WO2022052999A1 - 晶体生产工艺 - Google Patents

晶体生产工艺 Download PDF

Info

Publication number
WO2022052999A1
WO2022052999A1 PCT/CN2021/117537 CN2021117537W WO2022052999A1 WO 2022052999 A1 WO2022052999 A1 WO 2022052999A1 CN 2021117537 W CN2021117537 W CN 2021117537W WO 2022052999 A1 WO2022052999 A1 WO 2022052999A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
chamber
raw material
assembly
crystal
Prior art date
Application number
PCT/CN2021/117537
Other languages
English (en)
French (fr)
Inventor
陈翼
刘奇
黄末
刘林艳
高海棠
Original Assignee
徐州鑫晶半导体科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 徐州鑫晶半导体科技有限公司 filed Critical 徐州鑫晶半导体科技有限公司
Priority to EP21866051.2A priority Critical patent/EP4212652A4/en
Priority to US18/025,649 priority patent/US20230340692A1/en
Publication of WO2022052999A1 publication Critical patent/WO2022052999A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/002Continuous growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/02Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt
    • C30B15/04Single-crystal growth by pulling from a melt, e.g. Czochralski method adding crystallising materials or reactants forming it in situ to the melt adding doping materials, e.g. for n-p-junction
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • C30B15/12Double crucible methods
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B30/00Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions
    • C30B30/04Production of single crystals or homogeneous polycrystalline material with defined structure characterised by the action of electric or magnetic fields, wave energy or other specific physical conditions using magnetic fields
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/002Crucibles or containers

