WO2022134762A1 - 信号角度和信号频率的估计方法、装置、设备及存储介质 - Google Patents

信号角度和信号频率的估计方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2022134762A1
WO2022134762A1 PCT/CN2021/123920 CN2021123920W WO2022134762A1 WO 2022134762 A1 WO2022134762 A1 WO 2022134762A1 CN 2021123920 W CN2021123920 W CN 2021123920W WO 2022134762 A1 WO2022134762 A1 WO 2022134762A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
angle
frequency
satellite
estimating
Prior art date
Application number
PCT/CN2021/123920
Other languages
English (en)
French (fr)
Inventor
李强
黄磊
赵博
黄敏
孙维泽
张沛昌
刘仕奇
赵源
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to US18/041,734 priority Critical patent/US20230314622A1/en
Publication of WO2022134762A1 publication Critical patent/WO2022134762A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • G01S19/37Hardware or software details of the signal processing chain
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • G01S19/36Constructional details or hardware or software details of the signal processing chain relating to the receiver frond end
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of satellite signal processing, and in particular, to a method, device, device and storage medium for estimating signal angle and signal frequency.
  • the main purpose of the present invention is to provide a method, apparatus, device and computer-readable storage medium for estimating signal angle and signal frequency, aiming to provide a method for estimating the angle and frequency of satellite signals under the background of non-Gaussian noise.
  • the estimation method of signal angle and signal frequency includes the following steps:
  • the angle and frequency of the satellite signal are obtained.
  • the initial data is substituted into the signal function, and the step of obtaining the satellite signal by solving includes:
  • the step of substituting the initial data into the objective function, and solving to obtain the satellite signal includes:
  • the step of obtaining the angle and frequency of the satellite signal according to the satellite signal includes:
  • the expression of the signal function is:
  • the X represents the satellite signal
  • the Y represents the initial data
  • the A represents the steering vector matrix
  • the ⁇ 1 and the ⁇ 2 represent the regularization factor
  • the F represents the Fourier transform.
  • the expression of the objective function is:
  • the present invention also provides a signal angle and signal frequency estimation device, and the signal angle and signal frequency estimation device includes:
  • the acquisition module is used to acquire the initial data of the satellite signal through the antenna array element;
  • an acquisition module configured to acquire the angle and frequency of the satellite signal according to the satellite signal.
  • the present invention also provides a signal angle and signal frequency estimation device, the signal angle and signal frequency estimation device includes a memory, a processor, and the device is stored in the memory and can be used in the processing.
  • a signal angle and signal frequency estimation program running on the processor, the signal angle and signal frequency estimation program when executed by the processor implements the steps of the signal angle and signal frequency estimation method as described above.
  • the present invention also provides a computer-readable storage medium, on which an estimation program of the signal angle and the signal frequency is stored, and the estimation program of the signal angle and the signal frequency is stored on the computer-readable storage medium.
  • the steps of the method for estimating signal angles and signal frequencies as described above are implemented when executed by a processor.
  • the invention collects the initial data of the satellite signal through the antenna array element, substitutes the initial data into the signal function to obtain the satellite signal, obtains the angle and frequency of the satellite signal according to the satellite signal, and considers the non-Gaussian noise environment and the sparse airspace of the satellite signal at the same time. Characteristics and frequency domain sparse characteristics, joint estimation of satellite signal angle and frequency, which is conducive to satellite navigation receivers for subsequent capture and tracking of satellite signals.
  • FIG. 1 is a schematic diagram of a hardware structure of a device for implementing various embodiments of the present invention
  • FIG. 2 is a schematic flowchart of a first embodiment of a method for estimating a signal angle and a signal frequency according to the present invention
  • Fig. 3 is the schematic diagram of airspace and time domain of the present invention.
  • FIG. 4 is a schematic diagram of the airspace and frequency domain of the present invention.
  • Figure 5 is a simulation diagram of the MSE of the satellite signal estimation value with the number of iterations.
  • FIG. 1 is a schematic structural diagram of a hardware operating environment involved in an embodiment of the present invention.
  • FIG. 1 can be a schematic structural diagram of the hardware operating environment of the device for estimating the signal angle and the signal frequency.
  • the device for estimating the signal angle and the signal frequency in the embodiment of the present invention may be a PC (Personal Computer, personal computer), a portable computer, a server and other devices.
  • the signal angle and signal frequency estimation device may include: a processor 1001 , such as a CPU, a memory 1005 , a user interface 1003 , a network interface 1004 , and a communication bus 1002 .
  • the communication bus 1002 is used to realize the connection and communication between these components.
  • the user interface 1003 may include a display screen (Display), an input unit such as a keyboard (Keyboard), and the optional user interface 1003 may also include a standard wired interface and a wireless interface.
  • the network interface 1004 may include a standard wired interface and a wireless interface (eg, a WI-FI interface).
  • the memory 1005 may be high-speed RAM memory, or may be non-volatile memory, such as disk memory.
  • the memory 1005 may also be a storage device independent of the aforementioned processor 1001 .
  • the device for estimating the signal angle and the signal frequency may further include an RF (Radio Frequency, radio frequency) circuit, a sensor, a WiFi module, and the like.
  • RF Radio Frequency, radio frequency
  • the structure of the device for estimating signal angle and signal frequency shown in FIG. 1 does not constitute a limitation of the device for estimating signal angle and signal frequency, and may include more or less components than those shown in the figure, or Combining certain components, or different component arrangements.
  • the memory 1005 which is a computer storage readable storage medium, may include an operating device, a network communication module, a user interface module, and an estimation program for signal angle and signal frequency.
  • the operating device is a program that manages and controls the hardware and software resources of the signal angle and signal frequency estimation device, and supports the operation of the signal angle and signal frequency estimation program and other software or programs.
  • the signal angle and signal frequency estimation device shown in FIG. 1 is used to provide a method for estimating the angle and frequency of the satellite signal in the background of non-Gaussian noise.
  • the user interface 1003 is mainly used to detect or output various information, such as input Initial data and output satellite signals, etc.; the network interface 1004 is mainly used to interact and communicate with the background server; the processor 1001 can be used to call the estimation program of the signal angle and signal frequency stored in the memory 1005, and perform the following operations:
  • the angle and frequency of the satellite signal are obtained.
  • the invention collects the initial data of the satellite signal through the antenna array element, substitutes the initial data into the signal function to obtain the satellite signal, obtains the angle and frequency of the satellite signal according to the satellite signal, and considers the non-Gaussian noise environment and the sparse airspace of the satellite signal at the same time. Characteristics and frequency domain sparse characteristics, joint estimation of satellite signal angle and frequency, which is conducive to satellite navigation receivers for subsequent capture and tracking of satellite signals.
  • the specific implementations of the mobile terminal of the present invention are basically the same as the following embodiments of the estimation methods for signal angles and signal frequencies, and are not repeated here.
  • the present invention provides a method for estimating signal angle and signal frequency.
  • FIG. 2 is a schematic flowchart of a first embodiment of a method for estimating a signal angle and a signal frequency according to the present invention.
  • the estimation method of the signal angle and the signal frequency includes:
  • Step S10 collecting the initial data of the satellite signal through the antenna array element
  • This embodiment takes the array antenna satellite navigation receiver as the research object, and considers the joint estimation method of the incident angle of the satellite signal wave and the signal frequency under the non-Gaussian noise environment.
  • the satellite navigation receiver When the satellite navigation receiver is working, it can generally observe 6-10 visible satellites, and the incident signal angle of the visible satellites is sparse in the spatial range of the signal that the antenna can receive.
  • the Doppler frequency values of different satellite signals arriving at the navigation receiver are different, ranging from -10kHz to 10kHz. Since the satellite signal is a single-frequency signal, it only has a single obvious peak in the frequency domain, that is, the satellite signal can also be considered to have sparse characteristics in the frequency domain. Therefore, in this embodiment, an optimization objective function is designed by utilizing the sparse characteristics of the satellite signal space and frequency domain to jointly estimate the angle and frequency of the satellite signal.
  • the satellite navigation receiver adopts a uniform linear array antenna, the number of antenna elements is M, the distance between adjacent array elements is d, each antenna element receives L signals, and each signal is sampled in the time domain of K sampling points,
  • the initial data of the satellite signal is obtained, and it can be understood that the initial data is the satellite signal including non-Gaussian noise.
  • the angle interval in the initial data is defined as ⁇ , which is divided into J angles at equal intervals.
  • Step S20 substituting the initial data into the signal function, and solving to obtain a satellite signal
  • Y is used to represent the initial data.
  • the data containing non-Gaussian noise collected by the antenna array at the moment is the initial data, and N is the non-Gaussian noise, which is an M ⁇ N-dimensional matrix.
  • represents the wavelength of the satellite signal.
  • the purpose of this embodiment is to accurately restore the satellite signal according to the initial data collected by the array antenna, thereby estimating the angle and frequency of the satellite signal.
  • the present invention simultaneously considers the non-Gaussian noise background condition and the sparse characteristics of the satellite signal in the space domain and frequency domain, and establishes the following function:
  • ( ⁇ ) T represents the transposition operation
  • ⁇ 1 and ⁇ 2 represent the regularization factor
  • F is the K ⁇ K-dimensional Fourier transform matrix
  • 2 , 1 represents l 2 , 1 norm, defined as:
  • step S20 further includes:
  • step a reweighting is performed on the signal function to obtain an objective function
  • Step b Substitute the initial data into the objective function, and solve to obtain satellite signals.
  • 2,1 are both represented by the l 2,1 norm.
  • a re-weighting method is introduced to convert the signal function into the objective function, and we get:
  • X i represents the data of the ith row of the matrix X
  • (XF) i represents the data of the ith row of the matrix (XF)
  • 2 represents the l 2 norm
  • step b further comprises:
  • Step b1 Substitute the initial data into the objective function, and use the gradient derivation method to solve the objective function to obtain satellite signals.
  • ( ⁇ ) H represents the transposition operation
  • the matrices C, D and G are all diagonal matrices, and the elements on their diagonals can be expressed as
  • (AX-Y) i represents the data of the i-th row of the matrix (AX-Y), and ⁇ i and ⁇ i are respectively:
  • ⁇ 1 and ⁇ 2 are both small constant values greater than 0, in order to prevent the denominator of the above formula from being 0.
  • Equation (12) K is the dimension of the Fourier transform matrix F. Therefore, equation (6) can be abbreviated as
  • Step S30 acquiring the angle and frequency of the satellite signal according to the satellite signal.
  • each row of the satellite signal X just corresponds to an angle of the received signal ⁇ of the array antenna, and the frequency of the satellite signal needs to be obtained according to the satellite signal.
  • step S30 further includes:
  • Step c performing Fourier transform on the satellite signal to obtain the frequency of the satellite signal.
  • each row of the recovered satellite signal X just corresponds to an angle of the received signal ⁇ of the array antenna.
  • the angle corresponding to the row where the data exists is the incident angle of the satellite signal
  • the data in this row is the sampled value of the satellite signal.
  • the frequency of the satellite signal can be found by performing Fourier transform on each row of data. Therefore, according to the recovered satellite signal X, the incident angle and frequency of the satellite signal can be obtained at the same time.
  • FIG. 3 is a schematic diagram of the principle of a joint estimation method of satellite signal angle and frequency, wherein FIG. 3 is a schematic diagram of the space domain and the time domain.
  • the vertical interval represents the angle range of the received signal of the array antenna
  • the horizontal interval represents the time domain sampling of the received satellite signal. Colored areas represent received satellite signals, and the angle at which the target is located is spatially sparse.
  • Figure 4 is a schematic diagram of the space domain and the frequency domain. The vertical interval in Figure 4 still represents the angle range of the signal received by the array antenna, and the horizontal interval represents the frequency domain data of different satellite signals after Fourier transform.
  • each row has a data with a large value, and the frequency corresponding to the data is the frequency of the satellite signal. Data with large values in each row are located at different positions, that is, the corresponding signal frequencies are different.
  • the initial data of the satellite signal is collected by the antenna array element, the initial data is substituted into the signal function to obtain the satellite signal, and the angle and frequency of the satellite signal are obtained according to the satellite signal, considering the non-Gaussian noise environment and the airspace of the satellite signal.
  • the sparse characteristic and frequency domain sparse characteristic can jointly estimate the angle and frequency of the satellite signal, which is beneficial to the satellite navigation receiver to subsequently capture and track the satellite signal.
  • This embodiment takes the array antenna navigation receiver as the research object, and considers that in the non-Gaussian noise environment, the sparse characteristics of the satellite signal space and frequency domain are fully utilized, the optimization objective function is designed, and the angle and frequency of the satellite signal are jointly estimated, so that the satellite navigation receiving The antenna can form a beam in the direction of the satellite signal to enhance the signal receiving gain; at the same time, the frequency of the satellite signal is extracted from the recovered signal to provide a priori information for the frequency locking loop in the subsequent baseband signal processing of the navigation receiver.
  • the method proposed in this embodiment is tested.
  • the incident angle is randomly distributed in the ⁇ interval
  • the noise adopts the mixed Gaussian model
  • the signal-to-noise ratio is 20dB
  • the parameters ⁇ 1 and ⁇ 2 in (11) and (12) are both 0.2.
  • the diagonal matrices C, D and G are initialized as unit matrices.
  • Figure 5 shows the mean square error (Mean Square Error, MSE) of the satellite signal estimate X with the number of iterations. It can be seen from Figure 5 that as the number of iterations increases, the MSE of the satellite signal estimate X gradually decreases. When the number of iterations reaches the seventh, the MSE value converges to 3 ⁇ 10 -5 , which has good estimation performance.
  • MSE mean square Error
  • an embodiment of the present invention also provides a signal angle and signal frequency estimation device, the signal angle and signal frequency estimation device includes:
  • the acquisition module is used to acquire the initial data of the satellite signal through the antenna array element;
  • the obtaining module is used to obtain the angle and frequency of the satellite signal according to the satellite signal. This will not be repeated here.
  • an embodiment of the present invention further provides a computer-readable storage medium, where an estimation program for a signal angle and a signal frequency is stored on the computer-readable storage medium, and when the estimation program for the signal angle and the signal frequency is executed by a processor.
  • the computer-readable storage medium may be provided in the estimation device of the signal angle and the signal frequency.
  • the specific implementation manner of the computer-readable storage medium of the present invention is basically the same as that of the above-mentioned embodiments of the estimation method of the signal angle and the signal frequency, and will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种信号角度和信号频率的估计方法、装置、设备及存储介质,其中,该信号角度和信号频率的估计方法包括步骤:通过天线阵元采集卫星信号的初始数据(S10);将初始数据代入信号函数中,求解得到卫星信号(S20);根据该卫星信号,获取卫星信号的角度和频率(S30)。该方法考虑了非高斯噪声环境,同时考虑了卫星信号空域稀疏特性和频率域稀疏特性,进行卫星信号角度和频率联合估计,有利于卫星导航接收机后续捕获跟踪卫星信号。

Description

信号角度和信号频率的估计方法、装置、设备及存储介质 技术领域
本发明涉及卫星信号处理领域,尤其涉及一种信号角度和信号频率的估计方法、装置、设备及存储介质。
背景技术
研究卫星信号角度估计或卫星信号频率估计通常是在高斯噪声背景下进行研究的。然而,在卫星导航接收机工作中,不可避免的出现非高斯噪声情况,如脉冲噪声,目前还缺少在非高斯噪声背景下估计卫星信号的角度和卫星信号的频率。
发明内容
本发明的主要目的在于提出一种信号角度和信号频率的估计方法、装置、设备及计算机可读存储介质,旨在提供一种在非高斯噪声的背景下估计卫星信号的角度和频率。信号角度和信号频率的估计方法包括以下步骤:
通过天线阵元采集卫星信号的初始数据;
将所述初始数据代入信号函数中,求解得到卫星信号;
根据所述卫星信号,获取所述卫星信号的角度和频率。
在一种实施方式中,将所述初始数据代入信号函数中,求解得到卫星信号的步骤包括:
对所述信号函数进行重加权处理,得到目标函数;
将所述初始数据代入所述目标函数,求解得到卫星信号。
在一种实施方式中,所述将所述初始数据代入所述目标函数,求解得到卫星信号的步骤包括:
将所述初始数据代入所述目标函数,采用梯度求导的方法,求解所述目标函数,得到卫星信号。
在一种实施方式中,所述根据所述卫星信号,获取所述卫星信号的角度和频率的步骤包括:
对所述卫星信号进行傅里叶变换,得到所述卫在一种实施方式中,所述信号函数的表达式为:
Figure PCTCN2021123920-appb-000001
其中,所述X表示所述卫星信号,所述Y表示初始数据,所述A表示导向矢量矩阵,所述λ 1所述λ 2表示正则化因子,所述F表示傅里叶变换。
在一种实施方式中,所述目标函数的表达式为:
Figure PCTCN2021123920-appb-000002
其中,ρ i和κ i分别为加权向量ρ和κ中的第i个元素,i=1,2,…,J,所述J为所述A的列数。
此外,为实现上述目的,本发明还提供一种信号角度和信号频率的估计装置,所述信号角度和信号频率的估计装置包括:
采集模块,用于通过天线阵元采集卫星信号的初始数据;
代入求解模块,用于将所述反馈数据发送至所述共享平台;
获取模块,用于根据所述卫星信号,获取所述卫星信号的角度和频率。
此外,为实现上述目的,本发明还提供一种信号角度和信号频率的估计设备,所述信号角度和信号频率的估计设备包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的信号角度和信号频率的估计程序,所述信号角度和信号频率的估计程序被所述处理器执行时实现如上所述的信号角度和信号频率的估计方法的步骤。
此外,为实现上述目的,本发明还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有所述信号角度和信号频率的估计程序,所述信号角度和信号频率的估计程序被处理器执行时实现如上所述的信号角度和信号频率的估计方法的步骤。
本发明通过天线阵元采集卫星信号的初始数据,将初始数据代入信号函数中求解得到卫星信号,根据卫星信号获取卫星信号的角度和频率,考虑在非高斯噪声环境下,同时考虑卫星信号空域稀疏特性和频率域稀疏特性,进行卫星信号角度和频率联合估计,有利于卫星导航接收机后续捕获跟踪卫星信号。
附图说明
图1为实现本发明各个实施例一种设备的硬件结构示意图;
图2为本发明信号角度和信号频率的估计方法第一实施例的流程示意图;
图3为本发明空域和时域示意图;
图4为本发明空域与频率域示意图;
图5为卫星信号估计值的MSE随着迭代次数仿真图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供了一种信号角度和信号频率的估计设备,参照图1,图1是本发明实施例方案涉及的硬件运行环境的结构示意图。
需要说明的是,图1即可为信号角度和信号频率的估计设备的硬件运行环境的结构示意图。本发明实施例信号角度和信号频率的估计设备可以是PC(Personal Computer,个人电脑),便携计算机,服务器等设备。
如图1所示,该信号角度和信号频率的估计设备可以包括:处理器1001,例如CPU,存储器1005,用户接口1003,网络接口1004,通信总线1002。其中,通信总线1002用于实现这些组件之间的连接通信。用户接口1003可以包括显示屏(Display)、输入单元比如键盘(Keyboard),可选用户接口1003还可以包括标准的有线接口、无线接口。网络接口1004可选的可以包括标准的有线接口、无线接口(如WI-FI接口)。存储器1005可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器。存储器1005可选的还可以是独立于前述处理器1001的存储装置。
可选地,信号角度和信号频率的估计设备还可以包括RF(Radio Frequency,射频)电路,传感器、WiFi模块等等。
本领域技术人员可以理解,图1中示出的信号角度和信号频率的估计设备结构并不构成信号角度和信号频率的估计设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
如图1所示,作为一种计算机存储可读存储介质的存储器1005中可以包括操作设备、网络通信模块、用户接口模块以及信号角度和信号频率的估计程序。其中,操作设备是管理和控制信号角度和信号频率的估计设备硬件和软件资源的程序,支持信号角度和信号频率的估计程序以及其它软件或程序的运行。
图1所示的信号角度和信号频率的估计设备,用于提供一种在非高斯噪声的背景下估计卫星信号的角度和频率,用户接口1003主要用于侦测或者输出各种信息,如输入初始数据和输出卫星信号等;网络接口1004主要用于与后台服务器交互,进行通信;处理器1001可以用于调用存储器1005中存储的信号角度和信号频率的估计程序,并执行以下操作:
通过天线阵元采集卫星信号的初始数据;
将所述初始数据代入信号函数中,求解得到卫星信号;
根据所述卫星信号,获取所述卫星信号的角度和频率。
本发明通过天线阵元采集卫星信号的初始数据,将初始数据代入信号函数中求解得到卫星信号,根据卫星信号获取卫星信号的角度和频率,考虑在非高斯噪声环境下,同时考虑卫星信号空域稀疏特性和频率域稀疏特性,进行卫星信号角度和频率联合估计,有利于卫星导航接收机后续捕获跟踪卫星信号。
本发明移动终端具体实施方式与下述信号角度和信号频率的估计方法各实施例基本相同,在此不再赘述。
基于上述结构,提出本发明信号角度和信号频率的估计方法的各个实施例。
本发明提供一种信号角度和信号频率的估计方法。
参照图2,图2为本发明信号角度和信号频率的估计方法第一实施例的流程示意图。
在本实施例中,提供了信号角度和信号频率的估计方法的实施例,需要说明的是,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
在本实施例中,信号角度和信号频率的估计方法包括:
步骤S10,通过天线阵元采集卫星信号的初始数据;
本实施例以阵列天线卫星导航接收机为研究对象,考虑非高斯噪声环境下,卫星信号波入射角度与信号频率联合估计方法。卫星导航接收机在工作时,一般能观察到6-10颗可视卫星,可视卫星入射信号角度在天线可接收信号空间范围是稀疏的。此外,由于载体与不同卫星之间的相对运动不同,因此,不同卫星信号到达导航接收机处的多普勒频率值是不一样的,位于-10kHz到10kHz之间。由于卫星信号是单频信号,其在频率域上只具有单个明显的峰值,即卫星信号在频率域也可以认为是具有稀疏特性的。因此,本实施例利用卫星信号空域和频率域稀疏特性,设计优化目标函数,进行卫星信号角度与频率联合估计。
卫星导航接收机采用均匀线性阵列天线,天线阵元数目为M,相邻阵元间距为d,每个天线阵元接收到L个信号,对每个信号进行K个采样点的时域采样,得到卫星信号的初始数据,可以理解的是初始数据是包括非高斯噪声的卫星信号。初始数据中的角度区间定义为Θ,被等间隔分成J个角度。
步骤S20,将所述初始数据代入信号函数中,求解得到卫星信号;
本实施例中用Y表示初始数据一般的,阵列天线接收到的初始数据Y模型可以表示为 Y=AX+N,X表示的是不含非高斯噪声的卫星信号,即需要求的卫星信号,是具有行稀疏结构的J×K维矩阵,其中包含L个实际卫星信号,其他部分无数据。阵列天线接收到的初始数据Y=[y(1) y(2)…y(K)]为M×K维矩阵y(k),i=1,2,…,K,表示第k个采样时刻天线阵列采集到的包含非高斯噪声的数据,即初始数据,N为非高斯噪声,为M×N维矩阵。A为M×J维导向矢量矩阵,具体可以表示为A=a(θ 1) a(θ 2)…a(θ J)],其中,a(θ j)是角度为θ j的导向矢量,表示为:
Figure PCTCN2021123920-appb-000003
(1)式中,λ表示卫星信号波长。
本实施例的目的是根据阵列天线所采集到的初始数据,准确恢复卫星信号,从而估计出卫星信号角度和频率。本发明同时考虑非高斯噪声背景条件和卫星信号的空域、频率域稀疏特性,建立如下函数:
Figure PCTCN2021123920-appb-000004
(1)式中,(·) T表示转置操作,λ 1和λ 2表示正则化因子,F为K×K维傅里叶变换矩阵,||·|| 2,1表示l 2,1范数,定义为:
Figure PCTCN2021123920-appb-000005
式中,因为F为傅里叶变换矩阵,存在F=F T特性。所以,可以进一步简化上式得最终的信号函数
Figure PCTCN2021123920-appb-000006
将初始数据代入(4)式中,求解得到卫星信号。
在一些实施例中,步骤S20还包括:
步骤a,对所述信号函数进行重加权处理,得到目标函数;
步骤b,将所述初始数据代入所述目标函数,求解得到卫星信号。
在上述信号函数中,空域约束项||X|| 2,1和频率域约束项||XF|| 2,1均采用l 2,1范数表示。为了使得这两项具有更加稀疏的特性,引入重加权方法,将信号函数转化为目标函数,得到:
Figure PCTCN2021123920-appb-000007
上式中,X i表示矩阵X的第i行数据,(XF) i表示矩阵(XF)的第i行数据,||·|| 2表示l 2范数,ρ i和κ i分别为加权向量ρ和κ中的第i个元素,i=1,2,…,J,其中,ρ和κ均为J×1维加权向量。
将初始函数代入目标函数中,得到卫星信号。
在一些实施例中,步骤b还包括:
步骤b1,将所述初始数据代入所述目标函数,采用梯度求导的方法,求解所述目标函数,得到卫星信号。
令上述目标函数对矩阵X求导并令倒数等于0,有
Figure PCTCN2021123920-appb-000008
(6)式中,(·) H表示转置操作,矩阵C,D和G均为对角矩阵,它们对角线上的元素分别可以表示为
Figure PCTCN2021123920-appb-000009
Figure PCTCN2021123920-appb-000010
Figure PCTCN2021123920-appb-000011
(9)式中,(AX-Y) i表示矩阵(AX-Y)的第i行数据,ρ i和κ i分别为:
Figure PCTCN2021123920-appb-000012
Figure PCTCN2021123920-appb-000013
(11)式中,η 1和η 2均为大于0的较小常数值,为了防止上式分母为0。
在式(6)中,因为F为傅里叶变换矩阵,则有:
Figure PCTCN2021123920-appb-000014
(12)式中,K为傅里叶变换矩阵F的维度。因此,式(6)可以简写为
Figure PCTCN2021123920-appb-000015
(13)式可以进一步调整为:
Figure PCTCN2021123920-appb-000016
根据(14)式,很容易得到:
Figure PCTCN2021123920-appb-000017
步骤S30,根据所述卫星信号,获取所述卫星信号的角度和频率。
可以理解的是卫星信号X的每一行刚好对应阵列天线接收信号Θ的一个角度,还需要根据卫星信号得到卫星信号的频率。
在一些实施例中,步骤S30还包括:
步骤c,对所述卫星信号进行傅里叶变换,得到所述卫星信号的频率。
根据图3可知,所恢复的卫星信号X的每一行刚好对应阵列天线接收信号Θ的一个角度。根据X的稀疏结构,存在数据的行所对应的角度,即为卫星信号的入射角度,并且该行的数据就是卫星信号的采样值。再根据附图4,对每一行数据进行傅里叶变换,便可以找到卫星信号的频率。所以,根据所恢复的卫星信号X,便可以同时得到卫星信号的入射角度和频率。
图3为卫星信号角度与频率联合估计方法原理示意图,其中,图3为空域与时域示意图。图3中,纵向区间代表阵列天线接收信号角度范围,横向区间代表对接收到的卫星信号进行时域采样。彩色区域代表有接收到的卫星信号,目标所在的角度具有空间稀疏特性。图4为空域与频率域示意图,图4中纵向区间仍表示阵列天线接收信号角度范围,横向区间代表不同卫星信号经过傅里叶变换后的频率域数据。由于不同卫星与导航接收机间相对运动产生的多普勒频率不同,因此,不同卫星信号经过傅里叶变换后的频率也是不同的。如附图4所示,每行均有一个数值大的数据,该数据所对应的频率即为该颗卫星信号的频率。每行中数值大的数据所处位置不同,即对应的信号频率不同。
本实施例通过天线阵元采集卫星信号的初始数据,将初始数据代入信号函数中求解得到卫星信号,根据卫星信号获取卫星信号的角度和频率,考虑在非高斯噪声环境下,同时考虑卫星信号空域稀疏特性和频率域稀疏特性,进行卫星信号角度和频率联合估计,有利于卫星导航接收机后续捕获跟踪卫星信号。
本实施例以阵列天线导航接收机为研究对象,考虑在非高斯噪声环境下,充分利用卫星信号空域和频率域稀疏特性,设计优化目标函数,进行卫星信号角度与频率联合估计,使得卫星导航接收机天线能够在卫星信号方向形成波束,增强信号接收增益;同时,从恢复信号中提取卫星信号的频率,为导航接收机后续基带信号处理中的频率锁定环路提供先 验信息。
对本实施例提出的方法进行测试。均匀线性天线阵列具有80个天线阵元,相邻阵元间距d为卫星信号半波长,卫星接收信号角度区间为Θ=[-20°,20°],以1°等间隔划分,即J=41,假定有L=4个卫星信号,入射角度在Θ区间随机分布,信号采样点K=50,正则化因子λ 1=λ 2=0.1,噪声采用混合高斯模型,信噪比为20dB,公式(11)和(12)中参数η 1和η 2均为0.2。由于本实施例需要采用迭代算法,初始化对角矩阵C,D和G为单位矩阵。图5给出了卫星信号估计值X的均方误差(Mean Square Error,MSE)随着迭代次数仿真图。从图5中可以看出,随着迭代次数的增加,卫星信号估计值X的MSE逐渐降低。当迭代次数到第7次时,MSE值收敛至3×10 -5,具有很好估计性能。
此外,本发明实施例还提出一种信号角度和信号频率的估计装置,所述信号角度和信号频率的估计装置包括:
采集模块,用于通过天线阵元采集卫星信号的初始数据;
代入求解模块,用于将所述反馈数据发送至所述共享平台;
获取模块,用于根据所述卫星信号,获取所述卫星信号的角度和频率本发明所述信号角度和信号频率的估计装置实施方式与上述信号角度和信号频率的估计各实施例基本相同,在此不再赘述。
此外,本发明实施例还提出一种计算机可读存储介质,所述计算机可读存储介质上存储有信号角度和信号频率的估计程序,所述信号角度和信号频率的估计程序被处理器执行时实现如上所述的信号角度和信号频率的估计方法的各个步骤。
需要说明的是,计算机可读存储介质可设置在信号角度和信号频率的估计设备中。
本发明计算机可读存储介质具体实施方式与上述信号角度和信号频率的估计方法各实施例基本相同,在此不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其它变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其它要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者设备中还存在另外的相同要素。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者 是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (9)

  1. 一种信号角度和信号频率的估计方法,其特征在于,所述信号角度和信号频率的估计方法包括以下步骤:
    通过天线阵元采集卫星信号的初始数据;
    将所述初始数据代入信号函数中,求解得到卫星信号;
    根据所述卫星信号,获取所述卫星信号的角度和频率。
  2. 如权利要求1所述的信号角度和信号频率的估计方法,其特征在于,将所述初始数据代入信号函数中,求解得到卫星信号的步骤包括:
    对所述信号函数进行重加权处理,得到目标函数;
    将所述初始数据代入所述目标函数,求解得到卫星信号。
  3. 如权利要求2所述的信号角度和信号频率的估计方法,其特征在于,所述将所述初始数据代入所述目标函数,求解得到卫星信号的步骤包括:
    将所述初始数据代入所述目标函数,采用梯度求导的方法,求解所述目标函数,得到卫星信号。
  4. 如权利要求1所述的信号角度和信号频率的估计方法,所述卫星信号的采样值表示所述卫星信号的入射角度,其特征在于,所述根据所述卫星信号,获取所述卫星信号的角度和频率的步骤包括:
    对所述卫星信号进行傅里叶变换,得到所述卫星信号的频率。
  5. 如权利要求1所述的信号角度和信号频率的估计方法,其特征在于,所述信号函数的表达式为:
    Figure PCTCN2021123920-appb-100001
    其中,所述X表示所述卫星信号,所述Y表示初始数据,所述A表示导向矢量矩阵,所述λ 1所述λ 2表示正则化因子,所述F表示傅里叶变换。
  6. 如权利要求2所述的信号角度和信号频率的估计方法,其特征在于,所述目标函数的表达式为:
    Figure PCTCN2021123920-appb-100002
    其中,ρ i和κ i分别为加权向量ρ和κ中的第i个元素,i=1,2,…,J,所述J为所述A的列数。
  7. 一种信号角度和信号频率的估计装置,其特征在于,所述信号角度和信号频率的估计装置包括:
    采集模块,用于通过天线阵元采集卫星信号的初始数据;
    代入求解模块,用于将所述反馈数据发送至所述共享平台;
    获取模块,用于根据所述卫星信号,获取所述卫星信号的角度和频率。
  8. 一种信号角度和信号频率的估计设备,其特征在于,所述信号角度和信号频率的估计设备包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的信号角度和信号频率的估计程序,所述信号角度和信号频率的估计程序被所述处理器执行时实现如权利要求1至6中任一项所述的信号角度和信号频率的估计的步骤。
  9. 一种存储介质,其特征在于,所述存储介质为计算机可读存储介质,所述存储介质上存储有信号角度和信号频率的估计程序,所述信号角度和信号频率的估计程序被处理器执行时实现如权利要求1至6中任一项所述的信号角度和信号频率的估计方法的步骤。
PCT/CN2021/123920 2020-12-24 2021-10-14 信号角度和信号频率的估计方法、装置、设备及存储介质 WO2022134762A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/041,734 US20230314622A1 (en) 2020-12-24 2021-10-14 Signal angle and signal frequency estimation method, apparatus and device and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011556223.8A CN112731486B (zh) 2020-12-24 2020-12-24 信号角度和信号频率的估计方法、装置、设备及存储介质
CN202011556223.8 2020-12-24

Publications (1)

Publication Number Publication Date
WO2022134762A1 true WO2022134762A1 (zh) 2022-06-30

Family

ID=75615686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123920 WO2022134762A1 (zh) 2020-12-24 2021-10-14 信号角度和信号频率的估计方法、装置、设备及存储介质

Country Status (3)

Country Link
US (1) US20230314622A1 (zh)
CN (1) CN112731486B (zh)
WO (1) WO2022134762A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112731486B (zh) * 2020-12-24 2023-07-04 深圳大学 信号角度和信号频率的估计方法、装置、设备及存储介质
CN113835107B (zh) * 2021-09-22 2023-09-29 深圳大学 阵列卫星导航接收机的信号处理方法、装置及智能终端
CN115792981B (zh) * 2023-02-06 2023-05-09 深圳大学 一种基于阵列天线的可见卫星探测方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000296800A (ja) * 1999-04-14 2000-10-24 Mitsubishi Electric Corp 人工衛星の姿勢制御装置
US20090262017A1 (en) * 2008-04-18 2009-10-22 Honeywell, Spol. S.R.O. Systems and methods for fast gnss signals acquisition
CN103605139A (zh) * 2013-12-10 2014-02-26 武汉大学 适用于gnss接收机的载波频率和相位估计方法及系统
CN104251997A (zh) * 2014-06-27 2014-12-31 广东工业大学 一种卫星信号抗干扰稀疏处理方法
CN106130571A (zh) * 2016-06-07 2016-11-16 烟台大学文经学院 一种基于频域和空域压缩感知的信号采样接收方法及装置
CN106597480A (zh) * 2016-12-08 2017-04-26 深圳大学 用于卫星导航rtk发射电台的抗干扰定位方法及系统
CN107493106A (zh) * 2017-08-09 2017-12-19 河海大学 一种基于压缩感知的频率和角度联合估计的方法
CN108600133A (zh) * 2018-04-19 2018-09-28 深圳大学 一种基于阵列天线的欠定相位恢复方法
CN108957387A (zh) * 2018-05-21 2018-12-07 西安电子科技大学 一种卫星信号二维到达角估计方法及系统
CN109143154A (zh) * 2018-07-24 2019-01-04 南京航空航天大学 一种应用于l型阵列的信号二维doa与频率联合估计方法
CN109425875A (zh) * 2017-09-05 2019-03-05 清华大学 卫星信号分离处理装置和方法
CN109975842A (zh) * 2019-03-04 2019-07-05 广东工业大学 一种基于小波变换的北斗卫星信号高精度盲捕获方法
CN111679296A (zh) * 2020-05-28 2020-09-18 哈尔滨工业大学 一种基于gp迭代外推的单星定位方法
CN112731486A (zh) * 2020-12-24 2021-04-30 深圳大学 信号角度和信号频率的估计方法、装置、设备及存储介质

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110174656A (zh) * 2019-05-21 2019-08-27 电子科技大学 一种基于频域宽带波束形成的稀疏阵列设计方法及装置
CN110780273B (zh) * 2019-11-04 2022-03-04 电子科技大学 一种混合正则化方位超分辨成像方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000296800A (ja) * 1999-04-14 2000-10-24 Mitsubishi Electric Corp 人工衛星の姿勢制御装置
US20090262017A1 (en) * 2008-04-18 2009-10-22 Honeywell, Spol. S.R.O. Systems and methods for fast gnss signals acquisition
CN103605139A (zh) * 2013-12-10 2014-02-26 武汉大学 适用于gnss接收机的载波频率和相位估计方法及系统
CN104251997A (zh) * 2014-06-27 2014-12-31 广东工业大学 一种卫星信号抗干扰稀疏处理方法
CN106130571A (zh) * 2016-06-07 2016-11-16 烟台大学文经学院 一种基于频域和空域压缩感知的信号采样接收方法及装置
CN106597480A (zh) * 2016-12-08 2017-04-26 深圳大学 用于卫星导航rtk发射电台的抗干扰定位方法及系统
CN107493106A (zh) * 2017-08-09 2017-12-19 河海大学 一种基于压缩感知的频率和角度联合估计的方法
CN109425875A (zh) * 2017-09-05 2019-03-05 清华大学 卫星信号分离处理装置和方法
CN108600133A (zh) * 2018-04-19 2018-09-28 深圳大学 一种基于阵列天线的欠定相位恢复方法
CN108957387A (zh) * 2018-05-21 2018-12-07 西安电子科技大学 一种卫星信号二维到达角估计方法及系统
CN109143154A (zh) * 2018-07-24 2019-01-04 南京航空航天大学 一种应用于l型阵列的信号二维doa与频率联合估计方法
CN109975842A (zh) * 2019-03-04 2019-07-05 广东工业大学 一种基于小波变换的北斗卫星信号高精度盲捕获方法
CN111679296A (zh) * 2020-05-28 2020-09-18 哈尔滨工业大学 一种基于gp迭代外推的单星定位方法
CN112731486A (zh) * 2020-12-24 2021-04-30 深圳大学 信号角度和信号频率的估计方法、装置、设备及存储介质

Also Published As

Publication number Publication date
US20230314622A1 (en) 2023-10-05
CN112731486B (zh) 2023-07-04
CN112731486A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
WO2022134762A1 (zh) 信号角度和信号频率的估计方法、装置、设备及存储介质
CN108957387B (zh) 一种卫星信号二维到达角估计方法及系统
US20220196793A1 (en) Joint denoising and delay estimation for the extraction of pulse-width of signals in rf interference
CN109765526B (zh) 一种基于空间谱的目标搜索方法及装置
CN110018438B (zh) 一种波达方向估计方法和装置
WO2023000614A1 (zh) 无线定位参数估计方法、装置、系统、计算机设备及存储介质
CN111337873A (zh) 一种基于稀疏阵的doa估计方法
Issaid et al. On the efficient simulation of the distribution of the sum of Gamma–Gamma variates with application to the outage probability evaluation over fading channels
CN111313943A (zh) 深度学习辅助的大规模天线阵列下的三维定位方法及装置
CN110231589B (zh) 一种大扩散角的多径信号波达方向估计方法
CN109946663B (zh) 一种线性复杂度的Massive MIMO目标空间方位估计方法和装置
Wu et al. Computationally efficient DOA and carrier estimation for coherent signal using single snapshot and its time-delay replications
CN107515382B (zh) 一种基于相位补偿的动目标doa跟踪方法
Jin et al. Estimation accuracy and Cramér–Rao Lower bounds for errors in multichannel HRWS SAR systems
CN108594165B (zh) 一种基于期望最大化算法的窄带信号波达方向估计方法
Tayem Real time implemenation for DOA estimation methods on Ni-Pxi platform
Li et al. Wavelet transform DC-GAN for diversity promoted fingerprint construction in indoor localization
CN116736342A (zh) 一种基于集成cnn的gnss欺骗检测方法及系统
CN112881971B (zh) 电磁方向性互耦效应下相干干扰源测向方法
CN108717196B (zh) 一种阵列天线接收信号的去干扰方法及系统
CN113835107A (zh) 阵列卫星导航接收机的信号处理方法、装置及智能终端
CN111859272A (zh) 一种面向大规模天线的快速music谱分解方法、装置及设备
Wu et al. Distortionless Blind Beamformer for Interference Suppression in GNSS Antenna Array Receiver
Tayem et al. Capon root-MUSIC-like direction of arrival estimation based on real data
Gao et al. Direction-of-arrival estimation for wideband array signals with a single channel receiver

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31/10/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21908763

Country of ref document: EP

Kind code of ref document: A1