構成されるので、環境や人体に対しても優しいという効果がある。そしてまた、肌に適用した際にさらさらした滑り感覚(パウダリー感)を付与できる。よって、化粧料等の皮膚用組成物や、口腔用組成物、吸着剤組成物、薬組成物等に好適に利用できる。
 以下、本発明について説明するが、以下の説明における例示によって本発明は限定されない。
 なお、本発明において「担持」とは、シリカ粒子の表面及び/又は細孔内面に高級アルコールが結合された状態を意味する。
 また、本明細書において、「質量」は「重量」と同義である。
(疎水性シリカ粒子)
 本発明の疎水性シリカ粒子は、シリカ粒子に炭素数19以上の高級アルコールが担持されているものであり、以下の測定方法によって測定した高級アルコールのシリカ粒子への結合度は70%以上である。
測定方法:疎水性シリカ粒子1gをテトラヒドロフラン10mLに分散させ、分散状態を5分間維持した後にろ過した残渣を、テトラヒドロフラン20mL及びヘキサン20mLで洗浄し乾燥したとき、下記式(1)で表される洗浄前の疎水性シリカ粒子の炭素含有量に対する洗浄後の疎水性シリカ粒子の炭素含有量の割合を結合度とする。
 結合度(%)=洗浄後の疎水性シリカ粒子の炭素含有量(%)/洗浄前の疎水性シリカ粒子の炭素含有量(%)×100 ・・・(1)
 つまり、「結合度」とは、上記の方法で疎水性シリカ粒子の洗浄を行ったときに、洗浄後の疎水性シリカ粒子に残った炭素数19以上の高級アルコールの残存量を示す。
 ここで、疎水性シリカ粒子の炭素含有量は、元素分析計(例えば、パーキンエルマー社製「CHN-2400」等)により測定できる。
 炭素数19以上の高級アルコールの母材であるシリカ粒子への結合度が70%以上であると、疎水性シリカ粒子の油中での安定性が向上し、分散状態を保つことができる。
 結合度は、70%以上であり、75%以上であることが好ましく、80%以上がより好ましく、85%以上がさらに好ましく、90%以上が特に好ましい。結合度の上限は特に限定されず、100%であることが最も好ましい。
 シリカ粒子に担持される炭素数19以上の高級アルコールとしては、例えば、キミルアルコール、アラキジルアルコール、オクチルドデカノール、モノステアリン酸エチレングリコール、ステアリン酸モノエタノールアミド、モノステアリン酸グリセロール、セラキルアルコール、バチルアルコール、ベヘニルアルコール、デシルテトラデカノール、カルナービルアルコール等が挙げられる。
 炭素数19以上の高級アルコールは、産業上容易に入手可能であり、かつ疎水性シリカ粒子に十分な撥水性を付与するという観点から、炭素数19~36の高級アルコールであることが好ましい。高級アルコールの炭素数は、30以下であることがより好ましく、28以下がさらに好ましく、24以下が特に好ましい。
 炭素数19以上の高級アルコールは、直鎖及び分岐鎖のいずれであってもよく、また、飽和及び不飽和のいずれであってもよい。
 炭素数19以上の高級アルコールの水酸基数は、1個以上であればよい。水酸基数は実用的には5個以下が好ましく、3個以下がより好ましい。
 また、炭素数19以上の高級アルコールは、不飽和であってもよい長鎖アルキル基、および水酸基を有していればよい。ただし不飽和であってもよい長鎖アルキル基と水酸基の間に連結基を有していてもよい。連結基としては、エステル結合、エーテル性酸素原子、アミド結合等が挙げられる。
 炭素数19以上の高級アルコールは、キミルアルコール、アラキジルアルコール、オクチルドデカノール、モノステアリン酸エチレングリコール、ステアリン酸モノエタノールアミド、モノステアリン酸グリセロール、セラキルアルコール、バチルアルコール、ベヘニルアルコール及びデシルテトラデカノールからなる群から選択される1種以上であるのがさらに好ましい。
 なお、炭素数19以上の高級アルコールがシリカ粒子の表面に担持されていることは、疎水性シリカ粒子の固体核磁気共鳴測定(13C-NMR、CP/MAS法)によって得られる化学シフトから、もしくは、疎水性シリカ粒子をアルカリ水溶液等で分解し、溶媒抽出された高級アルコール溶液のGC-MS測定によって得られるマスクロマトグラムから確認できる。
 本発明の疎水性シリカ粒子は、炭素数19以上の高級アルコールの担持量(担持密度)が1.0μmol/m以上であることが好ましい。炭素数19以上の高級アルコールの担持量が1.0μmol/m以上であると、シリカ粒子の表面シラノールの20%以上が高級アルコールで被覆され、疎水性シリカ粒子の撥水性が向上する。
 炭素数19以上の高級アルコールの担持量は、1.2μmol/m以上であることがより好ましく、1.3μmol/m以上がさらに好ましく、1.5μmol/m以上が特に好ましい。また、上限値は特に限定されないが、高級アルコールと結合し得る非晶質シリカ粒子の表面に存在するシラノール基の最大密度が6μmol/mであることから、6μmol/m以下であることが好ましく、5μmol/m以下がより好ましく、4.5μmol/m以下がさらに好ましい。
 なお、炭素数19以上の高級アルコールの担持量(担持密度)は、元素分析計により測定された炭素含有量をもとに、高級アルコールの分子量、原料シリカ粒子の比表面積を使って、下記式により算出できる。
Figure JPOXMLDOC01-appb-M000001
 本発明の疎水性シリカ粒子の形状は特に限定されない。疎水性シリカ粒子の円形度は、例えば、0.85以上であるのが好ましく、0.88以上がより好ましい。円形度が0.85以上であると、各種充填材として使用したときに充填効率が向上する。
