WO2022131595A1 - 플렉서블 전극 소재 및 이의 제조방법 - Google Patents

플렉서블 전극 소재 및 이의 제조방법 Download PDF

Info

Publication number
WO2022131595A1
WO2022131595A1 PCT/KR2021/017064 KR2021017064W WO2022131595A1 WO 2022131595 A1 WO2022131595 A1 WO 2022131595A1 KR 2021017064 W KR2021017064 W KR 2021017064W WO 2022131595 A1 WO2022131595 A1 WO 2022131595A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode material
flexible electrode
graphene film
metal oxide
present
Prior art date
Application number
PCT/KR2021/017064
Other languages
English (en)
French (fr)
Inventor
안건형
이영근
이재연
Original Assignee
경상국립대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상국립대학교산학협력단 filed Critical 경상국립대학교산학협력단
Priority to JP2023533887A priority Critical patent/JP2023553402A/ja
Priority to US18/265,957 priority patent/US20240120474A1/en
Publication of WO2022131595A1 publication Critical patent/WO2022131595A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/049Manufacturing of an active layer by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/668Composites of electroconductive material and synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a flexible electrode material and a method for manufacturing the same.
  • a zinc-ion battery is composed of a zinc anode, an oxide cathode, an electrolyte, and a separator, and is attracting attention as a next-generation flexible portable energy storage device because of its excellent stability, eco-friendliness, and high specific capacity.
  • zinc is a very safe material, has low cost and environmentally friendly advantages, is relatively stable compared to lithium, sodium and potassium, and has a theoretical capacity. High energy density and long lifespan of the battery can be realized due to its high compatibility with electrolytes.
  • zinc ions are inserted and desorbed from the cathode to the zinc electrode during charging, and zinc ions are inserted and desorbed from the cathode during discharging.
  • the storage degree of zinc ions in the cathode is the most important factor in determining the energy storage performance of the zinc-ion battery, and it is very important to select an appropriate cathode material.
  • vanadium-based electrode materials such as VS 2 , V 2 O 5 and VO 2 having high specific capacity and excellent long-term stability have been studied, but there is a problem in that application is difficult due to high cost and toxicity.
  • manganese oxide has advantages such as low cost, good theoretical capacity, and high operating voltage, making it suitable as an electrode material for zinc-ion batteries. It shows low cycling stability.
  • the present invention is to solve the above problems, and an object of the present invention is to provide a flexible electrode material capable of improving the energy storage performance, capacity retention rate, and cycling stability of a zinc-ion battery, and a method for manufacturing the same.
  • One aspect of the present invention is a graphene film; and a free-standing metal oxide formed on the graphene film.
  • the graphene film may include graphene or a plurality of stacked graphenes.
  • the graphene film may be surface-activated, and oxygen (O)-containing functional groups may be present on the surface.
  • the metal oxide is selected from the group consisting of ⁇ -MnO 2 , ⁇ -MnO 2 , ⁇ -MnO 2 , ⁇ -MnO 2 , V 2 O 5 and V 2 O 5 ⁇ nH 2 O It may include one or more.
  • the content of the metal oxide may be 1 wt% to 10 wt%.
  • a length of the metal oxide in a direction perpendicular to the surface of the graphene film may be 10 nm to 200 nm.
  • the metal oxide may be directly bonded to the surface of the graphene film.
  • the flexible electrode material may be binder-free.
  • the electrode may be for a zinc ion battery.
  • Another aspect of the present invention comprises the steps of preparing a mixed solution by dissolving graphene and polyvinylidene difluoride (PVDF) in a solvent; forming a graphene film by casting the mixed solution on a mesh and heating; separating the graphene film from the mesh; And after floating the graphene film in the metal oxide precursor solution, the step of stirring the metal oxide precursor solution; provides a method of manufacturing a flexible electrode material comprising a.
  • PVDF polyvinylidene difluoride
  • the mixed solution is to be cast on a mesh (mesh) in a doctor blade method, the heating may be performed at a temperature of 50 °C to 150 °C.
  • separating the graphene film from the mesh; Thereafter, the step of activating the surface of the separated graphene film; may further include.
  • the metal oxide is manganese oxide
  • the metal oxide precursor solution may include potassium permanganate (KMnO 4 ), sulfuric acid (H 2 SO 4 ), and deionized water (DIW).
  • the stirring may be performed for 30 minutes to 90 minutes.
  • the flexible electrode material according to the present invention has an effect of improving energy storage performance, capacity retention rate, and cycling stability by directly forming a freestanding metal oxide on a graphene film, and has excellent flexibility and waterproof properties.
  • the method for manufacturing a flexible electrode material according to the present invention can solve problems such as a decrease in battery capacity and low cycling stability due to the binder by selectively growing a metal oxide on a graphene film without a binder or an additive, There is an advantage in that an electrode material having excellent flexibility and electrochemical performance can be manufactured in a relatively simple manner.
  • the zinc-ion battery including the flexible electrode material according to the present invention may have excellent electrochemical performance, stability, flexibility and waterproof properties, and can be implemented as both an aqueous zinc-ion battery and an all-solid zinc-ion battery It works.
  • FIG. 1 is a diagram illustrating a manufacturing process of a flexible electrode material according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a structural form of an electrode material according to an embodiment of the present invention.
  • 3A to 3I are images showing morphological and structural characteristics of a flexible electrode material according to an embodiment of the present invention.
  • Figure 3a is a photograph showing the bent state of the surface-activated graphene film.
  • 3b and 3e are FE-SEM images of the surface-activated graphene film.
  • 3c and 3g are FE-SEM images of the flexible electrode material of Example 1.
  • 3D and 3H are FE-SEM images of the flexible electrode material of Example 2.
  • 3e and 3i are FE-SEM images of the flexible electrode material of Example 3;
  • 4A and 4B are cross-sectional FE-SEM images of the flexible electrode material of Example 2 according to an embodiment of the present invention.
  • Example 2 flexible electrode material is a cross-sectional FE-SEM image (scale bar 500 nm) of Example 2 flexible electrode material according to an embodiment of the present invention.
  • FIG. 4B is a cross-sectional FE-SEM image (scale bar 50 nm) of the flexible electrode material of Example 2 according to an embodiment of the present invention, and is an enlarged view of the rectangular marked portion of FIG. 4A .
  • 5A to 5C are HR-TEM images and EDS mapping images of the flexible electrode material of Example 2 according to an embodiment of the present invention.
  • FIG. 5b is a high-resolution HR-TEM image of the flexible electrode material of Example 2, and is an enlarged view of the square marked portion of FIG. 5a.
  • 5c is an EDS mapping image of the flexible electrode material of Example 2.
  • 6A to 6D are TGA, XRD, and XPS results of a flexible electrode material according to an embodiment of the present invention.
  • 6A is a TGA result of a flexible electrode material according to an embodiment of the present invention.
  • 6B is an XRD result of a flexible electrode material according to an embodiment of the present invention.
  • 6C is an XPS result of a flexible electrode material according to an embodiment of the present invention.
  • 6D is an XPS result of a flexible electrode material according to an embodiment of the present invention.
  • 7A is a Nyquist plot of a cell manufactured using the electrode materials of Comparative Examples and Examples 1 to 3;
  • 7B is a graph showing the relationship between Z real and ⁇ -1 / 2 in cells manufactured using the electrode materials of Comparative Examples and Examples 1 to 3;
  • 7C is a graph showing the Zn ion diffusion coefficient of cells manufactured using the electrode materials of Comparative Examples and Examples 1 to 3;
  • 8A and 8B are graphs showing the electrochemical performance of cells manufactured using the electrode materials of Comparative Examples and Examples 1 to 3;
  • 8A shows the rate performance of cells manufactured using the electrode materials of Comparative Examples and Examples 1 to 3 at a potential in the range of 1.0-1.9 V and a current density in the range of 0.1-2.0 Ag -1 .
  • 8B is a graph showing the change in capacity for 300 cycles at a current density of 1.0 A g -1 of cells manufactured using the electrode materials of Comparative Examples and Examples 1 to 3;
  • Example 9 is a comparison of the energy and power density of a cell fabricated using the electrode material of Example 2 with another reported energy storage device using an electrolyte solution by Ragone plot.
  • FIG. 10 shows a schematic diagram of a structure of an all-solid zinc ion battery using a flexible electrode material mill-gel electrolyte according to an embodiment of the present invention.
  • 11A to 11C show the lifetime performance and cycling stability of an all-solid-state zinc ion battery using a flexible electrode material mill-gel electrolyte according to an embodiment of the present invention.
  • 11A shows rate performance at a potential in the range of 1.0-1.9 V and a current density in the range of 0.3-1.0 Ag -1 of an all-solid-state zinc ion battery according to an embodiment of the present invention.
  • 11B is a Ragone plot comparing the energy and power density of an all-solid-state zinc ion battery according to an embodiment of the present invention to previously reported all-solid-state energy storage devices.
  • 11C shows the cycling stability at a current density of 0.5 Ag ⁇ 1 under conditions of flat and folded states and the presence and absence of water of an all-solid-state zinc ion battery according to an embodiment of the present invention.
  • One aspect of the present invention is a graphene film; and a free-standing metal oxide formed on the graphene film.
  • the flexible electrode material according to the present invention is characterized in that the metal oxide is bonded to the surface of the graphene film without a binder, thereby having flexibility as well as improved electrochemical performance.
  • the flexible electrode material according to the present invention does not contain a binder, charge mobility is improved, and a free-standing metal oxide is uniformly formed on the graphene film, thereby improving zinc ion diffusion ability. .
  • FIG. 1 is a diagram illustrating a manufacturing process of a flexible electrode material according to an embodiment of the present invention.
  • a flexible electrode material can be obtained by selectively growing manganese dioxide (MnO 2 ), which is a metal oxide, on a graphene film.
  • MnO 2 manganese dioxide
  • FIG. 2 is a diagram showing a structural form of an electrode material according to an embodiment of the present invention.
  • the graphene film having flexibility serves as a current collector and a platform for uniformly growing metal oxide on the surface, and on the graphene film
  • the metal oxide (MnO 2 ) grown in a needle shape can improve the diffusion capacity and shear migration properties of zinc ions, thereby improving the specific capacity and cycling stability of the battery at high current densities.
  • the flexible electrode material according to the present invention has an effect applicable to an all-solid-state battery using a gel electrolyte.
  • the free-standing metal oxide is a metal oxide standing in a direction perpendicular to the surface of the graphene film, and may be independently bonded without a separate binder or support.
  • the free-standing metal oxide is attached on the surface of the graphene film without a separate binder or additive, thereby suppressing a sudden decrease in capacity and cycling stability of the battery due to the use of the binder or additive.
  • the performance of the battery can be improved by preventing side reactions and decomposition of active materials due to the use of binders or additives, and improving ion diffusion ability and charge mobility.
  • the free-standing metal oxide may be in the form of a needle, and may be formed in a direction perpendicular to the surface of the graphene film.
  • the free-standing metal oxide may be uniformly distributed on the graphene film.
  • the uniform distribution of the free-standing metal oxide may improve the diffusion ability of zinc ions.
  • the graphene film may include graphene or a plurality of stacked graphenes.
  • the graphene film may include one graphene or may have a stacked form of a plurality of graphenes.
  • the graphene film may have a layered structure including a plurality of stacked graphenes, thereby ensuring flexibility.
  • the graphene film may serve as a current collector and has an advantage of excellent chemical resistance.
  • the graphene film may be surface-activated, and oxygen (O)-containing functional groups may be present on the surface.
  • the low wettability of graphene acts as a factor preventing contact of ions in solution with carbon during aqueous synthesis.
  • the surface activation may be an acid treatment or an etching process using an acid.
  • the acid treatment or the etching process using an acid may be using an acidic aqueous solution.
  • oxygen-containing functional groups are formed on the surface of the graphene film, and surface defects are generated, so that the metal oxide can be effectively synthesized on the surface of the graphene film.
  • the graphene film may be impurity-free.
  • the metal oxide is selected from the group consisting of ⁇ -MnO 2 , ⁇ -MnO 2 , ⁇ -MnO 2 , ⁇ -MnO 2 , V 2 O 5 and V 2 O 5 ⁇ nH 2 O It may include one or more.
  • the manganese oxide has advantages of not only being low in cost, but also complying with a theoretical capacity and realizing a high operating voltage.
  • the metal oxide may be ⁇ -MnO 2 .
  • the ⁇ -MnO 2 can accommodate a relatively large number of zinc ions, thereby implementing the effect of increasing the specific capacity of the electrode.
  • the content of the metal oxide may be 1 wt% to 10 wt%.
  • the content of the metal oxide is less than the above range, the effect as an active material cannot be expressed, and when it exceeds the above range, ion diffusion ability and charge mobility are rather reduced, which may result in degradation of electrochemical performance.
  • a length of the metal oxide in a direction perpendicular to the surface of the graphene film may be 10 nm to 200 nm.
  • the length of the metal oxide in a direction perpendicular to the surface of the graphene film may be 50 nm to 150 nm, more preferably, 80 nm to 130 nm, even more preferably For example, it may be 100 nm to 120 nm.
  • the electrochemical performance may be deteriorated as the void space on the surface of the graphene film increases, and when it exceeds the above range Aggregation of metal oxides may occur, reducing zinc ion diffusion ability and charge mobility, thereby reducing electrochemical performance and stability.
  • the metal oxide may be directly bonded to the surface of the graphene film.
  • the metal oxide is directly synthesized and grown on the surface of the graphene film, and may be directly bonded without a separate binder.
  • the flexible electrode material may be binder-free.
  • the flexible electrode material according to the present invention does not contain a binder or an additive, side reactions and decomposition of the active material due to the binder or additive can be prevented, and the ion diffusion ability and charge mobility of the electrode can be improved.
  • the electrode may be for a zinc ion battery.
  • the zinc ion battery may be an aqueous zinc ion battery or an all-solid zinc ion battery.
  • the electrode may be a cathode for a zinc ion battery.
  • the flexible electrode material may be used as a waterproof electrode.
  • the flexible electrode may have an energy density of 390 Wh/kg or more at a power density of 90 W/kg.
  • the flexible electrode may have a capacity retention rate of 82% or more after 300 cycles of charging and discharging under a current density condition of 1.0 A/g.
  • a cathode including the flexible electrode material; zinc metal anode; separator; It provides a flexible zinc ion battery, including; and electrolyte.
  • the electrolyte may be in a solution or gel state, and may include ZnSO 4 .
  • the flexible electrode material according to the present invention has characteristics applicable to both a zinc ion battery and an all-solid zinc battery.
  • it has excellent flexibility and waterproofness, and has the characteristics of being able to exhibit excellent performance in an underwater state and a folded state.
  • Another aspect of the present invention comprises the steps of preparing a mixed solution by dissolving graphene and polyvinylidene difluoride (PVDF) in a solvent; forming a graphene film by casting the mixed solution on a mesh and heating; separating the graphene film from the mesh; And after floating the graphene film in the metal oxide precursor solution, the step of stirring the metal oxide precursor solution; provides a method of manufacturing a flexible electrode material comprising a.
  • PVDF polyvinylidene difluoride
  • an organic solvent may be used as the solvent.
  • N-methyl-2-pyrrolidone can be used as a solvent.
  • the dissolution may be performed at a temperature of 50 °C to 100 °C for 30 minutes to 2 hours.
  • the mixed solution is to be cast on a mesh (mesh) in a doctor blade method, the heating may be performed at a temperature of 50 °C to 150 °C.
  • the heating may be performed in an oven at a temperature of 50° C. to 150° C., and a graphene film may be formed through the heating and drying.
  • separating the graphene film from the mesh; Thereafter, the step of activating the surface of the separated graphene film; may further include.
  • the surface activation may be an acid treatment or an etching process using an acid.
  • the surface activation may be performed for 10 minutes to 120 minutes, and preferably, may be performed for 30 minutes to 90 minutes.
  • the surface activation promotes the reaction between the mixed solution and carbon of the graphene film by forming oxygen-containing functional groups on the surface of the graphene film to increase wettability, and by generating some defects on the surface of the graphene film, the metal oxide is effectively can make it grow.
  • the metal oxide precursor solution refers to a solution including a reactant for generating a target metal oxide.
  • the metal oxide is manganese oxide
  • the metal oxide precursor solution may include potassium permanganate (KMnO 4 ), sulfuric acid (H 2 SO 4 ), and deionized water (DIW).
  • the manganese oxide may be synthesized through the following reaction formula.
  • the stirring may be performed for 30 minutes to 90 minutes.
  • the size and length in the vertical direction of the synthesized metal oxide may be adjusted.
  • the stirring may be performed for 40 minutes to 80 minutes, and more preferably, it may be performed for 50 minutes to 70 minutes.
  • the stirring time is a reaction time for synthesizing the metal oxide, and by controlling the reaction time, it is possible to form a metal oxide of an appropriate size and length.
  • Another aspect of the present invention including the flexible electrode material or the flexible electrode material manufactured by the manufacturing method, a cathode; an anode comprising zinc metal; separator; and an electrolyte; it provides a zinc ion battery comprising.
  • the electrolyte may be in a solution or gel state.
  • Another aspect of the present invention provides an energy storage device comprising the zinc ion battery.
  • the energy storage device may be an all-solid-state device.
  • PVDF polyvinylithene fluoride
  • the mixed solution was cast on a stainless steel mesh by a doctor blade method, and then dried by heating in an oven at 100 °C.
  • the surface-activated graphene film was washed several times with deionized water and dried.
  • the surface-activated graphene film was floated in a mixed solution of 18 mM potassium permanganate (KMnO 4 ), 1 M sulfuric acid (H 2 SO 4 ) and deionized water (DIW), and then the solution was heated at 80 °C for 30 min, 60 min or 90 min. By stirring for minutes, a flexible electrode material in which free-standing manganese dioxide (MnO 2 ) was synthesized on a graphene film was obtained.
  • KMnO 4 potassium permanganate
  • DIW deionized water
  • the flexible electrode material was washed with deionized water and dried.
  • Example 1 (30 minutes), Example 2 (60 minutes), and Example 3 (90 minutes).
  • the shape and structural characteristics of the flexible electrode material prepared in Examples were analyzed using a field emission scanning electron microscope (FE-SEM), a high-resolution transmission electron microscope (HR-TEM), and an energy dispersive spectroscopy (EDS) method.
  • FE-SEM field emission scanning electron microscope
  • HR-TEM high-resolution transmission electron microscope
  • EDS energy dispersive spectroscopy
  • the crystal phase of manganese dioxide formed in Examples was analyzed by X-ray diffraction analysis (XRD), and the composition was analyzed by thermogravimetric analysis (TGA) in a temperature range of 100 ° C. - 900 ° C. under ambient atmosphere.
  • XRD X-ray diffraction analysis
  • TGA thermogravimetric analysis
  • the chemical bonding state was analyzed through X-ray photoelectron spectroscopy (XPS).
  • FIG. 3 is an image showing the morphological and structural characteristics of the flexible electrode material according to an embodiment of the present invention.
  • Figure 3a is a photograph showing the bent state of the surface-activated graphene film.
  • 3b and 3e are FE-SEM images of the surface-activated graphene film.
  • 3c and 3g are FE-SEM images of the flexible electrode material of Example 1.
  • 3D and 3H are FE-SEM images of the flexible electrode material of Example 2.
  • 3e and 3i are FE-SEM images of the flexible electrode material of Example 3;
  • Example 1 In the case of Example 1, an empty space appeared due to a short growth time (30 minutes), and in the case of Example 3, aggregation of MnO 2 occurred due to a long growth time (90 minutes).
  • Example 2 In comparison, in the case of Example 2, it can be confirmed that MnO 2 is grown in a uniform distribution on the surface of the graphene film.
  • Example 1 small and vague needle-shaped particles with a lot of empty space appeared with a relatively wide size distribution (22.3-81.6 nm), and in the case of Example 3, large needle-shaped MnO 2 with signs of aggregation was A wider size distribution (128.2–137.6 nm) appeared.
  • Example 2 In comparison, in the case of Example 2, it can be seen that clear needle-shaped MnO 2 well dispersed on the surface-activated graphene surface without empty space or agglomeration appears with a relatively uniform size distribution (103.7-110.2 nm).
  • Example 4 is a cross-sectional FE-SEM image of the flexible electrode material of Example 2 according to an embodiment of the present invention.
  • Example 2 flexible electrode material is a cross-sectional FE-SEM image (scale bar 500 nm) of Example 2 flexible electrode material according to an embodiment of the present invention.
  • FIG. 4B is a cross-sectional FE-SEM image (scale bar 50 nm) of the flexible electrode material of Example 2 according to an embodiment of the present invention, and is an enlarged view of the rectangular marked portion of FIG. 4A .
  • Example 5 is an HR-TEM image and EDS mapping image of the flexible electrode material of Example 2 according to an embodiment of the present invention.
  • FIG. 5b is a high-resolution HR-TEM image of the flexible electrode material of Example 2, and is an enlarged view of the square marked portion of FIG. 5a.
  • needle-shaped MnO 2 having a size range of 101.3-118.1 nm formed on the flexible electrode material can be confirmed.
  • the lattice distance of 0.69 nm is shown, which is consistent with the (110) plane of ⁇ -MnO 2 .
  • 5c is an EDS mapping image of the flexible electrode material of Example 2.
  • FIG. 6 is a TGA, XRD, and XPS result of a flexible electrode material according to an embodiment of the present invention.
  • 6A is a TGA result of a flexible electrode material according to an embodiment of the present invention.
  • the surface-activated graphene film exhibits 100% weight loss, and through this, it can be seen that the graphene film has a pure carbon composition and does not contain impurities.
  • 6B is an XRD result of a flexible electrode material according to an embodiment of the present invention.
  • 6c and 6d are XPS results of a flexible electrode material according to an embodiment of the present invention.
  • Mn 2p shoulder peaks at 654.5 eV and 642.7 eV are consistent with the typical spin energy separation of 11.8 eV for MnO 2 , and 532.6 eV, 531.5 eV, and 530.2 in the O 1s spectrum. It can be confirmed that the peaks at eV correspond to HOH, hydrated trivalent Mn-OH and tetravalent Mn-O-Mn bonds, respectively.
  • a CR2032-type coin cell was prepared by using the flexible electrode material prepared in Example as a cathode, zinc metal as an anode, glass fiber paper as a separator, and 2 M zinc sulfate (ZnSO 4 ) as an electrolyte. .
  • electrochemical behavior was analyzed through electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV).
  • Rate performance tests were performed in the potential range of 1.0 to 1.9 V (vs Zn/Zn 2+ ) at current densities of 0.1, 0.3, 0.5, 0.7, 1.0, 1.3, 1.5 and 2.0 Ag -1 , and long-term Cycling tests were performed at a current density of 1.0 Ag -1 for up to 300 cycles.
  • FIG. 7 is an electrochemical view of a coin cell prepared from the electrode material of Comparative Examples and Examples 1 to 3 in which MnO 2 powder, PVDF binder, and conductive carbon black (Ketjen black) commercialized on a surface-activated graphene film are cast. It is the result of analyzing the characteristics.
  • FIG. 7A is a Nyquist plot of a cell manufactured using the electrode materials of Comparative Examples and Examples 1 to 3; Here, the semicircle of the high-frequency region and the slope of the low-frequency region indicate charge transfer resistance (Rct) and ion diffusion behavior (Warburg impedance).
  • the Warburg impedance coefficient ( ⁇ w) was calculated using Equation 1
  • the Zn ion diffusion coefficient (D) was calculated using Equation 2.
  • R e denotes the type of total electrode resistance called bulk resistance
  • D is the Zn ion diffusion coefficient
  • R is the gas constant
  • T is the temperature
  • A is the area of the electrode
  • n is the number of electrons per molecule
  • F is the Faraday constant
  • C is the Zn ion molar concentration.
  • 7B is a graph showing the relationship between Z real and ⁇ -1 / 2 in cells manufactured using the electrode materials of Comparative Examples and Examples 1 to 3;
  • the Warburg impedance coefficient ( ⁇ w) calculated through this corresponds to 23.6, 23.8, 14.2 and 26.7 ⁇ cm 2 s- 1 / 2 in the order of Comparative Examples and Examples 1 to 3, respectively. Able to know.
  • 7C is a graph showing the Zn ion diffusion coefficient of cells manufactured using the electrode materials of Comparative Examples and Examples 1 to 3;
  • the Zn ion diffusion coefficients were calculated as 0.61, 0.60, 1.68, and 0.48 ⁇ 10 -12 cm 2 s -1 of Comparative Examples and Examples 1 to 3, respectively.
  • Example 2 the diffusion performance of zinc ions is increased in Example 2 in which MnO 2 is uniformly dispersed without a binder.
  • 8A shows the rate performance of cells manufactured using the electrode materials of Comparative Examples and Examples 1 to 3 at a potential in the range of 1.0-1.9 V and a current density in the range of 0.1-2.0 Ag -1 .
  • Example 2 exhibits a high specific capacity, and exhibits an excellent recovery capacity of 430.5 mAhg -1 at 0.1 Ag -1 (capacity retention rate of 97.8%).
  • Example 1 exhibited a low discharge capacity
  • Example 3 exhibited a rapid loss of discharge capacity and a low capacity retention rate (80.0%).
  • 8B is a graph showing the change in capacity for 300 cycles at a current density of 1.0 A g -1 of cells manufactured using the electrode materials of Comparative Examples and Examples 1 to 3;
  • Example 2 exhibits the best long-term stability by securing a capacity retention rate of 82% or more.
  • Example 9 is a comparison of the energy and power density of a cell fabricated using the electrode material of Example 2 with other reported energy storage devices using an electrolyte solution by Ragone plot.
  • Example 2 shows a maximum energy density of 396 Whkg -1 at a power density of 90W kg -1 , and a maximum energy density of 201 Whkg -1 at a power density of 1,800 Wkg. It can be confirmed.
  • the cell using the electrode material of Example 2 has higher power density and energy density compared to the previously reported supercapacitors, lithium ion batteries, sodium ion batteries, aluminum ion batteries, magnesium ion batteries, and calcium ion batteries. can be seen to indicate
  • Example 4 zinc metal as an anode, and glass fiber paper as a separator, 1 M zinc sulfate (ZnSO4), 1.5 M polyvinyl alcohol (PVA) and An all-solid zinc-ion battery was prepared by composing a gel mixed with deionized water (DIW) as an electrolyte.
  • DIW deionized water
  • the all-solid zinc-ion battery was packaged with a sealing film as an exterior material, and the electrochemical behavior was investigated through EIS using an AC signal of 5 mV in the frequency range of 10 5 to 10 -2 Hz.
  • Rate performance tests were performed at current densities of 0.3, 0.5 and 1.0 A g -1 , and long-term cycling tests were performed by submerging the samples in water in the flat and folded state up to 100 times at current densities of 0.5 A g -1 . state was performed.
  • FIG. 10 shows a schematic diagram of an all-solid-state zinc ion battery structure using a flexible electrode material mill-gel electrolyte according to an embodiment of the present invention.
  • FIG. 11 shows the lifetime performance and cycling stability of an all-solid-state zinc ion battery using a flexible electrode material mill-gel electrolyte according to an embodiment of the present invention.
  • 11A shows rate performance at a potential in the range of 1.0-1.9 V and a current density in the range of 0.3-1.0 Ag -1 of an all-solid-state zinc ion battery according to an embodiment of the present invention.
  • the all-solid-state zinc ion battery provides excellent specific capacities of 145.6, 100.8 and 45.6 mA h g ⁇ 1 at current densities of 0.3, 0.5 and 1.0 A g ⁇ 1 , and 131.6 at 0.3 A g ⁇ 1 . It can be seen that the recovery capacity (recovering capacity) of mAhg -1 (capacity retention rate 90.4%).
  • 11B is a Ragone plot comparing the energy and power density of an all-solid-state zinc ion battery according to an embodiment of the present invention to previously reported all-solid-state energy storage devices.
  • the all-solid-state zinc ion battery according to an embodiment of the present invention exhibits an energy density of 131 Wkg -1 at a power density of 270 Whkg -1 , which is a previously reported all-solid-state energy storage It can be seen that the energy density is superior to that of the devices.
  • 11C shows the cycling stability at a current density of 0.5 Ag ⁇ 1 under conditions of flat and folded states and the presence and absence of water of an all-solid-state zinc ion battery according to an embodiment of the present invention.
  • the all-solid-state zinc ion battery according to an embodiment of the present invention exhibits a capacity retention rate of 85% or more for 100 cycles in all states, thereby confirming that it has high flexibility and water resistance.
  • the all-solid-state zinc ion battery according to an embodiment of the present invention illuminates a light emitting diode (LED) in water and operates the drone propeller in a bent state.
  • LED light emitting diode
  • the all-solid-state zinc ion battery according to an embodiment of the present invention can be put to practical use as an energy storage device having excellent electrochemical performance, flexibility, and waterproof properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

본 발명은 플렉서블 전극 소재 및 이의 제조방법에 관한 것으로, 본 발명의 일 측면은, 그래핀 필름; 및 상기 그래핀 필름 상에 형성된, 프리스탠딩(free-standing) 금속 산화물;을 포함하는, 플렉서블 전극 소재를 제공한다.

Description

플렉서블 전극 소재 및 이의 제조방법
본 발명은 플렉서블 전극 소재 및 이의 제조방법에 관한 것이다.
아연-이온 전지는 아연 애노드, 산화물 캐소드, 전해질, 분리막으로 구성되며, 우수한 안정성, 친환경성, 높은 비용량을 가져 차세대 플렉서블 휴대용 에너지 저장 장치로 주목받고 있다.
특히, 아연은 아연-이온 전지의 핵심 전극 소재로, 매우 안전한 재료임과 동시에 비용이 저렴하고 환경 친화적인 장점을 가지고 있으며, 리튬, 나트륨, 칼륨과 비교하여 상대적으로 안정할 뿐만 아니라, 이론 용량이 높고 전해질과의 호환성이 우수하여 전지의 높은 에너지 밀도와 긴 수명을 구현할 수 있다.
아연-이온전지의 에너지 저장 메커니즘은 충전 시 캐소드에서 아연 전극으로 아연 이온의 삽입 및 탈리가 이루어지고, 방전 시 캐소드에서 아연 이온의 삽입 및 탈리가 이루어진다.
이 때, 캐소드에서의 아연 이온의 저장 정도는 아연-이온 전지의 에너지 저장 성능을 결정하는데 가장 중요한 요소로, 적절한 캐소드 소재를 선정하는 것은 매우 중요하다.
이와 관련하여, 높은 비용량과 우수한 장기 안정성을 갖는 VS2, V2O5 및 VO2와 같은 바나듐 기반 전극 물질이 연구된 바 있으나, 높은 비용과 독성으로 인해 적용이 어려운 문제점이 존재한다.
이와 비교하여, 망간 산화물은 저렴한 비용, 준수한 이론용량, 높은 작동 전압과 같은 장점을 가지고 있어 아연-이온 전지용 전극 소재로 적합한 특성을 보이나, 바인더와 금속 집전체의 사용으로 인해 급격한 용량 저하가 발생하며 낮은 사이클링 안정성을 보인다.
따라서, 아연-이온 전지의 우수한 에너지 저장 능력을 확보하면서, 용량 유지율, 사이클링 안정성 등을 향상시킬 수 있는 전극 소재에 대한 개발이 필요하다.
전술한 배경기술은 발명자가 본원의 개시 내용을 도출하는 과정에서 보유하거나 습득한 것으로서, 반드시 본 출원 전에 일반 공중에 공개된 공지기술이라고 할 수는 없다.
본 발명은 상술한 문제점을 해결하기 위한 것으로, 본 발명의 목적은, 아연-이온 전지의 에너지 저장 성능, 용량 유지율 및 사이클링 안정성을 향상시킬 수 있는, 플렉서블 전극 소재 및 이의 제조방법을 제공하는 것이다.
그러나, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 것들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 해당 분야 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 측면은, 그래핀 필름; 및 상기 그래핀 필름 상에 형성된, 프리스탠딩(free-standing) 금속 산화물;을 포함하는, 플렉서블 전극 소재를 제공한다.
일 실시형태에 따르면, 상기 그래핀 필름은, 그래핀 또는 적층된 복수 개의 그래핀을 포함하는 것일 수 있다.
일 실시형태에 따르면, 상기 그래핀 필름은, 표면 활성화되어, 표면에 산소(O) 포함 작용기가 존재하는 것일 수 있다.
일 실시형태에 따르면, 상기 금속 산화물은, α-MnO2, β-MnO2, γ-MnO2, δ-MnO2, V2O5 및 V2O5·nH2O로 이루어진 군에서 선택되는 하나 이상을 포함하는 것일 수 있다.
상기 금속 산화물의 함량은, 1 중량 % 내지 10 중량%인 것일 수 있다.
일 실시형태에 따르면, 상기 금속 산화물의 상기 그래핀 필름 표면과 수직한 방향으로의 길이는, 10 nm 내지 200 nm인 것일 수 있다.
일 실시형태에 따르면, 상기 금속 산화물이 상기 그래핀 필름 표면에 직접 결합되는 것일 수 있다.
일 실시형태에 따르면, 상기 플렉서블 전극 소재는, 바인더-프리(binder-free)인 것일 수 있다.
일 실시형태에 따르면, 상기 전극은, 아연 이온 전지용인 것일 수 있다.
본 발명의 다른 측면은, 그래핀 및 폴리비닐리덴디플루오라이드(PVDF)를 용매에 용해시켜 혼합용액을 준비하는 단계; 상기 혼합용액을 메쉬(mesh)에 주조하고, 가열하여 그래핀 필름을 형성시키는 단계; 상기 그래핀 필름을 메쉬에서 분리하는 단계; 및 상기 그래핀 필름을 금속 산화물 전구체 용액에 띄운 후, 상기 금속 산화물 전구체 용액을 교반하는 단계;를 포함하는, 플렉서블 전극 소재의 제조방법을 제공한다.
일 실시형태에 따르면, 상기 혼합용액은 닥터블레이드 방식으로 메쉬(mesh)에 주조하는 것이고, 상기 가열은 50 ℃ 내지 150 ℃의 온도로 수행되는 것일 수 있다.
일 실시형태에 따르면, 상기 그래핀 필름을 메쉬에서 분리하는 단계; 이후에, 상기 분리된 그래핀 필름을 표면 활성화시키는 단계;를 더 포함하는 것일 수 있다.
일 실시형태에 따르면, 상기 금속 산화물은, 망간 산화물이고, 상기 금속 산화물 전구체 용액은, 과망간산칼륨(KMnO4), 황산(H2SO4) 및 탈이온수(DIW)를 포함하는 것일 수 있다.
일 실시형태에 따르면, 상기 교반은, 30 분 내지 90 분 동안 수행되는 것일 수 있다.
본 발명에 따른 플렉서블 전극 소재는, 그래핀 필름 상에 프리스탠딩 금속산화물을 직접 형성시킴으로써, 에너지 저장 성능, 용량 유지율, 사이클링 안정성이 향상된 효과가 있으며, 유연성 및 방수성이 우수한 효과가 있다.
또한, 본 발명에 따른 플렉서블 전극 소재의 제조 방법은, 바인더 또는 첨가제 없이 그래핀 필름 상에 금속 산화물을 선택적으로 성장시킴으로써, 바인더로 인한 전지의 용량 저하, 낮은 사이클링 안정성과 같은 문제를 해결할 수 있으며, 유연성 및 전기 화학적 성능이 우수한 전극 소재를 비교적 간단한 방식으로 제조할 수 있는 장점이 있다.
나아가, 본 발명에 따른 플렉서블 전극 소재를 포함하는 아연-이온 전지는, 우수한 전기화학적 성능, 안정성, 유연성 및 방수 특성을 가질 수 있으며, 수성 아연-이온 전지 및 전고체 아연-이온 전지로 모두 구현 가능한 효과가 있다.
도 1은, 본 발명의 일 실시형태에 따른 플렉서블 전극 소재의 제조 과정을 나타낸 그림이다.
도 2는, 본 발명의 일 실시형태에 따른 전극 소재의 구조적 형태를 보여주는 그림이다.
도 3a 내지 도 3i는, 본 발명의 일 실시형태에 따른 플렉서블 전극 소재의 형태학적 및 구조적 특성을 보여주는 이미지이다.
도 3 a는, 표면 활성화된 그래핀 필름의 구부러진 상태를 나타낸 사진이다.
도 3b 및 도 3e는, 표면 활성화된 그래핀 필름의 FE-SEM 이미지이다.
도 3c 및 도 3g는, 실시예 1 플렉서블 전극 소재의 FE-SEM 이미지이다.
도 3d 및 도 3h는, 실시예 2 플렉서블 전극 소재의 FE-SEM 이미지이다.
도 3e 및 도 3i는, 실시예 3 플렉서블 전극 소재의 FE-SEM 이미지이다.
도 4a 및 도 4b는, 본 발명의 일 실시형태에 따른 실시예 2 플렉서블 전극 소재의 단면 FE-SEM 이미지이다.
도 4a는, 본 발명의 일 실시형태에 따른 실시예 2 플렉서블 전극 소재의 단면 FE-SEM 이미지(scale bar 500 nm)이다.
도 4b는, 본 발명의 일 실시형태에 따른 실시예 2 플렉서블 전극 소재의 단면 FE-SEM 이미지(scale bar 50 nm)로, 도 4a의 사각형 표기 부분을 확대한 것이다.
도 5a 내지 도 5c는, 본 발명의 일 실시형태에 따른 실시예 2 플렉서블 전극 소재의 HR-TEM 이미지 및 EDS 맵핑 이미지이다.
도 5a는, 실시예 2 플렉서블 전극 소재의 저해상도 HR-TEM 이미지다.
도 5b는, 실시예 2 플렉서블 전극 소재의 고해상도 HR-TEM 이미지로, 도 5a의 사각형 표기부분을 확대한 것이다.
도 5c는, 실시예 2 플렉서블 전극 소재의 EDS 맵핑 이미지이다.
도 6a 내지 도 6d는, 본 발명의 일 실시형태에 따른 플렉서블 전극 소재의 TGA, XRD 및 XPS 결과이다.
도 6a는, 본 발명의 일 실시형태에 따른 플렉서블 전극 소재의 TGA 결과이다.
도 6b는, 본 발명의 일 실시형태에 따른 플렉서블 전극 소재의 XRD 결과이다.
도 6c는, 본 발명의 일 실시형태에 따른 플렉서블 전극 소재의 XPS 결과이다.
도 6d는, 본 발명의 일 실시형태에 따른 플렉서블 전극 소재의 XPS 결과이다.
도 7a 내지 도 7c는, 표면 활성화된 그래핀 필름 상에 상용화된 MnO2 분말, PVDF 바인더, 도전성카본블랙(Ketjen black)이 주조된 비교예와 실시예 1 내지 3의 전극 소재로 제조된 코인셀의 전기화학적 특성을 분석한 결과이다.
도 7a는, 비교예 및 실시예 1 내지 3의 전극 소재를 사용하여 제조된 셀의 Nyquist 플롯이다.
도 7b는, 비교예 및 실시예 1 내지 3의 전극 소재를 사용하여 제조된 셀에서, Zreal과 ω-1 / 2의 관계를 나타낸 그래프이다.
도 7c는, 비교예 및 실시예 1 내지 3의 전극 소재를 사용하여 제조된 셀의 Zn 이온 확산 계수를 나타낸 그래프이다.
도 8a 및 도 8b는, 비교예 및 실시예 1 내지 3의 전극 소재를 사용하여 제조된 셀의 전기화학적 성능을 나타낸 그래프이다.
도 8a는, 비교예 및 실시예 1 내지 3의 전극 소재를 사용하여 제조된 셀의 1.0-1.9 V범위의 전위 및 0.1-2.0 Ag-1 범위의 전류 밀도에서 율적 특성(rate performance)을 나타낸 것이다.
도 8b는, 비교예 및 실시예 1 내지 3의 전극 소재를 사용하여 제조된 셀의 1.0 A g-1의 전류 밀도에서 300 사이클 동안 용량 변화를 나타낸 그래프이다.
도 9는, 실시예 2의 전극 소재를 사용하여 제조된 셀의 에너지 및 전력 밀도를 Ragone 플롯에 의해 전해질 용액을 사용하는 다른 보고된 에너지 저장 장치와 비교한 것이다.
도 10은, 본 발명의 일 실시형태에 따른 플렉서블 전극 소재 밀 겔 전해질을 사용한 전고체 아연 이온 전지 구조의 개략도를 나타낸 것이다.
도 11a 내지 도 11 c는, 본 발명의 일 실시형태에 따른 플렉서블 전극 소재 밀 겔 전해질을 사용한 전고체 아연 이온 전지의 수명 성능 및 사이클링 안정성을 나타낸 것이다.
도 11a는, 본 발명의 일 실시형태에 따른 전고체 아연 이온 전지의 1.0-1.9 V 범위의 전위 및 0.3-1.0 Ag-1 범위의 전류 밀도에서 율적 특성(rate performance)을 나타낸 것이다.
도 11b는, 본 발명의 일 실시형태에 따른 전고체 아연 이온 전지의 에너지 및 전력 밀도를 이전에 보고된 전고체 에너지 저장 장치들과 비교한 Ragone 플롯이다.
도 11c는, 본 발명의 일 실시형태에 따른 전고체 아연 이온 전지의 평평한 상태 및 접힌 상태와 물의 존재 및 부존재 조건 하에, 0.5 Ag-1의 전류 밀도에서 사이클링 안정성을 나타내는 것이다.
도 12는, 본 발명의 일 실시형태에 따른 전고체 아연 이온 전지의 수중 및 구부러진 상태에서의 작동 여부를 확인하는 실험 사진이다.
이하에서, 첨부된 도면을 참조하여 실시예들을 상세하게 설명한다. 그러나, 실시예들에는 다양한 변경이 가해질 수 있어서 특허출원의 권리 범위가 이러한 실시예들에 의해 제한되거나 한정되는 것은 아니다. 실시예들에 대한 모든 변경, 균등물 내지 대체물이 권리 범위에 포함되는 것으로 이해되어야 한다.
실시예에서 사용한 용어는 단지 설명을 목적으로 사용된 것으로, 한정하려는 의도로 해석되어서는 안된다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
또한, 첨부 도면을 참조하여 설명함에 있어, 도면 부호에 관계없이 동일한 구성 요소는 동일한 참조부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 실시예의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
또한, 실시 예의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
어느 하나의 실시 예에 포함된 구성요소와, 공통적인 기능을 포함하는 구성요소는, 다른 실시 예에서 동일한 명칭을 사용하여 설명하기로 한다. 반대되는 기재가 없는 이상, 어느 하나의 실시 예에 기재한 설명은 다른 실시 예에도 적용될 수 있으며, 중복되는 범위에서 구체적인 설명은 생략하기로 한다.
본 발명의 일 측면은, 그래핀 필름; 및 상기 그래핀 필름 상에 형성된, 프리스탠딩(free-standing) 금속 산화물;을 포함하는, 플렉서블 전극 소재를 제공한다.
본 발명에 따른 플렉서블 전극 소재는, 그래핀 필름 표면에 금속 산화물이 바인더 없이 결합함으로써, 유연성을 가질 뿐만 아니라 전기 화학적 성능이 향상된 특징이 있다.
본 발명에 따른 플렉서블 전극 소재는, 바인더를 포함하지 않음으로써 전하 이동성이 향상되고, 상기 그래핀 필름 상에 프리스탠딩(free-standing) 금속 산화물이 균일하게 형성됨으로써 아연 이온 확산 능력이 향상될 수 있다.
도 1은, 본 발명의 일 실시형태에 따른 플렉서블 전극 소재의 제조 과정을 나타낸 그림이다.
도 1을 참조하면, 그래핀 필름 상에 금속 산화물인 이산화망간(MnO2)을 선택적으로 성장시킴으로써, 플렉서블 전극 소재를 얻을 수 있다.
도 2는, 본 발명의 일 실시형태에 따른 전극 소재의 구조적 형태를 보여주는 그림이다.
도 2를 참조하면, 본 발명의 일 실시형태에 따른 플렉서블 전극 소재는, 유연성을 갖는 그래핀 필름은 표면에 금속 산화물을 균일하게 성장시킬 수 있는 집전체 및 플랫폼의 역할을 하며, 그래핀 필름 상에 바늘 형태로 성장된 금속 산화물(MnO2)은 아연 이온의 확산 능력 및 전항 이동 특성을 향상시킴으로써, 높은 전류 밀도에서 전지의 비용량 및 사이클링 안정성을 향상시킬 수 있다.
특히, 본 발명에 따른 플렉서블 전극 소재는, 겔 전해질을 사용하는 전고체 전지에도 적용 가능한 효과가 있다.
상기 프리스탠딩(free-standing) 금속 산화물은, 상기 그래핀 필름 표면에 수직한 방향으로 서있는 형태의 금속 산화물로, 별도의 바인더나 지지체없이 독립적으로 결합되어 있을 수 있다.
상기 프리스탠딩(free-standing) 금속 산화물은, 별도의 바인더 또는 첨가제 없이 그래핀 필름 표면 상에 부착됨으로써, 바인더 또는 첨가제 사용으로 인한 전지의 급격한 용량 저하 및 사이클링 안정성 저하를 억제할 수 있다.
즉, 바인더 또는 첨가제의 사용으로 인한 부반응 및 활성 물질 분해를 방지하고, 이온 확산 능력 및 전하 이동성을 향상시킴으로써 전지의 성능을 향상시킬 수 있다.
일 실시형태에 따르면, 상기 프리스탠딩(free-standing) 금속 산화물은, 바늘 형태인 것일 수 있으며, 상기 그래핀 필름 표면에 수직 방향으로 형성된 것일 수 있다.
상기 프리스탠딩(free-standing) 금속 산화물은, 상기 그래핀 필름 상에 균일하게 분포될 수 있다. 상기 프리스탠딩(free-standing) 금속 산화물의 균일한 분포는, 아연 이온의 확산 능력을 향상시킬 수 있다.
일 실시형태에 따르면, 상기 그래핀 필름은, 그래핀 또는 적층된 복수 개의 그래핀을 포함하는 것일 수 있다.
상기 그래핀 필름은 하나의 그래핀을 포함하거나, 복수 개의 그래핀이 적층된 형태일 수 있다.
상기 그래핀 필름은, 적층된 복수 개의 그래핀을 포함하는 층상 구조일 수 있으며, 이를 통해 유연성을 확보할 수 있다.
상기 그래핀 필름은, 집전체의 역할을 수행할 수 있으며, 화학적 내성이 우수한 장점이 있다.
또한, 금속 산화물의 전기 전도도를 향상시켜 우수한 전기 화학적 성능을 제공하고, 상기 프리스탠딩(free-standing) 금속 산화물의 성장을 도울 수 있다.
일 실시형태에 따르면, 상기 그래핀 필름은, 표면 활성화되어, 표면에 산소(O) 포함 작용기가 존재하는 것일 수 있다.
일반적으로, 그래핀의 낮은 습윤성은, 수성 합성 중 용액의 이온이 탄소와 접촉하는 것을 방해하는 요인으로 작용한다.
따라서, 표면 활성화 즉, 표면 기능화를 통해 상기 그래핀 필름의 표면에 산소 포합 작용기를 생성시켜 그래핀 필름의 습윤성을 증가시킴으로써, 그래핀 필름의 표면에서 금속 산화물이 효과적으로 합성될 수 있도록 할 수 있다.
일 실시형태에 따르면, 상기 표면 활성화는, 산(acid) 처리 또는 산(acid)을 사용한 에칭 공정일 수 있다.
산(acid) 처리 또는 산(acid)을 사용한 에칭 공정은 산성 수용액을 사용하는 것일 수 있다.
상기 표면 활성화를 통해, 그래핀 필름 표면에 산소 포함 작용기를 형성시키고, 표면 결함을 발생시켜 상기 그래핀 필름 표면에서 금속 산화물이 효과적으로 합성되도록 할 수 있다.
일 실시형태에 따르면, 상기 그래핀 필름은, 불순물-프리(Impurity-free)인 것일 수 있다.
일 실시형태에 따르면, 상기 금속 산화물은, α-MnO2, β-MnO2, γ-MnO2, δ-MnO2, V2O5 및 V2O5·nH2O로 이루어진 군에서 선택되는 하나 이상을 포함하는 것일 수 있다.
상기 망간 산화물은, 비용이 저렴할 뿐만 아니라 이론 용량이 준수하고, 높은 작동 전압을 구현할 수 있는 장점을 갖는다.
일 실시형태에 따르면, 상기 금속 산화물은, α-MnO2 일 수 있다.
상기 α-MnO2는, 상대적으로 많은 아연 이온을 수용할 수 있어 전극의 비용량을 높일 수 있는 효과를 구현할 수 있다.
일 실시형태에 따르면, 상기 금속 산화물의 함량은, 1 중량 % 내지 10 중량%인 것일 수 있다.
상기 금속 산화물의 함량이 상기 범위 미만일 경우, 활성 물질로서의 효과를 발현할 수 없고, 상기 범위를 초과할 경우 오히려 이온 확산 능력과 전하 이동성이 저하되어 전기 화학적 성능 저하를 초래할 수 있다.
일 실시형태에 따르면, 상기 금속 산화물의 상기 그래핀 필름 표면과 수직한 방향으로의 길이는, 10 nm 내지 200 nm인 것일 수 있다.
바람직하게는, 상기 금속 산화물의 상기 그래핀 필름 표면과 수직한 방향으로의 길이는, 50 nm 내지 150 nm인 것일 수 있고, 더욱 바람직하게는, 80 nm 내지 130 nm인 것일 수 있으며, 더욱 더 바람직하게는, 100 nm 내지 120 nm인 것일 수 있다.
만일 상기 금속 산화물의 상기 그래핀 필름 표면과 수직한 방향으로의 길이가, 상기 범위 미만일 경우, 그래핀 필름 표면에 빈 공간이 증가함에 따라 전기 화학적 성능을 저하시킬 수 있고, 상기 범위를 초과할 경우 금속 산화물의 응집이 발생하여 아연 이온 확산 능력 및 전하 이동성을 저하시킴에 따라 전기 화학적 성능 및 안정성을 저하시킬 수 있다.
일 실시형태에 따르면, 상기 금속 산화물이 상기 그래핀 필름 표면에 직접 결합되는 것일 수 있다.
상기 금속 산화물은, 상기 그래핀 필름 표면 상에 직접 합성되어 성장된 것으로, 별도의 바인더 없이 직접 결합되는 것일 수 있다.
일 실시형태에 따르면, 상기 플렉서블 전극 소재는, 바인더-프리(binder-free)인 것일 수 있다.
즉, 본 발명에 따른 플렉서블 전극 소재는, 바인더나 첨가제를 포함하지 않음으로써, 바인더 또는 첨가제로 인한 부반응 및 활성 물질 분해를 방지할 수 있으며, 전극의 이온 확산 능력 및 전하 이동성을 향상시킬 수 있다.
일 실시형태에 따르면, 상기 전극은, 아연 이온 전지용인 것일 수 있다.
상기 아연 이온 전지는, 수성 아연 이온 전지 또는 전고체 아연 이온 전지일 수 있다.
일 실시형태에 따르면, 상기 전극은, 아연 이온 전지용 캐소드(cathode)인 것일 수 있다.
일 실시형태에 따르면, 상기 플렉서블 전극 소재는, 방수용 전극으로 사용될 수 있다.
일 실시형태에 따르면, 상기 플렉서블 전극은, 90 W/kg 전력밀도에서 에너지 밀도가 390 Wh/kg 이상인 것일 수 있다.
일 실시형태에 따르면, 상기 플렉서블 전극은, 1.0 A/g의 전류 밀도 조건에서 300 사이클 충방전 후 용량유지율이 82% 이상인 것일 수 있다.
본 발명의 다른 측면은, 상기 플렉서블 전극 소재를 포함하는 캐소드; 아연 금속 애노드; 분리막; 및 전해질;을 포함하는, 플렉서블 아연 이온 전지를 제공한다.
상기 전해질은, 용액 또는 겔 상태일 수 있고, ZnSO4를 포함할 수 있다.
즉, 본 발명에 따른 플렉서블 전극 소재는, 아연 이온 전지 및 전고체 아연 전지에 모두 적용 가능한 특징을 갖는다.
특히, 유연성 및 방수성이 우수하여, 수중 상태 및 접힌 상태에서도 우수한 성능을 발휘할 수 있는 특징을 갖는다.
본 발명의 다른 측면은, 그래핀 및 폴리비닐리덴디플루오라이드(PVDF)를 용매에 용해시켜 혼합용액을 준비하는 단계; 상기 혼합용액을 메쉬(mesh)에 주조하고, 가열하여 그래핀 필름을 형성시키는 단계; 상기 그래핀 필름을 메쉬에서 분리하는 단계; 및 상기 그래핀 필름을 금속 산화물 전구체 용액에 띄운 후, 상기 금속 산화물 전구체 용액을 교반하는 단계;를 포함하는, 플렉서블 전극 소재의 제조방법을 제공한다.
상기 혼합용액을 준비하는 단계에 있어서, 상기 용매로는, 유기 용매를 사용할 수 있다. 예를 들어, 용매로 N-메틸-2-피롤리돈을 사용할 수 있다.
일 실시형태에 따르면, 상기 용해는, 50 ℃내지 100 ℃의 온도로 30 분 내지 2 시간 동안 수행되는 것일 수 있다.
일 실시형태에 따르면, 상기 혼합용액은 닥터 블레이드 방식으로 메쉬(mesh)에 주조하는 것이고, 상기 가열은 50 ℃내지 150 ℃의 온도로 수행되는 것일 수 있다.
상기 가열은, 오븐에서 50 ℃내지 150 ℃의 온도로 수행될 수 있으며, 상기 가열 건조를 통해 그래핀 필름이 형성될 수 있다.
일 실시형태에 따르면, 상기 그래핀 필름을 메쉬에서 분리하는 단계; 이후에, 상기 분리된 그래핀 필름을 표면 활성화시키는 단계;를 더 포함하는 것일 수 있다.
상기 표면 활성화는, 산(acid) 처리 또는 산(acid)을 사용한 에칭 공정일 수 있다.
상기 표면 활성화는, 10 분 내지 120 분 동안 수행될 수 있고, 바람직하게는, 30 분 내지 90 분 동안 수행될 수 있다.
상기 표면 활성화는, 그래핀 필름 표면에 산소 포함 작용기를 형성시켜 습윤성을 증가시킴으로써 혼합용액과 그래핀 필름의 탄소 사이에 반응을 촉진시키고, 그래핀 필름 표면에 일부 결함을 발생시킴으로써, 금속 산화물이 효과적으로 성장되도록 할 수 있다.
상기 금속 산화물 전구체 용액은, 목표 금속 산화물을 생성하기 위한 반응 물질을 포함하는 용액을 의미한다.
일 실시형태에 따르면, 상기 금속 산화물은, 망간 산화물이고, 상기 금속 산화물 전구체 용액은, 과망간산칼륨(KMnO4), 황산(H2SO4) 및 탈이온수(DIW)를 포함하는 것일 수 있다.
일 실시형태에 따르면, 상기 망간 산화물은 하기와 같은 반응식을 통해 합성될 수 있다.
Figure PCTKR2021017064-appb-img-000001
일 실시형태에 따르면, 상기 교반은, 30 분 내지 90 분 동안 수행되는 것일 수 있다.
상기 교반이 수행되는 시간을 조절함에 따라, 합성되는 금속 산화물의 크기 및 수직 방향으로의 길이를 조절할 수 있다.
바람직하게는, 상기 교반은, 40 분 내지 80 분 동안 수행될 수 있고, 더욱 바람직하게는, 50 분 내지 70 분 동안 수행될 수 있다.
상기 교반 시간은, 금속 산화물이 합성되는 반응 시간으로, 반응 시간을 조절하여 적당한 크기 및 길이의 금속 산화물을 형성시킬 수 있다.
본 발명의 또 다른 측면은, 상기 플렉서블 전극 소재 또는 상기 제조방법으로 제조된 플렉서블 전극 소재를 포함하는, 캐소드; 아연 금속을 포함하는 애노드; 분리막; 및 전해질;을 포함하는, 아연 이온 전지를 제공한다.
상기 전해질은, 용액 또는 겔 상태일 수 있다.
본 발명의 다른 측면은, 상기 아연 이온 전지를 포함하는, 에너지 저장 장치를 제공한다.
상기 에너지 저장 장치는 전고체 장치일 수 있다.
이하, 실시예 및 비교예에 의하여 본 발명을 더욱 상세히 설명하고자 한다.
단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
실시예. 플렉서블 전극 소재의 제조
1) 그래핀 필름 제조
그래핀과 폴리비닐리텐플루오라이드(PVDF)를 80 ℃에서 1 시간 동안 N-메틸-2-피롤리돈에 용해시켰다.
혼합 용액을 닥터 블레이드 방법으로 스테인레스 스틸 메쉬에 주조한 다음, 100 ℃ 오븐에서 가열하여 건조시켰다.
형성된 그래핀 필름을 메쉬에서 분리한 뒤, 1 M 염산(HCl)에서 1 시간 동안 에칭하여 그래핀 필름의 표면을 활성화하였다.
2) 플렉서블 전극 소재의 제조
표면 활성화된 그래핀 필름(FGF)을 탈이온수로 여러 번 세척하고 건조시켰다. 표면 활성화된 그래핀 필름을 18 mM 과망간산 칼륨 (KMnO4), 1M 황산 (H2SO4) 및 탈이온수(DIW)의 혼합 용액에 띄운 다음, 용액을 80 °C에서 30 분, 60 분 또는 90 분 동안 교반하여 그래핀 필름 상에 프리스탠딩(free-standing) 이산화망간(MnO2)이 합성된 플렉서블 전극 소재를 얻었다.
이 후, 플렉서블 전극 소재를 탈이온수로 세척하고 건조시켰다.
이하에서는, 상기 교반 시간에 따라, 실시예 1(30분), 실시예 2(60분), 실시예 3(90분)으로 표기한다.
실험예 1. 플렉서블 전극 소재의 형태 및 구조적 특성 확인
실시예를 통해 제조된 플렉서블 전극 소재의 형태 및 구조적 특성을 전계 방출형 주사전자현미경(FE-SEM), 고분해능 투과전자현미경(HR-TEM), 에너지 분산 분광법(EDS)을 통해 분석하였다.
또한, 실시예 상에 형성된 이산화망간의 결정상을 X - ray 회절분석법(XRD)을 통해 분석하였고, 조성을 100 ℃ - 900 ℃의 온도범위에서 주변 대기 하에 열중량분석기(TGA)를 통해 분석하였다.
화학적 결합상태는, X-선 광전자 분광법(XPS)을 통해 분석하였다.
도 3은, 본 발명의 일 실시형태에 따른 플렉서블 전극 소재의 형태학적 및 구조적 특성을 보여주는 이미지이다.
도 3 a는, 표면 활성화된 그래핀 필름의 구부러진 상태를 나타낸 사진이다.
도 3b 및 도 3e는, 표면 활성화된 그래핀 필름의 FE-SEM 이미지이다.
도 3c 및 도 3g는, 실시예 1 플렉서블 전극 소재의 FE-SEM 이미지이다.
도 3d 및 도 3h는, 실시예 2 플렉서블 전극 소재의 FE-SEM 이미지이다.
도 3e 및 도 3i는, 실시예 3 플렉서블 전극 소재의 FE-SEM 이미지이다.
도 3a 내지 도 3i를 참조하여 보면, 교반을 통한 성장 시간이 길어질수록 MnO2 가 더 많이 성장하는 것을 확인할 수 있다.
실시예 1의 경우 짧은 성장 시간(30분)으로 인해 빈 공간이 나타났고, 실시예 3의 경우 긴 성장 시간(90분)으로 인해 MnO2의 응집이 발생했다.
이와 비교하여, 실시예 2의 경우 그래핀 필름 표면에 MnO2 가 균일한 분포로 성장한 것을 확인할 수 있다.
또한, 실시예 1의 경우 빈 공간이 많고 작고 모호한 바늘 모양의 입자가 비교적 넓은 크기 분포(22.3-81.6nm)로 나타났으며, 실시예 3의 경우 응집의 징후와 함께 큰 바늘 모양의 MnO2 가 더 넓은 크기 분포(128.2-137.6 nm)로 나타났다.
이와 비교하여, 실시예 2의 경우 빈 공간이나 응집 없이 표면 활성화된 그래핀 표면에 잘 분산된 뚜렷한 바늘 모양의 MnO2가 상대적으로 균일한 크기 분포(103.7-110.2 nm)로 나타나는 것을 확인할 수 있다.
도 4는, 본 발명의 일 실시형태에 따른 실시예 2 플렉서블 전극 소재의 단면 FE-SEM 이미지이다.
도 4a는, 본 발명의 일 실시형태에 따른 실시예 2 플렉서블 전극 소재의 단면 FE-SEM 이미지(scale bar 500 nm)이다.
도 4b는, 본 발명의 일 실시형태에 따른 실시예 2 플렉서블 전극 소재의 단면 FE-SEM 이미지(scale bar 50 nm)로, 도 4a의 사각형 표기 부분을 확대한 것이다.
도 4를 참조하여 보면, 표면 활성화된 그래핀 필름 상에 MnO2 가 잘 고정되고, 분산되어 있음을 확인할 수 있다.
도 5는, 본 발명의 일 실시형태에 따른 실시예 2 플렉서블 전극 소재의 HR-TEM 이미지 및 EDS 맵핑 이미지이다.
도 5a는, 실시예 2 플렉서블 전극 소재의 저해상도 HR-TEM 이미지다.
도 5b는, 실시예 2 플렉서블 전극 소재의 고해상도 HR-TEM 이미지로, 도 5a의 사각형 표기부분을 확대한 것이다.
도 5a및 도 5b를 참조하면, 플렉서블 전극 소재에 형성된 101.3-118.1 nm 크기 범위의 바늘 형태의 MnO2를 확인할 수 있다. 또한, 0.69 nm의 격자거리를 나타내는 것을 확인할 수 있는데, 이는 α-MnO2의 (110) 평면과 일치하는 것이다.
도 5c는, 실시예 2 플렉서블 전극 소재의 EDS 맵핑 이미지이다.
도 5c를 참조하면, 플렉서블 전극 소재의 표면에 망간, 산소 및 탄소가 균일하게 분산되어 있음을 확인할 수 있다.
도 6은, 본 발명의 일 실시형태에 따른 플렉서블 전극 소재의 TGA, XRD 및 XPS 결과이다.
도 6a는, 본 발명의 일 실시형태에 따른 플렉서블 전극 소재의 TGA 결과이다.
도 6a를 참조하면, 표면 활성화된 그래핀 필름이 100 % 중량 손실을 나타내는 것을 확인할 수 있으며, 이를 통해 그래핀 필름이 순수한 탄소 조성을 가지며 불순물을 포함하지 않음을 알 수 있다.
이와 비교하여, 실시예 1 내지 3에서는, 중량 손실이 각각, 3.2 %, 6.5 % 및 9.7 %인 것으로 나타났으며, 이는 처리 시간 증가에 따라 표면 활성화된 그래핀 필름 표면에 MnO2가 더 많이 성장되었음을 의미한다.
도 6b는, 본 발명의 일 실시형태에 따른 플렉서블 전극 소재의 XRD 결과이다.
도 6b를 참조하면, 표면 활성화된 그래핀 필름 및 실시예 1 내지 3 모두에서, 흑연의 (002) 및 (004) 층에 해당하는 26.5 ° 및 54.6 °에서 피크가 나타나는 것을 확인할 수 있으며, 이를 통해 그래핀이 적층되어 층상 구조를 생성하였음을 확인할 수 있다. 실시예 1 내지 3에서 MnO2의 중량이 10 중량 % 미만이기 때문에 이는 확인되지 않았다.
도 6c 및 도 6d는, 본 발명의 일 실시형태에 따른 플렉서블 전극 소재의 XPS 결과이다.
도 6c 및 도 6d를 참조하면, 654.5 eV 및 642.7 eV에서 Mn 2p 숄더 피크는 MnO2에 대한 11.8 eV의 일반적인 스핀 에너지 분리와 일치함을 확인할 수 있으며, O 1s 스펙트럼에서 532.6 eV, 531.5 eV 및 530.2 eV에서의 피크는 각각, H-O-H, 수화된 3가의 Mn-OH 및 4가 Mn-O-Mn 결합에 대응하는 것임을 확인할 수 있다.
이를 통해, 표면 활성화된 그래핀 필름 표면에 α-MnO2 가 성공적으로 합성되었음을 알 수 있다.
실험예 2. 플렉서블 전극 소재를 사용한 아연 이온 전지의 전기화학적 특성 평가
실시예에서 제조된 플렉서블 전극 소재를 캐소드로, 아연 금속을 애노드로, 유리 섬유 종이(glass fiber paper)를 분리막으로, 2 M 황산 아연 (ZnSO4)을 전해질로 구성하여 CR2032 형 코인 셀을 제조하였다.
상기 셀을 이용하여, 전기 화학적 임피던스 분광법 (EIS), 순환 전압 전류 법 (CV)을 통해 전기화학적 거동을 분석하였다.
율적 특성(rate performance) 테스트는 0.1, 0.3, 0.5, 0.7, 1.0, 1.3, 1.5 및 2.0 Ag-1의 전류 밀도에서 1.0 ~ 1.9 V (vs Zn/Zn2+)의 전위 범위에서 수행되었고, 장기 사이클링 테스트는 최대 300 사이클 동안 1.0 Ag-1의 전류 밀도에서 수행되었다.
도 7은, 표면 활성화된 그래핀 필름 상에 상용화된 MnO2 분말, PVDF 바인더, 도전성 카본블랙(Ketjen black)이 주조된 비교예와 실시예 1 내지 3의 전극 소재로 제조된 코인셀의 전기화학적 특성을 분석한 결과이다.
도 7a는, 비교예 및 실시예 1 내지 3의 전극 소재를 사용하여 제조된 셀의 Nyquist 플롯이다. 여기서 고주파 영역의 반원과 저주파 영역의 기울기는 전하 전달 저항(Rct) 및 이온 확산 거동(Warburg 임피던스)을 나타낸다.
도 7a를 참조하면, 실시예들의 경우 비교예 보다 반원이 작게 나타나는 것을 확인할 수 있는데, 이는 활성 물질이 접근하는 것을 방해할 수 있는 바인더가 없기 때문이다.
또한, 실시예 2의 경우 가장 가파른 기울기 즉, 가장 낮은 Warburg 임피던스를 나타내어, 아연 이온 확산 능력이 가장 우수함을 알 수 있다.
Warburg 임피던스 계수 (σw)는 식 1을 사용하여 계산되었고, Zn 이온 확산 계수 (D)는 식 2를 사용하여 계산되었다.
Figure PCTKR2021017064-appb-img-000002
여기서, Re는 벌크 저항이라고 하는 전체 전극 저항의 유형을 나타내고, D는 Zn 이온 확산 계수, R은 기체 상수, T는 온도, A는 전극의 면적, n은 분자 당 전자 수, F는 패러데이 상수, C는 Zn 이온 몰 농도이다.
도 7b는, 비교예 및 실시예 1 내지 3의 전극 소재를 사용하여 제조된 셀에서, Zreal과 ω-1 / 2의 관계를 나타낸 그래프이다.
도 7b를 참조하면, 이를 통해 계산된 Warburg 임피던스 계수 (σw)는, 비교예, 실시예 1 내지 3의 순으로, 각각, 23.6, 23.8, 14.2 및 26.7 Ω cm2 s-1 / 2에 해당함을 알 수 있다.
도 7c는, 비교예 및 실시예 1 내지 3의 전극 소재를 사용하여 제조된 셀의 Zn 이온 확산 계수를 나타낸 그래프이다.
Zn 이온 확산 계수는, 비교예, 실시예 1 내지 3의 순으로, 각각, 0.61, 0.60, 1.68 및 0.48 × 10-12 cm2 s-1로 계산되었다.
이를 통해, 바인더 없이 MnO2 가 고르게 분산된 실시예 2에서 아연 이온의 확산 성능이 증가됨을 알 수 있다.
도 8은, 비교예 및 실시예 1 내지 3의 전극 소재를 사용하여 제조된 셀의 전기화학적 성능을 나타낸 그래프이다.
도 8a는, 비교예 및 실시예 1 내지 3의 전극 소재를 사용하여 제조된 셀의 1.0-1.9 V범위의 전위 및 0.1-2.0 Ag-1 범위의 전류 밀도에서 율적 특성(rate performance)을 나타낸 것이다.
도 8a를 참조하면, 실시예 2는 높은 비용량을 나타내며, 0.1 Ag-1에서 430.5 mAhg-1의 뛰어난 복구 용량(recovering capacity)을 나타내는 것을 확인할 수 있다(97.8 %의 용량 유지율).
이와 비교하여, 실시예 1은 낮은 방전 용량을 나타내었고, 실시예 3은 방전 용량의 급격한 손실과 낮은 용량 유지율(80.0%)을 나타냈다.
도 8b는, 비교예 및 실시예 1 내지 3의 전극 소재를 사용하여 제조된 셀의 1.0 A g-1의 전류 밀도에서 300 사이클 동안 용량 변화를 나타낸 그래프이다.
도 8b를 참조하면, 비교예 및 실시예 1 내지 3의 순으로, 각각, 37.2 %, 62.8 %, 82.7 %, 45.8 %의 용량 유지율을 나타내는 것을 확인할 수 있다.
이를 통해, 실시예 모두 비교예 보다 향상된 용량 유지율을 나타내며, 실시예 2의 경우 82 % 이상의 용량 유지율을 확보하여 가장 우수한 장기 안정성을 나타내는 것을 알 수 있다.
도 9는, 실시예 2의 전극 소재를 사용하여 제조된 셀의 에너지 및 전력 밀도를 Ragone 플롯에 의해 전해질 용액을 사용하는 다른 보고된 에너지 저장 장치와 비교한 것이다.
도 9를 참조하면, 실시예 2는 90W kg-1의 전력 밀도에서 396Whkg-1의 최대 에너지 밀도를 나타내고, 1,800 Wkg의 전력 밀도에서 201 Whkg-1의 최대 에너지 밀도를 나타냄을 확인할 수 있다.
즉, 실시예 2의 전극 소재를 사용한 셀은, 이전에 보고된 슈퍼 커패시터, 리튬 이온 배터리, 나트륨 이온 배터리, 알루미늄 이온 배터리, 마그네슘 이온 배터리, 칼류 이온 배터리들과 비교하여 높은 전력 밀도와 에너지 밀도를 나타냄을 알 수 있다.
실험예 3. 플렉서블 전극 소재를 사용한 전고체 아연 이온 전지의 전기화학적 특성 평가
또한, 실시예에서 제조된 플렉서블 전극 소재를 캐소드로, 아연 금속을 애노드로, 유리 섬유 종이(glass fiber paper)를 분리막으로 하고, 1 M 황산 아연 (ZnSO4), 1.5 M 폴리비닐알코올(PVA) 및 탈이온수(DIW)를 혼합한 겔을 전해질로 구성하여, 전고체 아연-이온 전지를 제조하였다.
전고체 아연-이온 전지는 외장재로서 밀봉필름으로 포장되었으며, 105 ~ 10-2Hz의 주파수 범위에서 5mV의 AC 신호를 사용하여 EIS를 통해 전기 화학적 거동을 조사했다.
율적 특성(rate performance) 테스트는 0.3, 0.5 및 1.0 A g-1의 전류 밀도에서 수행되었고, 장기 사이클링 테스트는 0.5A g-1의 전류 밀도에서 100 회까지 샘플을 평평하고 접힌 상태로 물에 담근 상태로 수행하였다.
도 10은, 본 발명의 일 실시형태에 따른 플렉서블 전극 소재 밀 겔 전해질을 사용한 전고체 아연 이온 전지 구조의 개략도를 나타낸 것이다.
도 11은, 본 발명의 일 실시형태에 따른 플렉서블 전극 소재 밀 겔 전해질을 사용한 전고체 아연 이온 전지의 수명 성능 및 사이클링 안정성을 나타낸 것이다.
도 11a는, 본 발명의 일 실시형태에 따른 전고체 아연 이온 전지의 1.0-1.9 V 범위의 전위 및 0.3-1.0 Ag-1 범위의 전류 밀도에서 율적 특성(rate performance)을 나타낸 것이다.
도 11a를 참조하면, 전고체 아연 이온 전지는 0.3, 0.5 및 1.0 A g-1의 전류 밀도에서 145.6, 100.8 및 45.6 mA h g-1의 우수한 비용량을 제공하고, 0.3 A g-1에서 131.6 mAhg-1의 회복 용량(recovering capacity)을 나타내는 것을 확인할 수 있다(용량 유지율 90.4%).
도 11b는, 본 발명의 일 실시형태에 따른 전고체 아연 이온 전지의 에너지 및 전력 밀도를 이전에 보고된 전고체 에너지 저장 장치들과 비교한 Ragone 플롯이다.
도 11b를 참조하면, 본 발명의 일 실시형태에 따른 전고체 아연 이온 전지는 전력 밀도 270 Whkg-1에서 131 Wkg-1의 에너지 밀도를 보이는 것을 확인할 수 있으며, 이는 이전에 보고된 전고체 에너지 저장 장치들보다 우수한 에너지 밀도임을 알 수 있다.
도 11c는, 본 발명의 일 실시형태에 따른 전고체 아연 이온 전지의 평평한 상태 및 접힌 상태와 물의 존재 및 부존재 조건 하에, 0.5 Ag-1의 전류 밀도에서 사이클링 안정성을 나타내는 것이다.
도 11c를 참조하면, 본 발명의 일 실시형태에 따른 전고체 아연 이온 전지는 모든 상태에서 100 사이클 동안 85% 이상의 용량 유지율을 보임으로써, 높은 유연성과 함께 방수성을 가지고 있음을 확인할 수 있다.
도 12는, 본 발명의 일 실시형태에 따른 전고체 아연 이온 전지의 수중 및 구부러진 상태에서의 작동 여부를 확인하는 실험 사진이다.
도 12를 참조하면, 본 발명의 일 실시형태에 따른 전고체 아연 이온 전지는 수중에서 발광 다이오드(LED)를 비추고, 구부러진 상태에서 드론 프로펠러를 작동시키는 것을 확인할 수 있다.
이를 통해, 본 발명의 일 실시형태에 따른 전고체 아연 이온 전지는, 우수한 전기화학적 성능, 유연성 및 방수 특성을 갖는 에너지 저장 장치로 실적용될 수 있음을 알 수 있다.
이상과 같이 실시예들이 비록 한정된 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기를 기초로 다양한 기술적 수정 및 변형을 적용할 수 있다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 청구범위의 범위에 속한다.

Claims (11)

  1. 그래핀 필름; 및
    상기 그래핀 필름 상에 형성된, 프리스탠딩(free-standing) 금속 산화물;
    을 포함하는,
    플렉서블 전극 소재.
  2. 제1항에 있어서,
    상기 그래핀 필름은,
    그래핀 또는 적층된 복수 개의 그래핀을 포함하는 것인,
    플렉서블 전극 소재.
  3. 제1항에 있어서,
    상기 그래핀 필름은,
    표면 활성화되어, 표면에 산소(O) 포함 작용기가 존재하는 것인,
    플렉서블 전극 소재.
  4. 제1항에 있어서,
    상기 금속 산화물은, α-MnO2, β-MnO2, γ-MnO2, δ-MnO2, V2O5 및 V2O5·nH2O로 이루어진 군에서 선택되는 하나 이상을 포함하는 것이고,
    상기 금속 산화물의 함량은, 1 중량 % 내지 10 중량%인 것인,
    플렉서블 전극 소재.
  5. 제1항에 있어서,
    상기 금속 산화물의 상기 그래핀 필름 표면과 수직한 방향으로의 길이는,
    10 nm 내지 200 nm인 것인,
    플렉서블 전극 소재.
  6. 제1항에 있어서,
    상기 금속 산화물이 상기 그래핀 필름 표면에 직접 결합되는 것인,
    플렉서블 전극 소재.
  7. 제6항에 있어서,
    바인더-프리(binder-free)인 것인,
    플렉서블 전극소재.
  8. 제1항에 있어서,
    상기 전극은, 아연 이온 전지용인 것인,
    플렉서블 전극 소재.
  9. 그래핀 및 폴리비닐리덴디플루오라이드(PVDF)를 용매에 용해시켜 혼합용액을 준비하는 단계;
    상기 혼합용액을 메쉬(mesh)에 주조하고, 가열하여 그래핀 필름을 형성시키는 단계;
    상기 그래핀 필름을 메쉬에서 분리하는 단계; 및
    상기 그래핀 필름을 금속 산화물 전구체 용액에 띄운 후, 상기 금속 산화물 전구체 용액을 교반하는 단계;를 포함하는,
    플렉서블 전극 소재의 제조방법.
  10. 제9항에 있어서,
    상기 혼합용액은 닥터블레이드 방식으로 메쉬(mesh)에 주조하는 것이고,
    상기 가열은 50 ℃내지 150 ℃의 온도로 수행되는 것인,
    플렉서블 전극 소재의 제조방법.
  11. 제9항에 있어서,
    상기 금속 산화물은, 망간 산화물이고,
    상기 금속 산화물 전구체 용액은, 과망간산칼륨(KMnO4), 황산(H2SO4) 및 탈이온수(DIW)를 포함하는 것인,
    플렉서블 전극 소재의 제조방법.
PCT/KR2021/017064 2020-12-17 2021-11-19 플렉서블 전극 소재 및 이의 제조방법 WO2022131595A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023533887A JP2023553402A (ja) 2020-12-17 2021-11-19 フレキシブル電極素材及びその製造方法{flexible electrode material and manufacturing thereof}
US18/265,957 US20240120474A1 (en) 2020-12-17 2021-11-19 Flexible electrode material and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0177030 2020-12-17
KR1020200177030A KR102607784B1 (ko) 2020-12-17 2020-12-17 플렉서블 전극 소재 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2022131595A1 true WO2022131595A1 (ko) 2022-06-23

Family

ID=82057910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/017064 WO2022131595A1 (ko) 2020-12-17 2021-11-19 플렉서블 전극 소재 및 이의 제조방법

Country Status (4)

Country Link
US (1) US20240120474A1 (ko)
JP (1) JP2023553402A (ko)
KR (1) KR102607784B1 (ko)
WO (1) WO2022131595A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101617484B1 (ko) * 2008-07-28 2016-05-02 바텔리 메모리얼 인스티튜트 그라핀 및 금속산화물의 나노복합체
KR20160125171A (ko) * 2015-04-21 2016-10-31 삼성전자주식회사 전극 재료와 이를 포함하는 이차 전지 및 이들의 제조방법
KR101716843B1 (ko) * 2009-08-10 2017-03-15 바텔리 메모리얼 인스티튜트 그래핀 및 금속산화물의 자기 조립된 다층 나노복합체재료
US10033044B2 (en) * 2013-12-27 2018-07-24 Lg Chem, Ltd. Conducting material composition, and slurry composition for forming electrode of lithium rechargeable battery and lithium rechargeable battery using the same
US20200052279A1 (en) * 2018-08-13 2020-02-13 Tuqiang Chen Method of preparing energy storage electrodes

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101893458B1 (ko) * 2016-10-10 2018-10-04 해성디에스 주식회사 그래핀 멤브레인 및 그 제조 방법
KR20200032621A (ko) * 2018-09-18 2020-03-26 세종대학교산학협력단 아연 이차전지용 전극 활물질 및 이를 포함하는 이차 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101617484B1 (ko) * 2008-07-28 2016-05-02 바텔리 메모리얼 인스티튜트 그라핀 및 금속산화물의 나노복합체
KR101716843B1 (ko) * 2009-08-10 2017-03-15 바텔리 메모리얼 인스티튜트 그래핀 및 금속산화물의 자기 조립된 다층 나노복합체재료
US10033044B2 (en) * 2013-12-27 2018-07-24 Lg Chem, Ltd. Conducting material composition, and slurry composition for forming electrode of lithium rechargeable battery and lithium rechargeable battery using the same
KR20160125171A (ko) * 2015-04-21 2016-10-31 삼성전자주식회사 전극 재료와 이를 포함하는 이차 전지 및 이들의 제조방법
US20200052279A1 (en) * 2018-08-13 2020-02-13 Tuqiang Chen Method of preparing energy storage electrodes

Also Published As

Publication number Publication date
KR102607784B1 (ko) 2023-11-30
JP2023553402A (ja) 2023-12-21
KR20220086856A (ko) 2022-06-24
US20240120474A1 (en) 2024-04-11

Similar Documents

Publication Publication Date Title
WO2013183974A1 (ko) 리튬 이차 전지용 양극활물질 전구체, 이를 이용하여 제조된 양극활물질 및 이를 포함하는 리튬 이차 전지
WO2019088340A1 (ko) 이차전지용 양극활물질, 이의 제조방법 및 이를 포함하는 이차전지
WO2019013501A1 (ko) 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
WO2018135822A1 (ko) 비수전해액용 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
WO2018190675A1 (ko) 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지
WO2014084663A1 (ko) 규소 산화물 및 이의 제조방법
WO2019203622A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2020235841A1 (ko) 음극 제조장치 및 음극의 제조방법
WO2015170786A1 (ko) 유기전해액 및 상기 전해액을 채용한 리튬전지
WO2022092831A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2021086098A1 (ko) 음극 활물질, 이의 제조방법, 이를 포함하는 음극 및 이차전지
WO2020235968A1 (ko) 이차전지용 전해질 첨가제, 이의 제조방법, 상기 첨가제를 포함하는 전해질 조성물 및 이차전지
WO2017175979A2 (ko) 양극활물질, 그 제조 방법, 및 이를 포함하는 리튬이차전지
WO2022131595A1 (ko) 플렉서블 전극 소재 및 이의 제조방법
WO2021206258A1 (ko) 마찰전기 발전기-슈퍼 커패시터 복합장치 및 이의 제조방법
WO2019045545A1 (ko) 전기화학소자의 제조 방법
WO2022060034A1 (ko) 전고체 리튬이차전지용 양극복합소재 및 그의 제조방법
WO2015199328A1 (ko) 전기화학소자용 첨가제와, 이를 포함하는 전해액, 전극 및 전기화학소자
WO2022005064A1 (ko) 다공성 실리콘옥시카바이드 제조용 중간체, 이의 제조방법, 이로부터 제조된 다공성 실리콘옥시카바이드를 음극활물질로 포함하는 리튬 이차전지
WO2019066403A2 (ko) 리튬 이차 전지용 전극 활물질 복합체 및 상기 전극 활물질 복합체의 제조방법
WO2021118144A1 (ko) 음극 활물질, 이의 제조방법, 이를 포함하는 음극 및 이차전지
WO2015111801A1 (ko) 폴리아닐린 나노페이스트 및 이의 제조방법
WO2020197035A1 (ko) 화합물, 이를 포함하는 리튬 이차전지용 전해질 및 리튬 이차전지
WO2022260318A1 (ko) 전이 금속 산화물을 포함하는 음극 활물질, 이를 이용한 음극 전극, 및 그 제조 방법
WO2018139808A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906900

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023533887

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18265957

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906900

Country of ref document: EP

Kind code of ref document: A1