TW202223173A - 晶體生產方法 - Google Patents

晶體生產方法 Download PDF

Info

Publication number
TW202223173A
TW202223173A TW110133745A TW110133745A TW202223173A TW 202223173 A TW202223173 A TW 202223173A TW 110133745 A TW110133745 A TW 110133745A TW 110133745 A TW110133745 A TW 110133745A TW 202223173 A TW202223173 A TW 202223173A
Authority
TW
Taiwan
Prior art keywords
crucible
chamber
raw material
assembly
crystal
Prior art date
Application number
TW110133745A
Other languages
English (en)
Other versions
TWI781759B (zh
Inventor
陳翼
劉奇
黄末
劉林豔
高海棠
Original Assignee
大陸商徐州鑫晶半導體科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商徐州鑫晶半導體科技有限公司 filed Critical 大陸商徐州鑫晶半導體科技有限公司
Publication of TW202223173A publication Critical patent/TW202223173A/zh
Application granted granted Critical
Publication of TWI781759B publication Critical patent/TWI781759B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/002Continuous growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • C30B15/04Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt adding doping materials, e.g. for n-p-junction
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • C30B15/12Double crucible methods
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B30/00Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions
    • C30B30/04Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions using magnetic fields
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/002Crucibles or containers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本發明關於一種晶體生產方法,包括:S1、將初始原料裝入坩堝組件內;S2、對坩堝組件進行加熱以使初始原料熔化,並在設定時間後,坩堝組件以設定轉速段內的轉速轉動;S3、在熔料完成後,將下料組件下降至坩堝組件內液面上方,且與液面上下相距h,下料組件包括原料下料管,原料下料管將再加入原料加至坩堝組件的原料下料區;S4、在原料下料區下料,在晶體生長區進行拉晶,在S1中,將初始原料分別裝入第一、第二和第三腔室內,第一腔室內的初始原料的顆粒直徑大於第二腔室內的初始原料的顆粒直徑和第三腔室內的初始原料的顆粒直徑。

Description

晶體生產方法
本發明要求於2020年09月10日提交至中國國家知識產權局、申請號為202010948861.8、發明名稱為“晶體生產製程”的專利申請案的優先權。
本發明關於晶體加工技術領域,尤其是關於一種晶體生產方法。
相關技術中,採用連續提拉法(Continuously-fed Czochralski;CCZ)生產單晶矽通常採用雙層坩堝或石英環將熔料區與長晶區隔開。然而,晶體生產過程中,仍存在熔料區與長晶區熔湯不夠均勻、晶體品質欠佳的問題,且下料容易噴濺等導致晶體不易生長。
本發明旨在至少解決先前技術中存在的技術問題之一。為此,本發明提出一種晶體生產方法,所述晶體生產方法可以使得坩堝組件內熔湯更加均勻,有利於提升晶體品質。
根據本發明的晶體生產方法,包括以下步驟:步驟S1、將初始原料裝入坩堝組件內;步驟S2、對所述坩堝組件進行加熱以使初始原料熔化,並在設定時間後,所述坩堝組件以設定轉速段內的轉速轉動,以均勻所述坩堝組件內部溫度;步驟S3、在熔料完成後,將下料組件下降至所述坩堝組件內液面上方,且與液面上下相距h,所述下料組件包括原料下料管,所述原料下料管將再加入原料加至所述坩堝組件的原料下料區;步驟S4、在原料下料區下料,在晶體生長區進行拉晶,其中,所述坩堝組件包括第一坩堝、第二坩堝和第三坩堝,所述第一坩堝內限定出盛放空間,所述盛放空間的頂側敞開設置,所述第二坩堝設在所述盛放空間內且與所述第一坩堝共同限定出第一腔室,所述第三坩堝設在所述第二坩堝內且與所述第二坩堝共同限定出第二腔室,所述第三坩堝內限定出第三腔室,所述第二坩堝上形成有第一連通孔以連通所述第一腔室和所述第二腔室,所述第三坩堝上形成有第二連通孔以連通所述第二腔室和所述第三腔室,所述第一腔室適於構造成所述原料下料區,所述晶體生長區位於所述第三腔室內,在所述步驟S1中,將初始原料分別裝入所述第一腔室、所述第二腔室和所述第三腔室內,所述第一腔室內的初始原料的顆粒直徑大於所述第二腔室內的初始原料的顆粒直徑和所述第三腔室內的初始原料的顆粒直徑。
根據本發明的晶體生產方法,通過在裝料過程中,設置第一腔室R1內的初始原料的顆粒直徑大於第二腔室內的初始原料的顆粒直徑和第三腔室內的初始原料的顆粒直徑,便於保證第二腔室和第三腔室內盛放足夠的初始原料,且避免在熔料過程中第二腔室和第三腔室內產生氣泡而影響拉晶,便於保證晶體品質;通過在熔料過程中,設置坩堝組件保持設定轉速段內的轉速轉動,以均勻坩堝組件內部溫度,便於使得坩堝組件內熔湯更加均勻,有利於進一步提升晶體的品質。
在一些實施例中,所述設定轉速段的轉速範圍為0.2r/m~3r/m。
在一些實施例中,所述h滿足:2mm≤h≤4mm。
在一些實施例中,所述步驟S4包括:步驟S41、引晶:將籽晶的一部分浸入所述坩堝組件的液面下方,並開啟磁場裝置;步驟S42、縮頸:以設定移動速度段內的速度提拉籽晶進行縮頸,去除位錯;步驟S43、放轉肩:控制加熱功率和所述籽晶的提拉速度,以使晶體直徑增大至設定直徑;步驟S44:等徑加料:在所述晶體生長區進行晶棒的等徑生長,在所述原料下料區,所述原料下料管(1011)將再加入原料加至所述坩堝組件的原料下料區,且控制所述下料組件的加料量與晶體的成晶量相等,維持液面恆定,其中,所述坩堝組件設於晶體生長爐的爐體內,所述磁場裝置設於爐體外,且用於產生磁場。
在一些實施例中,在所述步驟S1中,在將原料裝入所述坩堝組件內之前,在爐體內依次安裝加熱器和絕熱層,所述加熱器用於對所述坩堝組件進行加熱,所述絕熱層位於所述加熱器的外側,將坩堝軸上升至第一高度位置,並將所述坩堝組件安裝於所述坩堝軸,所述坩堝軸可升降地安裝於所述爐體,且用於帶動所述坩堝組件轉動,在將原料裝入所述坩堝組件內之後,將所述坩堝軸下降至第二高度位置,並在所述爐體內安裝導流筒,所述導流筒用於將所述晶體生長區隔開。
在一些實施例中,所述爐體包括本體和上蓋,所述加熱器、所述絕熱層、所述坩堝軸和所述導流筒均安裝於所述本體,所述晶體生產方法還包括:步驟S5、將冷卻套和所述下料組件均安裝於所述上蓋,並將所述上蓋固定在所述本體上後,對所述爐體內進行抽真空處理,所述冷卻套用於對所述晶體進行冷卻,其中,所述步驟S5位於所述步驟S1和所述步驟S2之間。
在一些實施例中,所述第一連通孔的孔徑為d1,所述第二連通孔的孔徑為d2,第一連通孔的孔徑d1、第二連通孔的孔徑d2滿足:d1<d2。
在一些實施例中,所述第一連通孔形成在所述第二坩堝的底部且鄰近所述第二坩堝的R角設置,所述第一連通孔為多個,多個第一連通孔包括第一進料孔和第二進料孔,所述第二進料孔位於所述第一進料孔的上方。
在一些實施例中,所述第一坩堝包括坩堝底壁和坩堝側壁,所述坩堝側壁自所述坩堝底壁的邊沿向上延伸且與所述坩堝底壁共同限定出所述盛放空間,所述第二坩堝和所述第三坩堝均形成為筒形結構,所述第二坩堝通過第一卡榫結構與所述坩堝底壁限位配合,所述第三坩堝通過第二卡榫結構與所述坩堝底壁限位配合。
在一些實施例中,所述第一坩堝的頂端和所述第二坩堝的頂端齊平設置且均位於所述第三坩堝的頂端上方。
在一些實施例中,所述坩堝組件還包括:第四坩堝,所述第四坩堝設在所述第三腔室內以將所述第三腔室分隔成第一子腔室和第二子腔室,所述第四坩堝上形成有第三連通孔以連通所述第一子腔室和所述第二子腔室,所述第二子腔室通過所述第二連通孔與所述第二腔室連通,所述第一子腔室適於構造成所述晶體生長區,所述第二腔室適於構造成摻雜劑下料區,其中,在所述步驟S1中,所述第一腔室內的初始原料的顆粒直徑大於所述第一子腔室內的初始原料的顆粒直徑和所述第二子腔室內的初始原料的顆粒直徑,所述下料組件還包括摻雜劑下料管,在所述步驟S3中,所述原料下料管與所述原料下料區對應設置,以使所述原料下料管向所述第一子腔室加料,所述摻雜劑下料管與所述摻雜劑下料區對應設置,以使所述摻雜劑下料管向所述第二子腔室加料。
在一些實施例中,所述第一連通孔的孔徑為d1,所述第二連通孔的孔徑為d2,所述第三連通孔的孔徑為d3,第一連通孔的孔徑d1、第二連通孔的孔徑d2和第三連通孔的孔徑d3滿足:d1<d2<d3。
在一些實施例中,所述第一坩堝的頂端、所述第二坩堝的頂端和所述第三坩堝的頂端齊平設置且均位於所述第四坩堝頂端的上方。
在一些實施例中,所述坩堝組件還包括:托盤,所述托盤支撑在所述第一坩堝的底部,所述托盤的頂端位於所述第一坩堝的頂端、所述第二坩堝的頂端和所述第三坩堝的頂端的下方,所述第一坩堝包括坩堝底壁和坩堝側壁,所述坩堝側壁自所述坩堝底壁向上延伸且與所述坩堝底壁共同限定出所述盛放空間,所述托盤的頂端適於位於所述盛放空間內液面的上方,且所述托盤超過坩堝底壁的部分的高度為所述第一坩堝高度的一半。
本發明的附加方面和優點將在下面的描述中部分給出,部分將從下面的描述中變得明顯,或通過本發明的實踐瞭解到。
下面詳細描述本發明的實施例,所述實施例的示例在隨附圖式中示出,其中自始至終相同或類似的元件符號表示相同或類似的元件或具有相同或類似功能的元件。下面通過參考圖式描述的實施例是示例性的,旨在用於解釋本發明,而不能理解為對本發明的限制。
下文的公開提供了許多不同的實施例或例子用來實現本發明的不同結構。為了簡化本發明的揭示內容,下文中對特定例子的部件和設置進行描述。當然,它們僅僅為示例,並且目的不在於限制本發明。此外,本發明可以在不同例子中重複參考數字和/或字母。這種重複是為了簡化和清楚的目的,其本身不指示所討論各種實施例和/或設置之間的關係。此外,本發明提供了的各種特定的方法和材料的例子,但是本領域普通技術人員可以意識到其他方法的可應用於性和/或其他材料的使用。
下面,參考圖式描述根據本發明實施例的晶體生產製程。其中,“晶體”可以指單晶矽、藍寶石等。
如圖1至圖4所示,晶體生產方法包括以下步驟:步驟S1、將初始原料裝入坩堝組件100內;步驟S2、對坩堝組件100進行加熱以使初始原料熔化,並在設定時間後,坩堝組件100以設定轉速段內的轉速轉動,以均勻坩堝組件100內部溫度;步驟S3、在熔料完成後,將下料組件101下降至坩堝組件100內液面上方,且與液面在上下方向上相距h,下料組件101包括原料下料管1011,原料下料管1011將再加入原料加至坩堝組件100的原料下料區
Figure 02_image001
1;步驟S4、在原料下料區
Figure 02_image001
1下料,在晶體生長區
Figure 02_image001
3進行拉晶。
例如,首先裝料,將初始原料裝入坩堝組件100內,可以根據坩堝組件100所需液面高度為依據,計算步驟S1所需添加的初始原料的總質量;而後熔料,對坩堝組件100進行加熱以使坩堝組件100內的初始原料熔化,使得坩堝組件100內的初始原料在設定時間內熔化至一定程度,並在熔化至一定程度後,坩堝組件100保持設定轉速段內的轉速轉動,使得坩堝組件100內部溫度更加均勻,有利於提升晶體的品質,同時坩堝組件100轉動有利於使得坩堝組件100內熔湯更加均勻;待原料完全熔化後,將下料組件101下降至坩堝組件100內液面上方的距離h處,原料下料管1011將再加入原料加至坩堝組件100的原料下料區
Figure 02_image001
1,加料量可以使得坩堝組件100內液面高度達到所需液面高度,而且下料過程中,下料組件101與液面之間具有一定高度差,使得下料組件101與液面之間具有足夠的下料空間,便於下料組件101向坩堝組件100內加料,有利於避免下料過程中下料組件101浸入液面;最後,在原料下料區
Figure 02_image001
1下料,在坩堝組件100的晶體生長區
Figure 02_image001
3進行拉晶,則邊下料邊拉晶,便於實現連續提拉生產晶體。
需要說明的是,在步驟S3中,下料組件101下降至坩堝組件100內液面上方的距離h處,而後再進行下料,則與下料組件101上下方向上相距h的“坩堝組件100內的液面”可以理解為下料前、坩堝組件100內的液面位置。
如圖5和圖8所示,坩堝組件100為上述晶體生產方法中採用的坩堝組件100,且坩堝組件100包括第一坩堝1、第二坩堝2和第三坩堝3,第一坩堝1內限定出盛放空間100a,盛放空間100a的頂側敞開設置,盛放空間100a可以用於盛放半導體或太陽能級材料(例如矽)的熔體(或熔湯),熔體可以通過加熱固體料形成;第二坩堝2設在盛放空間100a內,且第二坩堝2與第一坩堝1共同限定出第一腔室R1,第一腔室R1屬盛放空間100a的一部分,且第一腔室R1可以位於第二坩堝2的外側;第三坩堝3設在第二坩堝2內,且第三坩堝3與第二坩堝2共同限定出第二腔室R2,第三坩堝3內限定出第三腔室R3,第二腔室R2和第三腔室R3均屬於盛放空間100a的一部分,且第二腔室R2可以位於第三腔室R3的外側。
第二坩堝2上形成有第一連通孔20以連通第一腔室R1和第二腔室R2,則第一腔室R1內的熔湯可以通過第一連通孔20流至第二腔室R2,或者第二腔室R2內的熔湯可以通過第一連通孔20流至第一腔室R1;第三坩堝3上形成有第二連通孔30以連通第二腔室R2和第三腔室R3,則第二腔室R2內的熔湯可以通過第二連通孔30流至第三腔室R3。
如圖5和圖8所示,第一腔室R1適於構造成原料下料區
Figure 02_image001
1,晶體生長區
Figure 02_image001
3位於第三腔室R3內,則在步驟S3中,原料下料管1011將再加入原料加至第一腔室R1內,在步驟S4中,在第三腔室R3內進行拉晶;由於第一腔室R1熔湯需要通過第二腔室R2才能流至第三腔室R3,第二腔室R2可以適於構造成“熔融區”,使得熔湯具有足夠的受熱時間,且便於熔化後形成的熔湯提供足夠的混合空間,從而有利於提升第三腔室R3內熔湯的均勻性,同時還可以防止未完全熔化的材料直接進入晶體生長區
Figure 02_image001
3造成雜質擊中,便於生產出較高品質的晶體。而且,通過設置第二腔室R2以將第三腔室R3與第一腔室R1隔開,可以避免向第一腔室R1內加料時易使得液面受到擾動,有利於保證加料過程中液面的穩定性,便於實現晶體穩定生長,保證生產穩定。
其中,在步驟S1中,將初始原料裝入坩堝組件100內,則將初始原料分別裝入第一腔室R1、第二腔室R2和第三腔室R3內,第一腔室R1內的初始原料的顆粒直徑大於第二腔室R2內的初始原料的顆粒直徑和第三腔室R3內的初始原料的顆粒直徑,則第一腔室R1內的初始原料的顆粒直徑相對較大,便於保證第一腔室R1的裝料速率,第二腔室R2內的初始原料的顆粒直徑和第三腔室R3內的初始原料的顆粒直徑相對較小,便於第二腔室R2和第三腔室R3內盛放足夠的初始原料,且第二腔室R2和第三腔室R3內的初始原料顆粒之間的空隙較小,避免在熔料過程中產生氣泡,尤其避免了第三腔室R3內產生氣泡而影響拉晶。
需要說明的是,晶體生產方法中,各步驟之間可以具有先後順序,例如,步驟S1、步驟S2、步驟S3和步驟S4先後依次進行,使得步驟S1中的“將初始原料裝入坩堝組件100內”位於步驟S2中的“對坩堝組件100進行加熱以使初始原料熔化”之前,步驟S2中熔料過程是將步驟S1中加入坩堝組件100內的初始原料進行熔化,步驟S2中的“坩堝組件100以設定轉速段內的轉速轉動,以均勻坩堝組件100內部溫度”在步驟S3中的“將下料組件101下降至坩堝組件100內液面上方,且與液面上下相距h”之前,步驟S3中的下料過程在步驟S4中的下料、拉晶過程之前。
由此,根據本發明實施例的晶體生產方法,通過在裝料過程中,設置第一腔室R1內的初始原料的顆粒直徑大於第二腔室R2內的初始原料的顆粒直徑和第三腔室R3內的初始原料的顆粒直徑,便於保證第二腔室R2和第三腔室R3內盛放足夠的初始原料,且避免在熔料過程中第二腔室R2和第三腔室R3內產生氣泡而影響拉晶,便於保證晶體品質;通過在熔料過程中,設置坩堝組件100保持設定轉速段內的轉速轉動,以均勻坩堝組件100內部溫度,便於使得坩堝組件100內熔湯更加均勻,有利於進一步提升晶體的品質。
在一些實施例中,在步驟S1中,第一腔室R1內的初始原料的顆粒直徑大於10mm,例如第一腔室R1內的初始原料的顆粒直徑可以大於50mm、60mm、70mm、100mm或200mm等,則第一腔室R1對於初始原料的顆粒直徑的要求較低,便於保證第一腔室R1的裝料速率,第二腔室R2和第三腔室R3內的初始原料的顆粒直徑均小於10mm,以便於避免第二腔室R2和第三腔室R3產生氣泡而影響拉晶。
在一些實施例中,設定轉速段的轉速範圍為0.2r/m~3r/m(包括端點值,其中“r/m”為轉每分,或者可以寫成rpm),此時坩堝組件100的轉速較低,實現了坩堝組件100的小幅堝轉,便於保證坩堝組件100內溫度的均勻效果。例如,在設定時間後,坩堝組件100的轉速可以為0.2r/m、或1.5r/m、或2.3r/m、或3r/m;可以理解的,坩堝組件100的轉速可以始終保持為某一恆定轉速值,也可以按照設定方式在0.2r/m~3r/m範圍內調整轉速。通過在熔化階段的小幅堝轉,可使得坩堝組件100內部的溫度更加均勻,更利於提升晶體的品質,若速度過快則可能會引起液面波動,若速度過小則實現不了溫度更加均勻的目的。
在一些實施例中,h滿足2mm≤h≤4mm,則h可以為2mm、或3mm、或4mm等。例如h為3mm,則在步驟S3中,將下料組件101下降至坩堝組件100內液面上方的3mm處。由此,下料組件101與坩堝組件100內液面之間具有合適的高度差,避免下料組件101位置過高使得下料容易噴濺,導致晶體不易生長,避免下料組件101位置過低易污染坩堝組件100內的熔湯,從而進一步保證了晶體的穩定生長,同時便於保證晶體的品質。
在一些實施例中,如圖2所示,步驟S4包括:步驟S41:引晶:將籽晶102的一部分浸入坩堝組件100的液面下方,並開啟磁場裝置103;步驟S42、縮頸:以設定移動速度段內的速度提拉籽晶102進行縮頸,去除位錯;步驟S43、放轉肩:控制加熱功率和籽晶102的提拉速度,以使晶體直徑增大至設定直徑;步驟S44:等徑加料:在晶體生長區
Figure 02_image001
2進行晶棒的等徑生長,在原料下料區
Figure 02_image001
1,原料下料管1011將再加入原料加至坩堝組件100的原料下料區
Figure 02_image001
1,且控制下料組件101的加料量與晶體的成晶量相等,維持液面恆定。其中,在步驟S44中,一邊進行晶體的等徑生長,一邊將再加入原料加至原料下料區
Figure 02_image001
1,實現邊等徑生長、邊加料。
例如,步驟S4包括:將籽晶102軸向上的約三分之一浸入坩堝組件100的熔湯內,並開啟磁場裝置103,當溫度穩定時,開始進行縮頸,在縮頸過程中,以設定移動速度段內的速度向上提拉籽晶102,以控制晶體縮頸部分的直徑;而後,控制加熱功率和籽晶102的提拉速度,使得晶體直徑增大至設定直徑,在此過程中,以控制晶體形狀為主,利用長寬比計算出幾何形狀與長晶角度,根據經驗形狀來控制加熱功率和提拉速度使得晶體形狀達到所需角度,以完成放轉肩;當晶體直徑接近設定直徑且等徑時,放轉肩完成,此時將再加入原料加至坩堝組件100的原料下料區
Figure 02_image001
1,使得在等徑過程中維持液面恆定,晶體等徑生長,直至晶體脫離液面。
其中,如圖7和圖9所示,坩堝組件100設於晶體生長爐的爐體200內,磁場裝置103設於爐體200外,且磁場裝置103用於產生磁場,磁場裝置103產生的磁場可以用於施加至坩堝組件100內的熔體。可以理解的是,磁場裝置103的高度可以根據實際需求具體設置。
在步驟S44中,當晶體放轉肩完成後,就可以開啟下料組件101,此時晶體等徑生長,下料組件101的加料量保持與晶體增加的重量相等,例如晶體重量每增加1kg,下料組件101需向坩堝組件100內加1kg料,也就是說,在晶體等徑生長過程中,籽晶102每上升一定高度導致熔湯减少的質量需要下料組件101加同樣質量的料進行相應補充,從而便於在晶體生長過程中維持液面穩定,進一步保證晶體穩定生長,實現了連續加料生產晶體,便於生產較大尺寸的晶體。例如,可以實現連續加料生產單晶矽,以便於解決重摻晶體的偏析問題。
例如,在圖7的示例中,下料組件101包括原料下料管1011,在步驟S44中,開啟原料下料管1011,並控制原料下料管1011的加料量與晶體的成晶量相等,則當晶體放轉肩完成後,就可以開啟原料下料管1011,此時晶體等徑生長,原料下料管1011的加料量保持與晶體增加的重量相等,例如晶體重量每增加1kg,原料下料管1011需向坩堝組件100內加1kg再加入原料,以在晶體生長過程中維持液面穩定;可以理解的是,在圖7的示例中,在拉晶過程中如果需要向坩堝組件100內添加摻雜劑,則在步驟S44中,開啟原料下料管1011和摻雜劑下料管1012,並控制原料下料管1011的加料量和摻雜劑下料管1012的加料量之和與晶體的成晶量相等。
又例如,在圖9的示例中,下料組件101包括原料下料管1011和摻雜劑下料管1012,在步驟S44中,開啟原料下料管1011和摻雜劑下料管1012,並控制原料下料管1011的加料量和摻雜劑下料管1012的加料量之和與晶體的成晶量相等,則當晶體放轉肩完成後,就可以開啟原料下料管1011和摻雜劑下料管1012,此時晶體等徑生長,晶體重量每增加1kg,原料下料管1011和摻雜劑下料管1012一共需向坩堝組件100內加1kg料,以在晶體生長過程中維持液面穩定。
在一些實施例中,如圖7和圖9所示,磁場裝置103包括第一通電線圈1031和第二通電線圈1032,第一通電線圈1031和第二通電線圈1032均環繞爐體200設置,第一通電線圈1031適於位於坩堝組件100內熔體固液界面的上方,第二通電線圈1032間隔第一通電線圈1031的下方,且第二通電線圈1032適於位於坩堝組件100內熔體固液界面的下方。由此,磁場裝置103結構簡單,便於實現。
其中,第二通電線圈1032和第一通電線圈1031的電流方向相反,以使磁場裝置103產生尖形磁場,在尖形磁場的磁力線作用下,第一通電線圈1031和第二通電線圈1032中間的磁力線呈“尖角形”對稱分布。例如,晶體生長時,可以使固液界面位於第一通電線圈1031和第二通電線圈1032之間的對稱面上,大部分熔湯都受到磁場的抑制作用,有效减少熔湯內紊流的產生。
在一些實施例中,如圖7所示,第一通電線圈1031和第二通電線圈1032均與爐體200同軸設置,則第一通電線圈1031的中心軸線、第二通電線圈1032的中心軸線和爐體200的中心軸線重合。其中,第一通電線圈1031和第二通電線圈1032適於關於坩堝組件100內熔體的固液界面102b對稱設置,此時第一通電線圈1031和第二通電線圈1032中的電流大小可以相等,且第一通電線圈1031和第二通電線圈1032的匝數可以相等,便於簡化磁場裝置103的設置。
在一些實施例中,在步驟S42中,設定移動速度段的範圍為2mm/min~3mm/min(包括端點值),以保證縮頸順利進行。例如,在步驟S42中,控制籽晶102以穩定的移動速度向上提拉,使得晶體縮頸部分的直徑位於5mm~6mm之間,去除位錯,並在晶體縮頸部分達到一定長度例如200mm後,控制加熱功率和籽晶102的提拉速度,以進行放轉肩。
在一些實施裡中,如圖3和圖4所示,在步驟S1中,在將初始原料裝入坩堝組件100內之前,在爐體200內依次安裝加熱器104和第一絕熱層1051,將坩堝軸106上升至第一高度位置,並將坩堝組件100安裝於坩堝軸106,其中,加熱器104用於對坩堝組件100進行加熱,第一絕熱層1051位於加熱器104的外側且第一絕熱層1051圍繞加熱器104設置,例如第一絕熱層1051形成為筒狀結構,以便於維持爐體200內的溫度,阻擋加熱器104的熱輻射,降低熱能損失,有利於提升晶體生長爐的熱能利用率,保證熔料速率,坩堝軸106可升降地安裝於爐體200,且坩堝軸106用於帶動坩堝組件100轉動;在將初始原料裝入坩堝組件100內之後,將坩堝軸106下降至第二高度位置,並在爐體200內安裝第二絕熱層1052和導流筒107,其中,第二絕熱層1052設在第一絕熱層1051的上端,第二絕熱層1052的至少部分位於坩堝組件100的上方,且第二絕熱層1052的位於坩堝組件100上方的部分向內延伸至超過第一坩堝1以部分遮蓋盛放空間100a,使得第二絕熱層1052的至少部分內側壁位於第一坩堝1的徑向內側,則第二絕熱層1052可以阻擋盛放空間100a內熔體的熱輻射,進一步降低熱能損失,導流筒107用於將晶體生長區
Figure 02_image001
3隔開,避免晶體生長區
Figure 02_image001
3的晶體易受到坩堝組件100內熔湯和加熱器104的輻射熱,保證晶體固化,同時導流筒107可以將晶體生長區
Figure 02_image001
3與原料下料區
Figure 02_image001
1間隔開,以避免原料下料區
Figure 02_image001
1的熔湯或下料噴濺導致晶體生長區
Figure 02_image001
3氣氛不佳容易造成雜質擊中而使晶體失去單晶結構。
顯然,第一高度位置位於第二高度位置的上方,則將坩堝軸106下降至第二高度位置後,再安裝導流筒107,可以避免已經加至坩堝組件100內的初始原料碰觸導流筒107底部,便於保證導流筒107的順利安裝,同時也保證了坩堝組件100內初始原料的潔淨。
由此,步驟S1可以為:在爐體200內依次安裝加熱器104和第一絕熱層1051,將坩堝軸106上升至第一高度位置,並將坩堝組件100安裝於坩堝軸106,而後,將初始原料裝入坩堝組件100內,再將坩堝軸106下降至第二高度位置,並在爐體200內安裝第二絕熱層1052和導流筒107。由此,通過合適設置爐體200內各部件的安裝以及裝料的先後順序,方便了爐體200內各部件的順利安裝,也避免了已經加至坩堝組件100內的初始原料碰觸爐體200內其他部件。
可選地,第一高度位置為坩堝軸106可達到的最高位置,第二高度位置為坩堝軸106可達的最低位置。
例如,在圖7的示例中,坩堝組件100包括第一坩堝1、第二坩堝2和第三坩堝3,加熱器104包括側加熱器1041,側加熱器1041圍繞坩堝組件100設置,即側加熱器1041位於坩堝組件100的徑向外側,例如,側加熱器1041可以沿坩堝組件100的周向連續延伸以形成為筒狀結構;第一絕熱層1051形成為筒狀結構且位於側加熱器1041的徑向外側,以阻擋加熱器104的熱輻射,降低熱能損失,第二絕熱層1052設在第一絕熱層1051的上端且包括沿坩堝組件100軸向設置的第一子絕熱層1052a和第二子絕熱層1052b,第二子絕熱層1052b設在第一絕熱層1051的上端,且第二子絕熱層1052b向內延伸至超過側加熱器1041,以圍繞坩堝組件100設置,則第二子絕熱層1052b位於側加熱器1041的上方,第二子絕熱層1052b的徑向內端位於側加熱器1041的徑向內側,使得第二子絕熱層1052b與坩堝組件100之間的徑向距離更小,有利於提升第一絕熱層1051的保溫、隔熱效果,第一子絕熱層1052a設在第二子絕熱層1052b的上端,且第一子絕熱層1052a位於坩堝組件100的上方以遮蓋盛放空間100a的一部分,第一子絕熱層1052a向內至少延伸至第一坩堝1徑向內側,從而第一子絕熱層1052a可以至少阻擋第一腔室R1內熔體的熱輻射,進一步降低熱能損失。顯然,第二絕熱層1052的一部分部分位於坩堝組件100的上方,使得第二絕熱層1052的部分內側壁位於第一坩堝1的徑向內側。
又例如,在圖9的示例中,坩堝組件100包括第一坩堝1、第二坩堝2、第三坩堝3和第四坩堝4,第四坩堝4設在第三腔室R3內以將第三腔室R3分隔成第一子腔室R31和第二子腔室R32,加熱器104包括側加熱器1041,側加熱器1041圍繞坩堝組件100設置,即側加熱器1041位於坩堝組件100的徑向外側,例如,側加熱器1041可以沿坩堝組件100的周向連續延伸以形成為筒狀結構;第一絕熱層1051形成為筒狀結構且位於側加熱器1041的徑向外側,以阻擋加熱器104的熱輻射,降低熱能損失,第二絕熱層1052設在第一絕熱層1051的上端且包括沿坩堝組件100軸向設置的第一子絕熱層1052a和第二子絕熱層1052b,第二子絕熱層1052b設在第一絕熱層1051的上端,第二子絕熱層1052b向內延伸至不超過第二坩堝2,則第二子絕熱層1052b可以遮蓋第一腔室R1頂側的至少部分,且第二子絕熱層1052b並未遮蓋第二腔室R2的頂側,也就是說,第二子絕熱層1052b可以遮蓋第一腔室R1頂側的一部分,或者第二子絕熱層1052b可以第一腔室R1的整個頂側,從而第二子絕熱層1052b可以阻擋第一腔室R1內熔體的熱輻射,進一步降低熱能損失,第一子絕熱層1052a設在第二子絕熱層1052b的上端,且第一子絕熱層1052a向內至少延伸至第三坩堝3,則第一子絕熱層1052a可以至少遮蓋第二腔室R2的頂側,且第一子絕熱層1052a可以遮蓋第三腔室R3也可以不遮蓋第三腔室R3,從而第一子絕熱層1052a可以至少阻擋第二腔室R2內熔體的熱輻射。顯然,整個第二絕熱層1052位於坩堝組件100的上方,使得第二絕熱層1052的整個內側壁位於第一坩堝1的徑向內側。
而且,在圖9的示例中,第一子絕熱層1052a與坩堝組件100之間在上下方向上的距離大於第二子絕熱層1052b與坩堝組件100之間在上下方向上的距離,由於第一子絕熱層1052a對應於第二腔室R2設置,則至少第二腔室R2的上方可以具有由第一子絕熱層1052a和第二子絕熱層1052b共同限定的避讓空間1050,避讓空間1050可以讓導流至此處的矽蒸汽與揮發的摻雜劑充分受到氬氣(或氮氣)的帶動,保證爐體200內氣氛,而且加熱器104達到避讓空間1050對應位置處的能量已遞减,避讓空間1050可以允許該位置處的熱能向上走,有效提升了固液界面處的溫度梯度,便於晶體生長爐生產較大尺寸重摻晶體,以更好地滿足實際需求。
在一些實施例中,如圖7所示,爐體200包括本體200a和上蓋200b,加熱器104、絕熱層105、坩堝軸106和導流筒107均安裝於本體200a,晶體生產方法還包括:步驟S5、將冷卻套108和下料組件101均安裝於上蓋200b,並將上蓋200b固定在本體200a上後,對爐體200內進行抽真空處理,以更好地滿足晶體生長所需的壓力。其中,步驟S5位於步驟S1和步驟S2之間,冷卻套108用於對晶體進行冷卻,保證晶體固化成晶。
可選地,對爐體200內進行抽真空處理後,爐體200內的壓力可以保持在20torr~50torr之間,以更好地滿足晶體生長需求。
在一些實施例中,第一連通孔20的孔徑為d1,第二連通孔30的孔徑為d2,d1、d2滿足:d1<d2,則第一連通孔20的孔徑較小,例如第一連通孔20的孔徑可以小於或等於第一腔室R1內顆粒料的直徑,可以避免顆粒料沒有熔化就直接進入第二腔室R2,繼而進入第三腔室R3造成雜質擊中、影響成晶率,從而有利於保證晶體成晶率;第二連通孔30的孔徑大於第一連通孔20的孔徑,可以避免熔湯聚集在第二腔室R2導致熔湯滯留,保證熔湯流動更加順暢;而且,在第二腔室R2內原料和摻雜劑均基本完成化料,第二連通孔30的孔徑較大,可以避免熔湯滯留而引起固液界面振動,影響後續的拉晶製程。
其中,第一連通孔20和第二連通孔30可以均形成為圓孔;當然,當第一連通孔20和第二連通孔30中的至少一個形成為非圓孔時,第一連通孔20和第二連通孔30中上述至少一個的孔徑可以理解為當量直徑。
在一些實施例中,如圖5、圖6和圖8所示,第一連通孔20形成在第二坩堝2的底部,且第一連通孔20鄰近第二坩堝2的R角設置,例如第一連通孔20可以向上靠近第二坩堝2的R角設置。在顆粒料熔化後,由於坩堝組件100外冷內熱,且熔湯由外向內、在重力作用下向下流動,則將第一連通孔20鄰近第二坩堝2的R角設置,便於熔湯順暢通過第一連通孔20流至第二腔室R2;而且,顆粒料未完全熔化時,顆粒料變小、且在浮力作用下向上浮起,如果將第一連通孔20設在第二坩堝2的上部,可能會使得未完全熔化的顆粒料流至第二腔室R2,繼而易造成雜質擊中,由此,將第一連通孔20設在第二坩堝2的底部,可以避免未完全熔化的顆粒料進入晶體生長區
Figure 02_image001
3影響成晶率。
其中,第二坩堝2的R角可以理解為第二坩堝2的轉角處。坩堝的R角的位置已為本領域技術人員所熟知,在此不再贅述。
如圖6所示,第一連通孔20為多個,多個第一連通孔20包括第一進料孔20a和第二進料孔20b,第二進料孔20b位於第一進料孔20a的上方,第一進料孔20a可以為主要進料孔,通過在第一進料孔20a的上方增設第二進料孔20b,可以避免第一進料孔20a發生堵塞時,第一腔室R1內的熔湯仍可以通過第二進料孔20b流至第二腔室R2,保證熔湯流動順暢。具體而言,由於第一腔室R1適於構造成下料區,則在第一腔室R1加料時,顆粒具有一定下落速度,使得顆粒流向第一腔室R1的底部而堵住第一進料孔20a,此時第一腔室R1仍可以通過第二進料孔20b與第二腔室R2連通,保證坩堝組件100正常運行。
可選地,在第一腔室R1加料時,加料位置可以位於第一腔室R1的某一位置處,第一進料孔20a可以位於第二坩堝2的遠離加料位置的一側。
需要說明的是,“多個”的含義是兩個或兩個以上;“第二進料孔20b位於第一進料孔20a的上方”僅僅表示第二進料孔20b的水平高度高於第一進料孔20a,可以指第二進料孔20b位於第一進料孔20a的正上方、也可以指第二進料孔20b位於第一進料孔20a的斜上方,換言之,在第二坩堝2的周向上,第一進料孔20a和第二進料孔20b之間的相對位置可以根據實際應用具體設置,則第一進料孔20a設置位置和第二進料孔20b設置位置以第二坩堝2的中心為圓心形成的圓心角的範圍可以為0°~360°(包括端點值)。
例如,在圖6的示例中,第一連通孔20為三個,第一進料孔20a為兩個,第二進料孔20b為一個,且第二進料孔20b位於兩個第一進料孔20a的上方,且在第二坩堝2的周向上,第二進料孔20b位於兩個第一進料孔20a之間。
在一些實施例中,如圖5和圖8所示,第二連通孔30形成在第三坩堝3的遠離第一連通孔20的一側,則對於坩堝組件100而言,第一連通孔20和第二連通孔30分別位於坩堝組件100的徑向兩側,通過第一連通孔20流至第二腔室R2的熔湯需要繞流至第三坩堝3的另一側,才能通過第二連通孔30流至第三腔室R3。由此,盛放空間100a內的熔湯自下料位置流至第三腔室R3需要流經較長路徑,可以防止熔湯快速流動易引起液面振動,有利於保證液面的穩定性。
例如,在圖5和圖8的示例中,第一腔室R1和第二腔室R2均形成為環狀結構,第二連通孔30形成在第三坩堝3的遠離第一連通孔20的徑向一側,則盛放空間100a內的熔湯迂回曲折流動,便於保證晶體生長時或加料時液面穩定。
在一些實施例中,如圖5所示,第一坩堝1的頂端和第二坩堝2的頂端齊平設置,則第一坩堝1的頂端和第二坩堝2的頂端大致位於同一平面上,且第一坩堝1的頂端和第二坩堝2的頂端均位於第三坩堝3頂端的上方,也就是說,在第一坩堝1、第二坩堝2和第三坩堝3中,第三坩堝3頂端的高度最低。
當坩堝組件100應用於單晶爐時,單晶爐的冷卻套108可以設在晶體生長區
Figure 02_image001
3的正上方,且在垂直於坩堝組件100中心軸線的平面上,冷卻套108的正投影位於晶體生長區
Figure 02_image001
3的正投影範圍內,通過設置第三坩堝3頂端的高度相對第二坩堝2頂端的高度較低,便於在第三坩堝3和冷卻套108之間設置導流筒107,以將冷卻套108和第三坩堝3間隔開,避免晶體生長易受高溫熔湯產生的熱輻射,保證晶體固化。當然,坩堝組件100還可以用於其他設備。
在一些實施例中,如圖5和圖8所示,第一坩堝1包括第一本體11,第二坩堝2包括第二本體21,第三坩堝3包括第三本體31,第一本體11、第二本體21和第三本體31均形成為圓筒結構,第一本體11、第二本體21和第三本體31由外向內依次設置,且第一本體11、第二本體21和第三本體31同軸設置,則第一本體11的中心軸線、第二本體21的中心軸線和第三本體31的中心軸線重合設置,且第一本體11的中心軸線可以形成為坩堝組件100的中心軸線,第一腔室R1和第二腔室R2可以均形成為環狀結構,從而當坩堝組件100在使用時,坩堝組件100可以在坩堝軸106的驅動下繞其中心軸線轉動,則第一腔室R1繞坩堝組件100的中心軸線轉動,第一腔室R1的下料位置可以無需跟隨坩堝組件100轉動,方便了坩堝組件100的下料設置。
其中,第一本體11的直徑D1、第二本體21的直徑D2和第三本體31的直徑D3滿足Dn+1=Dn*Xn,其中,n=1、2,60%≤Xn≤80%,例如Xn可以為60%、或70%、或80%等。
由此,D2=D1*X1,60%≤X1≤80%,便於保證第一腔室R1具有足夠的下料空間,易於實現合適的再加入原料的下料量,且便於保證第一腔室R1內的熔湯具有足夠的流動空間,使得第一腔室R1內的熔湯通過第一連通孔20流至第二腔室R2;D3=D2*X2,60%≤X2≤80%,在保證第三腔室R3滿足晶體生長空間需求的前提下,便於保證第二腔室R2具有足夠的空間,使得熔湯更加均勻,且便於保證第二腔室R2內的熔湯具有足夠的流動空間,使得第二腔室R2內的熔湯通過第二連通孔30流至第三腔室R3。其中,X1和X2可以相等、也可以不等。
例如,在圖5和圖8的示例中,第一本體11位於第一坩堝1的頂部,第二本體21位於第二坩堝2的頂部,第三本體31位於第三坩堝3的頂部,X1=X2=80%,則D2=D1*80%、D3=D2*80%。
在一些實施例中,如圖5和圖8所示,第一坩堝1包括坩堝底壁12和坩堝側壁13,坩堝側壁13自坩堝底壁12的邊沿向上延伸,且坩堝側壁13與坩堝底壁12共同限定出盛放空間100a,第二坩堝2和第三坩堝3均形成為筒形結構,第二坩堝2通過第一卡榫結構5與坩堝底壁12限位配合,第三坩堝3通過第二卡榫結構6與坩堝底壁12限位配合,則便於簡化第二坩堝2和第三坩堝3的結構,方便加工,同時方便了第二坩堝2與第一坩堝1、第三坩堝3與第一坩堝1之間的裝配,保證坩堝組件100形成為一個穩定整體,避免高堝轉造成的損壞與移動,保證坩堝組件100使用可靠。
其中,第一卡榫結構5和第二卡榫結構6的具體結構可以根據實際應用設置,只需保證第二坩堝2與第一坩堝1裝配可靠、第三坩堝3與第一坩堝1裝配可靠即可。
需要說明的是,在本發明的描述中,“筒形結構”應作廣義理解,不限於圓筒形結構,例如可以為多邊形筒結構,也不限於橫截面積始終不變的筒形結構,例如可以為錐形筒結構。
在一些實施例中,如圖8所示,坩堝組件100還包括第四坩堝4,第四坩堝4設在第三腔室R3內以將第三腔室R3分隔成第一子腔室R31和第二子腔室R32,第四坩堝4上形成有第三連通孔40以連通第一子腔室R31和第二子腔室R32,則第一子腔室R31內熔湯可以通過第三連通孔40流至第二子腔室R32,或者第二子腔室R32內的熔湯可以通過第三連通孔40流至第一子腔室R31。其中,第二子腔室R32通過第一連通孔20與第二腔室R2連通,有利於進一步提升第一子腔室R31內熔湯的均勻性,有利於保證加料過程中液面的穩定性,便於實現晶體徑向電阻與軸向電阻的均勻分布,從而保證生產穩定,採用坩堝組件100生產的晶體具有良好品質。
例如,第一子腔室R31和第二子腔室R32的頂側均敞開設置,第一子腔室R31位於第四坩堝4的內側,第二子腔室R32形成在第四坩堝4的外側。其中,第一子腔室R31適於構造成晶體生長區
Figure 02_image001
3,第二腔室R2適於構造成摻雜劑下料區
Figure 02_image001
2,則第二腔室R2用於摻雜劑下料。
在圖8的示例中,下料組件101包括原料下料管1011和摻雜劑下料管1012,第一腔室R1適於構造成原料下料區
Figure 02_image001
1,第二腔室R2適於構造成摻雜劑下料區
Figure 02_image001
2,第一子腔室R31適於構造成晶體生長區
Figure 02_image001
3,在步驟S3中,原料下料管1011與原料下料區
Figure 02_image001
1對應設置,以使原料下料管1011向第一腔室R1加料,摻雜劑下料管1012與摻雜劑下料區
Figure 02_image001
2對應設置,以使摻雜劑下料管1012向第二腔室R2加料。
坩堝組件100使用過程中,下料組件101加料時,再加入原料(例如矽)加入第一腔室R1內,摻雜劑(例如砷)加入第二腔室R2內,第一子腔室R31進行拉晶;由於第一腔室R1和第二腔室R2的熔湯需要通過第二子腔室R32才能流至第一子腔室R31,第二子腔室R32可以適於構造成“攪拌區”,可以為熔化後的原料和摻雜劑提供足夠的混合空間,從而有利於進一步提升第一子腔室R31內熔湯的均勻性,且具有良好的保溫效果,便於生產出較高品質的晶體。而且,通過設置第二子腔室R32以將第一子腔室R31與第一腔室R1和第二腔室R2隔開,可以避免加料過程中易使得液面受到擾動,有利於保證加料過程中液面的穩定性,便於實現晶體穩定生長,實現晶體徑向電阻與軸向電阻的均勻分布,保證生產穩定。同時,坩堝組件100在使用時可以繞其中心軸線轉動,液面穩定可以避免拉晶過程中固液界面過於突出於晶體,從而在採用CCZ生產過程中,便於進一步有效控制晶體電阻在軸向和徑向上均勻分布,有利於進一步提升晶體的品質;例如,電子產品中應用的晶圓的電阻須落在一個狹窄的電阻範圍內,採用本發明中坩堝組件100生產的晶體可以滿足上述需求,不會造成原料、工時的損失浪費,便於節省成本。
需要說明的是,方向“外”是指遠離坩堝組件100的中心軸線的方向,其相反方向被定義為內。
在步驟S1中,將初始原料分別裝入第一腔室R1、第二腔室R2、第一子腔室R31和第二子腔室R32,第一腔室R1內的初始原料的顆粒直徑大於第一子腔室R31內的初始原料的顆粒直徑和第二子腔室R32內的初始原料的顆粒直徑,便於保證第一子腔室R31和第二子腔室R32內盛放足夠的初始原料,且避免第一子腔室R31和第二子腔室R32在熔料過程中易產生氣泡影響拉晶。
當然,本發明不限於;在一些實施例中,如圖5所示,坩堝組件100包括第一坩堝1、第二坩堝2和第三坩堝3,且坩堝組件100不包括第四坩堝4,此時第一腔室R1還可以用於構造成摻雜劑下料區
Figure 02_image001
2,則可以在第一腔室R1內添加原料、摻雜雜質,此時第二腔室R2可以構成坩堝組件100的“熔融區”。
在一些實施例中,第一連通孔20的孔徑為d1,第二連通孔30的孔徑為d2,第三連通孔40的孔徑為d3,d1、d2和d3滿足:d1<d2<d3,則第一連通孔20的孔徑較小,例如第一連通孔20的孔徑可以小於或等於第一腔室R1內顆粒料的直徑,可以避免顆粒料沒有熔化就直接進入第二腔室R2,繼而進入第一子腔室R31造成雜質擊中、影響成晶率,從而有利於保證晶體成晶率;第二連通孔30的孔徑大於第一連通孔20的孔徑,可以避免熔湯聚集在第二腔室R2導致熔湯滯留,保證熔湯流動更加順暢;而在第二子腔室R32內原料和摻雜劑均已完成化料,第三連通孔40的孔徑較大,可以避免熔湯滯留而引起固液界面振動,影響後續的拉晶製程。
其中,第一連通孔20、第二連通孔30和第三連通孔40可以均形成為圓孔;當然,當第一連通孔20、第二連通孔30和第三連通孔40中的至少一個形成為非圓孔時,第一連通孔20、第二連通孔30和第三連通孔40中上述至少一個的孔徑可以理解為當量直徑。
在一些實施例中,如圖8所示,第二連通孔30形成在第三坩堝3的遠離第一連通孔20的一側,第三連通孔40形成在第四坩堝4遠離第二連通孔30的一側,則對於坩堝組件100而言,第一連通孔20和第二連通孔30分別位於坩堝組件100的徑向兩側,第二連通孔30和第三連通孔40分別位於坩堝組件100的徑向兩側,則通過第一連通孔20流至第二腔室R2的熔湯需要繞流至第三坩堝3的另一側,才能通過第二連通孔30流至第二子腔室R32,且通過第二連通孔30流至第二子腔室R32的熔湯需要繞流至第四坩堝4的另一側,才能通過第三連通孔40流至第一子腔室R31。由此,盛放空間100a內的熔湯自下料位置流至第一子腔室R31需要流經較長路徑,可以防止熔湯快速流動易引起液面振動,有利於保證液面的穩定性。
例如,在圖8的示例中,第一腔室R1、第二腔室R2和第一子腔室R31、第二子腔室R32均形成為環狀結構,第二連通孔30形成在第三坩堝3的遠離第一連通孔20的徑向一側,第三連通孔40形成在第四坩堝4的遠離第二連通孔30的徑向一側,則盛放空間100a內的熔湯迂回曲折流動,便於保證晶體生長時或加料時液面穩定。
在一些實施例中,如圖8所示,第一坩堝1的頂端、第二坩堝2的頂端和第三坩堝3的頂端齊平設置,則第一坩堝1的頂端、第二坩堝2的頂端和第三坩堝3的頂端大致位於同一平面上,且第一坩堝1的頂端、第二坩堝2的頂端和第三坩堝3的頂端均位於第四坩堝4頂端的上方,也就是說,在第一坩堝1、第二坩堝2、第三坩堝3和第四坩堝4中,第四坩堝4頂端的高度最低。
當坩堝組件100應用於單晶爐時,單晶爐的冷卻套108可以設在晶體生長區
Figure 02_image001
3的正上方,且在垂直於坩堝組件100中心軸線的平面上,冷卻套108的正投影位於晶體生長區
Figure 02_image001
3的正投影範圍內,通過設置第四坩堝4頂端的高度相對第三坩堝3頂端的高度較低,便於在第四坩堝4和冷卻套108之間設置導流筒107,以將冷卻套108和第四坩堝4間隔開,避免晶體生長易受高溫熔湯產生的熱輻射,保證晶體固化;而且,第二坩堝2頂端和第三坩堝3頂端的高度較高,有利於避免摻雜劑(例如易揮發的摻雜劑,比如砷)被氣流帶走例如避免摻雜劑被單晶爐內的氬氣流帶走,在一定程度上可以阻止氬氣流與固液界面接觸,避免了摻雜劑的浪費,同時避免了摻雜不均勻造成晶體徑向電阻率不均勻。當然,坩堝組件100還可以用於其他設備。
需要說明的是,第一坩堝1的頂端、第二坩堝2的頂端和第三坩堝3的頂端齊平設置,可以包括以下情况:1、第一坩堝1的頂端、第二坩堝2的頂端和第三坩堝3的頂端位於同一平面上;2、第一坩堝1的頂端、第二坩堝2的頂端和第三坩堝3的頂端在上下方向上的高度位置相差不大。
在一些實施例中,如圖8所示,第一坩堝1包括第一本體11,第二坩堝2包括第二本體21,第三坩堝3包括第三本體31,第四坩堝4包括第四本體41,第一本體11、第二本體21、第三本體31和第四本體41均形成為圓筒結構,第一本體11、第二本體21、第三本體31和第四本體41由外向內依次設置,且第一本體11、第二本體21、第三本體31和第四本體41同軸設置,則第一本體11的中心軸線、第二本體21的中心軸線、第三本體31的中心軸線和第四本體41的中心軸線重合設置,且第一本體11的中心軸線可以形成為坩堝組件100的中心軸線,第一腔室R1、第二腔室R2和第一子腔室R31、第二子腔室R32可以均形成為環狀結構,從而當坩堝組件100在使用時,坩堝組件100可以繞其中心軸線轉動,則第一腔室R1和第二腔室R2均繞坩堝組件100的中心軸線轉動,第一腔室R1的下料位置和第二腔室R2的下料位置可以無需跟隨坩堝組件100轉動,方便了坩堝組件100的下料設置。
其中,第一本體11的直徑D1、第二本體21的直徑D2、第三本體31的直徑D3和第四本體41的直徑D4滿足Dn+1=Dn*Xn,其中,n=1、2、3,60%≤Xn≤80%,例如Xn可以為60%、或70%、或80%等。
由此,D4=D3*X3,60%≤X3≤80%,在保證第一子腔室R31滿足晶體生長空間需求的前提下,便於保證第二子腔室R32具有足夠的空間,使得原料與摻雜劑形成的熔湯更加均勻,且便於保證第二子腔室R32內的熔湯具有足夠的流動空間,使得第二子腔室R32內的熔湯通過第三連通孔40流至第一子腔室R31。其中,X1、X2和X3可以相等、也可以不等,即X1、X2和X3可以滿足:X1=X2=X3、或X1≠X2=X3、或X1=X2≠X3、或X1≠X2≠X3。
例如,在圖8的示例中,第一本體11位於第一坩堝1的頂部,第二本體21位於第二坩堝2的頂部,第三本體31位於第三坩堝3的頂部,第四本體41位於第四坩堝4的頂部,X1=X2=X3=80%,則D2=D1*80%、D3=D2*80%、D4=D3*80%。
在一些實施例中,如圖8所示,第一坩堝1包括坩堝底壁12和坩堝側壁13,坩堝側壁13自坩堝底壁12的邊沿向上延伸,且坩堝側壁13與坩堝底壁12共同限定出盛放空間100a,第二坩堝2、第三坩堝3和第四坩堝4均形成為筒形結構,第二坩堝2通過第一卡榫結構5與坩堝底壁12限位配合,第三坩堝3通過第二卡榫結構6與坩堝底壁12限位配合,第四坩堝4通過第三卡榫結構7與坩堝底壁12限位配合,則便於簡化第二坩堝2、第三坩堝3和第四坩堝4的結構,方便加工,同時方便了第二坩堝2與第一坩堝1、第三坩堝3與第一坩堝1、第四坩堝4與第一坩堝1之間的裝配,保證坩堝組件100形成為一個穩定整體,避免高堝轉造成的損壞與移動,保證坩堝組件100使用可靠。
在一些實施例中,如圖5和圖8所示,坩堝組件100還包括托盤8,托盤8支撑在第一坩堝1的底部,有利於提升坩堝組件100的承載能力;托盤8的頂端位於第一坩堝1的頂端、第二坩堝2的頂端和第三坩堝3的頂端的下方,即在第一坩堝1、第二坩堝2、第三坩堝3和托盤8中,托盤8頂端的高度位置最低,從而在保證坩堝組件100承載能力的前提下,可以節省托盤8的用材量,降低成本。
可選地,在圖5和圖8的示例中,托盤8為石墨件。
如圖5和圖8所示,第一坩堝1包括坩堝底壁12和坩堝側壁13,坩堝側壁13自坩堝底壁12的邊沿向上延伸,且坩堝側壁13與坩堝底壁12共同限定出盛放空間100a。托盤8的頂端適於位於盛放空間100a內液面的上方,且托盤8向上超過坩堝底壁12的部分的高度為坩堝側壁13高度的一半,便於保證坩堝組件100穩定承載熔湯,避免盛放空間100a內熔湯過多而出現泄漏現象。
根據本發明實施例的坩堝組件100的其他構成以及操作對於本領域普通技術人員而言都是已知的,這裡不再詳細描述。
在本發明的描述中,需要理解的是,術語“中心”、“橫向”、“高度”、“上”、“下”、“頂”、“底”、“內”、“外”、“軸向”、“徑向”、“周向”等指示的方位或位置關係為基於附圖所示的方位或位置關係,僅是為了便於描述本發明和簡化描述,而不是指示或暗示所指的裝置或元件必須具有特定的方位、以特定的方位構造和操作,因此不能理解為對本發明的限制。
此外,術語“第一”、“第二”僅用於描述目的,而不能理解為指示或暗示相對重要性或者隱含指明所指示的技術特徵的數量。由此,限定有“第一”、“第二”的特徵可以明示或者隱含地包括一個或者更多個該特徵。在本發明的描述中,“多個”的含義是兩個或兩個以上,除非另有明確具體的限定。
在本發明中,除非另有明確的規定和限定,術語“安裝”、“相連”、“連接”、“固定”等術語應做廣義理解,例如,可以是固定連接,也可以是可拆卸連接,或成一體;可以是機械連接,也可以是電連接,還可以是通信;可以是直接相連,也可以通過中間媒介間接相連,可以是兩個元件內部的連通或兩個元件的相互作用關係。對於本領域的普通技術人員而言,可以根據具體情况理解上述術語在本發明中的具體含義。
在本發明中,除非另有明確的規定和限定,第一特徵在第二特徵“上”或“下”可以是第一和第二特徵直接接觸,或第一和第二特徵通過中間媒介間接接觸。而且,第一特徵在第二特徵“之上”、“上方”和“上面”可是第一特徵在第二特徵正上方或斜上方,或僅僅表示第一特徵水平高度高於第二特徵。第一特徵在第二特徵“之下”、“下方”和“下面”可以是第一特徵在第二特徵正下方或斜下方,或僅僅表示第一特徵水平高度小於第二特徵。
在本說明書的描述中,參考術語“一個實施例”、“一些實施例”、“示例”、“具體示例”、或“一些示例”等的描述意指結合該實施例或示例描述的具體特徵、結構、材料或者特點包含於本發明的至少一個實施例或示例中。在本說明書中,對上述術語的示意性表述不必須針對的是相同的實施例或示例。而且,描述的具體特徵、結構、材料或者特點可以在任一個或多個實施例或示例中以合適的方式結合。此外,在不相互矛盾的情况下,本領域的技術人員可以將本說明書中描述的不同實施例或示例以及不同實施例或示例的特徵進行結合和組合。
儘管已經示出和描述了本發明的實施例,本領域的普通技術人員可以理解:在不脫離本發明的原理和宗旨的情况下可以對這些實施例進行多種變化、修改、替換和變型,本發明的範圍由申請專利範圍及其等同物限定。
200:爐體 200a:本體 200b:上蓋 101:下料組件 1011:原料下料管 1012:摻雜劑下料管 102:籽晶 102b:固液界面 103:磁場裝置 1031:第一通電線圈 1032:第二通電線圈 104:加熱器 1041:側加熱器 1050:避讓空間 105:絕熱層 1051:第一絕熱層 1052:第二絕熱層 1052a:第一子絕熱層 1052b:第二子絕熱層 106:坩堝軸 107:導流筒 108:冷卻套 100:坩堝組件 100a:盛放空間 R1:第一腔室 R2:第二腔室 R3:第三腔室 R31:第一子腔室 R32:第二子腔室
Figure 02_image001
1:原料下料區
Figure 02_image001
2:摻雜劑下料區
Figure 02_image001
3:晶體生長區 1:第一坩堝 11:第一本體 12:坩堝底壁 13:坩堝側壁 2:第二坩堝 20:第一連通孔 20a:第一進料孔 20b:第二進料孔 21:第二本體 3:第三坩堝 30:第二連通孔 31:第三本體 4:第四坩堝 40:第三連通孔 41:第四本體 5:第一卡榫結構 6:第二卡榫結構 7:第三卡榫結構 8:托盤
圖1是根據本發明一個實施例的晶體生產方法的流程示意圖; 圖2是根據本發明另一個實施例的晶體生產方法的流程示意圖; 圖3是根據本發明又一個實施例的晶體生產方法的流程示意圖; 圖4是根據本發明再一個實施例的晶體生產方法的流程示意圖; 圖5是根據本發明一個實施例的坩堝組件的示意圖; 圖6是圖5中所示的坩堝組件的局部示意圖; 圖7是圖5中所示的坩堝組件用於單晶爐中的示意圖; 圖8是根據本發明另一個實施例的坩堝組件的示意圖; 圖9是圖8中所示的坩堝組件用於單晶爐中的示意圖。
S1~S4:步驟

Claims (14)

  1. 一種晶體生產方法,其特徵在於,包括以下步驟: 步驟S1:將初始原料裝入坩堝組件(100)內; 步驟S2:對所述坩堝組件(100)進行加熱以使所述初始原料熔化,並在設定時間後,所述坩堝組件(100)以設定轉速段內的轉速轉動,以均勻所述坩堝組件(100)的內部溫度; 步驟S3:在熔料完成後,將下料組件(101)下降至所述坩堝組件(100)內的液面上方,且與所述液面上下相距h,所述下料組件(101)包括原料下料管(1011),所述原料下料管(1011)將再加入原料加至所述坩堝組件(100)的原料下料區(
    Figure 03_image001
    1);以及 步驟S4:在所述原料下料區(
    Figure 03_image001
    1)下料,在晶體生長區(
    Figure 03_image001
    3)進行拉晶, 其中,所述坩堝組件(100)包括第一坩堝(1)、第二坩堝(2)和第三坩堝(3),所述第一坩堝(1)內限定出盛放空間(100a),所述盛放空間(100a)的頂側敞開設置,所述第二坩堝(2)設在所述盛放空間(100a)內且與所述第一坩堝(1)共同限定出第一腔室(R1),所述第三坩堝(3)設在所述第二坩堝(2)內且與所述第二坩堝(2)共同限定出第二腔室(R2),所述第三坩堝(3)內限定出第三腔室(R3),所述第二坩堝(2)上形成有第一連通孔(20)以連通所述第一腔室(R1)和所述第二腔室(R2),所述第三坩堝(3)上形成有第二連通孔(30)以連通所述第二腔室(R2)和所述第三腔室(R3),所述第一腔室(R1)適於構造成所述原料下料區(
    Figure 03_image001
    1),所述晶體生長區(
    Figure 03_image001
    3)位於所述第三腔室(R3)內,且 其中,在所述步驟S1中,將所述初始原料分別裝入所述第一腔室(R1)、所述第二腔室(R2)和所述第三腔室(R3)內,所述第一腔室(R1)內的所述初始原料的顆粒直徑大於所述第二腔室(R2)內的所述初始原料的顆粒直徑和所述第三腔室(R3)內的所述初始原料的顆粒直徑。
  2. 如請求項1所述的晶體生產方法,其中,所述設定轉速段的轉速範圍為0.2r/m~3r/m。
  3. 如請求項1所述的晶體生產方法,其中,所述h滿足:2mm≤h≤4mm。
  4. 如請求項1所述的晶體生產方法,其中,所述步驟S4包括以下步驟: 步驟S41、引晶:將籽晶(102)的一部分浸入所述坩堝組件(100)的所述液面下方,並開啟磁場裝置(103); 步驟S42、縮頸:以設定移動速度段內的速度提拉所述籽晶(102)進行縮頸,去除位錯; 步驟S43、放轉肩:控制加熱功率和所述籽晶(102)的提拉速度,以使晶體直徑增大至設定直徑;以及 步驟S44:等徑加料:在所述晶體生長區(
    Figure 03_image001
    3)進行晶棒的等徑生長,在所述原料下料區(
    Figure 03_image001
    1),所述原料下料管(1011)將再加入原料加至所述坩堝組件(100)的所述原料下料區(
    Figure 03_image001
    1),且控制所述下料組件的加料量與晶體的成晶量相等,維持所述液面恆定, 其中,所述坩堝組件(100)設於晶體生長爐的爐體(200)內,所述磁場裝置(103)設於所述爐體(200)外,且用於產生磁場。
  5. 如請求項1所述的晶體生產方法,其中,在所述步驟S1中, 在將所述初始原料裝入所述坩堝組件(100)內之前,在爐體(200)內依次安裝加熱器(104)和第一絕熱層(1051),將坩堝軸(106)上升至第一高度位置,並將所述坩堝組件(100)安裝於所述坩堝軸(106),其中,所述加熱器(104)用於對所述坩堝組件(100)進行加熱,所述第一絕熱層(1051)位於所述加熱器(104)的外側且圍繞所述加熱器(104)設置,所述坩堝軸(106)可升降地安裝於所述爐體(200),且用於帶動所述坩堝組件(100)轉動, 在將所述初始原料裝入所述坩堝組件(100)內之後,將所述坩堝軸(106)下降至第二高度位置,並在所述爐體(200)內安裝第二絕熱層(1052)和導流筒(107),其中,所述第二絕熱層(1052)設在所述第一絕熱層(1051)的上端,所述第二絕熱層(1052)的至少部分位於所述坩堝組件(100)的上方且向內延伸至超過所述第一坩堝(1)以部分遮蓋所述盛放空間(100a),使得所述第二絕熱層(1052)的至少部分內側壁位於所述第一坩堝(1)的徑向內側,所述導流筒(107)用於將所述晶體生長區(
    Figure 03_image001
    3)隔開。
  6. 如請求項5所述的晶體生產方法,其中,所述爐體(200)包括本體(200a)和上蓋(200b),所述加熱器(104)、所述絕熱層(105)、所述坩堝軸(106)和所述導流筒(107)均安裝於所述本體(200a),所述晶體生產方法還包括以下步驟: 步驟S5:將冷卻套(108)和所述下料組件(101)均安裝於所述上蓋(200b),並將所述上蓋(200b)固定在所述本體(200a)上後,對所述爐體(200)內進行抽真空處理,所述冷卻套(108)用於對晶體進行冷卻,其中,所述步驟S5位於所述步驟S1和所述步驟S2之間。
  7. 如請求項1所述的晶體生產方法,其中,所述第一連通孔(20)的孔徑為d1,所述第二連通孔(30)的孔徑為d2,d1、d2滿足:d1<d2。
  8. 如請求項1所述的晶體生產方法,其中,所述第一連通孔(20)形成在所述第二坩堝(2)的底部且鄰近所述第二坩堝(2)的R角設置, 所述第一連通孔(20)為多個,多個所述第一連通孔(20)包括第一進料孔(20a)和第二進料孔(20b),所述第二進料孔(20b)位於所述第一進料孔(20a)的上方。
  9. 如請求項1所述的晶體生產方法,其中,所述第一坩堝(1)包括坩堝底壁(12)和坩堝側壁(13),所述坩堝側壁(13)自所述坩堝底壁(12)的邊沿向上延伸且與所述坩堝底壁(12)共同限定出所述盛放空間(100a),所述第二坩堝(2)和所述第三坩堝(3)均形成為筒形結構,所述第二坩堝(2)通過第一卡榫結構(5)與所述坩堝底壁(12)限位配合,所述第三坩堝(3)通過第二卡榫結構(6)與所述坩堝底壁(12)限位配合。
  10. 如請求項1所述的晶體生產方法,其中,所述第一坩堝(1)的頂端和所述第二坩堝(2)的頂端齊平設置且均位於所述第三坩堝(3)的頂端上方。
  11. 如請求項1至10中任一項所述的晶體生產方法,其中,所述坩堝組件(100)還包括: 第四坩堝(4),所述第四坩堝(4)設在所述第三腔室(R3)內以將所述第三腔室(R3)分隔成第一子腔室(R31)和第二子腔室(R32),所述第四坩堝(4)上形成有第三連通孔(40)以連通所述第一子腔室(R31)和所述第二子腔室(R32),所述第二子腔室(R32)通過所述第二連通孔(30)與所述第二腔室(R2)連通,所述第一子腔室(R31)適於構造成所述晶體生長區(
    Figure 03_image001
    3),所述第二腔室(R2)適於構造成摻雜劑下料區(
    Figure 03_image001
    2), 其中,在所述步驟S1中,所述第一腔室(R1)內的所述初始原料的顆粒直徑大於所述第一子腔室(R31)內的所述初始原料的顆粒直徑和所述第二子腔室(R32)內的所述初始原料的顆粒直徑,所述下料組件(101)還包括摻雜劑下料管(1012),在所述步驟S3中,所述原料下料管(1011)與所述原料下料區(
    Figure 03_image001
    1)對應設置,以使所述原料下料管(1011)向所述第一子腔室(R31)加料,所述摻雜劑下料管(1012)與所述摻雜劑下料區(
    Figure 03_image001
    2)對應設置,以使所述摻雜劑下料管(1012)向所述第二子腔室(R32)加料。
  12. 如請求項11所述的晶體生產方法,其中,所述第一連通孔(20)的孔徑為d1,所述第二連通孔(30)的孔徑為d2,所述第三連通孔(40)的孔徑為d3,d1、d2和d3滿足:d1<d2<d3。
  13. 如請求項11所述的晶體生產方法,其中,所述第一坩堝(1)的頂端、所述第二坩堝(2)的頂端和所述第三坩堝(3)的頂端齊平設置且均位於所述第四坩堝(4)頂端的上方。
  14. 如請求項1至10中任一項所述的晶體生產方法,其中,所述坩堝組件(100)還包括: 托盤(8),所述托盤(8)支撑在所述第一坩堝(1)的底部,所述托盤(8)的頂端位於所述第一坩堝(1)的頂端、所述第二坩堝(2)的頂端和所述第三坩堝(3)的頂端的下方,所述第一坩堝(1)包括坩堝底壁(12)和坩堝側壁(13),所述坩堝側壁(13)自所述坩堝底壁(12)向上延伸且與所述坩堝底壁(12)共同限定出所述盛放空間(100a), 所述托盤(8)的頂端適於位於所述盛放空間(100a)內的所述液面的上方,且所述托盤(8)超過坩堝底壁(12)的部分的高度為所述第一坩堝(1)高度的一半。
TW110133745A 2020-09-10 2021-09-10 晶體生產方法 TWI781759B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010948861.8A CN112210820A (zh) 2020-09-10 2020-09-10 晶体生产工艺
CN202010948861.8 2020-09-10

Publications (2)

Publication Number Publication Date
TW202223173A true TW202223173A (zh) 2022-06-16
TWI781759B TWI781759B (zh) 2022-10-21

Family

ID=74049947

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110133745A TWI781759B (zh) 2020-09-10 2021-09-10 晶體生產方法

Country Status (5)

Country Link
US (1) US20230340692A1 (zh)
EP (1) EP4212652A4 (zh)
CN (1) CN112210820A (zh)
TW (1) TWI781759B (zh)
WO (1) WO2022052999A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112210820A (zh) * 2020-09-10 2021-01-12 徐州鑫晶半导体科技有限公司 晶体生产工艺
CN114717645B (zh) * 2022-03-31 2023-08-18 中环领先(徐州)半导体材料有限公司 加料管、加料方法和晶体生长设备
CN114717646B (zh) * 2022-03-31 2023-11-28 中环领先(徐州)半导体材料有限公司 加料管、加料方法及晶体生长设备
CN115404541B (zh) * 2022-10-18 2023-08-25 四川晶科能源有限公司 一种拉晶方法
CN115948801B (zh) * 2022-12-30 2023-11-21 青海高景太阳能科技有限公司 一种直拉单晶成晶工艺及其应用

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63303894A (ja) * 1987-06-01 1988-12-12 Mitsubishi Metal Corp シリコン単結晶育成方法
FI901415A0 (fi) * 1989-10-26 1990-03-21 Nippon Kokan Kk Anordning foer framstaellning av kiselenkristaller.
JP3769800B2 (ja) * 1996-01-12 2006-04-26 株式会社Sumco 単結晶引上装置
JP5636168B2 (ja) * 2009-05-18 2014-12-03 株式会社Sumco シリコン単結晶の育成方法
US9863062B2 (en) * 2013-03-14 2018-01-09 Corner Star Limited Czochralski crucible for controlling oxygen and related methods
CN103590109B (zh) * 2013-08-21 2016-04-27 银川隆基硅材料有限公司 直拉单晶炉磁场装置及使用该磁场装置的拉晶方法
US9822466B2 (en) * 2013-11-22 2017-11-21 Corner Star Limited Crystal growing systems and crucibles for enhancing heat transfer to a melt
US10358740B2 (en) * 2014-07-25 2019-07-23 Corner Star Limited Crystal growing systems and methods including a passive heater
CN205295534U (zh) * 2015-12-08 2016-06-08 西安交通大学 一种高速单晶生长装置
US10221500B2 (en) * 2017-01-04 2019-03-05 Corner Star Limited System for forming an ingot including crucible and conditioning members
US10407797B2 (en) * 2017-05-04 2019-09-10 Corner Start Limited Crystal pulling system and method including crucible and barrier
JP7006636B2 (ja) * 2019-03-01 2022-01-24 株式会社Sumco シリコン単結晶製造装置
CN112210820A (zh) * 2020-09-10 2021-01-12 徐州鑫晶半导体科技有限公司 晶体生产工艺

Also Published As

Publication number Publication date
TWI781759B (zh) 2022-10-21
WO2022052999A1 (zh) 2022-03-17
EP4212652A4 (en) 2024-03-20
EP4212652A1 (en) 2023-07-19
CN112210820A (zh) 2021-01-12
US20230340692A1 (en) 2023-10-26

Similar Documents

Publication Publication Date Title
WO2022052999A1 (zh) 晶体生产工艺
JP5909276B2 (ja) 最初のチャージだけをドーピングすることによる、均一にドーピングされたシリコンインゴットの成長
TWI664327B (zh) n型矽單結晶的製造方法、n型矽單結晶的鑄錠、矽晶圓及磊晶矽晶圓
JP5831436B2 (ja) シリコン単結晶の製造方法
JP6528178B2 (ja) シリコン単結晶の製造方法
JP5464429B2 (ja) 四角形の断面を有する単結晶シリコンの育成方法
WO2019003968A1 (ja) シリコン単結晶の製造方法
JP3598972B2 (ja) シリコン単結晶の製造方法
JP5163386B2 (ja) シリコン融液形成装置
JP2005336020A (ja) シリコン単結晶引上装置およびシリコン単結晶の製造方法
CN112342611A (zh) 晶体生产工艺
CN112144107A (zh) 晶体生长炉和晶体生产工艺
KR101675903B1 (ko) 반도체 단결정의 제조 장치 및 제조 방법
WO2017082112A1 (ja) シリコン単結晶の製造方法
JP2010030867A (ja) シリコン単結晶の育成方法
CN112144108A (zh) 晶体生长炉和晶体生产工艺
JP5724226B2 (ja) シリコン単結晶の育成方法
KR102265466B1 (ko) 실리콘 단결정 제조 방법
JP2012236755A (ja) 再使用が可能なシリコン溶融用二重坩堝を備える単結晶シリコンインゴット成長装置
JP5051044B2 (ja) シリコン単結晶の育成方法
CN105887187B (zh) 一种硅单晶生长掺杂剂浓度稳定控制方法
JP2007210865A (ja) シリコン単結晶引上装置
TWI815688B (zh) 一種用於生產單晶矽棒的石英坩堝、坩堝元件及拉晶爐
TWI796517B (zh) 單晶矽鑄碇及其製造方法
JP2850561B2 (ja) 単結晶引上装置

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent