WO2022135301A1 - 单晶炉的石墨坩埚及其制造方法、坩埚组件和单晶炉 - Google Patents

单晶炉的石墨坩埚及其制造方法、坩埚组件和单晶炉 Download PDF

Info

Publication number
WO2022135301A1
WO2022135301A1 PCT/CN2021/139236 CN2021139236W WO2022135301A1 WO 2022135301 A1 WO2022135301 A1 WO 2022135301A1 CN 2021139236 W CN2021139236 W CN 2021139236W WO 2022135301 A1 WO2022135301 A1 WO 2022135301A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
groove
excavation
semi
isotherm
Prior art date
Application number
PCT/CN2021/139236
Other languages
English (en)
French (fr)
Inventor
王双丽
陈俊宏
Original Assignee
徐州鑫晶半导体科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徐州鑫晶半导体科技有限公司 filed Critical 徐州鑫晶半导体科技有限公司
Priority to KR1020237021553A priority Critical patent/KR20230110348A9/ko
Priority to JP2023537367A priority patent/JP2023554477A/ja
Priority to US18/022,274 priority patent/US20230323560A1/en
Publication of WO2022135301A1 publication Critical patent/WO2022135301A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • C30B15/16Heating of the melt or the crystallised materials by irradiation or electric discharge
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/206Controlling or regulating the thermal history of growing the ingot
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/002Crucibles or containers

Definitions

  • the present application relates to the technical field of crucibles, and in particular, to a graphite crucible for a single crystal furnace and a manufacturing method thereof, a crucible assembly and a single crystal furnace.
  • the crucible components in the single crystal furnace include quartz crucibles and graphite crucibles, the crucible components contain raw materials, and under the heating action of the heater in the single crystal furnace, the raw materials in the crucible components are melted into silicon molten soup; wherein
  • the oxygen in the silicon melt mainly comes from the quartz crucible. If the oxygen content in the melt is too high, a large amount of OISF and oxygen precipitation will appear in the crystal, especially the temperature at the edge of the silicon melt is high. During the process, there is a lot of dissolved oxygen at the edge of the silicon molten soup, resulting in an excessively high oxygen content at the edge of the silicon molten soup. Especially in the absence of an external magnetic field device, segregation will occur, affecting the crystal quality.
  • the present application aims to solve at least one of the technical problems existing in the related art. Therefore, the present application proposes a graphite crucible for a single crystal furnace.
  • the graphite crucible can reduce the heat conducted and radiated by the heater to the high temperature region of the molten soup, and the temperature at the edge of the molten soup, thereby reducing the oxygen content of the molten soup. Conducive to improving the quality of the ingot.
  • the present application also proposes a crucible assembly having the above-mentioned graphite crucible.
  • the present application also proposes a single crystal furnace with the above-mentioned crucible assembly.
  • the present application also proposes a method for manufacturing a graphite crucible.
  • the graphite crucible for a single crystal furnace includes: a main body, the main body is a graphite piece and defines a holding cavity, a wall surface of the holding cavity has a chisel part, and the chisel part is formed with a groove extending in the circumferential direction of the body to form an annular structure, wherein the semi-finished crucible, the quartz crucible fitted with the semi-finished crucible and the molten soup contained in the quartz crucible are heated Field simulation is carried out to obtain the isotherm of the high temperature region of the molten soup, on the longitudinal section of the body, the shape of the groove is adapted to be consistent with the shape of the part of the isotherm, and the semi-finished crucible is constructed so that the The groove is machined on the inner wall surface of the semi-finished crucible to form the body, and the temperature of the high temperature zone is higher than the temperature of any other zone of the molten soup.
  • the graphite crucible of the single crystal furnace of the present application by performing thermal field simulation on the semi-finished product of the crucible, the quartz crucible and the molten soup, the isotherm of the high temperature region of the molten soup is accurately obtained, and a concave is formed at the excavation part according to the shape of the isotherm. Therefore, when the graphite crucible is used in the single crystal furnace, the heat that the heater conducts and radiates to the high temperature area of the molten soup can be reduced on the premise of ensuring the structural strength of the graphite crucible, so as to reduce the heat conduction, thereby reducing the heat transfer rate.
  • the temperature at the edge of the molten soup reduces the oxygen content of the molten soup, thereby effectively improving the quality of the crystal.
  • the graphite crucible is used for Czochralski crystal pulling.
  • the isotherms are multiple and are arranged from top to bottom as the liquid level of the molten soup decreases, and the multiple isotherms are
  • the area corresponding to the isotherm on the wall surface of the semi-finished crucible is an excavation area, and the excavation portions are multiple and all located in the excavation area.
  • a plurality of the excavation portions are arranged at intervals along the axial direction of the body, and are adapted to correspond to a plurality of the isotherms respectively, and each of the excavation portions is formed with one of the grooves, The shape of the groove is adapted to conform to the shape of the portion corresponding to the isotherm.
  • the cutout is adapted to be flush with an upper end corresponding to the isotherm.
  • the body includes a side wall portion and a bottom wall portion, the side wall portion is formed into a cylindrical structure, and the bottom wall portion is connected to the bottom of the side wall portion to close the side wall portion the bottom part, the groove is formed on the side wall part and/or the bottom wall part.
  • the groove is filled with thermal insulation, and the thermal conductivity of the thermal insulation is lower than the thermal conductivity of the body.
  • the thermal insulation is a piece of carbon fiber material.
  • the groove is adapted to conform to the shape of the upper end of the isotherm.
  • the crucible assembly according to the second aspect of the present application includes a graphite crucible, which is the graphite crucible of the single crystal furnace according to the above-mentioned first aspect of the present application; and a quartz crucible, which is installed in the holding cavity.
  • the heat conducted and radiated by the heater to the high temperature area of the molten soup can be reduced, and the temperature at the edge of the molten soup can be reduced, thereby reducing the oxygen content of the molten soup, which is beneficial to improve the quality of the ingot. .
  • a single crystal furnace includes: a furnace body; and a crucible assembly, wherein the crucible assembly is the crucible assembly according to the second aspect of the present application, and the crucible assembly is provided in the furnace body.
  • the temperature at the edge of the molten bath can be reduced, thereby reducing the oxygen content of the molten bath, which is beneficial to improve the quality of the crystal rod.
  • the graphite crucible is the graphite crucible of the single crystal furnace according to the above-mentioned first aspect of the present application, and the manufacturing method includes the following steps: S1: preparing the semi-finished product of the crucible and the semi-finished product of the crucible.
  • the matched quartz crucible and the molten soup contained in the quartz crucible are subjected to thermal field simulation;
  • S2 Extract the simulation result in the step S1 to obtain the isotherm of the high temperature region of the molten soup, and the The temperature is higher than the temperature of any other region of the molten soup;
  • S3 On the longitudinal section of the semi-finished crucible, determine the shape of the groove according to the shape of the isotherm, and process it at the excavation part the groove to form the body.
  • the manufacturing method of the graphite crucible of the present application by performing thermal field simulation on the semi-finished product of the crucible, the quartz crucible and the molten soup, the isotherm of the high temperature region of the molten soup can be accurately obtained, and the shape of the groove can be determined according to the isotherm, which can effectively reduce
  • the heater conducts and radiates the heat to the high temperature area of the molten soup, which reduces the temperature at the edge of the molten soup, thereby reducing the oxygen content of the molten soup, which is conducive to improving the quality of the ingot.
  • the semi-finished crucible is used for Czochralski crystals to perform thermal field simulation, so as to obtain a plurality of the isotherms in the step S2, and a plurality of the isotherms Arranged from top to bottom as the liquid level of the molten soup decreases
  • the multiple isotherms corresponding to the area on the wall surface of the semi-finished crucible are the excavation area
  • the step S3 further includes: in the excavation area The location of the cutout is determined.
  • determining the position of the excavation portion in the excavation area includes: importing the isotherm into a drawing of the semi-finished crucible to determine the excavation area; selecting a plurality of the isotherms and the position of the excavation portion is determined according to the position of the selected isotherm.
  • FIG. 1 is a schematic diagram of a graphite crucible according to an embodiment of the present application.
  • Fig. 2 is the enlarged view of A part framed in Fig. 1;
  • FIG. 3 is a schematic diagram of a crucible assembly according to an embodiment of the present application.
  • Fig. 4 is a partial enlarged view of the crucible assembly shown in Fig. 3;
  • Fig. 5 is the isotherm schematic diagram of the high temperature region when the molten soup in the crucible assembly shown in Fig. 3 is heated;
  • FIG. 6 is a schematic flowchart of a method for manufacturing a graphite crucible according to an embodiment of the present application
  • Fig. 7 is the schematic diagram of processing groove on the crucible semi-finished product shown in Fig. 6;
  • FIG. 8 is a schematic flowchart of a method for manufacturing a graphite crucible according to another embodiment of the present application.
  • Fig. 9 is a semi-finished product of the crucible (ie scheme 1, without grooves), graphite crucibles with grooves in the present application and filled with heat insulating elements (scheme 2), and grooves in the present application without filling the grooves
  • Fig. 10 is the isotherm comparison diagram of the high temperature region of the three schemes shown in Fig. 9;
  • FIG. 11 is a comparison diagram of the temperature distribution of the crucible inner wall of the scheme one shown in FIG. 9 and the scheme two;
  • FIG. 12 is a comparison diagram of the oxygen content at the edge of the molten bath between the scheme one shown in FIG. 9 and the scheme two.
  • Crucible assembly 1000 quartz crucible 200, molten soup 300, isotherm R,
  • Graphite crucible 100 central axis L, crucible semi-finished product 101, semi-finished product cavity 101a,
  • Main body 1 excavation part 10, holding cavity 1a, groove 1b, cavity part 1c,
  • the graphite crucible 100 includes a main body 1, which is a graphite piece, and the main body 1 defines a holding cavity 1a.
  • the holding cavity 1a can be used to hold raw materials. After heating, the raw materials in the holding cavity 1a can be stored. Melted to Molten 300.
  • the wall surface of the holding cavity 1a has an excavation portion 10, and a groove 1b is formed at the excavation portion 10, then the groove 1b is formed on the inner wall surface of the main body 1, and the groove 1b is formed by part of the wall surface of the holding cavity 1a. ; wherein, the groove 1b extends along the circumferential direction of the graphite crucible 100 to form an annular structure, which is beneficial to ensure the structural strength of the graphite crucible 100 .
  • the graphite crucible 100 has a central axis L.
  • the axial direction of the body 1 is the direction along the central axis L of the graphite crucible 100
  • the circumferential direction of the body 1 is the direction around the central axis L of the graphite crucible 100 . direction.
  • the graphite crucible 100 may be formed as a rotating body structure, and the rotation centerline of the rotating body structure is the center axis L of the graphite crucible 100 ; of course, the shape of the graphite crucible 100 is not limited thereto.
  • the thermal field simulation is performed on the semi-finished product 101 of the crucible, the quartz crucible 200 adapted to the semi-finished crucible 101, and the molten soup 300 contained in the quartz crucible 200, and the isotherm R of the high temperature region of the molten soup 300 is obtained.
  • the shape of the groove 1b is suitable to be consistent with the shape of the part of the isotherm R; wherein, the semi-finished crucible 101 is configured to process the groove 1b on the inner wall surface of the semi-finished crucible 101 to form the body 1, then the semi-finished crucible 101 is graphite
  • the crucible semi-finished product 101 defines a semi-finished product cavity 101a, and the body 1 can be formed by machining a groove 1b on the wall surface of the semi-finished product cavity 101a.
  • the semi-finished product cavity 101a corresponds to the holding cavity 1a, and the semi-finished product cavity 101a and the holding cavity
  • the difference between 1a is whether a groove 1b is formed on the wall surface, and the temperature of the high temperature area is higher than the temperature of any other area of the molten soup 300, then the high temperature area is the area with the highest temperature of the molten soup 300, and the high temperature area is located in the molten soup 300. at the edge.
  • the central axis of the semi-finished crucible 101 can be formed as the central axis of the body 1 .
  • the longitudinal section of the body 1 can be understood as a plane passing through the central axis L of the graphite crucible 100 .
  • the containing cavity 1a is suitable for installing the quartz crucible 200, and the raw material is suitable for being placed in the quartz crucible 200; when the single crystal furnace is running, the heater in the single crystal furnace is suitable for the graphite crucible 200.
  • the quartz crucible 200 and the raw materials in the quartz crucible 200 are heated, so that the raw materials are melted into the molten soup 300; since the heater is arranged on the radially outer and/or bottom side of the graphite crucible 100, the edge of the molten soup 300 (outer edge and/or the high temperature zone of the bottom side edge) is the highest, which is easy to cause the oxygen content at the edge of the molten soup 300 to be too high.
  • an excavation portion 10 is provided on the wall surface of the holding cavity 1a, and a concave portion is formed at the excavation portion 10.
  • the thermal conductivity of the cavity portion 1c is significantly lower than that of graphite, that is, the thermal conductivity of the cavity portion 1c is significantly lower than that of the body 1, which can reduce conduction and radiation from the heater to the edge of the molten soup 300.
  • the heat is beneficial to reduce the temperature at the edge of the molten soup 300.
  • the quartz crucible is decomposed into oxygen atoms and silicon atoms in a high temperature environment and enter the molten soup, which is conducive to weakening the edge of the molten soup 300. Oxygen dissolution rate, reducing oxygen content, thereby improving the quality of the ingot.
  • the shape of the groove 1b is adapted to be consistent with the shape of the part of the isotherm R in the high temperature region, then the shape of the groove 1b is set according to the shape of the isotherm R in the high temperature region, thereby
  • the groove 1b can be matched with the high temperature area, so as to effectively reduce the area of the high temperature area, and further effectively reduce the heat conducted and radiated from the heater to the high temperature area of the molten soup 300, which is beneficial to weaken the oxygen dissolution in the high temperature area of the molten soup 300.
  • the present application adopts the semi-finished product 101 of the crucible, the quartz crucible 200 and the The method of simulating the molten soup 300 can accurately obtain the isotherm R of the high temperature region of the molten soup 300, so as to accurately obtain the shape of the groove 1b.
  • the thermal field structure of the crystal furnace is affected, which in turn affects the crystal formation rate of the crystal rod, and the present application is beneficial to ensure the crystal formation rate of the crystal rod.
  • the graphite crucible 100 of the single crystal furnace by performing thermal field simulation on the crucible semi-finished product 101 , the quartz crucible 200 and the molten soup 300 , the isotherm R of the high temperature region of the molten soup 300 can be accurately obtained to obtain Accurately obtain the shape of the groove 1b, so that when the graphite crucible 100 is used in the single crystal furnace, on the premise of ensuring the structural strength of the graphite crucible 100, the heat that the heater conducts and radiates to the high temperature area of the molten soup 300 can be reduced, so as to reduce the heat generated by the heater.
  • the temperature in the high temperature area of the molten soup 300 can be reduced, the temperature at the edge of the molten soup 300 can be reduced, and the oxygen content of the molten soup 300 can be reduced, thereby effectively improving the quality of the crystal.
  • the graphite crucible 100 is used for Czochralski crystal pulling.
  • the liquid level of the molten soup 300 gradually decreases.
  • the position of the isotherm R in the high temperature region different, there are multiple isotherms R in the whole crystal pulling process, and the multiple isotherms R are arranged from top to bottom with the drop of the liquid level of the molten soup 300 , and the multiple isotherms R correspond to the wall surface of the semi-finished product 101 of the crucible
  • the area is the excavation area, or in other words, the area where the multiple isotherms R cover the wall surface of the crucible semi-finished product 101 along the radial direction of the crucible semi-finished product 101 is the excavation area.
  • the setting area of the excavation part 10 can be accurately obtained according to the isotherm R, so as to simplify the design of the position of the excavation part 10, and at the same time, multiple grooves 1b can also be located in the excavation area, so as to effectively ensure that in different stages, different The groove 1b can reduce the heat conduction, so that the groove 1b can reduce the heat conduction during the whole crystal pulling process.
  • the above-mentioned Czochralski method is also called the Czochralski method, and can be the CZ method (Czochralski), the CCZ method (continuous CZ), the MCZ method (Magnetic CZ) and the like.
  • the body 1 includes a side wall portion 11 and a bottom wall portion 12, the side wall portion 11 is formed into a cylindrical structure, and the bottom wall portion 12 is connected to the bottom of the side wall portion 11 to close the bottom of the side wall portion 11; when the single crystal furnace When the heater is only arranged on the radially outer side of the side wall portion 11, and the high temperature region is located at the radial outer side edge of the molten soup 300, then the plurality of isotherms R are arranged corresponding to the side wall portion 11.
  • the plurality of isotherm lines R It can be arranged sequentially from top to bottom along the axial direction of the body 1, the excavation area is located on the side wall 11, and the groove 1b is only formed on the side wall 11; when the heater of the single crystal furnace is only provided on the bottom wall 12 On the lower side, the high temperature area will be located at the bottom edge of the molten soup 300, and the plurality of isotherms R are arranged corresponding to the bottom wall portion 12. Since the middle portion of the curved surface corresponding to the inner wall of the bottom wall portion 12 is concave downward, then the plurality of isotherms R are arranged.
  • the lines R can still be arranged in order from top to bottom with the drop of the liquid level of the molten soup 300, the excavation area is located on the bottom wall 12, and the groove 1b is only formed on the bottom wall 12; when the heater of the single crystal furnace includes a device.
  • the high temperature region is located at the radially outer edge of the molten soup 300, and if the power of the second heater is larger, the high temperature area will also be located at the bottom edge of the molten soup 300.
  • a plurality of isotherms R are arranged corresponding to the side wall portion 11 and the bottom wall portion 12, and the plurality of isotherms R are arranged in order from top to bottom, and the excavation area On the side wall portion 11 and the bottom wall portion 12, grooves 1b are formed on the side wall portion 11 and the bottom wall portion 12, respectively.
  • the groove 1b is concavely formed along the thickness direction of the body 1, or in other words, the groove 1b is formed concavely along the radial direction of the body 1; for example, when the groove 1b is formed on the side wall portion 11, the groove The groove 1b is formed concavely in the thickness direction of the side wall portion 11 , and when the groove 1b is formed on the bottom wall portion 12 , the groove 1b is formed concave and convex along the thickness direction of the bottom wall portion 12 .
  • a plurality of excavation parts 10 are arranged at intervals along the axial direction of the body 1 , and the plurality of excavation parts 10 are adapted to correspond to a plurality of isotherms R respectively, each excavation part 10 is formed with a groove 1b, then there are multiple grooves 1b, and the plurality of grooves 1b are arranged at intervals along the axial direction of the body 1, which is convenient to ensure the structural strength of the graphite crucible 100 and reduce the weakening of the grooves 1b to the body 1.
  • there are spaced protrusions between two adjacent grooves 1b and the end surfaces of the free ends of the spaced protrusions are located on the same smooth curved surface as the other walls of the holding cavity 1a without grooves 1b.
  • the plurality of digging portions 10 are arranged at intervals along the axial direction of the body 1; when the digging portions 10 are only formed on the bottom wall portion 12 of the body 1, Since the middle portion of the curved surface corresponding to the inner wall of the bottom wall portion 12 is concave downward, the plurality of excavation portions 10 can also be arranged at intervals along the axial direction of the main body 1; when excavation portions 10 are respectively formed on the side wall portion 11 and the bottom wall portion 12 , all the excavation parts 10 can be spaced apart along the axial direction of the body 1 .
  • the depth of the groove 1b in the radial direction of the body 1 is as small as possible, and the width of the groove 1b in the axial direction of the body 1 is as large as possible, so as to effectively improve the concave shape.
  • the ability of groove 1b to reduce heat conduction; the temperature difference between any two adjacent isotherms R in the selected high temperature area can be set according to the actual application, and the specific temperature value corresponding to each isotherm R can be set according to the actual application. .
  • "plurality" means two or more.
  • the shape of the groove 1b is adapted to conform to the shape of the portion corresponding to the isotherm R.
  • a part of the isotherm R is selected, and the positions of the plurality of excavation parts 10 may correspond one-to-one with the positions of the above-mentioned part of the isotherm R, then the position of each groove 1b may correspond to the position of the corresponding isotherm R, for example, in the crucible In the axial direction of the semi-finished product 101, the position of the excavation portion 10 can be flush with the upper end of the corresponding isotherm R, so that the position of the groove 1b can be determined according to the isotherm R, which is convenient for simplifying the design of the position of the groove 1b.
  • the shape of the groove is suitable to be consistent with the shape of the part corresponding to the isotherm. Since the shapes of the isotherms R corresponding to the plurality of excavation parts 10 are generally different, the shape of the corresponding groove is determined according to the shape of the isotherm. , it is convenient to make the shape of the groove more in line with the actual production.
  • the cutout 10 is adapted to be flush with the upper end of the corresponding isotherm R, for example, the top of the cutout 10 may be flush with the top of the corresponding isotherm R, so as to facilitate The position of the excavation portion 10 is quickly determined according to the position of the selected isotherm R.
  • the heater of the single crystal furnace includes a part arranged on the radially outer side of the graphite crucible 100.
  • the isotherm R in the high temperature region of the molten soup 300 has a convex portion at the upper end.
  • the excavation portion 10 may be disposed corresponding to the convex portion, so as to effectively reduce the temperature at the edge of the molten soup 300 , thereby reducing the oxygen content of the molten soup 300 .
  • the corresponding isotherm R is arranged corresponding to the side wall portion 11, and the trend of the isotherm R is related to the shape of the inner wall of the side wall portion 11.
  • Each isotherm R The overall trend extends from top to bottom, and the excavation portion 10 is adapted to be flush with the upper end of the corresponding isotherm R; when the excavation portion 10 is formed on the bottom wall portion 12 of the main body 1, the corresponding isotherm R corresponds to the bottom wall portion. 12 arrangement, the trend of the isotherm R is related to the shape of the inner wall of the bottom wall 12.
  • each isotherm R extends from top to bottom. Fits flush with the upper end of the corresponding isotherm R.
  • the installation position of the excavation part 10 is not limited to this.
  • the body 1 includes a side wall portion 11 and a bottom wall portion 12 , the side wall portion 11 is formed into a cylindrical structure, and the bottom wall portion 12 is connected to the bottom of the side wall portion 11 to close the side.
  • the groove 1 b is formed on the side wall portion 11 and/or the bottom wall portion 12 .
  • the groove 1b may be formed on the side wall portion 11;
  • the first heater and the second heater are arranged on the bottom side of the graphite crucible 100, if the power of the second heater is relatively large, the high temperature area will be located at the bottom of the graphite crucible 100, and the side wall portion 11 and the bottom wall portion 12 are at this time.
  • Grooves 1b may be formed, respectively. Therefore, the location of the groove 1b can be set flexibly, which is convenient to meet the actual differentiated requirements.
  • the meaning of "and/or” is to include three parallel schemes, taking “A and/or B” as an example, including scheme A, or scheme B, or scheme A and B.
  • the solution that satisfies simultaneously; for example, the groove 1b is formed on the side wall portion 11 and/or the bottom wall portion 12, including: 1.
  • the side wall portion 11 is formed with a groove 1b, and the bottom wall portion 12 is not formed with a groove 1b.
  • the side wall part 11 and the bottom wall part 12 are respectively formed with groove 1b.
  • cylindrical structure should be understood in a broad sense, including but not limited to the cylindrical structure, the conical cylindrical structure, and the polygonal cylindrical structure.
  • the groove 1b is filled with a heat insulating member, and the thermal conductivity of the heat insulating member is lower than that of the body 1 , so as to ensure that the groove 1b can weaken the heat conduction between the heater and the molten soup 300 .
  • the groove 1b when there is one groove 1b, the groove 1b may be filled with a heat insulating member; when there are multiple grooves 1b, at least one of the plurality of grooves 1b is filled with a heat insulating member.
  • the groove 1b may not be filled with other components.
  • the quartz crucible 200 is installed in the holding cavity 1a.
  • the groove 1b is filled with air, and the thermal conductivity of the air is much lower than The thermal conductivity of graphite can also reduce heat conduction.
  • the thermal insulation is a piece of carbon fiber material.
  • Carbon fiber material parts have obvious anisotropy. In the direction perpendicular to carbon fiber filaments, carbon fiber material parts have poor thermal and electrical conductivity, and have good thermal insulation and heat insulation. At the same time, carbon fiber material parts have good high temperature resistance. In order to ensure the reliability of carbon fiber material parts at high temperatures.
  • the heat insulating member can also be other material pieces, not limited to carbon fiber material pieces.
  • the upper end of the isotherm R has a bent portion to form a convex portion, and the shape of the groove 1b is adapted to be consistent with the shape of the upper end of the isotherm R, so as to realize the groove 1b settings.
  • the excavation portion 10 is formed on the side wall portion 11 of the main body 1
  • the overall trend of the corresponding isotherm R extends from top to bottom
  • the groove 1b on the side wall portion 11 is suitable for the corresponding isotherm R.
  • the shape of the upper end of the body 1 is consistent; when the bottom wall 12 of the main body 1 is formed with a chisel 10, the overall trend of the corresponding isotherm R extends from top to bottom, and the groove 1b on the bottom wall 12 is suitable for corresponding
  • the shapes of the upper ends of the isotherms R correspond to each other.
  • the crucible assembly 1000 includes a graphite crucible 100 and a quartz crucible 200 .
  • the graphite crucible 100 is the graphite crucible 100 of the single crystal furnace according to the embodiment of the first aspect of the present application.
  • the temperature at the edge of the molten soup 300 in the crucible assembly 1000 can be reduced under the premise of ensuring the reliable use of the crucible assembly 1000 , thereby reducing the oxygen content of the molten soup 300 , effectively improve the quality of the crystal.
  • the single crystal furnace according to the embodiment of the third aspect of the present application includes a furnace body and a crucible assembly 1000, and the crucible assembly 1000 is provided in the furnace body.
  • the crucible assembly 1000 is the crucible assembly 1000 according to the embodiment of the second aspect of the present application.
  • the temperature at the edge of the molten soup 300 in the crucible assembly 1000 can be reduced, thereby reducing the oxygen content of the molten soup 300 and improving the quality of the crystal rod produced by the single crystal furnace.
  • the graphite crucible 100 is the graphite crucible 100 of the single crystal furnace according to the first aspect of the present application.
  • the manufacturing method of the graphite crucible 100 includes the following steps:
  • S1 Perform thermal field simulation on the semi-finished crucible 101 , the quartz crucible 200 adapted to the semi-finished crucible 101 , and the molten soup 300 contained in the quartz crucible 200 .
  • step S2 Extract the simulation result in step S1, and obtain the isotherm R of the high temperature region of the molten soup 300.
  • the temperature of the high temperature region is higher than the temperature of any other region of the molten soup 300, so the high temperature region is the region with the highest temperature of the molten soup 300 .
  • the shape of the groove 1b may correspond to the shape of the upper end of the isotherm R. Consistently, and machine a groove 1b at the cutout 10 to form the body 1 .
  • the semi-finished crucible 101 is constructed by machining grooves 1b on the inner wall surface of the semi-finished crucible 101 to form the body 1, and the quartz crucible 200 can also be adapted to the graphite crucible 100 in the present application.
  • each step may have a sequence, and in the same step, the sequence of actions is not fixed.
  • step S1, step S2 and step S3 are performed in sequence, so that "thermal field simulation" in step S1 is located before “obtaining isotherm R" in step S2.
  • the thermal field simulation is performed on the crucible semi-finished product 101 , the quartz crucible 200 and the molten soup 300 to accurately obtain the isotherm R of the high temperature region of the molten soup 300 , and according to The shape of the isotherm R determines the shape of the groove 1b, which can effectively reduce the heat that the heater conducts and radiates to the high temperature area of the molten soup 300, and reduces the temperature at the edge of the molten soup 300, thereby reducing the oxygen content of the molten soup, which is conducive to improving the ingot quality.
  • the thermal field simulation in step S1 may select the ingot growth stage for thermal field simulation.
  • the parameters of the thermal field simulation can use the parameters in the growth stage of the crystal rod, so that the simulation results are more in line with practical applications.
  • step S1 the semi-finished product 101 of the crucible is used for Czochralski crystal to perform thermal field simulation, so as to obtain a plurality of isotherms R in step S2, and the plurality of isotherms R vary with the liquid level of the molten soup 300.
  • the descending is arranged from top to bottom, and the multiple isotherms R correspond to the area on the wall surface of the semi-finished crucible 101 as the excavation area.
  • Step S3 further includes: determining the position of the excavation portion 10 in the excavation area.
  • determining the position of the excavation part 10 in the excavation area includes: introducing the isotherm R into the drawing of the crucible semi-finished product 101 to determine the excavation area; selecting a part of the isotherms R , and determine the position of the excavation portion 10 according to the position of the selected isotherm R.
  • multiple excavation portions 10 can be flush with the upper ends of the selected multiple isotherms R in one-to-one correspondence, so as to accurately determine the excavation portion 10 and the concave portion. position of slot 1b.
  • the coordinates of any point on the isotherm R are the actual coordinates of the point, so that the excavation area can be quickly determined according to the positions of multiple isotherms R. , and reasonably select multiple isotherms R to determine the position of the excavation portion 10 , which is simple and convenient. It can be understood that the specific temperature value represented by the selected isotherm R can be selected according to actual requirements.
  • the semi-finished product 101 of the crucible that is, the first solution, without the groove 1b
  • the graphite crucible 100 in which the groove 1b is provided in the present application and the heat insulating material is filled in the groove 1b (the second solution)
  • the schematic diagram of the thermal field simulation results of the three schemes of the graphite crucible 100 (scheme 3) in which the groove 1b is provided and the groove 1b is not filled with material pieces.
  • "200-origin” corresponds to scheme one
  • "200-fiber” corresponds to the second scheme
  • “200-none” corresponds to the third scheme
  • FIG. 10 shows the isotherms of the molten soup high temperature region of the three schemes in Fig. 9. It can be concluded by comparison that according to the In the second and third options, the area of the high temperature area ( ⁇ 1696.5K) is significantly smaller than that of the first option, and the third option is more obvious. Only a small part of the high temperature area moves down to the excavation part, so the vacuum tank effectively reduces the heat Into the molten soup. Obviously, the groove 1b effectively reduces the heat transfer to the molten soup 300 .
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种单晶炉的石墨坩埚(100)及其制造方法、坩埚组件(1000)和单晶炉,开凿部(10)处形成有凹槽(1b),对坩埚半成品(101)、与坩埚半成品(101)适配的石英坩埚(200)以及熔汤(300)进行热场模拟,得到熔汤(300)的高温区的等温线(R),在本体(1)的纵截面上,凹槽(1b)的形状适于与等温线(R)的部分的形状相一致,坩埚半成品(101)构造成在坩埚半成品(101)的内壁面上加工出凹槽(1b)以形成本体(1)。

Description

单晶炉的石墨坩埚及其制造方法、坩埚组件和单晶炉
相关申请的交叉引用
本申请基于申请号为202011519963.4、申请日为2020年12月21日的中国专利申请提出,并要求上述中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及坩埚技术领域,尤其是涉及一种单晶炉的石墨坩埚及其制造方法、坩埚组件和单晶炉。
背景技术
相关技术中,单晶炉内的坩埚组件包括石英坩埚和石墨坩埚,坩埚组件内盛放有原材料,在单晶炉内加热器的加热作用下,坩埚组件内的原材料熔化为硅熔汤;其中硅熔汤中的氧主要来自于石英坩埚,如果熔汤内氧含量过高,会导致晶体内会出现大量的OISF及氧沉淀,尤其是硅熔汤的边缘部分温度较高,在整个晶体生长过程中硅熔汤边缘部分溶解的氧较多,导致硅熔汤边缘处氧含量过高,特别是在没有外加磁场装置的情况下,会出现偏析现象,影响晶体品质。
发明内容
本申请旨在至少解决相关技术中存在的技术问题之一。为此,本申请提出一种单晶炉的石墨坩埚,所述石墨坩埚可以减少加热器传导、辐射至熔汤高温区的热量,降低熔汤边缘处的温度,从而降低熔汤氧含量,有利于提升晶棒品质。
本申请还提出一种具有上述石墨坩埚的坩埚组件。
本申请还提出一种具有上述坩埚组件的单晶炉。
本申请还提出一种石墨坩埚的制造方法。
根据本申请第一方面的单晶炉的石墨坩埚,包括:本体,所述本体为石墨件且限定出盛放腔,所述盛放腔的壁面上具有开凿部,所述开凿部处形成有凹槽,所述凹槽沿所述本体的周向延伸以形成为环形结构,其中,对坩埚半成品、与所述坩埚半成品适配的石英坩埚以及盛装于所述石英坩埚内的熔汤进行热场模拟,得到熔汤的高温区的等温线,在所述本体的纵截面上,所述凹槽的形状适于与所述等温线的部分的形状相一致, 所述坩埚半成品构造成在所述坩埚半成品的内壁面上加工出所述凹槽以形成所述本体,所述高温区的温度高于所述熔汤的其余任一区域的温度。
根据本申请的单晶炉的石墨坩埚,通过对坩埚半成品、石英坩埚以及熔汤进行热场模拟,以精确得到熔汤的高温区的等温线,并在开凿部处根据等温线的形状形成凹槽,从而在石墨坩埚应用于单晶炉中时,可以在保证石墨坩埚结构强度的前提下,减少加热器传导、辐射至熔汤高温区的热量,以起到减弱热传导的作用,从而可以降低熔汤边缘处的温度,降低熔汤氧含量,进而有效提升晶体的品质。
在一些实施例中,所述石墨坩埚用于直拉法拉晶,在拉晶过程中,所述等温线为多条且随所述熔汤的液位的下降由上向下布置,多条所述等温线对应于所述坩埚半成品的壁面上的区域为开凿区域,所述开凿部为多个且均位于所述开凿区域内。
在一些实施例中,多个所述开凿部沿所述本体的轴向间隔设置,且适于与多条所述等温线分别对应,每个所述开凿部处形成有一个所述凹槽,所述凹槽的形状适于与对应所述等温线的部分的形状相一致。
在一些实施例中,所述开凿部适于与对应所述等温线的上端部齐平。
在一些实施例中,所述本体包括侧壁部和底壁部,所述侧壁部形成为筒状结构,所述底壁部连接在所述侧壁部的底部以封闭所述侧壁部的底部,所述凹槽形成在所述侧壁部和/或所述底壁部上。
在一些实施例中,所述凹槽内填充有隔热件,所述隔热件的导热率低于所述本体的导热率。
在一些实施例中,所述隔热件为碳纤维材料件。
在一些实施例中,所述凹槽适于与所述等温线的上端部的形状相一致。
根据本申请第二方面的坩埚组件,包括石墨坩埚,所述石墨坩埚为根据本申请上述第一方面的单晶炉的石墨坩埚;石英坩埚,所述石英坩埚安装于所述盛放腔。
根据本申请的坩埚组件,通过采用上述的石墨坩埚,可以减少加热器传导、辐射至熔汤高温区的热量,降低熔汤边缘处的温度,从而降低熔汤氧含量,有利于提升晶棒品质。
根据本申请第三方面的单晶炉,包括:炉体;和坩埚组件,所述坩埚组件为根据本申请上述第二方面的坩埚组件,且所述坩埚组件设在所述炉体内。
根据本申请的单晶炉,通过采用上述的坩埚组件,可以降低熔汤边缘处的温度,从而降低熔汤氧含量,有利于提升晶棒品质。
根据本申请第四方面的石墨坩埚的制造方法,石墨坩埚为根据本申请上述第一方面 的单晶炉的石墨坩埚,所述制造方法包括以下步骤:S1:对坩埚半成品、与所述坩埚半成品适配的石英坩埚以及盛装于所述石英坩埚内的熔汤进行热场模拟;S2:提取所述步骤S1中的模拟结果,得到所述熔汤的高温区的等温线,所述高温区的温度高于所述熔汤的其余任一区域的温度;S3:在所述坩埚半成品的纵截面上,根据所述等温线的形状确定所述凹槽的形状,并在所述开凿部处加工所述凹槽,以形成所述本体。
根据本申请的石墨坩埚的制造方法,通过对坩埚半成品、石英坩埚以及熔汤进行热场模拟,以精确得到熔汤的高温区的等温线,并根据等温线确定凹槽的形状,可以有效减少加热器传导、辐射至熔汤高温区的热量,降低熔汤边缘处的温度,从而降低熔汤氧含量,有利于提升晶棒品质。
在一些实施例中,在所述步骤S1中,将所述坩埚半成品用于直拉法拉晶进行热场模拟,以在所述步骤S2中得到多条所述等温线,多条所述等温线随所述熔汤的液位的下降由上向下布置,多条所述等温线对应于所述坩埚半成品的壁面上的区域为开凿区域,所述步骤S3还包括:在所述开凿区域内确定所述开凿部的位置。
在一些实施例中,在所述开凿区域内确定所述开凿部的位置,包括:将所述等温线导入所述坩埚半成品的图纸中,以确定所述开凿区域;选取多条所述等温线中的一部分,并根据选取的所述等温线的位置确定所述开凿部的位置。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本申请一个实施例的石墨坩埚的示意图;
图2是图1中框示的A部的放大图;
图3是根据本申请一个实施例的坩埚组件的示意图;
图4是图3中所示的坩埚组件的局部放大图;
图5是图3中所示的坩埚组件内的熔汤加热时在高温区的等温线示意图;
图6是根据本申请一个实施例的石墨坩埚的制作方法流程示意图;
图7是图6中所示的在坩埚半成品上加工凹槽的示意图;
图8是根据本申请另一个实施例的石墨坩埚的制作方法流程示意图;
图9是坩埚半成品(即方案一,未设置凹槽)、本申请设置凹槽且在凹槽内填充隔 热件的石墨坩埚(方案二)以及本申请设置凹槽且凹槽内并未填充材料件的石墨坩埚(方案三)三种方案的热场模拟结果示意图;
图10是图9中所示的三种方案的高温区的等温线对比图;
图11是图9中所示的方案一与方案二的坩埚内壁温度分布对比图;
图12是图9中所示的方案一与方案二的熔汤边缘氧含量的对比图。
附图标记:
坩埚组件1000、石英坩埚200、熔汤300、等温线R、
石墨坩埚100、中心轴线L、坩埚半成品101、半成品腔101a、
本体1、开凿部10、盛放腔1a、凹槽1b、空腔部1c、
侧壁部11、底壁部12。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
下文的公开提供了许多不同的实施例或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的可应用于性和/或其他材料的使用。
下面,参考附图描述根据本申请实施例的单晶炉的石墨坩埚100。
如图1所示,石墨坩埚100包括本体1,本体1为石墨件,且本体1限定出盛放腔1a,盛放腔1a可以用于盛放原材料,加热之后,盛放腔1a内的原材料熔化为熔汤300。盛放腔1a的壁面上具有开凿部10,开凿部10处形成有凹槽1b,则凹槽1b形成在本体1的内壁面上,且凹槽1b由盛放腔1a的部分壁面凹入形成;其中,凹槽1b沿石墨坩埚100的周向延伸以形成为环形结构,有利于保证石墨坩埚100的结构强度。
需要说明的是,石墨坩埚100具有中心轴线L,在本申请的描述中,本体1的轴向为沿石墨坩埚100中心轴线L的方向,本体1的周向为绕石墨坩埚100中心轴线L的方向。例如,在图1的示例中,石墨坩埚100可以形成为回转体结构,该回转体结构的旋转中心线为石墨坩埚100的中心轴线L;当然,石墨坩埚100的形状不限于此。
对坩埚半成品101、与坩埚半成品101适配的石英坩埚200以及盛装于石英坩埚200内的熔汤300进行热场模拟,得到熔汤300的高温区的等温线R,在本体1的纵截面上,凹槽1b的形状适于与等温线R的部分的形状相一致;其中,坩埚半成品101构造成在坩埚半成品101的内壁面上加工出凹槽1b以形成本体1,则坩埚半成品101为石墨件,且坩埚半成品101限定出半成品腔101a,在半成品腔101a的壁面上加工出凹槽1b就可以形成本体1,显然,半成品腔101a对应于盛放腔1a,且半成品腔101a与盛放腔1a的区别在于壁面上是否形成有凹槽1b,而高温区的温度高于熔汤300的其余任一区域的温度,则高温区为熔汤300温度最高的区域,高温区位于熔汤300的边缘处。
可以理解的是,在坩埚半成品101上加工凹槽1b后,坩埚半成品101的中心轴线可以形成为本体1的中心轴线。本体1的纵截面可以理解为经过石墨坩埚100中心轴线L的平面。
当石墨坩埚100应用于单晶炉时,盛放腔1a内适于安装石英坩埚200,原材料适于盛放在石英坩埚200内;单晶炉运行时,单晶炉内的加热器对石墨坩埚100、石英坩埚200以及石英坩埚200内的原材料进行加热,使得原材料熔化为熔汤300;由于加热器设在石墨坩埚100的径向外侧和/或底侧,则熔汤300边缘处(外侧边缘和/或底侧边缘)的高温区的温度最高,易导致熔汤300边缘处氧含量过高,而本申请在盛放腔1a的壁面上设置开凿部10、并在开凿部10处形成凹槽1b,石英坩埚200安装于石墨坩埚100时,石英坩埚200的外壁面无法与凹槽1b的壁面接触、贴合,石英坩埚200与凹槽1b可以限定出空腔部1c(如图4所示),该空腔部1c的导热率明显低于石墨的导热率,即空腔部1c的导热率明显低于本体1的导热率,可以减少自加热器传导、辐射至熔汤300边缘处的热量,有利于降低熔汤300边缘处的温度,由于在晶体生长过程中,石英坩埚在高温环境下分解成氧原子和硅原子并进入熔汤中,从而有利于削弱熔汤300边缘处的氧溶解速度、降低氧含量,进而提升晶棒的品质。
而且,在本体1的纵截面上,凹槽1b的形状适于与高温区的等温线R的部分的形状相一致,则凹槽1b的形状根据高温区的等温线R的形状来设置,从而使得凹槽1b可以与高温区相匹配,以有效减小高温区的区域面积,进一步有效减少自加热器传导、辐射至熔汤300高温区的热量,有利于削弱熔汤300高温区的氧溶解速度、降低氧含量,有效提升晶棒品质,且不会过多削弱石墨坩埚100的结构强度;由于每个热场的等温线都是不同的,本申请通过对坩埚半成品101、石英坩埚200以及熔汤300进行模拟的方式可以很精确地得到熔汤300高温区的等温线R,从而精确得到凹槽1b的形状,避免因经验认为某处属于高温区而实际不在高温区范围内、导致单晶炉热场结构受到影响, 继而影响到晶棒的成晶率,进而本申请有利于保证晶棒的成晶率。
由此,根据本申请实施例的单晶炉的石墨坩埚100,通过对坩埚半成品101、石英坩埚200以及熔汤300进行热场模拟,以精确得到熔汤300的高温区的等温线R,以精确得到凹槽1b的形状,从而在石墨坩埚100应用于单晶炉中时,可以在保证石墨坩埚100结构强度的前提下,减少加热器传导、辐射至熔汤300高温区的热量,以起到减弱热传导的作用,从而可以降低熔汤300高温区的温度、降低熔汤300边缘处的温度,降低熔汤300氧含量,进而有效提升晶体的品质。
在一些实施例中,如图5所示,石墨坩埚100用于直拉法拉晶,在拉晶过程中,熔汤300液位逐渐下降,在不同阶段或时刻,高温区的等温线R的位置不同,则在整个拉晶过程中具有多条等温线R,且多条等温线R随熔汤300的液位的下降由上向下布置,多条等温线R对应于坩埚半成品101的壁面上的区域为开凿区域,或者说,多条等温线R沿坩埚半成品101的径向覆盖在坩埚半成品101的壁面上的区域为开凿区域,开凿部10为多个且多个开凿部10均位于开凿区域内,从而可以根据等温线R精确得到开凿部10的设置区域,以便于简化开凿部10位置的设计,同时可以使得多个凹槽1b也位于开凿区域内,以有效保证在不同阶段,不同的凹槽1b起到减弱热传导的作用,以实现在整个拉晶过程中,凹槽1b可以减弱热传导。
可以理解的是,在整个拉晶过程中,如果晶棒长度连续变化,则等温线R也连续变化,从而具有无数条等温线R。上述的直拉法又称为切克劳斯基法,可以是CZ法(Czochralski)、CCZ法(continuous CZ)、MCZ法(Magnetic CZ)等。
例如,本体1包括侧壁部11和底壁部12,侧壁部11形成为筒状结构,底壁部12连接在侧壁部11的底部以封闭侧壁部11的底部;当单晶炉的加热器只设在侧壁部11的径向外侧时,高温区位于熔汤300径向外侧边缘处,则多条等温线R均对应于侧壁部11布置,此时多条等温线R可以沿本体1的轴向由上向下依次布置,开凿区域位于侧壁部11上,凹槽1b只形成在侧壁部11上;当单晶炉的加热器只设在底壁部12的下侧时,高温区会位于熔汤300的底部边缘处,则多条等温线R均对应于底壁部12布置,由于底壁部12内壁对应的曲面的中部向下凹陷,则多条等温线R仍可以随熔汤300的液位的下降由上向下依次布置,开凿区域位于底壁部12上,凹槽1b只形成在底壁部12上;当单晶炉的加热器包括设在侧壁部11径向外侧的第一加热器和设在底壁部12底侧的第二加热器时,高温区会位于熔汤300的径向外侧边缘处,而如果第二加热器功率较大,高温区也会位于熔汤300底部边缘处,此时多条等温线R对应于侧壁部11和底壁部12布置,且多条等温线R由上向下依次布置,开凿区域位于侧壁部11和底壁部 12上,侧壁部11和底壁部12上分别形成有凹槽1b。
可以理解的是,凹槽1b沿本体1的厚度方向凹入形成,或者说,凹槽1b沿本体1的径向凹入形成;例如,凹槽1b形成在侧壁部11上时,凹槽1b沿侧壁部11的厚度方向凹入形成,而凹槽1b形成在底壁部12上时,凹槽1b沿底壁部12的厚度方向凹凸形成。
在一些实施例中,如图4和图5所示,多个开凿部10沿本体1的轴向间隔设置,且多个开凿部10适于与多条等温线R分别对应,每个开凿部10处形成有一个凹槽1b,则凹槽1b为多个,且多个凹槽1b沿本体1的轴向间隔设置,便于保证石墨坩埚100的结构强度,减弱凹槽1b对本体1的削弱作用,相邻两个凹槽1b之间具有间隔凸起,间隔凸起的自由端的端面与其余未形成有凹槽1b的盛放腔1a的壁面位于同一光滑曲面上。
例如,当开凿部10仅形成在本体1的侧壁部11上时,多个开凿部10沿本体1的轴向间隔设置;当开凿部10仅形成在本体1的底壁部12上时,由于底壁部12内壁对应的曲面的中部向下凹陷,则多个开凿部10也可以沿本体1的轴向间隔设置;当侧壁部11和底壁部12上分别形成有开凿部10时,所有开凿部10可以沿本体1的轴向间隔设置。当然,开凿部10还可以为一个,此时凹槽1b为一个。
可以理解的是,在满足石墨坩埚100强度要求的前提下,凹槽1b在本体1径向上的深度尽可能小,凹槽1b在本体1轴向上的宽度尽可能较大,以有效提升凹槽1b减弱热传导的能力;选取的高温区的多条等温线R中任意相邻两条对应的温度差可以根据实际应用具体设置,每条等温线R对应的具体温度值可以根据实际应用具体设置。在本申请的描述中,“多个”的含义是两个或两个以上。
其中,凹槽1b的形状适于与对应等温线R的部分的形状相一致。例如,选取一部分等温线R,多个开凿部10的位置可以与上述一部分等温线R的位置一一对应,则每个凹槽1b的位置可以与对应等温线R的位置相对应,例如在坩埚半成品101的轴向上,开凿部10的位置可以与对应等温线R的上端部齐平设置,从而可以根据等温线R确定凹槽1b的位置,便于简化凹槽1b位置的设计。其中,凹槽的形状适于与对应等温线的部分的形状相一致,由于与多个开凿部10对应的多条等温线R的形状一般不同,则根据等温线的形状确定对应凹槽的形状,便于使得凹槽的形状更加符合实际生产。
在一些实施例中,如图1和图5所示,开凿部10适于与对应等温线R的上端部齐平,例如开凿部10的顶端可以与对应等温线R的顶端齐平,以便于根据选取的等温线R的位置快速确定开凿部10的位置,同时单晶炉的加热器包括设在石墨坩埚100径向 外侧的部分,熔汤300高温区的等温线R在上端具有凸部,开凿部10可以与该凸部对应设置,以有效降低熔汤300边缘处的温度,从而降低熔汤300氧含量。
例如,当本体1的侧壁部11上形成有开凿部10时,相应等温线R对应于侧壁部11布置,等温线R的趋势与侧壁部11的内壁形状有关,每条等温线R的整体趋势由上向下延伸,开凿部10适于与对应等温线R的上端部齐平;当本体1的底壁部12上形成有开凿部10时,相应等温线R对应于底壁部12布置,等温线R的趋势与底壁部12的内壁形状有关,由于底壁部12内壁对应的曲面的中部向下凹陷,每条等温线R的整体趋势由上向下延伸,开凿部10适于与对应等温线R的上端部齐平。当然,开凿部10的设置位置不限于此。
在一些实施例中,如图1所示,本体1包括侧壁部11和底壁部12,侧壁部11形成为筒状结构,底壁部12连接在侧壁部11的底部以封闭侧壁部11的底部,凹槽1b形成在侧壁部11和/或底壁部12上。例如,当单晶炉的加热器只设在石墨坩埚100的径向外侧时,凹槽1b可以形成在侧壁部11上;当单晶炉的加热器包括设在石墨坩埚100径向外侧的第一加热器和设在石墨坩埚100底侧的第二加热器时,如果第二加热器功率较大,高温区会位于石墨坩埚100的底部,此时侧壁部11和底壁部12上可以分别形成有凹槽1b。由此,凹槽1b位置设置灵活,便于满足实际差异化需求。
需要说明的是,在本申请的描述中,“和/或”的含义为,包括三个并列的方案,以“A和/或B”为例,包括A方案,或B方案,或A和B同时满足的方案;例如,凹槽1b形成在侧壁部11和/或底壁部12上,包括:1、侧壁部11上形成有凹槽1b,底壁部12上未形成有凹槽1b;2、侧壁部11上未形成有凹槽1b,底壁部12上形成有凹槽1b;3、侧壁部11和底壁部12上分别形成有凹槽1b。
其中,“筒状结构”应作广义理解,包括但不限于此圆筒结构、锥筒结构、多边形筒状结构。
在一些实施例中,凹槽1b内填充有隔热件,隔热件的导热率低于本体1的导热率,以保证凹槽1b可以减弱加热器与熔汤300之间的热传导。
可以理解的是,当凹槽1b为一个时,该凹槽1b内可以填充有隔热件;当凹槽1b为多个时,多个凹槽1b中的至少一个内填充有隔热件。
当然,凹槽1b内还可以不填充其他部件,则当石墨坩埚100应用于单晶炉时,石英坩埚200安装于盛放腔1a,此时凹槽1b内为空气,空气的导热率远小于石墨的导热率,同样可以达到减弱热传导的作用。
在一些实施例中,隔热件为碳纤维材料件。碳纤维材料件有明显的各向异性,在垂 直于碳纤维长丝的方向,碳纤维材料件的导热和导电性能较差,具有良好的保温、隔热作用,同时碳纤维材料件具有良好的耐高温性,以保证在高温下碳纤维材料件的使用可靠性。
当然,隔热件还可以为其他材料件,而不限于碳纤维材料件。
在一些实施例中,如图5所示,等温线R的上端部具有弯折部分以形成凸部,凹槽1b的形状适于与等温线R的上端部的形状相一致,以实现凹槽1b的设置。
可以理解的是,当本体1的侧壁部11上形成有开凿部10时,相应等温线R的整体趋势由上向下延伸,侧壁部11上的凹槽1b适于与对应等温线R的上端部的形状相一致;当本体1的底壁部12上形成有开凿部10时,相应等温线R的整体趋势由上向下延伸,底壁部12上的凹槽1b适于与对应等温线R的上端部的形状相一致。
根据本申请第二方面实施例的坩埚组件1000,如图3所示,坩埚组件1000包括石墨坩埚100和石英坩埚200,石英坩埚200安装于石墨坩埚100的盛放腔1a。其中,石墨坩埚100为根据本申请上述第一方面实施例的单晶炉的石墨坩埚100。
根据本申请实施例的坩埚组件1000,通过采用上述的石墨坩埚100,可以在保证坩埚组件1000使用可靠的前提下,降低坩埚组件1000内熔汤300边缘处的温度,从而降低熔汤300氧含量,有效提升晶体的品质。
根据本申请第三方面实施例的单晶炉,包括炉体和坩埚组件1000,坩埚组件1000设在炉体内。其中,坩埚组件1000为根据本申请上述第二方面实施例的坩埚组件1000。
根据本申请实施例的单晶炉,通过采用上述的坩埚组件1000,可以降低坩埚组件1000内熔汤300边缘处的温度,从而降低熔汤300氧含量,提升单晶炉生产的晶棒的品质。
根据本申请实施例的单晶炉的其他构成以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
根据本申请第四方面实施例的石墨坩埚100的制造方法,石墨坩埚100为根据本申请上述第一方面实施例的单晶炉的石墨坩埚100,石墨坩埚100的制造方法包括以下步骤:
S1:对坩埚半成品101、与坩埚半成品101适配的石英坩埚200以及盛装于石英坩埚200内的熔汤300进行热场模拟。
S2:提取步骤S1中的模拟结果,得到熔汤300的高温区的等温线R,高温区的温度高于熔汤300的其余任一区域的温度,则高温区为熔汤300温度最高的区域。
S3:在坩埚半成品101的纵截面上,根据等温线R的形状确定凹槽1b的形状,例 如在坩埚半成品101的纵截面上,凹槽1b的形状可以与对应等温线R的上端部的形状一致,并在开凿部10处加工凹槽1b,以形成本体1。显然,坩埚半成品101构造成在坩埚半成品101的内壁面上加工出凹槽1b以形成本体1,石英坩埚200也可以与本申请中的石墨坩埚100相适配。
这里,需要说明的是,各步骤之间可以具有先后顺序,而同一步骤中、各动作先后顺序不是固定的。例如,步骤S1、步骤S2和步骤S3先后依次进行,使得步骤S1中的“热场模拟”位于步骤S2中的“得到等温线R”之前。
由此,根据本申请实施例的石墨坩埚100的制造方法,通过对坩埚半成品101、石英坩埚200以及熔汤300进行热场模拟,以精确得到熔汤300的高温区的等温线R,并根据等温线R的形状确定凹槽1b的形状,可以有效减少加热器传导、辐射至熔汤300高温区的热量,降低熔汤300边缘处的温度,从而降低熔汤氧含量,有利于提升晶棒品质。
在一些实施例中,步骤S1中的热场模拟可以选取晶棒生长阶段进行热场模拟。其中,热场模拟的参数可以采用晶棒生长阶段中的参数,使得模拟结果更加符合实际应用。
在一些实施例中,在步骤S1中,将坩埚半成品101用于直拉法拉晶进行热场模拟,以在步骤S2中得到多条等温线R,多条等温线R随熔汤300的液位的下降由上向下布置,多条等温线R对应于坩埚半成品101的壁面上的区域为开凿区域。步骤S3还包括:在开凿区域内确定开凿部10的位置。
在一些实施例中,如图所示,在开凿区域内确定开凿部10的位置,包括:将等温线R导入坩埚半成品101的图纸中,以确定开凿区域;选取多条等温线R中的一部分,并根据选取的等温线R的位置确定开凿部10的位置,例如多个开凿部10可以与选取的多条等温线R的上端部一一对应齐平,以便于精确确定开凿部10和凹槽1b的位置。
例如,将等温线R按照1:1的比例导入坩埚半成品的CAD图纸中,则等温线R上任意点的坐标即为该点的实际坐标,以便根据多条等温线R的位置快速确定开凿区域,合理选择多条等温线R以确定开凿部10的位置,简单、便捷。可以理解的是,选取的等温线R表示的具体温度值可以根据实际要求选取。
如图9和图10所示,示出了坩埚半成品101(即方案一,未设置凹槽1b)、本申请设置凹槽1b且在凹槽1b内填充隔热件的石墨坩埚100(方案二)以及本申请设置凹槽1b且凹槽1b内并未填充材料件的石墨坩埚100(方案三)三种方案的热场模拟结果示意图,图10中“200-origin”对应于方案一,“200-fiber”对应于方案二,“200-none”对应于方案三,且图10中示出了图9中三种方案熔汤高温区的等温线,通过对比可以 得出,根据本申请的方案二和方案三,高温区(≥1696.5K)区域相比于方案一显著减小,且方案三更为明显,高温区下移仅有少部分落在开凿部,由此真空槽有效减弱热量向熔汤传入。显然,凹槽1b有效减少了传递至熔汤300的热量。
如图11和图12所示,示出了坩埚半成品(即方案一,未设置凹槽1b)和在凹槽1b填充隔热件(方案二)两种方案的坩埚内壁温度分布对比以及熔汤边缘氧含量对比,可以明显看出,方案二高温区温度较方案一降低1-2℃,熔汤300边缘氧含量也相应减少,高温区温度与坩埚氧释放相关性明显。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“厚度”、“上”、“下”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (13)

  1. 一种单晶炉的石墨坩埚,其中,包括:
    本体,所述本体为石墨件且限定出盛放腔,所述盛放腔的壁面上具有开凿部,所述开凿部处形成有凹槽,所述凹槽沿所述本体的周向延伸以形成为环形结构,
    其中,对坩埚半成品、与所述坩埚半成品适配的石英坩埚以及盛装于所述石英坩埚内的熔汤进行热场模拟,得到所述熔汤的高温区的等温线,在所述本体的纵截面上,所述凹槽的形状适于与所述等温线的部分的形状相一致,所述坩埚半成品构造成在所述坩埚半成品的内壁面上加工出所述凹槽以形成所述本体,所述高温区的温度高于所述熔汤的其余任一区域的温度。
  2. 根据权利要求1所述的单晶炉的石墨坩埚,其中,所述石墨坩埚用于直拉法拉晶,在拉晶过程中,所述等温线为多条且随所述熔汤的液位的下降由上向下布置,多条所述等温线对应于所述坩埚半成品的壁面上的区域为开凿区域,所述开凿部为多个且均位于所述开凿区域内。
  3. 根据权利要求2所述的单晶炉的石墨坩埚,其中,多个所述开凿部沿所述本体的轴向间隔设置,且适于与多条所述等温线分别对应,每个所述开凿部处形成有一个所述凹槽,所述凹槽的形状适于与对应所述等温线的部分的形状相一致。
  4. 根据权利要求3所述的单晶炉的石墨坩埚,其中,所述开凿部适于与对应所述等温线的上端部齐平。
  5. 根据权利要求1-4中任一项所述的单晶炉的石墨坩埚,其中,所述本体包括侧壁部和底壁部,所述侧壁部形成为筒状结构,所述底壁部连接在所述侧壁部的底部以封闭所述侧壁部的底部,所述凹槽形成在所述侧壁部和/或所述底壁部上。
  6. 根据权利要求5所述的单晶炉的石墨坩埚,其中,所述凹槽内填充有隔热件,所述隔热件的导热率低于所述本体的导热率。
  7. 根据权利要求6所述的单晶炉的石墨坩埚,其中,所述隔热件为碳纤维材料件。
  8. 根据权利要求1-7中任一项所述的单晶炉的石墨坩埚,其中,所述凹槽适于与所述等温线的上端部的形状相一致。
  9. 一种坩埚组件,其中,包括:
    石墨坩埚,所述石墨坩埚为根据权利要求1-8中任一项所述的单晶炉的石墨坩埚;
    石英坩埚,所述石英坩埚安装于所述盛放腔。
  10. 一种单晶炉,其中,包括:
    炉体;和
    坩埚组件,所述坩埚组件为根据权利要求7所述的坩埚组件,且所述坩埚组件设在所述炉体内。
  11. 一种石墨坩埚的制造方法,其中,所述石墨坩埚为根据权利要求1-8中任一项所述的单晶炉的石墨坩埚,所述制造方法包括以下步骤:
    S1:对坩埚半成品、与所述坩埚半成品适配的石英坩埚以及盛装于所述石英坩埚内的熔汤进行热场模拟;
    S2:提取所述步骤S1中的模拟结果,得到所述熔汤的高温区的等温线,所述高温区的温度高于所述熔汤的其余任一区域的温度;
    S3:在所述坩埚半成品的纵截面上,根据所述等温线的形状确定所述凹槽的形状并在所述开凿部处加工所述凹槽,以形成所述本体。
  12. 根据权利要求11所述的石墨坩埚的制造方法,其中,在所述步骤S1中,将所述坩埚半成品用于直拉法拉晶进行热场模拟,以在所述步骤S2中得到多条所述等温线,多条所述等温线随所述熔汤的液位的下降由上向下布置,多条所述等温线对应于所述坩埚半成品的壁面上的区域为开凿区域,
    所述步骤S3还包括:在所述开凿区域内确定所述开凿部的位置。
  13. 根据权利要求12所述的石墨坩埚的制造方法,其中,在所述开凿区域内确定所述开凿部的位置,包括:
    将所述等温线导入所述坩埚半成品的图纸中,以确定所述开凿区域;
    选取多条所述等温线中的一部分,并根据选取的所述等温线的位置确定所述开凿部的位置。
PCT/CN2021/139236 2020-12-21 2021-12-17 单晶炉的石墨坩埚及其制造方法、坩埚组件和单晶炉 WO2022135301A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237021553A KR20230110348A9 (ko) 2020-12-21 2021-12-17 단결정로용 흑연 도가니 및 이의 제조 방법, 도가니 어셈블리 및 단결정로
JP2023537367A JP2023554477A (ja) 2020-12-21 2021-12-17 単結晶炉のグラファイト坩堝及びその製造方法、坩堝アセンブリ並びに単結晶炉
US18/022,274 US20230323560A1 (en) 2020-12-21 2021-12-17 Graphite Crucible for Mono-crystal Furnace and Manufacturing Method Therefor, Crucible Assembly, and Mono-crystal Furnace

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011519963.4 2020-12-21
CN202011519963.4A CN112708932B (zh) 2020-12-21 2020-12-21 单晶炉的石墨坩埚及其制造方法、坩埚组件和单晶炉

Publications (1)

Publication Number Publication Date
WO2022135301A1 true WO2022135301A1 (zh) 2022-06-30

Family

ID=75544832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/139236 WO2022135301A1 (zh) 2020-12-21 2021-12-17 单晶炉的石墨坩埚及其制造方法、坩埚组件和单晶炉

Country Status (6)

Country Link
US (1) US20230323560A1 (zh)
JP (1) JP2023554477A (zh)
KR (1) KR20230110348A9 (zh)
CN (1) CN112708932B (zh)
TW (1) TW202240032A (zh)
WO (1) WO2022135301A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112708932B (zh) * 2020-12-21 2022-05-17 徐州鑫晶半导体科技有限公司 单晶炉的石墨坩埚及其制造方法、坩埚组件和单晶炉
CN113862779A (zh) * 2021-09-29 2021-12-31 西安奕斯伟材料科技有限公司 一种坩埚组件及拉晶炉
CN113935188A (zh) * 2021-11-01 2022-01-14 西安慧金科技有限公司 一种用等温热区优化交流电炉炉衬结构的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM324067U (en) * 2007-05-22 2007-12-21 Sino American Silicon Products Crystal growth device
TW200821524A (en) * 2006-11-08 2008-05-16 Taiwan Advanced Materials Technologies Corp Manufacturing method and product of composite type crucible
CN203333813U (zh) * 2013-06-06 2013-12-11 英利能源(中国)有限公司 一种带排气槽的单晶炉热场石墨埚
CN207347695U (zh) * 2017-10-31 2018-05-11 河南省博宇新能源有限公司 多晶硅锭铸锭炉长晶均热坩埚结构
CN112708932A (zh) * 2020-12-21 2021-04-27 徐州鑫晶半导体科技有限公司 单晶炉的石墨坩埚及其制造方法、坩埚组件和单晶炉

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006017621B4 (de) * 2006-04-12 2008-12-24 Schott Ag Vorrichtung und Verfahren zur Herstellung von multikristallinem Silizium
CN202744649U (zh) * 2012-06-06 2013-02-20 海润光伏科技股份有限公司 用于增大硅锭中大晶粒面积的热场结构
CN204417640U (zh) * 2014-12-11 2015-06-24 河北同光晶体有限公司 提高晶体生长速度的坩埚及晶体生长装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200821524A (en) * 2006-11-08 2008-05-16 Taiwan Advanced Materials Technologies Corp Manufacturing method and product of composite type crucible
TWM324067U (en) * 2007-05-22 2007-12-21 Sino American Silicon Products Crystal growth device
CN203333813U (zh) * 2013-06-06 2013-12-11 英利能源(中国)有限公司 一种带排气槽的单晶炉热场石墨埚
CN207347695U (zh) * 2017-10-31 2018-05-11 河南省博宇新能源有限公司 多晶硅锭铸锭炉长晶均热坩埚结构
CN112708932A (zh) * 2020-12-21 2021-04-27 徐州鑫晶半导体科技有限公司 单晶炉的石墨坩埚及其制造方法、坩埚组件和单晶炉

Also Published As

Publication number Publication date
TW202240032A (zh) 2022-10-16
CN112708932A (zh) 2021-04-27
JP2023554477A (ja) 2023-12-27
CN112708932B (zh) 2022-05-17
KR20230110348A (ko) 2023-07-21
US20230323560A1 (en) 2023-10-12
KR20230110348A9 (ko) 2024-03-25

Similar Documents

Publication Publication Date Title
WO2022135301A1 (zh) 单晶炉的石墨坩埚及其制造方法、坩埚组件和单晶炉
CN105442037A (zh) 一种高速单晶生长装置
CN102352530B (zh) 用于直拉硅单晶炉的热屏装置
CN109338462B (zh) 一种直拉单晶用变径籽晶及引晶方法
CN206015144U (zh) 用于直拉单晶炉的石墨加热器
JPH02133389A (ja) シリコン単結晶の製造装置
CN102076890A (zh) 使用不平衡的磁场和共转来控制生长硅晶体的熔体-固体界面形状
JPH02107587A (ja) 半導体単結晶育成装置
CN106894079A (zh) 单晶硅锭生长装置
TW202223173A (zh) 晶體生產方法
CN105887186A (zh) 硅单晶提拉设备与生长方法
CN102277616B (zh) 生产包括硅的半导体晶圆的方法
CN202744653U (zh) 一种直拉法制备单晶硅所使用的石墨坩埚
CN205295534U (zh) 一种高速单晶生长装置
CN202744654U (zh) 一种直拉法制备单晶硅所使用的坩埚
CN103628129A (zh) 一种直拉法制备单晶硅所使用的石墨加热器
CN111270301A (zh) 一种晶体生长炉的导流筒和晶体生长炉
CN105603508B (zh) 一种适用于类单晶硅铸锭的籽晶拼接结构
JP2005231958A (ja) サファイア単結晶育成装置
KR20170000548A (ko) 기포가 억제된 석영도가니 제조를 위한 몰드 및 진공시스템
CN101724889A (zh) 一种用于直拉硅单晶炉热场系统
CN217351608U (zh) 一种降低功耗的保温桶用底固毡及保温桶
CN215628416U (zh) 一种底部加热器及单晶炉
CN217351609U (zh) 一种复合电极及单晶炉
CN204455351U (zh) 一种直拉单晶炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21909297

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023537367

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237021553

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21909297

Country of ref document: EP

Kind code of ref document: A1