WO2022134687A1 - 一种气相粉体分级设备 - Google Patents

一种气相粉体分级设备 Download PDF

Info

Publication number
WO2022134687A1
WO2022134687A1 PCT/CN2021/119879 CN2021119879W WO2022134687A1 WO 2022134687 A1 WO2022134687 A1 WO 2022134687A1 CN 2021119879 W CN2021119879 W CN 2021119879W WO 2022134687 A1 WO2022134687 A1 WO 2022134687A1
Authority
WO
WIPO (PCT)
Prior art keywords
cone
grading
chamber
dispersing
gas
Prior art date
Application number
PCT/CN2021/119879
Other languages
English (en)
French (fr)
Inventor
裘建栋
王海勇
程跃
赵登永
Original Assignee
江苏博迁新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏博迁新材料股份有限公司 filed Critical 江苏博迁新材料股份有限公司
Publication of WO2022134687A1 publication Critical patent/WO2022134687A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C5/00Apparatus in which the axial direction of the vortex is reversed
    • B04C5/24Multiple arrangement thereof
    • B04C5/26Multiple arrangement thereof for series flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C9/00Combinations with other devices, e.g. fans, expansion chambers, diffusors, water locks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B13/00Grading or sorting solid materials by dry methods, not otherwise provided for; Sorting articles otherwise than by indirectly controlled devices
    • B07B13/14Details or accessories
    • B07B13/18Control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B7/00Selective separation of solid materials carried by, or dispersed in, gas currents
    • B07B7/08Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force
    • B07B7/086Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force generated by the winding course of the gas stream

Definitions

  • the utility model relates to an ultrafine powder classification device, which belongs to the technical field of nanometer, submicrometer and micrometer gas phase classification of ultrafine powders.
  • a centrifugal cyclone is more common.
  • a downward moving outer circulation is formed on the outside of the cyclone body due to the action of gravity and centrifugal force, and the large particle powder flows along the wall of the cyclone body.
  • the downward movement enters the coarse powder collection bucket.
  • An upward moving inner circulation is formed in the center of the cyclone body, and the small particle powder moves upward along the center of the cyclone body into the fine powder collection tank, so as to achieve the purpose of classifying different particles.
  • the utility model provides a gas-phase powder classification equipment with high efficiency and high precision, which is easy to operate and can better handle nano-, sub-micron and micron-level ultrafine powder classification.
  • the technical scheme of the present utility model is to provide a gas phase powder classification equipment, which includes a feeding hopper, a dispersing single cone and a grading chamber arranged below the discharge port of the feeder, and the grading chamber includes an upper cone cavity and a lower cone
  • the feeding hopper is set at the feed port at the top of the grading chamber
  • the dispersing single cone is set in the grading chamber and below the feeding port of the grading chamber
  • the middle of the grading chamber is provided with a dispersing cone disc and an air intake ring
  • the air intake ring is installed at the junction of the upper cone cavity and the lower cone cavity
  • the side wall of the lower cone cavity of the grading chamber is provided with a through air induction pipe, one end of the air induction pipe Passing through the central hole of the air inlet ring from bottom to top, it is connected to the dispersing cone, the other end of the air induction pipe extends to the cyclone separator outside the classification room, and the other end of
  • the dispersing single cone is in the shape of a cone with a small top and a large bottom, and the projected bottom extending downward along the cone surface covers the center hole of the dispersing cone, and the diameter of the bottom of the dispersing single cone is the same as the central hole of the dispersing cone.
  • the distance between the bottom of the single dispersion cone and the dispersion cone disk is 1-50 cm.
  • the dispersion cone is in the shape of a truncated cone with a small upper part and a large lower part, and is concentrically arranged in the central hole of the air inlet ring.
  • the dispersion cone is sleeved at the top position of the air induction pipe.
  • the upper cone cavity of the classification chamber is in the shape of a truncated cone with a small upper part and a large lower part
  • the lower cone cavity is in the shape of a truncated cone with a large upper part and a small lower part.
  • the air intake ring is provided with a plurality of air intake holes, and the air intake holes extend from the outer side of the air intake ring to the inner side surface of the air intake ring.
  • the inner wall of the air inlet ring and the upper cone cavity of the grading chamber or the inner diameter of the inner wall of the air inlet ring is larger than the inner diameter of the bottom of the upper cone cavity, and the inner diameter of the top of the lower cone cavity of the classification chamber is greater than or equal to The inner diameter of the inlet ring to prevent falling powder from depositing on the stepped table at the connection.
  • the angle between the air intake direction and the tangential direction of the air intake hole of the air intake ring is 3-30°
  • the shape of the top view of the air intake hole is a circular ring, a rectangle, a trapezoid and a circle. at least one of the arcs.
  • a valve is provided between the cyclone separator and the collection tank, and the number of the cyclone separator is 1-3.
  • a cone-shaped grading chamber and a porous air intake ring are used for air intake.
  • the cyclone passes through an air intake hole, it undergoes a rotational acceleration process. , while preventing the reduction of the flow rate of the carrier cyclone when it rotates and turning, and continuously maintain and increase the rotation speed of the airflow.
  • the high-speed rotating airflow improves the dispersion and centrifugal force of the powder, and increases the separation of large and small particles, thereby improving the classification efficiency and classification accuracy.
  • the granular powder is greatly affected by gravity and centrifugal force, and directly enters the coarse powder collection bucket along the conical wall of the classification chamber.
  • the coarse powder collection bucket at the bottom of the separator the fine powder enters the fine powder collection tank from the top of the cyclone separator.
  • the porous air intake ring with different sizes and shapes of air intake holes can be replaced to adjust the size and direction of the air intake to meet the classification requirements of different powders. It can also be achieved by increasing or decreasing the number of cyclones. Different classification accuracy requirements for different powders.
  • FIG. 1 is a schematic structural diagram of an embodiment of the gas phase powder classification equipment of the present invention.
  • FIG. 2 is a schematic structural diagram of an embodiment of an air inlet ring of the present invention.
  • the gas phase powder classification equipment of the present disclosure includes a feeding hopper 2 , a dispersing single cone 3 and a grading chamber arranged below the discharge port of the feeder 1 , and the feeding hopper 2 is arranged in the grading chamber At the feed port at the top of the grading chamber, the dispersing single cone 3 is arranged in the grading chamber and below the feeding port of the grading chamber, and a dispersing cone disc 5 and an air inlet ring 6 are arranged in the middle of the interior of the grading chamber.
  • the side of the air ring 6 is provided with a number of air inlet holes, the side wall of the air inlet ring 6 is in close contact with the inner wall of the upper and lower grading chambers, the lower conical wall of the grading chamber is provided with an air induction pipe 7, and the air induction pipe One end of 7 passes through the central hole of the air inlet ring 6 from bottom to top, and the other end of the air induction pipe 7 extends to the cyclone separator 10 outside the classification room, and the other end of the cyclone separator 10 is connected to the collection tank, so
  • the bottom of the classification chamber is provided with a coarse powder feeding valve 8 and a coarse powder collecting barrel 9 .
  • the dispersing single cone 3 is in the shape of a cone with a small top and a large bottom, and the projected bottom extending downward along the cone surface covers the center hole of the dispersing cone 5.
  • the bottom diameter of the dispersing single cone 3 is the same as the center hole of the dispersing cone 5.
  • the diameter ratio is 1:(0.5-4), and the distance between the bottom of the dispersed single cone 3 and the dispersed cone disk 5 is 1-50 cm.
  • the dispersing cone 5 is in the shape of a truncated cone with a small top and a large bottom, and is placed in the center hole of the air inlet ring 6 and arranged coaxially with the center hole of the air inlet ring 6.
  • the dispersing cone 5 is sleeved on the air duct. 7 at the top position.
  • the grading chamber is composed of two parts, the upper cone chamber 4.1 in the upper part and the truncated cone in the upper part and the lower cone chamber 4.2 in the lower part. 6 is installed at the connection between the upper cone chamber 4.1 and the lower cone chamber 4.2.
  • a valve is provided between the cyclone separator 10 and the collection tank, and the cyclone separator 10 can be increased by 1-3 as required.
  • a coarse powder feeding valve 8 is arranged between the classification chamber and the coarse powder collecting barrel 9 .
  • the powder Under the action of the induced draft fan, the powder enters the classification chamber through the dispersing single cone 3 through the feeding hopper 2 for high-speed rotation. Under the action of gravity and centrifugal force, the large particles enter the coarse powder collection bucket 9 along the inner wall of the classification chamber, and the fine particles enter into the coarse powder collection bucket 9. The particles are concentrated in the center of the classification chamber and enter the cyclone separator 10 through the draft pipe 7 and the tangential air inlet pipe 10.1 of the cyclone separator. , the coarse powder is separated by the cyclone separator 10 and then enters the coarse powder collection bucket 10.3 of the cyclone separator, so as to achieve the purpose of classification.
  • the utility model can adjust the size and direction of the air intake by replacing the porous air intake ring 6 with different air intake holes of different sizes, so as to achieve the classification requirements of different powders. Quantity to meet the different classification accuracy requirements of different powders.
  • the present disclosure adopts the conical grading chamber and the porous air intake ring 6 for air intake, which reduces the resistance received by the airflow after entering the cyclone body, and increases the rotational speed of the airflow.
  • the high-speed rotating airflow improves the dispersion and centrifugal force of the powder, and increases the separation of large and small particles, thereby improving the classification efficiency and classification accuracy.
  • the fine powder enters the cyclone separator 10 through the air induction pipe 7 and is classified again, so that the classification accuracy of the powder can be effectively guaranteed.
  • the gas-phase powder classification equipment of the utility model has a great improvement in the classification efficiency and classification accuracy of the powder, and is suitable for the nano-level and sub-micron level with higher classification requirements. , Accuracy classification of micron ultrafine powder.

Landscapes

  • Cyclones (AREA)

Abstract

一种气相粉体分级设备,包括设置在加料机(1)的出料口下方的进料斗(2)、分散单锥(3)和分级室,分级室包括上锥腔(4.1)和下锥腔(4.2),进料斗(2)设在分级室的顶部的进料口处,分散单锥(3)设在分级室内并位于分级室的进料口下方,分级室内设有分散锥盘(5)和进气环(6),进气环(6)安装于上锥腔与下锥腔的连接处,分级室的下锥腔的侧壁上设有贯穿的引风管(7),分级室底部设有粗粉下料阀(8)和粗粉收集桶(9)。粉体进入分级室经过分散单锥后,通过高速旋转的气流作用,提高了粉体的分散性和离心力,加大了对大、小颗粒的分离作用,提高了分级效率和分级精度。

Description

一种气相粉体分级设备 技术领域
本实用新型涉及超细粉体分级设备,属于纳米级、亚微米级、微米级超细粉体气相分级技术领域。
背景技术
在已知的粉体分相法分级设备中,较为常见的有离心式旋风分离器。离心式旋风分离器在分级过程中,粉体在气流的作用下进入旋风体后,在旋风体外侧因重力和离心力的作用形成向下运动的外环流,大颗粒粉体沿旋风体壁向下运动进入粗粉收集桶。在旋风体中心形成向上运动的内环流,小颗粒粉体沿旋风体中心向上运动进入细粉收集罐,从而达到不同粒子的分级目的。但在常规的旋风分级器内,粉体在旋风体内的转速较慢,粉体所受的离心力较弱,导致分级效率较低,分级精度差,在处理纳米级超细粉体时效果不佳。
发明内容
针对上述分级设备存在的问题,本实用新型提供一种高效高精度,便于操作且能更好地处理纳米级、亚微米级和微米级超细粉体分级的气相粉体分级设备。
本实用新型的技术方案是,提供一种气相粉体分级设备,包括设置在加料机的出料口下方的进料斗、分散单锥和分级室,所述分级室包括上锥腔和下锥腔,所述进料斗设在分级室的顶部的进料口处,所述分散单锥设在分级室内并位于分级室的进料口下方,所述分级室内部的中间设有分散锥盘和进气环,所述进气环安装于上锥腔与下锥腔的连接处,所述分级室的下锥腔的侧壁上设有贯穿的引风管,所述引风管的一端从下到上穿过进气环的中心孔后与分散锥盘连接,所述引风管的另一端延伸至分级室外的旋风分离器,所述旋风分离器的另一端连接有收集罐,所述分级室的底部设有粗粉下料阀和粗粉收集桶。
可选的,所述分散单锥呈上小下大的圆锥形,且沿锥面向下延伸的投 影底部覆盖分散锥盘的中心孔,所述分散单锥底部的直径与分散锥盘的中心孔的直径比例为1:(0.5-4)。
可选的,所述分散单锥的底部与分散锥盘之间的间距为1-50cm。
可选的,所述分散锥盘呈上小下大的圆锥台形,且同心设置于进气环的中心孔内。
可选的,所述分散锥盘套在引风管的顶端位置处。
可选的,所述分级室的上锥腔呈上小下大的圆锥台形,下锥腔呈上大下小的圆锥台形。
可选的,所述进气环上设有多个进气孔,所述进气孔自所述进气环的外侧面向所述进气环的内侧面延伸。
可选的,所述进气环与分级室的上锥腔相贴的内壁或进气环的内壁的内径大于上锥腔底部的内径,所述分级室的下锥腔顶部的内径大于或等于进气环的内径,以防止下落的粉体沉积在连接处的阶梯台面上。
可选的,所述进气环的进气孔的进气方向与切线方向之间的夹角为3-30°,且进气孔的俯视面的形状为圆环形、矩形、梯形和圆弧形中的至少一种。
可选的,所述旋风分离器与收集罐之间设有阀门,且所述旋风分离器为1-3个。
相对于现有技术,本实用新型具有以下优点:
本设计采用锥型分级室和多孔进气环进气,气旋每经过一个进气孔,就经历一次旋转加速过程,气孔的进气也减小了旋风体载流气旋受到的分级室的内壁阻力,同时防止了载流气旋在旋转转向时流速的减小,不断保持和增大了气流旋转速度。粉体进入分级室经过分散单锥后,通过高速旋转的气流作用,提高了粉体的分散性和离心力,加大了对大、小颗粒的分离作用,从而提高了分级效率和分级精度,大颗粒粉受重力和离心力作用较大,沿着分级室的锥壁直接进入粗粉收集桶,小颗粒粉经引风管随着载流气进入旋风分离器再次分级,再次分级后的大颗粒进入旋风分离器底部的粗粉收集桶,细粉由旋风分离器顶部进入细粉收集罐。此外,还可以更换具有不同尺寸不同形状进气孔的多孔进气环来调节进气量的大小与进气 方向,达到不同粉体的分级要求,也可以通过增减旋风分离器的数量来达到不同粉体的不同分级精度需求。
附图说明
图1为本实用新型的气相粉体分级设备实施例的结构示意图。
图2为本实用新型的进气环实施例的结构示意图。
图中所示:1、加料机,2、进料斗,3、分散单锥,4.1、上锥腔室,4.2、下锥腔室,5、分散锥盘,6、进气环,7、引风管,8、粗粉下料阀,9、粗粉收集桶,10、旋风分离器,10.1、旋风分离器切向进气管,10.2、旋风分离器细粉出气管,10.3、旋风分离器粗粉收集桶,6.1、外大内小的弧形进气孔,6.2矩形进气孔,6.3、同心弧形进气孔,6.4、平行弧形进气孔,6.5、外大内小的梯形进气孔。
具体实施方式
下面结合结构示意图对本实用新型做进一步说明。
如图1所示,本公开的气相粉体分级设备,包括设置在加料机1的出料口下方的进料斗2、分散单锥3和分级室,所述进料斗2设在分级室的顶部的进料口处,所述分散单锥3设在分级室内并位于分级室的进料口下方,所述分级室内部的中间设有分散锥盘5和进气环6,所述进气环6的侧面设有若干进气孔,所述进气环6的侧壁紧贴上下分级室的内壁,所述分级室的下侧锥壁设有引风管7,所述引风管7的一端从下到上穿过进气环6的中心孔,所述引风管7的另一端延伸至分级室外的旋风分离器10,所述旋风分离器10的另一端连接收集罐,所述分级室的底部设有粗粉下料阀8和粗粉收集桶9。
所述分散单锥3呈上小下大的圆锥形,且沿锥面向下延伸的投影底部覆盖分散锥盘5的中心孔,所述分散单锥3的底部直径与分散锥盘5的中心孔直径比例为1:(0.5-4),所述分散单锥3的底部与分散锥盘5的间距为1-50cm。
所述分散锥盘5呈上小下大的圆台形,置于进气环6的中心孔内并与 进气环6的中心孔同轴心设置,所述分散锥盘5套在引风管7的顶端位置处。
所述分级室由两部分组成,位于上部的呈上小下大的圆台形的上锥腔室4.1和位于下部的呈上大下小的圆台形的下锥腔室4.2,所述进气环6安装在上锥腔室4.1与下锥腔室4.2的连接处。
如图2所示,所述进气环6的进气孔的进气方向与切线方向之间的夹角为3-30°,进气孔的俯视面按实际需求有外大内小的弧形进气孔6.1,矩形进气孔6.2,同心弧形进气孔6.3,平行弧形进气孔6.4或外大内小的梯形进气孔6.5。
所述旋风分离器10与收集罐之间设有阀门,所述旋风分离器10可按需求增加1-3个。
所述分级室与粗粉收集桶9中间设有粗粉下料阀8。
在引风机的作用下,粉体通过进料斗2经分散单锥3进入分级室作高速旋转运动,在重力和离心力的作用下,大颗粒沿分级室的内壁进入粗粉收集桶9,细小颗粒集中于分级室的中心位置并经引风管7和旋风分离器切向进气管10.1进入旋风分离器10,细粉经旋风分离器10分离后从旋风分离器细粉出气管10.2进入收集罐,粗粉经旋风分离器10分离后进入旋风分离器粗粉收集桶10.3,从而达到分级的目的。
本实用新型可通过更换具有不同尺寸不同进气孔的多孔进气环6,来调节进气量的大小与进气方向,达到不同粉体的分级要求,还可以通过增减旋风分离器10的数量来达到不同粉体的不同分级精度需求。
本公开采用锥形分级室和多孔进气环6进气,减小了气流进入旋风体后受到的阻力,增大了气流旋转速度。粉体进入分级室经过分散单锥3后,通过高速旋转的气流作用,提高了粉体的分散性和离心力,加大了对大小颗粒的分离作用,从而提高了分级效率和分级精度。细粉经引风管7进入旋风分离器10再次分级,使粉体的分级精度得到有效地保障。相比传统单一的分级机或旋风分离器,本实用新型的气相粉体分级设备在粉体的分级效率和分级精度上有很大的提高,适用于分级要求较高的纳米级、亚微米级、微米级超细粉体的精度分级。
以上所述,仅是本实用新型的较佳实施例而已,并非对本实用新型作任何形式上的限制,虽然本实用新型已以较佳实施例揭示如上,然而并非用以限定本实用新型,任何本领域技术人员,在不脱离本实用新型技术方案范围内,当可利用上述揭示的技术内容做出些许更动或修饰为等同变化的等效实施例,但凡是未脱离本实用新型技术方案内容,依据本实用新型的技术实质对以上实施例所作的任何简介修改、等同变化与修饰,均仍属于本实用新型技术方案的范围内。

Claims (10)

  1. 一种气相粉体分级设备,其特征在于:包括设置在加料机的出料口下方的进料斗、分散单锥和分级室,所述分级室包括上锥腔和下锥腔,所述进料斗设在分级室的顶部的进料口处,所述分散单锥设在分级室内并位于分级室的进料口下方,所述分级室内设有分散锥盘和进气环,所述进气环安装于上锥腔与下锥腔的连接处,所述分级室的下锥腔的侧壁上设有贯穿的引风管,所述引风管的一端从下到上穿过进气环的中心孔后与分散锥盘连接,所述引风管的另一端延伸至分级室外的旋风分离器,所述旋风分离器的另一端连接有收集罐,所述分级室的底部设有粗粉下料阀和粗粉收集桶。
  2. 如权利要求1所述的气相粉体分级设备,其特征在于:所述分散单锥呈上小下大的圆锥形,且沿锥面向下延伸的投影底部覆盖分散锥盘的中心孔,所述分散单锥底部的直径与分散锥盘的中心孔的直径比例为1:(0.5-4)。
  3. 如权利要求1或2所述的气相粉体分级设备,其特征在于:所述分散单锥的底部与分散锥盘之间的间距为1-50cm。
  4. 如权利要求1至3中任一项所述的气相粉体分级设备,其特征在于:所述分散锥盘呈上小下大的圆锥台形,且同心设置于进气环的中心孔内。
  5. 如权利要求1至4中任一项所述的气相粉体分级设备,其特征在于:所述分散锥盘套在引风管的顶端位置处。
  6. 如权利要求1至5中任一项所述的气相粉体分级设备,其特征在于:所述分级室的上锥腔呈上小下大的圆锥台形,下锥腔呈上大下小的圆锥台形。
  7. 如权利要求1至6中任一项所述的气相粉体分级设备,其特征在于:所述进气环上设有多个进气孔,所述进气孔自所述进气环的外侧面向所述进气环的内侧面延伸。
  8. 如权利要求1至7中任一项所述的气相粉体分级设备,其特征在于:所述进气环与分级室的上锥腔相贴的内壁的内径大于上锥腔底部的内径,所述分级室的下锥腔顶部的内径大于或等于进气环的内径。
  9. 如权利要求1至8中任一项所述的气相粉体分级设备,其特征在于: 所述进气环的进气孔的进气方向与切线方向之间的夹角为3-30°,且进气孔的俯视面的形状为圆环形、矩形、梯形和圆弧形中的至少一种。
  10. 如权利要求1至9中任一项所述的气相粉体分级设备,其特征在于:所述旋风分离器与收集罐之间设有阀门,且所述旋风分离器为1-3个。
PCT/CN2021/119879 2020-12-23 2021-09-23 一种气相粉体分级设备 WO2022134687A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202023133247.0 2020-12-23
CN202023133247.0U CN214077294U (zh) 2020-12-23 2020-12-23 一种气相粉体分级设备

Publications (1)

Publication Number Publication Date
WO2022134687A1 true WO2022134687A1 (zh) 2022-06-30

Family

ID=77431674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119879 WO2022134687A1 (zh) 2020-12-23 2021-09-23 一种气相粉体分级设备

Country Status (3)

Country Link
CN (1) CN214077294U (zh)
TW (1) TWM625640U (zh)
WO (1) WO2022134687A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN214077294U (zh) * 2020-12-23 2021-08-31 江苏博迁新材料股份有限公司 一种气相粉体分级设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009112935A (ja) * 2007-11-06 2009-05-28 Nippon Steel Engineering Co Ltd 廃棄物溶融炉の発生ガス管およびサイクロンのダスト付着防止方法およびその装置
JP3192410U (ja) * 2014-06-02 2014-08-14 株式会社ケイ・テイ・エイ サイクロン式分級器及び当該分級器を備えた集塵装置
CN205599522U (zh) * 2016-04-13 2016-09-28 江苏博迁新材料有限公司 一种亚微米级金属粉体无氧分级设备
CN209501995U (zh) * 2018-12-18 2019-10-18 宁波广新纳米材料有限公司 多功能粉体分散回收设备
CN209501993U (zh) * 2018-12-18 2019-10-18 宁波广新纳米材料有限公司 双进气环式粉体分级设备
CN110882865A (zh) * 2019-11-20 2020-03-17 江苏博迁新材料股份有限公司 一种深亚微米级粉体气氛分级装置
CN214077294U (zh) * 2020-12-23 2021-08-31 江苏博迁新材料股份有限公司 一种气相粉体分级设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009112935A (ja) * 2007-11-06 2009-05-28 Nippon Steel Engineering Co Ltd 廃棄物溶融炉の発生ガス管およびサイクロンのダスト付着防止方法およびその装置
JP3192410U (ja) * 2014-06-02 2014-08-14 株式会社ケイ・テイ・エイ サイクロン式分級器及び当該分級器を備えた集塵装置
CN205599522U (zh) * 2016-04-13 2016-09-28 江苏博迁新材料有限公司 一种亚微米级金属粉体无氧分级设备
CN209501995U (zh) * 2018-12-18 2019-10-18 宁波广新纳米材料有限公司 多功能粉体分散回收设备
CN209501993U (zh) * 2018-12-18 2019-10-18 宁波广新纳米材料有限公司 双进气环式粉体分级设备
CN110882865A (zh) * 2019-11-20 2020-03-17 江苏博迁新材料股份有限公司 一种深亚微米级粉体气氛分级装置
CN214077294U (zh) * 2020-12-23 2021-08-31 江苏博迁新材料股份有限公司 一种气相粉体分级设备

Also Published As

Publication number Publication date
CN214077294U (zh) 2021-08-31
TWM625640U (zh) 2022-04-11

Similar Documents

Publication Publication Date Title
CN205236213U (zh) 一种气旋打散广口上导流分级机
CN209501993U (zh) 双进气环式粉体分级设备
CN205236217U (zh) 一种气旋打散广口下导流分级机
WO2022134687A1 (zh) 一种气相粉体分级设备
CN106824571A (zh) 一种旋风分离器
CN207929561U (zh) 多粒级分级机
CN211134337U (zh) 一种双锥旋风分级机
CN204412476U (zh) 气相分级设备
CN112439558A (zh) 一种超细粉体气相分级设备
US4066535A (en) Method and apparatus for the classification of fine material from a stream of material in a circulating air classifier
CN206549858U (zh) 一种稳流型旋风分离器
CN205236215U (zh) 一种高速导流气旋打散分级机
CN211385433U (zh) 一种下段扩容式细粉分离器
CN208627824U (zh) 一种超大型分级机
CN206549852U (zh) 一种可调稳流型旋风分离器
CN207857153U (zh) 一种砂石粉分离机
CN2131620Y (zh) 高效率选粉机
CN205462789U (zh) 一种高速导流气旋打散上出口分级机
CN206549861U (zh) 一种稳流双作用旋风分离器
CN2254011Y (zh) 旋风式选粉机
CN214288833U (zh) 一种旋流式离心分级设备
CN206474234U (zh) 一种干式球磨分级装置
CN219291677U (zh) 卧式高效旋风粉体颗粒多段分级分离器
CN214288834U (zh) 一种双层进气式分级设备
CN219210294U (zh) 具有颗粒二次分级功能的旋风分级器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21908688

Country of ref document: EP

Kind code of ref document: A1