WO2022138010A1 - 金属酸化物膜形成性組成物、これを用いた金属酸化物膜の製造方法、及び金属酸化物膜の体積収縮率を低減させる方法 - Google Patents

金属酸化物膜形成性組成物、これを用いた金属酸化物膜の製造方法、及び金属酸化物膜の体積収縮率を低減させる方法 Download PDF

Info

Publication number
WO2022138010A1
WO2022138010A1 PCT/JP2021/043781 JP2021043781W WO2022138010A1 WO 2022138010 A1 WO2022138010 A1 WO 2022138010A1 JP 2021043781 W JP2021043781 W JP 2021043781W WO 2022138010 A1 WO2022138010 A1 WO 2022138010A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
oxide film
group
mass
forming composition
Prior art date
Application number
PCT/JP2021/043781
Other languages
English (en)
French (fr)
Inventor
賢一 山内
国宏 野田
大 塩田
Original Assignee
東京応化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京応化工業株式会社 filed Critical 東京応化工業株式会社
Priority to KR1020237024669A priority Critical patent/KR20230124033A/ko
Priority to CN202180085571.8A priority patent/CN116601108A/zh
Priority to EP21910162.3A priority patent/EP4257644A4/en
Priority to US18/258,453 priority patent/US20240027889A1/en
Priority to JP2022572027A priority patent/JPWO2022138010A1/ja
Publication of WO2022138010A1 publication Critical patent/WO2022138010A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/20Masks or mask blanks for imaging by charged particle beam [CPB] radiation, e.g. by electron beam; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/02Homopolymers or copolymers of hydrocarbons
    • C09D125/04Homopolymers or copolymers of styrene
    • C09D125/08Copolymers of styrene
    • C09D125/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/45Anti-settling agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0332Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their composition, e.g. multilayer masks, materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2244Oxides; Hydroxides of metals of zirconium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/11Esters; Ether-esters of acyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/12Esters; Ether-esters of cyclic polycarboxylic acids

Definitions

  • the present invention relates to a metal oxide film-forming composition, a method for producing a metal oxide film using the composition, and a method for reducing the volume shrinkage of the metal oxide film.
  • a resist material such as a photoresist or an electron beam resist is applied to the surface of a substrate to be etched, and a resist film patterned by a lithography technique is used as an etching mask for etching. A predetermined pattern is formed on the substrate.
  • the resist film may not function sufficiently as an etching mask due to the problem of etching selectivity of the resist film with respect to the substrate to be etched. Therefore, when etching such a substrate to be etched, an etching mask called a hard mask is provided to maintain high etching selectivity of the etching mask with respect to the substrate to be etched.
  • a hard mask for example, a hard mask made of a metal oxide film containing metal oxide nanoparticles such as zirconium oxide nanoparticles is known (see Patent Document 1).
  • the conventional metal oxide film containing metal oxide nanoparticles is formed by heating a coating film composed of a composition containing metal oxide nanoparticles.
  • the conventional metal oxide film has a large volume shrinkage when heated at a low temperature of 400 ° C. or lower, the in-plane uniformity becomes low when the main firing is performed at a high temperature of 450 ° C.
  • the present invention has been made in view of such conventional circumstances, and uses a metal oxide film-forming composition that gives a metal oxide film in which volume shrinkage is suppressed when heated at 400 ° C. or lower. It is an object of the present invention to provide a method for producing a metal oxide film and a method for reducing the volume shrinkage of the metal oxide film.
  • the present inventors have conducted extensive research to solve the above problems.
  • the metal oxide nanocluster of a predetermined size, a predetermined capping agent, a base material, and a solvent are contained, and the solid content of the metal oxide film-forming composition contains an inorganic content mass and an organic content. It has been found that the above-mentioned problems can be solved by a metal oxide film-forming composition in which the ratio of the inorganic component mass to the total component mass is 25% by mass or more, and the present invention has been completed. Specifically, the present invention provides the following.
  • a first aspect of the present invention is a metal oxide film-forming composition containing a metal oxide nanocluster, a capping agent, a base material, and a solvent.
  • the size of the metal oxide nanocluster is 5 nm or less, and the size is 5 nm or less.
  • the capping agent comprises at least one selected from the group consisting of alkoxysilanes, phenols, alcohols, carboxylic acids, and carboxylic acid halides. It is a metal oxide film-forming composition in which the ratio of the inorganic content mass to the total of the inorganic content mass and the organic content mass is 25% by mass or more in the solid content of the metal oxide film-forming composition.
  • a second aspect of the present invention comprises a coating film forming step of forming a coating film comprising the metal oxide film-forming composition according to the first aspect.
  • the heating step of heating the coating film and It is a method of manufacturing a metal oxide film including.
  • a third aspect of the present invention is a method of forming a coating film made of a metal oxide film-forming composition and reducing the volume shrinkage of the metal oxide film obtained by heating the coating film. It comprises constituting the metal oxide film-forming composition so as to contain a metal oxide nanocluster, a capping agent, a base material, and a solvent.
  • the size of the metal oxide nanocluster is 5 nm or less, and the size is 5 nm or less.
  • the capping agent comprises at least one selected from the group consisting of alkoxysilanes, phenols, alcohols, carboxylic acids, and carboxylic acid halides.
  • the ratio of the inorganic content mass to the total of the inorganic content mass and the organic content mass is 25% by mass or more.
  • a metal oxide film-forming composition that gives a metal oxide film in which volume shrinkage is suppressed when heated at 400 ° C. or lower, a method for producing a metal oxide film using the composition, and a metal oxide.
  • a method for reducing the volume shrinkage of a membrane can be provided.
  • the metal oxide film-forming composition according to the present invention contains a metal oxide nanocluster, a capping agent, a base material, and a solvent.
  • the metal oxide film-forming composition according to the present invention can provide a metal oxide film in which volume shrinkage is suppressed when heated at 400 ° C. or lower.
  • the ratio of the inorganic content mass to the total of the inorganic content mass and the organic content mass is 25% by mass or more, preferably 30% by mass or more, and more preferably 40. It is mass% or more.
  • the ratio of the inorganic content mass can be set high, and as a result, the volume shrinkage of the obtained metal oxide film is likely to be suppressed by heating at a low temperature of 400 ° C. or lower.
  • the upper limit of the ratio is not particularly limited and may be 90% by mass, 80% by mass or 75% by mass.
  • the metal oxide nanocluster is an aggregate of metal oxides and refers to an aggregate composed of a plurality of surfaces formed of the metal oxides.
  • the metal oxide nanocluster is composed of metal oxide and does not contain a capping agent.
  • the metal oxide film-forming composition according to the present invention contains metal oxide nanoclusters together with a capping agent, the obtained metal oxide film is likely to be suppressed in volume shrinkage when heated at a low temperature of 400 ° C. or lower. ..
  • Diffraction peak corresponding to the above surface is detected by X-ray diffraction measurement for metal oxide nanoclusters.
  • the metal oxide nanoclusters may include crystals, microcrystals, or amorphous.
  • the X-ray diffraction pattern of the metal oxide nanocluster detects peaks, broad ridges, or broad halo patterns due to the planes (crystal planes) of the metal atoms. Will be done. If the X-ray diffraction pattern of a sample does not detect not only peaks, but also broad swelling or even broad halo patterns, it is determined herein that the sample does not contain metal oxide nanoclusters. And.
  • the size of the metal oxide nanocluster is 5 nm or less, preferably 4 nm or less, and more preferably 3 nm or less.
  • the lower limit of the size of the metal oxide nanocluster is not particularly limited, and may be, for example, 0.5 nm or more, and may be 1 nm or more or 2 nm or more.
  • the size of the metal oxide nanocluster exceeds 5 nm, the volume shrinkage of the obtained metal oxide film is difficult to be suppressed by heating at a low temperature of 400 ° C. or lower, so that it is in-plane when main firing at a high temperature of 450 ° C.
  • the size of the metal oxide nanocluster means a value calculated by the Hander-Wagner method from the half width of the scattering peak in the spectrum detected by the X-ray scattering intensity distribution measurement.
  • the metal contained in the metal oxide nanocluster is not particularly limited, and for example, zinc, yttrium, hafnium, zirconium, lanthanum, cerium, neodymium, gadrinium, formium, lutetium, tantalum, titanium, silicon, aluminum, antimony, and tin. , Indium, tungsten, copper, vanadium, chromium, niobium, molybdenum, ruthenium, rhodium, renium, iridium, germanium, gallium, tarium, magnesium, and zinc, yttrium, hafnium from the viewpoint of film formation and stability. , And zirconium are preferred, and zirconium is more preferred.
  • the above metals may be used alone or in combination of two or more.
  • the amount of the metal oxide nanocluster used is not particularly limited, and is, for example, 45 to 75% by mass, preferably 50 to 72% by mass, based on the total amount of the components other than the solvent in the metal oxide film-forming composition. Is. When the amount of the metal oxide nanocluster used is within the above range, the volume shrinkage of the obtained metal oxide film is likely to be suppressed by heating at a low temperature of 400 ° C. or lower.
  • the capping agent comprises at least one selected from the group consisting of alkoxysilanes, phenols, alcohols, carboxylic acids, and carboxylic acid halides.
  • the metal oxide film-forming composition according to the present invention contains a capping agent together with metal oxide nanoclusters, the obtained metal oxide film tends to suppress volume shrinkage when heated at a low temperature of 400 ° C. or lower. ..
  • the capping agent examples include n-propyltrimethoxysilane, n-propyltriethoxysilane, n-octyltrimethoxysilane, n-octyltriethoxysilane, n-dodecyltrimethoxysilane, and n-dodecyltriethoxysilane.
  • n-Hexadecyltrimethoxysilane n-hexadecyltriethoxysilane, n-octadecyltrimethoxysilane, n-octadecyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenethylphenyltrimethoxysilane, phenethylethyltriethoxy Silane, 3- ⁇ 2-methoxy [poly (ethyleneoxy)] ⁇ propyltrimethoxysilane, 3- ⁇ 2-methoxy [poly (ethyleneoxy)] ⁇ propyltriethoxysilane, 3- ⁇ 2-methoxy [tri (ethylene) Oxy)] ⁇ propyltrimethoxysilane, 3- ⁇ 2-methoxy [tri (ethyleneoxy)] ⁇ propyltriethoxysilane, vinyltrimethoxylan, vinyltriethoxysilane, allyl
  • the amount of the capping agent used is not particularly limited, and is, for example, 10 to 35% by mass, preferably 18 to 28% by mass, based on the total amount of the components other than the solvent in the metal oxide film-forming composition.
  • the amount of the capping agent used is within the above range, the ratio of the organic content mass does not become too high, and as a result, the volume shrinkage of the obtained metal oxide film is suppressed by heating at a low temperature of 400 ° C. or lower. Cheap.
  • the mass ratio of the metal oxide nanoclusters to the total of the metal oxide nanoclusters and the capping agent is, for example, 50% by mass or more, preferably 50% by mass or more. It is 55% by mass or more, more preferably 60% by mass or more, and even more preferably 65% by mass or more.
  • the upper limit of the mass ratio is, for example, 95% by mass or less, preferably 90% by mass or less.
  • the metal oxide film-forming composition according to the present invention contains a base material for the purpose of adjusting the coating film-forming property and the coatability.
  • the base material may be used alone or in combination of two or more.
  • the base material is not particularly limited, and a polymer such as a resin or a non-polymer such as a small molecule compound can be used.
  • the mass average molecular weight of the substrate (hereinafter referred to as “Mw”) is not particularly limited as long as it does not impair the object of the present invention, and is preferably 700 or more and 40,000 or less, and more preferably 900 or more and 30,000 or less. Even more preferably, it is 1000 or more and 20000 or less.
  • Mw is within the above range, the film-forming property and the coatability tend to be good.
  • Mw by using a polymer or non-polymer having Mw of 4000 or less, the gap filling property with respect to the uneven substrate tends to be good.
  • Mw the value in terms of polystyrene by gel permeation chromatography (GPC) is adopted.
  • acrylic resin (a-IV) As the acrylic resin (a-IV), a resin containing a structural unit derived from (meth) acrylic acid and / or a structural unit derived from another monomer such as (meth) acrylic acid ester can be used.
  • the (meth) acrylic acid is acrylic acid or methacrylic acid.
  • a compound represented by the following formula (a-4-1) is typically preferably used.
  • R a9 is a hydrogen atom or a methyl group.
  • R a10 is a hydrogen atom or a monovalent organic group. This organic group may contain a bond or a substituent other than the hydrocarbon group such as a hetero atom in the organic group. Further, the organic group may be linear, branched or cyclic.
  • R a11 is a group represented by -O- or -NR a12- .
  • Ra12 is a hydrogen atom or an alkyl group having 1 or more and 6 or less carbon atoms.
  • the substituent other than the hydrocarbon group in the organic group of Ra 10 is not particularly limited as long as the effect of the present invention is not impaired, and is a halogen atom, a hydroxyl group, a mercapto group, a sulfide group, a cyano group, an isocyano group and a cyanato group.
  • the hydrogen atom contained in the above substituent may be substituted with a hydrocarbon group.
  • the organic group as Ra 10 may have a reactive functional group such as an acryloyloxy group, a metaacryloyloxy group, an epoxy group or an oxetanyl group.
  • a reactive functional group such as an acryloyloxy group, a metaacryloyloxy group, an epoxy group or an oxetanyl group.
  • Acyl groups having an unsaturated double bond or the like such as an acryloyloxy group and a methacryloyloxy group, may be present in at least a part of the epoxy group in an acrylic resin (a-IV) containing a structural unit having an epoxy group, for example. It can be produced by reacting with an unsaturated carboxylic acid such as acrylic acid or methacrylic acid. An unsaturated carboxylic acid may be reacted with at least a part of the epoxy group, and then the polybasic acid anhydride may be reacted with the group produced by the reaction.
  • an unsaturated carboxylic acid such as acrylic acid or me
  • polybasic acid anhydride examples include phthalic anhydride, succinic anhydride, itaconic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, phthalic anhydride, methylhexahydrophthalic anhydride, and methyltetrahydrophthalic anhydride.
  • an unsaturated carboxylic acid such as acrylic acid or methacrylic acid of an acrylic resin (a-IV)
  • a compound having an epoxy group and an unsaturated double bond can be introduced into the acrylic resin (a-IV).
  • the compound having an epoxy group and an unsaturated double bond for example, glycidyl (meth) acrylate or a compound represented by the formulas (a-4-1a) to (a-4-1o) described later is used. Can be done.
  • the R a10 is preferably an alkyl group, an aryl group, a cycloalkyl group, a polycycloalkyl group, a cycloalkylalkyl group, a polycycloalkylalkyl group, an aralkyl group, or a heterocyclic group, and these groups are a halogen atom or a hydroxyl group.
  • An alkyl group, or a heterocyclic group may be substituted, and an oxygen atom may be bonded to these groups to form an epoxy group.
  • the alkylene moiety may be interrupted by an ether bond, a thioether bond, or an ester bond.
  • the number of carbon atoms thereof is preferably 1 or more and 20 or less, more preferably 1 or more and 15 or less, and particularly preferably 1 or more and 10 or less.
  • suitable alkyl groups are methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, sec.
  • -Pentyl group tert-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, isooctyl group, sec-octyl group, tert-octyl group, n-nonyl group, isononyl group, n-decyl group, Examples thereof include an isodecyl group.
  • a suitable example of the alicyclic group contained in these groups is , Cyclopentyl group, monocyclic alicyclic group such as cyclohexyl group, adamantyl group, norbornyl group, isobornyl group, tricyclononyl group, tricyclodecyl group, tetracyclododecyl group, bicyclo- [2.1.1] -Hexyl group, bicyclo- [2.2.1] -heptyl group, bicyclo- [2.2.2] -octyl group, bicyclo- [3.3.0] -octyl group, bicyclo- [4.3.
  • Examples thereof include polycycloalkyl groups such as 0] -nonyl group and bicyclo
  • Suitable for compounds represented by the formula (a4-1) and having a cycloalkyl group, a polycycloalkyl group, a cycloalkylalkyl group, a polycycloalkylalkyl group, and an alicyclic group-containing group other than these groups as Ra10 examples thereof include compounds represented by the following formulas (a-4-1a) to (a-4-1h). Among these, compounds represented by the following formulas (a-4-1c) to (a-4-1h) are preferable, and the following formula (a-4-1c) or the following formula (a-4-1d) is used. The compound represented is more preferred.
  • Ra 20 represents a hydrogen atom or a methyl group
  • Ra 21 represents a single bond or a divalent aliphatic saturated hydrocarbon group having 1 to 6 carbon atoms
  • Ra 22 represents a hydrogen atom or 1 carbon atom. Shows up to 5 alkyl groups.
  • Ra21 a single bond, a linear or branched alkylene group, for example, a methylene group, an ethylene group, a propylene group, a tetramethylene group, an ethylethylene group, a pentamethylene group, or a hexamethylene group is preferable.
  • R a22 for example, a methyl group and an ethyl group are preferable.
  • the acrylic resin contains a structural unit derived from (A-1)
  • it is represented by any of the above formulas (a-4-1c) to (a- 4-1h ), and is single-bonded as Ra 21.
  • the compound represented by the formula (a-4-1) when the compound represented by the formula (a-4-1) has a chain-like group having an epoxy group as Ra10 examples thereof include (meth) acrylic acid epoxyalkyl esters such as glycidyl (meth) acrylate, 2-methylglycidyl (meth) acrylate, 3,4-epoxybutyl (meth) acrylate, and 6,7-epoxyheptyl (meth) acrylate. ..
