WO2022138151A1 - 金属充填微細構造体及び金属充填微細構造体の製造方法 - Google Patents

金属充填微細構造体及び金属充填微細構造体の製造方法 Download PDF

Info

Publication number
WO2022138151A1
WO2022138151A1 PCT/JP2021/045023 JP2021045023W WO2022138151A1 WO 2022138151 A1 WO2022138151 A1 WO 2022138151A1 JP 2021045023 W JP2021045023 W JP 2021045023W WO 2022138151 A1 WO2022138151 A1 WO 2022138151A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
diameter
insulating film
filled microstructure
metal portion
Prior art date
Application number
PCT/JP2021/045023
Other languages
English (en)
French (fr)
Inventor
吉則 堀田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2022572096A priority Critical patent/JPWO2022138151A1/ja
Priority to CN202180086340.9A priority patent/CN116670337A/zh
Publication of WO2022138151A1 publication Critical patent/WO2022138151A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/20Electrolytic after-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/18After-treatment, e.g. pore-sealing
    • C25D11/24Chemical after-treatment

Definitions

  • the present invention relates to a metal-filled microstructure having a plurality of conductors penetrating in the thickness direction of the insulating film and provided in a state of being electrically insulated from each other, and a method for manufacturing the metal-filled microstructure, in particular, insulating.
  • the present invention relates to a metal-filled microstructure having a thick film and a method for manufacturing a metal-filled microstructure.
  • a structure in which a plurality of through holes provided in an insulating base material are filled with a conductive substance such as metal is one of the fields that have been attracting attention in nanotechnology in recent years.
  • a conductive substance such as metal
  • an anisotropic conductive member Is expected to be used.
  • An anisotropic conductive member is inserted between an electronic component such as a semiconductor element and a circuit board, and an electrical connection between the electronic component and the circuit board can be obtained simply by pressurizing the electronic component such as a semiconductor element.
  • It is widely used as an electrical connection member, an inspection connector for performing a functional inspection, and the like.
  • electronic components such as semiconductor elements are significantly downsized. Electronic components such as conventional wire bonding methods that directly connect wiring boards, flip chip bonding, thermocompression bonding, etc. may not be able to sufficiently guarantee the stability of electrical connections of electronic components.
  • An idiosyncratic conductive member is attracting attention as a connecting member.
  • Patent Document 1 one surface of an aluminum substrate is anodized, and an anode having a micropore existing in the thickness direction and a barrier layer existing at the bottom of the micropore on one surface of the aluminum substrate.
  • the barrier layer removal step of removing the barrier layer of the anodic oxide film after the anodic oxidation treatment step, and the electrolytic plating treatment after the barrier layer removal step the inside of the micropore is subjected to electrolytic plating treatment.
  • a method for manufacturing a metal-filled microstructure is described, which comprises a metal filling step of filling metal, and a substrate removing step of removing an aluminum substrate to obtain a metal-filled microstructure after the metal filling step.
  • the anodized film of Patent Document 1 is an insulating film.
  • An object of the present invention is to provide a metal-filled microstructure having a thick insulating film and a method for manufacturing a metal-filled microstructure.
  • one aspect of the present invention has an insulating film and a plurality of conductors penetrating in the thickness direction of the insulating film and provided in a state of being electrically insulated from each other.
  • the insulating film has a length of 100 ⁇ m or more in the thickness direction, and the plurality of conductors are each made of metal and are exposed on one surface in the thickness direction and the other surface in the thickness direction of the insulating film.
  • the present invention provides a metal-filled microstructure in which a first metal portion exposed on one surface and a second metal portion exposed on the other surface have different metals.
  • the plurality of conductors have different first diameters of the first metal portion exposed on one surface and second diameters of the second metal portion exposed on the other surface. It is preferable that the first metal part is made of Zn or Ni, and the second metal part is made of Cu.
  • the insulating film is preferably an anodized film.
  • Another aspect of the present invention includes a forming step of filling a plurality of through holes with a metal to form a conductor with respect to an insulating film having a plurality of through holes extending in the thickness direction.
  • the insulating film preferably has a length in the thickness direction of 100 ⁇ m or more.
  • the insulating film is preferably an anodized film.
  • a metal-filled microstructure in which a conductor is formed in a through hole of a thick insulating film. Further, according to the present invention, it is possible to manufacture a metal-filled microstructure by forming a conductor in a through hole of a thick insulating film.
  • FIG. 6 shows a first example of the metal-filled microstructure according to the embodiment of the present invention.
  • the metal-filled microstructure 20 is provided with a plurality of conductors that penetrate the insulating film 14 and the insulating film 14 in the thickness direction Dt and are electrically insulated from each other. It has 16.
  • the plurality of conductors 16 are each made of metal.
  • the plurality of conductors 16 are exposed on one surface of the insulating film 14 in the thickness direction Dt, for example, the back surface 14b, and the other surface in the thickness direction Dt, for example, the surface 14a.
  • the first metal portion 16a exposed on one surface, for example, the back surface 14b, and the second metal portion 16b exposed on the other surface, for example, the surface surface 14a in the thickness direction Dt of the insulating film 14 are configured.
  • the metal to be used is different.
  • the first metal portion 16a is an exposed portion exposed on one surface, for example, the back surface 14b.
  • the second metal portion 16b is an exposed portion exposed on the other surface, for example, the surface 14a.
  • the insulating film 14 has a length in the thickness direction Dt, that is, a thickness of 100 ⁇ m or more. Further, the insulating film 14 has an electrical insulating property, and is composed of, for example, an anodic oxide film 15.
  • the plurality of conductors 16 are arranged on the insulating film 14 in a state of being electrically insulated from each other.
  • the insulating film 14 has a plurality of through holes 12 penetrating in the thickness direction Dt.
  • Conductors 16 are provided in the plurality of through holes 12.
  • the second metal portion 16b is exposed on the surface 14a of the insulating film 14 in the thickness direction Dt.
  • the first metal portion 16a is exposed on the back surface 14b of the insulating film 14 in the thickness direction Dt.
  • the conductor 16 By forming the conductor 16 into a laminated structure having a first metal portion 16a and a second metal portion 16b, even if the thickness ht of the insulating film 14 is thick, the length corresponds to the thickness of the insulating film 14. In addition, the conductor 16 can be lengthened.
  • the fact that the first metal portion 16a is exposed on the front surface 14a means that the end portion of the first metal portion 16a is at least at the position of the back surface 14b of the insulating film 14. For example, the end portion of the first metal portion 16a and the back surface 14b of the insulating film 14 are in a flush state.
  • the fact that the second metal portion 16b is exposed on the surface 14a means that the end portion of the second metal portion 16b is at least at the position of the surface 14a of the insulating film 14. For example, the end portion of the second metal portion 16b and the surface 14a of the insulating film 14 are in a flush state.
  • the first metal portion 16a may protrude from the back surface 14b, or the second metal portion 16b may protrude from the front surface 14a, for example.
  • the protrusion of the conductor 16 from the front surface 14a or the back surface 14b of the insulating film 14 is also included in the above-mentioned exposure.
  • the first metal portion 16a may be recessed with respect to the back surface 14b, or the second metal portion 16b may be recessed with respect to the front surface 14a.
  • the fact that the conductor 16 is recessed with respect to the front surface 14a or the back surface 14b of the insulating film 14 is also included in the above-mentioned exposure.
  • the recessing with respect to the front surface 14a or the back surface 14b of the insulating film 14 means that the tip of the second metal portion 16b is located at a position of a maximum of 1 ⁇ m from the front surface 14a of the insulating film 14 to the back surface 14b side. It means that the tip of the first metal portion 16a is at a position of a maximum of 1 ⁇ m from the back surface 14b of the insulating film 14 to the front surface 14a side.
  • the metal-filled microstructure 20 has anisotropic conductivity in which the conductors 16 are arranged in a state of being electrically insulated from each other.
  • the metal-filled microstructure 20 has conductivity in the thickness direction Dt, but the conductivity in the direction parallel to the surface 14a of the insulating film 14 is sufficiently low.
  • the outer shape of the metal-filled microstructure 20 is not particularly limited, and is, for example, rectangular or circular. The outer shape of the metal-filled microstructure 20 can be shaped according to the application, ease of manufacture, and the like.
  • the insulating film is composed of an anodic oxide film of aluminum. Therefore, in the first example of the method for manufacturing a structure, first, as shown in FIG. 1, an aluminum substrate 10 is prepared. The size and thickness of the aluminum substrate 10 are appropriately determined according to the thickness ht (see FIG. 6) of the insulating film 14 of the finally obtained metal-filled microstructure 20 (see FIG. 6), the apparatus to be processed, and the like. It is a thing.
  • the aluminum substrate 10 is, for example, a rectangular plate material. It should be noted that the present invention is not limited to the aluminum substrate, and a metal substrate capable of forming the insulating film 14 having electrical insulating properties can be used.
  • the surface 10a (see FIG. 1) on one side of the aluminum substrate 10 is anodized.
  • the surface 10a (see FIG. 1) on one side of the aluminum substrate 10 is anodized, and as shown in FIG. 2, the insulating film 14 having a plurality of through holes 12 extending in the thickness direction Dt of the aluminum substrate 10 That is, the anodic oxide film 15 is formed.
  • a barrier layer 13 (see FIG. 2) is present at the bottom of each through hole 12.
  • the above-mentioned anodizing step is called an anodizing treatment step.
  • the insulating film 14 having the plurality of through holes 12 has the barrier layer 13 (see FIG. 2) at the bottom of the through holes 12, but the barrier layer 13 shown in FIG. 2 is removed.
  • an insulating film 14 (see FIG. 3) having a plurality of through holes 12 without the barrier layer 13 is obtained.
  • the step of removing the barrier layer 13 is referred to as a barrier layer removing step.
  • the barrier layer removing step for example, the barrier layer 13 of the insulating film 14 is removed by using an alkaline aqueous solution containing ions of metal M1 having a higher hydrogen overvoltage than aluminum, and the bottom surface 12c of the through hole 12 (see FIG. 3). Is exposed on the aluminum substrate 10.
  • the aluminum substrate 10 can be used as an electrode in the AC electrolytic plating method.
  • the forming step of forming the conductor 16 described above includes a first step of forming the first metal portion 16a and a second step of forming the second metal portion 16b, which are shown below.
  • one surface side of the anodic oxide film 15 which is the insulating film 14 in the thickness direction Dt is formed in the plurality of through holes 12, for example, as shown in FIG. 4, the back surface 14b of the insulating film 14 (FIG. 6) From the side, it is a step of forming the first metal portion 16a by using the AC electrolytic plating method.
  • the aluminum substrate 10 is used as an electrode, and a voltage is modulated in a sinusoidal manner at a predetermined frequency and applied to perform plating from the aluminum substrate 10 side of the insulating film 14.
  • the plating proceeds from the aluminum substrate 10 facing the bottom surface 12c of the through hole 12 as a starting point to form the first metal portion 16a.
  • the first metal portion 16a is formed, for example, to have a length of about 10 ⁇ m in the thickness direction Dt.
  • the first metal portion 16a formed on the bottom surface 12c of the through hole 12 is an exposed portion exposed on the back surface 14b as described above.
  • the second step is a step of forming the second metal portion 16b on the first metal portion 16a of the plurality of through holes 12 by using the DC electrolytic plating method.
  • the second metal portion 16b is formed up to the surface 14a of the insulating film 14.
  • the second metal portion 16b is exposed on the surface 14a of the insulating film 14.
  • the second metal portion 16b is an exposed portion exposed on the surface 14a.
  • the DC electrolytic plating method the aluminum substrate 10 is used as an electrode, and a DC voltage is applied to perform plating from the first metal portion 16a.
  • plating proceeds from the first metal portion 16a as a starting point to form the second metal portion 16b.
  • the length of the second metal portion 16b in the thickness direction Dt is the length obtained by subtracting the length of the first metal portion 16a in the thickness direction Dt from the thickness of the insulating film 14. Therefore, the length of the second metal portion 16b in the thickness direction Dt is determined by the thickness of the insulating film 14 and the length of the first metal portion 16a in the thickness direction Dt.
  • the conductive body 16 is formed, and the conductive body 16 is a laminated structure in which the second metal portion 16b is formed on the first metal portion 16a.
  • the diameter d of the conductor 16 is constant with no change in diameter in the thickness direction Dt.
  • the conductive body 16 is a laminated structure in which the second metal portion 16b is formed on the first metal portion 16a, but the conductive body 16 is limited to the configuration of the first metal portion 16a and the second metal portion 16b.
  • the other metal part may be one, or may have a plurality of different metal parts made of different metals.
  • the other metal portion may be the same metal as any one of the first metal portion 16a and the second metal portion 16b, or may be composed of different metals.
  • the aluminum substrate 10 is removed from the anodic oxide film 15 which is the insulating film 14.
  • the step of removing the aluminum substrate 10 from the anodized film 15 is called a substrate removing step.
  • the surface of the insulating film 14 on the side where the aluminum substrate 10 is provided is the back surface 14b.
  • the metal-filled microstructure 20 shown in FIG. 6 is obtained.
  • the first metal portion 16a is exposed on the back surface 14b of the insulating film 14, and the second metal portion 16b is exposed on the front surface 14a of the insulating film 14.
  • the surface 14a of the insulating film 14 on the side where the aluminum substrate 10 is not provided is partially removed in the thickness direction Dt, and the second metal portion 16b is the surface of the insulating film 14. It may be projected beyond 14a. That is, the conductor 16 may be projected from the surface 14a of the insulating film 14.
  • the step of projecting the conductor 16 from the surface 14a of the insulating film 14 is referred to as a surface metal projecting step.
  • the step of projecting the conductor 16 from the back surface 14b of the insulating film 14 is referred to as a back surface metal projecting step.
  • the above-mentioned front surface metal protrusion step and back surface metal protrusion step may have both steps, but may have one of the front surface metal protrusion step and the back surface metal protrusion step.
  • the front surface metal projecting process and the back surface metal projecting process correspond to the "projection process", and the front surface metal projecting process and the back surface metal projecting process are both projecting processes.
  • FIGS. 7 to 11 are schematic cross-sectional views showing a second example of the method for manufacturing a metal-filled microstructure according to the embodiment of the present invention in order of steps.
  • FIGS. 7 to 11 the same components as those shown in FIGS. 1 to 6 are designated by the same reference numerals, and detailed description thereof will be omitted.
  • FIG. 11 shows a second example of the metal-filled microstructure according to the embodiment of the present invention.
  • the metal-filled microstructure 20a shown in FIG. 11 is different from the metal-filled microstructure 20 shown in FIG. 6 in that the through hole 12 has a larger diameter, and the other configurations are the same.
  • the plurality of conductors 16 are respectively on one surface, for example, the first diameter d1 of the first metal portion 16a exposed on the back surface 14b, and on the other surface, for example, the surface 14a.
  • the exposed second metal portion 16b is different from the second diameter d2.
  • the first diameter d 1 ⁇ the second diameter d 2 .
  • the enlarged diameter portion 12d of the through hole 12 is, for example, cylindrical, and its side surface is parallel to the thickness direction Dt. For example, if the first diameter d 1 is 60 nm, the second diameter d 2 is 70 nm.
  • the second example of the method for manufacturing a metal-filled microstructure differs from the first example of the method for manufacturing a metal-filled microstructure in that it has a diameter-expanding step for expanding the diameter of the through hole 12.
  • the steps other than the above are the same as in the first example of the method for manufacturing a metal-filled microstructure.
  • the insulating film 14 having a plurality of through holes 12 after the barrier layer removing step shown in FIG. 7 is subjected to the above-mentioned AC electrolytic plating method. As shown in FIG. 8, the first metal portion 16a is formed inside the through hole 12.
  • the step of forming the first metal portion 16a is the first step.
  • the first metal portion 16a has, for example, a length of about 10 ⁇ m in the thickness direction Dt.
  • the insulating film 14 shown in FIG. 7 has the same configuration as the insulating film 14 shown in FIG.
  • a diameter-expanding step of expanding the diameter of the through-hole 12 is carried out for the through-hole 12.
  • the diameter-expanding step is a step of expanding the hole diameter of the region where the first metal portion 16a is not formed in the through hole 12.
  • the diameter-expanding portion 12d is formed in the through hole 12 by the diameter-expanding step.
  • a step 12e is generated by the enlarged diameter portion 12d and the portion 12f on which the first metal portion 16a is formed.
  • the above-mentioned portion 12f is a part of the through hole 12 before the diameter expansion.
  • the pore-wide treatment is a treatment in which the anodized oxide film 15 which is an insulating film 14 is immersed in an acid aqueous solution or an alkaline aqueous solution to dissolve the anodized oxide film 15 and expand the pore diameter of the through hole 12.
  • An aqueous solution of an inorganic acid such as sulfuric acid, phosphoric acid, nitric acid, hydrochloric acid or a mixture thereof, or an aqueous solution of sodium hydroxide, potassium hydroxide, lithium hydroxide or the like can be used.
  • a second metal portion 16b is formed on the enlarged diameter portion 12d of the through hole 12 and on the first metal portion 16a by using a DC electrolytic plating method. As a result, the conductor 16 is formed.
  • the formation of the second metal portion 16b described above is the second step.
  • the aluminum substrate 10 is removed from the anodized film 15 to obtain the metal-filled microstructure 20a shown in FIG.
  • one of the above-mentioned front surface metal protrusion step and back surface metal protrusion step may be carried out, or both steps may be carried out. good.
  • the metal-filled microstructure 20a shown in FIG. 11 has a structure in which the conductive body 16 projects from at least one of the front surface 14a and the back surface 14b of the insulating film 14.
  • FIGS. 12 to 14 are schematic cross-sectional views showing a third example of the method for manufacturing a metal-filled microstructure according to the embodiment of the present invention in order of steps.
  • FIGS. 12 to 14 the same components as those shown in FIGS. 7 to 11 are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the metal-filled microstructure obtained in the third example of the method for manufacturing the metal-filled microstructure is the same as the second example of the metal-filled microstructure shown in FIG. 11 above.
  • the third example of the method for manufacturing the metal-filled microstructure differs from the second example of the method for manufacturing the metal-filled microstructure in the timing of carrying out the diameter-expanding step for expanding the through hole.
  • the steps other than the above are the same as the second example of the method for manufacturing the metal-filled microstructure.
  • a third example of the method for manufacturing a metal-filled microstructure is a diameter-expanding step of expanding the diameter of the through-hole 12 with respect to the insulating film 14 having a plurality of through-holes 12 after the barrier layer removing step shown in FIG. To carry out. That is, in the third example of the method for manufacturing the metal-filled microstructure, the through hole 12 is expanded in diameter before the first metal portion 16a is formed on the bottom surface 12c of the through hole 12 (before the first step). ..
  • the diameter-expanding step is a step of expanding the hole diameter of the region where the first metal portion 16a is not formed in the through hole 12. As shown in FIG.
  • the diameter-expanding portion 12d is formed in the through hole 12 by the diameter-expanding step.
  • a first metal portion 16a is formed in the non-expanded portion 12f of the through hole 12 by using an AC electrolytic plating method (first step). ).
  • the enlarged diameter portion 12d creates a step 12e with a region where the first metal portion 16a is formed.
  • the above-mentioned portion 12f is a part of the through hole 12 before the diameter expansion.
  • the length of the portion 12f in the thickness direction Dt is appropriately determined according to, for example, the length of the first metal portion 16a, and is, for example, 10 ⁇ m.
  • a second metal portion 16b is formed on the enlarged diameter portion 12d of the through hole 12 and on the first metal portion 16a by using a DC electrolytic plating method (second step). As a result, the conductor 16 is formed.
  • the aluminum substrate 10 is removed from the anodized film 15 to obtain the metal-filled microstructure 20a shown in FIG.
  • the diameter expanding step is before the first step of forming the first metal portion 16a, or the first step of forming the first metal portion 16a and the second step of forming the second metal portion 16b. It can be carried out between steps.
  • the diameter expansion step between the first step of forming the first metal portion 16a and the second step of forming the second metal portion 16b because the first metal portion 16a is present.
  • the diameter of the enlarged diameter portion 12d of the through hole 12 can be easily controlled as compared with the case where the diameter expanding step is performed before the first step of forming the first metal portion 16a.
  • [Fourth example of metal-filled microstructure] 15 to 18 are schematic cross-sectional views showing a fourth example of the method for manufacturing a metal-filled microstructure according to an embodiment of the present invention in order of steps.
  • FIGS. 15 to 18 the same components as those shown in FIGS. 1 to 6 are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the metal-filled microstructure 20b shown in FIG. 18 has a different shape of the enlarged diameter portion 12g of the through hole 12 from the metal-filled microstructure 20a shown in FIG. 11, and the other configurations are the metal shown in FIG. It is the same as the filled microstructure 20a.
  • the enlarged diameter portion 12g has a conical trapezoidal shape, and its side surface is inclined with respect to the thickness direction Dt.
  • the pore diameter of the enlarged diameter portion 12g increases from the back surface 14b of the insulating film 14 toward the front surface 14a. Therefore, the plurality of conductors 16 are different from the first diameter d1 of the first metal portion 16a exposed on the back surface 14b and the second diameter d2 of the second metal portion 16b exposed on the front surface 14a.
  • the first diameter d 1 ⁇ the second diameter d 2 . Also in this case, for example, when the first diameter d 1 is 60 nm, the second diameter d 2 is 70 nm.
  • the fourth example of the method for manufacturing the metal-filled microstructure differs from the second example of the method for manufacturing the metal-filled microstructure in that the timing for carrying out the diameter-expanding step for expanding the through hole is different, and further.
  • the shape of the diameter-expanded portion 12g formed in the diameter-expanding step is different, and the other steps are the same as the second example of the method for manufacturing the metal-filled microstructure.
  • the enlarged diameter portion 12g has a conical stand shape.
  • a diameter-expanding step of expanding the diameter of the through-hole 12 is carried out for the insulating film 14 having the plurality of through-holes 12 after the barrier layer removing step shown in FIG. 7.
  • a conical stand-shaped diameter-expanding portion 12g is formed in the through hole 12 by the diameter-expanding step.
  • the diameter of the enlarged diameter portion 12g of the enlarged diameter portion 12g increases from the back surface 14b of the insulating film 14 toward the front surface 14a.
  • a first metal portion 16a is formed in the non-expanded portion 12f of the through hole 12 by using an AC electrolytic plating method (first step).
  • a second metal portion 16b is formed on the enlarged diameter portion 12g of the through hole 12 and on the first metal portion 16a by using a DC electrolytic plating method (second step).
  • the conductor 16 is formed.
  • the aluminum substrate 10 is removed from the anodized film 15 to obtain the metal-filled microstructure 20b shown in FIG.
  • the timing for carrying out the diameter-expanding step for expanding the through hole is before forming the first metal portion 16a (before the first step).