 また、化粧料に使用する場合は、肌に接触したときの感触を向上させるという観点から、その形状は真球かほぼ真球状に近いことが好ましい。化粧料に使用する場合、疎水性シリカ粒子の円形度は、触感の向上等の観点から、0.95以上であることが好ましく、0.97以上であることがより好ましく、0.98以上がさらに好ましく、0.99以上が特に好ましい。疎水性シリカ粒子の円形度が0.95以上であると、肌に適用したときの感触が滑らかになるため、化粧料に好適に使用できる。
 円形度の上限は特に限定されず、1であることが最も好ましい。
 なお、疎水性シリカ粒子の円形度は、走査型電子顕微鏡(SEM)観察により測定できる。走査型電子顕微鏡(例えば、日本電子株式会社製の電界放出型走査電子顕微鏡「JSM-6701F」)により10000倍で撮影した粒子のX軸方向最大径とY軸方向最大径を求め、値が大きい方向の径を長径、値が小さい方向の径を短径とし、それぞれの値をもとに下記式から算出できる。
  円形度=短径(μm)/長径(μm)
 本発明の疎水性シリカ粒子の平均粒子径は、1~500μmであることが好ましい。平均粒子径が1μm以上であると、凝集性が抑えられ組成物への十分な分散性を確保しやすく、また、500μm以下であると、組成物中に配合したときの感触が向上する。平均粒子径は、2μm以上であることがより好ましく、3μm以上がさらに好ましく、また、300μm以下であることがより好ましく、100μm以下がさらに好ましく、25μm以下が特に好ましい。
 なお、疎水性シリカ粒子の平均粒子径は、走査型電子顕微鏡(例えば、日本電子株式会社製の電界放出型走査電子顕微鏡「JSM-6701F」)観察により測定できる。疎水性シリカ粒子は、カーボンテープに固定された後にプラチナ(Pt)コートを施されたものを使用し、加速電圧1kV、エミッション電流10μAにより撮影する。1000倍で撮影したSEM画像から粒子を無作為に30個抽出し、X軸定方向径(クルムバイン径)の平均値を平均粒子径とする。
 本発明の疎水性シリカ粒子は、多孔質であっても無孔質であってもよいが、吸油量が大きく、皮膚に塗布した際に余分な皮脂を吸収できるという観点から、多孔質であることが好ましい。
 疎水性シリカ粒子の多孔度は、母材である原料のシリカ粒子の比表面積に依存し、原料シリカ粒子の比表面積の測定により確認できる。
 本発明の疎水性シリカ粒子は、吸油量が20mL/100g以上であることが好ましい。吸油量が20mL/100g以上であると皮膚に付着した際に皮脂を吸収しやすいので、化粧料に好適に使用できる。疎水性シリカ粒子の吸油量は、22mL/100g以上であることがより好ましく、25mL/100g以上がさらに好ましく、また、上限は特に限定されないが、粒子強度を維持するという観点から、500mL/100g以下であることが好ましく、450mL/100g以下がより好ましく、400mL/100g以下がさらに好ましい。
 なお、吸油量は、JIS K 5101-13-1(2004)に準拠して測定できる。
 本発明の疎水性シリカ粒子は、動摩擦係数が0.75以下であることが好ましい。動摩擦係数が0.75以下であると、粒子が低い抵抗で滑り、皮膚に接触したときの感触が向上するので、さらさらした滑り感覚を発揮できる。動摩擦係数は、0.60以下であることがより好ましく、0.50以下がさらに好ましく、0.40以下が特に好ましい。動摩擦係数の下限は特に限定されないが、0.05以上であることが好ましく、0.10以上がより好ましく、0.15以上がさらに好ましい。
 また、本発明の疎水性シリカ粒子の静摩擦係数は、0.75以下であることが好ましい。静摩擦係数が0.75以下であると、粒子が低い抵抗で滑りはじめ、皮膚に接触したときの感触が向上する。静摩擦係数は、0.70以下であることがより好ましく、0.65以下がさらに好ましく、0.60以下が特に好ましく、0.55以下が最も好ましい。静摩擦係数の下限は特に限定されないが、0.01以上であることがより好ましく、0.05以上がさらに好ましく、0.10以上が特に好ましい。
 なお、動摩擦係数は、静・動摩擦測定機(例えば、トリニティーラボ社製「TL201Tt」(商品名))を用いて測定できる。具体的に、接触子としてウレタン製疑似指を、塗布基板として人工皮革を用い、人工皮革に付着量が単位面積あたりの嵩容積として0.8μL/cmとなるように疎水性シリカ粒子を塗布し、荷重30gf、走査距離40mmで動作させて摩擦係数を測定し、1,000msecから4,000msecの範囲の平均値を動摩擦係数とする。
 静摩擦係数は、上記と同様の方法で摩擦係数を測定し、0msecから1,000msecの範囲の最大値を静摩擦係数とする。
(疎水性シリカ粒子の製造方法)
 本発明はまた、疎水性シリカ粒子の製造方法を提供する。
 本発明の疎水性シリカ粒子は、炭素数14以上の高級アルコールが付着したシリカ粒子を160℃以上で加熱して得られる。
 上記工程により、シリカ粒子表面のシラノール基と炭素数14以上の高級アルコールの水酸基が脱水縮合して共有結合を形成するため、シリカ粒子の粒子表面と炭素数14以上の高級アルコールとの結合が強くなる。
 炭素数14以上の高級アルコールが付着したシリカ粒子は、母材であるシリカ粒子と炭素数14以上の高級アルコールとを混合することにより得られる。
 ここで、「付着」とは、化学的な結合でもよいが、主に物理的な結合を意味し、例えば、接着のような物理的な結合を意味する。シリカ粒子と炭素数14以上の高級アルコールとが互いに均一に付着されて混合されているかは、走査型電子顕微鏡等を用いて、混合前後の粒子の円形度を比較することによって判断できる。
 原料のシリカ粒子は、多孔質であっても無孔質であってもよい。多孔質シリカ粒子は、二酸化ケイ素の一次粒子が集まって連続的に網の目のような微細な孔を形成している二次粒子である。
 シリカ粒子の形状は特に限定されない。シリカ粒子の円形度は、例えば、0.85以上であるのが好ましく、0.88以上がより好ましい。円形度が0.85以上であると、本発明の疎水性シリカ粒子を各種充填材として使用したときに充填効率が向上する。
 また、化粧料に使用する場合は、肌に接触したときの感触を向上させるという観点から、その形状は真球かほぼ真球状に近いことが好ましい。化粧料に使用する場合、シリカ粒子の円形度は、0.95以上であることが好ましく、0.97以上であることがより好ましく、0.98以上がさらに好ましく、0.99以上が特に好ましい。シリカ粒子の円形度が0.95以上であると、得られる疎水性シリカ粒子の円形度を0.95以上にしやすい。
 円形度の上限は特に限定されず、1であることが最も好ましい。
 なお、円形度の測定方法は上記した通りである。
 原料のシリカ粒子の平均粒子径は、1~500μmであることが好ましい。平均粒子径が1μm以上であると、凝集性が抑えられ組成物への十分な分散性を確保しやすく、また500μm以下であると組成物中に配合したときの感触が向上する。平均粒子径は、2μm以上であることがより好ましく、3μm以上がさらに好ましく、また、300μm以下であることがより好ましく、100μm以下がさらに好ましく、25μm以下が特に好ましい。
 なお、平均粒子径は、上記した疎水性シリカ粒子の平均粒子径の測定と同様に、SEM観察による定方向径の平均値を求めることにより算出できる。
 原料のシリカ粒子の比表面積は、5~1000m/gであることが好ましい。シリカ粒子の比表面積が5m/g以上であると炭素数14以上の高級アルコールを結合させるのに必要な十分なシラノール基が存在する。また、シリカ粒子の比表面積が大きくなると担持できる高級アルコール量も多くできるが、比表面積が大きくなり過ぎると高級アルコールの使用量も増えてしまい製造コストが高くなり過ぎるため、比表面積は1000m/g以下であることが好ましい。比表面積は、5m/g以上であることが好ましく、10m/g以上がより好ましく、15m/g以上がさらに好ましく、また、800m/g以下であることがより好ましく、600m/g以下が特に好ましい。
 なお、比表面積は、窒素吸着法によりBET法を用いて算出できる。
 原料のシリカ粒子の細孔容積は、0~2.5mL/gであることが好ましい。細孔容積が0mL/g以上であると所望の吸油量を得られ、細孔容積が2.5mL/g以下であると、粒子の強度が保たれる。細孔容積は、0.1mL/g以上であることがより好ましく、0.15mL/g以上がさらに好ましく、0.2mL/g以上が特に好ましく、また、2.5mL/g以下であることがより好ましく、2.2mL/g以下がさらに好ましく、2.0mL/g以下が特に好ましい。
 なお、細孔容積は、窒素吸着法によりBJH法を用いて算出できる。
 なお、原料のシリカ粒子は、吸油量が20mL/100gであることが好ましい。吸油量が20mL/100g以上であると、皮膚に塗布した際に皮脂を吸収することができるので、化粧料に好適に使用できる。吸油量は、22mL/100g以上であることがより好ましく、25mL/100g以上がさらに好ましく、また、上限は特に限定されないが、500mL/100g以下であることが好ましく、450mL/100g以下がより好ましく、400mL/100g以下がさらに好ましい。
 なお、吸油量は、JIS K 5101-13-1(2004)に準拠して測定できる。
 シリカ粒子は市販のものを使用でき、例えば、AGCエスアイテック株式会社製の商品名「サンスフェア NP-30」、「サンスフェア L-51」、「サンスフェア L-52」、「FB-82」等が挙げられる。
 炭素数14以上の高級アルコールとしては、例えば、ミリスチルアルコール、セチルアルコール(セタノール)、2-ヘキシルデカノール、ステアリルアルコール、セトステアリルアルコール、オレイルアルコール、リノレイルアルコール、リノレニルアルコール、イソステアリルアルコール、キミルアルコール、アラキジルアルコール、オクチルドデカノール、モノステアリン酸エチレングリコール、ステアリン酸モノエタノールアミド、モノステアリン酸グリセロール、セラキルアルコール、バチルアルコール、ベヘニルアルコール、デシルテトラデカノール、カルナービルアルコール等が挙げられる。
 炭素数14以上の高級アルコールは、産業上容易に入手可能であり、かつシリカ粒子表面に撥水性を付与するという観点から、炭素数14~36の高級アルコールであることが好ましい。高級アルコールの炭素数は、16以上であることがより好ましく、18以上がさらに好ましく、19以上が特に好ましく、20以上が最も好ましく、また、30以下であることがより好ましく、28以下がさらに好ましく、24以下が特に好ましい。
 前記高級アルコールは、直鎖及び分岐鎖のいずれであってもよく、飽和及び不飽和のいずれであってもよい。
 炭素数14以上の高級アルコールの水酸基数は、1個以上であればよい。水酸基数は実用的には5個以下が好ましく、3個以下がより好ましい。
 また、炭素数14以上の高級アルコールは、不飽和であってもよい長鎖アルキル基、および水酸基を有していればよい。ただし不飽和であってもよい長鎖アルキル基と水酸基の間に連結基を有していてもよい。連結基としては、エステル結合、エーテル性酸素原子、アミド結合等が挙げられる。
 炭素数14以上の高級アルコールは、キミルアルコール、アラキジルアルコール、オクチルドデカノール、モノステアリン酸エチレングリコール、ステアリン酸モノエタノールアミド、モノステアリン酸グリセロール、セラキルアルコール、バチルアルコール、ベヘニルアルコール及びデシルテトラデカノールからなる群から選択される1種以上であるのがさらに好ましい。