  • the compound represented by the formula (a-4-1) may be an alicyclic epoxy group-containing (meth) acrylic acid ester.
  • the alicyclic group constituting the alicyclic epoxy group may be monocyclic or polycyclic.
  • Examples of the monocyclic alicyclic group include cycloalkyl groups such as cyclopentyl group and cyclohexyl group.
  • Examples of the polycyclic alicyclic group include polycycloalkyls such as a norbornyl group, an isobornyl group, a tricyclononyl group, a tricyclodecyl group and a tetracyclododecyl group.
  • (meth) acrylic acid, 2- (meth) acryloyloxyethyl succinic acid, 2- (meth) are preferable in terms of the effect of the present invention.
  • Examples of the (A-1) include compounds represented by any of the above formulas (a-4-1c) to (a-4-1h) and having a single bond as Ra21 , and the above-mentioned (A-1) can be mentioned.
  • -2) includes, for example, benzyl (meth) acrylate.
  • the amount of the structural unit derived from the above-mentioned preferable compound is not particularly limited as long as it does not impair the object of the present invention, and is, for example, 10% by mass with respect to the amount of all the structural units. As mentioned above, 30% by mass or more is preferable.
  • the upper limit may be appropriately set, and may be, for example, 100% by mass or less, or 90% by mass or less.
  • the acrylic resin (a-IV) may be obtained by polymerizing a monomer other than the (meth) acrylic acid ester.
  • a monomer examples include (meth) acrylamides, unsaturated carboxylic acids, allyl compounds, vinyl ethers, vinyl esters, styrenes and the like, and vinyl ethers or styrenes are preferable. These monomers can be used alone or in combination of two or more.
  • Examples of (meth) acrylamides include (meth) acrylamide, N-alkyl (meth) acrylamide, N-aryl (meth) acrylamide, N, N-dialkyl (meth) acrylamide, N, N-aryl (meth) acrylamide, and N.
  • -Methyl-N-phenyl (meth) acrylamide, N-hydroxyethyl-N-methyl (meth) acrylamide and the like can be mentioned.
  • unsaturated carboxylic acids include monocarboxylic acids such as crotonic acid; dicarboxylic acids such as maleic acid, fumaric acid, citraconic acid, mesaconic acid and itaconic acid; and anhydrides of these dicarboxylic acids.
  • allyl compound examples include allyl esters such as allyl acetate, allyl caproate, allyl caprylate, allyl laurate, allyl palmitate, allyl stearate, allyl benzoate, allyl acetoacetate, and allyl lactate; allyloxyethanol; and the like. Can be mentioned.
  • vinyl ethers include hexyl vinyl ether, octyl vinyl ether, decyl vinyl ether, ethyl hexyl vinyl ether, methoxyethyl vinyl ether, ethoxyethyl vinyl ether, chloroethyl vinyl ether, 1-methyl-2,2-dimethylpropyl vinyl ether, 2-ethylbutyl vinyl ether and hydroxyethyl vinyl ether.
  • Diethylene glycol vinyl ether dimethylaminoethyl vinyl ether, diethylaminoethyl vinyl ether, butylaminoethyl vinyl ether, benzyl vinyl ether, tetrahydrofurfuryl vinyl ether and other alkyl vinyl ethers; vinyl phenyl ether, vinyl trill ether, vinyl chlorophenyl ether, vinyl-2,4-dichlorophenyl ether.
  • Vinyl aryl ethers such as vinyl naphthyl ethers and vinyl anthranyl ethers; and the like.
  • vinyl esters include vinyl butyrate, vinyl isobutyrate, vinyl trimethyl acetate, vinyl diethyl acetate, vinyl ballerate, vinyl caproate, vinyl chloro acetate, vinyl dichloro acetate, vinyl methoxy acetate, vinyl butoxy acetate, and vinyl phenyl.
  • vinyl esters include acetate, vinyl acetoacetate, vinyl lactate, vinyl- ⁇ -phenylbutyrate, vinyl benzoate, vinyl salicylate, vinyl chlorobenzoate, vinyl tetrachlorobenzoate, vinyl naphthoate and the like.
  • Styrenes include styrene; methylstyrene, dimethylstyrene, trimethylstyrene, ethylstyrene, diethylstyrene, isopropylstyrene, butylstyrene, hexylstyrene, cyclohexylstyrene, decylstyrene, benzylstyrene, chloromethylstyrene, trifluoromethylstyrene, ethoxy.
  • Alkylstyrene such as methylstyrene and acetoxymethylstyrene; alkoxystyrene such as methoxystyrene, 4-methoxy-3-methylstyrene and dimethoxystyrene; chlorostyrene, dichlorostyrene, trichlorostyrene, tetrachlorostyrene, pentachlorostyrene, bromostyrene, Examples thereof include halostyrene such as dibromostyrene, iodostyrene, fluorostyrene, trifluorostyrene, 2-bromo-4-trifluoromethylstyrene and 4-fluoro-3-trifluoromethylstyrene; and the like.
  • the metal oxide film-forming composition according to the present invention contains metal oxide nanoclusters, even if the base material is an acrylic resin, the etching resistance required for substrate processing can be imparted, but the etching resistance can be improved.
  • the base material a polymer containing an aromatic ring, a non-polymer containing an aromatic ring, or both of these may be additionally used.
  • non-polymer containing an aromatic ring examples include a compound (X) having a bisphenylfluorene skeleton, a bisnaphthylfluorene skeleton, a methylenedinaphthalene skeleton, a tetrabenzonaphthalene skeleton, or a calixarene skeleton.
  • These compounds may have a substituent, and examples of the substituent include an acryloyl group, a methacryloyl group, a vinyloxy group, a styryl group, an allyl group, a propargyl group, a diglycidylamino group, a dipropargylamino group and the like.
  • a polymerizable group or an organic group containing the polymerizable group is preferable in terms of curability and the like.
  • -Examples include a condensate of compound (X). The condensate is formed by allowing one or more selected from the group consisting of aldehydes, compounds having an alkoxy group, compounds having an alkanoyloxy group, trioxans, and fluorenones to act on the compound (X). can get.
  • a known novolak resin or the like may be used as the polymer containing an aromatic ring.
  • Novolak resin (a-II) As the novolak resin (a-II), various novolak resins conventionally blended in the photosensitive composition can be used.
  • the novolak resin (a-II) is preferably obtained by addition-condensing an aromatic compound having a phenolic hydroxyl group (hereinafter, simply referred to as "phenols") and aldehydes under an acid catalyst.
  • phenols examples include phenols; cresols such as o-cresol, m-cresol, p-cresol; 2,3-xylenol, 2,4-xylenol.
  • Each alkyl group has 1 or more and 4 or less carbon atoms.); ⁇ -naphthol; ⁇ -naphthol; hydroxydiphenyl; and bisphenol A and the like. These phenols may be used alone or in combination of two or more.
  • aldehydes examples include formaldehyde, paraformaldehyde, furfural, benzaldehyde, nitrobenzaldehyde, and acetaldehyde. These aldehydes may be used alone or in combination of two or more.
  • Acid catalysts used in the preparation of novolak resin (a-II) include, for example, inorganic acids such as hydrochloric acid, sulfuric acid, nitrate, phosphoric acid, and phosphoric acid; formic acid, oxalic acid, acetic acid, diethylsulfate, and Examples thereof include organic acids such as paratoluene sulfonic acid; and metal salts such as zinc acetate. These acid catalysts may be used alone or in combination of two or more.
  • the amount of the base material used is not particularly limited, and is, for example, 0.5 to 35% by mass, preferably 1 to 25% by mass, based on the total amount of the components other than the solvent in the metal oxide film-forming composition. Yes, more preferably 2 to 15% by mass.
  • the amount of the base material used is within the above range, the ratio of the organic content mass does not become too high, and as a result, the volume shrinkage of the obtained metal oxide film is suppressed by heating at a low temperature of 400 ° C. or lower. Cheap.
  • the mass ratio of the metal oxide nanoclusters to the total of the metal oxide nanoclusters and the substrate is, for example, 45% by mass or more, preferably 45% by mass or more. It is 50% by mass or more, more preferably 60% by mass or more, and even more preferably 65% by mass or more.
  • the upper limit of the mass ratio is, for example, 95% by mass or less, preferably 90% by mass or less.
  • the metal oxide film-forming composition according to the present invention contains a solvent for the purpose of adjusting coatability and viscosity.
  • a solvent for the purpose of adjusting coatability and viscosity.
  • an organic solvent is typically used.
  • the type of the organic solvent is not particularly limited as long as the components contained in the metal oxide film-forming composition can be uniformly dissolved or dispersed.
  • (Poly) alkylene glycol monoalkyl ethers ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, etc.
  • the amount of the solvent used in the metal oxide film-forming composition according to the present invention is not particularly limited. From the viewpoint of coatability of the metal oxide film-forming composition, the amount of the solvent used is, for example, 30 to 99.9% by mass, preferably 50, based on the entire metal oxide film-forming composition. It is ⁇ 98% by mass.
  • the metal oxide film-forming composition according to the present invention may further contain a surfactant (surface conditioner) in order to improve coatability, defoaming property, leveling property and the like.
  • a surfactant surface conditioner
  • the surfactant may be used alone or in combination of two or more.
  • examples of the surfactant include silicone-based surfactants and fluorine-based surfactants.
  • silicone-based surfactant examples include BYK-077, BYK-085, BYK-300, BYK-301, BYK-302, BYK-306, BYK-307, BYK-310, BYK-320, BYK.
  • fluorine-based surfactant examples include F-114, F-177, F-410, F-411, F-450, F-494, F-494, F-443, F-444, and F. 445, F-446, F-470, F-471, F-472SF, F-474, F-475, F-477, F-478, F-479, F-480SF, F-482, F-483 , F-484, F-486, F-487, F-172D, MCF-350SF, TF-1025SF, TF-1117SF, TF-1026SF, TF-1128, TF-1127, TF-1129, TF-1126, TF.
  • the amount of the surfactant used is not particularly limited, and the total amount of the components other than the solvent in the metal oxide film-forming composition is the sum of the components other than the solvent in the metal oxide film-forming composition from the viewpoints of coatability, defoaming property, leveling property and the like. On the other hand, for example, it is 0.01 to 0.15% by mass, preferably 0.05 to 0.1% by mass.
  • the metal oxide film-forming composition according to the present invention contains, if necessary, a dispersant, a thermal polymerization inhibitor, an antifoaming agent, a silane coupling agent, a colorant (pigment, dye), an inorganic filler, and an organic filler. , Cross-linking agent, acid generator and other additives can be contained.
  • a dispersant e.g., sodium tartrate, sodium tartrate, sodium tartrate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium sulfate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium sulfate, sodium sulfate, sodium bicarbonate, sodium sulfate, sodium sulfate, sodium bicarbonate,
  • the method for producing the metal oxide film-forming composition according to the present invention is not particularly limited, and for example, after treating the metal oxide nanoclusters with a capping agent in the presence of a solvent, the obtained slurry is used as a base material.
  • a solvent optionally a surfactant, and optionally other components.
  • the metal oxide film-forming composition according to the present invention can be produced, for example, as shown in Examples described later.
  • the method for producing a metal oxide film according to the present invention includes a coating film forming step of forming a coating film made of the metal oxide film-forming composition according to the present invention, and a heating step of heating the coating film. ..
  • the coating film can be formed, for example, by applying a metal oxide film-forming composition onto a substrate such as a semiconductor substrate.
  • a coating method a contact transfer type coating device such as a roll coater, a reverse coater, and a bar coater, and a non-contact type such as a spinner (rotary coating device, spin coater), a dip coater, a spray coater, a slit coater, and a curtain flow coater.
  • a method using a coating device can be mentioned.
  • the metal oxide film-forming composition is applied by a printing method such as an inkjet method or a screen printing method to obtain a desired shape.
  • a patterned coating film may be formed on the surface.
  • the substrate preferably includes a metal film, a metal carbide film, a metal oxide film, a metal nitride film, or a metal oxide nitride film.
  • the metal constituting the substrate include silicon, titanium, tungsten, hafnium, zirconium, chromium, germanium, copper, aluminum, indium, gallium, arsenic, palladium, iron, tantalum, iridium, molybdenum, and alloys thereof.
  • it preferably contains silicon, germanium, and gallium.
  • the surface of the substrate may have an uneven shape, and the uneven shape may be a patterned organic material.
  • the drying method is not particularly limited, and examples thereof include a method of drying on a hot plate at a temperature of 80 ° C. or higher and 140 ° C. or lower, preferably 90 ° C. or higher and 130 ° C. or lower for a time within the range of 60 seconds or longer and 150 seconds or lower. ..
  • vacuum drying may be performed at room temperature using a vacuum drying device (VCD).
  • VCD vacuum drying device
  • the temperature at the time of heating is not particularly limited, and is preferably 400 ° C. or higher, more preferably 420 ° C. or higher, and even more preferably 430 ° C. or higher.
  • the upper limit may be appropriately set, for example, 600 ° C. or lower, and preferably 550 ° C. or lower in terms of etching rate control during dry etching or in-plane uniformity.
  • the heating time is typically 30 seconds or more and 150 seconds or less, and more preferably 60 seconds or more and 120 seconds or less.
  • the heating step may be performed under a single heating temperature, or may be composed of a plurality of steps having different heating temperatures.
  • the metal oxide film formed as described above is suitably used, for example, as a metal hard mask or a material for pattern inversion.
  • the method for reducing the volume shrinkage of the metal oxide film according to the present invention is as described above.
  • a coating film made of a metal oxide film-forming composition is formed, and the coating film is formed.
  • It is a method of reducing the volume shrinkage of the metal oxide film obtained by heating the metal oxide film, and the metal oxide film-forming composition is configured to be the metal oxide film-forming composition according to the present invention. It involves doing. According to this method, the volume shrinkage of the metal oxide film can be reduced when heated at 400 ° C. or lower, and in-plane uniformity can be maintained when heated at 400 ° C. or higher, particularly 450 ° C. or higher.
  • the metal oxide film-forming composition according to the present invention is as described above.
  • PMEA Propylene glycol monomethyl ether acetate
  • Z-1 Dispersion Solution The molar ratio of water to zirconium (IV) isopropoxide isopropanol (Zr (OCH (CH3) 2) 4 (HOCH (CH3) 2) to obtain a slurry of ZrO 2 is determined.
  • Zr (OCH (CH3) 2) 4 (HOCH (CH3) 2) The molar ratio of water to zirconium (IV) isopropoxide isopropanol (Zr (OCH (CH3) 2) 4 (HOCH (CH3) 2) to obtain a slurry of ZrO 2 is determined.
  • Zr (OCH (CH3) 2) 4 (HOCH (CH3) 2 HOCH (CH3) 2
  • the resin solution is first added to the Z-1 dispersion, the Z-2 dispersion, or the Z-3 dispersion, then the surfactant solution is added, and finally the surfactant solution is added.
  • the solvent PGMEA was added, stirred, and filtered through a ⁇ 0.2 ⁇ m membrane filter to obtain a composition.
  • the numbers in parentheses represent the percentage of solid content (unit: parts by mass).
  • ratio of inorganic content mass indicates the ratio of the inorganic content mass to the total of the inorganic content mass and the organic content mass with respect to the solid content of the composition. Specifically, the solid content mass of the Z-1 dispersion liquid, the Z-2 dispersion liquid, or the Z-3 dispersion liquid, the mass of the acrylic resin in the resin liquid, and the surfactant in the surfactant liquid. The ratio (% by mass) of the inorganic content mass of the Z-1 dispersion liquid, the Z-2 dispersion liquid, or the Z-3 dispersion liquid to the total with the mass was calculated. The results are shown in Table 1.
  • Preparation of metal oxide film The composition was dropped onto a 6-inch silicon wafer, accelerated to 500 rpm in 2 seconds, and then spin-coated at 500 rpm for 10 seconds. Then, using a hot plate, prebaking was performed at 100 ° C. for 120 seconds, and post-baking was performed at each of the following firing temperatures for 90 seconds to obtain a metal oxide film. In addition, the following "room temperature” means that it was left at room temperature for 90 seconds, and it means that post-baking was not actually performed. Baking temperature: room temperature, 200 ° C, 250 ° C, 300 ° C, 350 ° C, 400 ° C, 450 ° C, 500 ° C, 600 ° C