  • the present invention is not limited to this, and as in the second example of the method for manufacturing a metal-filled microstructure, after forming the first metal portion 16a (after the first step) and after the second metal.
  • the diameter expansion step of the through hole 12 may be carried out before forming the portion 16b (before the second step).
  • 19 to 21 are schematic cross-sectional views showing another example of the method for producing an anodized film of the metal-filled microstructure according to the embodiment of the present invention in order of steps.
  • the same components as those shown in FIGS. 1 to 3 are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the aluminum substrate 10 is removed from the aluminum substrate 10 on which the anodic oxide film 15 is formed as the insulating film 14 shown in FIG.
  • an insulating film 14 having a plurality of through holes 12 formed therein is obtained. Since the above-mentioned substrate removing step can be used for removing the aluminum substrate 10, detailed description thereof will be omitted.
  • the through hole 12 of the insulating film 14 is enlarged in diameter, the barrier layer 13 shown in FIG. 19 is removed, and a plurality of through holes 12 penetrating the insulating film 14 in the thickness direction Dt are formed as shown in FIG. do. Since the above-mentioned barrier layer removing step can be used for removing the barrier layer 13, detailed description thereof will be omitted. A pore-wide treatment can also be used to remove the barrier layer 13. The pore wide processing is as described above.
  • a metal layer 30 is formed on the entire surface of the back surface 14b of the insulating film 14 shown in FIG. 20, for example, by using a plating method on the entire surface of the back surface 14b of the insulating film 14 as shown in FIG.
  • the formation of the metal layer 30 is not limited to the plating method, and the metal layer 30 may be formed by, for example, a vapor deposition method or a sputtering method. However, from the viewpoint of the formation time of the metal layer 30, it is preferable to use a plating method having a higher film forming speed than the vapor deposition method and the sputtering method.
  • the metal layer 30 is a member corresponding to the aluminum substrate 10 described above, and is preferably made of the same metal as the aluminum substrate 10.
  • the metal layer 30 can be made of the same metal as the aluminum substrate 10 described above.
  • the metal layer 30 is provided on the back surface 14b side of the insulating film 14.
  • the metal layer 30 covers all the openings on the back surface 14b side of the insulating film 14 of the through hole 12.
  • the plating easily proceeds when the through hole 12 is filled with metal by metal plating, and the first metal portion 16a is easily formed.
  • the first metal portion 16a and the second metal portion 16b are formed inside the through hole 12 of the insulating film 14 as described above to form a conductor. 16 is formed.
  • the insulating film has an electrical insulating property, and is made of, for example, an inorganic material. For example, one having an electrical resistivity of about 10 14 ⁇ ⁇ cm can be used.
  • “consisting of an inorganic material” is a regulation for distinguishing from a polymer material, and is not limited to an insulating base material composed only of an inorganic material, but an inorganic material as a main component (50% by mass). The above).
  • the insulating film is composed of, for example, an anodic oxide film having electrical insulating properties.
  • the insulating film may be made of, for example, a metal oxide, a metal nitride, glass, silicon carbide, ceramics such as silicon nitride, a carbon base material such as diamond-like carbon, polyimide, a composite material thereof, or the like. ..
  • a ceramic material or an inorganic material containing 50% by mass or more of a carbon material may be formed on an organic material having through holes.
  • the length of the insulating film 14 in the thickness direction Dt that is, the thickness ht of the insulating film 14 is 100 ⁇ m or more.
  • the upper limit of the thickness ht of the insulating film 14 is not particularly limited, but is preferably 200 to 250 ⁇ m. When the upper limit of the thickness ht of the insulating film 14 is 200 to 250 ⁇ m, for example, it is suppressed that the processing time of the anodizing treatment becomes long, and further, it is suppressed that the time required for forming the conductor 16 becomes long. To.
  • the thickness ht of the insulating film 14 is obtained by cutting the metal-filled microstructure 20 with a FIB in the thickness direction Dt and taking a surface photograph (magnification of 50,000 times) of the cross section with a field radiation scanning electron microscope (FE-SEM). ) was photographed, and the length corresponding to the thickness of the insulating film 14 was measured at 10 points, which is an average value.
  • FE-SEM field radiation scanning electron microscope
  • the insulating film is composed of, for example, an anodic oxide film having electrical insulating properties.
  • anodic oxide film for example, an aluminum anodic oxide film is used because micropores having a desired average diameter are formed and through holes and conductors are easily formed as described above.
  • the anodic oxide film of aluminum is not limited, and an anodic oxide film of valve metal can be used. Therefore, valve metal is used as the metal substrate.
  • examples of the valve metal include, for example, the above-mentioned aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, antimony and the like.
  • an anodized aluminum film is preferable because it has good dimensional stability and is relatively inexpensive. Therefore, it is preferable to manufacture the structure using an aluminum substrate.
  • the thickness of the anodizing film is the same as the thickness ht of the insulating film 14 described above, and is 100 ⁇ m or more.
  • the upper limit of the thickness of the anodizing film is the same as the thickness ht of the insulating film 14.
  • the metal substrate is used for manufacturing a metal-filled microstructure, and is a substrate for forming an anodized film.
  • a metal substrate on which an anodic oxide film can be formed is used, and a metal substrate composed of the above-mentioned valve metal can be used.
  • an aluminum substrate is used as the metal substrate because it is easy to form an anodized film as the anodized film.
  • the aluminum substrate used to form the insulating film 14 is not particularly limited, and specific examples thereof include a pure aluminum plate; an alloy plate containing aluminum as a main component and containing a trace amount of a foreign element; low-purity aluminum (for example, for example).
  • the surface on one side on which the anodizing film is formed by the anodizing treatment preferably has an aluminum purity of 99.5% by mass or more, more preferably 99.9% by mass or more, and 99. It is more preferably .99% by mass or more.
  • the aluminum purity is in the above range, the regularity of the arrangement of the micropores formed by the anodizing treatment becomes sufficient. That is, the regularity of the arrangement of the through holes is sufficient.
  • the aluminum substrate is not particularly limited as long as it can form an anodized film, and for example, JIS (Japanese Industrial Standards) 1050 material is used.
  • the surface of one side of the aluminum substrate to be anodized is previously heat-treated, degreased and mirror-finished.
  • the heat treatment, the degreasing treatment, and the mirror finish treatment the same treatments as those described in paragraphs [0044] to [0054] of JP-A-2008-270158 can be applied.
  • the mirror finish treatment before the anodic oxidation treatment is, for example, electrolytic polishing, and for the electrolytic polishing, for example, an electrolytic polishing liquid containing phosphoric acid is used.
  • anodizing process For the anodizing treatment, a conventionally known method can be used, but from the viewpoint of increasing the regularity of the arrangement of micropores, that is, the arrangement of through holes, and ensuring the idiosyncratic conductivity of the metal-filled microstructure. It is preferable to use the self-regulation method or constant voltage processing.
  • the self-regularization method and the constant voltage treatment of the anodizing treatment the same treatments as those described in paragraphs [0056] to [0108] and [FIG. 3] of JP-A-2008-270158 are performed. Can be applied.
  • the treatment time of the anodizing treatment is appropriately determined by the thickness of the anodized film to be formed. When the thickness is as thick as 100 ⁇ m or more, the treatment time of the anodizing treatment becomes long.
  • the method for producing a metal-filled microstructure may include a holding step.
  • the holding step is a voltage of 95% or more and 105% or less of the holding voltage selected from the range of 1 V or more and less than 30% of the voltage in the above-mentioned anodizing treatment step after the above-mentioned anodizing treatment step for a total of 5 minutes or more.
  • This is the process of holding.
  • the holding step is a total of 95% or more and 105% or less of the holding voltage selected from the range of 1 V or more and less than 30% of the voltage in the above-mentioned anodizing treatment step after the above-mentioned anodizing treatment step.
  • This is a step of performing electrolytic treatment for 5 minutes or more.
  • the "voltage in the anodizing treatment” is a voltage applied between the aluminum and the counter electrode, and for example, if the electrolysis time by the anodizing treatment is 30 minutes, the voltage maintained for 30 minutes. The average value.
  • the voltage in the holding step is 5% or more and 25% or less of the voltage in the anodizing process. It is preferably present, and more preferably 5% or more and 20% or less.
  • the total holding time in the holding step is preferably 5 minutes or more and 20 minutes or less, more preferably 5 minutes or more and 15 minutes or less, and 5 minutes or more. It is more preferably 10 minutes or less.
  • the holding time in the holding step may be 5 minutes or more in total, but is preferably 5 minutes or more continuously.
  • the voltage in the holding step may be set by continuously or stepwise reducing the voltage from the voltage in the anodic oxidation treatment step to the voltage in the holding step, but for the reason of further improving the in-plane uniformity, the anodic oxidation treatment is performed. It is preferable to set the voltage to 95% or more and 105% or less of the above-mentioned holding voltage within 1 second after the completion of the step.
  • the above-mentioned holding step can also be performed continuously with the above-mentioned anodizing treatment step, for example, by lowering the electrolytic potential at the end of the above-mentioned anodizing treatment step.
  • the same electrolytic solution and treatment conditions as those of the above-mentioned conventionally known anodizing treatment can be adopted.
  • the anodic oxide film having a plurality of micropores has a barrier layer (not shown) at the bottom of the micropores as described above. As described above, it has a barrier layer removing step of removing the barrier layer.
  • the barrier layer removing step is a step of removing the barrier layer of the anodic oxide film by using, for example, an alkaline aqueous solution containing ions of a metal M1 having a hydrogen overvoltage higher than that of aluminum.
  • the barrier layer removing step described above the barrier layer is removed, and a conductor layer made of the metal M1 is formed at the bottom of the micropores.
  • the hydrogen overvoltage means the voltage required for hydrogen to be generated.
  • the hydrogen overvoltage of aluminum (Al) is ⁇ 1.66 V (Journal of the Chemical Society of Japan, 1982, (8)). , P1305-1313).
  • Metal M1 having a higher hydrogen overvoltage than that of aluminum and the value of the hydrogen overvoltage thereof are shown below.
  • the barrier layer removing step may be a step of removing the barrier layer of the anodized film and exposing a part of the substrate to the bottom of the through hole.
  • the barrier layer removing step is not particularly limited to the above-mentioned method, and for example, the barrier layer is electrochemically dissolved at a potential lower than the potential in the above-mentioned anodizing treatment of the above-mentioned anodizing treatment step.
  • electrolytic removal treatment Method of removing the barrier layer by etching
  • etching removal treatment Method of removing the barrier layer by etching
  • etching removal treatment Method of removing the barrier layer by etching
  • a method of removing the remaining barrier layer by an etching removal treatment a pore wide treatment or the like can be mentioned.
  • the pore wide processing is as described above.
  • the above-mentioned electrolytic removal treatment is not particularly limited as long as it is an electrolytic treatment performed at a potential lower than the potential (electrolytic potential) in the above-mentioned anodic oxidation treatment of the above-mentioned anodic oxidation treatment step.
  • the above-mentioned electrolytic dissolution treatment can be continuously performed with the above-mentioned anodizing treatment, for example, by lowering the electrolytic potential at the end of the above-mentioned anodizing treatment step.
  • the same electrolytic solution and treatment conditions as those of the above-mentioned conventionally known anodizing treatment can be adopted except for the conditions other than the electrolytic potential.
  • the above-mentioned electrolytic removal treatment and the above-mentioned anodizing treatment are continuously performed as described above, it is preferable to perform the treatment using the same electrolytic solution.
  • the electrolytic potential in the above-mentioned electrolysis removal treatment is preferably lowered continuously or stepwise (step-like) to a potential lower than the electrolysis potential in the above-mentioned anodizing treatment.
  • the reduction width (step width) when the electrolytic potential is gradually lowered is preferably 10 V or less, more preferably 5 V or less, and 2 V or less from the viewpoint of the withstand voltage of the barrier layer. It is more preferable to have it.
  • the voltage drop rate when the electrolytic potential is continuously or stepwise lowered is preferably 1 V / sec or less, more preferably 0.5 V / sec or less, and 0.2 V / sec, from the viewpoint of productivity and the like. Seconds or less is more preferable.
  • the above-mentioned etching removal treatment is not particularly limited, but may be a chemical etching treatment that dissolves using an acid aqueous solution or an alkaline aqueous solution, or may be a dry etching treatment.
  • the structure after the above-mentioned anodic oxidation treatment step is immersed in an acid aqueous solution or an alkaline aqueous solution, and the inside of the micropores is filled with the acid aqueous solution or the alkaline aqueous solution, and then anodic oxidation is performed. Only the barrier layer can be selectively dissolved by a method of contacting the surface of the film on the opening side of the micropore with a pH buffer solution or the like.
  • an acid aqueous solution when used, it is preferable to use an aqueous solution of an inorganic acid such as sulfuric acid, phosphoric acid, nitric acid, hydrochloric acid, or oxalic acid, or a mixture thereof.
  • concentration of the aqueous acid solution is preferably 1 to 10% by mass.
  • the temperature of the aqueous acid solution is preferably 15 to 80 ° C, more preferably 20 to 60 ° C, and further preferably 30 to 50 ° C.
  • an alkaline aqueous solution when used, it is preferable to use at least one alkaline aqueous solution selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide.
  • the concentration of the alkaline aqueous solution is preferably 0.1 to 5% by mass.
  • the temperature of the alkaline aqueous solution is preferably 10 to 60 ° C, more preferably 15 to 45 ° C, and further preferably 20 to 35 ° C.
  • 50 g / L, 40 ° C. phosphoric acid aqueous solution, 0.5 g / L, 30 ° C. sodium hydroxide aqueous solution, 0.5 g / L, 30 ° C. potassium hydroxide aqueous solution and the like are preferably used. Be done.
  • As the pH buffer solution a buffer solution corresponding to the above-mentioned acid aqueous solution or alkaline aqueous solution can be appropriately used.
  • the immersion time in the acid aqueous solution or the alkaline aqueous solution is preferably 5 to 120 minutes, more preferably 8 to 120 minutes, further preferably 8 to 90 minutes, and 10 to 90 minutes. It is particularly preferable to have it. Of these, 10 to 60 minutes is preferable, and 15 to 60 minutes is more preferable.
  • a first metal portion is formed in a plurality of through holes from one surface side in the thickness direction of the insulating film by using an AC electrolytic plating method. It has 1 step and a 2nd step of forming a 2nd metal part on the 1st metal part of a plurality of through holes by using a DC electrolytic plating method.
  • the first metal part and the second metal part are formed in this order.
  • the first metal part is formed by using the AC electrolytic plating method.
  • the second metal portion is formed by using the DC electrolytic plating method.
  • the first metal portion is formed first when the conductor is formed.
  • the first metal portion serves as a seed layer for forming the second metal portion, and the second metal portion is formed starting from the first metal portion.
  • the first metal portion is not limited to being composed of pure metal, and may be composed of an alloy.
  • the first metal portion is composed of, for example, Zn, Ni, Co, Cr, Sn, Cu, Ag, Au and alloys thereof.
  • the first metal portion is preferably composed of Zn or Ni.
  • the length of the first metal portion 16a is preferably less than 10% of the length of the conductor 16. For example, when the length of the conductor 16 is 100 ⁇ m, the length of the first metal portion 16a is preferably less than 10 ⁇ m. Further, the length of the first metal portion 16a is preferably 2% or more of the length of the conductor 16. For example, when the length of the conductor 16 is 100 ⁇ m, the length of the first metal portion 16a is preferably 2 ⁇ m or more.
  • the second metal portion is formed after the formation of the first metal portion.
  • the second metal portion is formed inside the through hole and on the first metal portion.
  • the second metal portion has a longer length in the thickness direction than the first metal portion. Further, when the through hole has an enlarged diameter, the second metal portion is formed in the enlarged diameter portion.
  • the second metal portion is not limited to being composed of pure metal, and may be composed of an alloy.
  • the second metal portion is composed of, for example, Zn, Ni, Co, Cr, Sn, Cu, Ag, Au and alloys thereof.
  • the second metal portion is preferably made of Cu.
  • the length of the second metal portion 16b is the length obtained by subtracting the length of the first metal portion 16a from the length of the conductor 16, but it is preferably more than 90% of the length of the conductor 16. For example, when the length of the conductor 16 is 100 ⁇ m, the length of the second metal portion 16b is preferably more than 90 ⁇ m. Further, the length of the second metal portion 16b is preferably less than 98% of the length of the conductor 16. For example, when the length of the conductor 16 is 100 ⁇ m, the length of the second metal portion 16b is preferably less than 98 ⁇ m.
  • the metal constituting the first metal portion and the second metal portion is different.
  • the difference between the above-mentioned first metal part and the second metal part is that the constituent elements are different in the case of a single metal when comparing the two metals of the first metal part and the second metal part. It means that the types of are different.
  • the first metal part and the second metal part is an alloy, it means that the types of the elements of the main component are different when the main components having a content of 50% by mass or more are compared.
  • the fact that the two metals are of the same type means that when the two metals are compared, the types of the constituent elements are the same in the case of a single metal.
  • the first metal part and the second metal part are taken out, and the first metal part and the second metal part are fluorescent, respectively.
  • XRF X-ray
  • the above-mentioned first metal portion is formed by using an AC electrolytic plating method.
  • a voltage is modulated in a sinusoidal manner at a predetermined frequency and applied.
  • the waveform at the time of voltage modulation is not limited to a sine wave, and may be, for example, a square wave, a triangular wave, a sawtooth wave, or a reverse sawtooth wave.
  • Ni is used for the first metal portion as the plating solution
  • a nickel (Ni) plating solution obtained by adding water to nickel sulfate (II) and boric acid can be used as the nickel (Ni) plating solution.
  • a small amount of aluminum sulfate may be added (about 0.1 mol) to the nickel (Ni) plating solution.
  • Ni nickel
  • a plating solution obtained by adding zinc sulfate to an aqueous aluminum sulfate solution can be used as the zinc (Zn) plating solution.
  • the processing time by the AC electrolytic plating method is calculated in advance, for example, and the length of the first metal portion in the thickness direction Dt is adjusted.
  • a DC electrolytic plating method is used as a method for forming the above-mentioned second metal portion inside the through hole and on the first metal portion.
  • the second metal portion has a longer length in the thickness direction than the first metal portion. Therefore, the processing time of the second metal portion by the DC electrolytic plating method is calculated in advance, for example, and the length of the second metal portion in the thickness direction is adjusted.
  • the metal when the metal is filled to form the second metal portion by using the DC electrolytic plating method, it is necessary to allow a rest time during pulse electrolysis or constant potential electrolysis.
  • the rest time is required to be 10 seconds or more, preferably 30 to 60 seconds. It is also desirable to add ultrasonic waves to promote the agitation of the electrolyte.
  • the electrolytic voltage is usually 20 V or less, preferably 10 V or less, but it is preferable to measure the precipitation potential of the target metal in the electrolytic solution to be used in advance and perform constant potential electrolysis within the potential of + 1 V.
  • the plating solution contains metal ions, and a conventionally known plating solution is used depending on the metal to be filled.
  • the main component of the solid content is preferably copper sulfate, and for example, a mixed aqueous solution of copper sulfate, sulfuric acid and hydrochloric acid is used.
  • an aqueous solution of copper sulfate is generally used for precipitating copper, but the concentration of copper sulfate is preferably 1 to 300 g / L, more preferably 100 to 200 g / L. preferable.
  • the precipitation can be promoted by adding hydrochloric acid to the plating solution.
  • the hydrochloric acid concentration is preferably 10 to 20 g / L.
  • the main component of the solid content is that the proportion of the electrolytic solution in the solid content is 20% by mass or more, and for example, copper sulfate is contained in the solid content of the electrolytic solution in an amount of 20% by mass or more. That is.
  • the plating solution preferably contains a surfactant.
  • a surfactant known ones can be used.
  • Sodium lauryl sulfate which is conventionally known as a surfactant to be added to the plating solution, can be used as it is.
  • Both ionic (cationic / anionic / bidirectional) and nonionic (nonionic) hydrophilic portions can be used, but the point of avoiding the generation of bubbles on the surface of the object to be plated.
  • a cation beam activator is desirable.
  • the concentration of the surfactant in the plating solution composition is preferably 1% by mass or less.
  • a support may be provided on the insulating film 14, for example.
  • the support preferably has the same outer shape as the insulating film 14. By attaching a support, handleability is increased.
  • Diameter expansion process This is a step of expanding the diameter of the through hole, and the diameter of the through hole is increased by the diameter expansion step.
  • a second metal portion is formed in the diameter-expanded portion expanded by the diameter-expanding step.
  • the diameter expansion step it is preferable to expand the diameter to 110 to 130% with respect to the diameter of the original through hole.
  • the diameter after expansion is preferably 66 to 78 nm.
  • the diameter of the above-mentioned cylindrical enlarged diameter portion 12d (see FIG. 11), that is, the second diameter d 2 (see FIG. 11) is 66 to 78 nm.
  • a chemical etching process or a dry etching process can be used in the diameter expansion step.
  • the chemical etching treatment for example, the insulating film is immersed in a treatment liquid that dissolves the insulating film to form an enlarged diameter portion.
  • the insulating film is an aluminum anodic oxide film
  • an alkaline aqueous solution or an acid aqueous solution is used as the treatment liquid.
  • the dry etching process the insulating film is exposed to a gas that dissolves the insulating film to form an enlarged diameter portion.
  • a Cl 2 / Ar mixed gas is used as the gas.
  • the diameter expansion step may be carried out before the first step or between the first step and the second step.
  • the shape of the enlarged diameter portion is not limited to the above-mentioned cylindrical shape and conical trapezoidal shape, and may be other shapes.
  • the shape of the enlarged diameter portion may be, for example, a shape in which the diameter of the enlarged diameter portion gradually increases from the back surface side of the insulating film toward the front surface.
  • the method of bringing the above-mentioned acid aqueous solution or alkaline aqueous solution into contact with the insulating film 14 is not particularly limited, and examples thereof include a dipping method and a spraying method. Of these, the dipping method is preferable.
  • an aqueous acid solution When an aqueous acid solution is used, it is preferable to use an aqueous solution of an inorganic acid such as sulfuric acid, phosphoric acid, nitric acid and hydrochloric acid, or a mixture thereof. Of these, an aqueous solution containing no chromic acid is preferable because it is excellent in safety.
  • the concentration of the aqueous acid solution is preferably 1 to 10% by mass.
  • the temperature of the aqueous acid solution is preferably 25 to 60 ° C.
  • an alkaline aqueous solution it is preferable to use at least one alkaline aqueous solution selected from the group consisting of sodium hydroxide, potassium hydroxide and lithium hydroxide.
  • the concentration of the alkaline aqueous solution is preferably 0.1 to 5% by mass.
  • the temperature of the alkaline aqueous solution is preferably 20 to 35 ° C. Specifically, for example, a 50 g / L, 40 ° C. phosphoric acid aqueous solution, a 0.5 g / L, 30 ° C. sodium hydroxide aqueous solution, or a 0.5 g / L, 30 ° C. potassium hydroxide aqueous solution is preferably used. ..