 本発明では、まず、シリカ粒子と炭素数14以上の高級アルコールを混合し、シリカ粒子の表面に炭素数14以上の高級アルコールを付着させる(混合工程)。
 炭素数14以上の高級アルコールは常温で固形もしくは粘調な液体であるため、加熱により炭素数14以上の高級アルコールを溶解もしくは低粘性にさせ、シリカ粒子と混合することが好ましい。
 混合工程における反応温度及び反応時間は、炭素数14以上の高級アルコールが溶融し、シリカ粒子に付着すればよく、適宜設定できる。
 シリカ粒子と炭素数14以上の高級アルコールとの混合割合としては、シリカ粒子の単位比面積あたりの担持量にて、炭素数14以上の高級アルコールが1~6μmol/mとなるように混合することが好ましい。炭素数14以上の高級アルコールの担持量が1μmol/m以上であると、十分な疎水性を備えた疎水性シリカ粒子を得ることができる。炭素数14以上の高級アルコールの使用量が多過ぎると、シリカ粒子に付着せずに残ってしまう量が多くなるため、6μmol/m以下であることが好ましい。
 炭素数14以上の高級アルコールは、シリカ粒子の単位比面積あたりの担持量にて、1.2mol/m以上となるように混合することがより好ましく、1.5μmol/m以上がさらに好ましく、また、5μmol/m以下であることがより好ましく、4μmol/m以下がさらに好ましい。
 本発明において、シリカ粒子への炭素数14以上の高級アルコールの付着は、実質的に溶媒を用いることなく行うことが好ましい。なお、「実質的に溶媒を用いない」とは、混合工程において、意図的には溶媒を添加しないことをいい、不可避的に混入する場合については除かれることを意味する。
 溶媒としては、例えば、水、メタノール、エタノール、プロパノール等が挙げられるが、溶媒は、原料となる炭素数14以上の高級アルコール100質量%に対して、10質量%以下の含有量であることが好ましく、5質量%以下がより好ましく、含有されていないことが最も好ましい。
 混合工程によってシリカ粒子の表面に炭素数14以上の高級アルコールを付着させた後、160℃以上の温度で加熱処理を行い、炭素数14以上の高級アルコールをシリカ粒子の表面に結合させる(結合工程)。
 結合工程は、混合工程の終了後、温度を下げることなく引き続き160℃以上に加熱してもよいし、混合工程の終了後、炭素数14以上の高級アルコールが付着したシリカ粒子を一旦室温に戻したものを使用してもよい。
 結合工程における反応温度は、160℃以上であり、165℃以上がより好ましく、170℃以上がさらに好ましい。また、上限は特に限定されないが、原料である炭素数14以上の高級アルコールの熱分解を抑制するという観点から、300℃以下であることが好ましく、250℃以下がより好ましい。
 160℃以上の加熱により、シリカ粒子表面のシラノール基と炭素数14以上の高級アルコールの水酸基が脱水縮合して共有結合を形成するので、両者の結合度が高くなる。
 加熱方法としては、従来公知の方法で行えばよく、例えば、加熱装置で加熱を行う方法が挙げられ、例として、ヘンシェルミキサー、ダブルコーンドライヤー、ナウターミキサー、振動乾燥機等が挙げられる。加熱処理は、不活性ガス雰囲気下、もしくは減圧下で行うことが好ましい。
 結合工程における反応時間は、2~8時間であることが好ましい。反応時間が2時間以上であると、シリカ粒子と炭素数14以上の高級アルコールとの縮合反応が適切に進行し、8時間以下であると、生産性高く製造できる。
 反応時間は、2時間以上であることが好ましく、3時間以上がより好ましく、また、8時間以下であることが好ましく、7時間以下がより好ましい。
 加熱後は、放冷することにより、炭素数14以上の高級アルコールが担持された疎水性シリカ粒子が得られる。
(疎水性シリカ粒子の用途)
 本発明の疎水性シリカ粒子は、例えば、皮膚用組成物、口腔用組成物、吸着剤組成物、医薬組成物等に好適に用いられる。皮膚用組成物としては、例えば、ファンデーション,ボディ用パウダー,口紅等の化粧料、シャンプー,リンス等の洗髪料、洗顔料、化粧水等が挙げられる。具体的にはファンデーション、フェイスカラー、ルースパウダー、コンシーラーなどの化粧料に本発明の疎水性シリカ粒子を用いることで、柔らかさやしっとり感を付与することができる。また、口紅、リキッドファンデーション、クリーム、乳液、化粧水等に使用することで、べたつきの防止、油系製剤への分散性の改善、保存安定性の向上がみられる。シャンプーやリンスなどの洗髪料では油汚れの吸着除去作用がみられる。口腔用組成物としては、例えば、粉歯磨、練歯磨等が挙げられる。具体的には、これらに本発明の疎水性シリカ粒子を加えることで、よりマイルドな研磨作用を与えることができる。
 以下、本発明を実施例により詳しく説明するが、本発明はこれらに限定されるものではない。以下の説明において、共通する成分は同じものを用いている。また、特に説明のない限り、「%」は「質量%」を表す。例1~22は実施例であり、例23~25は比較例である。
<評価方法>
 例1~25の疎水性シリカ粒子及び疎水性シリカ粒子の製造に用いた原料シリカ粒子について行った評価を下記に示す。
(比表面積及び細孔容積)
 原料シリカ粒子の比表面積と細孔容積は、比表面積・細孔分布測定装置「BELSORP-miniII」(商品名、マイクロトラック・ベル株式会社製)を用いた窒素吸着法に基づくBET法とBJH法により求めた。
(平均粒子径)