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Ceramic Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Paints Or Removers (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

400℃以下での加熱において体積収縮が抑制された金属酸化物膜を与える金属酸化物膜形成性組成物、これを用いた金属酸化物膜の製造方法、及び金属酸化物膜の体積収縮率を低減させる方法を提供する。 本発明に係る金属酸化物膜形成性組成物は、金属酸化物ナノクラスターと、キャッピング剤と、基材と、溶剤と、を含有し、前記金属酸化物ナノクラスターのサイズは、5nm以下であり、前記キャッピング剤は、アルコキシシラン、フェノール、アルコール、カルボン酸、及びカルボン酸ハライドからなる群から選択される少なくとも1種を含み、前記金属酸化物膜形成性組成物の固形分において、無機分質量と有機分質量との合計に対する無機分質量の割合が25質量%以上である。

Description

金属酸化物膜形成性組成物、これを用いた金属酸化物膜の製造方法、及び金属酸化物膜の体積収縮率を低減させる方法
 本発明は、金属酸化物膜形成性組成物、これを用いた金属酸化物膜の製造方法、及び金属酸化物膜の体積収縮率を低減させる方法に関する。
 一般に、半導体デバイス製造等におけるエッチング加工では、フォトレジストや電子線レジスト等のレジスト材料を被エッチング基体表面に塗布し、リソグラフィー技術によってパターン形成したレジスト膜をエッチングマスクとしてエッチングを行うことにより、被エッチング基体に所定のパターンを形成している。
 ここで、被エッチング基体のエッチングレートによっては、被エッチング基体に対するレジスト膜のエッチング選択性の問題から、レジスト膜がエッチングマスクとして十分に機能しない場合がある。このため、そのような被エッチング基体をエッチングする場合には、ハードマスクと称されるエッチングマスクを設け、被エッチング基体に対するエッチングマスクのエッチング選択性を高く維持することが行われている。ハードマスクとしては、例えば、酸化ジルコニウムナノ粒子等の金属酸化物ナノ粒子を含む金属酸化物膜からなるハードマスクが公知である(特許文献1を参照)。
特表2020-503409号公報
 金属酸化物ナノ粒子を含む従来の金属酸化物膜は、金属酸化物ナノ粒子を含む組成物からなる塗膜を加熱して形成される。本発明者らが検討したところ、従来の金属酸化物膜は、400℃以下の低温での加熱において体積収縮が大きいため、450℃の高温において本焼成した際に面内均一性が低くなり、その結果、本焼成後の金属酸化物膜をドライエッチングにおけるハードマスクとして使用した場合に、均一にドライエッチングを行うことが困難であることが判明した。
 本発明は、このような従来の実情に鑑みてなされたものであり、400℃以下での加熱において体積収縮が抑制された金属酸化物膜を与える金属酸化物膜形成性組成物、これを用いた金属酸化物膜の製造方法、及び金属酸化物膜の体積収縮率を低減させる方法を提供することを目的とする。
 本発明者らは、上記課題を解決するため鋭意研究を重ねた。その結果、所定のサイズの金属酸化物ナノクラスターと、所定のキャッピング剤と、基材と、溶剤と、を含有し、前記金属酸化物膜形成性組成物の固形分において、無機分質量と有機分質量との合計に対する無機分質量の割合が25質量%以上である金属酸化物膜形成性組成物により上記課題を解決できることを見出し、本発明を完成するに至った。具体的には、本発明は以下のものを提供する。
 本発明の第一の態様は、金属酸化物ナノクラスターと、キャッピング剤と、基材と、溶剤と、を含有する金属酸化物膜形成性組成物であり、
 前記金属酸化物ナノクラスターのサイズは、5nm以下であり、
 前記キャッピング剤は、アルコキシシラン、フェノール、アルコール、カルボン酸、及びカルボン酸ハライドからなる群から選択される少なくとも1種を含み、
 前記金属酸化物膜形成性組成物の固形分において、無機分質量と有機分質量との合計に対する無機分質量の割合が25質量%以上である金属酸化物膜形成性組成物である。
 本発明の第二の態様は、第1の態様に係る金属酸化物膜形成性組成物からなる塗膜を形成する塗膜形成工程と、
 前記塗膜を加熱する加熱工程と、
を含む、金属酸化物膜の製造方法である。
 本発明の第三の態様は、金属酸化物膜形成性組成物からなる塗膜を形成し、前記塗膜を加熱して得られる金属酸化物膜の体積収縮率を低減させる方法であって、
 金属酸化物ナノクラスターと、キャッピング剤と、基材と、溶剤と、を含有するように前記金属酸化物膜形成性組成物を構成することを含み、
 前記金属酸化物ナノクラスターのサイズは、5nm以下であり、
 前記キャッピング剤は、アルコキシシラン、フェノール、アルコール、カルボン酸、及びカルボン酸ハライドからなる群から選択される少なくとも1種を含み、
 前記金属酸化物膜形成性組成物の固形分において、無機分質量と有機分質量との合計に対する無機分質量の割合が25質量%以上である方法である。
 本発明によれば、400℃以下での加熱において体積収縮が抑制された金属酸化物膜を与える金属酸化物膜形成性組成物、これを用いた金属酸化物膜の製造方法、及び金属酸化物膜の体積収縮率を低減させる方法を提供することができる。
<金属酸化物膜形成性組成物>
 本発明に係る金属酸化物膜形成性組成物は、金属酸化物ナノクラスターと、キャッピング剤と、基材と、溶剤と、を含有する。本発明に係る金属酸化物膜形成性組成物は、400℃以下での加熱において体積収縮が抑制された金属酸化物膜を与えることができる。
 前記金属酸化物膜形成性組成物の固形分において、無機分質量と有機分質量との合計に対する無機分質量の割合は、25質量%以上であり、好ましく30質量%以上であり、より好ましく40質量%以上である。当該割合が上記の範囲内であると、無機分質量の割合を高く設定でき、その結果、得られる金属酸化物膜は、400℃以下の低温での加熱において体積収縮が抑制されやすい。当該割合の上限は、特に限定されず、90質量%でよく、80質量%でも75質量%でもよい。
[金属酸化物ナノクラスター]
 本明細書において、金属酸化物ナノクラスターとは、金属酸化物の集合体であって、金属酸化物から形成される複数の面から構成される集合体をいう。なお、金属酸化物ナノクラスターは金属酸化物からなり、キャッピング剤は含まない。本発明に係る金属酸化物膜形成性組成物が、キャッピング剤とともに、金属酸化物ナノクラスターを含有すると、得られる金属酸化物膜は、400℃以下の低温での加熱において体積収縮が抑制されやすい。
 金属酸化物ナノクラスターに対するX線回折測定により、上記の面に相当する回折ピークが検出される。金属酸化物ナノクラスターは、結晶、微結晶、又は非晶質を含んでもよい。金属酸化物ナノクラスターに含まれる成分に応じて、金属酸化物ナノクラスターのX線回折パターンには、金属原子の面(結晶面)に起因するピーク、ブロードな盛り上がり、又はブロードなハローパターンが検出される。ある試料のX線回折パターンにピークのみならず、ブロードな盛り上がりやブロードなハローパターンさえも検出されない場合、その試料には、金属酸化物ナノクラスターが含まれないと、本明細書では判断するものとする。
 金属酸化物ナノクラスターのサイズは、5nm以下であり、好ましくは4nm以下であり、より好ましくは3nm以下である。金属酸化物ナノクラスターのサイズの下限は、特に限定されず、例えば、0.5nm以上でよく、1nm以上でも2nm以上でもよい。金属酸化物ナノクラスターのサイズが5nmを超えると、得られる金属酸化物膜は、400℃以下の低温での加熱において体積収縮が抑制されにくいため、450℃の高温において本焼成した際に面内均一性が低くなりやすいと考えられ、結果として、本焼成後の金属酸化物膜をドライエッチングにおけるハードマスクとして使用した場合に、均一にドライエッチングを行うことが困難となりやすい。本明細書において、金属酸化物ナノクラスターのサイズとは、X線散乱強度分布測定により検出されたスペクトルにおける散乱ピークの半値幅からHalder-Wagner法で算出された値をいう。
 金属酸化物ナノクラスターに含まれる金属としては、特に限定されず、例えば、亜鉛、イットリウム、ハフニウム、ジルコニウム、ランタン、セリウム、ネオジム、ガドリニウム、ホルミウム、ルテチウム、タンタル、チタン、ケイ素、アルミニウム、アンチモン、錫、インジウム、タングステン、銅、バナジウム、クロム、ニオブ、モリブデン、ルテニウム、ロジウム、レニウム、イリジウム、ゲルマニウム、ガリウム、タリウム、マグネシウムが挙げられ、製膜性、安定性等の観点から、亜鉛、イットリウム、ハフニウム、及びジルコニウムが好ましく、ジルコニウムがより好ましい。上記金属は、1種単独で用いても、2種以上を併用してもよい。
 金属酸化物ナノクラスターの使用量は特に限定されず、金属酸化物膜形成性組成物における溶剤以外の成分の合計に対して、例えば、45~75質量%であり、好ましくは50~72質量%である。金属酸化物ナノクラスターの使用量が上記の範囲内であると、得られる金属酸化物膜は、400℃以下の低温での加熱において体積収縮が抑制されやすい。
[キャッピング剤]
 本発明に係る金属酸化物膜形成性組成物において、金属酸化物ナノクラスターの一部又は全部は、キャッピング剤に覆われているものと推測される。キャッピング剤は、アルコキシシラン、フェノール、アルコール、カルボン酸、及びカルボン酸ハライドからなる群から選択される少なくとも1種を含む。本発明に係る金属酸化物膜形成性組成物が、金属酸化物ナノクラスターとともに、キャッピング剤を含有すると、得られる金属酸化物膜は、400℃以下の低温での加熱において体積収縮が抑制されやすい。
 キャッピング剤の具体例としては、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、n-オクチルトリメトキシシラン、n-オクチルトリエトキシシラン、n-ドデシルトリメトキシシラン、n-ドデシルトリエトキシシラン、n-ヘキサデシルトリメトキシシラン、n-ヘキサデシルトリエトキシシラン、n-オクタデシルトリメトキシシラン、n-オクタデシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェネチルフェニルトリメトキシシラン、フェネチルエチルトリエトキシシラン、3-{2-メトキシ[ポリ(エチレンオキシ)]}プロピルトリメトキシシラン、3-{2-メトキシ[ポリ(エチレンオキシ)]}プロピルトリエトキシシラン、3-{2-メトキシ[トリ(エチレンオキシ)]}プロピルトリメトキシシラン、3-{2-メトキシ[トリ(エチレンオキシ)]}プロピルトリエトキシシラン、ビニルトリメトキシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、1-ヘキセニルトリメトキシシラン,1-ヘキセニルトリエトキシシラン、1-オクテニルトリメトキシシラン、1-オクテニルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-アクリロイルオキシプロピルトリメトキシシラン、3-アクリロイルプロピルトリエトキシシラン、3-メタクリロイルオキシプロピルトリメトキシシラン、3-メタクリロイルオキシプロピルトリエトキシシラン、3-イソシアナトプロピルトリメトキシシラン、3-イソシアナトプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、及び3-グリシドキシプロピルトリエトキシシラン等のアルコキシシラン;エタノール、n-プロパノール、イソプロパノール、n-ブタノール、n-ヘプタノール、n-ヘキサノール、n-オクタノール、オレイルアルコール、n-ドデシルアルコール、n-オクタデカノール、ベンジルアルコール、フェノール、及びトリエチレングリコールモノメチルエーテル等のフェノール類又はアルコール類;オクタン酸、酢酸、プロピオン酸、2-[2-(メトキシエトキシ)エトキシ]酢酸、オレイン酸、ラウリン酸、安息香酸、2-アクリロイルオキシエチルコハク酸、2-アクリロイルオキシエチルフタル酸等の酸類;及びこれらの酸類の酸クロライド等の、これらの酸類の酸ハライド類が挙げられ、好ましくは、フェノール類、アルコール類、又は酸類として挙げた化合物である。