  • the immersion time in the acid aqueous solution or the alkaline aqueous solution is preferably 8 to 120 minutes, more preferably 10 to 90 minutes, and even more preferably 15 to 60 minutes.
  • the soaking time means the total of each soaking time when the soaking treatment for a short time is repeated.
  • a cleaning treatment may be performed between the immersion treatments.
  • the conductor 16 is projected from the front surface 14a or the back surface 14b of the insulating film 14, but the conductor 16 is preferably projected from the front surface 14a or the back surface 14b of the insulating film 14 by 10 nm to 1000 nm, preferably 50 nm to 500 nm. It is more preferable to make it protrude. That is, the amount of protrusion of the protrusion from the front surface 14a and the amount of protrusion of the conductor 16 from the back surface 14b of the protrusion are preferably 10 nm to 1000 nm, more preferably 50 nm to 500 nm, respectively.
  • the cross section of the metal-filled microstructure was observed with an electrolytic discharge scanning electron microscope at a magnification of 20,000 times, and the height of the protrusion of the conductor was measured at 10 points. The average value.
  • the inside of the through hole 12 is filled with a conductive substance such as metal, and then the insulating film 14 and the end portion of the conductive substance such as metal are used. It is preferable to selectively remove the anodic oxide film after processing the anodic oxide film so as to have the same planar shape.
  • heat treatment can be performed for the purpose of reducing the strain in the conductor 16 generated by the metal filling.
  • the heat treatment is preferably carried out in a reducing atmosphere from the viewpoint of suppressing the oxidation of the metal, specifically, the oxygen concentration is preferably 20 Pa or less, and more preferably carried out under vacuum.
  • the vacuum means a state of a space in which at least one of the gas density and the atmospheric pressure is lower than that of the atmosphere. Further, it is preferable that the heat treatment is performed while applying stress to the insulating film 14 for the purpose of straightening.
  • a resin layer may be formed to cover the surface of the insulating film in which the conductor is exposed.
  • the resin layer forming step is a step carried out on the metal-filled microstructure.
  • the resin layer can be provided from the viewpoint of protecting the conductor and further improving the transportability.
  • the resin layer contains a heat-removable adhesive.
  • the resin layer is more preferably a film with an adhesive layer whose adhesiveness is weakened by heat treatment and which can be peeled off.
  • the film with an adhesive layer whose adhesiveness is weakened by the above-mentioned heat treatment and which can be peeled off include a heat-removable resin layer.
  • the method of attaching the above-mentioned film with an adhesive layer is not particularly limited, and the film can be attached using a conventionally known surface protective tape affixing device or laminator. The resin layer will be described below.
  • the metal-filled microstructures 20, 20a, 20b are wound into a roll with the resin layer 34 (see FIG. 23). It may have a winding process.
  • the winding step as shown in FIG. 22, the metal-filled microstructures 20, 20a, and 20b can be supplied in a state of being wound into a roll around the winding core 32.
  • the winding method in the above-mentioned winding step is not particularly limited, and examples thereof include a method of winding on a winding core 32 (see FIG. 22) having a predetermined diameter and a predetermined width. In the roll-shaped state shown in FIG.
  • the resin layer 34 (see FIG. 23) is removed.
  • the metal-filled microstructures 20, 20a, and 20b can be used as the anisotropic conductive member.
  • the production method of the present invention includes a polishing step, a surface smoothing step, a protective film forming treatment, and a washing treatment described in paragraphs [0049] to [0057] of International Publication No. 2015/029881. You may have.
  • the diameter d of the conductor 16 is more preferably 1 ⁇ m or less, further preferably 5 to 500 nm, further preferably 20 to 400 nm, further preferably 40 to 200 nm, and even more preferably 50 to 200 nm. Most preferably, it is 100 nm. Further, when the diameter of the conductor is expanded, the diameter of the conductor differs between one surface and the other surface. For example, the first diameter d 1 of the first metal portion 16a exposed on the back surface 14b and the second diameter d 2 of the second metal portion 16b exposed on the front surface 14a are different from each other, and the first diameter d 1 ⁇ first.
  • the diameter of 2 is d 2 .
  • the second diameter d 2 is 70 nm.
  • the first diameter d 1 is the same as the diameter d of the conductor 16 described above. It is preferable that the second diameter d 2 satisfies the first diameter d 1 ⁇ the second diameter d 2 and is the same as the diameter d of the above-mentioned conductor 16 except for the second diameter d 2.
  • the second diameter d 2 / first diameter d 1 is preferably 110 to 130%.
  • the density of the conductor 16 is preferably 20,000 pieces / mm 2 or more, more preferably 2 million pieces / mm 2 or more, further preferably 10 million pieces / mm 2 or more, and 50 million pieces / mm 2.
  • the number of pieces / mm 2 or more is particularly preferable, and the number of pieces / mm 2 or more is most preferable.
  • the center-to-center distance p (see FIG. 6) of each of the adjacent conductors 16 is preferably 20 nm to 500 nm, more preferably 40 nm to 200 nm, and further preferably 50 nm to 140 nm.
  • the diameter of the through hole 12 is obtained by photographing the surface of the insulating film 14 from directly above at a magnification of 100 to 10000 times using a scanning electron microscope. In the photographed image, at least 20 through holes having an annular shape around them are extracted, the diameters thereof are measured and used as the opening diameter, and the average value of these opening diameters is calculated as the average diameter of the through holes.
  • magnification the magnification in the above-mentioned range can be appropriately selected so that a photographed image capable of extracting 20 or more through holes can be obtained.
  • the maximum value of the distance between the ends of the through hole portion was measured.
  • the shape of the opening of the through hole is not limited to a substantially circular shape, when the shape of the opening is non-circular, the maximum value of the distance between the ends of the through hole portion is set as the opening diameter. Therefore, for example, even in the case of a through hole having a shape in which two or more through holes are integrated, this is regarded as one through hole, and the maximum value of the distance between the ends of the through hole portions is set as the opening diameter. ..
  • the distance between the conductors 16 in the insulating film 14 is preferably 5 nm to 800 nm, more preferably 10 nm to 200 nm, and even more preferably 20 nm to 60 nm.
  • the insulating film 14 sufficiently functions as an electrically insulating partition wall of the conductive body 16.
  • the distance between the conductors means the width between the adjacent conductors, and the cross section of the metal-filled microstructure is observed with an electrolytic discharge scanning electron microscope at a magnification of 200,000 times, and the adjacent conductors are adjacent to each other. The average value measured at 10 points.
  • the protrusion is a part of the conductor and is columnar.
  • the protruding portion is preferably cylindrical because the contact area with the joining target can be increased.
  • the average length of the protrusion is preferably 30 nm to 500 nm, and the upper limit is more preferably 100 nm or less.
  • the average length of the protruding portion is measured by acquiring a cross-sectional image of the protruding portion using a field emission scanning electron microscope as described above, and measuring the height of the protruding portion at 10 points each based on the cross-sectional image. It is the average value.
  • the metal-filled microstructure is cut in the thickness direction Dt and cut using a field emission scanning electron microscope (FE-SEM). It is an average value obtained by observing the cross section and measuring 10 points corresponding to each size.
  • FE-SEM field emission scanning electron microscope
  • the resin layer is provided on at least one of the front surface and the back surface of the metal-filled microstructure, and protects the exposed conductor.
  • the resin material constituting the above-mentioned resin layer include an ethylene-based copolymer, a polyamide resin, a polyester resin, a polyurethane resin, a polyolefin-based resin, an acrylic resin, and a cellulose-based resin.
  • the above-mentioned resin layer is preferably a film with a peelable adhesive layer, and is adhered by heat treatment or ultraviolet exposure treatment. It is more preferable that the film has an adhesive layer, which has a weak property and can be peeled off.
  • the above-mentioned film with an adhesive layer is not particularly limited, and examples thereof include a heat-peeling type resin layer and an ultraviolet (ultraviolet) peeling type resin layer.
  • the heat-peeling type resin layer has adhesive strength at room temperature and can be easily peeled off only by heating, and most of them mainly use effervescent microcapsules or the like.
  • Specific examples of the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer include a rubber-based pressure-sensitive adhesive, an acrylic-based pressure-sensitive adhesive, a vinyl alkyl ether-based pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, a polyester-based pressure-sensitive adhesive, and a polyamide-based pressure-sensitive adhesive. , Urethane-based pressure-sensitive adhesives, styrene-diene block copolymer-based pressure-sensitive adhesives, and the like.
  • the UV peeling type resin layer has a UV curable adhesive layer, and the adhesive strength is lost by curing, so that the resin layer can be peeled off.
  • the UV curable adhesive layer include a polymer in which a carbon-carbon double bond is introduced into the polymer side chain or the main chain or at the end of the main chain as the base polymer.
  • the base polymer having a carbon-carbon double bond it is preferable to use an acrylic polymer as a basic skeleton. Further, since the acrylic polymer is crosslinked, a polyfunctional monomer or the like can be contained as a monomer component for copolymerization, if necessary.
  • the base polymer having a carbon-carbon double bond can be used alone, but UV curable monomers or oligomers can also be blended. It is preferable to use a photopolymerization initiator in combination with the UV curable adhesive layer in order to cure it by UV irradiation.
  • Photopolymerization initiators include benzoin ether compounds; ketal compounds; aromatic sulfonyl chloride compounds; photoactive oxime compounds; benzophenone compounds; thioxanson compounds; camphorquinone; halogenated ketones; acylphosphinoxide; acyls. Phosphonate and the like can be mentioned.
  • ELP holders such as ELP DU-300, ELP DU-2385KS, ELP DU-2187G, ELP NBD-3190K, and ELP UE-2091J [registered trademark] (Nitto Denko).
  • the present invention is basically configured as described above. Although the metal-filled microstructure and the method for producing the metal-filled microstructure of the present invention have been described in detail above, the present invention is not limited to the above-described embodiment, and various types are described within a range not deviating from the gist of the present invention. Of course, it may be improved or changed.
  • the materials, reagents, amounts of substances and their ratios, operations and the like shown in the following examples can be appropriately changed as long as they do not deviate from the gist of the present invention. Therefore, the scope of the present invention is not limited to the following examples.
  • the metal-filled microstructures of Examples 1 to 9 and the metal-filled microstructures of Comparative Examples 1 to 4 were produced.
  • the metal-filled microstructures of Examples 1 to 9 and Comparative Examples 1 to 4 were evaluated for metal filling uniformity with respect to through holes.
  • the evaluation results of metal filling uniformity are shown in Table 1 below. Hereinafter, the evaluation of metal filling uniformity will be described.
  • ⁇ Metal filling uniformity> The surface of the manufactured metal-filled microstructure was observed using an optical microscope, and the metal-filled microstructure was evaluated according to the evaluation criteria shown below. It should be noted that the part where the metal filling is insufficient becomes the surface of the anodized film and therefore looks white, which was used for the evaluation of the metal filling uniformity. That is, if the conductor is not sufficiently formed, it looks white because it becomes the surface of the anodized film. In the evaluation of the white part that looks white based on the equivalent circle diameter shown in the following evaluation criteria, the white part was visually judged while comparing with the scale bar in the field of view of the optical microscope. Of 1 to 5 according to the following evaluation criteria, 1 and 2 were evaluated as inferior.
  • Evaluation Criteria 5 "Does not meet any of the following evaluation criteria 1 to 4" 4: "The equivalent circle diameter of the white part having the largest equivalent circle diameter in the observation area is 5 ⁇ m or more and less than 10 ⁇ m" 3: "The equivalent circle diameter of the white part having the largest equivalent circle diameter in the observation area is 10 ⁇ m or more and less than 20 ⁇ m" 2: "The equivalent circle diameter of the white part having the largest equivalent circle diameter in the observation area is 20 ⁇ m or more and less than 50 ⁇ m" 1: "The equivalent circle diameter of the white part having the largest equivalent circle diameter in the observation area is 50 ⁇ m or more"
  • Examples 1 to 9 and Comparative Examples 1 to 4 will be described.
  • Examples 1 to 9 and Comparative Examples 1 to 4 in each column of the manufacturing process in Table 1 below, “Yes” is described for the performed process, and “-” is described for the non-implemented process. did.
  • the "diameter expansion process” of the manufacturing process in Table 1 below indicates the diameter expansion process.
  • AC electrolytic plating indicates a first step of forming a first metal portion.
  • DC electrolytic plating indicates a second step of forming a second metal portion.
  • the surface was scraped to an average thickness of 10 mm by a surface mill, kept at 550 ° C for about 5 hours, and when the temperature dropped to 400 ° C, the thickness was 2.7 mm using a hot rolling mill. It was made into a rolled plate. Further, after heat treatment was performed at 500 ° C. using a continuous annealing machine, the thickness was finished to 1.0 mm by cold rolling to obtain an aluminum substrate of JIS (Japanese Industrial Standards) 1050 material. After making this aluminum substrate 1030 mm wide, each of the following treatments was performed.
  • JIS Japanese Industrial Standards
  • the above-mentioned aluminum substrate was subjected to electrolytic polishing treatment using an electrolytic polishing liquid having the following composition under the conditions of a voltage of 25 V, a liquid temperature of 65 ° C., and a liquid flow rate of 3.0 m / min.
  • the cathode was a carbon electrode, and the power source was GP0110-30R (manufactured by Takasago Seisakusho Co., Ltd.).
  • the flow velocity of the electrolytic solution was measured using a vortex flow monitor FLM22-10PCW (manufactured by AS ONE Corporation).
  • Electrolytic polishing liquid composition ⁇ 85% by mass phosphoric acid (reagent manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 660 mL ⁇ Pure water 160mL ⁇ Sulfuric acid 150mL ⁇ Ethylene glycol 30mL
  • the aluminum substrate after the electrolytic polishing treatment was subjected to anodizing treatment by a self-regularization method according to the procedure described in JP-A-2007-204802.
  • the aluminum substrate after the electrolytic polishing treatment was subjected to pre-anodizing treatment for 1 hour with an electrolytic solution of 0.50 mol / L oxalic acid under the conditions of a voltage of 40 V, a liquid temperature of 16 ° C., and a liquid flow rate of 3.0 m / min. ..
  • the pre-anodized aluminum substrate was subjected to a film removal treatment by immersing it in a mixed aqueous solution of 0.2 mol / L chromic anhydride and 0.6 mol / L phosphoric acid (liquid temperature: 50 ° C.) for 12 hours. Then, again, anodizing was performed with an electrolytic solution of 0.50 mol / L oxalic acid under the conditions of a voltage of 40 V, a liquid temperature of 16 ° C., and a liquid flow rate of 3.0 m / min for a treatment time of 9 hours, and a film thickness of 100 ⁇ m. Anodized film was obtained.
  • the cathode was a stainless steel electrode, and GP0110-30R (manufactured by Takasago Seisakusho Co., Ltd.) was used as the power source.
  • a NeoCool BD36 manufactured by Yamato Kagaku Co., Ltd.
  • a pair stirrer PS-100 manufactured by EYELA Tokyo Rika Kikai Co., Ltd. was used as the stirring and heating device.
  • the flow velocity of the electrolytic solution was measured using a vortex flow monitor FLM22-10PCW (manufactured by AS ONE Corporation).
  • etching treatment was carried out using an aqueous sodium hydroxide solution (50 g / l) at 30 ° C. for 150 seconds to remove the barrier layer at the bottom of the through hole of the anodized film.
  • the average thickness of the anodized film after the barrier layer removing step was 100 ⁇ m.
  • the first metal part of Ni was formed by using the AC electrolytic plating method.
  • a nickel (Ni) plating solution having an temperature adjusted to 30 ° C. was used to form the first metal portion of Ni.
  • the nickel (Ni) plating solution is a solution obtained by adding water to 0.2 mol of nickel (II) sulfate and 0.5 mol of boric acid to make the total amount 1 liter.
  • a sine wave having a frequency of 50 Hz was used, the peak voltage was 18 V, and the electrolysis time was 10 minutes.
  • a small amount of aluminum sulfate was added to the nickel (Ni) plating solution (about 0.1 mol). After the AC electrolytic plating was completed, the product was thoroughly washed with water and then subjected to the next step.
  • the second metal portion was then formed by using a DC electrolytic plating method with an aluminum substrate as a cathode and platinum as a cathode. Specifically, by using a copper plating solution having the composition shown below and performing constant current electrolysis, a second metal portion made of copper is laminated inside the through hole and on the first metal portion. A metal-filled microstructure was prepared.
  • a plating apparatus manufactured by Yamamoto Plating Tester Co., Ltd. is used, and a power source (HZ-3000) manufactured by Hokuto Denko Co., Ltd. is used to perform cyclic voltammetry in the plating solution for precipitation. After confirming the potential, the treatment was performed under the conditions shown below.
  • ⁇ Substrate removal process> the aluminum substrate was dissolved and removed by immersing it in a mixed solution of copper chloride / hydrochloric acid to prepare a metal-filled microstructure having an average thickness of 100 ⁇ m.
  • the diameter of the conductors in the prepared metal-filled microstructure was 60 nm
  • the pitch between the conductors was 100 nm
  • the density of the conductors was 57.7 million pieces / mm 2 .
  • Example 2 was produced in the same manner as in Example 1 except that the diameter expansion step was carried out before forming the first metal portion as compared with Example 1.
  • the anodized film after the barrier layer removing step was immersed in an alkaline aqueous solution (KOH 0.1 mol / L) adjusted to a temperature of 25 ° C. The immersion time was 4 minutes.
  • the aluminum hydrate produced by the dissolution accompanying the expansion of the diameter of the through hole was immersed in a 0.5% sulfuric acid aqueous solution adjusted to a temperature of 30 ° C. for 30 seconds for neutralization and removal. After soaking, it was thoroughly washed with running water.
  • Example 3 is different from Example 2 in that the diameter expansion step is carried out after the formation of the first metal portion and before the formation of the second metal portion, and other than that, it is the same as that of Example 2.
  • the diameter expansion step was set to 70 nm.
  • the diameter before the diameter expansion step was 60 nm.
  • the first diameter d 1 on the back surface side of the conductor was 60 nm
  • the second diameter d 2 on the front surface side was 70 nm.
  • Example 4 was different from Example 1 in that the thickness of the metal-filled microstructure was 200 ⁇ m, and other than that, it was produced in the same manner as in Example 1.
  • the treatment time of the anodized film was set to 25 hours.
  • the diameter of the conductor was 60 nm.
  • Example 5 the diameter of the metal-filled microstructure was set to 200 ⁇ m as compared with Example 1, and the diameter expansion step was carried out after forming the first metal portion and before forming the second metal portion. Other than that, it was produced in the same manner as in Example 1.
  • the treatment time of the anodized film was set to 25 hours.
  • the anodized film after the barrier layer removing step was immersed in an alkaline aqueous solution (KOH 0.1 mol / L) adjusted to a temperature of 25 ° C. The immersion time was 4 minutes.
  • the aluminum hydrate produced by the dissolution accompanying the expansion of the diameter of the through hole was immersed in a 0.5% sulfuric acid aqueous solution adjusted to a temperature of 30 ° C. for 30 seconds for neutralization and removal. After soaking, it was thoroughly washed with running water.
  • the diameter expansion step the diameter after the diameter expansion was set to 70 nm.
  • the diameter before the diameter expansion step was 60 nm.
  • the first diameter d 1 on the back surface side of the conductor was 60 nm
  • the second diameter d 2 on the front surface side was 70 nm.
  • Example 6 was different from Example 5 in that the thickness of the metal-filled microstructure was 250 ⁇ m, and other than that, it was produced in the same manner as in Example 5.
  • the treatment time of the anodized film was set to 40 hours.
  • the diameter expansion step the diameter after the diameter expansion was set to 70 nm.
  • the diameter before the diameter expansion step was 60 nm.
  • the first diameter d 1 on the back surface side of the conductor was 60 nm
  • the second diameter d 2 on the front surface side was 70 nm.
  • Example 7 was different from Example 6 in that the first metal portion was formed of Zn, and other than that, it was produced in the same manner as in Example 6.
  • a zinc (Zn) plating solution whose temperature was adjusted to 30 ° C. was used.
  • the zinc (Zn) plating solution is a solution obtained by adding 0.1 mol of zinc sulfate to a 0.1 mol / L aluminum sulfate aqueous solution.
  • a sine wave having a frequency of 50 Hz was used, the peak voltage was 25 V, and the electrolysis time was 5 minutes.
  • the product was thoroughly washed with water and then subjected to the next step.
  • the diameter expansion step the diameter after the diameter expansion was set to 70 nm.
  • the diameter before the diameter expansion step was 60 nm.
  • the first diameter d 1 on the back surface side of the conductor was 60 nm
  • the second diameter d 2 on the front surface side was 70 nm.
  • Example 8 was produced in the same manner as in Example 5 except that the diameter expansion step was carried out before the formation of the first metal portion as compared with Example 5.
  • the diameter after the diameter expansion was set to 70 nm.
  • the diameter before the diameter expansion step was 60 nm.
  • the first diameter d 1 on the back surface side of the conductor was 60 nm
  • the second diameter d 2 on the front surface side was 70 nm.
  • Example 9 was produced in the same manner as in Example 6 except that the diameter expansion step was carried out before the formation of the first metal portion as compared with Example 6.
  • the diameter after the diameter expansion was set to 70 nm.
  • the diameter before the diameter expansion step was 60 nm.
  • the first diameter d 1 on the back surface side of the conductor was 60 nm
  • the second diameter d 2 on the front surface side was 70 nm.
  • Comparative Example 1 In Comparative Example 1, compared to Example 1, the thickness of the metal-filled microstructure was 20 ⁇ m, the first metal portion was not formed by the AC electrolytic plating method, and the treatment time of the anodic oxide film was long. No, other than that, it was prepared in the same manner as in Example 1. In Comparative Example 1, the treatment time of the anodized film was set to 1 hour. The conductor was formed using only the DC electrolytic plating method. In Comparative Example 1, the diameter of the conductor was 60 nm. (Comparative Example 2) Comparative Example 2 was produced in the same manner as in Comparative Example 1 except that the thickness of the metal-filled microstructure was 60 ⁇ m as compared with Comparative Example 1.
  • Comparative Example 2 the treatment time of the anodized film was set to 5 hours.
  • the diameter of the conductor was 60 nm.
  • Comparative Example 3 Comparative Example 3 was produced in the same manner as in Comparative Example 1 except that the thickness of the metal-filled microstructure was 100 ⁇ m as compared with Comparative Example 1.
  • the treatment time of the anodized film was 9 hours.
  • the diameter of the conductor was 60 nm.
  • Comparative Example 4 Comparative Example 4 was produced in the same manner as in Comparative Example 3 except that the diameter-expanding step was carried out before forming the first metal portion as compared with Comparative Example 3.
  • the diameter after the diameter expansion was set to 70 nm by the diameter expansion step.
  • the diameter before the diameter expansion step was 60 nm.
  • the first diameter d 1 on the back surface side of the conductor was 60 nm, and the second diameter d 2 on the front surface side was 70 nm.
  • Example 1 to 9 the metal filling uniformity was excellent as compared with Comparative Examples 1 to 4 even when the thickness of the metal-filled microstructure was 100 ⁇ m or more. That is, a thick metal-filled microstructure could be obtained.
  • Comparative Examples 1 and 2 have a thickness of less than 100 ⁇ m and are thin. In Comparative Examples 3 and 4 having a thickness of 100 ⁇ m, the metal filling uniformity is poor. As described above, in Comparative Examples 1 to 4, it was not possible to obtain a thick metal-filled microstructure. All of Examples 1 to 3 have a thickness of 100 ⁇ m, but Examples 2 and 3 having a diameter-expanding step have further excellent metal filling uniformity.
  • Example 4 the thickness was 200 ⁇ m, but in Examples 5 and 8 having the diameter expansion step, the metal filling uniformity was further excellent.
  • the metals constituting the first metal portion are different, but Ni is more preferable than Zn from the result of metal filling uniformity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Manufacturing Of Electrical Connectors (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

絶縁膜の厚みが厚い金属充填微細構造体及び金属充填微細構造体の製造方法を提供する。金属充填微細構造体は、絶縁膜と、絶縁膜の厚み方向に貫通し、互いに電気的に絶縁された状態で設けられた、複数の導通体とを有する。絶縁膜は厚み方向の長さが100μm以上である。複数の導通体は、それぞれ金属で構成され、かつ絶縁膜の厚み方向における一方の面及び厚み方向における他方の面に露出しており、導通体において、一方の面に露出する第1金属部と、他方の面に露出する第2金属部とは構成する金属が異なる。

Description

金属充填微細構造体及び金属充填微細構造体の製造方法
 本発明は、絶縁膜の厚み方向に貫通し、互いに電気的に絶縁された状態で設けられた複数の導通体を有する金属充填微細構造体及び金属充填微細構造体の製造方法に関し、特に、絶縁膜の厚みが厚い金属充填微細構造体及び金属充填微細構造体の製造方法に関する。
 絶縁性基材に設けられた複数の貫通孔に金属等の導電性物質が充填されてなる構造体は、近年ナノテクノロジーでも注目されている分野のひとつであり、例えば、異方導電性部材としての用途が期待されている。
 異方導電性部材は、半導体素子等の電子部品と回路基板との間に挿入し、加圧するだけで電子部品と回路基板間の電気的接続が得られるため、半導体素子等の電子部品等の電気的接続部材、及び機能検査を行う際の検査用コネクタ等として広く使用されている。
 特に、半導体素子等の電子部品は、ダウンサイジング化が顕著である。従来のワイヤーボンディングのような配線基板を直接接続する方式、フリップチップボンディング、及びサーモコンプレッションボンディング等では、電子部品の電気的な接続の安定性を十分に保証することができない場合があるため、電子接続部材として異方導電性部材が注目されている。
 例えば、特許文献1には、アルミニウム基板の片側の表面に陽極酸化処理を施し、アルミニウム基板の片側の表面に、厚み方向に存在するマイクロポアとマイクロポアの底部に存在するバリア層とを有する陽極酸化膜を形成する陽極酸化処理工程と、陽極酸化処理工程の後に、陽極酸化膜のバリア層を除去するバリア層除去工程と、バリア層除去工程の後に、電解めっき処理を施してマイクロポアの内部に金属を充填する金属充填工程と、金属充填工程の後に、アルミニウム基板を除去し、金属充填微細構造体を得る基板除去工程と、を有する金属充填微細構造体の製造方法が記載されている。なお、特許文献1の陽極酸化膜が絶縁膜である。
国際公開第2015/029881号
 上述の特許文献1の金属充填微細構造体の製造方法では、検討したところ、バリア層除去工程後の金属充填工程において、電解めっき処理の条件によっては、陽極酸化膜のマイクロポア、すなわち、貫通孔の内部への金属の充填が不十分となる。このため、陽極酸化膜の厚みが厚く、貫通孔の長さが長い場合には、貫通孔の内部に金属を十分に充填できない虞があり、長い導通体を形成できない可能性がある。結果として、絶縁膜の厚みが厚い金属充填微細構造体を製造できないことがあり、絶縁膜の厚膜化への対応が不十分である。
 本発明の目的は、絶縁膜の厚みが厚い金属充填微細構造体及び金属充填微細構造体の製造方法を提供することにある。
 上述の目的を達成するために、本発明の一態様は、絶縁膜と、絶縁膜の厚み方向に貫通し、互いに電気的に絶縁された状態で設けられた、複数の導通体とを有し、絶縁膜は、厚み方向の長さが100μm以上であり、複数の導通体は、それぞれ金属で構成され、かつ絶縁膜の厚み方向における一方の面及び厚み方向における他方の面に露出しており、導通体において、一方の面に露出する第1金属部と、他方の面に露出する第2金属部とは構成する金属が異なる、金属充填微細構造体を提供するものである。
 複数の導通体は、それぞれ一方の面に露出する第1金属部の第1の直径と、他方の面に露出する第2金属部の第2の直径とが異なることが好ましい。
 第1金属部は、Zn又はNiで構成され、第2金属部は、Cuで構成されることが好ましい。
 絶縁膜は、陽極酸化膜であることが好ましい。
 本発明の他の態様は、厚み方向に延在する複数の貫通孔を有する絶縁膜に対して、複数の貫通孔に金属を充填して、導通体を形成する形成工程を有し、形成工程は、複数の貫通孔に、それぞれ絶縁膜の厚み方向における一方の面側から、交流電解めっき法を用いて第1金属部を形成する第1の工程と、複数の貫通孔の第1金属部上に、直流電解めっき法を用いて第2金属部を形成する第2の工程とを有し、第1金属部と、第2金属部とは構成する金属が異なる、金属充填微細構造体の製造方法を提供するものである。
 第1の工程の前、又は第1の工程と第2の工程との間に、貫通孔を拡径する拡径工程を有することが好ましい。
 第1金属部は、Zn又はNiで構成され、第2金属部は、Cuで構成されることが好ましい。
 絶縁膜は、厚み方向の長さが100μm以上であることが好ましい。
 絶縁膜は、陽極酸化膜であることが好ましい。
 本発明によれば、厚みが厚い絶縁膜の貫通孔内に導通体が形成された金属充填微細構造体を提供できる。また、本発明によれば、厚みが厚い絶縁膜の貫通孔内に導通体を形成して金属充填微細構造体を製造することができる。
本発明の実施形態の金属充填微細構造体の製造方法の第1の例の一工程を示す模式的断面図である。 本発明の実施形態の金属充填微細構造体の製造方法の第1の例の一工程を示す模式的断面図である。 本発明の実施形態の金属充填微細構造体の製造方法の第1の例の一工程を示す模式的断面図である。 本発明の実施形態の金属充填微細構造体の製造方法の第1の例の一工程を示す模式的断面図である。 本発明の実施形態の金属充填微細構造体の製造方法の第1の例の一工程を示す模式的断面図である。 本発明の実施形態の金属充填微細構造体の製造方法の第1の例の一工程を示す模式的断面図である。 本発明の実施形態の金属充填微細構造体の製造方法の第2の例の一工程を示す模式的断面図である。 本発明の実施形態の金属充填微細構造体の製造方法の第2の例の一工程を示す模式的断面図である。 本発明の実施形態の金属充填微細構造体の製造方法の第2の例の一工程を示す模式的断面図である。 本発明の実施形態の金属充填微細構造体の製造方法の第2の例の一工程を示す模式的断面図である。 本発明の実施形態の金属充填微細構造体の製造方法の第2の例の一工程を示す模式的断面図である。 本発明の実施形態の金属充填微細構造体の製造方法の第3の例の一工程を示す模式的断面図である。 本発明の実施形態の金属充填微細構造体の製造方法の第3の例の一工程を示す模式的断面図である。 本発明の実施形態の金属充填微細構造体の製造方法の第3の例の一工程を示す模式的断面図である。 本発明の実施形態の金属充填微細構造体の製造方法の第4の例の一工程を示す模式的断面図である。 本発明の実施形態の金属充填微細構造体の製造方法の第4の例の一工程を示す模式的断面図である。 本発明の実施形態の金属充填微細構造体の製造方法の第4の例の一工程を示す模式的断面図である。 本発明の実施形態の金属充填微細構造体の製造方法の第4の例の一工程を示す模式的断面図である。 本発明の実施形態の金属充填微細構造体の陽極酸化膜の製造方法の他の例の一工程を示す模式的断面図である。 本発明の実施形態の金属充填微細構造体の陽極酸化膜の製造方法の他の例の一工程を示す模式的断面図である。 本発明の実施形態の金属充填微細構造体の陽極酸化膜の製造方法の他の例の一工程を示す模式的断面図である。 本発明の実施形態の金属充填微細構造体の供給形態の一例を示す模式的斜視図である。 本発明の実施形態の金属充填微細構造体の供給形態の一例を示す模式的斜視図である。
 以下に、添付の図面に示す好適実施形態に基づいて、本発明の金属充填微細構造体及び金属充填微細構造体の製造方法を詳細に説明する。
 なお、以下に説明する図は、本発明を説明するための例示的なものであり、以下に示す図に本発明が限定されるものではない。
 なお、以下において数値範囲を示す「~」とは両側に記載された数値を含む。例えば、εが数値ε~数値εとは、εの範囲は数値εと数値εを含む範囲であり、数学記号で示せばε≦ε≦εである。
 温度及び時間について、特に記載がなければ、該当する技術分野で一般的に許容される誤差範囲を含む。
 また、平行等も特に記載がなければ、該当する技術分野で一般的に許容される誤差範囲を含む。
[金属充填微細構造体の第1の例]
 図1~図7は本発明の実施形態の金属充填微細構造体の製造方法の第1の例を工程順に示す模式的断面図である。なお、図6が本発明の実施形態の金属充填微細構造体の第1の例を示す。
 金属充填微細構造体20は、例えば、図6に示すように、絶縁膜14と、絶縁膜14を厚み方向Dtに貫通し、互いに電気的に絶縁された状態で設けられた、複数の導通体16とを有する。複数の導通体16は、それぞれ金属で構成されている。かつ複数の導通体16は、絶縁膜14の厚み方向Dtにおける一方の面、例えば、裏面14b、及び厚み方向Dtにおける他方の面、例えば、表面14aに露出している。
 導通体16において、一方の面、例えば、裏面14bに露出する第1金属部16aと、絶縁膜14の厚み方向Dtにおける他方の面、例えば、表面14aに露出する第2金属部16bとは構成する金属が異なる。
 第1金属部16aが一方の面、例えば、裏面14bに露出する露出部である。第2金属部16bが他方の面、例えば、表面14aに露出する露出部である。
 金属充填微細構造体20において、絶縁膜14は、厚み方向Dtの長さ、すなわち、厚みが100μm以上である。また、絶縁膜14は、電気的な絶縁性を有するものであり、例えば、陽極酸化膜15で構成される。
 複数の導通体16は、絶縁膜14に、互いに電気的に絶縁された状態で配置されている。この場合、例えば、絶縁膜14は、厚み方向Dtに貫通する複数の貫通孔12を有する。複数の貫通孔12に導通体16が設けられている。導通体16は、例えば、第2金属部16bが絶縁膜14の厚み方向Dtにおける表面14aに露出している。また、導通体16は、例えば、第1金属部16aが絶縁膜14の厚み方向Dtにおける裏面14bに露出している。
 導通体16を、第1金属部16aと、第2金属部16bとを有する積層構造体とすることにより、絶縁膜14の厚みhtが厚くても、絶縁膜14の厚さに応じた長さに、導通体16を長くできる。
 ここで、第1金属部16aが表面14aに露出するとは、第1金属部16aの端部が、少なくとも絶縁膜14の裏面14bの位置にあることをいう。例えば、第1金属部16aの端部と、絶縁膜14の裏面14bとは面一の状態にある。
 また、第2金属部16bが表面14aに露出するとは、第2金属部16bの端部が、少なくとも絶縁膜14の表面14aの位置にあることをいう。例えば、第2金属部16bの端部と、絶縁膜14の表面14aとは面一の状態にある。
 導通体16は、例えば、第1金属部16aが裏面14bから突出してもよく、例えば、第2金属部16bが表面14aから突出してもよい。このように、導通体16が絶縁膜14の表面14a又は裏面14bから突出することも、上述の露出することに含まれる。
 導通体16は、例えば、第1金属部16aが裏面14bに対して凹んでいてもよく、第2金属部16bが表面14aに対して凹んでいてもよい。このように、導通体16が絶縁膜14の表面14a又は裏面14bに対して凹んでいることも、上述の露出することに含まれる。なお、絶縁膜14の表面14a又は裏面14bに対して凹んでいるとは、絶縁膜14の表面14aから裏面14b側に最大で1μmの位置に第2金属部16bの先端がある状態であり、絶縁膜14の裏面14bから表面14a側に最大で1μmの位置に第1金属部16aの先端がある状態であることをいう。
 金属充填微細構造体20は、導通体16が互いに電気的に絶縁された状態で配置された、異方導電性を有するものである。金属充填微細構造体20は、厚み方向Dtに導電性を有するが、絶縁膜14の表面14aに平行な方向における導電性が十分に低い。
 金属充填微細構造体20の外形は、特に限定されるものではなく、例えば、矩形、又は円形である。金属充填微細構造体20の外形は、用途、作製しやすさ等に応じた形状とすることができる。
[金属充填微細構造体の製造方法の第1の例]
 金属充填微細構造体の製造方法の第1の例では、絶縁膜がアルミニウムの陽極酸化膜で構成されるものを例にして説明する。アルミニウムの陽極酸化膜を形成するために、アルミニウム基板を用いる。このため、構造体の製造方法の第1の例では、まず、図1に示すように、アルミニウム基板10を用意する。
 アルミニウム基板10は、最終的に得られる金属充填微細構造体20(図6参照)の絶縁膜14の厚みht(図6参照)、加工する装置等に応じて大きさ及び厚みが適宜決定されるものである。アルミニウム基板10は、例えば、矩形状の板材である。なお、アルミニウム基板に限定されるものではなく、電気的な絶縁性を有する絶縁膜14を形成できる金属基板を用いることができる。
 次に、アルミニウム基板10の片側の表面10a(図1参照)を陽極酸化処理する。これにより、アルミニウム基板10の片側の表面10a(図1参照)が陽極酸化されて、図2に示すように、アルミニウム基板10の厚み方向Dtに延在する複数の貫通孔12を有する絶縁膜14、すなわち、陽極酸化膜15が形成される。各貫通孔12の底部にはバリア層13(図2参照)が存在する。上述の陽極酸化する工程を陽極酸化処理工程という。
 複数の貫通孔12を有する絶縁膜14には、上述のようにそれぞれ貫通孔12の底部にバリア層13(図2参照)が存在するが、図2に示すバリア層13を除去する。これにより、バリア層13のない、複数の貫通孔12を有する絶縁膜14(図3参照)を得る。なお、上述のバリア層13を除去する工程をバリア層除去工程という。
 バリア層除去工程において、例えば、アルミニウムよりも水素過電圧の高い金属M1のイオンを含むアルカリ水溶液を用いることにより、絶縁膜14のバリア層13が除去され、貫通孔12の底面12c(図3参照)がアルミニウム基板10に露出する。貫通孔12の底面12c(図3参照)をアルミニウム基板10に露出させることにより、アルミニウム基板10を交流電解めっき法において電極として用いることができる。
 次に、厚み方向Dtに延在する複数の貫通孔12を有する絶縁膜14に対して、複数の貫通孔12に金属を充填して、導通体16を形成する。上述の導通体16を形成する形成工程は、以下に示す、第1金属部16aを形成する第1の工程と、第2金属部16bを形成する第2の工程とを有する。
 第1の工程は、複数の貫通孔12に、それぞれ絶縁膜14である陽極酸化膜15の厚み方向Dtにおける一方の面側、例えば、図4に示すように、絶縁膜14の裏面14b(図6参照)側から、交流電解めっき法を用いて第1金属部16aを形成する工程である。
 交流電解めっき法では、アルミニウム基板10を電極として、電圧を予め定めた周波数で正弦波状に変調させて印加して、絶縁膜14のアルミニウム基板10側からめっきを行う。交流電解めっき法では、貫通孔12の底面12cに面したアルミニウム基板10を起点にして、めっきが進行して、第1金属部16aを形成する。第1金属部16aを、例えば、厚み方向Dtにおける長さを10μm程度に形成する。貫通孔12の底面12cに形成された第1金属部16aが、上述のように裏面14bに露出する露出部である。
 第2の工程は、図5に示すように、複数の貫通孔12の第1金属部16a上に、直流電解めっき法を用いて第2金属部16bを形成する工程である。第2の工程では、例えば、第2金属部16bを絶縁膜14の表面14aまで形成する。これにより、第2金属部16bは、絶縁膜14の表面14aに露出する。上述のように第2金属部16bが表面14aに露出する露出部である。
 直流電解めっき法では、アルミニウム基板10を電極として、直流電圧を印加して、第1金属部16aからめっきを行う。直流電解めっき法では、第1金属部16aを起点にして、めっきが進行し、第2金属部16bを形成する。第2金属部16bの厚み方向Dtにおける長さは、絶縁膜14の厚みから、第1金属部16aの厚み方向Dtにおける長さを引いた長さである。このため、絶縁膜14の厚みと、第1金属部16aの厚み方向Dtにおける長さとにより、第2金属部16bの厚み方向Dtにおける長さは決定される。
 上述の第1の工程及び第2の工程により、導電性を有する導通体16が形成され、導通体16は第1金属部16a上に第2金属部16bが形成された積層構造体である。導通体16は、直径dが、厚み方向Dtにおいて直径の変化がなく一定である。
 なお、導通体16は第1金属部16a上に第2金属部16bが形成された積層構造体としたが、導通体16は、第1金属部16aと第2金属部16bとの構成に限定されるものではなく、第1金属部16aと第2金属部16bとの間に、別の金属部があってもよい。別の金属部は、1つでもよく、異なる金属で構成された別の金属部が複数ある構成でもよい。なお、別の金属部は、第1金属部16a及び第2金属部16bのうち、いずれかと同じ金属でもよく、異なる金属で構成されていてもよい。
 次に、絶縁膜14である陽極酸化膜15からアルミニウム基板10を除去する。陽極酸化膜15からアルミニウム基板10を除去する工程を基板除去工程という。アルミニウム基板10が設けられていた側の絶縁膜14の面が、裏面14bである。
 上述の基板除去工程を経て、図6に示す金属充填微細構造体20が得られる。金属充填微細構造体20において、第1金属部16aは絶縁膜14の裏面14bに露出し、第2金属部16bは絶縁膜14の表面14aに露出する。
 図6に示す金属充填微細構造体20においては、絶縁膜14のアルミニウム基板10が設けられていない側の表面14aを厚み方向Dtに一部除去し、第2金属部16bを絶縁膜14の表面14aよりも突出させてもよい。すなわち、導通体16を絶縁膜14の表面14aよりも突出させてもよい。導通体16を絶縁膜14の表面14aよりも突出させる工程を、表面金属突出工程という。
 また、基板除去工程の後に絶縁膜14のアルミニウム基板10が設けられていた側の面、すなわち、裏面14bを厚み方向Dtに一部除去し、形成工程で形成した第1金属部16a、すなわち、導通体16を絶縁膜14の裏面14bよりも突出させてもよい。導通体16を絶縁膜14の裏面14bよりも突出させる工程を、裏面金属突出工程という。
 上述の表面金属突出工程及び裏面金属突出工程は、両方の工程を有する態様であってもよいが、表面金属突出工程及び裏面金属突出工程のうち、一方の工程を有する態様であってもよい。表面金属突出工程及び裏面金属突出工程が「突出工程」に該当しており、表面金属突出工程及び裏面金属突出工程はいずれも突出工程である。
[金属充填微細構造体の第2の例]
 図7~図11は本発明の実施形態の金属充填微細構造体の製造方法の第2の例を工程順に示す模式的断面図である。なお、図7~図11において、図1~6に示す構成と同一構成物には、同一符号を付して、その詳細な説明は省略する。なお、図11が本発明の実施形態の金属充填微細構造体の第2の例を示す。
 図11に示す金属充填微細構造体20aは、図6に示す金属充填微細構造体20に比して、貫通孔12が拡径されている点が異なり、それ以外の構成は同じである。
 金属充填微細構造体20aにおいて、複数の導通体16は、それぞれ一方の面、例えば、裏面14bに露出する第1金属部16aの第1の直径dと、他方の面、例えば、表面14aに露出する第2金属部16bの第2の直径dとが異なる。図11に示す金属充填微細構造体20aでは、第1の直径d<第2の直径dである。
 貫通孔12の拡径部12dは、例えば、円筒状であり、側面が厚み方向Dtに平行である。例えば、第1の直径dが60nm場合、第2の直径dは70nmである。
[金属充填微細構造体の製造方法の第2の例]
 金属充填微細構造体の製造方法の第2の例は、金属充填微細構造体の製造方法の第1の例に比して、貫通孔12を拡径する拡径工程を有する点が異なり、それ以外の工程は金属充填微細構造体の製造方法の第1の例と同じである。
 金属充填微細構造体の製造方法の第2の例は、図7に示す、バリア層除去工程後の複数の貫通孔12を有する絶縁膜14に対して、上述の交流電解めっき法を用いて、図8に示すように貫通孔12の内部に、第1金属部16aを形成する。この第1金属部16aの形成工程が第1の工程である。第1金属部16aは、例えば、厚み方向Dtにおける長さが10μm程度である。
 なお、図7に示す絶縁膜14は、図3に示す絶縁膜14と同じ構成である。
 次に、貫通孔12に対して、貫通孔12を拡径する拡径工程を実施する。拡径工程は、貫通孔12において、第1金属部16aが形成されていない領域の孔径を広げる工程である。拡径工程により、図9に示すように、貫通孔12に拡径部12dが形成される。かつ拡径部12dと、第1金属部16aが形成された部分12fとにより段差12eが生じる。なお、上述の部分12fは、拡径前の貫通孔12の一部分である。
 拡径工程には、例えば、ポアワイド処理が用いられる。ポアワイド処理は、絶縁膜14である陽極酸化膜15を、酸水溶液又はアルカリ水溶液に浸漬させることにより、陽極酸化膜15を溶解させ、貫通孔12の孔径を拡大する処理である、ポアワイド処理には、硫酸、リン酸、硝酸、塩酸等の無機酸又はこれらの混合物の水溶液、又は、水酸化ナトリウム、水酸化カリウム及び水酸化リチウム等の水溶液を用いることができる。
 次に、図10に示すように、貫通孔12の拡径部12d、かつ第1金属部16a上に、直流電解めっき法を用いて第2金属部16bを形成する。これにより、導通体16が形成される。上述の第2金属部16bの形成が第2の工程である。
 次に、陽極酸化膜15からアルミニウム基板10を除去し、図11に示す金属充填微細構造体20aを得る。
 なお、金属充填微細構造体の製造方法の第2の例においても、上述の表面金属突出工程及び裏面金属突出工程のうち、一方の工程を実施してもよく、両方の工程を実施してもよい。この場合、図11に示す金属充填微細構造体20aは、絶縁膜14の表面14a及び裏面14bのうち、少なくとも一方から、導通体16が突出する構成となる。
[金属充填微細構造体の第3の例]
 図12~図14は本発明の実施形態の金属充填微細構造体の製造方法の第3の例を工程順に示す模式的断面図である。なお、図12~図14において、図7~11に示す構成と同一構成物には、同一符号を付して、その詳細な説明は省略する。
 金属充填微細構造体の製造方法の第3の例で得られる金属充填微細構造体は、上述の図11に示す金属充填微細構造体の第2の例と同じである。
[金属充填微細構造体の製造方法の第3の例]
 金属充填微細構造体の製造方法の第3の例は、金属充填微細構造体の製造方法の第2の例に比して、貫通孔を拡径する拡径工程を実施するタイミングが異なり、それ以外の工程は金属充填微細構造体の製造方法の第2の例と同じである。
 金属充填微細構造体の製造方法の第3の例は、図7に示す、バリア層除去工程後の複数の貫通孔12を有する絶縁膜14に対して、貫通孔12を拡径する拡径工程を実施する。
 すなわち、金属充填微細構造体の製造方法の第3の例では、貫通孔12の底面12cに第1金属部16aを形成する前(第1の工程の前)に、貫通孔12を拡径する。
 拡径工程は、貫通孔12において、第1金属部16aが形成されない領域の孔径を広げる工程である。拡径工程により、図12に示すように、貫通孔12に拡径部12dが形成される。
 貫通孔12が拡径された後、図13に示ように、貫通孔12の拡径されてない部分12fに、交流電解めっき法を用いて第1金属部16aを形成する(第1の工程)。拡径部12dにより、第1金属部16aが形成された領域と段差12eが生じる。上述の部分12fは、拡径前の貫通孔12の一部分である。部分12fの厚み方向Dtの長さは、例えば、第1金属部16aの長さに応じて適宜決定され、例えば、10μmである。
 次に、図14に示すように、貫通孔12の拡径部12d、かつ第1金属部16a上に、直流電解めっき法を用いて第2金属部16bを形成する(第2の工程)。これにより、導通体16が形成される。
 次に、陽極酸化膜15からアルミニウム基板10を除去し、図11に示す金属充填微細構造体20aを得る。
 上述のように拡径工程は、第1金属部16aを形成する第1の工程の前、又は第1金属部16aを形成する第1の工程と、第2金属部16bを形成する第2の工程との間で、実施することができる。
 なお、第1金属部16aを形成する第1の工程と、第2金属部16bを形成する第2の工程との間で拡径工程を実施した方が、第1金属部16aがあるため、貫通孔12の拡径部12dの径の制御が、第1金属部16aを形成する第1の工程の前に拡径工程を実施する場合に比べて容易である。
[金属充填微細構造体の第4の例]
 図15~図18は本発明の実施形態の金属充填微細構造体の製造方法の第4の例を工程順に示す模式的断面図である。なお、図15~図18において、図1~6に示す構成と同一構成物には、同一符号を付して、その詳細な説明は省略する。
 図18に示す金属充填微細構造体20bは、図11に示す金属充填微細構造体20aに比して、貫通孔12の拡径部12gの形状が異なり、それ以外の構成は図11に示す金属充填微細構造体20aと同じである。
 拡径部12gは、円錐台状であり、側面が厚み方向Dtに対して傾斜している。絶縁膜14の裏面14bから表面14aに向かうにつれて拡径部12gは孔径が大きくなっている。このため、複数の導通体16は、裏面14bに露出する第1金属部16aの第1の直径dと、表面14aに露出する第2金属部16bの第2の直径dとが異なり、第1の直径d<第2の直径dである。この場合も、例えば、第1の直径dが60nm場合、第2の直径dは70nmである。
[金属充填微細構造体の製造方法の第4の例]
 金属充填微細構造体の製造方法の第4の例は、金属充填微細構造体の製造方法の第2の例に比して、貫通孔を拡径する拡径工程を実施するタイミングが異なり、更には、拡径工程で形成される拡径部12gの形状が異なり、それ以外の工程は金属充填微細構造体の製造方法の第2の例と同じである。上述のように、拡径部12gは円錐台状である。
 図7に示す、バリア層除去工程後の複数の貫通孔12を有する絶縁膜14に対して、貫通孔12を拡径する拡径工程を実施する。拡径工程により、図15に示すように、貫通孔12に、円錐台状の拡径部12gを形成する。拡径部12gは、上述のように絶縁膜14の裏面14bから表面14aに向かうにつれて拡径部12gは孔径が大きくなっている。
 次に、図16に示ように、貫通孔12の拡径されてない部分12fに、交流電解めっき法を用いて第1金属部16aを形成する(第1の工程)。
 次に、図17に示すように、貫通孔12の拡径部12g、かつ第1金属部16a上に、直流電解めっき法を用いて第2金属部16bを形成する(第2の工程)。これにより、導通体16が形成される。
 次に、陽極酸化膜15からアルミニウム基板10を除去し、図18に示す金属充填微細構造体20bを得る。
 なお、金属充填微細構造体の製造方法の第4の例では、貫通孔を拡径する拡径工程を実施するタイミングを、第1金属部16aを形成する前(第1の工程の前)としたが、これに限定されるものではなく、金属充填微細構造体の製造方法の第2の例と同じく、第1金属部16aを形成した後(第1の工程の後)、かつ第2金属部16bを形成する前(第2の工程の前)に貫通孔12の拡径工程を実施してもよい。
<陽極酸化膜の製造方法の他の例>
 図19~図21は本発明の実施形態の金属充填微細構造体の陽極酸化膜の製造方法の他の例を工程順に示す模式的断面図である。なお、図19~図21において、図1~3に示す構成と同一構成物には、同一符号を付して、その詳細な説明は省略する。
 陽極酸化膜の製造方法の他の例では、図2に示す絶縁膜14として陽極酸化膜15が形成されたアルミニウム基板10に対して、アルミニウム基板10を除去する。これにより、図19に示すように、複数の貫通孔12が形成された絶縁膜14を得る。アルミニウム基板10の除去は、上述の基板除去工程を利用することができるため、詳細な説明は省略する。
 次に、絶縁膜14の貫通孔12を拡径し、図19に示すバリア層13を除去して、図20に示すように、絶縁膜14に厚み方向Dtに貫通する貫通孔12を複数形成する。
 バリア層13の除去には、上述のバリア層除去工程を利用することができるため、詳細な説明は省略する。なお、バリア層13の除去には、ポアワイド処理を用いることもできる。ポアワイド処理は、上述の通りである。
 次に、図20に示す絶縁膜14の裏面14bの全面に、例えば、めっき法を用いて、図21に示すように絶縁膜14の裏面14bの全面に金属層30を形成する。なお、金属層30の形成は、めっき法に限定されるものではなく、例えば、蒸着法、又はスパッタ法を用いて金属層30を形成してもよい。しかしながら、金属層30の形成時間の観点から、蒸着法及びスパッタ法に比して成膜速度が速いめっき法を用いることが好ましい。
 金属層30は、上述のアルミニウム基板10に相当する部材であり、アルミニウム基板10と同じ金属で構成することが好ましい。金属層30は、上述のアルミニウム基板10と同じ金属で構成することができる。
 ここで、図21に示すように、絶縁膜14の裏面14b側に金属層30が設けられている。金属層30は、貫通孔12の絶縁膜14の裏面14b側の開口を全て覆っている。絶縁膜14の裏面14bに金属層30を設けることにより、貫通孔12へ金属めっきによる金属充填の際に、めっきが進行しやすくなり、第1金属部16aを形成しやすくなる。
 図21に示す絶縁膜14に金属層30が形成された状態で、絶縁膜14の貫通孔12の内部に、上述のように第1金属部16a及び第2金属部16bを形成して導通体16を形成する。
 以下、金属充填微細構造体の各構成について説明する。
〔絶縁膜〕
 絶縁膜は、電気的な絶縁性を有するものであり、例えば、無機材料からなる。例えば、1014Ω・cm程度の電気抵抗率を有するものを用いることができる。
 なお、「無機材料からなり」とは、高分子材料と区別するための規定であり、無機材料のみから構成された絶縁性基材に限定する規定ではなく、無機材料を主成分(50質量%以上)とする規定である。
 絶縁膜は、上述のように、例えば、電気的な絶縁性を有する陽極酸化膜で構成される。また、絶縁膜は、例えば、金属酸化物、金属窒化物、ガラス、シリコンカーバイド、シリコンナイトライド等のセラミックス、ダイヤモンドライクカーボン等のカーボン基材、ポリイミド、これらの複合材料等により構成することもできる。絶縁膜としては、これ以外に、例えば、貫通孔を有する有機素材上に、セラミックス材料又はカーボン材料を50質量%以上含む無機材料で成膜したものであってもよい。
 絶縁膜14の厚み方向Dtにおける長さ、すなわち、絶縁膜14の厚みhtは100μm以上である。絶縁膜14の厚みhtの上限値は、特に限定されるものではないが、200~250μmが好ましい。絶縁膜14の厚みhtの上限値が200~250μmであれば、例えば、陽極酸化処理の処理時間が長くなることが抑制され、更には導通体16の形成に要する時間も長くなることが抑制される。
 なお、絶縁膜14の厚みhtは、金属充填微細構造体20を厚み方向Dtに対してFIBで切削加工し、その断面を界放射型走査電子顕微鏡(FE-SEM)により表面写真(倍率50000倍)を撮影し、絶縁膜14の厚みに相当する長さを10点測定した平均値である。
<陽極酸化膜>
 絶縁膜は、上述のように、例えば、電気的な絶縁性を有する陽極酸化膜で構成される。陽極酸化膜は、上述のように、所望の平均径を有するマイクロポアが形成され、貫通孔及び導通体を形成しやすいという理由から、例えば、アルミニウムの陽極酸化膜が用いられる。しかしながら、アルミニウムの陽極酸化膜に限定されるものではなく、バルブ金属の陽極酸化膜を用いることができる。このため、金属基板は、バルブ金属が用いられる。
 ここで、バルブ金属としては、具体的には、例えば、上述のアルミニウム、これ以外に、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン等が挙げられる。これらのうち、寸法安定性がよく、比較的安価であることからアルミニウムの陽極酸化膜であることが好ましい。このため、アルミニウム基板を用いて、構造体を製造することが好ましい。
 陽極酸化膜の厚みは、上述の絶縁膜14の厚みhtと同じであり、100μm以上である。陽極酸化膜の厚みの上限値は、絶縁膜14の厚みhtと同じである。
〔金属基板〕
 金属基板は、金属充填微細構造体の製造に用いられるものであり、陽極酸化膜を形成するための基板である。金属基板は、例えば、上述のように、陽極酸化膜が形成できる金属基板が用いられ、上述のバルブ金属で構成されるものを用いることができる。例えば、金属基板には、上述のように、陽極酸化膜として陽極酸化膜を形成しやすいという理由から、アルミニウム基板が用いられる。
〔アルミニウム基板〕
 絶縁膜14を形成するために用いられるアルミニウム基板は、特に限定されず、その具体例としては、純アルミニウム板;アルミニウムを主成分とし微量の異元素を含む合金板;低純度のアルミニウム(例えば、リサイクル材料)に高純度アルミニウムを蒸着させた基板;シリコンウエハ、石英、ガラス等の表面に蒸着、スパッタ等の方法により高純度アルミニウムを被覆させた基板;アルミニウムをラミネートした樹脂基板;等が挙げられる。
 アルミニウム基板のうち、陽極酸化処理により陽極酸化膜を形成する片側の表面は、アルミニウム純度が、99.5質量%以上であることが好ましく、99.9質量%以上であるのがより好ましく、99.99質量%以上であるのが更に好ましい。アルミニウム純度が上述の範囲であると、陽極酸化処理により形成されるマイクロポアの配列の規則性が十分となる。すなわち、貫通孔の配列の規則性が十分となる。
 アルミニウム基板は、陽極酸化膜を形成することができれば、特に限定されるものでなく、例えば、JIS(Japanese Industrial Standards) 1050材が用いられる。
 アルミニウム基板のうち陽極酸化処理される片側の表面は、予め熱処理、脱脂処理及び鏡面仕上げ処理が施されていることが好ましい。
 ここで、熱処理、脱脂処理及び鏡面仕上げ処理については、特開2008-270158号公報の[0044]~[0054]段落に記載された各処理と同様の処理を施すことができる。
 陽極酸化処理の前の鏡面仕上げ処理は、例えば、電解研磨であり、電解研磨には、例えば、リン酸を含有する電解研磨液が用いられる。
〔陽極酸化処理工程〕
 陽極酸化処理は、従来公知の方法を用いることができるが、マイクロポアの配列、すなわち、貫通孔の配列の規則性を高くし、金属充填微細構造体の異方導電性を担保する観点から、自己規則化法又は定電圧処理を用いることが好ましい。
 ここで、陽極酸化処理の自己規則化法及び定電圧処理については、特開2008-270158号公報の[0056]~[0108]段落及び[図3]に記載された各処理と同様の処理を施すことができる。
 また、陽極酸化処理の処理時間は、形成する陽極酸化膜の厚みにより適宜決定されるものである。厚みが100μm以上と厚い場合には、陽極酸化処理の処理時間が長くなる。
〔保持工程〕
 金属充填微細構造体の製造方法は、保持工程を有してもよい。保持工程は、上述の陽極酸化処理工程の後に、1V以上かつ上述の陽極酸化処理工程における電圧の30%未満の範囲から選択される保持電圧の95%以上105%以下の電圧に通算5分以上保持する工程である。言い換えると、保持工程は、上述の陽極酸化処理工程の後に、1V以上かつ上述の陽極酸化処理工程における電圧の30%未満の範囲から選択される保持電圧の95%以上105%以下の電圧で通算5分以上電解処理を施す工程である。
 ここで、「陽極酸化処理における電圧」とは、アルミニウムと対極間に印加する電圧であり、例えば、陽極酸化処理による電解時間が30分であれば、30分の間に保たれている電圧の平均値をいう。
 陽極酸化膜の側壁厚み、すなわち、貫通孔の深さに対してバリア層の厚みを適切な厚みに制御する観点から、保持工程における電圧が、陽極酸化処理における電圧の5%以上25%以下であることが好ましく、5%以上20%以下であることがより好ましい。
 また、面内均一性がより向上する理由から、保持工程における保持時間の合計が、5分以上20分以下であることが好ましく、5分以上15分以下であることがより好ましく、5分以上10分以下であることが更に好ましい。
 また、保持工程における保持時間は、通算5分以上であればよいが、連続5分以上であることが好ましい。
 更に、保持工程における電圧は、陽極酸化処理工程における電圧から保持工程における電圧まで連続的又は段階的に降下させて設定してもよいが、面内均一性が更に向上する理由から、陽極酸化処理工程の終了後、1秒以内に、上述の保持電圧の95%以上105%以下の電圧に設定することが好ましい。
 上述の保持工程は、例えば、上述の陽極酸化処理工程の終了時に電解電位を降下させることにより、上述の陽極酸化処理工程と連続して行うこともできる。
 上述の保持工程は、電解電位以外の条件については、上述の従来公知の陽極酸化処理と同様の電解液及び処理条件を採用することができる。
 特に、保持工程と陽極酸化処理工程とを連続して施す場合は、同様の電解液を用いて処理することが好ましい。
 複数のマイクロポアを有する陽極酸化膜には、上述のようにマイクロポアの底部にバリア層(図示せず)が存在する。上述のように、バリア層を除去するバリア層除去工程を有する。
〔バリア層除去工程〕
 バリア層除去工程は、例えば、アルミニウムよりも水素過電圧の高い金属M1のイオンを含むアルカリ水溶液を用いて、陽極酸化膜のバリア層を除去する工程である。
 上述のバリア層除去工程により、バリア層が除去され、かつ、マイクロポアの底部に、金属M1からなる導電体層が形成されることになる。
 ここで、水素過電圧(hydrogen overvoltage)とは、水素が発生するのに必要な電圧をいい、例えば、アルミニウム(Al)の水素過電圧は-1.66Vである(日本化学会誌,1982、(8),p1305-1313)。なお、アルミニウムの水素過電圧よりも高い金属M1の例及びその水素過電圧の値を以下に示す。
 <金属M1及び水素(1N H2SO4)過電圧>
 ・白金(Pt):0.00V
 ・金(Au):0.02V
 ・銀(Ag):0.08V
 ・ニッケル(Ni):0.21V
 ・銅(Cu):0.23V
 ・錫(Sn):0.53V
 ・亜鉛(Zn):0.70V
〔バリア層除去工程の他の例〕
 バリア層除去工程は、上述の工程以外に、陽極酸化膜のバリア層を除去し、貫通孔の底に基板の一部が露出する工程でもよい。
 この場合、バリア層除去工程は、上述の方法に特に限定されるものではなく、例えば、上述の陽極酸化処理工程の上述の陽極酸化処理における電位よりも低い電位でバリア層を電気化学的に溶解する方法(以下、「電解除去処理」ともいう。);エッチングによりバリア層を除去する方法(以下、「エッチング除去処理」ともいう。);これらを組み合わせた方法(特に、電解除去処理を施した後に、残存するバリア層をエッチング除去処理で除去する方法);ポアワイド処理等が挙げられる。なお、ポアワイド処理は、上述の通りである。
 <電解除去処理>
 上述の電解除去処理は、上述の陽極酸化処理工程の上述の陽極酸化処理における電位(電解電位)よりも低い電位で施す電解処理であれば特に限定されない。
 本発明においては、上述の電解溶解処理は、例えば、上述の陽極酸化処理工程の終了時に電解電位を降下させることにより、上述の陽極酸化処理と連続して施すことができる。
 上述の電解除去処理は、電解電位以外の条件については、上述した従来公知の陽極酸化処理と同様の電解液及び処理条件を採用することができる。
 特に、上述したように上述の電解除去処理と上述の陽極酸化処理とを連続して施す場合は、同様の電解液を用いて処理するのが好ましい。
 (電解電位)
 上述の電解除去処理における電解電位は、上述の陽極酸化処理における電解電位よりも低い電位に、連続的又は段階的(ステップ状)に降下させるのが好ましい。
 ここで、電解電位を段階的に降下させる際の下げ幅(ステップ幅)は、バリア層の耐電圧の観点から、10V以下であるのが好ましく、5V以下であるのがより好ましく、2V以下であるのが更に好ましい。
 また、電解電位を連続的又は段階的に降下させる際の電圧降下速度は、生産性等の観点から、いずれも1V/秒以下が好ましく、0.5V/秒以下がより好ましく、0.2V/秒以下が更に好ましい。
 <エッチング除去処理>
 上述のエッチング除去処理は特に限定されないが、酸水溶液又はアルカリ水溶液を用いて溶解する化学的エッチング処理であってもよく、ドライエッチング処理であってもよい。
 (化学エッチング処理)
 化学エッチング処理によるバリア層の除去は、例えば、上述の陽極酸化処理工程後の構造物を酸水溶液又はアルカリ水溶液に浸漬させ、マイクロポアの内部に酸水溶液又はアルカリ水溶液を充填させた後に、陽極酸化膜のマイクロポアの開口部側の表面にpH緩衝液に接触させる方法等により、バリア層のみを選択的に溶解させることができる。
 ここで、酸水溶液を用いる場合は、硫酸、リン酸、硝酸、塩酸、シュウ酸等の無機酸又はこれらの混合物の水溶液を用いることが好ましい。また、酸水溶液の濃度は1~10質量%であるのが好ましい。酸水溶液の温度は、15~80℃が好ましく、更に20~60℃が好ましく、更に30~50℃が好ましい。
 一方、アルカリ水溶液を用いる場合は、水酸化ナトリウム、水酸化カリウム及び水酸化リチウムからなる群から選ばれる少なくとも一つのアルカリの水溶液を用いることが好ましい。また、アルカリ水溶液の濃度は0.1~5質量%であるのが好ましい。アルカリ水溶液の温度は、10~60℃が好ましく、更に15~45℃が好ましく、更に20~35℃であるのが好ましい。
 具体的には、例えば、50g/L、40℃のリン酸水溶液、0.5g/L、30℃の水酸化ナトリウム水溶液、0.5g/L、30℃の水酸化カリウム水溶液等が好適に用いられる。
 なお、pH緩衝液としては、上述した酸水溶液又はアルカリ水溶液に対応した緩衝液を適宜使用することができる。
 また、酸水溶液又はアルカリ水溶液への浸せき時間は、5~120分であるのが好ましく、8~120分であるのがより好ましく、8~90分であるのが更に好ましく、10~90分であるのが特に好ましい。なかでも、10~60分であるのが好ましく、15~60分であるのがより好ましい。
 (ドライエッチング処理)
 ドライエッチング処理は、例えば、Cl/Ar混合ガス等のガス種を用いることが好ましい。
〔導通体の形成工程〕
 導通体の形成工程は、上述のバリア層除去工程の後に、複数の貫通孔に、それぞれ絶縁膜の厚み方向における一方の面側から、交流電解めっき法を用いて第1金属部を形成する第1の工程と、複数の貫通孔の第1金属部上に、直流電解めっき法を用いて第2金属部を形成する第2の工程とを有する。形成工程では、第1金属部、及び第2金属部の順で形成する。
 第1の工程では、交流電解めっき法を用いて第1金属部を形成する。第2の工程では、直流電解めっき法を用いて第2金属部を形成する。
 以下、第1金属部、及び第2金属について説明する。
 <第1金属部>
 第1金属部は、導通体を形成する際に、最初に形成されるものである。第1金属部は、第2金属部を形成するためのシード層となるものであり、第1金属部を起点にして、第2金属部が形成される。第1金属部は、純金属で構成されることに限定されるものではなく、合金で構成してもよい。第1金属部は、例えば、Zn、Ni、Co、Cr、Sn、Cu、Ag、Au及びそれらの合金で構成される。第1金属部は、Zn又はNiで構成されることが好ましい。
 第1金属部16aの長さは、導通体16の長さの10%未満であることが好ましい。例えば、導通体16の長さが100μmの場合、第1金属部16aの長さは10μm未満であることが好ましい。また、第1金属部16aの長さは、導通体16の長さの2%以上であることが好ましい。例えば、導通体16の長さが100μmの場合、第1金属部16aの長さは2μm以上であることが好ましい。
 <第2金属部>
 第2金属部は、第1金属部の形成後に形成されるものである。第2金属部は、貫通孔の内部、かつ第1金属部上に形成する。第2金属部は、第1金属部に比して、厚み方向の長さが長い。また、第2金属部は、貫通孔が拡径されている場合には、拡径部に形成される。第2金属部は、純金属で構成されることに限定されるものではなく、合金で構成してもよい。第2金属部は、例えば、Zn、Ni、Co、Cr、Sn、Cu、Ag、Au及びそれらの合金で構成される。第2金属部は、Cuで構成されることが好ましい。
 第2金属部16bの長さは、導通体16の長さから第1金属部16aの長さを引いた長さであるが、導通体16の長さの90%超であることが好ましい。例えば、導通体16の長さが100μmの場合、第2金属部16bの長さは、90μm超であることが好ましい。また、第2金属部16bの長さは、導通体16の長さの98%未満であることが好ましい。例えば、導通体16の長さが100μmの場合、第2金属部16bの長さは98μm未満であることが好ましい。
 第1金属部と、第2金属部とは構成する金属が異なる。
 上述の第1金属部と、第2金属部とは構成する金属が異なるとは、第1金属部と、第2金属部との2つの金属を比較した場合、単一金属の場合、構成元素の種類が異なることをいう。第1金属部及び第2金属部のうち、少なくとも一方が合金の場合、含有量が50質量%以上の主成分を比較した場合、主成分の元素の種類が異なることをいう。
 また、2つの金属が同種であるとは、2つの金属を比較した場合、単一金属の場合、構成元素の種類が同じであることをいう。合金の場合、含有量が50質量%以上の主成分を比較した場合、主成分の元素の種類が同じであることをいう。
 第1金属部と、第2金属部とが同種の金属又は異なる金属であるかについては、第1金属部と第2金属部を取り出し、第1金属部と第2金属部とをそれぞれ、蛍光X線(XRF)分析装置を用いて測定することにより、第1金属部と、第2金属部との金属成分を特定することによって区別することができる。
 <第1の工程>
 上述の第1金属部は、交流電解めっき法を用いて形成される。交流電解めっき法は、例えば、電圧を予め定めた周波数で正弦波状に変調させて印加する。なお、電圧の変調の際の波形は正弦波に限定されるものではなく、例えば、矩形波、三角波、のこぎり波、又は逆のこぎり波とすることもできる。
 めっき液としては、第1金属部にNiを用いる場合、ニッケル(Ni)めっき液としては硫酸ニッケル(II)とホウ酸に水を加えためっき液を用いることができる。ニッケル(Ni)めっき液には、硫酸アルミニウムを少量添加(0.1mol程度)してもよい。
 第1金属部にZnを用いる場合、亜鉛(Zn)めっき液としては硫酸アルミニウム水溶液に硫酸亜鉛を添加しためっき液を用いることができる。
 第1金属部の厚み方向の長さは、交流電解めっき法による処理時間を、例えば、予め計算しておき、第1金属部の厚み方向Dtの長さを調整する。
 <第2の工程>
 上述の第2金属部を貫通孔の内部、かつ第1金属部上に形成する方法としては、直流電解めっき法を用いる。第2金属部は、上述のように第1金属部に比して、厚み方向の長さが長い。このため、第2金属部の直流電解めっき法による処理時間は、例えば、予め計算しておき、第2金属部の厚み方向の長さを調整する。
 ここで、着色等に用いられる従来公知の電解めっき法では、選択的に孔中に金属を高アスペクトで析出(成長)させることは困難である。これは、析出金属が孔内で消費され一定時間以上電解を行なってもめっきが成長しないためと考えられる。
 そのため、直流電解めっき法を用いて金属を充填して第2金属部を形成する場合は、パルス電解又は定電位電解の際に休止時間をもうける必要がある。休止時間は、10秒以上必要で、30~60秒であることが好ましい。
 また、電解液のかくはんを促進するため、超音波を加えることも望ましい。
 更に、電解電圧は、通常20V以下であって望ましくは10V以下であるが、使用する電解液における目的金属の析出電位を予め測定し、その電位+1V以内で定電位電解を行なうことが好ましい。なお、定電位電解を行なう際には、サイクリックボルタンメトリを併用できるものが望ましく、Solartron社、BAS社、北斗電工社、IVIUM社等のポテンショスタット装置を用いることができる。
 なお、無電解めっき法では、アスペクトの高い貫通孔からなる孔中に金属を完全に充填には長時間を要する。
(めっき液)
 めっき液は、金属イオンを含むものであり、充填する金属に応じた、従来公知のめっき液が用いられる。めっき液としては、固形分の主成分が硫酸銅であることが好ましく、例えば、硫酸銅と硫酸と塩酸との混合水溶液が用いられる。具体的には、銅を析出させる場合には硫酸銅水溶液が一般的に用いられるが、硫酸銅の濃度は、1~300g/Lであることが好ましく、100~200g/Lであることがより好ましい。また、めっき液中に塩酸を添加すると析出を促進することができる。この場合、塩酸濃度は10~20g/Lであることが好ましい。
 なお、固形分の主成分とは、電解液の固形分中での割合が20質量%以上であることであり、例えば、硫酸銅が電解液の固形分中に20質量%以上含まれていることである。
 また、金を析出させる場合、テトラクロロ金の硫酸溶液を用い、交流電解でめっきを行なうのが望ましい。
 めっき液は、界面活性剤を含むことが好ましい。
 界面活性剤としては公知のものを使用することができる。従来メッキ液に添加する界面活性剤として知られているラウリル硫酸ナトリウムをそのまま使用することもできる。親水性部分がイオン性(カチオン性・アニオン性・双性)のもの、非イオン性(ノニオン性)のものいずれも利用可能であるが、メッキ対象物表面への気泡の発生等を回避する点でカチオン線活性剤が望ましい。めっき液組成における界面活性剤の濃度は1質量%以下であることが望ましい。
 なお、絶縁膜14に、例えば、支持体を設けてもよい。支持体は絶縁膜14と同じ外形状であることが好ましい。支持体を取り付けることにより、取扱い性が増す。
〔拡径工程〕
 貫通孔を拡径する工程であり、拡径工程により、貫通孔の孔径が大きくなる。拡径工程により拡径された拡径部に第2金属部が形成される。拡径工程では、元の貫通孔の径に対して110~130%に拡径することが好ましい。例えば、元の貫通孔の径が60nmであれば、拡径後の径は、66~78nmであることが好ましい。この場合、上述の円筒状の拡径部12d(図11参照)の径、すなわち、第2の直径d(図11参照)が66~78nmであることが好ましい。
 拡径工程には、例えば、化学エッチング処理又はドライエッチング処理を用いることができる。
 化学エッチング処理では、例えば、絶縁膜を溶解する処理液に、絶縁膜を処理液に浸漬して拡径部を形成する。絶縁膜がアルミニウムの陽極酸化膜の場合、処理液には、アルカリ水溶液又は酸水溶液が用いられる。
 ドライエッチング処理では、絶縁膜を溶解するガスに暴露して、拡径部を形成する。絶縁膜が、アルミニウムの陽極酸化膜の場合、ガスには、例えば、Cl/Ar混合ガスが用いられる。
 なお、拡径工程は、上述のように、第1の工程の前に実施してもよく、第1の工程と第2の工程との間に実施してもよい。
 拡径部の形状は、上述の円筒状、及び円錐台状に限定されるものではなく、他の形状でもよい。拡径部の形状としては、例えば、拡径部の径が、絶縁膜の裏面側から表面に向かって段階的に大きくなる形状でもよい。
〔突出工程〕
 上述の絶縁膜14の一部除去には、例えば、導通体16を構成する金属を溶解せず、絶縁膜14、すなわち、酸化アルミニウム(Al)を溶解する酸水溶液又はアルカリ水溶液が用いられる。上述の酸水溶液又はアルカリ水溶液を、金属が充填された貫通孔12を有する絶縁膜14に接触させることにより、絶縁膜14を一部除去する。上述の酸水溶液又はアルカリ水溶液を絶縁膜14に接触させる方法は、特に限定されず、例えば、浸漬法及びスプレー法が挙げられる。中でも浸漬法が好ましい。
 酸水溶液を用いる場合は、硫酸、リン酸、硝酸及び塩酸等の無機酸又はこれらの混合物の水溶液を用いることが好ましい。中でもクロム酸を含有しない水溶液が安全性に優れる点で好ましい。酸水溶液の濃度は1~10質量%であることが好ましい。酸水溶液の温度は、25~60℃であることが好ましい。
 また、アルカリ水溶液を用いる場合は、水酸化ナトリウム、水酸化カリウム及び水酸化リチウムからなる群から選ばれる少なくとも一つのアルカリの水溶液を用いることが好ましい。アルカリ水溶液の濃度は0.1~5質量%であることが好ましい。アルカリ水溶液の温度は、20~35℃であることが好ましい。
 具体的には、例えば、50g/L、40℃のリン酸水溶液、0.5g/L、30℃の水酸化ナトリウム水溶液又は0.5g/L、30℃の水酸化カリウム水溶液が好適に用いられる。
 酸水溶液又はアルカリ水溶液への浸漬時間は、8~120分であることが好ましく、10~90分であるのがより好ましく、15~60分であるのが更に好ましい。ここで、浸漬時間は、短時間の浸漬処理を繰り返した場合には、各浸漬時間の合計をいう。なお、各浸漬処理の間には、洗浄処理を施してもよい。
 また、導通体16を絶縁膜14の表面14a又は裏面14bより突出させる程度であるが、導通体16を絶縁膜14の表面14a又は裏面14bよりも10nm~1000nm突出させることが好ましく、50nm~500nm突出させることがより好ましい。すなわち、突出部の表面14aからの突出量、及び突出部の裏面14bからの導通体16の突出量は、それぞれ10nm~1000nmが好ましく、より好ましくは50nm~500nmである。
 導通体16の突出部の高さは、金属充填微細構造体の断面を電解放出形走査型電子顕微鏡により2万倍の倍率で観察し、導通体の突出部の高さを10点で測定した平均値をいう。
 導通体16の突出部の高さを厳密に制御する場合は、貫通孔12の内部に、金属等の導電性物質を充填した後、絶縁膜14と、金属等の導電性物質の端部とを同一平面状になるように加工した後、陽極酸化膜を選択的に除去することが好ましい。
 また、上述の金属の充填後、又は突出工程の後に、金属の充填に伴い発生した導通体16内の歪みを軽減する目的で、加熱処理を施すことができる。
 加熱処理は、金属の酸化を抑制する観点から還元性雰囲気で施すことが好ましく、具体的には、酸素濃度が20Pa以下で行うことが好ましく、真空下で行うことがより好ましい。ここで、真空とは、大気よりも、気体密度及び気圧のうち、少なくとも一方が低い空間の状態をいう。
 また、加熱処理は、矯正の目的で絶縁膜14に応力を加えながら行うことが好ましい。
〔樹脂層形成工程〕
 導通体が露出している絶縁膜の面を覆う樹脂層を形成してもよい。樹脂層形成工程は、金属充填微細構造体に対して実施する工程である。樹脂層形成工程では、樹脂層を、導通体の保護、更には搬送性の向上から設けることができる。
 樹脂層は、熱剥離性接着剤を含むものである。樹脂層は、搬送性の観点と、異方導電性部材として使用しやすくする観点から、加熱処理により粘着性が弱くなり、剥離可能となる粘着層付きフィルムであるのがより好ましい。上述の加熱処理により粘着性が弱くなり、剥離可能となる粘着層付きフィルムとしては、熱剥離型の樹脂層が挙げられる。
 上述の粘着層付きフィルムを貼り付ける方法は特に限定されず、従来公知の表面保護テープ貼付装置又はラミネーターを用いて貼り付けることができる。樹脂層については、以下に説明する。
〔巻取工程〕
 上述の金属充填微細構造体20、20a、20bの搬送性が更に向上する理由から、樹脂層34(図23参照)を有する状態で金属充填微細構造体20、20a、20bをロール状に巻き取る巻取工程を有してもよい。巻取工程により、図22に示すように、巻き芯32にロール状に巻き取られた状態で金属充填微細構造体20、20a、20bを供給することができる。
 ここで、上述の巻取工程における巻き取り方法は特に限定されず、例えば、所定径及び所定幅の巻き芯32(図22参照)に巻き取る方法が挙げられる。
 図22に示すロール状の状態で、例えば、金属充填微細構造体20、20a、20bを異方導電性部材として使用する際には、樹脂層34(図23参照)を除去する。これにより、金属充填微細構造体20、20a、20bを異方導電性部材として使用することができる。
〔その他の処理工程〕
 本発明の製造方法は、上述の各工程以外に、国際公開第2015/029881号の[0049]~[0057]段落に記載された研磨工程、表面平滑化工程、保護膜形成処理、水洗処理を有していてもよい。
 以下、金属充填微細構造体の構成についてより具体的に説明する。
 <導通体の形状>
 導通体16の直径dは1μm以下であることがより好ましく、5~500nmであることが更に好ましく、20~400nmであることが更により好ましく、40~200nmであることがより一層好ましく、50~100nmであることが最も好ましい。
 また、導通体は、拡径された場合、一方の面と他方の面とで直径が異なる。例えば、裏面14bに露出する第1金属部16aの第1の直径dと、表面14aに露出する第2金属部16bの第2の直径dとが異なり、第1の直径d<第2の直径dである。上述のように、例えば、第1の直径dが60nm場合、第2の直径dは70nmである。
 第1の直径dは、上述の導通体16の直径dと同様である。第2の直径dは、第1の直径d<第2の直径dを満たすものであり、それ以外は上述の導通体16の直径dと同様であることが好ましい。第2の直径d/第1の直径dは、110~130%であることが好ましい。
 導通体16の密度は、2万個/mm2以上であることが好ましく、200万個/mm2以上であることがより好ましく、1000万個/mm2以上であることが更に好ましく、5000万個/mm2以上であることが特に好ましく、1億個/mm2以上であることが最も好ましい。
 更に、隣接する各導通体16の中心間距離p(図6参照)は、20nm~500nmであることが好ましく、40nm~200nmであることがより好ましく、50nm~140nmであることが更に好ましい。
 貫通孔12の直径は、走査型電子顕微鏡を用いて絶縁膜14の表面を真上から倍率100~10000倍で撮影し撮影画像を得る。撮影画像において、周囲が環状に連なっている貫通孔を少なくとも20個抽出し、その直径を測定し開口径とし、これら開口径の平均値を貫通孔の平均直径として算出する。
 なお、倍率は、貫通孔を20個以上抽出できる撮影画像が得られるように上述した範囲の倍率を適宜選択することができる。また、開口径は、貫通孔部分の端部間の距離の最大値を測定した。すなわち、貫通孔の開口部の形状は略円形状に限定はされないので、開口部の形状が非円形状の場合には、貫通孔部分の端部間の距離の最大値を開口径とする。したがって、例えば、2以上の貫通孔が一体化したような形状の貫通孔の場合にも、これを1つの貫通孔とみなし、貫通孔部分の端部間の距離の最大値を開口径とする。
 絶縁膜14における各導通体16の間隔は、5nm~800nmであることが好ましく、10nm~200nmであることがより好ましく、20nm~60nmであることが更に好ましい。絶縁膜14における各導通体16の間隔が上述の範囲であると、絶縁膜14が、導通体16の電気絶縁性の隔壁として十分に機能する。
 ここで、各導通体の間隔とは、隣接する導通体間の幅をいい、金属充填微細構造体の断面を電解放出形走査型電子顕微鏡により20万倍の倍率で観察し、隣接する導通体間の幅を10点で測定した平均値をいう。
 <突出部>
 突出部は導通体の一部であり、柱状である。突出部は、接合対象との接触面積を大きくできることから、円柱状であることが好ましい。
 突出部の平均長さは、30nm~500nmが好ましく、上限値としては100nm以下であることがより好ましい。
 突出部の平均長さは、上述のように電界放出形走査型電子顕微鏡を用いて突出部の断面画像を取得し、断面画像に基づき、突出部の高さを、それぞれ10点測定し、測定した平均値である。
 なお、金属充填微細構造体の各部位の大きさについては、特に断りがなければ、金属充填微細構造体を厚み方向Dtに切断し、電界放射型走査電子顕微鏡(FE-SEM)を用いて切断断面の断面観察を行い、各サイズに該当する箇所を10点測定した平均値である。
 〔樹脂層〕
 樹脂層は、上述のように金属充填微細構造体の表面及び裏面のうち、少なくとも一方の面に設けられるものであり、露出した導通体を保護する。
 上述の樹脂層を構成する樹脂材料としては、具体的には、例えば、エチレン系共重合体、ポリアミド樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリオレフィン系樹脂、アクリル系樹脂、及びセルロース系樹脂等を挙げることができるが、搬送性の観点と、異方導電性部材として使用しやすくする観点から、上述の樹脂層は、剥離可能な粘着層付きフィルムであることが好ましく、加熱処理又は紫外線露光処理により粘着性が弱くなり、剥離可能となる粘着層付きフィルムであることがより好ましい。
 上述の粘着層付きフィルムは特に限定されず、熱剥離型の樹脂層、及び紫外線(ultraviolet:UV)剥離型の樹脂層等が挙げられる。
 ここで、熱剥離型の樹脂層は、常温では粘着力があり、加熱するだけで容易に剥離可能なもので、主に発泡性のマイクロカプセル等を用いたものが多い。
 また、粘着層を構成する粘着剤としては、具体的には、例えば、ゴム系粘着剤、アクリル系粘着剤、ビニルアルキルエーテル系粘着剤、シリコーン系粘着剤、ポリエステル系粘着剤、ポリアミド系粘着剤、ウレタン系粘着剤、スチレン-ジエンブロック共重合体系粘着剤等が挙げられる。
 また、UV剥離型の樹脂層は、UV硬化型の接着層を有するもので硬化により粘着力が失われて剥離可能になるというものである。
 UV硬化型の接着層としては、ベースポリマーに、炭素-炭素二重結合をポリマー側鎖又は主鎖中もしくは主鎖末端に導入したポリマー等が挙げられる。炭素-炭素二重結合を有するベースポリマーとしては、アクリル系ポリマーを基本骨格とするもことが好ましい。
 更に、アクリル系ポリマーは、架橋させるため、多官能性モノマー等も、必要に応じて共重合用モノマー成分として含むことができる。
 炭素-炭素二重結合を有するベースポリマーは単独で使用することができるが、UV硬化性のモノマー又はオリゴマーを配合することもできる。
 UV硬化型の接着層は、UV照射により硬化させるために光重合開始剤を併用することが好ましい。光重合開始剤としては、ベンゾインエーテル系化合物;ケタール系化合物;芳香族スルホニルクロリド系化合物;光活性オキシム系化合物;ベンゾフェノン系化合物;チオキサンソン系化合物;カンファーキノン;ハロゲン化ケトン;アシルホスフィノキシド;アシルホスフォナート等が挙げられる。
 熱剥離型の樹脂層の市販品としては、例えば、WS5130C02、WS5130C10等のインテリマー〔登録商標〕テープ(ニッタ株式会社製);ソマタック〔登録商標〕TEシリーズ(ソマール株式会製);No.3198、No.3198LS、No.3198M、No.3198MS、No.3198H、No.3195、No.3196、No.3195M、No.3195MS、No.3195H、No.3195HS、No.3195V、No.3195VS、No.319Y-4L、No.319Y-4LS、No.319Y-4M、No.319Y-4MS、No.319Y-4H、No.319Y-4HS、No.319Y-4LSC、No.31935MS、No.31935HS、No.3193M、No.3193MS等のリバアルファ〔登録商標〕シリーズ(日東電工株式会社製);等が挙げられる。
 UV剥離型の樹脂層の市販品としては、例えば、ELP DU-300、ELP DU-2385KS、ELP DU-2187G、ELP NBD-3190K、ELP UE-2091J等のエレップホルダー〔登録商標〕(日東電工株式会社製);Adwill D-210、Adwill D-203、Adwill D-202、Adwill D-175、Adwill D-675(いずれもリンテック株式会社製);スミライト〔登録商標〕FLSのN8000シリーズ(住友ベークライト株式会社製);UC353EP-110(古河電気工業株式会社製);等のダイシングテープ、ELP RF-7232DB、ELP UB-5133D(いずれも日東電工株式会社製);SP-575B-150、SP-541B-205、SP-537T-160、SP-537T-230(いずれも古河電気工業株式会社製);等のバックグラインドテープを利用することができる。
 本発明は、基本的に以上のように構成されるものである。以上、本発明の金属充填微細構造体及び金属充填微細構造体の製造方法について詳細に説明したが、本発明は上述の実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良又は変更をしてもよいのはもちろんである。
 以下に実施例を挙げて本発明の特徴を更に具体的に説明する。以下の実施例に示す材料、試薬、物質量とその割合、及び、操作等は本発明の趣旨から逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下の実施例に限定されるものではない。
 本実施例では、実施例1~9の金属充填微細構造体及び比較例1~4の金属充填微細構造体を作製した。実施例1~9及び比較例1~4の金属充填微細構造体について、貫通孔に対する金属充填均一性を評価した。金属充填均一性の評価結果を下記表1に示す。以下、金属充填均一性の評価について説明する。
<金属充填均一性>
 製造した金属充填微細構造体について、光学顕微鏡を用いて表面の観察を行い、以下に示す評価基準にて、金属充填微細構造体を評価した。なお、金属充填が不足な部分は、陽極酸化膜の表面となるため白色に見えることを、金属充填均一性の評価に利用した。すなわち、導通体の形成が不十分であると、陽極酸化膜の表面となるため白色に見える。
 下記評価基準に示す円相当径に基づく、白色に見える白色部の評価は、光学顕微鏡視野内でスケールバーと比較しながら目視にて、白色部を判断した。
 なお、下記評価基準による1~5のうち、1、2を劣っているものとして評価した。
 評価基準
5:「下記評価基準1~4のいずれにもあたらない」
4:「観察領域中で最大の円相当径を有する白色部の円相当径が5μm以上10μm未満」
3:「観察領域中で最大の円相当径を有する白色部の円相当径が10μm以上20μm未満」
2:「観察領域中で最大の円相当径を有する白色部の円相当径が20μm以上50μm未満」
1:「観察領域中で最大の円相当径を有する白色部の円相当径が50μm以上」
 以下、実施例1~9及び比較例1~4について説明する。
 なお、実施例1~9及び比較例1~4において、下記表1の製造工程の各欄において、実施した工程には「有り」と記載し、実施していない工程には「-」を記載した。
 下記表1の製造工程の「拡径処理」は、拡径工程を示す。「交流電解めっき」は、第1金属部を形成する第1の工程を示す。「直流電解めっき」は、第2金属部を形成する第2の工程を示す。
(実施例1)
 実施例1の金属充填微細構造体について説明する。
[金属充填微細構造体]
 <アルミニウム基板の作製>
 Si:0.06質量%、Fe:0.30質量%、Cu:0.005質量%、Mn:0.001質量%、Mg:0.001質量%、Zn:0.001質量%、Ti:0.03質量%を含有し、残部はAlと不可避不純物のアルミニウム合金を用いて溶湯を調製し、溶湯処理及びろ過を行った上で、厚さ500mm、幅1200mmの鋳塊をDC(Direct Chill)鋳造法で作製した。
 次いで、表面を平均10mmの厚さで面削機により削り取った後、550℃で、約5時間均熱保持し、温度400℃に下がったところで、熱間圧延機を用いて厚さ2.7mmの圧延板とした。
 更に、連続焼鈍機を用いて熱処理を500℃で行った後、冷間圧延で、厚さ1.0mmに仕上げ、JIS(Japanese Industrial Standards) 1050材のアルミニウム基板を得た。このアルミニウム基板を幅1030mmにした後、以下に示す各処理を施した。
 <電解研磨処理>
 上述のアルミニウム基板に対して、以下組成の電解研磨液を用いて、電圧25V、液温度65℃、液流速3.0m/minの条件で電解研磨処理を施した。
 陰極はカーボン電極とし、電源は、GP0110-30R(株式会社高砂製作所社製)を用いた。また、電解液の流速は渦式フローモニターFLM22-10PCW(アズワン株式会社製)を用いて計測した。
 (電解研磨液組成)
 ・85質量%リン酸(富士フイルム和光純薬株式会社製試薬)660mL
 ・純水  160mL
 ・硫酸  150mL
 ・エチレングリコール  30mL
<陽極酸化処理工程>
 次いで、電解研磨処理後のアルミニウム基板に、特開2007-204802号公報に記載の手順にしたがって自己規則化法による陽極酸化処理を施した。
 電解研磨処理後のアルミニウム基板に、0.50mol/Lシュウ酸の電解液で、電圧40V、液温度16℃、液流速3.0m/minの条件で、1時間のプレ陽極酸化処理を施した。
 その後、プレ陽極酸化処理後のアルミニウム基板を、0.2mol/L無水クロム酸、0.6mol/Lリン酸の混合水溶液(液温:50℃)に12時間浸漬させる脱膜処理を施した。
 その後、再度、0.50mol/Lシュウ酸の電解液で、電圧40V、液温度16℃、液流速3.0m/minの条件で、処理時間、9時間の陽極酸化処理を施し、膜厚100μmの陽極酸化膜を得た。
 なお、プレ陽極酸化処理及び陽極酸化処理は、いずれも陰極はステンレス電極とし、電源はGP0110-30R(株式会社高砂製作所製)を用いた。また、冷却装置にはNeoCool BD36(ヤマト科学株式会社製)、かくはん加温装置にはペアスターラー PS-100(EYELA東京理化器械株式会社製)を用いた。更に、電解液の流速は渦式フローモニターFLM22-10PCW(アズワン株式会社製)を用いて計測した。
<バリア層除去工程>
 次いで、陽極酸化処理工程後に、水酸化ナトリウム水溶液(50g/l)を用いて、30℃で150秒間浸漬させるエッチング処理を施し、陽極酸化膜の貫通孔の底部にあるバリア層を除去した。バリア層除去工程後の陽極酸化膜の平均厚みは100μmであった。
<導通体の形成工程>
 交流電解めっき法を用いて、Niの第1金属部を形成した。Niの第1金属部の形成には、温度を30℃に調整した、ニッケル(Ni)めっき液を用いた。
 ニッケル(Ni)めっき液は、0.2molの硫酸ニッケル(II)と0.5molのホウ酸に水を加えて全量を1リットルとした液である。
 交流電解めっき法では、周波数50Hzの正弦波を用いピーク電圧を18Vとし、電解時間は10分とした。また、ニッケル(Ni)めっき液には硫酸アルミニウムを少量添加(0.1mol程度)した。交流電解めっき終了後、十分に水洗を行った後、次工程に供した。
 第1金属部の形成後に、次いで、アルミニウム基板を陰極にし、白金を正極にして直流電解めっき法を用いて第2金属部を形成した。
 具体的には、以下に示す組成の銅めっき液を使用し、定電流電解を施すことにより、貫通孔の内部、かつ第1金属部上に、銅で構成された第2金属部を積層された金属充填微細構造体を作製した。ここで、定電流電解は、株式会社山本鍍金試験器社製のめっき装置を用い、北斗電工株式会社製の電源(HZ-3000)を用い、めっき液中でサイクリックボルタンメトリを行って析出電位を確認した後に、以下に示す条件で処理を施した。
(銅めっき液組成及び条件)
 ・硫酸銅 100g/L
 ・硫酸 50g/L
 ・塩酸 15g/L
 ・温度 25℃
 ・電流密度 10A/dm
<基板除去工程>
 次いで、塩化銅/塩酸の混合溶液に浸漬させることによりアルミニウム基板を溶解して除去し、平均厚み100μmの金属充填微細構造体を作製した。
 作製された金属充填微細構造体における導通体の直径は60nmであり、導通体間のピッチは100nmであり、導通体の密度は5770万個/mmであった。
(実施例2)
 実施例2は、実施例1に比して、第1金属部を形成する前に拡径工程を実施した点が異なり、それ以外は実施例1と同様に作製した。
 実施例2の拡径工程では、温度25℃に調整したアルカリ水溶液(KOH0.1mol/L)に、バリア層除去工程後の陽極酸化膜を浸漬した。浸漬時間は4分とした。浸漬処理後、貫通孔の口径拡大に伴う溶解により生成したアルミニウム水和物の中和、及び除去のために、温度30℃に調整した0.5%硫酸水溶液に30秒間浸漬した。浸漬後、流水により十分水洗した。なお、拡径工程により、拡径後の直径を70nmとした。拡径工程の前の直径は60nmであった。実施例2は、導通体の裏面側の第1の直径dが60nmであり、表面側の第2の直径dが70nmであった。
(実施例3)
 実施例3は、実施例2に比して、第1金属部を形成した後、かつ第2金属部の形成前に拡径工程を実施した点が異なり、それ以外は実施例2と同様に作製した。
 なお、拡径工程により、拡径後の直径を70nmとした。拡径工程の前の直径は60nmであった。実施例3は、導通体の裏面側の第1の直径dが60nmであり、表面側の第2の直径dが70nmであった。
(実施例4)
 実施例4は、実施例1に比して、金属充填微細構造体の厚みを200μmとした点が異なり、それ以外は実施例1と同様に作製した。なお、実施例4では、陽極酸化膜の処理時間を25時間とした。実施例4は、導通体の直径が60nmであった。
(実施例5)
 実施例5は、実施例1に比して、金属充填微細構造体の厚みを200μmとした点、及び第1金属部を形成した後、かつ第2金属部の形成前に拡径工程を実施した点が異なり、それ以外は実施例1と同様に作製した。
 実施例5では、陽極酸化膜の処理時間を25時間とした。
 実施例5の拡径工程では、温度25℃に調整したアルカリ水溶液(KOH0.1mol/L)に、バリア層除去工程後の陽極酸化膜を浸漬した。浸漬時間は4分とした。浸漬処理後、貫通孔の口径拡大に伴う溶解により生成したアルミニウム水和物の中和、及び除去のために、温度30℃に調整した0.5%硫酸水溶液に30秒間浸漬した。浸漬後、流水により十分水洗した。なお、拡径工程により、拡径後の直径を70nmとした。拡径工程の前の直径は60nmであった。実施例5は、導通体の裏面側の第1の直径dが60nmであり、表面側の第2の直径dが70nmであった。
(実施例6)
 実施例6は、実施例5に比して、金属充填微細構造体の厚みを250μmとした点が異なり、それ以外は実施例5と同様に作製した。なお、実施例6では、陽極酸化膜の処理時間を40時間とした。なお、拡径工程により、拡径後の直径を70nmとした。拡径工程の前の直径は60nmであった。実施例6は、導通体の裏面側の第1の直径dが60nmであり、表面側の第2の直径dが70nmであった。
(実施例7)
 実施例7は、実施例6に比して、第1金属部をZnで形成したことが異なり、それ以外は実施例6と同様に作製した。
 実施例7の第1金属部の形成工程では、温度を30℃に調整した、亜鉛(Zn)めっき液を用いた。
 亜鉛(Zn)めっき液は、0.1mol/Lの硫酸アルミニウム水溶液に硫酸亜鉛を0.1mol添加した液である。
 交流電解めっき法では、周波数50Hzの正弦波を用いピーク電圧を25Vとし、電解時間は5分とした。交流電解めっき終了後、十分に水洗を行った後、次工程に供した。
 なお、拡径工程により、拡径後の直径を70nmとした。拡径工程の前の直径は60nmであった。実施例7は、導通体の裏面側の第1の直径dが60nmであり、表面側の第2の直径dが70nmであった。
(実施例8)
 実施例8は、実施例5に比して、第1金属部の形成前に拡径工程を実施した点が異なり、それ以外は実施例5と同様に作製した。なお、拡径工程により、拡径後の直径を70nmとした。拡径工程の前の直径は60nmであった。実施例8は、導通体の裏面側の第1の直径dが60nmであり、表面側の第2の直径dが70nmであった。
(実施例9)
 実施例9は、実施例6に比して、第1金属部の形成前に拡径工程を実施した点が異なり、それ以外は実施例6と同様に作製した。なお、拡径工程により、拡径後の直径を70nmとした。拡径工程の前の直径は60nmであった。実施例9は、導通体の裏面側の第1の直径dが60nmであり、表面側の第2の直径dが70nmであった。
(比較例1)
 比較例1は、実施例1に比して、金属充填微細構造体の厚みを20μmとした点、交流電解めっき法による第1金属部を形成していない点、及び陽極酸化膜の処理時間が異なり、それ以外は実施例1と同様に作製した。
 比較例1では、陽極酸化膜の処理時間を1時間とした。導通体を直流電解めっき法だけを用いて形成した。比較例1は、導通体の直径が60nmであった。
(比較例2)
 比較例2は、比較例1に比して、金属充填微細構造体の厚みを60μmとした点が異なり、それ以外は比較例1と同様に作製した。なお、比較例2では、陽極酸化膜の処理時間を5時間とした。比較例2は、導通体の直径が60nmであった。
(比較例3)
 比較例3は、比較例1に比して、金属充填微細構造体の厚みを100μmとした点が異なり、それ以外は比較例1と同様に作製した。なお、比較例3では、陽極酸化膜の処理時間を9時間とした。比較例3は、導通体の直径が60nmであった。
(比較例4)
 比較例4は、比較例3に比して、第1金属部を形成する前に、拡径工程を実施した点が異なり、それ以外は比較例3と同様に作製した。なお、比較例4では、拡径工程により、拡径後の直径を70nmとした。拡径工程の前の直径は60nmであった。比較例4は、導通体の裏面側の第1の直径dが60nmであり、表面側の第2の直径dが70nmであった。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~9は、比較例1~4に比して、金属充填微細構造体の厚みが100μm以上であっても、金属充填均一性が優れていた。すなわち、厚みが厚い金属充填微細構造体を得ることができた。
 比較例1及び2は、厚みが100μm未満であり、薄い。厚みが100μmである比較例3及び4は、いずれも金属充填均一性が悪い。このように、比較例1~4では、厚みが厚い金属充填微細構造体を得ることができなかった。
 実施例1~3は、いずれも厚みが100μmであるが、拡径工程を有する実施例2及び3は、金属充填均一性が更に優れていた。
 実施例4、5及び8は、いずれも厚みが200μmであるが、拡径工程を有する実施例5及び8は、金属充填均一性が更に優れていた。
 実施例6及び7は、第1金属部を構成する金属が異なるが、金属充填均一性の結果からZnよりもNiがより好ましい。
 10 アルミニウム基板
 10a 表面
 12 貫通孔
 12c 底面
 12d 拡径部
 12e 段差
 12f 部分
 12g 拡径部
 13 バリア層
 14 絶縁膜
 14a 表面
 14b 裏面
 15 陽極酸化膜
 16 導通体
 16a 第1金属部
 16b 第2金属部
 20、20a、20b 金属充填微細構造体
 30 金属層
 32 巻き芯
 34 樹脂層
 Dt 厚み方向
 d 平均直径
 d 第1の直径
 d 第2の直径
 ht 厚み
 p  中心間距離
 
 

Claims (9)

  1.  絶縁膜と、
     前記絶縁膜の厚み方向に貫通し、互いに電気的に絶縁された状態で設けられた、複数の導通体とを有し、
     前記絶縁膜は、前記厚み方向の長さが100μm以上であり、
     前記複数の前記導通体は、それぞれ金属で構成され、かつ前記絶縁膜の前記厚み方向における一方の面及び前記厚み方向における他方の面に露出しており、
     前記導通体において、前記一方の面に露出する第1金属部と、前記他方の面に露出する第2金属部とは構成する金属が異なる、金属充填微細構造体。
  2.  前記複数の前記導通体は、それぞれ前記一方の面に露出する前記第1金属部の第1の直径と、前記他方の面に露出する第2金属部の第2の直径とが異なる、請求項1に記載の金属充填微細構造体。
  3.  前記第1金属部は、Zn又はNiで構成され、
     前記第2金属部は、Cuで構成される、請求項1又は2に記載の金属充填微細構造体。
  4.  前記絶縁膜は、陽極酸化膜である、請求項1~3のいずれか1項に記載の金属充填微細構造体。
  5.  厚み方向に延在する複数の貫通孔を有する絶縁膜に対して、前記複数の前記貫通孔に金属を充填して、導通体を形成する形成工程を有し、
     前記形成工程は、前記複数の前記貫通孔に、それぞれ前記絶縁膜の前記厚み方向における一方の面側から、交流電解めっき法を用いて第1金属部を形成する第1の工程と、
     前記複数の前記貫通孔の前記第1金属部上に、直流電解めっき法を用いて第2金属部を形成する第2の工程とを有し、
     前記第1金属部と、前記第2金属部とは構成する金属が異なる、金属充填微細構造体の製造方法。
  6.  前記第1の工程の前、又は前記第1の工程と前記第2の工程との間に、前記貫通孔を拡径する拡径工程を有する、請求項5に記載の金属充填微細構造体の製造方法。
  7.  前記第1金属部は、Zn又はNiで構成され、
     前記第2金属部は、Cuで構成される、請求項5又は6に記載の金属充填微細構造体の製造方法。
  8.  前記絶縁膜は、前記厚み方向の長さが100μm以上である、請求項5~7のいずれか1項に記載の金属充填微細構造体の製造方法。
  9.  前記絶縁膜は、陽極酸化膜である、請求項5~8のいずれか1項に記載の金属充填微細構造体の製造方法。
PCT/JP2021/045023 2020-12-23 2021-12-08 金属充填微細構造体及び金属充填微細構造体の製造方法 WO2022138151A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022572096A JPWO2022138151A1 (ja) 2020-12-23 2021-12-08
CN202180086340.9A CN116670337A (zh) 2020-12-23 2021-12-08 金属填充微细结构体和金属填充微细结构体的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-213613 2020-12-23
JP2020213613 2020-12-23

Publications (1)

Publication Number Publication Date
WO2022138151A1 true WO2022138151A1 (ja) 2022-06-30

Family

ID=82159620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045023 WO2022138151A1 (ja) 2020-12-23 2021-12-08 金属充填微細構造体及び金属充填微細構造体の製造方法

Country Status (4)

Country Link
JP (1) JPWO2022138151A1 (ja)
CN (1) CN116670337A (ja)
TW (1) TW202235689A (ja)
WO (1) WO2022138151A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220165619A1 (en) * 2019-08-16 2022-05-26 Fujifilm Corporation Method for manufacturing structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002004083A (ja) * 2000-04-18 2002-01-09 Shinko Electric Ind Co Ltd ヴィアフィリング方法
JP2008021739A (ja) * 2006-07-11 2008-01-31 Shinko Electric Ind Co Ltd 基板の製造方法
JP2008214679A (ja) * 2007-03-01 2008-09-18 Shinko Electric Ind Co Ltd スルーホールの充填方法
JP2012124253A (ja) * 2010-12-07 2012-06-28 Canon Inc 貫通電極基板及びその製造方法
JP2016072449A (ja) * 2014-09-30 2016-05-09 大日本印刷株式会社 導電材充填貫通電極基板及びその製造方法
JP2019147988A (ja) * 2018-02-27 2019-09-05 富士フイルム株式会社 金属膜、構造体、複合材料、金属膜の製造方法、構造体の製造方法、および複合材料の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002004083A (ja) * 2000-04-18 2002-01-09 Shinko Electric Ind Co Ltd ヴィアフィリング方法
JP2008021739A (ja) * 2006-07-11 2008-01-31 Shinko Electric Ind Co Ltd 基板の製造方法
JP2008214679A (ja) * 2007-03-01 2008-09-18 Shinko Electric Ind Co Ltd スルーホールの充填方法
JP2012124253A (ja) * 2010-12-07 2012-06-28 Canon Inc 貫通電極基板及びその製造方法
JP2016072449A (ja) * 2014-09-30 2016-05-09 大日本印刷株式会社 導電材充填貫通電極基板及びその製造方法
JP2019147988A (ja) * 2018-02-27 2019-09-05 富士フイルム株式会社 金属膜、構造体、複合材料、金属膜の製造方法、構造体の製造方法、および複合材料の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220165619A1 (en) * 2019-08-16 2022-05-26 Fujifilm Corporation Method for manufacturing structure
US12002713B2 (en) * 2019-08-16 2024-06-04 Fujifilm Corporation Method for manufacturing structure

Also Published As

Publication number Publication date
TW202235689A (zh) 2022-09-16
CN116670337A (zh) 2023-08-29
JPWO2022138151A1 (ja) 2022-06-30

Similar Documents

Publication Publication Date Title
JP6029764B2 (ja) 金属充填微細構造体の製造方法
WO2017057150A1 (ja) 金属充填微細構造体の製造方法
JP5143045B2 (ja) 微細構造体およびその製造方法
TR201816250T4 (tr) Paslanmaz çelik elektrolitik plakalar.
JP2009224146A (ja) 異方性導電性部材を有する積層板とその製造方法
JP5253972B2 (ja) 構造体およびその製造方法
WO2022138151A1 (ja) 金属充填微細構造体及び金属充填微細構造体の製造方法
WO2022138219A1 (ja) 金属充填微細構造体および金属充填微細構造体の製造方法
JP5435484B2 (ja) 金属充填微細構造体の製造方法
WO2022044585A1 (ja) 金属充填微細構造体の製造方法
JP6055552B2 (ja) 多層構造体、インターポーザ、および、インターポーザの製造方法
WO2022181300A1 (ja) 構造体及び構造体の製造方法
JP2011080139A (ja) 金属充填微細構造体およびその製造方法
WO2022014293A1 (ja) 異方導電性部材の製造方法
WO2021261122A1 (ja) 構造体及び構造体の製造方法
WO2022158277A1 (ja) めっき液、および、金属充填構造体の製造方法
JP2023124155A (ja) 金属充填微細構造体
Van Phuong et al. Electrodeposition of copper on AZ91 Mg alloy in cyanide solution
JP2005105409A (ja) 多孔質シリコン構造体の製造方法および金属担持多孔質シリコンの製造方法
WO2022138150A1 (ja) 構造体の製造方法
JP2009287115A (ja) 電解めっき方法およびそれを用いた金属充填微細構造体の製造方法
JP2010033753A (ja) 微細構造体およびその製造方法
JP2024101457A (ja) ニッケルめっき材及びタブリード用リード導体
JP2024101461A (ja) ニッケルめっき材及びタブリード用リード導体
JP2023098768A (ja) 金属体の形成方法および金属体、ならびにその金属体を備える嵌合型接続端子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910300

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022572096

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180086340.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910300

Country of ref document: EP

Kind code of ref document: A1