Definitions

  • the present application relates to the technical field of crystal processing, and in particular, to a crystal production process.
  • the production of single crystal silicon by CCZ usually uses a double-layer crucible or a quartz ring to separate the molten material region from the crystal growth region.
  • CCZ continuous pulling method
  • the molten material area and the crystal growth area are not uniform enough, the crystal quality is not good, and the crystal is not easy to grow due to the easy splashing of the blanking material.
  • the present application aims to solve at least one of the technical problems existing in the prior art. Therefore, the present application proposes a crystal production process, which can make the molten soup in the crucible assembly more uniform, which is beneficial to improve the crystal quality.
  • the crystal production process includes the following steps: S1, loading the initial raw material into the crucible assembly; S2, heating the crucible assembly to melt the initial raw material, and after a set time, the crucible assembly is Set the rotation speed in the rotation speed section to uniformize the internal temperature of the crucible assembly; S3.
  • the unloading assembly includes a raw material unloading pipe, and the raw material unloading pipe will add the raw material to the raw material unloading area of the crucible assembly; S4, unload the raw material in the raw material unloading area, and perform crystal pulling in the crystal growth area,
  • the crucible assembly includes a first crucible, a second crucible and a third crucible, a holding space is defined in the first crucible, the top side of the holding space is open, and the second crucible is provided at the The holding space defines a first chamber together with the first crucible, the third crucible is arranged in the second crucible and defines a second chamber together with the second crucible, and the third crucible defines a second chamber together with the second crucible.
  • a third chamber is defined in the third crucible, a first communication hole is formed on the second crucible to communicate with the first chamber and the second chamber, and a second communication hole is formed on the third crucible a hole to communicate with the second chamber and the third chamber, the first chamber is adapted to be configured as the raw material unloading zone, the crystal growth zone is located in the third chamber, and the crystal growth zone is located in the third chamber.
  • the initial raw materials are respectively loaded into the first chamber, the second chamber and the third chamber, and the particle diameter of the initial raw materials in the first chamber is larger than that in the second chamber The particle diameter of the initial raw material and the particle diameter of the initial raw material in the third chamber.
  • the particle diameter of the initial raw material in the first chamber R1 is set to be larger than the particle diameter of the initial raw material in the second chamber and the particle diameter of the initial raw material in the third chamber , it is convenient to ensure that enough initial raw materials are contained in the second chamber and the third chamber, and to avoid the bubbles generated in the second chamber and the third chamber during the melting process, which will affect the pulling of the crystal, and it is convenient to ensure the quality of the crystal;
  • set the crucible assembly to keep the rotation speed within the set rotating speed range, so as to uniform the internal temperature of the crucible assembly, so as to make the molten soup in the crucible assembly more uniform, which is beneficial to further improve the quality of the crystal.
  • the rotational speed range of the set rotational speed segment is 0.2r/m ⁇ 3r/m.
  • the h satisfies: 2mm ⁇ h ⁇ 4mm.
  • the step S4 includes: S41, seeding: immerse a part of the seed crystal below the liquid level of the crucible assembly, and turn on the magnetic field device; S42, necking: set the moving speed within the range Speed up the seed crystal for necking to remove dislocations; S43, turn the shoulder: control the heating power and the pulling speed of the seed crystal to increase the crystal diameter to the set diameter; S44: Equal diameter feeding: in The crystal growth zone performs the equal diameter growth of the crystal rod.
  • the raw material feeding pipe (1011) adds the re-added raw material to the raw material feeding zone of the crucible assembly, and controls the raw material feeding zone of the crucible assembly.
  • the feeding amount of the blanking component is equal to the crystallization amount of the crystal, and the liquid level is kept constant, wherein the crucible component is arranged in the furnace body of the crystal growth furnace, and the magnetic field device is arranged outside the furnace and is used to generate a magnetic field.
  • a heater and a heat insulating layer are sequentially installed in the furnace body, and the heater is used for heating the crucible assembly, so The heat insulating layer is located on the outside of the heater, the crucible shaft is raised to a first height position, the crucible assembly is installed on the crucible shaft, the crucible shaft can be mounted on the furnace body in a liftable manner, and the In order to drive the crucible assembly to rotate, after the raw materials are loaded into the crucible assembly, the crucible shaft is lowered to the second height position, and a guide tube is installed in the furnace body, and the guide tube is used for The crystal growth regions are separated.
  • the furnace body includes a body and an upper cover
  • the heater, the heat insulating layer, the crucible shaft and the guide cylinder are all mounted on the body
  • the crystal production process further includes : S5. Install the cooling jacket and the blanking assembly on the upper cover, and fix the upper cover on the body, and then vacuumize the furnace body, and the cooling jacket is used to The crystal is cooled, wherein the step S5 is located between the step S1 and the step S2.
  • the diameter of the first communication hole is d 1
  • the diameter of the second communication hole is d 2
  • d 1 and d 2 satisfy: d 1 ⁇ d 2 .
  • the first communication holes are formed at the bottom of the second crucible and disposed adjacent to the R angle of the second crucible, the first communication holes are plural, and the plurality of first communication holes include A first feeding hole and a second feeding hole, the second feeding hole is located above the first feeding hole.
  • the first crucible includes a bottom wall of the crucible and a side wall of the crucible, the side wall of the crucible extending upward from the edge of the bottom wall of the crucible and defining the storage space together with the bottom wall of the crucible , the second crucible and the third crucible are both formed into cylindrical structures, the second crucible is limited and matched with the bottom wall of the crucible through the first clamping structure, and the third crucible is clamped through the second The structure is limited and matched with the bottom wall of the crucible.
  • the top end of the first crucible and the top end of the second crucible are positioned flush with each other and above the top end of the third crucible.
  • the crucible assembly further includes: a fourth crucible disposed within the third chamber to divide the third chamber into a first sub-chamber and a second sub-chamber A third communication hole is formed on the fourth crucible to communicate with the first sub-chamber and the second sub-chamber, and the second sub-chamber communicates with the first sub-chamber through the second communication hole.
  • the two chambers are connected, the first sub-chamber is adapted to be configured as the crystal growth region, and the second chamber is adapted to be configured as a dopant feeding region, wherein, in the step S1, the The particle diameter of the initial raw material in the first sub-chamber is larger than the particle diameter of the initial raw material in the first sub-chamber and the particle diameter of the initial raw material in the second sub-chamber, and the blanking component further includes a dopant lower A feeding tube, in the step S3, the raw material feeding tube is set corresponding to the raw material feeding area, so that the raw material feeding tube is fed to the first subchamber, and the dopant is fed into the first sub-chamber. The feeding tube is arranged corresponding to the dopant feeding area, so that the dopant feeding tube feeds the second sub-chamber.
  • the diameter of the first communication hole is d1
  • the diameter of the second communication hole is d2
  • the diameter of the third communication hole is d3, and d1, d2 and d3 satisfy: d1 ⁇ d2 ⁇ d3.
  • the top of the first crucible, the top of the second crucible, and the top of the third crucible are flush with each other and are located above the top of the fourth crucible.
  • the crucible assembly further includes a tray supported at the bottom of the first crucible, the top of the tray being located at the top of the first crucible, the top of the second crucible and Below the top of the third crucible, the first crucible includes a bottom wall of the crucible and a side wall of the crucible, and the side wall of the crucible extends upward from the bottom wall of the crucible and together with the bottom wall of the crucible defines the container.
  • the top of the tray is adapted to be located above the liquid level in the storage space, and the height of the part of the tray beyond the bottom wall of the crucible is half the height of the first crucible.
  • FIG. 1 is a schematic flow diagram of a crystal production process according to an embodiment of the present application.
  • FIG. 2 is a schematic flow diagram of a crystal production process according to another embodiment of the present application.
  • FIG. 3 is a schematic flow diagram of a crystal production process according to yet another embodiment of the present application.
  • FIG. 4 is a schematic flow diagram of a crystal production process according to yet another embodiment of the present application.
  • FIG. 5 is a schematic diagram of a crucible assembly according to one embodiment of the present application.
  • Figure 6 is a partial schematic view of the crucible assembly shown in Figure 5;
  • Figure 7 is a schematic view of the crucible assembly shown in Figure 5 used in a single crystal furnace
  • FIG. 8 is a schematic diagram of a crucible assembly according to another embodiment of the present application.
  • FIG. 9 is a schematic view of the crucible assembly shown in FIG. 8 being used in a single crystal furnace.
  • feeding assembly 1011, raw material feeding pipe; 1012, dopant feeding pipe; 102, seed crystal; 102b, solid-liquid interface;
  • thermal insulation layer 1051, first thermal insulation layer; 1052, second thermal insulation layer; 1052a, first sub thermal insulation layer; 1052b, second thermal insulation layer;
  • R1 the first chamber; R2, the second chamber; R3, the third chamber; R31, the first subchamber; R32, the second subchamber;
  • the second crucible 20, the first communication hole; 20a, the first feeding hole; 20b, the second feeding hole; 21, the second body;
  • crystal may refer to single crystal silicon, sapphire and the like.
  • the crystal production process includes the following steps: S1, loading the initial raw material into the crucible assembly 100; S2, heating the crucible assembly 100 to melt the initial raw material, and after a set time, the crucible The assembly 100 rotates at the rotating speed in the set rotating speed range to uniform the internal temperature of the crucible assembly 100; S3.
  • the blanking assembly 101 is lowered to the top of the liquid level in the crucible assembly 100, and the liquid level is in the up and down direction
  • the upper distance is h
  • the blanking assembly 101 includes a raw material blanking pipe 1011, and the raw material blanking pipe 1011 adds the raw material to the raw material blanking area ⁇ 1 of the crucible assembly 100; S4, blanking in the raw material blanking area ⁇ 1, in the crystal growth Region ⁇ 3 for crystal pulling.
  • the total mass of the initial raw materials to be added in step S1 can be calculated based on the required liquid level of the crucible assembly 100; Heating is performed to melt the initial raw material in the crucible assembly 100, so that the initial raw material in the crucible assembly 100 is melted to a certain degree within a set time, and after melting to a certain degree, the crucible assembly 100 maintains the rotational speed within the set rotational speed range Rotation makes the internal temperature of the crucible assembly 100 more uniform, which is conducive to improving the quality of the crystal, and at the same time, the rotation of the crucible assembly 100 is conducive to making the molten soup in the crucible assembly 100 more uniform; after the raw materials are completely melted, the unloading assembly 101 is lowered to the crucible assembly At the distance h above the liquid level in the 100, the raw material feeding pipe 1011 will add the raw material to the raw material feeding area ⁇ 1 of the crucible assembly 100,
  • step S3 the blanking assembly 101 is lowered to a distance h above the liquid level in the crucible assembly 100, and then blanking is performed, the “crucible assembly 100” which is separated from the blanking assembly 101 by h in the up-down direction
  • the liquid level in the crucible assembly 100 can be understood as the position of the liquid level in the crucible assembly 100 before unloading.
  • the crucible assembly 100 is the crucible assembly 100 used in the above crystal production process, and the crucible assembly 100 includes a first crucible 1 , a second crucible 2 and a third crucible 3 .
  • the first crucible 1 defines a Out of the holding space 100a, the top side of the holding space 100a is open, and the holding space 100a can be used to hold the melt (or molten soup) of semiconductor or solar grade materials (such as silicon), and the melt can be heated by heating the solid material.
  • the second crucible 2 is arranged in the holding space 100a, and the second crucible 2 and the first crucible 1 together define a first chamber R1, the first chamber R1 belongs to a part of the holding space 100a, and the first chamber R1
  • the chamber R1 can be located outside the second crucible 2;
  • the third crucible 3 is arranged in the second crucible 2, and the third crucible 3 and the second crucible 2 together define the second chamber R2, and the third crucible 3 defines the first chamber R2.
  • the three chambers R3, the second chamber R2 and the third chamber R3 are all part of the containing space 100a, and the second chamber R2 may be located outside the third chamber R3.
  • a first communication hole 20 is formed on the second crucible 2 to communicate with the first chamber R1 and the second chamber R2, so the molten soup in the first chamber R1 can flow to the second chamber R2 through the first communication hole 20 , or the molten soup in the second chamber R2 can flow to the first chamber R1 through the first communication hole 20;
  • a second communication hole 30 is formed on the third crucible 3 to communicate the second chamber R2 and the third chamber R3, the molten soup in the second chamber R2 can flow to the third chamber R3 through the second communication hole 30 .
  • the first chamber R1 is adapted to be configured as a raw material feeding area ⁇ 1, and the crystal growth area ⁇ 3 is located in the third chamber R3, then in step S3, the raw material feeding pipe 1011 will be refilled
  • the raw material is added to the first chamber R1, and in step S4, crystal pulling is performed in the third chamber R3; since the molten soup of the first chamber R1 needs to pass through the second chamber R2 to flow to the third chamber R3,
  • the second chamber R2 can be adapted to be configured as a "melting zone", so that the molten soup has sufficient heating time, and it is convenient for the molten soup formed after melting to provide enough mixing space, so as to facilitate the lifting of the molten soup in the third chamber R3 At the same time, it can also prevent the incompletely melted material from directly entering the crystal growth zone ⁇ 3 to cause impurity hits, which is convenient for producing higher quality crystals.
  • the second chamber R2 by setting the second chamber R2 to separate the third chamber R3 from the first chamber R1, it is possible to prevent the liquid level from being easily disturbed when feeding into the first chamber R1, which is beneficial to ensure the liquid level during the feeding process.
  • the stability of the surface is convenient to achieve stable crystal growth and ensure stable production.
  • step S1 the initial raw materials are loaded into the crucible assembly 100, then the initial raw materials are respectively loaded into the first chamber R1, the second chamber R2 and the third chamber R3, and the first chamber R1
  • the particle diameter of the initial raw material is larger than the particle diameter of the initial raw material in the second chamber R2 and the particle diameter of the initial raw material in the third chamber R3, then the particle diameter of the initial raw material in the first chamber R1 is relatively large, which is convenient for
  • the particle diameter of the initial raw material in the second chamber R2 and the particle diameter of the initial raw material in the third chamber R3 are relatively small, which is convenient for the second chamber R2 and the third chamber
  • the chamber R3 contains enough initial raw materials, and the gap between the initial raw material particles in the second chamber R2 and the third chamber R3 is small, so as to avoid the generation of air bubbles during the melting process, especially the third chamber. Bubble is generated in R3 and affects crystal pulling.
  • each step may have a sequential order, for example, step S1, step S2, step S3 and step S4 are performed in sequence, so that in step S1, the "loading the initial raw material into the crucible assembly 100" "In” is located before “heating the crucible assembly 100 to melt the initial raw material” in step S2, the melting process in step S2 is to melt the initial raw material added to the crucible assembly 100 in step S1, and the "crucible” in step S2
  • the assembly 100 rotates at the rotating speed within the set rotating speed range, so as to make the internal temperature of the crucible assembly 100 uniform.”
  • step S3 before “lowering the blanking assembly 101 to above the liquid level in the crucible assembly 100, and at a distance h from the top and bottom of the liquid surface” , the blanking process in step S3 is before the blanking and crystal pulling process in step S4.
  • the particle diameter of the initial raw material in the first chamber R1 is set to be larger than the particle diameter of the initial raw material in the second chamber R2 and the third chamber.
  • the particle diameter of the initial raw material in the chamber R3 is convenient to ensure that enough initial raw materials are contained in the second chamber R2 and the third chamber R3, and avoid the second chamber R2 and the third chamber R3 during the melting process.
  • the formation of bubbles will affect the pulling of crystals, which is convenient to ensure the quality of crystals; during the melting process, the crucible assembly 100 is set to maintain the rotation speed within the set rotating speed range, so as to uniform the internal temperature of the crucible assembly 100, and it is convenient to make the molten soup in the crucible assembly 100 more stable. uniform, which is beneficial to further improve the quality of the crystal.
  • the particle diameter of the initial raw material in the first chamber R1 is greater than 10 mm, for example, the particle diameter of the initial raw material in the first chamber R1 may be greater than 50 mm, 60 mm, 70 mm, 100 mm or 200 mm etc., the first chamber R1 has lower requirements for the particle diameter of the initial raw material, which is convenient to ensure the charging rate of the first chamber R1, and the particle diameters of the initial raw materials in the second chamber R2 and the third chamber R3 are the same It is less than 10mm, so as to avoid bubbles in the second chamber R2 and the third chamber R3 from affecting the crystal pulling.
  • the rotation speed range of the set rotation speed section is 0.2r/m ⁇ 3r/m (including the endpoint value, where "r/m” is revolutions per minute, or can be written as rpm), at this time, the crucible assembly 100 has a The rotation speed is low, so that small crucible rotation of the crucible assembly 100 is realized, which is convenient to ensure the uniform effect of the temperature in the crucible assembly 100 .
  • the rotation speed of the crucible assembly 100 may be 0.2r/m, or 1.5r/m, or 2.3r/m, or 3r/m; it can be understood that the rotation speed of the crucible assembly 100 can always be maintained as For a certain constant speed value, the speed can also be adjusted within the range of 0.2r/m ⁇ 3r/m according to the setting method.
  • the small rotation of the crucible during the melting stage can make the temperature inside the crucible assembly 100 more uniform, which is more conducive to improving the quality of the crystal. If the speed is too fast, the liquid level may fluctuate. Purpose.
  • h satisfies 2mm ⁇ h ⁇ 4mm, then h may be 2mm, or 3mm, or 4mm, or the like.
  • h when h is 3 mm, in step S3, the blanking assembly 101 is lowered to a position 3 mm above the liquid level in the crucible assembly 100 .
  • step S4 includes: S41: seeding: immerse a part of the seed crystal 102 under the liquid level of the crucible assembly 100, and turn on the magnetic field device 103; S42, necking: to set The speed in the moving speed segment pulls the seed crystal 102 for necking and removes dislocations; S43, the shoulder: control the heating power and the pulling speed of the seed crystal 102 to increase the crystal diameter to the set diameter; S44: Equal diameter feeding: in the crystal growth zone ⁇ 2, the crystal rod is grown at the same diameter.
  • the raw material feeding pipe 1011 adds the raw material to the raw material feeding zone ⁇ 1 of the crucible assembly 100, and controls the feeding assembly.
  • the feeding amount of 101 is equal to the amount of crystal formation, and the liquid level is kept constant.
  • the re-added raw material is added to the raw material unloading zone ⁇ 1, so as to realize the equal-diameter growth and the simultaneous feeding.
  • step S4 includes: immersing about one third of the seed crystal 102 in the axial direction in the molten soup of the crucible assembly 100, and turning on the magnetic field device 103, when the temperature is stable, start necking, and during the necking process,
  • the seed crystal 102 is pulled upward at a speed within the set moving speed section to control the diameter of the necked portion of the crystal; then, the heating power and the pulling speed of the seed crystal 102 are controlled to increase the crystal diameter to the set diameter,
  • the crystal shape is mainly controlled, the geometric shape and the crystal growth angle are calculated by using the aspect ratio, and the heating power and pulling speed are controlled according to the empirical shape to make the crystal shape reach the desired angle, so as to complete the release shoulder;
  • the crystal diameter is close to the set diameter and the diameter is equal, the turning shoulder is completed.
  • the re-added raw material is added to the raw material unloading area ⁇ 1 of the crucible assembly 100, so that the liquid level is kept constant during the equal diameter process, and the crystal grows with equal diameter. , until the crystals come out of the liquid surface.
  • the crucible assembly 100 is arranged inside the furnace body 200 of the crystal growth furnace, the magnetic field device 103 is arranged outside the furnace body 200, and the magnetic field device 103 is used to generate a magnetic field, and the magnetic field generated by the magnetic field device 103 Can be used for application to melts within crucible assembly 100 . It can be understood that the height of the magnetic field device 103 can be specifically set according to actual requirements.
  • step S44 after the crystals are placed on the shoulders, the blanking assembly 101 can be turned on. At this time, the crystals grow in equal diameters, and the feeding amount of the blanking assembly 101 is kept equal to the increased weight of the crystal.
  • the blanking component 101 needs to add 1 kg of material to the crucible component 100, that is to say, in the process of crystal growth of equal diameter, the quality of the molten soup is reduced every time the seed crystal 102 rises to a certain height.
  • Correspondingly supplemented, so as to maintain the stability of the liquid level during the crystal growth process further ensure the stable growth of the crystal, realize the continuous feeding of crystals, and facilitate the production of larger-sized crystals. For example, continuous feed production of single crystal silicon can be achieved in order to solve the segregation problem of heavily doped crystals.
  • the feeding assembly 101 includes a raw material feeding pipe 1011.
  • the raw material feeding pipe 1011 is opened, and the feeding amount of the raw material feeding pipe 1011 is controlled to be equal to the amount of crystal formation, Then when the crystal shoulder is completed, the raw material feeding tube 1011 can be opened. At this time, the crystal grows with equal diameter, and the feeding amount of the raw material feeding tube 1011 is kept equal to the increased weight of the crystal.
  • the feed tube 1011 needs to add 1kg of raw materials to the crucible assembly 100, so as to maintain a stable liquid level during the crystal growth process; it is understandable that in the example of FIG.
  • step S44 the raw material feeding pipe 1011 and the dopant feeding pipe 1012 are opened, and the sum of the feeding amount of the raw material feeding pipe 1011 and the feeding amount of the dopant feeding pipe 1012 is controlled.
  • the amount of crystal formation is equal.
  • the feeding assembly 101 includes a raw material feeding pipe 1011 and a dopant feeding pipe 1012.
  • step S44 the raw material feeding pipe 1011 and the dopant feeding pipe 1012 are opened, and The sum of the feeding amount of the raw material feeding tube 1011 and the feeding amount of the dopant feeding tube 1012 is controlled to be equal to the crystallization amount of the crystal, then when the crystal shoulder is completed, the raw material feeding tube 1011 and doping can be turned on.
  • the dopant feeding tube 1012 at this time, the crystals are growing at the same diameter. For every 1kg increase in the crystal weight, the raw material feeding tube 1011 and the dopant feeding tube 1012 need to add a total of 1 kg of material to the crucible assembly 100 to maintain the crystal growth process.
  • the liquid level is stable.
  • the magnetic field device 103 includes a first energized coil 1031 and a second energized coil 1032 . Both the first energized coil 1031 and the second energized coil 1032 are arranged around the furnace body 200 .
  • An energized coil 1031 is suitable for being located above the melt solid-liquid interface in the crucible assembly 100
  • the second energized coil 1032 is spaced below the first energized coil 1031
  • the second energized coil 1032 is suitable for being located in the crucible assembly 100
  • the melt solid-liquid interface below the interface. Therefore, the magnetic field device 103 has a simple structure and is easy to implement.
  • the current directions of the second energized coil 1032 and the first energized coil 1031 are opposite, so that the magnetic field device 103 generates a sharp magnetic field.
  • the magnetic field lines are symmetrically distributed in a "sharp shape".
  • the solid-liquid interface can be located on the symmetry plane between the first energized coil 1031 and the second energized coil 1032, and most of the molten soup is inhibited by the magnetic field, effectively reducing the generation of turbulent flow in the molten soup. .
  • the first energizing coil 1031 and the second energizing coil 1032 are both disposed coaxially with the furnace body 200 , then the central axis of the first energizing coil 1031 and the central axis of the second energizing coil 1032 It is coincident with the central axis of the furnace body 200 .
  • the first energization coil 1031 and the second energization coil 1032 are suitable for being symmetrically arranged with respect to the solid-liquid interface 102b of the melt in the crucible assembly 100.
  • the magnitudes of the currents in the first energization coil 1031 and the second energization coil 1032 can be equal,
  • the number of turns of the first energizing coil 1031 and the second energizing coil 1032 may be equal, which is convenient for simplifying the setting of the magnetic field device 103 .
  • the range of the moving speed segment is set to be 2 mm/min ⁇ 3 mm/min (including the end value) to ensure smooth necking.
  • the seed crystal 102 is controlled to be pulled upward at a stable moving speed, so that the diameter of the constricted portion of the crystal is between 5 mm and 6 mm, dislocations are removed, and the constricted portion of the crystal reaches a certain length, such as After 200 mm, the heating power and the pulling speed of the seed crystal 102 are controlled to perform the shoulder roll.
  • step S1 before the initial raw material is loaded into the crucible assembly 100 , the heater 104 and the first thermal insulation layer 1051 are sequentially installed in the furnace body 200 .
  • the crucible shaft 106 is raised to the first height position, and the crucible assembly 100 is mounted on the crucible shaft 106, wherein the heater 104 is used to heat the crucible assembly 100, the first heat insulating layer 1051 is located outside the heater 104 and the first heat insulating layer is The layer 1051 is arranged around the heater 104.
  • the first heat insulating layer 1051 is formed into a cylindrical structure, so as to maintain the temperature in the furnace body 200, block the thermal radiation of the heater 104, reduce the thermal energy loss, and help improve the thermal energy of the crystal growth furnace.
  • the crucible shaft 106 can be installed on the furnace body 200 in a lifting and lowering manner, and the crucible shaft 106 is used to drive the crucible assembly 100 to rotate; after the initial raw materials are loaded into the crucible assembly 100, the crucible shaft 106 is lowered to At the second height position, the second heat insulating layer 1052 and the guide tube 107 are installed in the furnace body 200, wherein the second heat insulating layer 1052 is provided on the upper end of the first heat insulating layer 1051, and at least part of the second heat insulating layer 1052 is located in the crucible Above the assembly 100, and the part of the second heat insulating layer 1052 above the crucible assembly 100 extends inward beyond the first crucible 1 to partially cover the holding space 100a, so
  • the second heat insulating layer 1052 can block the heat radiation of the melt in the holding space 100a, further reducing the thermal energy loss.
  • the crystals are susceptible to the radiant heat from the molten soup in the crucible assembly 100 and the heater 104 to ensure the solidification of the crystals.
  • the guide tube 107 can separate the crystal growth zone ⁇ 3 from the raw material feeding zone ⁇ 1 to avoid the raw material feeding zone ⁇ 1.
  • the poor atmosphere of ⁇ 3 in the crystal growth area caused by molten soup or blanking splash is likely to cause impurity hits and cause the crystal to lose its single crystal structure.
  • the guide tube 107 is installed after the crucible shaft 106 is lowered to the second height position, so as to prevent the initial raw material added to the crucible assembly 100 from touching the guide flow
  • the bottom of the barrel 107 is convenient to ensure the smooth installation of the guide barrel 107, and also ensures the cleanliness of the initial raw materials in the crucible assembly 100.
  • step S1 may be as follows: sequentially installing the heater 104 and the first heat insulating layer 1051 in the furnace body 200, raising the crucible shaft 106 to the first height position, installing the crucible assembly 100 on the crucible shaft 106, and then adding The initial raw material is loaded into the crucible assembly 100 , the crucible shaft 106 is lowered to the second height position, and the second heat insulating layer 1052 and the guide tube 107 are installed in the furnace body 200 . Therefore, by properly setting the order of installation of the components in the furnace body 200 and the order of charging, the smooth installation of the components in the furnace body 200 is facilitated, and the initial raw materials already added into the crucible assembly 100 are prevented from touching the furnace body. Other parts within 200.
  • the first height position is the highest position that the crucible shaft 106 can reach
  • the second height position is the lowest position that the crucible shaft 106 can reach.
  • the crucible assembly 100 includes a first crucible 1 , a second crucible 2 and a third crucible 3
  • the heater 104 includes a side heater 1041 disposed around the crucible assembly 100 , ie, side heating
  • the heater 1041 is located at the radial outer side of the crucible assembly 100, for example, the side heater 1041 may continuously extend along the circumferential direction of the crucible assembly 100 to form a cylindrical structure;
  • the first heat insulating layer 1051 is formed in a cylindrical structure and located on the side heater 1041
  • the second heat insulating layer 1052 is provided on the upper end of the first heat insulating layer 1051 and includes a first sub heat insulating layer 1052a and a second heat insulating layer 1052a and a Two sub-insulation layers 1052b, the second sub-insulation layer 1052b is disposed on the upper end of the first sub-insulation layer 1051, and the second sub-insulation layer 1052b extends
  • the first sub-insulation layer 1052a is arranged on the upper end of the second sub-insulation layer 1052b, and the first sub-insulation layer 1052a is located above the crucible assembly 100 to cover the In a part of the space 100a, the first sub-insulation layer 1052a extends inward at least to the radial inner side of the first crucible 1, so that the first sub-insulation layer 1052a can at least block the thermal radiation of the melt in the first chamber R1, and further reduce the thermal energy loss.
  • a part of the second heat insulating layer 1052 is located above the crucible assembly 100 , so that a part of the inner sidewall of the second heat insulating layer 1052 is located radially inward of the first crucible 1 .
  • the crucible assembly 100 includes a first crucible 1 , a second crucible 2 , a third crucible 3 and a fourth crucible 4 , the fourth crucible 4 is provided in the third chamber R3 to
  • the chamber R3 is divided into a first sub-chamber R31 and a second sub-chamber R32
  • the heater 104 includes a side heater 1041
  • the side heater 1041 is arranged around the crucible assembly 100, that is, the side heater 1041 is located in the radial direction of the crucible assembly 100 Outside, for example, the side heater 1041 may be continuously extended in the circumferential direction of the crucible assembly 100 to form a cylindrical structure
  • the first heat insulating layer 1051 is formed in a cylindrical structure and located radially outside the side heater 1041 to block the heater 104 heat radiation to reduce thermal energy loss
  • the second heat insulating layer 1052 is provided on the upper end of the first heat insulating layer 1051 and includes a first sub
  • the heat insulating layer 1052b is provided on the upper end of the first heat insulating layer 1051, and the second sub heat insulating layer 1052b extends inward to no more than the second crucible 2, then the second sub heat insulating layer 1052b can cover at least part of the top side of the first chamber R1, And the second sub-insulation layer 1052b does not cover the top side of the second chamber R2, that is, the second sub-insulation layer 1052b may cover a part of the top side of the first chamber R1, or the second sub-insulation layer 1052b may first The entire top side of a chamber R1, so that the second sub-insulation layer 1052b can block the heat radiation of the melt in the first chamber R1 and further reduce heat loss, the first sub-insulation layer 1052a is provided on the second sub-insulation layer 1052b.
  • the first sub-insulation layer 1052a can cover at least the top side of the second chamber R2, and the first sub-insulation layer 1052a can cover the third cavity
  • the chamber R3 may also not cover the third chamber R3, so that the first sub-insulation layer 1052a can at least block the heat radiation of the melt in the second chamber R2.
  • the entire second heat insulating layer 1052 is located above the crucible assembly 100 , so that the entire inner sidewall of the second heat insulating layer 1052 is located radially inside the first crucible 1 .
  • the distance in the up-down direction between the first sub-insulation layer 1052a and the crucible assembly 100 is greater than the distance in the up-down direction between the second sub-insulation layer 1052b and the crucible assembly 100, because the first The sub-insulation layer 1052a is disposed corresponding to the second chamber R2, then at least the top of the second chamber R2 may have an escape space 1050 jointly defined by the first sub-insulation layer 1052a and the second sub-insulation layer 1052b, and the escape space 1050 can allow
  • the silicon vapor and the volatilized dopant flowed here are fully driven by argon gas (or nitrogen gas) to ensure the atmosphere in the furnace body 200, and the energy of the heater 104 reaching the corresponding position of the avoidance space 1050 has decreased, and the avoidance space 1050
  • the thermal energy at this position can be allowed to go upward, which effectively increases the temperature gradient at the solid-liquid interface, which facilitates the production of larger-sized heavily doped crystals in the crystal growth
  • the furnace body 200 includes a main body 200a and an upper cover 200b.
  • the heater 104, the heat insulating layer 105, the crucible shaft 106 and the guide tube 107 are all mounted on the main body 200a.
  • the crystal production process further includes : S5, install the cooling jacket 108 and the blanking assembly 101 on the upper cover 200b, and fix the upper cover 200b on the main body 200a, and vacuumize the furnace body 200 to better meet the needs of crystal growth pressure.
  • step S5 is located between step S1 and step S2, and the cooling jacket 108 is used to cool the crystal to ensure that the crystal is solidified into a crystal.
  • the pressure in the furnace body 200 can be maintained between 20torr and 50torr, so as to better meet the crystal growth requirements.
  • the diameter of the first communication hole 20 is d 1
  • the diameter of the second communication hole 30 is d 2
  • d 1 and d 2 satisfy: d 1 ⁇ d 2
  • the diameter of the first communication hole 20 is relatively small.
  • the diameter of the first communication hole 20 can be smaller than or equal to the diameter of the pellets in the first chamber R1, which can prevent the pellets from directly entering the second chamber R2 without melting, and then entering the third chamber R3 to cause impurity impact.
  • the crystallization rate is affected, thereby helping to ensure the crystallization rate of the crystal;
  • the diameter of the second communication hole 30 is larger than the diameter of the first communication hole 20, which can prevent the molten soup from accumulating in the second chamber R2 and cause the molten soup to stagnate.
  • the soup flows more smoothly; moreover, in the second chamber R2, both the raw material and the dopant are basically completed, and the diameter of the second communication hole 30 is larger, which can avoid the solid-liquid interface vibration caused by the retention of the molten soup and affect the subsequent Crystal pulling process.
  • first communication hole 20 and the second communication hole 30 can both be formed as circular holes; of course, when at least one of the first communication holes 20 and the second communication holes 30 is formed as a non-circular hole, the first communication hole 20
  • the hole diameter of at least one of the above-mentioned at least one of the second communication holes 30 may be understood as an equivalent diameter.
  • the first communication hole 20 is formed at the bottom of the second crucible 2 , and the first communication hole 20 is disposed adjacent to the R angle of the second crucible 2 , such as the first communication hole 20 .
  • a communication hole 20 may be provided upward and close to the R angle of the second crucible 2 .
  • the first communication hole 20 is arranged adjacent to the R angle of the second crucible 2 to facilitate the smooth molten soup It flows to the second chamber R2 through the first communication hole 20; moreover, when the granular material is not completely melted, the granular material becomes smaller and floats upward under the action of buoyancy. If the first communication hole 20 is provided in the second crucible 2 The upper part of the crucible may cause the incompletely melted particles to flow to the second chamber R2, and then easily cause impurities to hit. Therefore, the first communication hole 20 is provided at the bottom of the second crucible 2, which can avoid incomplete melting. The particles entering the crystal growth zone ⁇ 3 affect the crystallization rate.
  • the R angle of the second crucible 2 can be understood as the corner of the second crucible 2 .
  • the position of the R angle of the crucible is well known to those skilled in the art and will not be repeated here.
  • the plurality of first communication holes 20 include a first feeding hole 20a and a second feeding hole 20b, and the second feeding hole 20b is located in the first feeding hole 20a Above the first feeding hole 20a can be the main feeding hole.
  • a second feeding hole 20b above the first feeding hole 20a it can be avoided that when the first feeding hole 20a is blocked, the first chamber The molten soup in R1 can still flow to the second chamber R2 through the second feeding hole 20b to ensure smooth flow of the molten soup.
  • the first chamber R1 is adapted to be configured as a feeding area, when the first chamber R1 is charged, the particles have a certain falling speed, so that the particles flow to the bottom of the first chamber R1 and block the first feeding At this time, the first chamber R1 can still communicate with the second chamber R2 through the second feeding hole 20b, so as to ensure the normal operation of the crucible assembly 100.
  • the charging position when the first chamber R1 is charged, the charging position may be located at a certain position of the first chamber R1, and the first feeding hole 20a may be located on the side of the second crucible 2 away from the charging position.
  • a feed hole 20a may mean that the second feed hole 20b is located directly above the first feed hole 20a, or it may mean that the second feed hole 20b is located obliquely above the first feed hole 20a, in other words, in the second feed hole 20a
  • the central angle formed by the center of the second crucible 2 as the center of the circle may range from 0° to 360° (including the end value).
  • first communication holes 20 there are three first communication holes 20, two first feeding holes 20a, one second feeding hole 20b, and the second feeding hole 20b is located in two first feeding holes.
  • the second feed hole 20b Above the feed hole 20a, and in the circumferential direction of the second crucible 2, the second feed hole 20b is located between the two first feed holes 20a.
  • the second communication hole 30 is formed on the side of the third crucible 3 away from the first communication hole 20 .
  • the first communication hole 20 is and the second communication holes 30 are located on both radial sides of the crucible assembly 100, respectively.
  • the molten soup that flows through the first communication holes 20 to the second chamber R2 needs to flow around to the other side of the third crucible 3 in order to pass through the second chamber R2.
  • the communication hole 30 flows to the third chamber R3.
  • the molten soup in the holding space 100a needs to flow through a longer path from the unloading position to the third chamber R3, which can prevent the rapid flow of the molten soup from easily causing liquid level vibration, which is conducive to ensuring the stability of the liquid level.
  • the first chamber R1 and the second chamber R2 are both formed as annular structures, and the second communication hole 30 is formed in the diameter of the third crucible 3 away from the first communication hole 20 .
  • the molten soup in the holding space 100a flows in a tortuous way, which is convenient to ensure the stability of the liquid level during crystal growth or feeding.
  • the tops of the first crucible 1 and the tops of the second crucibles 2 are arranged flush, then the tops of the first crucibles 1 and the tops of the second crucibles 2 are substantially on the same plane, and The top of the first crucible 1 and the top of the second crucible 2 are both located above the top of the third crucible 3, that is, in the first crucible 1, the second crucible 2 and the third crucible 3, the top of the third crucible 3 is above the top of the third crucible 3. Lowest height.
  • the cooling jacket 108 of the single crystal furnace can be located directly above the crystal growth zone ⁇ 3, and on a plane perpendicular to the central axis of the crucible assembly 100, the orthographic projection of the cooling jacket 108 is located in the crystal Within the orthographic projection range of the growth zone ⁇ 3, by setting the height of the top of the third crucible 3 to be lower than the height of the top of the second crucible 2, it is convenient to set the guide tube 107 between the third crucible 3 and the cooling jacket 108, so as to reduce the cooling effect.
  • the sleeve 108 is spaced apart from the third crucible 3 to prevent the crystal growth from being susceptible to heat radiation generated by the high-temperature molten soup, and to ensure the solidification of the crystal.
  • the crucible assembly 100 can also be used in other equipment.
  • the first crucible 1 includes a first body 11
  • the second crucible 2 includes a second body 21
  • the third crucible 3 includes a third body 31
  • the first body 11 Both the second body 21 and the third body 31 are formed as cylindrical structures, the first body 11 , the second body 21 and the third body 31 are arranged in sequence from the outside to the inside, and the first body 11 , the second body 21 and the third body 31 are coaxially arranged, then the central axis of the first body 11, the central axis of the second body 21 and the central axis of the third body 31 are coincidently arranged, and the central axis of the first body 11 can be formed as the central axis of the crucible assembly 100, Both the first chamber R1 and the second chamber R2 may be formed in a ring-shaped structure, so that when the crucible assembly 100 is in use, the crucible assembly 100 can be rotated around its central axis under the driving of
  • D 2 D 1 *X 1 , 60% ⁇ X 1 ⁇ 80%, it is convenient to ensure that the first chamber R1 has enough blanking space, it is easy to achieve a suitable blanking amount of re-added raw materials, and it is easy to ensure
  • the molten soup in the first chamber R1 has enough flow space, so that the molten soup in the first chamber R1 flows to the second chamber R2 through the first communication hole 20;
  • D 3 D 2 *X 2 , 60% ⁇ X 2 ⁇ 80%, on the premise of ensuring that the third chamber R3 meets the crystal growth space requirements, it is convenient to ensure that the second chamber R2 has enough space to make the molten soup more uniform, and it is convenient to ensure that the second chamber R2 has enough space
  • the molten soup has enough flow space, so that the molten soup in the second chamber R2 flows to the third chamber R3 through the second communication hole 30 .
  • X 1 and X 2 may be equal or unequal.
  • the first body 11 is located on the top of the first crucible 1
  • the second body 21 is located on the top of the second crucible 2
  • the third body 31 is located on the top of the third crucible 3
  • D 2 D 1 *80%
  • D 3 D 2 *80%.
  • the first crucible 1 includes a crucible bottom wall 12 and a crucible side wall 13 , the crucible side wall 13 extends upward from the edge of the crucible bottom wall 12 , and the crucible side wall 13 is connected to the crucible bottom wall 13 .
  • the bottom wall 12 of the crucible together defines a holding space 100a
  • the second crucible 2 and the third crucible 3 are both formed into a cylindrical structure
  • the second crucible 2 is limited and matched with the bottom wall 12 of the crucible through the first clamping structure 5
  • the crucible 3 is limited and matched with the bottom wall 12 of the crucible through the second clamping structure 6, which facilitates the simplification of the structures of the second crucible 2 and the third crucible 3, and facilitates the processing.
  • the assembly between the three crucibles 3 and the first crucible 1 ensures that the crucible assembly 100 forms a stable whole, avoids damage and movement caused by high crucible turning, and ensures the reliable use of the crucible assembly 100 .
  • the specific structures of the first falcon structure 5 and the second falcon structure 6 can be set according to actual applications, and it is only necessary to ensure that the second crucible 2 and the first crucible 1 are assembled reliably, and the third crucible 3 and the first crucible 1 are reliably assembled. That's it.
  • cylindrical structure should be understood in a broad sense, and is not limited to a cylindrical structure, such as a polygonal cylindrical structure, nor is it limited to a cylindrical structure with a constant cross-sectional area.
  • it can be a conical cylinder structure.
  • the crucible assembly 100 further includes a fourth crucible 4 disposed within the third chamber R3 to divide the third chamber R3 into the first sub-chambers R31 and The second sub-chamber R32, the fourth crucible 4 is formed with a third communication hole 40 to communicate with the first sub-chamber R31 and the second sub-chamber R32, then the molten soup in the first sub-chamber R31 can communicate through the third sub-chamber R31
  • the hole 40 flows to the second sub-chamber R32 , or the molten soup in the second sub-chamber R32 may flow to the first sub-chamber R31 through the third communication hole 40 .
  • the second sub-chamber R32 is communicated with the second chamber R2 through the first communication hole 20, which is beneficial to further improve the uniformity of the molten soup in the first sub-chamber R31, and is beneficial to ensure the stability of the liquid level during the feeding process , it is convenient to realize the uniform distribution of the radial resistance and the axial resistance of the crystal, so as to ensure stable production, and the crystal produced by the crucible assembly 100 has good quality.
  • the top sides of the first sub-chamber R31 and the second sub-chamber R32 are both open, the first sub-chamber R31 is located at the inner side of the fourth crucible 4 , and the second sub-chamber R32 is formed at the outer side of the fourth crucible 4 .
  • the first sub-chamber R31 is adapted to be configured as a crystal growth region ⁇ 3
  • the second chamber R2 is adapted to be configured as a dopant feeding region ⁇ 2
  • the second chamber R2 is used for dopant feeding.
  • the feeding assembly 101 includes a raw material feeding pipe 1011 and a dopant feeding pipe 1012 , the first chamber R1 is adapted to be configured as a raw material feeding zone ⁇ 1 , and the second chamber R2 is adapted to be configured as The dopant feeding area ⁇ 2, the first sub-chamber R31 is suitable to be configured as a crystal growth area ⁇ 3, in step S3, the raw material feeding pipe 1011 is set corresponding to the raw material feeding area ⁇ 1, so that the raw material feeding pipe 1011 is directed toward the crystal growth area ⁇ 3.
  • the first chamber R1 is charged, and the dopant feeding pipe 1012 is set corresponding to the dopant feeding area ⁇ 2, so that the dopant feeding pipe 1012 is fed into the second chamber R2.
  • the raw material eg, silicon
  • the dopant eg, arsenic
  • the first sub-chamber R31 Perform crystal pulling; since the molten soup of the first chamber R1 and the second chamber R2 needs to pass through the second sub-chamber R32 to flow to the first sub-chamber R31, the second sub-chamber R32 can be adapted to be configured as a “stirring” It can provide enough mixing space for the melted raw materials and dopants, which is beneficial to further improve the uniformity of the molten soup in the first sub-chamber R31, and has a good heat preservation effect, which is convenient for the production of higher quality.
  • the second sub-chamber R32 to separate the first sub-chamber R31 from the first chamber R1 and the second chamber R2, it is possible to prevent the liquid level from being easily disturbed during the feeding process, which is beneficial to ensure the feeding process.
  • the stability of the liquid level is convenient for the stable growth of crystals, the uniform distribution of the radial resistance and the axial resistance of the crystal, and the stable production.
  • the crucible assembly 100 can be rotated around its central axis during use, and the stable liquid level can prevent the solid-liquid interface from protruding too much from the crystal during the crystal pulling process, so that in the CCZ production process, it is convenient to further effectively control the crystal resistance in the axial direction and the crystal resistance.
  • the uniform distribution in the radial direction is conducive to further improving the quality of crystals; for example, the resistance of wafers used in electronic products must fall within a narrow resistance range, and the crystals produced by the crucible assembly 100 in the present application can meet the above requirements. It will cause the loss and waste of raw materials and working hours, which is convenient for cost saving.
  • outside direction refers to a direction away from the central axis of the crucible assembly 100, and the opposite direction is defined as inside.
  • step S1 the initial raw material is loaded into the first chamber R1, the second chamber R2, the first sub-chamber R31 and the second sub-chamber R32 respectively, and the particle diameter of the initial raw material in the first chamber R1 is larger than
  • the particle diameter of the initial raw material in the first sub-chamber R31 and the particle diameter of the initial raw material in the second sub-chamber R32 are convenient to ensure that enough initial raw materials are contained in the first sub-chamber R31 and the second sub-chamber R32 , and to prevent the first sub-chamber R31 and the second sub-chamber R32 from easily generating bubbles during the melting process to affect crystal pulling.
  • the present application is not limited; in some embodiments, as shown in FIG. 5 , the crucible assembly 100 includes the first crucible 1 , the second crucible 2 and the third crucible 3 , and the crucible assembly 100 does not include the fourth crucible 4 .
  • the first chamber R1 can also be used to configure the dopant feeding area ⁇ 2
  • raw materials and doping impurities can be added in the first chamber R1, and at this time the second chamber R2 can constitute the "" of the crucible assembly 100" melting zone".
  • the diameter of the first communication hole 20 is d 1
  • the diameter of the second communication hole 30 is d 2
  • the diameter of the third communication hole 40 is d 3
  • d 1 , d 2 and d 3 satisfy: d 1 ⁇ d 2 ⁇ d 3
  • the diameter of the first communication hole 20 is relatively small.
  • the diameter of the first communication hole 20 may be smaller than or equal to the diameter of the pellets in the first chamber R1, which can prevent the pellets from being melted directly.
  • the diameter of the second communication hole 30 is larger than that of the first communication hole 20, It can prevent the molten soup from accumulating in the second chamber R2 and cause the molten soup to stagnate, so as to ensure a smoother flow of the molten soup; and in the second sub-chamber R32, the raw materials and dopants have been melted, and the diameter of the third communication hole 40 has been completed. Larger, it can avoid the solid-liquid interface vibration caused by the retention of molten soup and affect the subsequent crystal pulling process.
  • the first communication hole 20 , the second communication hole 30 and the third communication hole 40 may all be formed as circular holes; of course, when at least one of the first communication hole 20 , the second communication hole 30 and the third communication hole 40 When formed as a non-circular hole, the hole diameter of at least one of the first communication hole 20 , the second communication hole 30 and the third communication hole 40 can be understood as an equivalent diameter.
  • the second communication hole 30 is formed on the side of the third crucible 3 away from the first communication hole 20
  • the third communication hole 40 is formed in the fourth crucible 4 away from the second communication hole 30, for the crucible assembly 100, the first communication hole 20 and the second communication hole 30 are located on two radial sides of the crucible assembly 100, respectively, and the second communication hole 30 and the third communication hole 40 are respectively located in the crucible assembly.
  • the molten soup that flows to the second chamber R2 through the first communication hole 20 needs to flow around to the other side of the third crucible 3 before it can flow to the second sub-chamber through the second communication hole 30 Chamber R32, and the molten soup that flows to the second sub-chamber R32 through the second communication hole 30 needs to flow around to the other side of the fourth crucible 4 before it can flow to the first sub-chamber R31 through the third communication hole 40. Therefore, the molten soup in the holding space 100a needs to flow through a long path from the unloading position to the first sub-chamber R31, which can prevent the rapid flow of the molten soup from easily causing liquid level vibration, which is beneficial to ensure the stability of the liquid level .
  • the first chamber R1 , the second chamber R2 and the first sub-chamber R31 and the second sub-chamber R32 are all formed in annular structures, and the second communication hole 30 is formed in the third On the radial side of the crucible 3 away from the first communication hole 20, and the third communication hole 40 is formed on the radial side of the fourth crucible 4 away from the second communication hole 30, the molten soup in the holding space 100a is tortuous. Flow, which is convenient to ensure that the liquid level is stable during crystal growth or feeding.
  • the tops of the first crucible 1 , the tops of the second crucibles 2 and the tops of the third crucibles 3 are arranged flush, so the tops of the first crucible 1 and the tops of the second crucibles 2 are flush. and the top of the third crucible 3 are roughly on the same plane, and the top of the first crucible 1, the top of the second crucible 2 and the top of the third crucible 3 are all located above the top of the fourth crucible 4, that is, in the first crucible 4.
  • the height of the top of the fourth crucible 4 is the lowest.
  • the cooling jacket 108 of the single crystal furnace can be located directly above the crystal growth zone ⁇ 3, and on a plane perpendicular to the central axis of the crucible assembly 100, the orthographic projection of the cooling jacket 108 is located in the crystal Within the orthographic projection range of the growth region ⁇ 3, by setting the height of the top of the fourth crucible 4 to be lower than the height of the top of the third crucible 3, it is convenient to set the guide tube 107 between the fourth crucible 4 and the cooling jacket 108, so as to reduce the cooling effect.
  • the sleeve 108 is spaced apart from the fourth crucible 4 to prevent the crystal growth from being susceptible to the heat radiation generated by the high-temperature molten soup to ensure the solidification of the crystal; moreover, the heights of the top of the second crucible 2 and the top of the third crucible 3 are relatively high, which is beneficial to avoid doping Dopants (such as volatile dopants, such as arsenic) are taken away by the gas flow. For example, to prevent the dopants from being taken away by the argon gas flow in the single crystal furnace, it can prevent the argon gas flow from contacting the solid-liquid interface to a certain extent. The waste of impurities is avoided, and the uneven radial resistivity of the crystal caused by the uneven doping is avoided.
  • the crucible assembly 100 can also be used in other equipment.
  • top of the first crucible 1 , the top of the second crucible 2 and the top of the third crucible 3 are arranged flush, which may include the following situations: 1.
  • the top of the first crucible 1 , the top of the second crucible 2 and the The top of the third crucible 3 is located on the same plane; 2.
  • the top of the first crucible 1, the top of the second crucible 2 and the top of the third crucible 3 are not much different in height positions in the up-down direction.
  • the first crucible 1 includes a first body 11
  • the second crucible 2 includes a second body 21
  • the third crucible 3 includes a third body 31
  • the fourth crucible 4 includes a fourth body 41.
  • the first body 11, the second body 21, the third body 31 and the fourth body 41 are all formed as cylindrical structures, and the first body 11, the second body 21, the third body 31 and the fourth body 41 are from outside to inside are arranged in sequence, and the first body 11 , the second body 21 , the third body 31 and the fourth body 41 are coaxially arranged, then the central axis of the first body 11 , the central axis of the second body 21 , and the center of the third body 31
  • the axis coincides with the central axis of the fourth body 41, and the central axis of the first body 11 can be formed as the central axis of the crucible assembly 100.
  • the two sub-chambers R32 can both be formed in a ring-shaped structure, so that when the crucible assembly 100 is in use, the crucible assembly 100 can rotate around its central axis, and the first chamber R1 and the second chamber R2 both surround the crucible assembly 100 When the central axis rotates, the feeding position of the first chamber R1 and the feeding position of the second chamber R2 do not need to follow the rotation of the crucible assembly 100 , which facilitates the feeding setting of the crucible assembly 100 .
  • D 4 D 3 *X 3 , 60% ⁇ X 3 ⁇ 80%, on the premise of ensuring that the first sub-chamber R31 meets the crystal growth space requirements, it is convenient to ensure that the second sub-chamber R32 has enough space , so that the molten soup formed by the raw materials and the dopant is more uniform, and it is convenient to ensure that the molten soup in the second sub-chamber R32 has sufficient flow space, so that the molten soup in the second sub-chamber R32 passes through the third communication hole 40 flow to the first sub-chamber R31.
  • the first body 11 is located on the top of the first crucible 1
  • the second body 21 is located on the top of the second crucible 2
  • the third body 31 is located on the top of the third crucible 3
  • the fourth body 41 is located on the top of the second crucible 2 .
  • D 2 D 1 *80%
  • D 3 D 2 *80%
  • D 4 D 3 *80%.
  • the first crucible 1 includes a crucible bottom wall 12 and a crucible side wall 13 , the crucible side wall 13 extends upward from the edge of the crucible bottom wall 12 , and the crucible side wall 13 is connected to the crucible bottom wall 13 .
  • the second crucible 2 together define a holding space 100a
  • the second crucible 2 is limited and matched with the bottom wall 12 of the crucible through the first clamping structure 5
  • the third crucible 3 is limited and matched with the bottom wall 12 of the crucible through the second clamping structure 6
  • the fourth crucible 4 is limited and matched with the bottom wall 12 of the crucible through the third clamping structure 7, which is convenient to simplify the second crucible 2
  • the third The structure of the crucible 3 and the fourth crucible 4 is convenient for processing, and at the same time facilitates the assembly between the second crucible 2 and the first crucible 1, the third crucible 3 and the first crucible 1, the fourth crucible 4 and the first crucible 1, It is ensured that the crucible assembly 100 is formed as a stable whole, the damage and movement caused by the high crucible rotation are avoided, and the reliable use of the crucible assembly 100 is ensured.
  • the crucible assembly 100 further includes a tray 8, and the tray 8 is supported at the bottom of the first crucible 1, which is beneficial to improve the carrying capacity of the crucible assembly 100; the top of the tray 8 is located at the bottom of the first crucible 1. Below the top of the first crucible 1, the top of the second crucible 2 and the top of the third crucible 3, that is, among the first crucible 1, the second crucible 2, the third crucible 3 and the tray 8, the height of the top of the tray 8 is the lowest , so that on the premise of ensuring the bearing capacity of the crucible assembly 100 , the amount of material used for the tray 8 can be saved and the cost can be reduced.
  • the tray 8 is a graphite piece.
  • the first crucible 1 includes a crucible bottom wall 12 and a crucible side wall 13 , the crucible side wall 13 extends upward from the edge of the crucible bottom wall 12 , and the crucible side wall 13 and the crucible bottom wall 12 jointly define A storage space 100a is obtained.
  • the top of the tray 8 is suitable to be located above the liquid level in the holding space 100a, and the height of the portion of the tray 8 that exceeds the bottom wall 12 of the crucible is half the height of the side wall 13 of the crucible, which is convenient to ensure that the crucible assembly 100 can stably carry the molten soup and avoid There is too much molten soup in the holding space 100a and leakage occurs.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • plurality means two or more, unless otherwise expressly and specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection, an electrical connection, or a communication; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of the two elements or the interaction between the two elements. .
  • installed may be a fixed connection or a detachable connection , or integrated; it can be a mechanical connection, an electrical connection, or a communication; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of the two elements or the interaction between the two elements.
  • a first feature "on” or “under” a second feature may be in direct contact with the first and second features, or the first and second features indirectly through an intermediary touch.
  • the first feature being “above”, “over” and “above” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature being “below”, “below” and “below” the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种晶体生产工艺,包括以下步骤:S1、将初始原料装入坩埚组件内;S2、对坩埚组件进行加热以使初始原料熔化,并在设定时间后,坩埚组件以设定转速段内的转速转动;S3、在熔料完成后,将下料组件下降至坩埚组件内液面上方,且与液面上下相距h,下料组件包括原料下料管,原料下料管将再加入原料加至坩埚组件的原料下料区;S4、在原料下料区下料,在晶体生长区进行拉晶,在步骤S1中,将初始原料分别装入第一腔室、第二腔室和第三腔室内,第一腔室内的初始原料的颗粒直径大于第二腔室内的初始原料的颗粒直径和第三腔室内的初始原料的颗粒直径。该生产工艺,可以使得坩埚组件内熔汤更加均匀,有利于提升晶体品质。

Description

晶体生产工艺
本申请要求于2020年09月10日提交至中国国家知识产权局、申请号为202010948861.8、发明名称为“晶体生产工艺”的专利申请的优先权。
技术领域
本申请涉及晶体加工技术领域,尤其是涉及一种晶体生产工艺。
背景技术
相关技术中,采用CCZ(连续提拉法)生产单晶硅通常采用双层坩埚或石英环将熔料区与长晶区隔开。然而,晶体生产过程中,仍存在熔料区与长晶区熔汤不够均匀、晶体品质欠佳的问题,且下料容易喷溅等导致晶体不易生长。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请提出一种晶体生产工艺,所述晶体生产工艺可以使得坩埚组件内熔汤更加均匀,有利于提升晶体品质。
根据本申请的晶体生产工艺,包括以下步骤:S1、将初始原料装入坩埚组件内;S2、对所述坩埚组件进行加热以使初始原料熔化,并在设定时间后,所述坩埚组件以设定转速段内的转速转动,以均匀所述坩埚组件内部温度;S3、在熔料完成后,将下料组件下降至所述坩埚组件内液面上方,且与液面上下相距h,所述下料组件包括原料下料管,所述原料下料管将再加入原料加至所述坩埚组件的原料下料区;S4、在原料下料区下料,在晶体生长区进行拉晶,其中,所述坩埚组件包括第一坩埚、第二坩埚和第三坩埚,所述第一坩埚内限定出盛放空间,所述盛放空间的顶侧敞开设置,所述第二坩埚设在所述盛放空间内且与所述第一坩埚共同限定出第一腔室,所述第三坩埚设在所述第二坩埚内且与所述第二坩埚共同限定出第二腔室,所述第三坩埚内限定出第三腔室,所述第二坩埚上形成有第一连通孔以连通所述第一腔室和所述第二腔室,所述第三坩埚上形成有第二连通孔以连通所述第二腔室和所述第三腔室,所述第一腔室适于构造成所述原料下料区,所述晶体生长区位于所述第三腔室内,在所述步骤S1中,将初始原料分别装入所述第一腔室、所述第二腔室和所述第三腔室内,所述第一腔室内的初始原料的颗粒直径大于所述第二腔室内的初始原料的颗粒直径和所述第三腔室内的初始原料的颗粒直径。
根据本申请的晶体生产工艺,通过在装料过程中,设置第一腔室R1内的初始原料的颗粒直径大于第二腔室内的初始原料的颗粒直径和第三腔室内的初始原料的颗粒直径,便于保证第二腔室和第三腔室内盛放足够的初始原料,且避免在熔料过程中第二腔室和第三腔室内产生气泡而影响拉晶,便于保证晶体品质;通过在熔料过程中,设置坩埚组件保持设定转速段内的转速转动,以均匀坩埚组件内部温度,便于使得坩埚组件内熔汤更加均匀,有利于进一步提升晶体的品质。
在一些实施例中,所述设定转速段的转速范围为0.2r/m~3r/m。
在一些实施例中,所述h满足:2mm≤h≤4mm。
在一些实施例中,所述步骤S4包括:S41、引晶:将籽晶的一部分浸入所述坩埚组件的液面下方,并开启磁场装置;S42、缩颈:以设定移动速度段内的速度提拉籽晶进行缩颈,去除位错;S43、放转肩:控制加热功率和所述籽晶的提拉速度,以使晶体直径增大至设定直径;S44:等径加料:在所述晶体生长区进行晶棒的等径生长,在所述原料下料区,所述原料下料管(1011)将再加入原料加至所述坩埚组件的原料下料区,且控制所述下料组件的加料量与晶体的成晶量相等,维持液面恒定,其中,所述坩埚组件设于晶体生长炉的炉体内,所述磁场装置设于炉体外,且用于产生磁场。
在一些实施例中,在所述步骤S1中,在将原料装入所述坩埚组件内之前,在炉体内依次安装加热器和绝热层,所述加热器用于对所述坩埚组件进行加热,所述绝热层位于所述加热器的外侧,将坩埚轴上升至第一高度位置,并将所述坩埚组件安装于所述坩埚轴,所述坩埚轴可升降地安装于所述炉体,且用于带动所述坩埚组件转动,在将原料装入所述坩埚组件内之后,将所述坩埚轴下降至第二高度位置,并在所述炉体内安装导流筒,所述导流筒用于将所述晶体生长区隔开。
在一些实施例中,所述炉体包括本体和上盖,所述加热器、所述绝热层、所述坩埚轴和所述导流筒均安装于所述本体,所述晶体生产工艺还包括:S5、将冷却套和所述下料组件均安装于所述上盖,并将所述上盖固定在所述本体上后,对所述炉体内进行抽真空处理,所述冷却套用于对所述晶体进行冷却,其中,所述步骤S5位于所述步骤S1和所述步骤S2之间。
在一些实施例中,所述第一连通孔的孔径为d 1,所述第二连通孔的孔径为d 2,d 1、d 2满足:d 1<d 2
在一些实施例中,所述第一连通孔形成在所述第二坩埚的底部且邻近所述第二坩埚的R角设置,所述第一连通孔为多个,多个第一连通孔包括第一进料孔和第二进料孔,所述第 二进料孔位于所述第一进料孔的上方。
在一些实施例中,所述第一坩埚包括坩埚底壁和坩埚侧壁,所述坩埚侧壁自所述坩埚底壁的边沿向上延伸且与所述坩埚底壁共同限定出所述盛放空间,所述第二坩埚和所述第三坩埚均形成为筒形结构,所述第二坩埚通过第一卡隼结构与所述坩埚底壁限位配合,所述第三坩埚通过第二卡隼结构与所述坩埚底壁限位配合。
在一些实施例中,所述第一坩埚的顶端和所述第二坩埚的顶端齐平设置且均位于所述第三坩埚的顶端上方。
在一些实施例中,所述坩埚组件还包括:第四坩埚,所述第四坩埚设在所述第三腔室内以将所述第三腔室分隔成第一子腔室和第二子腔室,所述第四坩埚上形成有第三连通孔以连通所述第一子腔室和所述第二子腔室,所述第二子腔室通过所述第二连通孔与所述第二腔室连通,所述第一子腔室适于构造成所述晶体生长区,所述第二腔室适于构造成掺杂剂下料区,其中,在所述步骤S1中,所述第一腔室内的初始原料的颗粒直径大于所述第一子腔室内的初始原料的颗粒直径和所述第二子腔室内的初始原料的颗粒直径,所述下料组件还包括掺杂剂下料管,在所述步骤S3中,所述原料下料管与所述原料下料区对应设置,以使所述原料下料管向所述第一子腔室加料,所述掺杂剂下料管与所述掺杂剂下料区对应设置,以使所述掺杂剂下料管向所述第二子腔室加料。
在一些实施例中,所述第一连通孔的孔径为d1,所述第二连通孔的孔径为d2,所述第三连通孔的孔径为d3,d1、d2和d3满足:d1<d2<d3。
在一些实施例中,所述第一坩埚的顶端、所述第二坩埚的顶端和所述第三坩埚的顶端齐平设置且均位于所述第四坩埚顶端的上方。
在一些实施例中,所述坩埚组件还包括:托盘,所述托盘支撑在所述第一坩埚的底部,所述托盘的顶端位于所述第一坩埚的顶端、所述第二坩埚的顶端和所述第三坩埚的顶端的下方,所述第一坩埚包括坩埚底壁和坩埚侧壁,所述坩埚侧壁自所述坩埚底壁向上延伸且与所述坩埚底壁共同限定出所述盛放空间,所述托盘的顶端适于位于所述盛放空间内液面的上方,且所述托盘超过坩埚底壁的部分的高度为所述第一坩埚高度的一半。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
图1是根据本申请一个实施例的晶体生产工艺的流程示意图;
图2是根据本申请另一个实施例的晶体生产工艺的流程示意图;
图3是根据本申请又一个实施例的晶体生产工艺的流程示意图;
图4是根据本申请再一个实施例的晶体生产工艺的流程示意图;
图5是根据本申请一个实施例的坩埚组件的示意图;
图6是图5中所示的坩埚组件的局部示意图;
图7是图5中所示的坩埚组件用于单晶炉中的示意图;
图8是根据本申请另一个实施例的坩埚组件的示意图;
图9是图8中所示的坩埚组件用于单晶炉中的示意图。
附图标记:
200、炉体;200a、本体;200b、上盖;
101、下料组件;1011、原料下料管;1012、掺杂剂下料管;102、籽晶;102b、固液界面;
103、磁场装置;1031、第一通电线圈;1032、第二通电线圈;104、加热器;1041、侧加热器;
1050、避让空间;
105、绝热层;1051、第一绝热层;1052、第二绝热层;1052a、第一子绝热层;1052b、第二子绝热层;
106、坩埚轴;107、导流筒;108、冷却套;
100、坩埚组件;100a、盛放空间;
R1、第一腔室;R2、第二腔室;R3、第三腔室;R31、第一子腔室;R32、第二子腔室;
Ω1、原料下料区;Ω2、掺杂剂下料区;Ω3、晶体生长区;
1、第一坩埚;11、第一本体;12、坩埚底壁;13、坩埚侧壁;
2、第二坩埚;20、第一连通孔;20a、第一进料孔;20b、第二进料孔;21、第二本体;
3、第三坩埚;30、第二连通孔;31、第三本体;
4、第四坩埚;40、第三连通孔;41、第四本体;
5、第一卡隼结构;6、第二卡隼结构;7、第三卡隼结构;
8、托盘。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下文的公开提供了许多不同的实施例或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。此外,本申请提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的可应用于性和/或其他材料的使用。
下面,参考附图描述根据本申请实施例的晶体生产工艺。其中,“晶体”可以指单晶硅、蓝宝石等。
如图1-图4所示,晶体生产工艺包括以下步骤:S1、将初始原料装入坩埚组件100内;S2、对坩埚组件100进行加热以使初始原料熔化,并在设定时间后,坩埚组件100以设定转速段内的转速转动,以均匀坩埚组件100内部温度;S3、在熔料完成后,将下料组件101下降至坩埚组件100内液面上方,且与液面在上下方向上相距h,下料组件101包括原料下料管1011,原料下料管1011将再加入原料加至坩埚组件100的原料下料区Ω1;S4、在原料下料区Ω1下料,在晶体生长区Ω3进行拉晶。
例如,首先装料,将初始原料装入坩埚组件100内,可以根据坩埚组件100所需液面高度为依据,计算步骤S1所需添加的初始原料的总质量;而后熔料,对坩埚组件100进行加热以使坩埚组件100内的初始原料熔化,使得坩埚组件100内的初始原料在设定时间内熔化至一定程度,并在熔化至一定程度后,坩埚组件100保持设定转速段内的转速转动,使得坩埚组件100内部温度更加均匀,有利于提升晶体的品质,同时坩埚组件100转动有利于使得坩埚组件100内熔汤更加均匀;待原料完全熔化后,将下料组件101下降至坩埚组件100内液面上方的距离h处,原料下料管1011将再加入原料加至坩埚组件100的原料下料区Ω1,加料量可以使得坩埚组件100内液面高度达到所需液面高度,而且下料过程中,下料组件101与液面之间具有一定高度差,使得下料组件101与液面之间具有足够的下料空间,便于下料组件101向坩埚组件100内加料,有利于避免下料过程中下料组件101浸入液面;最后,在原料下料区Ω1下料,在坩埚组件100的晶体生长区Ω3进行拉晶,则边下料边拉晶,便于实现连续提拉生产晶体。
需要说明的是,在步骤S3中,下料组件101下降至坩埚组件100内液面上方的距离h处,而后再进行下料,则与下料组件101上下方向上相距h的“坩埚组件100内的液面”可以理解为下料前、坩埚组件100内的液面位置。
如图5和图8所示,坩埚组件100为上述晶体生产工艺中采用的坩埚组件100,且坩埚组件100包括第一坩埚1、第二坩埚2和第三坩埚3,第一坩埚1内限定出盛放空间100a,盛放空间100a的顶侧敞开设置,盛放空间100a可以用于盛放半导体或太阳能级材料(例如硅)的熔体(或熔汤),熔体可以通过加热固体料形成;第二坩埚2设在盛放空间100a内,且第二坩埚2与第一坩埚1共同限定出第一腔室R1,第一腔室R1属于盛放空间100a的一部分,且第一腔室R1可以位于第二坩埚2的外侧;第三坩埚3设在第二坩埚2内,且第三坩埚3与第二坩埚2共同限定出第二腔室R2,第三坩埚3内限定出第三腔室R3,第二腔室R2和第三腔室R3均属于盛放空间100a的一部分,且第二腔室R2可以位于第三腔室R3的外侧。
第二坩埚2上形成有第一连通孔20以连通第一腔室R1和第二腔室R2,则第一腔室R1内的熔汤可以通过第一连通孔20流至第二腔室R2,或者第二腔室R2内的熔汤可以通过第一连通孔20流至第一腔室R1;第三坩埚3上形成有第二连通孔30以连通第二腔室R2和第三腔室R3,则第二腔室R2内的熔汤可以通过第二连通孔30流至第三腔室R3。
如图5和图8所示,第一腔室R1适于构造成原料下料区Ω1,晶体生长区Ω3位于第三腔室R3内,则在步骤S3中,原料下料管1011将再加入原料加至第一腔室R1内,在步骤S4中,在第三腔室R3内进行拉晶;由于第一腔室R1熔汤需要通过第二腔室R2才能流至第三腔室R3,第二腔室R2可以适于构造成“熔融区”,使得熔汤具有足够的受热时间,且便于熔化后形成的熔汤提供足够的混合空间,从而有利于提升第三腔室R3内熔汤的均匀性,同时还可以防止未完全熔化的材料直接进入晶体生长区Ω3造成杂质击中,便于生产出较高品质的晶体。而且,通过设置第二腔室R2以将第三腔室R3与第一腔室R1隔开,可以避免向第一腔室R1内加料时易使得液面受到扰动,有利于保证加料过程中液面的稳定性,便于实现晶体稳定生长,保证生产稳定。
其中,在步骤S1中,将初始原料装入坩埚组件100内,则将初始原料分别装入第一腔室R1、第二腔室R2和第三腔室R3内,第一腔室R1内的初始原料的颗粒直径大于第二腔室R2内的初始原料的颗粒直径和第三腔室R3内的初始原料的颗粒直径,则第一腔室R1内的初始原料的颗粒直径相对较大,便于保证第一腔室R1的装料速率,第二腔室R2内的初始原料的颗粒直径和第三腔室R3内的初始原料的颗粒直径相对较小,便于第二腔室R2 和第三腔室R3内盛放足够的初始原料,且第二腔室R2和第三腔室R3内的初始原料颗粒之间的空隙较小,避免在熔料过程中产生气泡,尤其避免了第三腔室R3内产生气泡而影响拉晶。
需要说明的是,晶体生产工艺中,各步骤之间可以具有先后顺序,例如,步骤S1、步骤S2、步骤S3和步骤S4先后依次进行,使得步骤S1中的“将初始原料装入坩埚组件100内”位于步骤S2中的“对坩埚组件100进行加热以使初始原料熔化”之前,步骤S2中熔料过程是将步骤S1中加入坩埚组件100内的初始原料进行熔化,步骤S2中的“坩埚组件100以设定转速段内的转速转动,以均匀坩埚组件100内部温度”在步骤S3中的“将下料组件101下降至坩埚组件100内液面上方,且与液面上下相距h”之前,步骤S3中的下料过程在步骤S4中的下料、拉晶过程之前。
由此,根据本申请实施例的晶体生产工艺,通过在装料过程中,设置第一腔室R1内的初始原料的颗粒直径大于第二腔室R2内的初始原料的颗粒直径和第三腔室R3内的初始原料的颗粒直径,便于保证第二腔室R2和第三腔室R3内盛放足够的初始原料,且避免在熔料过程中第二腔室R2和第三腔室R3内产生气泡而影响拉晶,便于保证晶体品质;通过在熔料过程中,设置坩埚组件100保持设定转速段内的转速转动,以均匀坩埚组件100内部温度,便于使得坩埚组件100内熔汤更加均匀,有利于进一步提升晶体的品质。
在一些实施例中,在步骤S1中,第一腔室R1内的初始原料的颗粒直径大于10mm,例如第一腔室R1内的初始原料的颗粒直径可以大于50mm、60mm、70mm、100mm或200mm等,则第一腔室R1对于初始原料的颗粒直径的要求较低,便于保证第一腔室R1的装料速率,第二腔室R2和第三腔室R3内的初始原料的颗粒直径均小于10mm,以便于避免第二腔室R2和第三腔室R3产生气泡而影响拉晶。
在一些实施例中,设定转速段的转速范围为0.2r/m~3r/m(包括端点值,其中“r/m”为转每分,或者可以写成rpm),此时坩埚组件100的转速较低,实现了坩埚组件100的小幅埚转,便于保证坩埚组件100内温度的均匀效果。例如,在设定时间后,坩埚组件100的转速可以为0.2r/m、或1.5r/m、或2.3r/m、或3r/m;可以理解的,坩埚组件100的转速可以始终保持为某一恒定转速值,也可以按照设定方式在0.2r/m~3r/m范围内调整转速。通过在熔化阶段的小幅埚转,可使得坩埚组件100内部的温度更加均匀,更利于提升晶体的品质,若速度过快则可能会引起液面波动,若速度过小则实现不了温度更加均匀的目的。
在一些实施例中,h满足2mm≤h≤4mm,则h可以为2mm、或3mm、或4mm等。例如h为3mm,则在步骤S3中,将下料组件101下降至坩埚组件100内液面上方的3mm处。 由此,下料组件101与坩埚组件100内液面之间具有合适的高度差,避免下料组件101位置过高使得下料容易喷溅,导致晶体不易生长,避免下料组件101位置过低易污染坩埚组件100内的熔汤,从而进一步保证了晶体的稳定生长,同时便于保证晶体的品质。
在一些实施例中,如图2所示,步骤S4包括:S41:引晶:将籽晶102的一部分浸入坩埚组件100的液面下方,并开启磁场装置103;S42、缩颈:以设定移动速度段内的速度提拉籽晶102进行缩颈,去除位错;S43、放转肩:控制加热功率和籽晶102的提拉速度,以使晶体直径增大至设定直径;S44:等径加料:在晶体生长区Ω2进行晶棒的等径生长,在原料下料区Ω1,原料下料管1011将再加入原料加至坩埚组件100的原料下料区Ω1,且控制下料组件101的加料量与晶体的成晶量相等,维持液面恒定。其中,在步骤S44中,一边进行晶体的等径生长,一边将再加入原料加至原料下料区Ω1,实现边等径生长、边加料。
例如,步骤S4包括:将籽晶102轴向上的约三分之一浸入坩埚组件100的熔汤内,并开启磁场装置103,当温度稳定时,开始进行缩颈,在缩颈过程中,以设定移动速度段内的速度向上提拉籽晶102,以控制晶体缩颈部分的直径;而后,控制加热功率和籽晶102的提拉速度,使得晶体直径增大至设定直径,在此过程中,以控制晶体形状为主,利用长宽比计算出几何形状与长晶角度,根据经验形状来控制加热功率和提拉速度使得晶体形状达到所需角度,以完成放转肩;当晶体直径接近设定直径且等径时,放转肩完成,此时将再加入原料加至坩埚组件100的原料下料区Ω1,使得在等径过程中维持液面恒定,晶体等径生长,直至晶体脱离液面。
其中,如图7和图9所示,坩埚组件100设于晶体生长炉的炉体200内,磁场装置103设于炉体200外,且磁场装置103用于产生磁场,磁场装置103产生的磁场可以用于施加至坩埚组件100内的熔体。可以理解的是,磁场装置103的高度可以根据实际需求具体设置。
在步骤S44中,当晶体放转肩完成后,就可以开启下料组件101,此时晶体等径生长,下料组件101的加料量保持与晶体增加的重量相等,例如晶体重量每增加1kg,下料组件101需向坩埚组件100内加1kg料,也就是说,在晶体等径生长过程中,籽晶102每上升一定高度导致熔汤减少的质量需要下料组件101加同样质量的料进行相应补充,从而便于在晶体生长过程中维持液面稳定,进一步保证晶体稳定生长,实现了连续加料生产晶体,便于生产较大尺寸的晶体。例如,可以实现连续加料生产单晶硅,以便于解决重掺晶体的偏析问题。
例如,在图7的示例中,下料组件101包括原料下料管1011,在步骤S44中,开启原料下料管1011,并控制原料下料管1011的加料量与晶体的成晶量相等,则当晶体放转肩完成后,就可以开启原料下料管1011,此时晶体等径生长,原料下料管1011的加料量保持与晶体增加的重量相等,例如晶体重量每增加1kg,原料下料管1011需向坩埚组件100内加1kg再加入原料,以在晶体生长过程中维持液面稳定;可以理解的是,在图7的示例中,在拉晶过程中如果需要向坩埚组件100内添加掺杂剂,则在步骤S44中,开启原料下料管1011和掺杂剂下料管1012,并控制原料下料管1011的加料量和掺杂剂下料管1012的加料量之和与晶体的成晶量相等。
又例如,在图9的示例中,下料组件101包括原料下料管1011和掺杂剂下料管1012,在步骤S44中,开启原料下料管1011和掺杂剂下料管1012,并控制原料下料管1011的加料量和掺杂剂下料管1012的加料量之和与晶体的成晶量相等,则当晶体放转肩完成后,就可以开启原料下料管1011和掺杂剂下料管1012,此时晶体等径生长,晶体重量每增加1kg,原料下料管1011和掺杂剂下料管1012一共需向坩埚组件100内加1kg料,以在晶体生长过程中维持液面稳定。
在一些实施例中,如图7和图9所示,磁场装置103包括第一通电线圈1031和第二通电线圈1032,第一通电线圈1031和第二通电线圈1032均环绕炉体200设置,第一通电线圈1031适于位于坩埚组件100内熔体固液界面的上方,第二通电线圈1032间隔第一通电线圈1031的下方,且第二通电线圈1032适于位于坩埚组件100内熔体固液界面的下方。由此,磁场装置103结构简单,便于实现。
其中,第二通电线圈1032和第一通电线圈1031的电流方向相反,以使磁场装置103产生尖形磁场,在尖形磁场的磁力线作用下,第一通电线圈1031和第二通电线圈1032中间的磁力线呈“尖角形”对称分布。例如,晶体生长时,可以使固液界面位于第一通电线圈1031和第二通电线圈1032之间的对称面上,大部分熔汤都受到磁场的抑制作用,有效减少熔汤内紊流的产生。
在一些实施例中,如图7所示,第一通电线圈1031和第二通电线圈1032均与炉体200同轴设置,则第一通电线圈1031的中心轴线、第二通电线圈1032的中心轴线和炉体200的中心轴线重合。其中,第一通电线圈1031和第二通电线圈1032适于关于坩埚组件100内熔体的固液界面102b对称设置,此时第一通电线圈1031和第二通电线圈1032中的电流大小可以相等,且第一通电线圈1031和第二通电线圈1032的匝数可以相等,便于简化磁场装置103的设置。
在一些实施例中,在步骤S42中,设定移动速度段的范围为2mm/min~3mm/min(包括端点值),以保证缩颈顺利进行。例如,在步骤S42中,控制籽晶102以稳定的移动速度向上提拉,使得晶体缩颈部分的直径位于5mm~6mm之间,去除位错,并在晶体缩颈部分达到一定长度例如200mm后,控制加热功率和籽晶102的提拉速度,以进行放转肩。
在一些实施里中,如图3和图4所示,在步骤S1中,在将初始原料装入坩埚组件100内之前,在炉体200内依次安装加热器104和第一绝热层1051,将坩埚轴106上升至第一高度位置,并将坩埚组件100安装于坩埚轴106,其中,加热器104用于对坩埚组件100进行加热,第一绝热层1051位于加热器104的外侧且第一绝热层1051围绕加热器104设置,例如第一绝热层1051形成为筒状结构,以便于维持炉体200内的温度,阻挡加热器104的热辐射,降低热能损失,有利于提升晶体生长炉的热能利用率,保证熔料速率,坩埚轴106可升降地安装于炉体200,且坩埚轴106用于带动坩埚组件100转动;在将初始原料装入坩埚组件100内之后,将坩埚轴106下降至第二高度位置,并在炉体200内安装第二绝热层1052和导流筒107,其中,第二绝热层1052设在第一绝热层1051的上端,第二绝热层1052的至少部分位于坩埚组件100的上方,且第二绝热层1052的位于坩埚组件100上方的部分向内延伸至超过第一坩埚1以部分遮盖盛放空间100a,使得第二绝热层1052的至少部分内侧壁位于第一坩埚1的径向内侧,则第二绝热层1052可以阻挡盛放空间100a内熔体的热辐射,进一步降低热能损失,导流筒107用于将晶体生长区Ω3隔开,避免晶体生长区Ω3的晶体易受到坩埚组件100内熔汤和加热器104的辐射热,保证晶体固化,同时导流筒107可以将晶体生长区Ω3与原料下料区Ω1间隔开,以避免原料下料区Ω1的熔汤或下料喷溅导致晶体生长区Ω3气氛不佳容易造成杂质击中而使晶体失去单晶结构。
显然,第一高度位置位于第二高度位置的上方,则将坩埚轴106下降至第二高度位置后,再安装导流筒107,可以避免已经加至坩埚组件100内的初始原料碰触导流筒107底部,便于保证导流筒107的顺利安装,同时也保证了坩埚组件100内初始原料的洁净。
由此,步骤S1可以为:在炉体200内依次安装加热器104和第一绝热层1051,将坩埚轴106上升至第一高度位置,并将坩埚组件100安装于坩埚轴106,而后,将初始原料装入坩埚组件100内,再将坩埚轴106下降至第二高度位置,并在炉体200内安装第二绝热层1052和导流筒107。由此,通过合适设置炉体200内各部件的安装以及装料的先后顺序,方便了炉体200内各部件的顺利安装,也避免了已经加至坩埚组件100内的初始原料碰触炉体200内其他部件。
可选地,第一高度位置为坩埚轴106可达到的最高位置,第二高度位置为坩埚轴106 可达的最低位置。
例如,在图7的示例中,坩埚组件100包括第一坩埚1、第二坩埚2和第三坩埚3,加热器104包括侧加热器1041,侧加热器1041围绕坩埚组件100设置,即侧加热器1041位于坩埚组件100的径向外侧,例如,侧加热器1041可以沿坩埚组件100的周向连续延伸以形成为筒状结构;第一绝热层1051形成为筒状结构且位于侧加热器1041的径向外侧,以阻挡加热器104的热辐射,降低热能损失,第二绝热层1052设在第一绝热层1051的上端且包括沿坩埚组件100轴向设置的第一子绝热层1052a和第二子绝热层1052b,第二子绝热层1052b设在第一绝热层1051的上端,且第二子绝热层1052b向内延伸至超过侧加热器1041,以围绕坩埚组件100设置,则第二子绝热层1052b位于侧加热器1041的上方,第二子绝热层1052b的径向内端位于侧加热器1041的径向内侧,使得第二子绝热层1052b与坩埚组件100之间的径向距离更小,有利于提升第一绝热层1051的保温、隔热效果,第一子绝热层1052a设在第二子绝热层1052b的上端,且第一子绝热层1052a位于坩埚组件100的上方以遮盖盛放空间100a的一部分,第一子绝热层1052a向内至少延伸至第一坩埚1径向内侧,从而第一子绝热层1052a可以至少阻挡第一腔室R1内熔体的热辐射,进一步降低热能损失。显然,第二绝热层1052的一部分部分位于坩埚组件100的上方,使得第二绝热层1052的部分内侧壁位于第一坩埚1的径向内侧。
又例如,在图9的示例中,坩埚组件100包括第一坩埚1、第二坩埚2、第三坩埚3和第四坩埚4,第四坩埚4设在第三腔室R3内以将第三腔室R3分隔成第一子腔室R31和第二子腔室R32,加热器104包括侧加热器1041,侧加热器1041围绕坩埚组件100设置,即侧加热器1041位于坩埚组件100的径向外侧,例如,侧加热器1041可以沿坩埚组件100的周向连续延伸以形成为筒状结构;第一绝热层1051形成为筒状结构且位于侧加热器1041的径向外侧,以阻挡加热器104的热辐射,降低热能损失,第二绝热层1052设在第一绝热层1051的上端且包括沿坩埚组件100轴向设置的第一子绝热层1052a和第二子绝热层1052b,第二子绝热层1052b设在第一绝热层1051的上端,第二子绝热层1052b向内延伸至不超过第二坩埚2,则第二子绝热层1052b可以遮盖第一腔室R1顶侧的至少部分,且第二子绝热层1052b并未遮盖第二腔室R2的顶侧,也就是说,第二子绝热层1052b可以遮盖第一腔室R1顶侧的一部分,或者第二子绝热层1052b可以第一腔室R1的整个顶侧,从而第二子绝热层1052b可以阻挡第一腔室R1内熔体的热辐射,进一步降低热能损失,第一子绝热层1052a设在第二子绝热层1052b的上端,且第一子绝热层1052a向内至少延伸至第三坩埚3,则第一子绝热层1052a可以至少遮盖第二腔室R2的顶侧,且第一子绝热层1052a 可以遮盖第三腔室R3也可以不遮盖第三腔室R3,从而第一子绝热层1052a可以至少阻挡第二腔室R2内熔体的热辐射。显然,整个第二绝热层1052位于坩埚组件100的上方,使得第二绝热层1052的整个内侧壁位于第一坩埚1的径向内侧。
而且,在图9的示例中,第一子绝热层1052a与坩埚组件100之间在上下方向上的距离大于第二子绝热层1052b与坩埚组件100之间在上下方向上的距离,由于第一子绝热层1052a对应于第二腔室R2设置,则至少第二腔室R2的上方可以具有由第一子绝热层1052a和第二子绝热层1052b共同限定的避让空间1050,避让空间1050可以让导流至此处的硅蒸汽与挥发的掺杂剂充分受到氩气(或氮气)的带动,保证炉体200内气氛,而且加热器104达到避让空间1050对应位置处的能量已递减,避让空间1050可以允许该位置处的热能向上走,有效提升了固液界面处的温度梯度,便于晶体生长炉生产较大尺寸重掺晶体,以更好地满足实际需求。
在一些实施例中,如图7所示,炉体200包括本体200a和上盖200b,加热器104、绝热层105、坩埚轴106和导流筒107均安装于本体200a,晶体生产工艺还包括:S5、将冷却套108和下料组件101均安装于上盖200b,并将上盖200b固定在本体200a上后,对炉体200内进行抽真空处理,以更好地满足晶体生长所需的压力。其中,步骤S5位于步骤S1和步骤S2之间,冷却套108用于对晶体进行冷却,保证晶体固化成晶。
可选地,对炉体200内进行抽真空处理后,炉体200内的压力可以保持在20torr~50torr之间,以更好地满足晶体生长需求。
在一些实施例中,第一连通孔20的孔径为d 1,第二连通孔30的孔径为d 2,d 1、d 2满足:d 1<d 2,则第一连通孔20的孔径较小,例如第一连通孔20的孔径可以小于或等于第一腔室R1内颗粒料的直径,可以避免颗粒料没有熔化就直接进入第二腔室R2,继而进入第三腔室R3造成杂质击中、影响成晶率,从而有利于保证晶体成晶率;第二连通孔30的孔径大于第一连通孔20的孔径,可以避免熔汤聚集在第二腔室R2导致熔汤滞留,保证熔汤流动更加顺畅;而且,在第二腔室R2内原料和掺杂剂均基本完成化料,第二连通孔30的孔径较大,可以避免熔汤滞留而引起固液界面振动,影响后续的拉晶工艺。
其中,第一连通孔20和第二连通孔30可以均形成为圆孔;当然,当第一连通孔20和第二连通孔30中的至少一个形成为非圆孔时,第一连通孔20和第二连通孔30中上述至少一个的孔径可以理解为当量直径。
在一些实施例中,如图5、图6和图8所示,第一连通孔20形成在第二坩埚2的底部,且第一连通孔20邻近第二坩埚2的R角设置,例如第一连通孔20可以向上靠近第二坩埚 2的R角设置。在颗粒料熔化后,由于坩埚组件100外冷内热,且熔汤由外向内、在重力作用下向下流动,则将第一连通孔20邻近第二坩埚2的R角设置,便于熔汤顺畅通过第一连通孔20流至第二腔室R2;而且,颗粒料未完全熔化时,颗粒料变小、且在浮力作用下向上浮起,如果将第一连通孔20设在第二坩埚2的上部,可能会使得未完全熔化的颗粒料流至第二腔室R2,继而易造成杂质击中,由此,将第一连通孔20设在第二坩埚2的底部,可以避免未完全熔化的颗粒料进入晶体生长区Ω3影响成晶率。
其中,第二坩埚2的R角可以理解为第二坩埚2的转角处。坩埚的R角的位置已为本领域技术人员所熟知,在此不再赘述。
如图6所示,第一连通孔20为多个,多个第一连通孔20包括第一进料孔20a和第二进料孔20b,第二进料孔20b位于第一进料孔20a的上方,第一进料孔20a可以为主要进料孔,通过在第一进料孔20a的上方增设第二进料孔20b,可以避免第一进料孔20a发生堵塞时,第一腔室R1内的熔汤仍可以通过第二进料孔20b流至第二腔室R2,保证熔汤流动顺畅。具体而言,由于第一腔室R1适于构造成下料区,则在第一腔室R1加料时,颗粒具有一定下落速度,使得颗粒流向第一腔室R1的底部而堵住第一进料孔20a,此时第一腔室R1仍可以通过第二进料孔20b与第二腔室R2连通,保证坩埚组件100正常运行。
可选地,在第一腔室R1加料时,加料位置可以位于第一腔室R1的某一位置处,第一进料孔20a可以位于第二坩埚2的远离加料位置的一侧。
需要说明的是,“多个”的含义是两个或两个以上;“第二进料孔20b位于第一进料孔20a的上方”仅仅表示第二进料孔20b的水平高度高于第一进料孔20a,可以指第二进料孔20b位于第一进料孔20a的正上方、也可以指第二进料孔20b位于第一进料孔20a的斜上方,换言之,在第二坩埚2的周向上,第一进料孔20a和第二进料孔20b之间的相对位置可以根据实际应用具体设置,则第一进料孔20a设置位置和第二进料孔20b设置位置以第二坩埚2的中心为圆心形成的圆心角的范围可以为0°~360°(包括端点值)。
例如,在图6的示例中,第一连通孔20为三个,第一进料孔20a为两个,第二进料孔20b为一个,且第二进料孔20b位于两个第一进料孔20a的上方,且在第二坩埚2的周向上,第二进料孔20b位于两个第一进料孔20a之间。
在一些实施例中,如图5和图8所示,第二连通孔30形成在第三坩埚3的远离第一连通孔20的一侧,则对于坩埚组件100而言,第一连通孔20和第二连通孔30分别位于坩埚组件100的径向两侧,通过第一连通孔20流至第二腔室R2的熔汤需要绕流至第三坩埚3的另一侧,才能通过第二连通孔30流至第三腔室R3。由此,盛放空间100a内的熔汤自下 料位置流至第三腔室R3需要流经较长路径,可以防止熔汤快速流动易引起液面振动,有利于保证液面的稳定性。
例如,在图5和图8的示例中,第一腔室R1和第二腔室R2均形成为环状结构,第二连通孔30形成在第三坩埚3的远离第一连通孔20的径向一侧,则盛放空间100a内的熔汤迂回曲折流动,便于保证晶体生长时或加料时液面稳定。
在一些实施例中,如图5所示,第一坩埚1的顶端和第二坩埚2的顶端齐平设置,则第一坩埚1的顶端和第二坩埚2的顶端大致位于同一平面上,且第一坩埚1的顶端和第二坩埚2的顶端均位于第三坩埚3顶端的上方,也就是说,在第一坩埚1、第二坩埚2和第三坩埚3中,第三坩埚3顶端的高度最低。
当坩埚组件100应用于单晶炉时,单晶炉的冷却套108可以设在晶体生长区Ω3的正上方,且在垂直于坩埚组件100中心轴线的平面上,冷却套108的正投影位于晶体生长区Ω3的正投影范围内,通过设置第三坩埚3顶端的高度相对第二坩埚2顶端的高度较低,便于在第三坩埚3和冷却套108之间设置导流筒107,以将冷却套108和第三坩埚3间隔开,避免晶体生长易受高温熔汤产生的热辐射,保证晶体固化。当然,坩埚组件100还可以用于其他设备。
在一些实施例中,如图5和图8所示,第一坩埚1包括第一本体11,第二坩埚2包括第二本体21,第三坩埚3包括第三本体31,第一本体11、第二本体21和第三本体31均形成为圆筒结构,第一本体11、第二本体21和第三本体31由外向内依次设置,且第一本体11、第二本体21和第三本体31同轴设置,则第一本体11的中心轴线、第二本体21的中心轴线和第三本体31的中心轴线重合设置,且第一本体11的中心轴线可以形成为坩埚组件100的中心轴线,第一腔室R1和第二腔室R2可以均形成为环状结构,从而当坩埚组件100在使用时,坩埚组件100可以在坩埚轴106的驱动下绕其中心轴线转动,则第一腔室R1绕坩埚组件100的中心轴线转动,第一腔室R1的下料位置可以无需跟随坩埚组件100转动,方便了坩埚组件100的下料设置。
其中,第一本体11的直径D 1、第二本体21的直径D 2和第三本体31的直径D 3满足D n+1=D n*X n,其中,n=1、2,60%≤X n≤80%,例如X n可以为60%、或70%、或80%等。
由此,D 2=D 1*X 1,60%≤X 1≤80%,便于保证第一腔室R1具有足够的下料空间,易于实现合适的再加入原料的下料量,且便于保证第一腔室R1内的熔汤具有足够的流动空间,使得第一腔室R1内的熔汤通过第一连通孔20流至第二腔室R2;D 3=D 2*X 2,60%≤X 2≤80%,在保证第三腔室R3满足晶体生长空间需求的前提下,便于保证第二腔室R2具有足 够的空间,使得熔汤更加均匀,且便于保证第二腔室R2内的熔汤具有足够的流动空间,使得第二腔室R2内的熔汤通过第二连通孔30流至第三腔室R3。其中,X 1和X 2可以相等、也可以不等。
例如,在图5和图8的示例中,第一本体11位于第一坩埚1的顶部,第二本体21位于第二坩埚2的顶部,第三本体31位于第三坩埚3的顶部,X 1=X 2=80%,则D 2=D 1*80%、D 3=D 2*80%。
在一些实施例中,如图5和图8所示,第一坩埚1包括坩埚底壁12和坩埚侧壁13,坩埚侧壁13自坩埚底壁12的边沿向上延伸,且坩埚侧壁13与坩埚底壁12共同限定出盛放空间100a,第二坩埚2和第三坩埚3均形成为筒形结构,第二坩埚2通过第一卡隼结构5与坩埚底壁12限位配合,第三坩埚3通过第二卡隼结构6与坩埚底壁12限位配合,则便于简化第二坩埚2和第三坩埚3的结构,方便加工,同时方便了第二坩埚2与第一坩埚1、第三坩埚3与第一坩埚1之间的装配,保证坩埚组件100形成为一个稳定整体,避免高埚转造成的损坏与移动,保证坩埚组件100使用可靠。
其中,第一卡隼结构5和第二卡隼结构6的具体结构可以根据实际应用设置,只需保证第二坩埚2与第一坩埚1装配可靠、第三坩埚3与第一坩埚1装配可靠即可。
需要说明的是,在本申请的描述中,“筒形结构”应作广义理解,不限于圆筒形结构,例如可以为多边形筒结构,也不限于横截面积始终不变的筒形结构,例如可以为锥形筒结构。
在一些实施例中,如图8所示,坩埚组件100还包括第四坩埚4,第四坩埚4设在第三腔室R3内以将第三腔室R3分隔成第一子腔室R31和第二子腔室R32,第四坩埚4上形成有第三连通孔40以连通第一子腔室R31和第二子腔室R32,则第一子腔室R31内熔汤可以通过第三连通孔40流至第二子腔室R32,或者第二子腔室R32内的熔汤可以通过第三连通孔40流至第一子腔室R31。其中,第二子腔室R32通过第一连通孔20与第二腔室R2连通,有利于进一步提升第一子腔室R31内熔汤的均匀性,有利于保证加料过程中液面的稳定性,便于实现晶体径向电阻与轴向电阻的均匀分布,从而保证生产稳定,采用坩埚组件100生产的晶体具有良好品质。
例如,第一子腔室R31和第二子腔室R32的顶侧均敞开设置,第一子腔室R31位于第四坩埚4的内侧,第二子腔室R32形成在第四坩埚4的外侧。其中,第一子腔室R31适于构造成晶体生长区Ω3,第二腔室R2适于构造成掺杂剂下料区Ω2,则第二腔室R2用于掺杂剂下料。
在图8的示例中,下料组件101包括原料下料管1011和掺杂剂下料管1012,第一腔室R1适于构造成原料下料区Ω1,第二腔室R2适于构造成掺杂剂下料区Ω2,第一子腔室R31适于构造成晶体生长区Ω3,在步骤S3中,原料下料管1011与原料下料区Ω1对应设置,以使原料下料管1011向第一腔室R1加料,掺杂剂下料管1012与掺杂剂下料区Ω2对应设置,以使掺杂剂下料管1012向第二腔室R2加料。
坩埚组件100使用过程中,下料组件101加料时,再加入原料(例如硅)加入第一腔室R1内,掺杂剂(例如砷)加入第二腔室R2内,第一子腔室R31进行拉晶;由于第一腔室R1和第二腔室R2的熔汤需要通过第二子腔室R32才能流至第一子腔室R31,第二子腔室R32可以适于构造成“搅拌区”,可以为熔化后的原料和掺杂剂提供足够的混合空间,从而有利于进一步提升第一子腔室R31内熔汤的均匀性,且具有良好的保温效果,便于生产出较高品质的晶体。而且,通过设置第二子腔室R32以将第一子腔室R31与第一腔室R1和第二腔室R2隔开,可以避免加料过程中易使得液面受到扰动,有利于保证加料过程中液面的稳定性,便于实现晶体稳定生长,实现晶体径向电阻与轴向电阻的均匀分布,保证生产稳定。同时,坩埚组件100在使用时可以绕其中心轴线转动,液面稳定可以避免拉晶过程中固液界面过于突出于晶体,从而在采用CCZ生产过程中,便于进一步有效控制晶体电阻在轴向和径向上均匀分布,有利于进一步提升晶体的品质;例如,电子产品中应用的晶圆的电阻须落在一个狭窄的电阻范围内,采用本申请中坩埚组件100生产的晶体可以满足上述需求,不会造成原料、工时的损失浪费,便于节省成本。
需要说明的是,方向“外”是指远离坩埚组件100的中心轴线的方向,其相反方向被定义为内。
在步骤S1中,将初始原料分别装入第一腔室R1、第二腔室R2、第一子腔室R31和第二子腔室R32,第一腔室R1内的初始原料的颗粒直径大于第一子腔室R31内的初始原料的颗粒直径和第二子腔室R32内的初始原料的颗粒直径,便于保证第一子腔室R31和第二子腔室R32内盛放足够的初始原料,且避免第一子腔室R31和第二子腔室R32在熔料过程中易产生气泡影响拉晶。
当然,本申请不限于;在一些实施例中,如图5所示,坩埚组件100包括第一坩埚1、第二坩埚2和第三坩埚3,且坩埚组件100不包括第四坩埚4,此时第一腔室R1还可以用于构造成掺杂剂下料区Ω2,则可以在第一腔室R1内添加原料、掺杂杂质,此时第二腔室R2可以构成坩埚组件100的“熔融区”。
在一些实施例中,第一连通孔20的孔径为d 1,第二连通孔30的孔径为d 2,第三连通 孔40的孔径为d 3,d 1、d 2和d 3满足:d 1<d 2<d 3,则第一连通孔20的孔径较小,例如第一连通孔20的孔径可以小于或等于第一腔室R1内颗粒料的直径,可以避免颗粒料没有熔化就直接进入第二腔室R2,继而进入第一子腔室R31造成杂质击中、影响成晶率,从而有利于保证晶体成晶率;第二连通孔30的孔径大于第一连通孔20的孔径,可以避免熔汤聚集在第二腔室R2导致熔汤滞留,保证熔汤流动更加顺畅;而在第二子腔室R32内原料和掺杂剂均已完成化料,第三连通孔40的孔径较大,可以避免熔汤滞留而引起固液界面振动,影响后续的拉晶工艺。
其中,第一连通孔20、第二连通孔30和第三连通孔40可以均形成为圆孔;当然,当第一连通孔20、第二连通孔30和第三连通孔40中的至少一个形成为非圆孔时,第一连通孔20、第二连通孔30和第三连通孔40中上述至少一个的孔径可以理解为当量直径。
在一些实施例中,如图8所示,第二连通孔30形成在第三坩埚3的远离第一连通孔20的一侧,第三连通孔40形成在第四坩埚4远离第二连通孔30的一侧,则对于坩埚组件100而言,第一连通孔20和第二连通孔30分别位于坩埚组件100的径向两侧,第二连通孔30和第三连通孔40分别位于坩埚组件100的径向两侧,则通过第一连通孔20流至第二腔室R2的熔汤需要绕流至第三坩埚3的另一侧,才能通过第二连通孔30流至第二子腔室R32,且通过第二连通孔30流至第二子腔室R32的熔汤需要绕流至第四坩埚4的另一侧,才能通过第三连通孔40流至第一子腔室R31。由此,盛放空间100a内的熔汤自下料位置流至第一子腔室R31需要流经较长路径,可以防止熔汤快速流动易引起液面振动,有利于保证液面的稳定性。
例如,在图8的示例中,第一腔室R1、第二腔室R2和第一子腔室R31、第二子腔室R32均形成为环状结构,第二连通孔30形成在第三坩埚3的远离第一连通孔20的径向一侧,第三连通孔40形成在第四坩埚4的远离第二连通孔30的径向一侧,则盛放空间100a内的熔汤迂回曲折流动,便于保证晶体生长时或加料时液面稳定。
在一些实施例中,如图8所示,第一坩埚1的顶端、第二坩埚2的顶端和第三坩埚3的顶端齐平设置,则第一坩埚1的顶端、第二坩埚2的顶端和第三坩埚3的顶端大致位于同一平面上,且第一坩埚1的顶端、第二坩埚2的顶端和第三坩埚3的顶端均位于第四坩埚4顶端的上方,也就是说,在第一坩埚1、第二坩埚2、第三坩埚3和第四坩埚4中,第四坩埚4顶端的高度最低。
当坩埚组件100应用于单晶炉时,单晶炉的冷却套108可以设在晶体生长区Ω3的正上方,且在垂直于坩埚组件100中心轴线的平面上,冷却套108的正投影位于晶体生长区Ω3 的正投影范围内,通过设置第四坩埚4顶端的高度相对第三坩埚3顶端的高度较低,便于在第四坩埚4和冷却套108之间设置导流筒107,以将冷却套108和第四坩埚4间隔开,避免晶体生长易受高温熔汤产生的热辐射,保证晶体固化;而且,第二坩埚2顶端和第三坩埚3顶端的高度较高,有利于避免掺杂剂(例如易挥发的掺杂剂,比如砷)被气流带走例如避免掺杂剂被单晶炉内的氩气流带走,在一定程度上可以阻止氩气流与固液界面接触,避免了掺杂剂的浪费,同时避免了掺杂不均匀造成晶体径向电阻率不均匀。当然,坩埚组件100还可以用于其他设备。
需要说明的是,第一坩埚1的顶端、第二坩埚2的顶端和第三坩埚3的顶端齐平设置,可以包括以下情况:1、第一坩埚1的顶端、第二坩埚2的顶端和第三坩埚3的顶端位于同一平面上;2、第一坩埚1的顶端、第二坩埚2的顶端和第三坩埚3的顶端在上下方向上的高度位置相差不大。
在一些实施例中,如图8所示,第一坩埚1包括第一本体11,第二坩埚2包括第二本体21,第三坩埚3包括第三本体31,第四坩埚4包括第四本体41,第一本体11、第二本体21、第三本体31和第四本体41均形成为圆筒结构,第一本体11、第二本体21、第三本体31和第四本体41由外向内依次设置,且第一本体11、第二本体21、第三本体31和第四本体41同轴设置,则第一本体11的中心轴线、第二本体21的中心轴线、第三本体31的中心轴线和第四本体41的中心轴线重合设置,且第一本体11的中心轴线可以形成为坩埚组件100的中心轴线,第一腔室R1、第二腔室R2和第一子腔室R31、第二子腔室R32可以均形成为环状结构,从而当坩埚组件100在使用时,坩埚组件100可以绕其中心轴线转动,则第一腔室R1和第二腔室R2均绕坩埚组件100的中心轴线转动,第一腔室R1的下料位置和第二腔室R2的下料位置可以无需跟随坩埚组件100转动,方便了坩埚组件100的下料设置。
其中,第一本体11的直径D 1、第二本体21的直径D 2、第三本体31的直径D 3和第四本体41的直径D 4满足D n+1=D n*X n,其中,n=1、2、3,60%≤X n≤80%,例如X n可以为60%、或70%、或80%等。
由此,D 4=D 3*X 3,60%≤X 3≤80%,在保证第一子腔室R31满足晶体生长空间需求的前提下,便于保证第二子腔室R32具有足够的空间,使得原料与掺杂剂形成的熔汤更加均匀,且便于保证第二子腔室R32内的熔汤具有足够的流动空间,使得第二子腔室R32内的熔汤通过第三连通孔40流至第一子腔室R31。其中,X 1、X 2和X 3可以相等、也可以不等,即X 1、X 2和X 3可以满足:X 1=X 2=X 3、或X 1≠X 2=X 3、或X 1=X 2≠X 3、或X 1≠X 2≠X 3
例如,在图8的示例中,第一本体11位于第一坩埚1的顶部,第二本体21位于第二坩埚2的顶部,第三本体31位于第三坩埚3的顶部,第四本体41位于第四坩埚4的顶部,X 1=X 2=X 3=80%,则D 2=D 1*80%、D 3=D 2*80%、D 4=D 3*80%。
在一些实施例中,如图8所示,第一坩埚1包括坩埚底壁12和坩埚侧壁13,坩埚侧壁13自坩埚底壁12的边沿向上延伸,且坩埚侧壁13与坩埚底壁12共同限定出盛放空间100a,第二坩埚2、第三坩埚3和第四坩埚4均形成为筒形结构,第二坩埚2通过第一卡隼结构5与坩埚底壁12限位配合,第三坩埚3通过第二卡隼结构6与坩埚底壁12限位配合,第四坩埚4通过第三卡隼结构7与坩埚底壁12限位配合,则便于简化第二坩埚2、第三坩埚3和第四坩埚4的结构,方便加工,同时方便了第二坩埚2与第一坩埚1、第三坩埚3与第一坩埚1、第四坩埚4与第一坩埚1之间的装配,保证坩埚组件100形成为一个稳定整体,避免高埚转造成的损坏与移动,保证坩埚组件100使用可靠。
在一些实施例中,如图5和图8所示,坩埚组件100还包括托盘8,托盘8支撑在第一坩埚1的底部,有利于提升坩埚组件100的承载能力;托盘8的顶端位于第一坩埚1的顶端、第二坩埚2的顶端和第三坩埚3的顶端的下方,即在第一坩埚1、第二坩埚2、第三坩埚3和托盘8中,托盘8顶端的高度位置最低,从而在保证坩埚组件100承载能力的前提下,可以节省托盘8的用材量,降低成本。
可选地,在图5和图8的示例中,托盘8为石墨件。
如图5和图8所示,第一坩埚1包括坩埚底壁12和坩埚侧壁13,坩埚侧壁13自坩埚底壁12的边沿向上延伸,且坩埚侧壁13与坩埚底壁12共同限定出盛放空间100a。托盘8的顶端适于位于盛放空间100a内液面的上方,且托盘8向上超过坩埚底壁12的部分的高度为坩埚侧壁13高度的一半,便于保证坩埚组件100稳定承载熔汤,避免盛放空间100a内熔汤过多而出现洩漏现象。
根据本申请实施例的坩埚组件100的其他构成以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
在本申请的描述中,需要理解的是,术语“中心”、“横向”、“高度”、“上”、“下”、“顶”、“底”、“内”、“外”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要 性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接,还可以是通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (14)

  1. 一种晶体生产工艺,其特征在于,包括以下步骤:
    S1、将初始原料装入坩埚组件(100)内;
    S2、对所述坩埚组件(100)进行加热以使初始原料熔化,并在设定时间后,所述坩埚组件(100)以设定转速段内的转速转动,以均匀所述坩埚组件(100)内部温度;
    S3、在熔料完成后,将下料组件(101)下降至所述坩埚组件(100)内液面上方,且与液面上下相距h,所述下料组件(101)包括原料下料管(1011),所述原料下料管(1011)将再加入原料加至所述坩埚组件(100)的原料下料区(Ω1);
    S4、在所述原料下料区(Ω1)下料,在晶体生长区(Ω3)进行拉晶,
    其中,所述坩埚组件(100)包括第一坩埚(1)、第二坩埚(2)和第三坩埚(3),所述第一坩埚(1)内限定出盛放空间(100a),所述盛放空间(100a)的顶侧敞开设置,所述第二坩埚(2)设在所述盛放空间(100a)内且与所述第一坩埚(1)共同限定出第一腔室(R1),所述第三坩埚(3)设在所述第二坩埚(2)内且与所述第二坩埚(2)共同限定出第二腔室(R2),所述第三坩埚(3)内限定出第三腔室(R3),所述第二坩埚(2)上形成有第一连通孔(20)以连通所述第一腔室(R1)和所述第二腔室(R2),所述第三坩埚(3)上形成有第二连通孔(30)以连通所述第二腔室(R2)和所述第三腔室(R3),所述第一腔室(R1)适于构造成所述原料下料区(Ω1),所述晶体生长区(Ω3)位于所述第三腔室(R3)内,
    在所述步骤S1中,将初始原料分别装入所述第一腔室(R1)、所述第二腔室(R2)和所述第三腔室(R3)内,所述第一腔室(R1)内的初始原料的颗粒直径大于所述第二腔室(R2)内的初始原料的颗粒直径和所述第三腔室(R3)内的初始原料的颗粒直径。
  2. 根据权利要求1所述的晶体生产工艺,其特征在于,所述设定转速段的转速范围为0.2r/m~3r/m。
  3. 根据权利要求1所述的晶体生产工艺,其特征在于,所述h满足:2mm≤h≤4mm。
  4. 根据权利要求1所述的晶体生产工艺,其特征在于,所述步骤S4包括:
    S41、引晶:将籽晶(102)的一部分浸入所述坩埚组件(100)的液面下方,并开启磁场装置(103);
    S42、缩颈:以设定移动速度段内的速度提拉籽晶(102)进行缩颈,去除位错;
    S43、放转肩:控制加热功率和所述籽晶(102)的提拉速度,以使晶体直径增大至设定直径;
    S44:等径加料:在所述晶体生长区(Ω3)进行晶棒的等径生长,在所述原料下料区(Ω1),所述原料下料管(1011)将再加入原料加至所述坩埚组件(100)的所述原料下料区(Ω1),且控制所述下料组件的加料量与晶体的成晶量相等,维持液面恒定,
    其中,所述坩埚组件(100)设于晶体生长炉的炉体(200)内,所述磁场装置(103)设于炉体(200)外,且用于产生磁场。
  5. 根据权利要求1所述的晶体生产工艺,其特征在于,在所述步骤S1中,
    在将初始原料装入所述坩埚组件(100)内之前,在炉体(200)内依次安装加热器(104)和第一绝热层(1051),将坩埚轴(106)上升至第一高度位置,并将所述坩埚组件(100)安装于所述坩埚轴(106),其中,所述加热器(104)用于对所述坩埚组件(100)进行加热,所述第一绝热层(1051)位于所述加热器(104)的外侧且围绕所述加热器(104)设置,所述坩埚轴(106)可升降地安装于所述炉体(200),且用于带动所述坩埚组件(100)转动,
    在将初始原料装入所述坩埚组件(100)内之后,将所述坩埚轴(106)下降至第二高度位置,并在所述炉体(200)内安装第二绝热层(1052)和导流筒(107),其中,所述第二绝热层(1052)设在所述第一绝热层(1051)的上端,所述第二绝热层(1052)的至少部分位于所述坩埚组件(100)的上方且向内延伸至超过所述第一坩埚(1)以部分遮盖所述盛放空间(100a),使得所述第二绝热层(1052)的至少部分内侧壁位于所述第一坩埚(1)的径向内侧,所述导流筒(107)用于将所述晶体生长区(Ω3)隔开。
  6. 根据权利要求5所述的晶体生产工艺,其特征在于,所述炉体(200)包括本体(200a)和上盖(200b),所述加热器(104)、所述绝热层(105)、所述坩埚轴(106)和所述导流筒(107)均安装于所述本体(200a),所述晶体生产工艺还包括:
    S5、将冷却套(108)和所述下料组件(101)均安装于所述上盖(200b),并将所述上盖(200b)固定在所述本体(200a)上后,对所述炉体(200)内进行抽真空处理,所述冷却套(108)用于对所述晶体进行冷却,其中,所述步骤S5位于所述步骤S1和所述步骤S2之间。
  7. 根据权利要求1所述的晶体生产工艺,其特征在于,所述第一连通孔(20)的孔径为d 1,所述第二连通孔(30)的孔径为d 2,d 1、d 2满足:d 1<d 2
  8. 根据权利要求1所述的晶体生产工艺,其特征在于,所述第一连通孔(20)形成在所述第二坩埚(2)的底部且邻近所述第二坩埚(2)的R角设置,
    所述第一连通孔(20)为多个,多个第一连通孔(20)包括第一进料孔(20a)和第二进料孔(20b),所述第二进料孔(20b)位于所述第一进料孔(20a)的上方。
  9. 根据权利要求1所述的晶体生产工艺,其特征在于,所述第一坩埚(1)包括坩埚底壁(12) 和坩埚侧壁(13),所述坩埚侧壁(13)自所述坩埚底壁(12)的边沿向上延伸且与所述坩埚底壁(12)共同限定出所述盛放空间(100a),所述第二坩埚(2)和所述第三坩埚(3)均形成为筒形结构,所述第二坩埚(2)通过第一卡隼结构(5)与所述坩埚底壁(12)限位配合,所述第三坩埚(3)通过第二卡隼结构(6)与所述坩埚底壁(12)限位配合。
  10. 根据权利要求1所述的晶体生产工艺,其特征在于,所述第一坩埚(1)的顶端和所述第二坩埚(2)的顶端齐平设置且均位于所述第三坩埚(3)的顶端上方。
  11. 根据权利要求1-10中任一项所述的晶体生产工艺,其特征在于,所述坩埚组件还包括:
    第四坩埚(4),所述第四坩埚(4)设在所述第三腔室(R3)内以将所述第三腔室(R3)分隔成第一子腔室(R31)和第二子腔室(R32),所述第四坩埚(4)上形成有第三连通孔(40)以连通所述第一子腔室(R31)和所述第二子腔室(R32),所述第二子腔室(R32)通过所述第二连通孔(30)与所述第二腔室(R2)连通,所述第一子腔室(R31)适于构造成所述晶体生长区(Ω3),所述第二腔室(R2)适于构造成掺杂剂下料区(Ω2),
    其中,在所述步骤S1中,所述第一腔室(R1)内的初始原料的颗粒直径大于所述第一子腔室(R31)内的初始原料的颗粒直径和所述第二子腔室(R32)内的初始原料的颗粒直径,所述下料组件(101)还包括掺杂剂下料管(1012),在所述步骤S3中,所述原料下料管(1011)与所述原料下料区(Ω1)对应设置,以使所述原料下料管(1011)向所述第一子腔室(R31)加料,所述掺杂剂下料管(1012)与所述掺杂剂下料区(Ω2)对应设置,以使所述掺杂剂下料管(1012)向所述第二子腔室(R32)加料。
  12. 根据权利要求11所述的晶体生产工艺,其特征在于,所述第一连通孔(20)的孔径为d1,所述第二连通孔(30)的孔径为d2,所述第三连通孔(40)的孔径为d3,d1、d2和d3满足:d1<d2<d3。
  13. 根据权利要求11所述的晶体生产工艺,其特征在于,所述第一坩埚(1)的顶端、所述第二坩埚(2)的顶端和所述第三坩埚(3)的顶端齐平设置且均位于所述第四坩埚(4)顶端的上方。
  14. 根据权利要求1所述的晶体生产工艺,其特征在于,所述坩埚组件(100)还包括:
    托盘(8),所述托盘(8)支撑在所述第一坩埚(1)的底部,所述托盘(8)的顶端位于所述第一坩埚(1)的顶端、所述第二坩埚(2)的顶端和所述第三坩埚(3)的顶端的下方,所述第一坩埚(1)包括坩埚底壁(12)和坩埚侧壁(13),所述坩埚侧壁(13)自所述坩埚底壁(12)向上延伸且与所述坩埚底壁(12)共同限定出所述盛放空间(100a),
    所述托盘(8)的顶端适于位于所述盛放空间(100a)内液面的上方,且所述托盘(8)超过坩埚底壁(12)的部分的高度为所述第一坩埚(1)高度的一半。
PCT/CN2021/117537 2020-09-10 2021-09-09 晶体生产工艺 WO2022052999A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21866051.2A EP4212652A4 (en) 2020-09-10 2021-09-09 METHOD FOR PRODUCING CRYSTALS
US18/025,649 US20230340692A1 (en) 2020-09-10 2021-09-09 Method of Growing Ingot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010948861.8 2020-09-10
CN202010948861.8A CN112210820A (zh) 2020-09-10 2020-09-10 晶体生产工艺

Publications (1)

Publication Number Publication Date
WO2022052999A1 true WO2022052999A1 (zh) 2022-03-17

Family

ID=74049947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117537 WO2022052999A1 (zh) 2020-09-10 2021-09-09 晶体生产工艺

Country Status (5)

Country Link
US (1) US20230340692A1 (zh)
EP (1) EP4212652A4 (zh)
CN (1) CN112210820A (zh)
TW (1) TWI781759B (zh)
WO (1) WO2022052999A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115404541A (zh) * 2022-10-18 2022-11-29 四川晶科能源有限公司 一种拉晶方法
CN115948801A (zh) * 2022-12-30 2023-04-11 青海高景太阳能科技有限公司 一种直拉单晶成晶工艺及其应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112210820A (zh) * 2020-09-10 2021-01-12 徐州鑫晶半导体科技有限公司 晶体生产工艺
CN114717646B (zh) * 2022-03-31 2023-11-28 中环领先(徐州)半导体材料有限公司 加料管、加料方法及晶体生长设备
CN114717645B (zh) * 2022-03-31 2023-08-18 中环领先(徐州)半导体材料有限公司 加料管、加料方法和晶体生长设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1051207A (zh) * 1989-10-26 1991-05-08 日本钢管株式会社 制造硅单晶设备
CN1160779A (zh) * 1996-01-12 1997-10-01 三菱麻铁里亚尔硅材料株式会社 拉单晶装置
CN105247114A (zh) * 2013-03-14 2016-01-13 爱迪生太阳能公司 用于控制氧的提拉坩埚和相关方法
CN205295534U (zh) * 2015-12-08 2016-06-08 西安交通大学 一种高速单晶生长装置
CN106574391A (zh) * 2014-07-25 2017-04-19 爱迪生太阳能公司 包括被动式加热器的晶体生长系统和方法
CN110741111A (zh) * 2017-05-04 2020-01-31 各星有限公司 包括坩埚和屏障的拉晶系统和方法
CN112210820A (zh) * 2020-09-10 2021-01-12 徐州鑫晶半导体科技有限公司 晶体生产工艺

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63303894A (ja) * 1987-06-01 1988-12-12 Mitsubishi Metal Corp シリコン単結晶育成方法
JP5636168B2 (ja) * 2009-05-18 2014-12-03 株式会社Sumco シリコン単結晶の育成方法
CN103590109B (zh) * 2013-08-21 2016-04-27 银川隆基硅材料有限公司 直拉单晶炉磁场装置及使用该磁场装置的拉晶方法
US9822466B2 (en) * 2013-11-22 2017-11-21 Corner Star Limited Crystal growing systems and crucibles for enhancing heat transfer to a melt
US10221500B2 (en) * 2017-01-04 2019-03-05 Corner Star Limited System for forming an ingot including crucible and conditioning members
JP7006636B2 (ja) * 2019-03-01 2022-01-24 株式会社Sumco シリコン単結晶製造装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1051207A (zh) * 1989-10-26 1991-05-08 日本钢管株式会社 制造硅单晶设备
CN1160779A (zh) * 1996-01-12 1997-10-01 三菱麻铁里亚尔硅材料株式会社 拉单晶装置
CN105247114A (zh) * 2013-03-14 2016-01-13 爱迪生太阳能公司 用于控制氧的提拉坩埚和相关方法
CN106574391A (zh) * 2014-07-25 2017-04-19 爱迪生太阳能公司 包括被动式加热器的晶体生长系统和方法
CN205295534U (zh) * 2015-12-08 2016-06-08 西安交通大学 一种高速单晶生长装置
CN110741111A (zh) * 2017-05-04 2020-01-31 各星有限公司 包括坩埚和屏障的拉晶系统和方法
CN112210820A (zh) * 2020-09-10 2021-01-12 徐州鑫晶半导体科技有限公司 晶体生产工艺

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4212652A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115404541A (zh) * 2022-10-18 2022-11-29 四川晶科能源有限公司 一种拉晶方法
CN115404541B (zh) * 2022-10-18 2023-08-25 四川晶科能源有限公司 一种拉晶方法
CN115948801A (zh) * 2022-12-30 2023-04-11 青海高景太阳能科技有限公司 一种直拉单晶成晶工艺及其应用
CN115948801B (zh) * 2022-12-30 2023-11-21 青海高景太阳能科技有限公司 一种直拉单晶成晶工艺及其应用

Also Published As

Publication number Publication date
CN112210820A (zh) 2021-01-12
TW202223173A (zh) 2022-06-16
US20230340692A1 (en) 2023-10-26
EP4212652A1 (en) 2023-07-19
EP4212652A4 (en) 2024-03-20
TWI781759B (zh) 2022-10-21

Similar Documents

Publication Publication Date Title
WO2022052999A1 (zh) 晶体生产工艺
JP5909276B2 (ja) 最初のチャージだけをドーピングすることによる、均一にドーピングされたシリコンインゴットの成長
TWI664327B (zh) n型矽單結晶的製造方法、n型矽單結晶的鑄錠、矽晶圓及磊晶矽晶圓
JP6528178B2 (ja) シリコン単結晶の製造方法
JP5464429B2 (ja) 四角形の断面を有する単結晶シリコンの育成方法
KR100942185B1 (ko) 실리콘 잉곳 성장방법
TW202113168A (zh) 一種矽單晶的生長方法
US20150259824A1 (en) Apparatus and methods for manufacturing ingot
WO2019003968A1 (ja) シリコン単結晶の製造方法
JP5399212B2 (ja) シリコン単結晶の製造方法
JP5163386B2 (ja) シリコン融液形成装置
JP2013513545A (ja) マイクロピット密度(mpd)が低いゲルマニウムのインゴット/ウェハ、ならびに、その製造システムおよび製造方法
KR101675903B1 (ko) 반도체 단결정의 제조 장치 및 제조 방법
CN112144108A (zh) 晶体生长炉和晶体生产工艺
CN112144107A (zh) 晶体生长炉和晶体生产工艺
JP5724226B2 (ja) シリコン単結晶の育成方法
KR102265466B1 (ko) 실리콘 단결정 제조 방법
US20140109824A1 (en) Method of growing silicon single crystal
CN112342611A (zh) 晶体生产工艺
JP4899608B2 (ja) 半導体単結晶の製造装置及び製造方法
JP5051044B2 (ja) シリコン単結晶の育成方法
CN214060709U (zh) 坩埚组件
JP2007210865A (ja) シリコン単結晶引上装置
JP2850561B2 (ja) 単結晶引上装置
JP2023549206A (ja) サイドヒータの下方に配置されるヒートシールドを有するインゴット引上げ装置及びそのような装置でインゴットを製造する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21866051

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021866051

Country of ref document: EP

Effective date: 20230411