WO2022138037A1 - 酸化マグネシウム粉末、熱伝導性フィラー、樹脂組成物及び酸化マグネシウム粉末の製造方法 - Google Patents

酸化マグネシウム粉末、熱伝導性フィラー、樹脂組成物及び酸化マグネシウム粉末の製造方法 Download PDF

Info

Publication number
WO2022138037A1
WO2022138037A1 PCT/JP2021/044152 JP2021044152W WO2022138037A1 WO 2022138037 A1 WO2022138037 A1 WO 2022138037A1 JP 2021044152 W JP2021044152 W JP 2021044152W WO 2022138037 A1 WO2022138037 A1 WO 2022138037A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium oxide
oxide powder
particles
magnesium
grain boundary
Prior art date
Application number
PCT/JP2021/044152
Other languages
English (en)
French (fr)
Inventor
勇 藤川
真通 中川
崇 濱岡
武史 日元
誠治 山口
国男 渡辺
Original Assignee
宇部マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部マテリアルズ株式会社 filed Critical 宇部マテリアルズ株式会社
Priority to JP2022540977A priority Critical patent/JP7182752B1/ja
Priority to KR1020237002959A priority patent/KR102595134B1/ko
Priority to CN202180039230.7A priority patent/CN115667147B/zh
Priority to US18/010,586 priority patent/US11884553B2/en
Priority to EP21910189.6A priority patent/EP4269346A1/en
Publication of WO2022138037A1 publication Critical patent/WO2022138037A1/ja
Priority to JP2022107138A priority patent/JP7149443B2/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • C01F5/06Magnesia by thermal decomposition of magnesium compounds
    • C01F5/08Magnesia by thermal decomposition of magnesium compounds by calcining magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/14Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/14Magnesium hydroxide
    • C01F5/22Magnesium hydroxide from magnesium compounds with alkali hydroxides or alkaline- earth oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/222Magnesia, i.e. magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene

Definitions

  • the present invention relates to magnesium oxide powder, a thermally conductive filler, a resin composition, and a method for producing magnesium oxide powder.
  • Magnesium oxide powder is an inorganic compound powder with excellent thermal conductivity and heat resistance, and is used in various resins as a thermal conductive filler.
  • a resin composition containing a resin and magnesium oxide powder is used, for example, as a heat radiating material for electronic devices.
  • magnesium oxide powder having a spherical particle shape has been studied.
  • Patent Document 1 As a method for producing spherical magnesium oxide powder, a method is known in which magnesium oxide powder obtained by crushing magnesia clinker is polished to peel off the particle surface (Patent Document 1). Further, as a method for producing spherical magnesium oxide powder, a method of granulating a mixture containing magnesium hydroxide particles and a lithium compound and firing the obtained granulated product is also known (Patent Document 2).
  • Spherical magnesium oxide powder used as a thermally conductive filler in a resin composition for a heat radiating material has high filling property into a resin.
  • the spherical magnesium oxide powder has a small contact area between particles. Therefore, in order to form a heat conduction path between the particles, it is necessary to increase the filling amount of the spherical magnesium oxide powder contained in the resin composition. Increasing the filling amount of the spherical magnesium oxide powder is disadvantageous in terms of economy, and there is a problem that the obtained resin composition has a large specific gravity.
  • the present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a magnesium oxide powder that easily forms a heat conductive path, a method for producing the same, and a heat conductive filler. It is also an object of the present invention to provide a resin composition having a high thermal conductivity.
  • the present inventors have conducted a plurality of cases by firing a raw material mixture containing magnesium hydroxide particles and / or magnesium oxide particles and a grain boundary forming component in a predetermined ratio. It has been found that it is possible to obtain magnesium oxide powder containing granules in which at least a part of the substantially spherical primary magnesium oxide particles are fused to each other by the grain boundary phase.
  • the magnesium oxide powder containing the secondary particles which are the particles and having a median diameter of 300 ⁇ m or less obtained by the laser diffraction / scattering method easily forms a heat conduction path, and is a resin composition in which this is dispersed in a resin.
  • the present invention has the following configuration.
  • a plurality of magnesium oxide primary particles having a crystal phase and a grain boundary phase include secondary particles fused to each other by the grain boundary phase, and the median diameter obtained by the laser diffraction scattering method is 300 ⁇ m or less.
  • Magnesium oxide powder [2] The ratio of the median diameter (median diameter / volume average circle equivalent diameter) to the volume average circle equivalent diameter of the magnesium oxide primary particles obtained by analyzing the image measured by the scanning electron microscope is 1.2 or more 6
  • the magnesium oxide powder according to the above [1] which is in the range of 0 or less.
  • magnesium oxide powder that easily forms a heat conductive path, a method for producing the same, and a heat conductive filler. Further, according to the present invention, it is also possible to provide a resin composition having a high thermal conductivity.
  • the magnesium oxide powder of the present embodiment contains secondary particles in which a plurality of magnesium oxide primary particles are fused.
  • the content of the secondary particles in the magnesium oxide powder is preferably 30% or more, more preferably 50% or more, still more preferably 70% or more on a number basis. Secondary particles in which at least a part of the magnesium oxide primary particles are fused to each other by the grain boundary phase can be easily identified on an SEM (scanning electron microscope) image. Therefore, the content of the secondary particles of the magnesium oxide powder can be measured by measuring the number of secondary particles fused with the plurality of primary particles using an SEM.
  • FIG. 1 is a conceptual diagram of secondary particles contained in magnesium oxide powder according to an embodiment of the present invention.
  • the secondary particles 1 in which at least a part of the magnesium oxide primary particles 2 are fused to each other by the grain boundary phase 4 have a plurality of magnesium oxide primary particles 2. It is presumed that the component of the grain boundary phase 4 acts as a flux in the secondary particles 1, and at least a part of the secondary particles 1 includes the crystal phase 3 of the primary particles 2 and is fused.
  • the secondary particles 1 in which at least a part of the magnesium oxide primary particles 2 are fused to each other by the grain boundary phase 4 may have an irregular shape in which a plurality of magnesium oxide primary particles 2 are irregularly fused. Further, the secondary particles 1 may have a shape having a plurality of irregularities on the surface or a distorted spherical shape. Since the shape of the secondary particles 1 is an indefinite shape or a shape having a plurality of irregularities, the contact area between the secondary particles 1 can be increased, so that the magnesium oxide powder containing the secondary particles 1 is a secondary particle. It facilitates the formation of heat conduction paths between particles.
  • Magnesium oxide primary particles 2 have a crystal phase 3 and a grain boundary phase 4.
  • the magnesium oxide primary particles 2 may be a single crystal or a polycrystal.
  • the shape of the magnesium oxide primary particles 2 is not particularly limited, and may be, for example, spherical, elliptical spherical, cylindrical, or prismatic. Further, the magnesium oxide primary particles 2 may be indefinitely granular.
  • Crystal phase 3 mainly contains magnesium oxide.
  • the grain boundary phase 4 contains a low melting point compound having a melting point lower than that of magnesium oxide.
  • the low melting point compound may be, for example, a compound containing calcium, silicon, and boron.
  • the low melting point compound may be an oxide containing calcium, silicon and boron.
  • At least a part of the plurality of magnesium oxide primary particles 2 is fused to each other by the grain boundary phase 4. Therefore, the magnesium oxide primary particles 2 in the secondary particles 1 are likely to form a heat conduction path between the particles.
  • the crystal phase 3 may grow in the grain boundary phase 4 and fuse with each other. Since the crystal phase 3 is mainly composed of magnesium oxide having high thermal conductivity, it is desirable from the viewpoint of forming a thermal conduction path that the crystal phase 3 is fused.
  • Magnesium oxide powder has a median diameter of 300 ⁇ m or less as measured by the laser diffraction / scattering method.
  • the particle size measured by the laser diffraction / scattering method corresponds to the particle size of the secondary particles 1 in which at least a part of the magnesium oxide primary particles 2 is fused to each other by the grain boundary phase 4.
  • the median diameter is 300 ⁇ m or less, the dispersibility and filling property of the magnesium oxide powder are improved.
  • the median diameter may be 10 ⁇ m or more. When the median diameter is as large as 10 ⁇ m or more, the magnesium oxide powder easily forms a heat conduction path in the resin.
  • the magnesium oxide powder having a large median diameter of 10 ⁇ m or more has improved hydration resistance and is less likely to be deteriorated by water. Therefore, the resin composition in which magnesium oxide powder having a median diameter in the range of 10 ⁇ m or more and 300 ⁇ m or less is dispersed improves the thermal conductivity over a long period of time.
  • the median diameter is preferably in the range of 10 ⁇ m or more and 150 ⁇ m or less, more preferably in the range of 30 ⁇ m or more and 150 ⁇ m or less, and particularly preferably in the range of 30 ⁇ m or more and 140 ⁇ m or less.
  • the magnesium oxide powder has a ratio of the above-mentioned median diameter (median diameter of the secondary particle 1) to the volume average circle equivalent diameter of the magnesium oxide primary particle 2 obtained by analyzing the image taken by SEM of 1.2 or more.
  • the configuration may be within the range of 6.0 or less.
  • This median diameter / volume average circle equivalent diameter is an index of the number of magnesium oxide primary particles 2 fused in the secondary particles 1 (degree of fusion). That is, a large diameter corresponding to the median diameter / volume average circle means that the number of magnesium oxide primary particles 2 fused in the secondary particles 1 is large (the degree of fusion is large).
  • the median diameter / volume average circle equivalent diameter is preferably in the range of 1.5 or more and 5.0 or less, and preferably in the range of 2.0 or more and 5.0 or less. It is more preferable to have 2.8 or more, and it is particularly preferable to have 2.8 or more.
  • the volume average circle-equivalent diameter of the magnesium oxide primary particles 2 is the frequency of the circle-equivalent diameter calculated by converting the projected area of the magnesium oxide primary particles 2 obtained by image analysis of the SEM image into a circle. Is the cumulative diameter of the media.
  • the volume average circle equivalent diameter may be in the range of 2.0 ⁇ m or more and 250 ⁇ m or less.
  • the volume average circle equivalent diameter is preferably in the range of 5.0 ⁇ m or more and 150 ⁇ m or less, and particularly preferably in the range of 5.0 ⁇ m or more and 100 ⁇ m or less.
  • the magnesium oxide powder may have a BET specific surface area of 1 m 2 / g or less.
  • the fact that the BET specific surface area is in this range means that the magnesium oxide powder has few pores and is a dense sintered body.
  • the BET specific surface area is preferably 0.8 m 2 / g or less, and particularly preferably 0.5 m 2 / g or less.
  • the BET specific surface area may generally be 0.01 m 2 / g or more.
  • the crystallite diameter of the magnesium oxide powder is preferably 1000 ⁇ or more, more preferably 1200 ⁇ or more, further preferably 1500 ⁇ or more, and particularly preferably 2000 ⁇ or more.
  • the magnesium oxide powder may have a magnesium oxide content of 94% by mass or more.
  • the content of magnesium oxide is preferably 95% by mass or more, and particularly preferably 97% by mass or more.
  • the magnesium oxide powder may contain a substance other than magnesium oxide in the range of 0.8% by mass or more and 6% by mass or less in terms of oxide content.
  • the oxide-equivalent content of substances other than magnesium oxide is preferably in the range of 0.8% by mass or more and 5% by mass or less, and preferably in the range of 0.8% by mass or more and 3% by mass or less.
  • Substances other than magnesium oxide include low melting point compounds and impurities that form grain boundary phases.
  • the contents of calcium, silicon, and boron, which mainly form low melting point compounds are preferably 0.8% by mass or more in total in terms of oxides, and 1.0. It is particularly preferable that it is by mass or more.
  • the magnesium oxide primary particles can be firmly fused. Furthermore, if the low melting point compound acts as a flux and the flux extends to the crystalline phase of magnesium oxide, a heat conduction path between the particles can be more reliably formed.
  • the magnesium oxide powder may be configured to have a coupling agent attached.
  • the type of the coupling agent is not particularly limited, and for example, a silane coupling agent, an aluminate-based coupling agent, a zirconium-based coupling agent, and a titanate-based coupling agent can be used.
  • the coupling agent can be appropriately selected depending on the type of resin to be filled with magnesium oxide.
  • a silane coupling agent is desirable, and a silane coupling agent having a vinyl group, a phenyl group, and an amino group is particularly preferable.
  • the magnesium oxide powder may be further treated with a surface modifier.
  • a surface modifier a metal soap such as magnesium stearate, a surfactant such as sodium stearate, and the like can be used.
  • the magnesium oxide powder having the above structure can be used as a heat conductive filler, particularly as a heat conductive filler for resins and rubbers.
  • the type of resin is not particularly limited, and for example, a thermoplastic resin, a thermosetting resin, grease, wax, or the like can be used.
  • the resin composition containing the resin and the magnesium oxide powder dispersed in the resin preferably contains magnesium oxide powder in the range of 30% by volume or more and 80% by volume or less.
  • the resin composition can be used as a heat radiating material for lamp sockets and various electrical components, for example, in the field of automobiles. Further, in the field of electronic devices, it can be used as a heat sink, a die pad, a printed wiring board, a component for a semiconductor package, a component for a cooling fan, a pickup component, a connector, a switch, a bearing, and a heat radiating material for a case housing.
  • the magnesium oxide powder can be produced, for example, by a method including (a) a raw material step, (b) a firing step, and (c) a classification step.
  • (A) Raw Material Process In the raw material process, a raw material mixture containing a magnesium oxide source that produces magnesium oxide by firing and a grain boundary forming component that forms a grain boundary phase is prepared.
  • the magnesium oxide source magnesium hydroxide particles and / or magnesium oxide particles can be used.
  • the raw material mixture contains a magnesium oxide source, additives constituting grain boundary forming components, and other impurities, and the content of the magnesium oxide source is 94% by mass or more in terms of the magnesium oxide content, and the grain boundary is The content of the forming component is 0.8% by mass or more in terms of the content of the oxide.
  • the raw material mixture can be prepared by mixing a magnesium oxide source and an additive constituting a grain boundary forming component (low melting point compound).
  • the raw material mixture containing the magnesium hydroxide particles and the grain boundary forming component is, for example, water obtained by mixing seawater with lime milk (calcium hydroxide slurry) purified by removing the residue after smelting quicklime. It can be prepared by appropriately adding additives such as a silica source, a boron source, and a calcium source to magnesium hydroxide produced by reacting calcium oxide with a magnesium salt in seawater.
  • Magnesium hydroxide prepared using this seawater and lime milk mainly contains calcium and silicon derived from lime milk, and boron derived from seawater.
  • a calcined product is obtained by calcining the raw material mixture obtained in the (a) raw material step.
  • the calcined product contains magnesium oxide powder containing secondary particles in which at least a part of a plurality of magnesium oxide primary particles are fused to each other by a grain boundary phase.
  • the firing temperature of the raw material mixture is a temperature at which magnesium oxide is produced and the grain boundary forming component is melted.
  • the firing temperature is, for example, in the range of 1000 ° C. or higher and 2000 ° C. or lower, preferably in the range of 1500 ° C. or higher and 2000 ° C. or lower, and particularly preferably in the range of 1600 ° C. or higher and 2000 ° C. or lower.
  • the firing device a device capable of firing while stirring the raw material mixture is used so that secondary particles are appropriately generated.
  • the firing device for example, a rotary kiln can be used. As the firing temperature in the firing step increases, the crystallite diameter of the obtained magnesium oxide powder tends to increase.
  • (C) Classification step In the classification step, the fired product obtained in the (b) firing step is classified, coarse particles of the fired product are removed, and the particle size distribution of the fired product is adjusted.
  • the classification method is not particularly limited, and a classification method using a classification device such as a vibration sieving machine, a wind power classification machine, or a cyclone type classification machine can be used.
  • the classifying device one kind of classifying device may be used alone, or two or more kinds of classifying devices may be used in combination.
  • coarse particles may be classified and removed by a vibrating sieve to obtain secondary particles having a predetermined median diameter.
  • the particle size distribution of the secondary particles may be adjusted by removing particles that are too small with a wind classifier.
  • magnesium oxide source and the grain boundary forming component are contained in a predetermined ratio, a plurality of magnesium oxide primary particles are contained by the firing step. Secondary particles fused with magnesium can be efficiently obtained.
  • Example 1 (A) Raw material step After smelting quicklime, the residue is removed and purified lime milk (calcium hydroxide slurry) is mixed with decarbonated seawater, and calcium hydroxide and magnesium salt in seawater are reacted. A magnesium hydroxide slurry was prepared. The obtained magnesium hydroxide slurry was dehydrated using a rotary disc filter to obtain a magnesium hydroxide cake having a water content of 40%. The obtained magnesium hydroxide cake contained CaO, SiO 2 , B 2 O 3 , Fe 2 O 3 , and Al 2 O 3 .
  • the obtained magnesium hydroxide cake and boric acid are mixed at a ratio of B2O3 content of 0.8% by mass after firing at 1800 ° C., and then the water content is 10% by mass using a rotary dryer.
  • the raw material mixture was prepared by drying to%.
  • (B) Baking step The raw material mixture obtained in the above (a) raw material step was molded into an almond shape of about 30 mm using a briquetting machine. The obtained almond-like molded product was fired at 1800 ° C. for 8 hours using a rotary kiln to obtain magnesium oxide (fired product). The obtained magnesium oxide contained powdered magnesium oxide particles (secondary particles) desorbed from the calcined body of the granular molded product and the calcined body of the granular molded product.
  • (C) Classification step From the magnesium oxide obtained in the above (b) firing step, coarse particles (including the calcined body of the granular molded product) having a particle size of 300 ⁇ m or more were removed using a vibrating sieve with an opening of 300 ⁇ m. .. Next, the magnesium oxide powder having a particle size of less than 300 ⁇ m was classified using a wind power classifier to remove fine particles having a particle size of 75 ⁇ m or less. In this way, magnesium oxide powder having a particle size of more than 75 ⁇ m and less than 300 ⁇ m was recovered and used as the magnesium oxide powder of Example 1.
  • Example 2 In the classification step (c) of Example 1, coarse particles were removed using a vibrating sieve with a mesh opening of 1 mm, and then further classified using a wind classifier to recover magnesium oxide powder having a particle size of 75 ⁇ m or less. Except for this, the magnesium oxide powder of Example 2 was prepared in the same manner as in Example 1.
  • FIG. 2 is an SEM photograph of the magnesium oxide powder obtained in Example 1.
  • the magnesium oxide powder of Example 1 contained secondary particles in which at least a part of a plurality of magnesium oxide primary particles were fused to each other.
  • the fused portion contained high concentrations of calcium, silicon and boron.
  • the magnesium oxide primary particles have a crystal phase mainly containing magnesium oxide and a grain boundary phase (low melting point compound) containing calcium, silicon and boron, and a plurality of magnesium oxide primary particles have grain boundaries. It was confirmed that they were fused through the phase.
  • the magnesium oxide powder of Example 2 also contained secondary particles in which a plurality of magnesium oxide primary particles were fused.
  • the magnesium oxide powder of Comparative Example 1 almost no secondary particles were observed.
  • composition, median diameter, volume average circle equivalent diameter, secondary particle content, BET specific surface area, and thermal conductivity of the magnesium oxide powders obtained in Examples 1 and 2 and Comparative Example 1 were measured by the following methods. .. Table 1 shows the measurement results and the ratio of the median diameter to the volume average circle equivalent diameter (median diameter / volume average circle equivalent diameter).
  • composition CaO, SiO 2 , B 2 O 3 , Fe 2 O 3 , Al 2 O 3 in accordance with JIS R2212-4: 2006 (Chemical analysis method for refractory products-Part 4: Magnesia and dromite refractories) Content was measured.
  • the MgO content was set to a value obtained by subtracting the total content of CaO, SiO 2 , B 2 O 3 , Fe 2 O 3 and Al 2 O 3 from 100% by mass.
  • magnesium oxide powder was uniformly dispersed in water.
  • the obtained magnesium oxide dispersion was put into a particle size distribution measuring device (MT3300EX, manufactured by Microtrac Bell Co., Ltd.), and the median diameter of the magnesium oxide powder was measured by a laser diffraction scattering method under the following conditions. ..
  • Light source Semiconductor laser 780nm 3mW Class 1 laser Refractive index: 1.74 (MgO) -1.333 (water) Number of measurements: Avg / 3 Measurement time: 30 seconds
  • the BET specific surface area was measured by the BET 1-point method.
  • a monosorb made by Kantachrome Instruments Japan Co., Ltd. was used, and as a pretreatment, magnesium oxide powder filled in a cell for measurement was dried and degassed at 180 ° C. for 10 minutes.
  • Crystallite diameter The crystallite diameter of the (200) plane (a-axis direction) of the magnesium oxide powder was measured.
  • the X-ray diffraction pattern was measured under the following conditions using a powder X-ray diffractometer (manufactured by D8ADVANCE Bruker). Using an alumina sintered plate as a standard sample, the spread of the diffraction peak was corrected by the device.
  • the crystallite diameter of the (200) plane (a-axis direction) was calculated from the half-value width of the X-ray diffraction peak of the (200) plane of the obtained X-ray diffraction pattern using Scherrer's equation. 0.9 was used for the Scheller constant K.
  • X-ray source CuK ⁇ ray Tube voltage-tube current: 40kV-40mA Step width: 0.02 deg Measurement speed: 0.5 sec / step Divergence slit: 10.5mm
  • test piece thermoally conductive resin composition
  • Magnesium oxide powder and dimethyl silicone resin KE-106, manufactured by Shin-Etsu Chemical Co., Ltd.
  • dimethyl silicone resin 40% by volume: 60 volumes. Kneaded at a blending ratio of%.
  • the obtained kneaded product was poured into a polypropylene mold having a size of 60 mm ⁇ 80 mm ⁇ 10 mm and defoamed under reduced pressure at 0.08 MPa for 30 minutes in a vacuum chamber. Then, it was heated in an oven at 100 ° C. for 60 minutes to cure the kneaded product, and a thermally conductive resin composition was obtained.
  • the obtained thermally conductive resin composition was cut into pieces having a size of 20 mm ⁇ 20 mm ⁇ 2 mm to prepare a test piece for measuring thermal conductivity. Four test pieces were prepared.
  • thermophysical characteristic measuring device TPS 2500 S manufactured by Kyoto Denshi Kogyo Co., Ltd. was used, and a C7577 type (diameter: 4 mm) was used as the measuring probe.
  • the four test pieces obtained in (1) above are set by sandwiching them separately above and below the measurement probe of the thermophysical characteristic measuring device, and set them under the following conditions by the hot disk method (unsteady surface heat source).
  • the thermal conductivity of the test piece was measured by the method).
  • the resin composition using the magnesium oxide powders of Examples 1 and 2 containing the secondary particles in which a plurality of magnesium oxide primary particles were fused to each other by the grain boundary phase was the magnesium oxide of Comparative Example 1. It was confirmed that the thermal conductivity was improved by 20% or more as compared with the resin composition using the powder.
  • the resin composition using the magnesium oxide powder of Example 1 having a median diameter / volume average circle equivalent diameter of 2.8 or more has a higher heat than the resin composition using the magnesium oxide powder of Comparative Example 1. It was confirmed that the conductivity was improved by 40%.
  • Example 3 100 kg of magnesium oxide powder prepared in the same manner as in Example 1 was put into a Henschel mixer (FM300, manufactured by Nippon Coke Industries Co., Ltd., capacity: 300 L). Set the peripheral speed of the Henschel mixer to 15 m / sec, and while stirring the magnesium oxide powder, add 500 g of hexyltrimethoxysilane (KBM-3063 manufactured by Shin-Etsu Chemical Co., Ltd.) to the magnesium oxide powder with an automatic addition machine and mix. did. By mixing magnesium oxide powder and hexyltrimethoxysilane, the mixture was further stirred for 15 minutes from the time when the temperature in the tank of the Henschel mixer reached 100 ° C. Thus, the surface of the magnesium oxide powder was treated with hexyltrimethoxysilane. A thermally conductive resin composition was prepared using the treated magnesium oxide powder, and the thermal conductivity was measured by the above method. The results are shown in Table 2 below.
  • Example 4 The surface of the magnesium oxide powder was treated with hexyltrimethoxysilane in the same manner as in Example 3 except that the magnesium oxide powder prepared in the same manner as in Example 2 was used.
  • a thermally conductive resin composition was prepared in the same manner as in Example 3, and the thermal conductivity was measured. The results are shown in Table 2 below.
  • Example 3 Example 4, and Comparative Example 2, the secondary particles in which at least a part of the magnesium oxide primary particles of the present invention were fused to each other were not treated even if they were treated with hexyltrimethoxysilane. It was confirmed that the thermal conductivity was similarly improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明の目的は、熱伝導パスを形成しやすい酸化マグネシウム粉末とその製造方法及び熱伝導性フィラー並びに熱伝導率が高い樹脂組成物を提供することにある。 この酸化マグネシウム粉末は、複数個の、結晶相と粒界相を有する酸化マグネシウム一次粒子の少なくとも一部が粒界相により互いに融着した二次粒子を含み、レーザー回折散乱法によって得られるメジアン径が300μm以下である。

Description

酸化マグネシウム粉末、熱伝導性フィラー、樹脂組成物及び酸化マグネシウム粉末の製造方法
 本発明は、酸化マグネシウム粉末、熱伝導性フィラー、樹脂組成物及び酸化マグネシウム粉末の製造方法に関する。
 本願は、2020年12月25日に日本に出願された特願2020-217797号に基づき優先権を主張し、その内容をここに援用する。
 酸化マグネシウム粉末は、熱伝導性や耐熱性に優れた無機化合物の粉末であり、熱伝導性フィラーとして様々な樹脂に使用されている。樹脂と酸化マグネシウム粉末とを含む樹脂組成物は、例えば、電子機器の放熱材として利用されている。酸化マグネシウム粉末の樹脂への充填性を向上させるために、粒子形状が球状の酸化マグネシウム粉末が検討されている。
 球状酸化マグネシウム粉末の製造方法として、マグネシアクリンカーを粉砕して得た酸化マグネシウム粉末を研磨して粒子表面を剥離させる方法が知られている(特許文献1)。また、球状酸化マグネシウム粉末の製造方法として、水酸化マグネシウム粒子とリチウム化合物を含む混合物を造粒し、得られた造粒物を焼成する方法も知られている(特許文献2)。
特許第6507214号公報 特開2016-88838号公報
 近年の電子機器の高出力化や高密度化により、放熱材の熱伝導率の向上が求められている。放熱材用樹脂組成物の熱伝導性フィラーとして用いられている球状酸化マグネシウム粉末は、樹脂への充填性が高い。しかしながら、球状酸化マグネシウム粉末は粒子同士の接触面積が少ない。このため、粒子同士の間で熱伝導パスを形成するためには、樹脂組成物に含まれる球状酸化マグネシウム粉末の充填量を多くすることが必要となる。球状酸化マグネシウム粉末の充填量を多くすることは経済性の点で不利であり、得られる樹脂組成物は比重が大きくなると言う問題点があった。
 本発明は、前述した事情に鑑みてなされたものであって、その目的は、熱伝導パスを形成しやすい酸化マグネシウム粉末とその製造方法及び熱伝導性フィラーを提供することにある。また、本発明の目的は、熱伝導率が高い樹脂組成物を提供することにもある。
 上記の課題を解決するために、本発明者らは鋭意検討した結果、水酸化マグネシウム粒子及び/又は酸化マグネシウム粒子と粒界形成成分とを所定の割合で含む原料混合物を焼成することによって、複数個の概ね球状である酸化マグネシウム一次粒子の少なくとも一部が粒界相により互いに融着した粒状物を含む酸化マグネシウム粉末を得ることが可能となることを見出した。そして、その粒状物である二次粒子を含み、レーザー回折散乱法によって得られるメジアン径が300μm以下である酸化マグネシウム粉末は、熱伝導パスを形成しやすく、これを樹脂に分散させた樹脂組成物は高い熱伝導率を有することを確認して、本発明を完成させた。したがって、本発明は、以下の構成を有する。
[1]複数個の、結晶相と粒界相を有する酸化マグネシウム一次粒子の少なくとも一部が粒界相により互いに融着した二次粒子を含み、レーザー回折散乱法によって得られるメジアン径が300μm以下である酸化マグネシウム粉末。
[2]走査型電子顕微鏡によって測定された画像の解析によって得られる前記酸化マグネシウム一次粒子の体積平均円相当径に対する前記メジアン径の比(メジアン径/体積平均円相当径)が1.2以上6.0以下の範囲内にある上記[1]に記載の酸化マグネシウム粉末。
[3]前記酸化マグネシウム一次粒子の体積平均円相当径に対する前記メジアン径の比(メジアン径/体積平均円相当径)が1.5以上5.0以下の範囲内にある上記[2]に記載の酸化マグネシウム粉末。
[4]前記メジアン径が10μm以上150μm以下の範囲内にある上記[1]から[3に記載の酸化マグネシウム粉末。
[5]BET比表面積が1m/g以下である上記[1]から[4]に記載の酸化マグネシウム粉末。
[6]酸化マグネシウムの含有率が94質量%以上である上記[1]から[5]に記載の酸化マグネシウム粉末。
[7]カルシウム、ケイ素、ホウ素を、それぞれ酸化物換算した量の合計で0.8質量%以上含有する上記[1]から[6]に記載の酸化マグネシウム粉末。
[8]前記二次粒子の表面に、カップリング剤が付着している上記[1]から[7]に記載の酸化マグネシウム粉末。
[9]上記[1]から[8]に記載の酸化マグネシウム粉末を含有する熱伝導性フィラー。
[10]樹脂と、樹脂に分散されている熱伝導性フィラーとを含み、前記熱伝導性フィラーは、上記[9]に記載の熱伝導性フィラーである樹脂組成物。
[11]水酸化マグネシウム粒子及び/又は酸化マグネシウム粒子と、粒界形成成分と、それ以外の不純物とを含み、前記水酸化マグネシウム粒子及び/又は前記酸化マグネシウム粒子の含有率が酸化マグネシウム換算で94質量%以上であって、前記粒界形成成分の含有率が酸化物換算で0.8質量%以上である原料混合物を用意する工程と、
 前記原料混合物を焼成することによって焼成物を得る工程と、
 前記焼成物を分級する工程と、を含む上記[1]から[7]に記載の酸化マグネシウム粉末の製造方法。
 本発明によれば、熱伝導パスを形成しやすい酸化マグネシウム粉末とその製造方法及び熱伝導性フィラーを提供することが可能となる。また、本発明によれば、熱伝導率が高い樹脂組成物を提供することも可能となる。
本発明の一実施形態に係る酸化マグネシウム粉末に含まれる二次粒子の概念図である。 実施例1で得られた酸化マグネシウム粉末のSEM写真である。
 以下、本発明の酸化マグネシウム粉末、熱伝導性フィラー、樹脂組成物及び酸化マグネシウム粉末の製造方法の実施形態について説明する。
 本実施形態の酸化マグネシウム粉末は、複数個の酸化マグネシウム一次粒子が融着した二次粒子を含む。酸化マグネシウム粉末中の二次粒子の含有率は、個数基準で30%以上であることが好ましく、50%以上であることがより好ましく、70%以上であることが更に好ましい。酸化マグネシウム一次粒子の少なくとも一部が粒界相により互いに融着した二次粒子はSEM(走査型電子顕微鏡)画像上で容易に判別できる。このため、酸化マグネシウム粉末の二次粒子の含有率は、複数個の一次粒子が融着した二次粒子の個数を、SEMを用いて計測することにより測定することができる。
 図1は、本発明の一実施形態に係る酸化マグネシウム粉末に含まれる二次粒子の概念図である。
 図1に示すように、酸化マグネシウム一次粒子2の少なくとも一部が粒界相4により互いに融着した二次粒子1は、複数個の酸化マグネシウム一次粒子2を有する。二次粒子1は粒界相4の成分がフラックスとして作用し、少なくとも一部は一次粒子2の結晶相3も含めて融着していると推察される。
 酸化マグネシウム一次粒子2の少なくとも一部が粒界相4により互いに融着した二次粒子1は、複数個の酸化マグネシウム一次粒子2が不規則に融着した不定形状であってもよい。また、二次粒子1は、表面に複数の凹凸を有する形状や歪な球状であってもよい。二次粒子1の形状が不定形状もしくは複数の凹凸を有する形状であることによって、二次粒子1同士の接触面積を大きくすることができるので、二次粒子1を含む酸化マグネシウム粉末は、二次粒子同士の間での熱伝導パスを形成しやすくなる。
 酸化マグネシウム一次粒子2は、結晶相3と粒界相4を有する。酸化マグネシウム一次粒子2は、単結晶体であってもよいし、多結晶体であってもよい。酸化マグネシウム一次粒子2の形状としては特に制限はなく、例えば、球状、楕円球状、円柱状、角柱状であってもよい。また、酸化マグネシウム一次粒子2は不定形な粒状であってもよい。
 結晶相3は、主として酸化マグネシウムを含む。粒界相4は、酸化マグネシウムよりも融点が低い低融点化合物を含む。低融点化合物は、例えば、カルシウム、ケイ素、ホウ素を含む化合物であってもよい。低融点化合物は、カルシウム、ケイ素、ホウ素を含む酸化物であってもよい。複数個の酸化マグネシウム一次粒子2は、少なくとも一部が粒界相4により互いに融着されている。このため、二次粒子1中の酸化マグネシウム一次粒子2は、粒子同士の間での熱伝導パスが形成されやすくなる。また、低融点化合物はフラックスとして作用するため、粒界相4の中で結晶相3が成長して相互に融着している場合もある。結晶相3は主として熱伝導性の高い酸化マグネシウムからなるため、結晶相3まで融着した場合が熱伝導パス形成の観点からは望ましい。
 酸化マグネシウム粉末は、レーザー回折散乱法によって測定されるメジアン径が300μm以下とされている。レーザー回折散乱法によって測定される粒径は、上記の酸化マグネシウム一次粒子2の少なくとも一部が粒界相4により互いに融着した二次粒子1の粒径に相当する。メジアン径が300μm以下となることによって、酸化マグネシウム粉末の分散性や充填性が向上する。また、メジアン径は、10μm以上であってもよい。メジアン径が10μm以上と大きいことによって、酸化マグネシウム粉末は樹脂中で酸化マグネシウム粉末が熱伝導パスを形成しやすくなる。さらに、メジアン径が10μm以上と大きい酸化マグネシウム粉末は耐水和性が向上し、水分による変質が起こりにくくなる。このため、メジアン径が10μm以上300μm以下の範囲内にある酸化マグネシウム粉末を分散させた樹脂組成物は、熱伝導率が長期間にわたって向上する。メジアン径は、10μm以上150μm以下の範囲内にあることが好ましく、30μm以上150μm以下の範囲内にあることがより好ましく、30μm以上140μm以下の範囲内にあることが特に好ましい。
 酸化マグネシウム粉末は、上記のメジアン径(二次粒子1のメジアン径)と、SEMによって撮影された画像の解析によって得られる酸化マグネシウム一次粒子2の体積平均円相当径との比が1.2以上6.0以下の範囲内にある構成とされていてもよい。このメジアン径/体積平均円相当径は、二次粒子1中に融着されている酸化マグネシウム一次粒子2の個数(融着度)を指標する。すなわち、メジアン径/体積平均円相当径が大きいことは、二次粒子1中に融着されている酸化マグネシウム一次粒子2の個数が多い(融着度が大きい)ことを表す。メジアン径/体積平均円相当径が上記の範囲内にあると、粒子同士の熱伝導パスを形成しやすくなり、また酸化マグネシウム粉末の分散性や充填性が向上する。熱伝導パスの形成しやすさの観点からメジアン径/体積平均円相当径は、1.5以上5.0以下の範囲内にあることが好ましく、2.0以上5.0以下の範囲内にあることがより好ましく、2.8以上であることが特に好ましい。
 酸化マグネシウム一次粒子2の体積平均円相当径とは、SEM画像の画像解析によって得られた酸化マグネシウム一次粒子2の投影面積を円に換算することで算出された円相当径を体積基準にて頻度を累積したメジアン径である。体積平均円相当径は、2.0μm以上250μm以下の範囲内にあってもよい。体積平均円相当径は、5.0μm以上150μm以下の範囲内にあることが好ましく、5.0μm以上100μm以下の範囲内にあることが特に好ましい。
 酸化マグネシウム粉末は、BET比表面積が1m/g以下であってもよい。BET比表面積がこの範囲にあることは、酸化マグネシウム粉末は気孔が少なく、緻密な焼結体であることを意味する。BET比表面積は、0.8m/g以下であることが好ましく、0.5m/g以下であることが特に好ましい。BET比表面積は、一般に0.01m/g以上であってもよい。
 酸化マグネシウム粉末の結晶子径は、1000Å以上であることが好ましく、1200Å以上であることがより好ましく、1500Å以上であることがさらに好ましく、2000Å以上であることが特に好ましい。結晶子径が大きいほど、結晶性が高い酸化マグネシウムであることを意味し、結晶性が高いほど熱伝導率が高く、耐水性が高い。
 酸化マグネシウム粉末は、酸化マグネシウムの含有率が94質量%以上であってもよい。酸化マグネシウムの含有率が94質量%以上と高いことによって、酸化マグネシウム粉末の熱伝導性が向上する。酸化マグネシウムの含有率は、95質量%以上であることが好ましく、97質量%以上であることが特に好ましい。
 酸化マグネシウム粉末は、酸化マグネシウム以外の物質を酸化物換算の含有率で0.8質量%以上6質量%以下の範囲内で含んでいてもよい。酸化マグネシウム以外の物質の酸化物換算の含有率は、0.8質量%以上5質量%以下の範囲内にあることが好ましく、0.8質量%以上3質量%以下の範囲内にあることが特に好ましい。酸化マグネシウム以外の物質は、粒界相を形成する低融点化合物や不純物を含む。酸化マグネシウム以外の物質の内、主に低融点化合物を形成するカルシウム、ケイ素、ホウ素の含有率は、それぞれ酸化物換算した量の合計で0.8質量%以上であることが好ましく、1.0質量%以上であることが特に好ましい。低融点化合物の含有率が上記の範囲内にあることによって、酸化マグネシウム一次粒子を強固に融着することができる。さらに、低融点化合物がフラックスとして作用して融着が酸化マグネシウムの結晶相まで及べば、粒子同士の間の熱伝導パスをより確実に形成することができる。
 酸化マグネシウム粉末は、カップリング剤が付着している構成とされていてもよい。カップリング剤の種類には特に制限はなく、例えば、シランカップリング剤、アルミネート系カップリング剤、ジルコニウム系カップリング剤、チタネート系カップリング剤を用いることができる。カップリング剤は、酸化マグネシウムを充填する樹脂の種類によって適宜選択することができる。カップリング剤はシランカップリング剤が望ましく、ビニル基、フェニル基、アミノ基を有するシランカップリング剤が特に好ましい。
 酸化マグネシウム粉末は、さらに表面改質剤で処理されている構成とされていてもよい。表面改質剤としては、ステアリン酸マグネシウムなどの金属石鹸、ステアリン酸ナトリウムなどの界面活性剤などを用いることができる。
 以上のような構成とされた酸化マグネシウム粉末は、熱伝導性フィラーとして、特に樹脂やゴム用の熱伝導性フィラーとして用いることができる。樹脂の種類は特に制限なく、例えば、熱可塑性樹脂、熱硬化性樹脂、グリース、ワックスなどを用いることができる。
 樹脂と、樹脂に分散されている酸化マグネシウム粉末とを含む樹脂組成物は、酸化マグネシウム粉末を、30体積%以上80体積%以下の範囲内で含むことが好ましい。樹脂組成物は、例えば自動車分野では、ランプソケットや各種電装部品の放熱材として利用することができる。また、電子機器分野では、ヒートシンク、ダイパッド、プリント配線基板、半導体パッケージ用部品、冷却ファン用部品、ピックアップ部品、コネクタ、スイッチ、軸受け、ケースハウジングの放熱材として利用することができる。
 酸化マグネシウム粉末は、例えば、(a)原料工程、(b)焼成工程、(c)分級工程を含む方法によって製造することができる。
(a)原料工程
 原料工程では、焼成によって、酸化マグネシウムを生成する酸化マグネシウム源と粒界相を形成する粒界形成成分とを含む原料混合物を用意する。酸化マグネシウム源としては、水酸化マグネシウム粒子及び/又は酸化マグネシウム粒子を用いることができる。原料混合物は、酸化マグネシウム源と粒界形成成分を構成する添加物とそれ以外の不純物とを含み、酸化マグネシウム源の含有率が酸化マグネシウムの含有率に換算して94質量%以上で、粒界形成成分の含有率が酸化物の含有率に換算して0.8質量%以上である。
 原料混合物は、酸化マグネシウム源と粒界形成成分(低融点化合物)を構成する添加物とを混合することによって調製することができる。また、水酸化マグネシウム粒子と粒界形成成分とを含む原料混合物は、例えば、生石灰を消和させた後に残渣を取り除いて精製した石灰乳(水酸化カルシウムスラリー)と海水とを混合して、水酸化カルシウムと海水中のマグネシウム塩とを反応させることによって生成した水酸化マグネシウムにシリカ源、ホウ素源、カルシウム源、それぞれの添加物を適宜加えることにより調製することができる。この海水と石灰乳とを用いて調製した水酸化マグネシウムは、主として石灰乳に由来するカルシウムとケイ素、海水に由来するホウ素を含有する。
(b)焼成工程
 焼成工程では、(a)原料工程で得られた原料混合物を焼成することによって焼成物を得る。焼成物は、複数個の酸化マグネシウム一次粒子の少なくとも一部が粒界相により互いに融着した二次粒子を含む酸化マグネシウム粉末を含んでいる。原料混合物の焼成温度は、酸化マグネシウムが生成し、かつ粒界形成成分が溶融する温度である。焼成温度は、例えば、1000℃以上2000℃以下の範囲内、好ましくは1500℃以上2000℃以下の範囲内、特に好ましくは1600℃以上2000℃以下の範囲内である。焼成装置は、適度に二次粒子が生成するように、原料混合物を攪拌しながら焼成できる装置を使用する。焼成装置としては、例えば、ロータリーキルンを用いることができる。焼成工程での焼成温度が高くなると、得られる酸化マグネシウム粉末の結晶子径が大きくなる傾向がある。
(c)分級工程
 分級工程では、(b)焼成工程で得られた焼成物を分級して、焼成物の粗大な粒子を取り除き、焼成物の粒度分布を調整する。分級方法は、特に制限はなく、振動篩機、風力分級機、サイクロン式分級機などの分級装置を用いた分級方法を利用することができる。分級装置は、一種の分級装置を単独で利用してもよいし、二種以上の分級装置を組み合わせて利用してもよい。分級工程では、振動篩機によって粗大な粒子を分級除去して所定のメジアン径の二次粒子を得てもよい。更に、風力分級機により小さすぎる粒子を取り除いて二次粒子の粒度分布を調整してもよい。
 以上のような構成とされた酸化マグネシウム粉末の製造方法によれば、酸化マグネシウム源と粒界形成成分(低融点化合物)とを所定の割合で含むので、焼成工程によって複数個の酸化マグネシウム一次粒子が融着した二次粒子を効率よく得ることができる。
[実施例1]
(a)原料工程
 生石灰を消和させた後に残渣を取り除いて精製した石灰乳(水酸化カルシウムスラリー)と脱炭酸した海水とを混合し、水酸化カルシウムと海水中のマグネシウム塩とを反応させて水酸化マグネシウムスラリーを調製した。得られた水酸化マグネシウムスラリーを、ロータリーディスクフィルターを用いて脱水して、含水率が40%の水酸化マグネシウムケークを得た。得られた水酸化マグネシウムケークは、CaO、SiO、B、Fe、Alを含有していた。得られた水酸化マグネシウムケークとホウ酸とを、1800℃で焼成した後のB含有量が0.8質量%となる割合で混合した後、ロータリードライヤーを用いて含水率が10質量%となるまで乾燥して、原料混合物を調製した。
(b)焼成工程
 上記(a)原料工程で得られた原料混合物を、ブリケッティングマシーンを用いて約30mmのアーモンド状に成形した。得られたアーモンド状成形物を、ロータリーキルンを用いて、1800℃で8時間焼成して、酸化マグネシウム(焼成物)を得た。得られた酸化マグネシウムは、粒状成形物の焼成体及び粒状成形物の焼成体から脱離した粉末状の酸化マグネシウム粒子(二次粒子)を含んでいた。
(c)分級工程
 上記(b)焼成工程で得られた酸化マグネシウムを、目開き300μmの振動篩機を用いて粒径が300μm以上の粗大粒子(粒状成形物の焼成体を含む)を取り除いた。次いで、粒径が300μm未満の酸化マグネシウム粉末を、風力分級機を用いて分級して、粒径が75μm以下の微粒子を取り除いた。こうして粒径が75μmを超え300μm未満の酸化マグネシウム粉末を回収し、これを実施例1の酸化マグネシウム粉末とした。
[実施例2]
 実施例1の(c)分級工程において、目開き1mmの振動篩機を用いて粗大粒子を取り除いた後に、更に風力分級機を用いて分級して粒径が75μm以下の酸化マグネシウム粉末を回収したこと以外は実施例1と同様にして、実施例2の酸化マグネシウム粉末とした。
[比較例1]
 実施例1の(c)分級工程において、目開き1mmの振動篩機を用いて粗大粒子を取り除いた後に、更に、ジェットミル(旋回流型ジェットミルSTJ-200型、株式会社セイシン企業製)を用いて粉砕した。得られた粉砕物を、風力分級機を用いて分級して粒径が45μm以下の酸化マグネシウム粉末を回収し、これを比較例1の酸化マグネシウム粉末とした。
[評価]
 実施例1、2及び比較例1で得られた酸化マグネシウム粉末について、FE-SEM(電界放出型走査電子顕微鏡:S-4800、株式会社日立ハイテクノロジー社製)を用いて観察した。実施例1の結果を、図2に示す。
 図2は、実施例1で得られた酸化マグネシウム粉末のSEM写真である。図2に示すように、実施例1の酸化マグネシウム粉末は、複数個の酸化マグネシウム一次粒子の少なくとも一部が互いに融着した二次粒子を含むことが確認された。また、酸化マグネシウム一次粒子の粒子同士が融着している融着部を元素分析した結果、融着部は、カルシウム、ケイ素、ホウ素を高濃度で含有していた。この結果から、酸化マグネシウム一次粒子は、主として酸化マグネシウムを含む結晶相と、カルシウム、ケイ素及びホウ素を含む粒界相(低融点化合物)とを有すること、そして複数個の酸化マグネシウム一次粒子は粒界相を介して融着していることが確認された。同様に、実施例2の酸化マグネシウム粉末についても、複数個の酸化マグネシウム一次粒子が融着した二次粒子を含むことが確認された。一方、比較例1の酸化マグネシウム粉末については、二次粒子は殆ど見られなかった。
 実施例1、2及び比較例1で得られた酸化マグネシウム粉末について、組成、メジアン径、体積平均円相当径、二次粒子の含有率、BET比表面積、熱伝導率を下記の方法により測定した。その測定結果、及びメジアン径と体積平均円相当径との比(メジアン径/体積平均円相当径)を、表1に示す。
(組成)
 JIS R2212-4:2006(耐火物製品の化学分析方法-第4部:マグネシア及びドロマイト質耐火物)に準拠して、CaO、SiO、B、Fe、Alの含有率を測定した。MgOの含有率は、CaO、SiO、B、Fe及びAlの含有率の合計を100質量%から差し引いた値とした。
(メジアン径)
 ビーカーに、酸化マグネシウム粉末1.5gと純水30mLを加え、酸化マグネシウム粉末が水に均一に分散されるように混合した。得られた酸化マグネシウム分散液を、粒子径分布測定装置(MT3300EX、マイクロトラック・ベル株式会社製)に投入して、酸化マグネシウム粉末のメジアン径をレーザー回折散乱法により、下記の条件にて測定した。
<条件>
 光源:半導体レーザー 780nm 3mW クラス1レーザー
 屈折率:1.74(MgO)-1.333(水)
 測定回数:Avg/3
 測定時間:30秒
(体積平均円相当径)
 前処理として蒸着を行わない酸化マグネシウム粉末を、FE-SEM(電界放出型走査電子顕微鏡:S-4800、株式会社日立ハイテクノロジー社製)を用いて撮影して、SEM画像を得た。得られたSEM画像を、画像解析ソフト(Mac-view、株式会社マウンテック製)を用いて解析して、酸化マグネシウム一次粒子の円相当径(ヘイウッド径)を算出した。200個の酸化マグネシウム一次粒子について円相当径を算出し、体積基準にて頻度を累積したメジアン径を体積平均円相当径とした。
(二次粒子の含有率)
 上記と同様にして得られたSEM画像から、200個の粒子について酸化マグネシウム一次粒子の少なくとも一部が互いに融着した二次粒子の個数と前記二次粒子を形成していない一次粒子の個数をカウントし、200個に占める酸化マグネシウム一次粒子の少なくとも一部が互いに融着した二次粒子の割合を二次粒子の含有率とした。
(BET比表面積)
 BET比表面積はBET1点法により測定した。測定装置は、カンタクローム・インスツルメンツ・ジャパン社製モノソーブを用い、前処理として、測定用のセルに充填した酸化マグネシウム粉末を180℃で10分間乾燥脱気した。
(結晶子径)
 酸化マグネシウム粉末の(200)面(a軸方向)の結晶子径を測定した。粉末X線回折装置(D8ADVANCE Bruker社製)を用いて下記条件にてX線回折パターンを測定した。なお、アルミナ焼結板を標準試料として、装置による回折ピークの広がり補正を行った。得られたX線回折パターンの(200)面のX線回折ピークの半価幅からScherrerの式を用いて(200)面(a軸方向)の結晶子径を算出した。シェラー定数Kには0.9を用いた。
<条件>
 X線源    :CuKα線
 管電圧―管電流:40kV-40mA
 ステップ幅  :0.02deg
 測定速度   :0.5sec/step
 発散スリット :10.5mm
(熱伝導率)
(1)試験片(熱伝導性樹脂組成物)の作製
 酸化マグネシウム粉末とジメチルシリコーン樹脂(KE-106、信越化学工業株式会社製)とを、酸化マグネシウム:ジメチルシリコーン樹脂=40体積%:60体積%の配合割合にて混練した。得られた混練物を60mm×80mm×10mmのポリプロピレン製の型に流し込み真空チャンバーにて0.08MPaで30分間減圧脱泡した。その後、オーブンにて100℃で60分間加熱し、混練物を硬化させて、熱伝導性樹脂組成物を得た。得られた熱伝導性樹脂組成物を20mm×20mm×2mmの大きさに切り分けて、熱伝導率測定用の試験片を作製した。なお、試験片は4枚作製した。
(2)熱伝導率の測定
 熱伝導率の測定は、京都電子工業株式会社製の熱物性測定装置TPS 2500 Sを用い、測定プローブは、C7577タイプ(直径:4mm)を用いた。
 上記(1)で得られた4枚の試験片を、熱物性測定装置の測定プローブの上下にそれぞれ2枚ずつに分けて挟んでセットし、下記の条件にてホットディスク法(非定常面熱源法)により試験片の熱伝導率を測定した。
(条件)
 測定時間  :5秒
 加熱量   :200mW
 測定環境温度:20℃
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、複数個の酸化マグネシウム一次粒子が粒界相により互いに融着した二次粒子を含む実施例1、2の酸化マグネシウム粉末を用いた樹脂組成物は、比較例1の酸化マグネシウム粉末を用いた樹脂組成物と比較して熱伝導率が20%以上向上することが確認された。特に、メジアン径/体積平均円相当径が2.8以上である実施例1の酸化マグネシウム粉末を用いた樹脂組成物は、比較例1の酸化マグネシウム粉末を用いた樹脂組成物と比較して熱伝導率が40%も向上することが確認された。
[実施例3]
 実施例1と同様にして作製した酸化マグネシウム粉末を、ヘンシェルミキサー(FM300、日本コークス工業株式会社製、容量:300L)に100kg投入した。ヘンシェルミキサーの周速を15m/secとして、酸化マグネシウム粉末を攪拌しながら、酸化マグネシウム粉末にヘキシルトリメトキシシラン(信越化学工業株式会社製 KBM-3063)500gを自動添加機にて添加して、混合した。酸化マグネシウム粉末とヘキシルトリメトキシシランとの混合によりヘンシェルミキサーの槽内温度が100℃に到達した時間からさらに15分間攪拌した。こうして酸化マグネシウム粉末の表面をヘキシルトリメトキシシランで処理した。処理後の酸化マグネシウム粉末を用いて熱伝導性樹脂組成物を作成し、熱伝導率を上記の方法により測定した。その結果を、下記の表2に示す。
[実施例4]
 実施例2と同様にして作製した酸化マグネシウム粉末を使用したこと以外は実施例3と同様にして、酸化マグネシウム粉末の表面をヘキシルトリメトキシシランで処理した。処理後の酸化マグネシウム粉末について、実施例3と同様にして、熱伝導性樹脂組成物を作製し、熱伝導率を測定した。その結果を、下記の表2に示す。
[比較例2]
 比較例1と同様にして作製した酸化マグネシウム粉末を使用したこと以外は実施例3と同様にして、酸化マグネシウム粉末の表面をヘキシルトリメトキシシランで処理した。処理後の酸化マグネシウム粉末について、実施例3と同様にして、熱伝導性樹脂組成物を作製し、熱伝導率を測定した。その結果を、下記の表2に示す。
Figure JPOXMLDOC01-appb-T000002
 実施例3、実施例4、比較例2の結果から、本発明の酸化マグネシウム一次粒子の少なくとも一部が互いに融着した二次粒子は、ヘキシルトリメトキシシランで処理を行っても、未処理と同様に熱伝導率が向上することが確認された。
 1 二次粒子
 2 酸化マグネシウム一次粒子
 3 結晶相
 4 粒界相

Claims (11)

  1.  複数個の、結晶相と粒界相を有する酸化マグネシウム一次粒子の少なくとも一部が粒界相により互いに融着した二次粒子を含み、レーザー回折散乱法によって得られるメジアン径が300μm以下である酸化マグネシウム粉末。
  2.  走査型電子顕微鏡によって撮影された画像の解析によって得られる前記酸化マグネシウム一次粒子の体積平均円相当径に対する前記メジアン径の比が1.2以上6.0以下の範囲内にある請求項1に記載の酸化マグネシウム粉末。
  3.  前記酸化マグネシウム一次粒子の体積平均円相当径に対する前記メジアン径の比が1.5以上5.0以下の範囲内にある請求項2に記載の酸化マグネシウム粉末。
  4.  前記メジアン径が10μm以上150μm以下の範囲内にある請求項1から3のいずれか一項に記載の酸化マグネシウム粉末。
  5.  BET比表面積が1m/g以下である請求項1から4のいずれか一項に記載の酸化マグネシウム粉末。
  6.  酸化マグネシウムの含有率が94質量%以上である請求項1から5のいずれか一項に記載の酸化マグネシウム粉末。
  7.  カルシウム、ケイ素、ホウ素を、それぞれ酸化物換算した量の合計で0.8質量%以上含有する請求項1から6のいずれか一項に記載の酸化マグネシウム粉末。
  8.  前記二次粒子の表面に、カップリング剤が付着している請求項1から7のいずれか一項に記載の酸化マグネシウム粉末。
  9.  請求項1から8のいずれか一項に記載の酸化マグネシウム粉末を含有する熱伝導性フィラー。
  10.  樹脂と、樹脂に分散されている熱伝導性フィラーとを含み、
     前記熱伝導性フィラーは、請求項9に記載の熱伝導性フィラーである樹脂組成物。
  11.  水酸化マグネシウム粒子及び/又は酸化マグネシウム粒子と、粒界形成成分と、それ以外の不純物とを含み、前記水酸化マグネシウム粒子及び/又は前記酸化マグネシウム粒子の含有率が酸化マグネシウム換算で94質量%以上であって、前記粒界形成成分の含有率が酸化物換算で0.8質量%以上である原料混合物を用意する工程と、
     前記原料混合物を焼成することによって焼成物を得る工程と、
     前記焼成物を分級する工程と、を含む請求項1から7のいずれか一項に記載の酸化マグネシウム粉末の製造方法。
PCT/JP2021/044152 2020-12-25 2021-12-01 酸化マグネシウム粉末、熱伝導性フィラー、樹脂組成物及び酸化マグネシウム粉末の製造方法 WO2022138037A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2022540977A JP7182752B1 (ja) 2020-12-25 2021-12-01 酸化マグネシウム粉末、熱伝導性フィラー、樹脂組成物及び酸化マグネシウム粉末の製造方法
KR1020237002959A KR102595134B1 (ko) 2020-12-25 2021-12-01 산화마그네슘 분말, 열전도성 필러, 수지 조성물 및 산화마그네슘 분말의 제조 방법
CN202180039230.7A CN115667147B (zh) 2020-12-25 2021-12-01 氧化镁粉末、导热性填料、树脂组合物及氧化镁粉末的制造方法
US18/010,586 US11884553B2 (en) 2020-12-25 2021-12-01 Magnesium oxide powder, thermally conductive filler, resin composition, and production method for magnesium oxide powder
EP21910189.6A EP4269346A1 (en) 2020-12-25 2021-12-01 Magnesium oxide powder, thermally conductive filler, resin composition, and production method for magnesium oxide powder
JP2022107138A JP7149443B2 (ja) 2020-12-25 2022-07-01 酸化マグネシウム粉末、熱伝導性フィラー、樹脂組成物及び酸化マグネシウム粉末の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020217797 2020-12-25
JP2020-217797 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022138037A1 true WO2022138037A1 (ja) 2022-06-30

Family

ID=82159432

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044152 WO2022138037A1 (ja) 2020-12-25 2021-12-01 酸化マグネシウム粉末、熱伝導性フィラー、樹脂組成物及び酸化マグネシウム粉末の製造方法

Country Status (7)

Country Link
US (1) US11884553B2 (ja)
EP (1) EP4269346A1 (ja)
JP (2) JP7182752B1 (ja)
KR (1) KR102595134B1 (ja)
CN (1) CN115667147B (ja)
TW (1) TWI818368B (ja)
WO (1) WO2022138037A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7382463B1 (ja) 2022-07-27 2023-11-16 宇部マテリアルズ株式会社 アルカリ剤
JP7542103B1 (ja) 2023-03-30 2024-08-29 宇部マテリアルズ株式会社 不溶化材

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH027214B2 (ja) 1984-12-21 1990-02-16 Iwasaki Tsushinki Kk
JP2008184366A (ja) * 2007-01-30 2008-08-14 Tateho Chem Ind Co Ltd 立方体状酸化マグネシウム粉末及びその製法
JP2010173913A (ja) * 2009-01-30 2010-08-12 Ube Material Industries Ltd マグネシアクリンカー
JP2012116715A (ja) * 2010-12-02 2012-06-21 Shin Kobe Electric Mach Co Ltd 酸化マグネシウム粉末の製造法、熱硬化性樹脂組成物の製造法、プリプレグおよび積層板の製造法
JP2012233100A (ja) * 2011-05-02 2012-11-29 Panasonic Corp 熱硬化性樹脂組成物、プリプレグ、積層板、金属箔張積層板、及び回路基板
JP2014214222A (ja) * 2013-04-25 2014-11-17 宇部マテリアルズ株式会社 熱伝導性フィラー及びその製造方法並びに樹脂組成物
JP2015059050A (ja) * 2013-09-17 2015-03-30 宇部マテリアルズ株式会社 熱伝導性フィラー及びこれを含む熱伝導性樹脂組成物
JP2016088838A (ja) 2014-10-31 2016-05-23 堺化学工業株式会社 酸化マグネシウム粒子、その製造方法、放熱性フィラー、放熱性樹脂組成物、放熱性グリース及び放熱性塗料組成物
JP2019099413A (ja) * 2017-12-01 2019-06-24 宇部マテリアルズ株式会社 酸化マグネシウム粉末、その製造方法、熱伝導性樹脂組成物、熱伝導性グリス、及び熱伝導性塗料
JP2021161005A (ja) * 2020-04-01 2021-10-11 株式会社アドマテックス 粒子材料、その製造方法、フィラー材料及び熱伝導物質

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2853856B2 (ja) 1988-06-27 1999-02-03 松下電器産業株式会社 薄膜磁気ヘッド
JP5476826B2 (ja) * 2009-07-14 2014-04-23 堺化学工業株式会社 酸化マグネシウム粒子、その製造方法、放熱性フィラー、樹脂組成物、放熱性グリース及び放熱性塗料組成物
JP2014021422A (ja) * 2012-07-23 2014-02-03 Univ Kanagawa 語句学習プログラム及び語句学習装置
JP5773110B2 (ja) * 2013-05-24 2015-09-02 堺化学工業株式会社 酸化マグネシウム粒子、酸化マグネシウム粒子の製造方法、樹脂組成物及び該樹脂組成物を用いた成形体、接着剤若しくはグリース
JP6076510B2 (ja) * 2014-02-14 2017-02-08 宇部マテリアルズ株式会社 酸化マグネシウム、熱伝導性フィラー及びこれを含む熱伝導性樹脂組成物並びに酸化マグネシウムの製造方法
JP6817235B2 (ja) 2017-02-17 2021-01-20 タテホ化学工業株式会社 球状酸化マグネシウム及びその製造方法
KR20200033717A (ko) * 2018-09-20 2020-03-30 주식회사 테라테크노스 이차전지 음극소재용 나노 산화규소의 상압 합성 방법 및 나노 산화규소를 구비한 음극소재
CN109437258B (zh) * 2018-12-05 2021-02-26 河北镁神科技股份有限公司 一种导热塑料专用氧化镁粉体的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH027214B2 (ja) 1984-12-21 1990-02-16 Iwasaki Tsushinki Kk
JP2008184366A (ja) * 2007-01-30 2008-08-14 Tateho Chem Ind Co Ltd 立方体状酸化マグネシウム粉末及びその製法
JP2010173913A (ja) * 2009-01-30 2010-08-12 Ube Material Industries Ltd マグネシアクリンカー
JP2012116715A (ja) * 2010-12-02 2012-06-21 Shin Kobe Electric Mach Co Ltd 酸化マグネシウム粉末の製造法、熱硬化性樹脂組成物の製造法、プリプレグおよび積層板の製造法
JP2012233100A (ja) * 2011-05-02 2012-11-29 Panasonic Corp 熱硬化性樹脂組成物、プリプレグ、積層板、金属箔張積層板、及び回路基板
JP2014214222A (ja) * 2013-04-25 2014-11-17 宇部マテリアルズ株式会社 熱伝導性フィラー及びその製造方法並びに樹脂組成物
JP2015059050A (ja) * 2013-09-17 2015-03-30 宇部マテリアルズ株式会社 熱伝導性フィラー及びこれを含む熱伝導性樹脂組成物
JP2016088838A (ja) 2014-10-31 2016-05-23 堺化学工業株式会社 酸化マグネシウム粒子、その製造方法、放熱性フィラー、放熱性樹脂組成物、放熱性グリース及び放熱性塗料組成物
JP2019099413A (ja) * 2017-12-01 2019-06-24 宇部マテリアルズ株式会社 酸化マグネシウム粉末、その製造方法、熱伝導性樹脂組成物、熱伝導性グリス、及び熱伝導性塗料
JP2021161005A (ja) * 2020-04-01 2021-10-11 株式会社アドマテックス 粒子材料、その製造方法、フィラー材料及び熱伝導物質

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7382463B1 (ja) 2022-07-27 2023-11-16 宇部マテリアルズ株式会社 アルカリ剤
WO2024024719A1 (ja) * 2022-07-27 2024-02-01 宇部マテリアルズ株式会社 アルカリ剤
JP2024017122A (ja) * 2022-07-27 2024-02-08 宇部マテリアルズ株式会社 アルカリ剤
JP7542103B1 (ja) 2023-03-30 2024-08-29 宇部マテリアルズ株式会社 不溶化材

Also Published As

Publication number Publication date
CN115667147A (zh) 2023-01-31
JP7182752B1 (ja) 2022-12-02
KR102595134B1 (ko) 2023-10-30
US20230192504A1 (en) 2023-06-22
KR20230022257A (ko) 2023-02-14
JP2022125158A (ja) 2022-08-26
JPWO2022138037A1 (ja) 2022-06-30
TW202233525A (zh) 2022-09-01
EP4269346A1 (en) 2023-11-01
TWI818368B (zh) 2023-10-11
US11884553B2 (en) 2024-01-30
CN115667147B (zh) 2023-08-22
JP7149443B2 (ja) 2022-10-06

Similar Documents

Publication Publication Date Title
WO2022138037A1 (ja) 酸化マグネシウム粉末、熱伝導性フィラー、樹脂組成物及び酸化マグネシウム粉末の製造方法
EP2511091B1 (en) Method for preparing a sintered spherical boron nitride powder
CN103079995B (zh) 球形氮化铝粉末
JP7090459B2 (ja) 粒子材料、及びその製造方法、並びに熱伝導物質
CN109476480A (zh) 用于制造氮化硼附聚物的方法
WO2020196679A1 (ja) 窒化ホウ素粉末及びその製造方法、並びに、複合材及び放熱部材
KR20210021574A (ko) 부열팽창재, 그의 제조 방법 및 복합 재료
JP2021161005A (ja) 粒子材料、その製造方法、フィラー材料及び熱伝導物質
CN113677648A (zh) 填料、成形体及散热材料
JP4237182B2 (ja) 高充填性被覆酸化マグネシウム粉末及びその粉末を含む樹脂組成物
JP6739627B2 (ja) 被覆酸化マグネシウム粒子及びその製造方法並びに熱伝導性樹脂組成物
JPH07215707A (ja) 大粒径の窒化アルミニウム粉末およびその製造方法
JP7550140B2 (ja) 球状酸化マグネシウム、その製造方法、熱伝導性フィラー及び樹脂組成物
JP2001122615A (ja) 窒化ホウ素被覆球状ホウ酸塩粒子とそれを含む混合粉末、及びそれらの製造方法
WO2023145548A1 (ja) 酸化マグネシウム粒子及びその製造方法
JP2003034522A (ja) 被覆酸化マグネシウム粉末の製造方法
JP2004203664A (ja) 球状シリカ質粉末及びその製造方法、用途
WO2024190205A1 (ja) 酸化マグネシウム粒子融着体及びその製造方法
JPH11268903A (ja) 窒化珪素質充填材及び半導体封止用樹脂組成物
JP7295016B2 (ja) 窒化アルミニウム系粉末及びその製造方法
TW202302448A (zh) 六方晶氮化硼凝集粒子及六方晶氮化硼粉末、樹脂組成物、樹脂片
JP2023147855A (ja) 窒化ホウ素粉末
US20230107924A1 (en) Inorganic filler powder, thermally conductive polymer composition, and method for manufacturing inorganic filler powder
TW202406853A (zh) 氧化銅鉻尖晶石、及其樹脂組成物、樹脂成形品、氧化銅鉻尖晶石的製造方法
JP2023148962A (ja) 炭化ケイ素粒子、炭化ケイ素粒子の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022540977

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910189

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237002959

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021910189

Country of ref document: EP

Effective date: 20230725