 原料シリカ粒子の平均粒子径ならびに疎水性シリカ粒子の平均粒子径は、走査型電子顕微鏡(日本電子株式会社製の電界放出型走査電子顕微鏡「JSM-6701F」)により測定した。粒子は、カーボンテープに固定された後にプラチナ(Pt)コートを施されたものを使用し、加速電圧1kV、エミッション電流10μAにより撮影し、1000倍で撮影したSEM画像から粒子を無作為に30個抽出し、X軸定方向径(クルムバイン径)の平均値を求めた。
(円形度)
 円形度は、走査型電子顕微鏡(日本電子株式会社製の電界放出型走査電子顕微鏡「JSM-6701F」)により10000倍で撮影した粒子のX軸方向最大径とY軸方向最大径を求め、値が大きい方向の径を長径、値が小さい方向の径を短径とし、それぞれの値をもとに下記式から算出した。
  円形度=短径(μm)/長径(μm)
(吸油量)
 吸油量はJIS K 5101-13-1(2004)にしたがって測定した。
(炭素含有量)
 疎水性シリカ粒子の炭素含有量は、元素分析計(パーキンエルマー社製、CHN-2400)を用いて測定した。試料量は10mg、燃焼条件は925℃で60秒間とし、生成した二酸化炭素からフロンタルクロマトグラフ法により炭素含有量を測定した。
(担持密度)
 疎水性シリカ粒子における高級アルコールの担持密度は、上記「炭素含有量」の測定で得られた値をもとに以下の式により算出した。
Figure JPOXMLDOC01-appb-M000002
(結合度)
 疎水性シリカ粒子1gを秤量したビーカーに、テトラヒドロフラン10mLを加え、超音波洗浄機で5分間分散させた。得られたスラリーを濾過し、さらに20mLのテトラヒドロフランおよび20mLのヘキサンで洗浄し、70℃で乾燥させた。
 洗浄後の疎水性シリカ粒子について、元素分析計(パーキンエルマー社製、CHN-2400)を用いて含有される炭素含有量を測定した。洗浄前の疎水性シリカ粒子における炭素含有量も同様に測定し、それぞれ得られた値をもとに、以下の式(1)から結合度を算出した。
  結合度(%)=洗浄後の疎水性シリカ粒子の炭素含有量(%)/洗浄前の疎水性シリカ粒子の炭素含有量(%)×100 ・・・(1)
(動摩擦係数及び静摩擦係数)
 摩擦係数は、静・動摩擦測定機「TL201Tt」(商品名、株式会社トリニティーラボ製)を用いて求めた。接触子はウレタン製疑似指とし、荷重は30gfとし、走査距離は40mmとし、走査速度は10mm/secとし、塗布基板は人工皮革サプラーレ(イデアテックスジャパン株式会社製)とし、各例の疎水性シリカ粒子の塗布量は単位面積あたりの嵩容積として0.8μL/cmとして摩擦係数を測定した。得られた摩擦係数のうち、1,000msecから4,000msecの範囲の平均値を動摩擦係数とした。
 また、静摩擦係数は、0msecから1,000msecの範囲の最大値より求めた。
(撥水性)
 8gの水を量り取ったビーカー(10mL容)に、0.05gを秤量した疎水性シリカ粒子を静かに添加した。その後、20回タッピングして水表面に疎水性シリカ粒子を十分に広げ、その状態のまま室温で静置した。
 1日ごとに溶液を目視観察し、溶液の懸濁・沈降した粒子の状態を評価した。評価の基準は以下のとおりであり、実用上、Aの評価であるのが好ましい。なお、観察は7日間行った。
 〔評価基準〕
 A(良好):静置後7日経っても粒子が懸濁又は沈降していなかった。
 B(やや良):静置後2~6日後に粒子が懸濁又は沈降していた。
 C(不良):静置後1日後に粒子が懸濁又は沈降していた。
(油中安定性)
 4mLの水と4mLの流動パラフィンを同一容器(13.5mL容の蓋つき透明ボトル)に量り取り、この2層溶液中に疎水性シリカ粒子0.05gを加えて、20回シェイクした。その後、室温で静置した。
 1日ごとに溶液を目視観察し、水相中に沈降した粒子の有無を評価した。評価の基準は以下のとおりであり、実用上、Aの評価であるのが好ましい。なお、観察は7日間行った。
 〔評価基準〕
 A(良好):静置後7日経っても粒子が水相中に沈降していなかった。
 B(やや良):静置後2~6日後に粒子が水相中に沈降していた。
 C(不良):静置後1日後に粒子が水相中に沈降していた。
(例1)
 表1に示す条件にて、ベヘニルアルコールが担持された疎水性シリカ粒子を得た。
 シリカ粒子(AGCエスアイテック株式会社製「サンスフェアNP-30」、平均粒子径4.4μm、比表面積48m/g、吸油量38mL/100g)30gとベヘニルアルコール(花王株式会社製「カルコール220-80」)0.9gを密閉容器に量り取り、95℃に設定した湯浴(ウォーターバス)中に投入し、2時間加熱混合した。
 次に、混合物10gを量り取り、減圧下で、180℃、4時間、加熱を行った。その後、放冷して回収し、9.9gの疎水性シリカ粒子を得た。
(例2)
 ベヘニルアルコールの使用量を0.75gとした以外は例1と同様にして、疎水性シリカ粒子を作製した。
(例3)
 シリカ粒子をAGCエスアイテック株式会社製「サンスフェアL-51」(平均粒子径6.2μm、比表面積301m/g、吸油量168mL/100g)に変更し、シリカ粒子15gとベヘニルアルコール3.75gを用いた以外は例1と同様にして、疎水性シリカ粒子を作製した。
(例4)
 ベヘニルアルコールの使用量を3.0gとした以外は例3と同様にして、疎水性シリカ粒子を作製した。
(例5)
 混合物の加熱温度を160℃とした以外は例1と同様にして、疎水性シリカ粒子を作製した。
(例6)
 ベヘニルアルコールに代えてアラキジルアルコール(高級アルコール工業株式会社製「ハイノール 20SS」)を用いた以外は例1と同様にして、疎水性シリカ粒子を作製した。
(例7)
 ベヘニルアルコールに代えてデシルテトラデカノール(高級アルコール株式会社製「リソノール 24SP」)を用いた以外は例1と同様にして、疎水性シリカ粒子を作製した。
(例8)
 ベヘニルアルコールに代えてオクチルドデカノール(高級アルコール工業株式会社製「リソノール 20SP」)を用いた以外は例1と同様にして、疎水性シリカ粒子を作製した。
(例9)
 ベヘニルアルコールに代えてモノステアリン酸グリセロール(日光ケミカルズ株式会社製「NIKKOL MGS-F20V」)を用い、シリカ粒子20gとモノステアリン酸グリセロール0.8gを用いた以外は例1と同様にして、疎水性シリカ粒子を作製した。
(例10)
 ベヘニルアルコールに代えてモノステアリン酸エチレングリコール(日光ケミカルズ株式会社製「NIKKOL EGMS-70V」)を用い、シリカ粒子20gとモノステアリン酸エチレングリコール0.8gを用いた以外は例1と同様にして、疎水性シリカ粒子を作製した。
(例11)
 ベヘニルアルコールに代えてステアリン酸モノエタノールアミド(川研ファインケミカル株式会社製「アミゾール SME」)を用い、シリカ粒子20gとステアリン酸モノエタノールアミド0.8gを用いた以外は例1と同様にして、疎水性シリカ粒子を作製した。
(例12)
 ベヘニルアルコールに代えてセラキルアルコール(日光ケミカルズ株式会社製「NIKKOL セラキルアルコールV」)を用い、シリカ粒子20gとセラキルアルコール0.8gを用いた以外は例1と同様にして、疎水性シリカ粒子を作製した。
(例13)
 ベヘニルアルコールに代えてバチルアルコール(日光ケミカルズ株式会社製「NIKKOL バチルアルコール100」)を用い、シリカ粒子20gとバチルアルコール0.8gを用いた以外は例1と同様にして、疎水性シリカ粒子を作製した。
(例14)
 ベヘニルアルコールに代えてキミルアルコール(日光ケミカルズ株式会社製「NIKKOL キミルアルコール100」)を用い、シリカ粒子20gとキミルアルコール0.8gを用いた以外は例1と同様にして、疎水性シリカ粒子を作製した。
(例15)
 シリカ粒子をAGCエスアイテック株式会社製「サンスフェアL-51」(平均粒子径6.2μm、比表面積301m/g、吸油量168mL/100g)に変更し、ベヘニルアルコールに代えてセラキルアルコール(日光ケミカルズ株式会社製「NIKKOL セラキルアルコールV」)を用い、シリカ粒子20gとセラキルアルコール5.0gを用いた以外は例1と同様にして、疎水性シリカ粒子を作製した。
(例16)
 シリカ粒子をAGCエスアイテック株式会社製「FB-82」(平均粒子径7.2μm、比表面積142m/g、吸油量275mL/100g)に変更し、シリカ粒子10gとベヘニルアルコール1.75gを用いた以外は例1と同様にして、疎水性シリカ粒子を作製した。
(例17)
 ベヘニルアルコールの使用量を1.5gとした以外は例16と同様にして、疎水性シリカ粒子を作製した。
(例18)
 ベヘニルアルコールの使用量を1.25gとした以外は例16と同様にして、疎水性シリカ粒子を作製した。
(例19)
 ベヘニルアルコールの使用量を1.0gとした以外は例16と同様にして、疎水性シリカ粒子を作製した。
(例20)
 シリカ粒子をAGCエスアイテック株式会社製「サンスフェアL-52」(平均粒子径5.2μm、比表面積216m/g、吸油量292mL/100g)に変更し、シリカ粒子10gとベヘニルアルコール2.5gを用いた以外は例1と同様にして、疎水性シリカ粒子を作製した。
(例21)
 ベヘニルアルコールの使用量を2.25gとした以外は例20と同様にして、疎水性シリカ粒子を作製した。
(例22)
 ベヘニルアルコールの使用量を2.0gとした以外は例20と同様にして、疎水性シリカ粒子を作製した。
(例23)
 混合物の加熱温度を120℃とした以外は例1と同様にして、疎水性シリカ粒子を作製した。
(例24)
 混合物の加熱温度を140℃とした以外は例1と同様にして、疎水性シリカ粒子を作製した。
(例25)
 混合物の加熱温度を120℃とした以外は例3と同様にして、疎水性シリカ粒子を作製した。
 例1~例25の疎水性シリカ粒子に対して、円形度、平均粒子径、比表面積、吸油量、炭素含有量、高級アルコール担持密度、結合度、動摩擦係数及び静摩擦係数を測定し、撥水性と油中安定性の評価を行った。結果を表2に示す。
 なお、表2中の撥水性と油中安定性における日数は、粒子の懸濁又は沈殿が確認された経過日数を示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表2の結果より、例1~22の疎水性シリカ粒子は、結合度測定試験による高級アルコールの結合度が例23~25に比べて顕著に高く、シリカ粒子との高級アルコールの結合力が高いことがわかった。例1~22の疎水性シリカ粒子は、疎水性が十分に維持されており、撥水性及び油中安定性にも優れていた。
 また、例1、例5、例23と例24、並びに例4と例25の対比から、高級アルコールの原料シリカ粒子への結合度が高いと撥水性及び油中安定性に優れ、例10より、結合度が70%以上であると実用上望ましい撥水性及び油中安定性が得られることがわかった。
 本発明を詳細にまた特定の実施形態を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2020年12月25日出願の日本特許出願(特願2020-217209)及び2021年5月12日出願の日本特許出願(特願2021-081180)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (10)

  1.  シリカ粒子に炭素数19以上の高級アルコールが担持されており、以下の測定方法によって測定した前記高級アルコールの前記シリカ粒子への結合度が70%以上である疎水性シリカ粒子。
    測定方法:疎水性シリカ粒子1gをテトラヒドロフラン10mLに分散させ、分散状態を5分間維持した後にろ過した残渣を、テトラヒドロフラン20mL及びヘキサン20mLで洗浄し乾燥したとき、下記式(1)で表される洗浄前の疎水性シリカ粒子の炭素含有量に対する洗浄後の疎水性シリカ粒子の炭素含有量の割合を結合度とする。
     結合度(%)=洗浄後の疎水性シリカ粒子の炭素含有量(%)/洗浄前の疎水性シリカ粒子の炭素含有量(%)×100 ・・・(1)
  2.  前記高級アルコールの担持量が1.0μmol/m以上である、請求項1に記載の疎水性シリカ粒子。
  3.  円形度が0.95以上である、請求項1又は2に記載の疎水性シリカ粒子。
  4.  前記疎水性シリカ粒子の平均粒子径が1~500μmである、請求項1~3のいずれか1項に記載の疎水性シリカ粒子。
  5.  母材である前記シリカ粒子の比表面積が5~1000m/gである、請求項1~4のいずれか1項に記載の疎水性シリカ粒子。
  6.  吸油量が20mL/100g以上である、請求項1~5のいずれか1項に記載の疎水性シリカ粒子。
  7.  前記結合度が80%以上である、請求項1~6のいずれか1項に記載の疎水性シリカ粒子。
  8.  請求項1~7のいずれか1項に記載の疎水性シリカ粒子を含有する化粧料。
  9.  炭素数14以上の高級アルコールが付着したシリカ粒子を160℃以上で加熱する、疎水性シリカ粒子の製造方法。
  10.  炭素数14以上の高級アルコールとシリカ粒子を、実質的に溶媒を用いることなく加熱混合して、前記炭素数14以上の高級アルコールが付着したシリカ粒子を得る、請求項9に記載の疎水性シリカ粒子の製造方法。
PCT/JP2021/046393 2020-12-25 2021-12-15 疎水性シリカ粒子及びその用途、並びに疎水性シリカ粒子の製造方法 WO2022138404A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237021014A KR20230122605A (ko) 2020-12-25 2021-12-15 소수성 실리카 입자 및 그 용도, 그리고 소수성 실리카 입자의 제조 방법
JP2022572246A JPWO2022138404A1 (ja) 2020-12-25 2021-12-15
EP21910552.5A EP4269340A1 (en) 2020-12-25 2021-12-15 Hydrophobic silica particles, use of same, and method for producing hydrophobic silica particles
CN202180086977.8A CN116783252A (zh) 2020-12-25 2021-12-15 疏水性二氧化硅粒子及其用途、以及疏水性二氧化硅粒子的制造方法
US18/338,725 US20230348283A1 (en) 2020-12-25 2023-06-21 Hydrophobic silica particles, use of same, and method for producing hydrophobic silica particles

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-217209 2020-12-25
JP2020217209 2020-12-25
JP2021081180 2021-05-12
JP2021-081180 2021-05-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/338,725 Continuation US20230348283A1 (en) 2020-12-25 2023-06-21 Hydrophobic silica particles, use of same, and method for producing hydrophobic silica particles

Publications (1)

Publication Number Publication Date
WO2022138404A1 true WO2022138404A1 (ja) 2022-06-30

Family

ID=82159184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046393 WO2022138404A1 (ja) 2020-12-25 2021-12-15 疎水性シリカ粒子及びその用途、並びに疎水性シリカ粒子の製造方法

Country Status (5)

Country Link
US (1) US20230348283A1 (ja)
EP (1) EP4269340A1 (ja)
JP (1) JPWO2022138404A1 (ja)
KR (1) KR20230122605A (ja)
WO (1) WO2022138404A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008105918A (ja) * 2006-10-27 2008-05-08 Hakuto Co Ltd 疎水性シリカ
WO2018182107A1 (ko) 2017-03-31 2018-10-04 성균관대학교산학협력단 소수성 다공성 실리카 및 이의 제조 방법
JP2021081180A (ja) 2021-02-19 2021-05-27 日立グローバルライフソリューションズ株式会社 冷蔵庫

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008105918A (ja) * 2006-10-27 2008-05-08 Hakuto Co Ltd 疎水性シリカ
WO2018182107A1 (ko) 2017-03-31 2018-10-04 성균관대학교산학협력단 소수성 다공성 실리카 및 이의 제조 방법
JP2021081180A (ja) 2021-02-19 2021-05-27 日立グローバルライフソリューションズ株式会社 冷蔵庫

Also Published As

Publication number Publication date
KR20230122605A (ko) 2023-08-22
EP4269340A1 (en) 2023-11-01
US20230348283A1 (en) 2023-11-02
JPWO2022138404A1 (ja) 2022-06-30

Similar Documents

Publication Publication Date Title
JP6758663B2 (ja) 油性固形クレンジング化粧料
JPWO2014061689A1 (ja) 化粧料用表面処理球状炭酸カルシウム粒子とその製造方法
JP2007197412A (ja) 有機珪素化合物による処理粉体
JP6214387B2 (ja) 油中水型乳化化粧料
JP6209442B2 (ja) 油中水型乳化化粧料
TW200837016A (en) Hydrophobic zinc oxide powder
JP3852942B2 (ja) 水中分散性化粧料用粉体
WO2022138404A1 (ja) 疎水性シリカ粒子及びその用途、並びに疎水性シリカ粒子の製造方法
JP5930775B2 (ja) 化粧料
JPWO2011111828A1 (ja) 化粧料組成物
JP2020142969A (ja) 球状シリカエアロゲル粉体の製造方法
JP5930776B2 (ja) 化粧料
JP2020075845A (ja) 六方晶窒化ホウ素粉末
JP4274963B2 (ja) 固形粉末化粧料
JP4274964B2 (ja) 油性固型化粧料
JPH11100311A (ja) 固形化粧料
CN116783252A (zh) 疏水性二氧化硅粒子及其用途、以及疏水性二氧化硅粒子的制造方法
JP6796082B2 (ja) 翡翠の粉末粒子が多孔性高分子に含浸された複合粉体、これを含む化粧料組成物及びこの製造方法
JP2004352591A (ja) フッ素含有表面改質アルミナ粉体およびその用途
JP2005336056A (ja) 花粉吸着防止剤
JPH10279826A (ja) 処理粉体およびこれを含有する化粧料
JP2020200315A (ja) 大気有害物質の付着抑制方法
EP3930661A1 (en) Particulate amorphous mesoporous magnesium carbonate material
JP2023042827A (ja) 揮発成分担持シリカ組成物、それを用いた化粧料および忌避剤、並びに揮発成分担持シリカ組成物の製造方法
JP5290544B2 (ja) 撥水性微粒子シリカ被覆酸化亜鉛粉体およびその製造方法並びにそれを含有する化粧料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910552

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022572246

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180086977.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021910552

Country of ref document: EP

Effective date: 20230725