 キャッピング剤の使用量は特に限定されず、金属酸化物膜形成性組成物における溶剤以外の成分の合計に対して、例えば、10~35質量%であり、好ましくは18~28質量%である。キャッピング剤の使用量が上記の範囲内であると、有機分質量の割合が高くなりすぎず、その結果、得られる金属酸化物膜は、400℃以下の低温での加熱において体積収縮が抑制されやすい。
 前記金属酸化物膜形成性組成物の固形分において、前記金属酸化物ナノクラスターと前記キャッピング剤との合計に対する前記金属酸化物ナノクラスターの質量比は、例えば、50質量%以上であり、好ましくは55質量%以上であり、より好ましくは60質量%以上であり、更により好ましくは65質量%以上である。上記質量比の上限は、例えば、95質量%以下であり、好ましくは90質量%以下である。
[基材]
 本発明に係る金属酸化物膜形成性組成物は、塗膜形成性や塗布性の調整の目的で、基材を含有する。基材は、1種単独で用いても、2種以上を併用してもよい。基材としては、特に限定されず、樹脂等の重合体や低分子化合物等の非重合体を用いることができる。
 基材の質量平均分子量(以下、「Mw」という。)は、本発明の目的を阻害しない範囲で特に限定されず、好ましくは700以上40000以下であり、より好ましくは900以上30000以下であり、更により好ましくは1000以上20000以下である。Mwが上記範囲内であると、塗膜形成性及び塗布性が良好となりやすい。また、Mwが4000以下である重合体又は非重合体を用いることで、凹凸基板に対するギャップフィリング性が良好となりやすい。なお、本明細書において、Mwとしては、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算の値を採用する。
〔アクリル系樹脂(a-IV)〕
 アクリル系樹脂(a-IV)としては、(メタ)アクリル酸に由来する構成単位、及び/又は(メタ)アクリル酸エステル等の他のモノマーに由来する構成単位を含むものを用いることができる。(メタ)アクリル酸は、アクリル酸、又はメタクリル酸である。アクリル系樹脂(a-IV)中の構成単位を与えるモノマーとしては、典型的には下記式(a-4-1)で表される化合物が好ましく用いられる。
Figure JPOXMLDOC01-appb-C000001
 上記式(a-4-1)中、Ra9は、水素原子又はメチル基である。Ra10は、水素原子又は1価の有機基である。この有機基は、該有機基中にヘテロ原子等の炭化水素基以外の結合や置換基を含んでいてもよい。また、この有機基は、直鎖状、分岐鎖状、環状のいずれでもよい。Ra11は、-O-、又は-NRa12-で表される基である。Ra12は、水素原子、又は炭素原子数1以上6以下のアルキル基である。
 Ra10の有機基中の炭化水素基以外の置換基としては、本発明の効果が損なわれない限り特に限定されず、ハロゲン原子、水酸基、メルカプト基、スルフィド基、シアノ基、イソシアノ基、シアナト基、イソシアナト基、チオシアナト基、イソチオシアナト基、シリル基、シラノール基、アルコキシ基、アルコキシカルボニル基、カルバモイル基、チオカルバモイル基、ニトロ基、ニトロソ基、カルボキシ基、カルボキシラート基、アシル基、アシルオキシ基、スルフィノ基、スルホ基、スルホナト基、ホスフィノ基、ホスフィニル基、ホスホノ基、ホスホナト基、ヒドロキシイミノ基、アルキルエーテル基、アルキルチオエーテル基、アリールエーテル基、アリールチオエーテル基、アミノ基(-NH、-NHR、-NRR’:R及びR’はそれぞれ独立に炭化水素基を示す)等が挙げられる。上記置換基に含まれる水素原子は、炭化水素基によって置換されていてもよい。また、上記置換基に含まれる炭化水素基は、直鎖状、分岐鎖状、及び環状のいずれでもよい。
 また、Ra10としての有機基は、アクリロイルオキシ基、メタアクリロイルオキシ基、エポキシ基、オキセタニル基等の反応性の官能基を有していてもよい。
 アクリロイルオキシ基やメタクリロイルオキシ基等の、不飽和二重結合等を有するアシル基は、例えば、エポキシ基を有する構成単位を含むアクリル系樹脂(a-IV)における、エポキシ基の少なくとも一部に、アクリル酸やメタクリル酸等の不飽和カルボン酸を反応させることにより製造することができる。
 エポキシ基の少なくとも一部に、不飽和カルボン酸を反応させた後に、反応により生成した基に多塩基酸無水物を反応させてもよい。
 多塩基酸無水物の具体例としては、無水マレイン酸、無水コハク酸、無水イタコン酸、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸二無水物、3-メチルヘキサヒドロフタル酸無水物、4-メチルヘキサヒドロ無水フタル酸、3-エチルヘキサヒドロ無水フタル酸、4-エチルヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、3-メチルテトラヒドロ無水フタル酸、4-メチルテトラヒドロ無水フタル酸、3-エチルテトラヒドロ無水フタル酸、及び4-エチルテトラヒドロ無水フタル酸等が挙げられる。
 また、アクリル系樹脂(a-IV)が有する、アクリル酸やメタクリル酸等の不飽和カルボン酸に由来する構成単位に対して、エポキシ基と不飽和二重結合とを有する化合物を反応させることによって、アクリル系樹脂(a-IV)に不飽和二重結合を導入することができる。エポキシ基と不飽和二重結合とを有する化合物としては、例えば、グリシジル(メタ)アクリレートや、後述する式(a-4-1a)~(a-4-1o)で表される化合物を用いることができる。
 Ra10としては、アルキル基、アリール基、シクロアルキル基、ポリシクロアルキル基、シクロアルキルアルキル基、ポリシクロアルキルアルキル基、アラルキル基、又は複素環基が好ましく、これらの基は、ハロゲン原子、水酸基、アルキル基、又は複素環基で置換されていてもよく、これらの基に酸素原子が結合してエポキシ基が形成されてもよい。また、これらの基がアルキレン部分を含む場合、アルキレン部分は、エーテル結合、チオエーテル結合、エステル結合により中断されていてもよい。
 アルキル基が、直鎖状又は分岐鎖状のものである場合、その炭素原子数は、1以上20以下が好ましく、1以上15以下がより好ましく、1以上10以下が特に好ましい。好適なアルキル基の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、sec-ペンチル基、tert-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、イソオクチル基、sec-オクチル基、tert-オクチル基、n-ノニル基、イソノニル基、n-デシル基、イソデシル基等が挙げられる。
 シクロアルキル基、ポリシクロアルキル基、シクロアルキルアルキル基、ポリシクロアルキルアルキル基、及びこれらの基以外の脂環式基含有基において、これらの基に含まれる脂環式基の好適な例としては、シクロペンチル基、及びシクロヘキシル基等単環の脂環式基や、アダマンチル基、ノルボルニル基、イソボルニル基、トリシクロノニル基、トリシクロデシル基、テトラシクロドデシル基、ビシクロ-[2.1.1]-ヘキシル基、ビシクロ-[2.2.1]-ヘプチル基、ビシクロ-[2.2.2]-オクチル基、ビシクロ-[3.3.0]-オクチル基、ビシクロ-[4.3.0]-ノニル基、及びビシクロ-[4.4.0]-デシル基等のポリシクロアルキル基が挙げられる。
 式(a4-1)で表され、シクロアルキル基、ポリシクロアルキル基、シクロアルキルアルキル基、ポリシクロアルキルアルキル基、及びこれらの基以外の脂環式基含有基をRa10として有する化合物の好適な例としては、下記式(a-4-1a)~(a-4-1h)で表される化合物が挙げられる。これらの中でも、下記式(a-4-1c)~(a-4-1h)で表される化合物が好ましく、下記式(a-4-1c)、又は下記式(a-4-1d)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000002
 上記式中、Ra20は水素原子又はメチル基を示し、Ra21は単結合又は炭素原子数1~6の2価の脂肪族飽和炭化水素基を示し、Ra22は水素原子又は炭素原子数1~5のアルキル基を示す。Ra21としては、単結合、直鎖状又は分枝鎖状のアルキレン基、例えばメチレン基、エチレン基、プロピレン基、テトラメチレン基、エチルエチレン基、ペンタメチレン基、ヘキサメチレン基が好ましい。Ra22としては、例えばメチル基、エチル基が好ましい。
 ポリシクロアルキル(メタ)アクリレート(A-1)に由来する構成単位及び/又はアラルキル(メタ)アクリレート(A-2)に由来する構成単位を含むアクリル系樹脂を含有するのが好ましい。アクリル系樹脂は、(A-1)に由来する構成単位を含む場合、例えば、上記式(a-4-1c)~(a-4-1h)のいずれかで表され、Ra21として単結合を有する化合物である(A-1)に由来する構成単位を含むのが本発明の効果の点で、好ましい。
 式(a-4-1)で表される化合物が、エポキシ基を有する鎖状の基をRa10として有する場合の、式(a-4-1)で表される化合物の具体例としては、グリシジル(メタ)アクリレート、2-メチルグリシジル(メタ)アクリレート、3,4-エポキシブチル(メタ)アクリレート、6,7-エポキシヘプチル(メタ)アクリレート等の(メタ)アクリル酸エポキシアルキルエステル類が挙げられる。
 また、式(a-4-1)で表される化合物は、脂環式エポキシ基含有(メタ)アクリル酸エステルであってもよい。脂環式エポキシ基を構成する脂環式基は、単環であっても多環であってもよい。単環の脂環式基としては、シクロペンチル基、シクロヘキシル基等のシクロアルキル基が挙げられる。また、多環の脂環式基としては、ノルボルニル基、イソボルニル基、トリシクロノニル基、トリシクロデシル基、テトラシクロドデシル基等のポリシクロアルキルが挙げられる。
  式(a-4-1)で表される化合物が脂環式エポキシ基を含む(メタ)アクリレートである場合の具体例としては、例えば下記式(a-4-1i)~(a-4-1m)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000003
 また、式(a-4-1)で表される化合物の他の具体例としては、(メタ)アクリル酸、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルフタル酸、2-(メタ)アクリロイルオキシエチル-2-ヒドロキシエチルフタル酸、モノ2-(メタ)アクリロイルオキシエチルアシッドフォスフェート、ジ2-(メタ)アクリロイルオキシエチルアシッドフォスフェート、2-ヒドロキシブチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、グリセリンジ(メタ)アクリレート、2-ヒドロキシ-3フェノキシプロピル(メタ)アクリレート、ビスフェノールAジグリシジルエーテル(メタ)アクリル酸付加物、O-フェニルフェノールグリシジルエーテル(メタ)アクリレート、1,4-ブタンジオールジグリシジルエーテルジ(メタ)アクリレート、1,6-ヘキサンジオールジグリシジルエーテルジ(メタ)アクリレート、ジプロピレングリコールジグリシジルエーテルジ(メタ)アクリレート、ペンタエリスリトールポリグリシジルエーテル(メタ)アクリレート、1,3-プロパンジオールジグリシジルエーテル(メタ)アクリレート、シクロヘキサンジメタノールジグリシジルエーテル(メタ)アクリレート、1,6-ヘキサンジオールジグリシジルエーテル(メタ)アクリレート、グリセリンポリグリシジルエーテル(メタ)アクリレート、エチレングリコールジグリシジルエーテル(メタ)アクリレート、ポリエチレングリコールジグリシジルエーテル(メタ)アクリレート、ジプロピレングリコールジグリシジルエーテル(メタ)アクリレート、ポリプロピレングリコールジグリシジルエーテル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、1-アクリロイルオキシエチル(メタ)アクリレート、1,2,3-プロパントリオール1,3―ジ(メタ)アクリレート、2-カルボキシエチル(メタ)アクリレート等の(メタ)アクリル系モノマーが挙げられる。
 アクリル系樹脂(a-IV)中の構成単位を与える化合物として、本発明の効果の点で、好ましくは、(メタ)アクリル酸、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルフタル酸、2-(メタ)アクリロイルオキシエチル-2-ヒドロキシエチルフタル酸、炭素原子数1~5のアルキル(メタ)アクリレート、ポリシクロアルキル(メタ)アクリレート(A-1)、又はアラルキル(メタ)アクリレート(A-2)が挙げられる。前記(A-1)としては、例えば、上記式(a-4-1c)~(a-4-1h)のいずれかで表され、Ra21として単結合を有する化合物が挙げられ、前記(A-2)としては、例えば、ベンジル(メタ)アクリレートが挙げられる。
 アクリル系樹脂(a-IV)において、上記好ましい化合物に由来する構成単位の量は、本発明の目的を阻害しない範囲で特に限定されず、全構成単位の量に対して、例えば、10質量%以上であり、30質量%以上が好ましい。上限は適宜設定すればよく、例えば、100質量%以下でもよく、90質量%以下であってもよい。
 また、アクリル系樹脂(a-IV)は、(メタ)アクリル酸エステル以外のモノマーを重合させたものであってもよい。このようなモノマーとしては、(メタ)アクリルアミド類、不飽和カルボン酸類、アリル化合物、ビニルエーテル類、ビニルエステル類、スチレン類等が挙げられ、ビニルエーテル類又はスチレン類が好ましい。これらのモノマーは、単独又は2種以上組み合わせて用いることができる。
 (メタ)アクリルアミド類としては、(メタ)アクリルアミド、N-アルキル(メタ)アクリルアミド、N-アリール(メタ)アクリルアミド、N,N-ジアルキル(メタ)アクリルアミド、N,N-アリール(メタ)アクリルアミド、N-メチル-N-フェニル(メタ)アクリルアミド、N-ヒドロキシエチル-N-メチル(メタ)アクリルアミド等が挙げられる。
 不飽和カルボン酸類としては、クロトン酸等のモノカルボン酸;マレイン酸、フマル酸、シトラコン酸、メサコン酸、イタコン酸等のジカルボン酸;これらジカルボン酸の無水物;等が挙げられる。
 アリル化合物としては、酢酸アリル、カプロン酸アリル、カプリル酸アリル、ラウリン酸アリル、パルミチン酸アリル、ステアリン酸アリル、安息香酸アリル、アセト酢酸アリル、乳酸アリル等のアリルエステル類;アリルオキシエタノール;等が挙げられる。
 ビニルエーテル類としては、ヘキシルビニルエーテル、オクチルビニルエーテル、デシルビニルエーテル、エチルヘキシルビニルエーテル、メトキシエチルビニルエーテル、エトキシエチルビニルエーテル、クロロエチルビニルエーテル、1-メチル-2,2-ジメチルプロピルビニルエーテル、2-エチルブチルビニルエーテル、ヒドロキシエチルビニルエーテル、ジエチレングリコールビニルエーテル、ジメチルアミノエチルビニルエーテル、ジエチルアミノエチルビニルエーテル、ブチルアミノエチルビニルエーテル、ベンジルビニルエーテル、テトラヒドロフルフリルビニルエーテル等のアルキルビニルエーテル;ビニルフェニルエーテル、ビニルトリルエーテル、ビニルクロロフェニルエーテル、ビニル-2,4-ジクロロフェニルエーテル、ビニルナフチルエーテル、ビニルアントラニルエーテル等のビニルアリールエーテル;等が挙げられる。
 ビニルエステル類としては、ビニルブチレート、ビニルイソブチレート、ビニルトリメチルアセテート、ビニルジエチルアセテート、ビニルバレレート、ビニルカプロエート、ビニルクロロアセテート、ビニルジクロロアセテート、ビニルメトキシアセテート、ビニルブトキシアセテート、ビニルフェニルアセテート、ビニルアセトアセテート、ビニルラクテート、ビニル-β-フェニルブチレート、安息香酸ビニル、サリチル酸ビニル、クロロ安息香酸ビニル、テトラクロロ安息香酸ビニル、ナフトエ酸ビニル等が挙げられる。
 スチレン類としては、スチレン;メチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、ジエチルスチレン、イソプロピルスチレン、ブチルスチレン、ヘキシルスチレン、シクロヘキシルスチレン、デシルスチレン、ベンジルスチレン、クロロメチルスチレン、トリフルオロメチルスチレン、エトキシメチルスチレン、アセトキシメチルスチレン等のアルキルスチレン;メトキシスチレン、4-メトキシ-3-メチルスチレン、ジメトキシスチレン等のアルコキシスチレン;クロロスチレン、ジクロロスチレン、トリクロロスチレン、テトラクロロスチレン、ペンタクロロスチレン、ブロモスチレン、ジブロモスチレン、ヨードスチレン、フルオロスチレン、トリフルオロスチレン、2-ブロモ-4-トリフルオロメチルスチレン、4-フルオロ-3-トリフルオロメチルスチレン等のハロスチレン;等が挙げられる。
 本発明に係る金属酸化物膜形成性組成物は金属酸化物ナノクラスターを含むため、基材がアクリル系樹脂であっても基板加工に必要なエッチング耐性を付与できるが、エッチング耐性の向上等の点で、基材として、芳香環を含む重合体、芳香環を含む非重合体、又はこれらの両方を追加で用いてもよい。
 芳香環を含む非重合体としては、ビスフェニルフルオレン骨格、ビスナフチルフルオレン骨格、メチレンジナフタレン骨格、テトラベンゾナフタレン骨格、又はカリックスアレーン骨格を有する化合物(X)が挙げられる。これらの化合物は置換基を有していてもよく、置換基の例としては、アクリロイル基、メタクリロイル基、ビニルオキシ基、スチリル基、アリル基、プロパルギル基、ジグリシジルアミノ基、ジプロパルギルアミノ基等の重合性基又は前記重合性基を含む有機基であることが硬化性等の点で好ましい。
 芳香環を含む重合体としては、
・化合物(X)を構成する骨格を繰り返し構造として有する樹脂、
・ベンゼン骨格、ナフタレン骨格、ビフェニル骨格、及び/又はアントラセン骨格を繰り返し構造として有する樹脂、
・化合物(X)の縮合体
等が挙げられる。縮合体は、化合物(X)に対し、アルデヒド類、アルコキシ基を有する化合物類、アルカノイルオキシ基を有する化合物類、トリオキサン類、及びフルオレノン類からなる群より選択される1種以上を作用させることにより得られる。また、芳香環を含む重合体としては、公知のノボラック樹脂等を用いてもよい。
〔ノボラック樹脂(a-II)〕
 ノボラック樹脂(a-II)としては、従来から感光性組成物に配合されている種々のノボラック樹脂を用いることができる。ノボラック樹脂(a-II)としては、フェノール性水酸基を有する芳香族化合物(以下、単に「フェノール類」という。)とアルデヒド類とを酸触媒下で付加縮合させることにより得られるものが好ましい。
(フェノール類)
 ノボラック樹脂(a-II)を作製する際に用いられるフェノール類としては、例えば、フェノール;o-クレゾール、m-クレゾール、p-クレゾール等のクレゾール類;2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノール等のキシレノール類;o-エチルフェノール、m-エチルフェノール、p-エチルフェノール等のエチルフェノール類;2-イソプロピルフェノール、3-イソプロピルフェノール、4-イソプロピルフェノール、o-ブチルフェノール、m-ブチルフェノール、p-ブチルフェノール、並びにp-tert-ブチルフェノール等のアルキルフェノール類;2,3,5-トリメチルフェノール、及び3,4,5-トリメチルフェノール等のトリアルキルフェノール類;レゾルシノール、カテコール、ハイドロキノン、ハイドロキノンモノメチルエーテル、ピロガロール、及びフロログリシノール等の多価フェノール類;アルキルレゾルシン、アルキルカテコール、及びアルキルハイドロキノン等のアルキル多価フェノール類(いずれのアルキル基も炭素原子数1以上4以下である。);α-ナフトール;β-ナフトール;ヒドロキシジフェニル;並びにビスフェノールA等が挙げられる。これらのフェノール類は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(アルデヒド類)
 ノボラック樹脂(a-II)を作製する際に用いられるアルデヒド類としては、例えば、ホルムアルデヒド、パラホルムアルデヒド、フルフラール、ベンズアルデヒド、ニトロベンズアルデヒド、及びアセトアルデヒド等が挙げられる。これらのアルデヒド類は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(酸触媒)
 ノボラック樹脂(a-II)を作製する際に用いられる酸触媒としては、例えば、塩酸、硫酸、硝酸、リン酸、及び亜リン酸等の無機酸類;蟻酸、シュウ酸、酢酸、ジエチル硫酸、及びパラトルエンスルホン酸等の有機酸類;並びに酢酸亜鉛等の金属塩類等が挙げられる。これらの酸触媒は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 基材の使用量は特に限定されず、金属酸化物膜形成性組成物における溶剤以外の成分の合計に対して、例えば、0.5~35質量%であり、好ましくは1~25質量%であり、より好ましくは2~15質量%である。基材の使用量が上記の範囲内であると、有機分質量の割合が高くなりすぎず、その結果、得られる金属酸化物膜は、400℃以下の低温での加熱において体積収縮が抑制されやすい。
 前記金属酸化物膜形成性組成物の固形分において、前記金属酸化物ナノクラスターと前記基材との合計に対する前記金属酸化物ナノクラスターの質量比は、例えば、45質量%以上であり、好ましくは50質量%以上であり、より好ましくは60質量%以上であり、更により好ましくは65質量%以上である。上記質量比の上限は、例えば、95質量%以下であり、好ましくは90質量%以下である。
[溶剤]
 本発明に係る金属酸化物膜形成性組成物は、塗布性や粘度の調整の目的で、溶剤を含有する。溶剤としては、典型的には有機溶剤が用いられる。有機溶剤の種類は、金属酸化物膜形成性組成物に含まれる成分を均一に溶解又は分散させることができれば、特に限定されない。
 溶剤として使用し得る有機溶剤の好適な例としては、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコール-n-プロピルエーテル、エチレングリコールモノ-n-ブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ-n-プロピルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ-n-プロピルエーテル、プロピレングリコールモノ-n-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノ-n-プロピルエーテル、ジプロピレングリコールモノ-n-ブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノエチルエーテル等の(ポリ)アルキレングリコールモノアルキルエーテル類;エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等の(ポリ)アルキレングリコールモノアルキルエーテルアセテート類;ジエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジエチルエーテル、テトラヒドロフラン等の他のエーテル類;メチルエチルケトン、シクロヘキサノン、2-ヘプタノン、3-ヘプタノン等のケトン類;2-ヒドロキシプロピオン酸メチル、2-ヒドロキシプロピオン酸エチル等の乳酸アルキルエステル類;2-ヒドロキシ-2-メチルプロピオン酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-3-メチル部炭酸メチル、3-メチル-3-メトキシブチルアセテート、3-メチル-3-メトキシブチルプロピオネート、酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸n-ブチル、酢酸イソブチル、蟻酸n-ペンチル、酢酸イソペンチル、プロピオン酸n-ブチル、酪酸エチル、酪酸n-プロピル、酪酸イソプロピル、酪酸n-ブチル、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸n-プロピル、アセト酢酸メチル、アセト酢酸エチル、2-オキソブタン酸エチル等の他のエステル類;トルエン、キシレン等の芳香族炭化水素類;N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類等が挙げられる。これらの有機溶剤は、単独又は2種以上組み合わせて用いることができる。
 本発明に係る金属酸化物膜形成性組成物における溶剤の使用量は特に限定されない。金属酸化物膜形成性組成物の塗布性の点等から、溶剤の使用量は、金属酸化物膜形成性組成物全体に対して、例えば、30~99.9質量%であり、好ましくは50~98質量%である。
[界面活性剤]
 本発明に係る金属酸化物膜形成性組成物は、塗布性、消泡性、レベリング性等を向上させるため、更に界面活性剤(表面調整剤)を含有してもよい。界面活性剤は、1種単独で用いても、2種以上を併用してもよい。界面活性剤としては、例えば、シリコーン系界面活性剤、フッ素系界面活性剤が挙げられる。
 シリコーン系界面活性剤としては、具体的には、BYK-077、BYK-085、BYK-300、BYK-301、BYK-302、BYK-306、BYK-307、BYK-310、BYK-320、BYK-322、BYK-323、BYK-325、BYK-330、BYK-331、BYK-333、BYK-335、BYK-341、BYK-344、BYK-345、BYK-346、BYK-348、BYK-354、BYK-355、BYK-356、BYK-358、BYK-361、BYK-370、BYK-371、BYK-375、BYK-380、BYK-390(BYK Chemie社製)等が挙げられる。
 フッ素系界面活性剤としては、具体的には、F-114、F-177、F-410、F-411、F-450、F-493、F-494、F-443、F-444、F-445、F-446、F-470、F-471、F-472SF、F-474、F-475、F-477、F-478、F-479、F-480SF、F-482、F-483、F-484、F-486、F-487、F-172D、MCF-350SF、TF-1025SF、TF-1117SF、TF-1026SF、TF-1128、TF-1127、TF-1129、TF-1126、TF-1130、TF-1116SF、TF-1131、TF-1132、TF-1027SF、TF-1441、TF-1442(DIC社製);ポリフォックスシリーズのPF-636、PF-6320、PF-656、PF-6520(オムノバ社製)等が挙げられる。
 界面活性剤の使用量は特に限定されず、金属酸化物膜形成性組成物の塗布性、消泡性、レベリング性の点等から、金属酸化物膜形成性組成物における溶剤以外の成分の合計に対して、例えば、0.01~0.15質量%であり、好ましくは0.05~0.1質量%である。
[その他の成分]
 本発明に係る金属酸化物膜形成性組成物には、必要に応じて、分散剤、熱重合禁止剤、消泡剤、シランカップリング剤、着色剤(顔料、染料)、無機フィラー、有機フィラー、架橋剤、酸発生剤等の添加剤を含有させることができる。いずれの添加剤も、従来公知のものを用いることができる。界面活性剤としては、アニオン系、カチオン系、ノニオン系等の化合物が挙げられ、熱重合禁止剤としては、ヒドロキノン、ヒドロキノンモノエチルエーテル等が挙げられ、消泡剤としては、シリコーン系、フッ素系化合物等が挙げられる。
 本発明に係る金属酸化物膜形成性組成物の製造方法は、特に限定されず、例えば、溶剤の存在下で、金属酸化物ナノクラスターをキャッピング剤で処理した後、得られたスラリーに基材、任意に溶剤、任意に界面活性剤、及び任意にその他の成分を添加する方法が挙げられる。具体的には、本発明に係る金属酸化物膜形成性組成物は、例えば、後述の実施例に示す通りにして製造することができる。
<金属酸化物膜の製造方法>
 本発明に係る金属酸化物膜の製造方法は、本発明に係る金属酸化物膜形成性組成物からなる塗膜を形成する塗膜形成工程と、前記塗膜を加熱する加熱工程と、を含む。
 前記塗膜は、例えば、半導体基板等の基板上に金属酸化物膜形成性組成物を塗布することにより、形成することができる。塗布方法としては、ロールコータ、リバースコーター、バーコーター等の接触転写型塗布装置や、スピンナー(回転式塗布装置、スピンコーター)、ディップコーター、スプレーコーター、スリットコーター、カーテンフローコーター等の非接触型塗布装置を用いる方法が挙げられる。また、金属酸化物膜形成性組成物の粘度を適切な範囲に調整したうえで、インクジェット法、スクリーン印刷法等の印刷法によって金属酸化物膜形成性組成物の塗布を行って、所望の形状にパターニングされた塗膜を形成してもよい。
 基板としては、金属膜、金属炭化膜、金属酸化膜、金属窒化膜、又は金属酸化窒化膜を含むものであることが好ましい。前記基板を構成する金属は、ケイ素、チタン、タングステン、ハフニウム、ジルコニウム、クロム、ゲルマニウム、銅、アルミニウム、インジウム、ガリウム、ヒ素、パラジウム、鉄、タンタル、イリジウム、モリブデン、又はこれらの合金等が挙げられるが、ケイ素、ゲルマニウム、ガリウムを含むことが好ましい。また、基板表面は凹凸形状を有していてもよく、凹凸形状はパターン化された有機系材料であってもよい。
 次いで、必要に応じて、溶剤等の揮発成分を除去して塗膜を乾燥させる。乾燥方法は特に限定されず、例えば、ホットプレートにて80℃以上140℃以下、好ましくは90℃以上130℃以下の温度にて60秒以上150秒以下の範囲内の時間乾燥する方法が挙げられる。ホットプレートによる加熱の前に、真空乾燥装置(VCD)を用いて室温にて減圧乾燥を行ってもよい。
 このようにして塗膜を形成した後、塗膜を加熱する。加熱を行う際の温度は特に限定されず、400℃以上が好ましく、420℃以上がより好ましく、430℃以上が更により好ましい。上限は適宜設定すればよく、例えば、600℃以下でよく、ドライエッチングの際のエッチングレート制御の点又は面内均一性の点で、好ましくは550℃以下である。加熱時間は、典型的には、30秒以上150秒以下が好ましく、60秒以上120秒がより好ましい。加熱工程は、単一の加熱温度下で行うものであってもよいし、加熱温度の異なる複数段階からなるものであってもよい。
 以上のように形成される金属酸化物膜は、例えば、メタルハードマスク又はパターン反転用材料として好適に利用される。
<金属酸化物膜の体積収縮率を低減させる方法>
 本発明に係る金属酸化物膜の体積収縮率を低減させる方法は、前述の通りであり、別の言い方をすれば、金属酸化物膜形成性組成物からなる塗膜を形成し、前記塗膜を加熱して得られる金属酸化物膜の体積収縮率を低減させる方法であって、前記金属酸化物膜形成性組成物を、本発明に係る金属酸化物膜形成性組成物となるように構成することを含むものである。当該方法により、400℃以下での加熱において金属酸化物膜の体積収縮率を低減させることができ、400℃以上、特に450℃以上で加熱する際の面内均一性を維持できる。本発明に係る金属酸化物膜形成性組成物は、前述の通りである。
 以下、本発明を実施例により更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
[金属酸化物膜形成性組成物の調製]
 以下の各分散液の調製は、特開2018-193481号公報の段落[0223]の記載を参照して行った。
・Z-2分散液の調製
 特開2018-193481号公報の段落[0223]の記載に基づき、室温まで冷却して得たZrOのスラリーを遠心分離しウェットケーキAを得た。ウェットケーキAの重量の0.2倍の2-アクリロイルオキシエチルコハク酸(下記式参照)をウェットケーキAに加えて撹拌した。再沈殿後、遠心分離によりウェットケーキBを得た。ウェットケーキBを一晩減圧乾燥し、粉末を得た。得られた乾燥粉末に対して、固形分濃度48質量%になるように、プロピレングリコールモノメチルエーテルアセテート(以下、「PGMEA」という。)を加えて再分散した後、濾過し、Z-2分散液を得た。
Figure JPOXMLDOC01-appb-C000004
・Z-2分散液に対するTG-DTA測定
 Z-2分散液を白金製サンプルパンに載せ、TG-DTAによる測定を行った。室温から200℃まで10℃/minで昇温し、200℃で5min保持したときの質量を固形分質量とした。次に200℃から710℃まで10℃/minで昇温し、710℃に達したときの質量を無機分質量とした。これらの測定結果から、式:有機分重量=固形分重量-無機分重量により有機分重量を算出し、式:無機分質量/(無機分質量+有機分質量)により、無機分質量と有機分質量との合計に対する無機分質量の割合(質量%)を算出したところ、77質量%であった。また、式:有機分質量/(無機分質量+有機分質量)により、無機分質量と有機分質量との合計に対する有機分質量の割合(質量%)を算出したところ、23質量%であった。
・Z-2分散液に含まれる金属酸化物ナノクラスターのサイズの測定
 Z-2分散液を試料として用いて、X線回折装置(SmartLab、株式会社リガク製)により、XRD測定を行った。得られた結果を付属ソフトウェアのPDXLで解析し、Halder-Wagner法にて金属酸化物ナノクラスターのサイズ(結晶子サイズ)を求めたところ、8nmであった。
・Z-1分散液の調製
 ZrOのスラリーを得るための、水とジルコニウム(IV)イソプロポキシドイソプロパノール(Zr(OCH(CH3)2)4(HOCH(CH3)2)とのモル比を、1:3に変更した以外は、上述の「Z-2分散液の調製」と同様に操作を行って、Z-1分散液を得た。
・Z-1分散液に対するTG-DTA測定
 Z-2分散液に代えてZ-1分散液を用いた以外は、上述の「Z-2分散液に対するTG-DTA測定」と同様に操作を行ったところ、無機分質量と有機分質量との合計に対する無機分質量の割合(質量%)は、73質量%と算出され、無機分質量と有機分質量との合計に対する有機分質量の割合(質量%)は、27質量%と算出された。
・Z-1分散液に含まれる金属酸化物ナノクラスターのサイズの測定
 Z-2分散液に代えてZ-1分散液を用いた以外は、上述の「Z-2分散液に含まれる金属酸化物ナノクラスターのサイズの測定」と同様に操作を行ったところ、金属酸化物ナノクラスターのサイズ(結晶子サイズ)は、2.5nmであった。
・Z-3分散液の調製
 2-アクリロイルオキシエチルコハク酸を2-アクリロイルオキシエチルフタル酸に変更した以外は、上述の「Z-1分散液の調製」と同様に操作を行って、Z-3分散液を得た。
・Z-3分散液に対するTG-DTA測定
 Z-1分散液に代えてZ-3分散液を用いた以外は、上述の「Z-1分散液に対するTG-DTA測定」と同様に操作を行ったところ、無機分質量と有機分質量との合計に対する無機分質量の割合(質量%)は、77質量%と算出され、無機分質量と有機分質量との合計に対する有機分質量の割合(質量%)は、23質量%と算出された。
・Z-3分散液に含まれる金属酸化物ナノクラスターのサイズの測定
 Z-1分散液に代えてZ-3分散液を用いた以外は、上述の「Z-1分散液に含まれる金属酸化物ナノクラスターのサイズの測定」と同様に操作を行ったところ、金属酸化物ナノクラスターのサイズ(結晶子サイズ)は、2.5nmであった。
・樹脂液の調製
 メタクリル酸に由来する構造単位20モル%及びスチレンに由来する構造単位80モル%を含むアクリル系樹脂(新中村化学社製、NCF-3(商品名)、Mw=10000)50質量部と、メトキシアセトン50質量部とを混合して、樹脂液を得た。
・界面活性剤液の調製
 市販の界面活性剤(BYK Chemie社製、BYK-333(商品名))1質量部と、PGMEA 99質量部とを混合して、界面活性剤液を得た。
 表1に示す割合(単位:質量部)で、Z-1分散液、Z-2分散液、又はZ-3分散液に、まず樹脂液を加え、次に界面活性剤液を加え、最後に溶剤PGMEAを加えて、撹拌し、Φ0.2μmのメンブレンフィルターで濾過して、組成物を得た。なお、表1において、括弧内の数字は、固形分の割合(単位:質量部)を表す。
[無機分質量の割合]
 表1において、「無機分質量の割合」は、組成物の固形分について、無機分質量と有機分質量との合計に対する無機分質量の割合を示す。具体的には、Z-1分散液、Z-2分散液、又はZ-3分散液の固形分質量と、樹脂液中のアクリル系樹脂の質量と、界面活性剤液中の界面活性剤の質量との合計に対するZ-1分散液、Z-2分散液、又はZ-3分散液の無機分質量の割合(質量%)を算出した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000005
[金属酸化物膜の作製]
 6インチのシリコンウェハ上に組成物を滴下し、2秒で500rpmまで加速した後、500rpmで10秒間、スピンコートを行った。その後、ホットプレートを用い、100℃で120秒間、プリベークを行い、下記各焼成温度で90秒間、ポストベークを行って、金属酸化物膜を得た。なお、下記の「室温」は、室温で90秒間、放置したことを表し、実際にはポストベークを行わなかったことを意味する。
焼成温度:室温、200℃、250℃、300℃、350℃、400℃、450℃、500℃、600℃
[膜厚の測定]
 得られた金属酸化物膜の断面をSEMで観察し、膜厚を測定した。結果を表2に示す。なお、表2においては、上述の「金属酸化物膜の作製」において、焼成温度を室温に設定した場合の膜厚を100%として、他の焼成温度における膜厚を示した。
Figure JPOXMLDOC01-appb-T000006
 表2から分かる通り、実施例では、400℃以下での加熱において体積収縮が抑制されていたのに対し、比較例では、400℃以下での加熱において体積収縮が著しいことが確認された。

Claims (8)

  1.  金属酸化物ナノクラスターと、キャッピング剤と、基材と、溶剤と、を含有する金属酸化物膜形成性組成物であり、
     前記金属酸化物ナノクラスターのサイズは、5nm以下であり、
     前記キャッピング剤は、アルコキシシラン、フェノール、アルコール、カルボン酸、及びカルボン酸ハライドからなる群から選択される少なくとも1種を含み、
     前記金属酸化物膜形成性組成物の固形分において、無機分質量と有機分質量との合計に対する無機分質量の割合が25質量%以上である金属酸化物膜形成性組成物。
  2.  前記金属酸化物膜形成性組成物の固形分において、前記金属酸化物ナノクラスターと前記キャッピング剤との合計に対する前記金属酸化物ナノクラスターの質量比は、50質量%以上である請求項1に記載の金属酸化物膜形成性組成物。
  3.  更に、界面活性剤を含有する請求項1又は2に記載の金属酸化物膜形成性組成物。
  4.  前記金属酸化物ナノクラスターに含まれる金属は、亜鉛、イットリウム、ハフニウム、ジルコニウム、ランタン、セリウム、ネオジム、ガドリニウム、ホルミウム、ルテチウム、タンタル、チタン、ケイ素、アルミニウム、アンチモン、錫、インジウム、タングステン、銅、バナジウム、クロム、ニオブ、モリブデン、ルテニウム、ロジウム、レニウム、イリジウム、ゲルマニウム、ガリウム、タリウム、及びマグネシウムからなる群より選択される少なくとも1種である請求項1から3のいずれか1項に記載の金属酸化物膜形成性組成物。
  5.  請求項1から4のいずれか1項に記載の金属酸化物膜形成性組成物からなる塗膜を形成する塗膜形成工程と
     前記塗膜を加熱する加熱工程と、
    を含む、金属酸化物膜の製造方法。
  6.  前記加熱工程における加熱温度が400℃以上である請求項5に記載の製造方法。
  7.  前記金属酸化物膜がメタルハードマスクである請求項5又は6に記載の製造方法。
  8.  金属酸化物膜形成性組成物からなる塗膜を形成し、前記塗膜を加熱して得られる金属酸化物膜の体積収縮率を低減させる方法であって、
     金属酸化物ナノクラスターと、キャッピング剤と、基材と、溶剤と、を含有するように前記金属酸化物膜形成性組成物を構成することを含み、
     前記金属酸化物ナノクラスターのサイズは、5nm以下であり、
     前記キャッピング剤は、アルコキシシラン、フェノール、アルコール、カルボン酸、及びカルボン酸ハライドからなる群から選択される少なくとも1種を含み、
     前記金属酸化物膜形成性組成物の固形分において、無機分質量と有機分質量との合計に対する無機分質量の割合が25質量%以上である方法。
PCT/JP2021/043781 2020-12-24 2021-11-30 金属酸化物膜形成性組成物、これを用いた金属酸化物膜の製造方法、及び金属酸化物膜の体積収縮率を低減させる方法 WO2022138010A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237024669A KR20230124033A (ko) 2020-12-24 2021-11-30 금속 산화물막 형성성 조성물, 이를 이용한 금속 산화물막의제조 방법, 및 금속 산화물막의 체적 수축율을 저감시키는 방법
CN202180085571.8A CN116601108A (zh) 2020-12-24 2021-11-30 金属氧化物膜形成性组合物、使用其的金属氧化物膜的制造方法、及使金属氧化物膜的体积收缩率降低的方法
EP21910162.3A EP4257644A4 (en) 2020-12-24 2021-11-30 METAL OXIDE-BASED FILM-FORMING COMPOSITION, METHOD FOR PRODUCING METAL OXIDE-BASED FILMS USING SAME, AND METHOD FOR REDUCING THE VOLUME SHRINKAGE RATE OF METAL OXIDE-BASED FILMS
US18/258,453 US20240027889A1 (en) 2020-12-24 2021-11-30 Metal oxide film-forming composition, method for producing metal oxide films using same, and method for reducing volume shrinkage ratio of metal oxide films
JP2022572027A JPWO2022138010A1 (ja) 2020-12-24 2021-11-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-214869 2020-12-24
JP2020214869 2020-12-24

Publications (1)

Publication Number Publication Date
WO2022138010A1 true WO2022138010A1 (ja) 2022-06-30

Family

ID=82157687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043781 WO2022138010A1 (ja) 2020-12-24 2021-11-30 金属酸化物膜形成性組成物、これを用いた金属酸化物膜の製造方法、及び金属酸化物膜の体積収縮率を低減させる方法

Country Status (7)

Country Link
US (1) US20240027889A1 (ja)
EP (1) EP4257644A4 (ja)
JP (1) JPWO2022138010A1 (ja)
KR (1) KR20230124033A (ja)
CN (1) CN116601108A (ja)
TW (1) TW202235511A (ja)
WO (1) WO2022138010A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013534459A (ja) * 2010-04-23 2013-09-05 ピクセリジェント・テクノロジーズ,エルエルシー ナノ結晶の合成、キャップ形成および分散
JP2016532739A (ja) * 2013-06-28 2016-10-20 アーゼッド・エレクトロニック・マテリアルズ(ルクセンブルグ)ソシエテ・ア・レスポンサビリテ・リミテ 可溶性金属酸化物カルボキシレートのスピンオン組成物及びそれらの使用方法
JP2018193481A (ja) 2017-05-17 2018-12-06 東京応化工業株式会社 硬化性組成物、硬化物、硬化膜、表示パネル、及び硬化物の製造方法
JP2020503409A (ja) 2016-12-21 2020-01-30 リッジフィールド・アクウィジション 金属酸化物ナノ粒子及び有機ポリマーを含むスピンオン材料の組成物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2130844A1 (en) * 2008-06-06 2009-12-09 Université de Liège Multifunctional coatings
US8647809B2 (en) * 2011-07-07 2014-02-11 Brewer Science Inc. Metal-oxide films from small molecules for lithographic applications
JP6354409B2 (ja) * 2014-07-14 2018-07-11 住友大阪セメント株式会社 金属酸化物粒子分散液、金属酸化物粒子含有組成物、塗膜、表示装置
US10357510B2 (en) * 2014-08-07 2019-07-23 The Regents Of The University Of Michigan Metal nanoclusters and uses thereof
CN107709430B (zh) * 2015-03-18 2019-11-01 科勒克斯有限责任公司 包含基体和散射成分的复合材料系统及其制备方法和用途
FI3411437T3 (fi) * 2016-02-04 2023-01-31 Nanokomposiittiformulaatioita optisiin sovelluksiin

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013534459A (ja) * 2010-04-23 2013-09-05 ピクセリジェント・テクノロジーズ,エルエルシー ナノ結晶の合成、キャップ形成および分散
JP2016532739A (ja) * 2013-06-28 2016-10-20 アーゼッド・エレクトロニック・マテリアルズ(ルクセンブルグ)ソシエテ・ア・レスポンサビリテ・リミテ 可溶性金属酸化物カルボキシレートのスピンオン組成物及びそれらの使用方法
JP2020503409A (ja) 2016-12-21 2020-01-30 リッジフィールド・アクウィジション 金属酸化物ナノ粒子及び有機ポリマーを含むスピンオン材料の組成物
JP2018193481A (ja) 2017-05-17 2018-12-06 東京応化工業株式会社 硬化性組成物、硬化物、硬化膜、表示パネル、及び硬化物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4257644A4

Also Published As

Publication number Publication date
EP4257644A1 (en) 2023-10-11
KR20230124033A (ko) 2023-08-24
JPWO2022138010A1 (ja) 2022-06-30
EP4257644A4 (en) 2024-05-22
CN116601108A (zh) 2023-08-15
US20240027889A1 (en) 2024-01-25
TW202235511A (zh) 2022-09-16

Similar Documents

Publication Publication Date Title
EP2698389B1 (en) Photosensitive alkali-soluble resin, method of preparing the same, and color photosensitive resist containing the same
TW201245306A (en) Black resin composition, resin black matrix substrate and touch panel
KR20160107310A (ko) 폴리옥소메탈레이트 및 헤테로폴리옥소메탈레이트 조성물 및 이들의 사용 방법
TW200916969A (en) Organic-inorganic hybrid photosensitive resin composition and liquid crystal display comprising cured body thereof
US20190382617A1 (en) Polysilsesquioxane resin composition and light-shielding black resist composition containing same
WO2014201997A1 (zh) 一种液晶组合物
JP2019113571A (ja) レジスト下層膜形成用組成物、並びに、それを用いたリソグラフィー用下層膜及びパターン形成方法
JP7327163B2 (ja) 樹脂組成物、その硬化膜
JPWO2019189151A1 (ja) 走査アンテナ及びその関連技術
JP6774876B2 (ja) 層間絶縁膜形成用感光性樹脂組成物、層間絶縁膜及び層間絶縁膜の形成方法
JP6838866B2 (ja) 感光性樹脂組成物
WO2022138010A1 (ja) 金属酸化物膜形成性組成物、これを用いた金属酸化物膜の製造方法、及び金属酸化物膜の体積収縮率を低減させる方法
JP6001041B2 (ja) シロキサン樹脂組成物、これを用いた透明硬化物、透明画素、マイクロレンズ、固体撮像素子
JPWO2016092989A1 (ja) シロキサン樹脂組成物、これを用いた透明硬化物、透明画素、マイクロレンズ、固体撮像素子、およびマイクロレンズの製造方法
JP2024002084A (ja) 金属酸化物膜形成性組成物、金属酸化物膜形成性組成物の製造方法、及び金属酸化物膜形成性組成物を用いた金属酸化物膜の製造方法
US20230049429A1 (en) Metal oxide film-forming composition and method of producing metal oxide film using the composition
JP7324408B2 (ja) レジスト下層膜形成用組成物、リソグラフィー用下層膜、及びパターン形成方法
JP2024002085A (ja) 無機金属化合物膜形成性組成物、これを用いた無機金属化合物膜の製造方法、及び無機金属化合物膜の体積収縮率を低減させる方法
JP6643863B2 (ja) 層間絶縁膜形成用感光性樹脂組成物、層間絶縁膜、デバイス及び層間絶縁膜の形成方法
CN111919173B (zh) 正型感光性树脂组合物、其固化膜及具备该固化膜的固体摄像器件
JP2013213157A (ja) 樹脂組成物および該樹脂組成物からなる樹脂膜
JP2009203280A (ja) 熱硬化性組成物、硬化膜およびそれらの製造方法
KR101483331B1 (ko) 컬러 필터 및 컬러 필터의 제조방법
KR101959408B1 (ko) 표시장치 절연막 및 이를 포함하는 유기 발광 장치
JP2024002089A (ja) 金属酸化物膜形成用組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910162

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022572027

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180085571.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2021910162

Country of ref document: EP

Effective date: 20230705

ENP Entry into the national phase

Ref document number: 20237024669

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE