WO2022131203A1 - 排ガス浄化装置の触媒担体用ステンレス箔 - Google Patents

排ガス浄化装置の触媒担体用ステンレス箔 Download PDF

Info

Publication number
WO2022131203A1
WO2022131203A1 PCT/JP2021/045802 JP2021045802W WO2022131203A1 WO 2022131203 A1 WO2022131203 A1 WO 2022131203A1 JP 2021045802 W JP2021045802 W JP 2021045802W WO 2022131203 A1 WO2022131203 A1 WO 2022131203A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
stainless steel
steel foil
foil
content
Prior art date
Application number
PCT/JP2021/045802
Other languages
English (en)
French (fr)
Inventor
映斗 水谷
孝宜 矢野
和彦 池田
智子 藤井
裕嗣 松永
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN202180083547.0A priority Critical patent/CN116568829A/zh
Priority to US18/255,586 priority patent/US20240011136A1/en
Priority to EP21906565.3A priority patent/EP4261297A1/en
Priority to JP2022524290A priority patent/JP7126105B1/ja
Priority to KR1020237023844A priority patent/KR20230118961A/ko
Publication of WO2022131203A1 publication Critical patent/WO2022131203A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/081Iron or steel solutions containing H2SO4
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/085Iron or steel solutions containing HNO3
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/02Metallic plates or honeycombs, e.g. superposed or rolled-up corrugated or otherwise deformed sheet metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2807Metal other than sintered metal
    • F01N3/281Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates

Definitions

  • the present invention relates to a stainless steel foil, particularly a stainless steel foil used as a catalyst carrier for an exhaust gas purification device.
  • Stainless steel containing a large amount of Al for example, containing about 5% by mass of Al
  • Al-containing stainless steel has excellent oxidation resistance at high temperatures. Therefore, Al-containing stainless steel is processed into foil material and used as a catalyst carrier (hereinafter, also referred to as metal honeycomb) for exhaust gas purification equipment such as automobiles, motorcycles, marine bikes, motor boats, large lawnmowers, and small generators. ing.
  • FIG. 1 shows a schematic view of a cross section of a general metal honeycomb.
  • the metal honeycomb has a honeycomb structure in which flat stainless steel foil (flat foil 1) and wavy stainless steel foil (wave foil 2) are alternately stacked, and the foils are brazed to each other. It is fixed by brazing. Then, the surface of the stainless steel foil coated with the catalytic substance is used for the exhaust gas purification device.
  • the temperature of exhaust gas from automobiles, etc. changes frequently due to changes in engine output and repeated starting and stopping of the engine. Along with this, the temperature of the metal honeycomb also rises and falls repeatedly. When the temperature of the metal honeycomb changes, the stainless steel foil used for the metal honeycomb repeatedly expands and contracts, so that thermal stress is generated inside the metal honeycomb.
  • the brazing material is applied to only a part of the contact point between the flat foil and the corrugated foil and fixed by brazing. ing.
  • the brazing treatment is performed at a high temperature of about 1150 ° C. in a non-oxidizing atmosphere such as in a vacuum or a nitrogen atmosphere. Therefore, even at the contact point between the flat foil and the corrugated foil to which the brazing material is not applied, the stainless steel foils may be diffusely bonded to each other. When such an unintended diffusion joint occurs, the thermal stress cannot be relaxed and the durability of the metal honeycomb is lowered.
  • the stainless steel foil used for the metal honeycomb is required to prevent the above-mentioned unintended diffusion bonding, that is, to improve the diffusion bonding resistance.
  • Patent Document 1 describes "Al-containing ferrite system with excellent diffusion bonding resistance, characterized by having a region on the surface layer that satisfies the condition of N% / (Fe% + Cr% + Al% + O% + N%) ⁇ 0.10. Stainless steel plate. " Is disclosed.
  • Patent Document 2 "By mass%, C: 0.05% or less, Si: 2.0% or less, Mn: 1.0% or less, Cr: 13.0 to 30.0%, Al: 3.0 to 10.0%, N: 0.10% or less, Ti: 0.02% or less, Zr : 0.005 to 0.20%, REM: 0.03 to 0.20%, Ca: 0.0010 to 0.0300%, Mg: 0.0015 to 0.0300%, the balance is composed of Fe and unavoidable impurities, and the surface has a film thickness of 30.
  • Patent Document 3 has a honeycomb structure in which flat foil and corrugated foil of Fe-Cr-Al alloy foil are alternately wound in a cylindrical shape, and on the contact surface between the flat foil and the corrugated foil, in the winding direction of one of the foils.
  • the average roughness Ra (1) measured is 0.10 to 0.50 ⁇ m
  • the average roughness Ra (2) measured in the winding direction of the other foil is 0.30 to 0.80 ⁇ m larger than that of Ra (1).
  • Catalyst carrier for exhaust gas purification equipment is 0.
  • Patent Documents 1 and 2 apply heat treatment under predetermined conditions to form a film of nitrides, oxides, etc. (hereinafter, also referred to as a surface film) on the surface of a stainless steel foil, and such a surface film is used.
  • a surface film is used.
  • This is a technique that attempts to prevent diffusion bonding.
  • the brazing property is deteriorated, and a bonding defect may occur at the contact point between the flat foil coated with the brazing material and the corrugated foil.
  • the diffusion bonding resistance may not always be sufficient, and the current situation is that further improvement of the diffusion bonding resistance is required.
  • the present invention has been developed in view of the above-mentioned current situation, and an object of the present invention is to provide a stainless steel foil having both excellent diffusion bonding resistance and brazing resistance and excellent oxidation resistance at high temperatures. do.
  • the inventors have conducted various studies in order to solve the above-mentioned problems.
  • the surface of the stainless steel foil is provided with irregularities, the height of the irregularities is increased, and the shape of the irregularities is determined. It was found that it is effective to make it isotropic.
  • the background of the study that led to the acquisition of the above findings will be described.
  • Fe-Cr-Al alloy containing 3%, Al: 5.8%, N: 0.006%, Zr: 0.03% and La: 0.08%, with the balance being Fe and unavoidable impurities.
  • This is a photograph of the surface condition of the Fe—Cr—Al alloy foil cold-rolled to a thickness of 50 ⁇ m observed with a laser microscope.
  • the Sa of this Fe—Cr—Al alloy foil is 0.23 ⁇ m, Str. Is 0.04. The definition and measurement method of Sa and Str will be described later.
  • Patent Document 3 increases the surface roughness of the Fe—Cr—Al alloy foil and makes the surface roughness of the flat foil and the corrugated foil in contact with each other different from each other. It is a technique to reduce the contact area at the contact point of the foil to prevent diffusion bonding.
  • the surface roughness of the foil is adjusted by using a work roll having a high roughness during cold rolling, and at this time, streaky irregularities extending in the rolling direction are formed.
  • Ru The foil material used for the metal honeycomb needs to have a length of about several tens of meters for both the corrugated foil and the flat foil.
  • both the longitudinal direction of the corrugated foil and the flat foil are parallel to the rolling direction of the cold rolling coil.
  • the directions of the streaky unevenness are aligned at the contact points between the corrugated foil and the flat foil.
  • the intervals between the streaky irregularities are almost constant. Therefore, when the foil materials having streaky irregularities on the surface are brought into contact with each other, contact between the streaky convex portions and engagement between the streak-like convex portions and the concave portions occur, and the contact points between the flat foil and the corrugated foil occur. Contact area increases. As a result, the technique of Patent Document 3 cannot obtain sufficient diffusion bonding resistance.
  • the height of the unevenness on the surface of the stainless steel foil is increased and the shape of the unevenness is made isotropic.
  • it is specified in ISO 25178.
  • the parameter Sa is a kind of surface roughness parameter and represents the arithmetic mean height.
  • the arithmetic mean height is the average of the absolute values of the differences in height of each point with respect to the average surface of the surface, and is a parameter generally used when evaluating the surface roughness.
  • the parameter Str specified in ISO 25178 is a kind of surface roughness parameter and represents the aspect ratio of the surface texture.
  • the aspect ratio of the surface texture indicates the isotropic / anisotropy of the surface texture and takes a value of 0 to 1.00.
  • the aspect ratio of the surface texture the closer it is to 0, the stronger the anisotropy of the surface texture, and the more the streaks (streak-like unevenness) extend in one direction, the stronger the isotropic property of the surface texture. It shows that the surface texture does not depend on the direction (there are few streaky irregularities).
  • FIG. 3 shows a photograph of the surface state of the stainless steel foil according to the embodiment of the present invention observed with a laser microscope.
  • the Sa of the stainless steel foil is 2.0 ⁇ m and the Str is 0.65. .
  • the inventors also examined a manufacturing method thereof in order to obtain a stainless steel foil having the above-mentioned surface texture, and found that the stainless steel foil having a predetermined component composition was subjected to surface treatment under predetermined conditions.
  • a manufacturing method thereof in order to obtain a stainless steel foil having the above-mentioned surface texture, and found that the stainless steel foil having a predetermined component composition was subjected to surface treatment under predetermined conditions.
  • an aqueous solution containing hydrogen peroxide, copper ions and halide ions was used as the treatment liquid, and the treatment temperature and treatment time were set to 20 to 60 ° C. and 30 to 120 seconds, respectively.
  • an acidic aqueous solution containing hydrogen peroxide or an aqueous solution containing nitric acid is used as the treatment liquid, and the treatment temperature and treatment time are 30 to 60, respectively.
  • the average crystal grain size of the stainless steel foil is preferably 15 ⁇ m or more and 25 ⁇ m or less.
  • the gist structure of the present invention is as follows. 1. 1. By mass%, C: 0.020% or less, Si: 1.0% or less, Mn: 1.0% or less, P: 0.040% or less, S: 0.004% or less, Cr: 16.0 to 30.0%, Al: 2.00 to 6.50%, N: 0.020% or less, Ni: 0.50% or less, and further Ti: 0.30% or less, Zr: 0.20% or less, Contains at least one of Hf: 0.20% or less and REM: 0.20% or less.
  • the balance has a component composition of Fe and unavoidable impurities,
  • the parameter Sa specified in ISO 25178 is 0.50 to 3.00 ⁇ m
  • the parameter Str specified in ISO 25178 is 0.20 to 1.00.
  • Stainless steel foil for catalyst carriers for exhaust gas purification equipment 0.50 to 3.00 ⁇ m.
  • composition of the components is further increased by mass%.
  • Cu 0.10% or less
  • Nb 0.30% or less
  • V 0.30% or less
  • Ca 0.0100% or less
  • a stainless steel foil having both excellent diffusion bonding resistance and brazing resistance and excellent oxidation resistance at high temperatures can be obtained.
  • the stainless steel foil of the present invention is suitable for use not only as a catalyst carrier for exhaust gas purification devices such as automobiles, motorcycles, marine bikes, snowmobiles, and ships, but also for other combustion gas exhaust system members.
  • the present invention will be described based on the following embodiments. First, the component composition of the stainless steel foil according to the embodiment of the present invention will be described.
  • the unit in the component composition is "mass%”, but hereinafter, unless otherwise specified, it is simply indicated by "%".
  • the C content is set to 0.020% or less.
  • the C content is preferably 0.015% or less, more preferably 0.010% or less.
  • the C content is preferably 0.002% or more.
  • the Si content is set to 1.0% or less.
  • the Si content is preferably 0.5% or less, more preferably 0.2% or less. However, if the Si content is less than 0.01%, refining becomes difficult. Therefore, the Si content is preferably 0.01% or more.
  • Mn 1.0% or less If the Mn content exceeds 1.0%, the oxidation resistance of the stainless steel foil is lost. Therefore, the Mn content is set to 1.0% or less.
  • the Mn content is preferably 0.5% or less, more preferably 0.15% or less. However, if the Mn content is less than 0.01%, refining becomes difficult. Therefore, the Mn content is preferably 0.01% or more.
  • the P content is 0.040% or less. If the P content exceeds 0.040%, the toughness and ductility of hot-rolled steel sheets and cold-rolled steel sheets decrease, making it difficult to manufacture stainless steel foil. Therefore, the P content is 0.040% or less.
  • the P content is preferably 0.030% or less. It is desirable to reduce P as much as possible, and the P content may be 0%.
  • the S content is set to 0.004% or less.
  • the S content is preferably 0.003% or less, more preferably 0.002% or less. It is desirable to reduce S as much as possible, and the S content may be 0%.
  • Cr 16.0 to 30.0% Cr is an indispensable element for ensuring oxidation resistance at high temperatures.
  • the Cr content is set to 16.0 to 30.0%.
  • the Cr content is preferably 17.0% or more.
  • the Cr content is preferably 26.0% or less, more preferably 22.0% or less.
  • Al 2.00 to 6.50%
  • Al is an element that forms an oxide film containing Al 2 O 3 as a main component at a high temperature and greatly improves the oxidation resistance. This effect is obtained by setting the Al content to 2.00% or more.
  • the Al content is set to 2.00 to 6.50%.
  • the Al content is preferably 3.00% or more, more preferably 4.50% or more.
  • the Al content is preferably 6.00% or less.
  • N 0.020% or less If the N content exceeds 0.020%, the toughness of hot-rolled steel sheets and cold-rolled steel sheets decreases, making it difficult to manufacture stainless steel foil. Therefore, the N content is 0.020% or less.
  • the N content is preferably 0.010% or less.
  • the N content may be 0%, but if N is excessively reduced, refining takes time and production becomes difficult. Therefore, the N content is preferably 0.002% or more.
  • Ni is an austenite-forming element.
  • Ni content is set to 0.50% or less.
  • the Ni content is preferably 0.20% or less.
  • the Ni content is preferably 0.01% or more.
  • the composition of the stainless steel foil according to the embodiment of the present invention further includes Ti: 0.30% or less, Zr: 0.20% or less, Hf: 0.20% or less, and REM: 0.20% or less. Contains at least one.
  • the total content of Ti, Zr, Hf and REM is preferably 0.01% or more.
  • the total content of Ti, Zr, Hf and REM is preferably 0.30% or less.
  • Ti, Zr, Hf and REM may be contained alone or in combination.
  • Ti 0.30% or less Ti has the effect of improving the adhesion of the Al2O3 oxide film to improve the oxidation resistance and the effect of fixing C and N to improve the toughness. Such an effect can be obtained when the Ti content is 0.01% or more. However, when the Ti content exceeds 0.30% , the growth rate of the Al2O3 oxide film increases and the oxidation resistance decreases. Therefore, the Ti content is set to 0.30% or less. The Ti content is preferably 0.10% or less. The Ti content is preferably 0.01% or more, more preferably 0.02% or more.
  • Zr 0.20% or less
  • Zr has the effect of improving the adhesion of the Al 2 O 3 oxide film and reducing the growth rate of the Al 2 O 3 oxide film to improve the oxidation resistance.
  • Zr has the effect of fixing C and N and improving toughness. Such an effect is obtained when the Zr content is 0.01% or more.
  • the Zr content is set to 0.20% or less.
  • the Zr content is preferably 0.10% or less.
  • the Zr content is preferably 0.01% or more, more preferably 0.02% or more.
  • Hf 0.20% or less Hf has the effect of improving the adhesion of the Al 2 O 3 oxide film, reducing the growth rate of the Al 2 O 3 oxide film, and improving the oxidation resistance. Such an effect is obtained when the Hf content is 0.01% or more. However, when the Hf content exceeds 0.20%, an intermetallic compound is generated and the toughness of the hot-rolled steel sheet or the cold-rolled steel sheet is lowered. This makes it difficult to manufacture stainless steel foil. Therefore, the Hf content is set to 0.20% or less. The Hf content is preferably 0.10% or less. The Hf content is preferably 0.01% or more, more preferably 0.02% or more.
  • REM 0.20% or less REM (rare earth metals) refers to Sc, Y and lanthanoid elements (elements with atomic numbers 57 to 71 such as La, Ce, Pr, Nd, Sm). REM has the effect of improving the adhesion of the Al 2 O 3 oxide film and improving the oxidation resistance. Such an effect is obtained when the REM content is 0.01% or more. However, if the REM content exceeds 0.20%, the hot workability is lowered and it becomes difficult to manufacture the stainless steel foil. Therefore, the REM content is set to 0.20% or less. The REM content is preferably 0.10% or less. The REM content is preferably 0.01% or more, more preferably 0.03% or more. For the addition of REM, a metal (micch metal or the like) from which these have not been separated and purified can also be used in order to reduce costs.
  • a metal micch metal or the like
  • Cu 0.10% or less
  • Nb 0.30% or less
  • V 0.30% or less
  • Ca 0.0100% or less
  • Mg 0.0100% or less
  • B 0.0050% or less at least It may contain one kind.
  • Cu 0.10% or less
  • Cu has the effect of precipitating in steel and improving the high temperature strength of the stainless steel foil. Such an effect can be obtained when the Cu content is 0.01% or more.
  • the Cu content exceeds 0.10%, the toughness of the hot-rolled steel sheet or the cold-rolled steel sheet decreases, making it difficult to manufacture stainless steel foil. Therefore, when Cu is contained, the Cu content is 0.10% or less.
  • the Cu content is preferably 0.01% or more, more preferably 0.02% or more.
  • Nb 0.30% or less
  • Nb has the effect of fixing C and N and improving the toughness of hot-rolled steel sheets and cold-rolled steel sheets. Such an effect can be obtained when the Nb content is 0.01% or more.
  • the Nb content exceeds 0.30%, Nb oxide is generated and the oxidation resistance at high temperature is lowered. Therefore, when Nb is contained, the Nb content is set to 0.30% or less.
  • the Nb content is preferably 0.01% or more.
  • V 0.30% or less
  • V has the effect of fixing C and N and improving the toughness of hot-rolled steel sheets and cold-rolled steel sheets. Such an effect can be obtained when the V content is 0.01% or more.
  • V content exceeds 0.30%, V oxide is generated and the oxidation resistance at high temperature is lowered. Therefore, when V is contained, the V content is set to 0.30% or less.
  • the V content is preferably 0.10% or less.
  • the V content is preferably 0.01% or more, more preferably 0.02% or more.
  • Ca 0.0100% or less Ca has the effect of improving oxidation resistance. Such an effect is obtained when the Ca content is 0.0002% or more. However, when the Ca content exceeds 0.0100%, the toughness of the hot-rolled steel sheet and the cold-rolled steel sheet is lowered, and the oxidation resistance of the stainless steel foil is lowered. Therefore, when Ca is contained, the Ca content is 0.0100% or less.
  • the Ca content is preferably 0.0050% or less, more preferably 0.0030% or less.
  • the Ca content is preferably 0.0002% or more, more preferably 0.0010% or more.
  • Mg 0.0100% or less Mg has the effect of improving oxidation resistance. Such an effect can be obtained when the Mg content is 0.0002% or more. However, when the Mg content exceeds 0.0100%, the toughness of the hot-rolled steel sheet and the cold-rolled steel sheet is lowered, and the oxidation resistance of the stainless steel foil is lowered. Therefore, when Mg is contained, the Mg content is 0.0100% or less.
  • the Mg content is preferably 0.0050% or less, more preferably 0.0030% or less.
  • the Mg content is preferably 0.0002% or more, more preferably 0.0010% or more.
  • B 0.0050% or less B has the effect of segregating at the grain boundaries and improving the toughness of the hot-rolled steel sheet. Such an effect can be obtained when the B content is 0.0002% or more. However, if the B content exceeds 0.0050%, the steel becomes hard and the toughness is rather lowered. Therefore, when B is contained, the B content is 0.0050% or less.
  • the B content is preferably 0.0030% or less.
  • the B content is preferably 0.0002% or more, more preferably 0.0010% or more.
  • component composition of the stainless steel foil according to the embodiment of the present invention may further contain at least one of Mo and W in a range where the total content of Mo and W is 6.0% or less. ..
  • Total content of Mo and W 6.0% or less Mo and W increase high temperature strength. Therefore, Mo and W have the effect of extending the life of the catalyst carrier when the stainless foil is used as the catalyst carrier. Such an effect is obtained when the total content of Mo and W is 0.5% or more. However, if the total content of Mo and W exceeds 6.0%, the workability of the hot-rolled steel sheet and the cold-rolled steel sheet deteriorates, and it becomes difficult to manufacture the stainless steel foil. Therefore, when Mo and / or W is contained, the total content of Mo and W is 6.0% or less. The total content of Mo and W is preferably 4.5% or less. The total content of Mo and W is preferably 0.5% or more, more preferably 2.5% or more. Regarding Mo and W, at least one of them, that is, either one of Mo and W may be contained, or both Mo and W may be contained.
  • the rest other than the above components are Fe and unavoidable impurities.
  • unavoidable impurities include Co, Zn, Sn, and the like, and the content of each of these elements is preferably 0.3% or less.
  • the surface texture of the stainless steel foil according to the embodiment of the present invention will be described.
  • the height of the unevenness on the surface is increased and the shape of the unevenness is isotropic, specifically defined in ISO 25178. It is important that the parameter Sa is 0.50 to 3.00 ⁇ m and the parameter Str specified in ISO 25178 is 0.20 to 1.00. This makes it possible to significantly improve the diffusion bonding resistance while ensuring excellent brazing property.
  • Parameter Sa specified in ISO 25178: 0.50 to 3.00 ⁇ m Sa is a kind of surface roughness parameter defined in ISO 25178, and represents the arithmetic mean height.
  • the arithmetic mean height is the average of the absolute values of the differences in height of each point with respect to the average surface of the surface, and is a parameter generally used when evaluating the surface roughness.
  • Sa is less than 0.50 ⁇ m, the height of the unevenness on the surface is not sufficient, so that the contact area at the contact point between the flat foil and the corrugated foil cannot be sufficiently reduced, and excellent diffusion resistance bonding is achieved. I can't get sex.
  • Sa exceeds 3.00 ⁇ m, the effect of improving the diffusion bonding resistance is saturated.
  • the stainless steel foil becomes excessively thin, which is not preferable. Therefore, Sa is in the range of 0.50 ⁇ m to 3.00 ⁇ m. Sa is preferably 0.80 ⁇ m or more, more preferably 1.00 ⁇ m or more.
  • Parameters specified in ISO 25178 Str: 0.20 to 1.00 Str is a kind of surface roughness parameter defined in ISO 25178, and represents the aspect ratio of the surface texture.
  • the aspect ratio of the surface texture indicates the isotropic / anisotropy of the surface texture and takes a value of 0 to 1.00.
  • the aspect ratio of the surface texture the closer it is to 0, the stronger the anisotropy of the surface texture, indicating that there are many streaks (streak-like irregularities) extending in one direction, and the closer it is to 1.00, the more isotropic the surface texture. It is strong and shows that the surface texture does not depend on the direction (there are few streaky irregularities).
  • Str value is close to 1.00, that is, the shape of the unevenness is isotropic.
  • Str is in the range of 0.20 to 1.00. Str is preferably 0.40 or more, more preferably 0.60 or more.
  • Sa and Str may be measured in accordance with ISO 25178.
  • a laser microscope may be used as the measuring device.
  • the measurement of Sa and Str is performed at 10 points in total, 5 points on each side of the stainless steel foil, and the average value of the obtained values is defined as Sa and Str of the stainless steel foil.
  • the average crystal grain size is 15 ⁇ m or more and 25 ⁇ m or less.
  • the as-rolled stainless steel foil that has not been annealed has a uniform processed structure that has not been recrystallized.
  • melting proceeds uniformly in the stainless steel foil.
  • a stainless steel foil obtained by annealing a rolled stainless steel foil hereinafter, also referred to as annealed stainless steel foil
  • the boundary of each recrystallized crystal grain hereinafter, also referred to as a crystal grain boundary
  • the size of the crystal grains of the stainless steel foil is appropriately controlled, specifically, the average crystal grain size is controlled in the range of 15 ⁇ m or more and 25 ⁇ m or less. It was found that the desired surface texture (Sa and Str) of the stainless steel foil can be obtained with a smaller amount of dissolution. If the amount of dissolution can be reduced, the treatment time (immersion time) in the first immersion treatment can be shortened, the treatment temperature can be lowered, the amount of the treatment liquid used can be reduced, the treatment cost of the used treatment liquid can be reduced, and the product yield can be reduced. Many advantages such as improvement can be obtained.
  • the average crystal grain size of the stainless steel foil is preferably 15 ⁇ m or more and 25 ⁇ m or less.
  • the average crystal grain size of the stainless steel foil is determined by EBSD (Electron Backscatter Diffraction) analysis. That is, the surface of the stainless steel foil is polished by embedding the stainless steel foil in the resin so that the cross section parallel to the rolling direction of the stainless steel foil is exposed. Then, EBSD analysis is performed, and the average crystal grain size is calculated based on the Area Fraction method. It is desirable to secure a visual field area of 0.025 mm 2 or more when performing EBSD analysis. For example, in the case of a stainless steel foil having a plate thickness of 0.05 mm, it is desirable that the width of the field of view be 0.5 mm or more. For other conditions, the usual method may be followed. Further, the particle size of each crystal grain is obtained by calculating the equivalent circle diameter from the area of each crystal grain obtained by the Area Fraction method.
  • EBSD Electro Backscatter Diffraction
  • the thickness of the stainless steel foil according to the embodiment of the present invention is 200 ⁇ m or less.
  • the thickness of the stainless steel foil according to the embodiment of the present invention is not particularly limited.
  • the catalyst carrier of the exhaust gas purification device is used in a harsher environment than general use, and may cause problems such as the stainless steel foil being cut or broken. Therefore, the thickness of the stainless steel foil according to the embodiment of the present invention is preferably 20 ⁇ m or more. Further, the catalyst carrier of the exhaust gas purifying device may be required to have excellent vibration resistance and durability.
  • the thickness of the stainless steel foil is preferably 100 to 200 ⁇ m.
  • the catalyst carrier of the exhaust gas purification device may be required to have a high cell density and a low back pressure.
  • the thickness of the stainless steel foil is preferably 20 to 100 ⁇ m.
  • a material stainless steel foil having the above-mentioned composition is prepared.
  • steel having the above composition is melted in a converter or an electric furnace, refined in VOD or AOD, slab-rolled or continuously cast into slabs, which are heated to a temperature of 1050 to 1250 ° C. , Hot-rolled to make a hot-rolled steel sheet.
  • the hot-rolled steel sheet may be annealed by hot-rolled steel sheet.
  • the hot-rolled steel sheet may be subjected to polishing treatment with a grinder, sandblasting treatment, steel grid blasting treatment, alkaline degreasing treatment, pickling treatment or the like. Then, by cold-rolling the hot-rolled steel sheet, optionally repeating annealing and cold rolling, and optionally performing finish annealing, a material stainless steel foil having a predetermined thickness can be obtained.
  • the finish annealing conditions particularly the finish annealing temperature and the finish annealing time.
  • the finish annealing temperature in the range of 850 to 950 ° C.
  • the finish annealing time in the range of 20 to 60 seconds.
  • the parameter Sa specified in ISO 25178 can be 0.50 to 3.00 ⁇ m, and the parameter Str specified in ISO 25178 can be 0.20 to 1.00.
  • the surface treatment conditions will be described.
  • -Hydrogen peroxide 0.1 to 20% by mass
  • concentration of hydrogen peroxide contained in the above aqueous solution is 0.1 to 20% by mass.
  • concentration of hydrogen peroxide is preferably 0.1% by mass or more.
  • concentration of hydrogen peroxide is more preferably 0.2% by mass or more.
  • the concentration of hydrogen peroxide is set to 20% by mass or less.
  • the concentration of hydrogen peroxide is preferably 15% by mass or less, more preferably 10% by mass or less, still more preferably 8% by mass or less.
  • the copper ions contained in the above aqueous solution should be set.
  • the concentration needs to be 0.25% by mass or more.
  • the concentration of copper ions is set to 0.25 to 40% by mass.
  • the concentration of copper ions is preferably 0.5% by mass or more, more preferably 1.0% by mass or more, still more preferably 1.5% by mass or more.
  • the concentration of copper ions is preferably 30% by mass or less, more preferably 20% by mass or less, and further preferably 10% by mass or less.
  • the halide ion contained in the above aqueous solution The concentration needs to be 1.0% by mass or more.
  • concentration of the halide ion is set to 1.0 to 30% by mass.
  • the concentration of the halide ion is preferably 5.0% by mass or more, more preferably 10.0% by mass or more.
  • the concentration of the halide ion is preferably 25% by mass or less, more preferably 20% by mass or less, and further preferably 15% by mass or less.
  • the type of the halide ion source is not particularly limited, but for example, a halide of hydrogen halide or an alkali metal is preferable, and hydrochloric acid or sodium chloride is more preferable.
  • the above aqueous solution can be prepared by stirring a hydrogen peroxide aqueous solution, a copper compound capable of supplying copper ions, a halide component capable of supplying halide ions, and water until uniform.
  • the properties of the above aqueous composition are not particularly limited, but the pH value is preferably in the range of ⁇ 1.0 to 4.0.
  • the pH value is more preferably ⁇ 0.5 or higher, still more preferably ⁇ 0.25 or higher, and even more preferably 0.0 or higher.
  • the pH value is more preferably 3.0 or less, still more preferably 2.5 or less, and even more preferably 2.0 or less.
  • Treatment temperature (temperature of treatment liquid): 20-60 ° C
  • the treatment temperature is in the range of 20 to 60 ° C. That is, when the processing temperature is less than 20 ° C., the reaction rate becomes slow and the processing efficiency decreases. On the other hand, when the treatment temperature exceeds 60 ° C., the reaction rate increases excessively, and it becomes difficult to control the surface shape. Therefore, the processing temperature is in the range of 20 to 60 ° C.
  • the treatment temperature is preferably 25 ° C. or higher, more preferably 30 ° C. or higher.
  • the treatment temperature is preferably 55 ° C. or lower, more preferably 50 ° C. or lower.
  • Treatment time 30 to 120 seconds
  • the treatment time shall be in the range of 30 to 120 seconds. That is, if the treatment time is less than 30 seconds, a sufficient effect cannot be obtained, and if the treatment time exceeds 120 seconds, the material stainless steel foil is excessively melted and the yield is lowered. Therefore, the processing time is in the range of 30 to 120 seconds.
  • the processing time is preferably 40 seconds or longer, more preferably 50 seconds or longer.
  • the processing time is preferably 100 seconds or less, more preferably 90 seconds or less.
  • Conditions other than the above are not particularly limited, and the conventional method may be followed.
  • the surface treatment of immersing the material stainless steel foil in the aqueous solution to be the treatment liquid has been mentioned.
  • the above-mentioned aqueous solution to be the treatment liquid is mentioned.
  • the processing time is the contact time between the material stainless steel foil and the aqueous solution.
  • a smut (a mixture containing Cu as a main constituent element and C, N, S, O, Fe, Cr, Ni and the like) is formed on the surface of the raw material stainless steel foil. If these remain, it causes deterioration of the product appearance and contamination of the catalyst carrier production line. Therefore, after the above-mentioned first dipping treatment, the material stainless steel foil is subjected to a second dipping treatment (smut removing treatment) in order to remove the smut. That is, after the above-mentioned first dipping treatment, the material stainless steel foil is further subjected to the second dipping treatment.
  • A Immersion treatment using an acidic aqueous solution containing hydrogen hydrogen as the treatment liquid and setting the treatment temperature and immersion time to 30 to 60 ° C. and 5 to 120 seconds, respectively, or (B) an aqueous solution containing nitric acid in the treatment liquid. Immersion treatment using, with the treatment temperature and immersion time set to 30-60 ° C and 5-120 seconds, respectively. To give.
  • the acidic aqueous solution containing hydrogen peroxide includes a mixed aqueous solution of hydrogen peroxide and sulfuric acid.
  • the aqueous solution containing nitric acid includes a nitric acid aqueous solution.
  • the concentration of hydrogen peroxide is preferably 0.1 to 20% by mass
  • the concentration of sulfuric acid is preferably 1.0 to 20% by mass.
  • the concentration of nitric acid is preferably 1.0 to 40.0% by mass.
  • alcohol may be added to the treatment liquid for the purpose of facilitating the removal of the smut.
  • the alcohol for example, methanol, ethanol, n-propanol and the like can be used, and the concentration of the alcohol may be 0.1 to 5.0% by mass based on the total amount of the treatment liquid.
  • the component other than hydrogen peroxide, sulfuric acid and any alcohol in the mixed aqueous solution of hydrogen peroxide and sulfuric acid, and the component other than nitric acid and any alcohol in the aqueous nitric acid solution are basically water.
  • the treatment temperature (temperature of the treatment liquid) in the second immersion treatment is preferably 30 to 60 ° C. in both cases (A) and (B) above.
  • the processing time is preferably 5 to 120 seconds in both cases (A) and (B). In this case, the processing time is more preferably 30 seconds or more. The processing time is more preferably 90 seconds or less.
  • the treatment of immersing the material stainless steel foil in the aqueous solution to be the treatment liquid has been mentioned, but if the material stainless steel foil and the aqueous solution come into contact with each other, for example, the above-mentioned aqueous solution to be the treatment liquid is used. It can also take the form of dripping or spraying. In these cases, the processing time is the contact time between the material stainless steel foil and the aqueous solution.
  • Example 1 Steel with the composition shown in Table 1 (the balance is Fe and unavoidable impurities) melted by a 50 kg small vacuum melting furnace is heated to 1200 ° C and then hot rolled in the temperature range of 900 to 1200 ° C to make the thickness: A 2.0 mm hot-rolled steel plate was used. Then, the hot-rolled steel sheet was annealed in the air at 900 ° C. for 1 minute, the surface scale was removed with a grinder, and then cold-rolled to a thickness of 0.3 mm to obtain a cold-rolled steel sheet.
  • Table 1 the balance is Fe and unavoidable impurities
  • the raw material stainless steel foil was subjected to the first dipping treatment (surface treatment) and the second dipping treatment (smut removal treatment) under the conditions shown in Table 2 to obtain a stainless steel foil as a final product.
  • the stainless steel foil was immersed in pure water to stop the reaction.
  • "no surface treatment” is the same as the material stainless steel foil that has not been subjected to any surface treatment.
  • "Implemented high-roughness roll rolling, no surface treatment” means that a high-roughness work roll with a surface roughness Ra: 0.6 ⁇ m is used in the final rolling pass when cold rolling is performed in the manufacturing process of the raw material stainless steel foil. As a result, the surface roughness is increased. In the process of manufacturing stainless steel foil as another material, a work roll having a surface roughness Ra: 0.1 ⁇ m was used in the final rolling pass.
  • the measurement results are shown in Table 3.
  • the component composition of the finally obtained stainless steel foil is substantially the same as the component composition of each steel symbol shown in Table 1, and each of them has the component composition of the stainless steel foil according to the embodiment of the present invention. It satisfied the range of.
  • a test piece obtained by superimposing a corrugated foil and an unprocessed foil (flat foil) was prepared, placed on a ceramic plate made of zirconia, and further, a mass of 32 g was placed on the test piece. The weight of the ceramic plate made of zirconia was placed.
  • reference numeral 3 is a ceramic plate. Then, in this state, the test piece was subjected to a heat treatment (a treatment corresponding to the heat treatment at the time of brazing) of holding at 1150 ° C. for 30 minutes in a vacuum of 5.3 ⁇ 10-3 Pa or less. At this time, the brazing material was not applied to the contact points between the corrugated foil and the flat foil.
  • the corrugated foil and the flat foil were peeled off using a universal tensile tester (AGS-1000B, load cell capacity 1 kN) manufactured by Shimadzu Corporation, and the peeling load at that time was determined.
  • AGS-1000B load cell capacity 1 kN
  • the maximum peeling load at each of the contact points of the corrugated foil and the flat foil at 10 points was measured, and the average value of these 10 points was taken as the peeling load.
  • the diffusion bonding resistance was evaluated according to the following criteria.
  • brazing property A brazing spread test specified in JIS Z 3191 was performed. The atmosphere at the time of brazing was in a vacuum of 5.3 ⁇ 10-3 Pa or less, and BNi-5 (Ni-20Cr-10Si) specified in JIS Z 3265 was used as the brazing material. That is, a 50 mm square test piece was taken from the above stainless steel foil, and 0.1 g of a brazing material was applied to each. Then, the test piece was inserted into the brazing furnace, heated at 1150 ° C. for 30 minutes, and then cooled by the brazing heat treatment. Then, the test piece was taken out from the brazing furnace, and the area of the brazing material portion (spread area of the brazing material) was measured.
  • the oxidation increase is a value obtained by dividing the mass change (increase) amount (g) before and after the heat treatment by the surface area (m 2 ) of the test piece before the heat treatment.
  • ⁇ (Pass, excellent) Average value of oxidation increase is 10.0 g / m 2 or less
  • ⁇ (Pass) Average value of oxidation increase is 10.0 g / m 2 or more 15.0 g / m 2 or less
  • these material stainless steel foils were subjected to the first dipping treatment (surface treatment) and the second dipping treatment (smut removal treatment) under the conditions shown in Table 4 to obtain a stainless steel foil as a final product.
  • the stainless steel foil was immersed in pure water to stop the reaction.
  • the thickness of the stainless steel foil thus obtained was measured with a micrometer.
  • Sa and Str were measured in the same manner as in Example 1.
  • the average crystal grain size was measured as described above.
  • Table 5 "Unmeasurable" in the column of crystal grain size in Table 5 means that the grain boundary was not observed in the EBSD (electron backscatter diffraction) analysis and the average crystal grain size could not be measured.
  • the component composition of the finally obtained stainless steel foil is substantially the same as the component composition of each steel symbol shown in Table 1, and each of them has the component composition of the stainless steel foil according to the embodiment of the present invention. It satisfied the range of.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

優れた耐拡散接合性とろう付け性とを両立し、高温での耐酸化性にも優れる排ガス浄化装置の触媒担体用ステンレス箔を提供する。所定の成分組成とし、かつ、ISO 25178に規定されるパラメータSaおよびStrをそれぞれ、0.50~3.00μmおよび0.20~1.00の範囲とする。

Description

排ガス浄化装置の触媒担体用ステンレス箔
 本発明は、ステンレス箔、特には、排ガス浄化装置の触媒担体に用いられるステンレス箔に関する。
 Alを多量に含有する(例えば、Alを5質量%程度含有する)ステンレス鋼(以下、Al含有ステンレス鋼ともいう)は、高温での耐酸化性に優れる。そのため、Al含有ステンレス鋼は、箔材に加工され、自動車、オートバイ、マリンバイク、モーターボート、大型芝刈り機、小型発電機などの排ガス浄化装置の触媒担体(以下、メタルハニカムともいう)に使用されている。
 図1に、一般的なメタルハニカムの断面の模式図を示す。図1に示すように、メタルハニカムは、平坦なステンレス箔(平箔1)と波状に加工されたステンレス箔(波箔2)とを交互に積み重ねてなるハニカム構造を有し、箔同士はロウ付け等によって固定されている。そして、このステンレス箔の表面に触媒物質を塗布したものが、排ガス浄化装置に用いられる。
 自動車などの排ガス温度は、エンジン出力の変化やエンジンの始動・停止の繰り返しにより、頻繁に変化する。これに伴い、メタルハニカムの温度も上昇と下降を繰り返す。メタルハニカムの温度が変化すると、メタルハニカムに用いられるステンレス箔が膨張と収縮を繰り返すため、メタルハニカムの内部に熱応力が発生する。
 この熱応力を緩和するため、メタルハニカム製造時のろう付け処理では、平箔と波箔の接点の全てではなく、一部のみにろう材を塗布してろう付けにより固定するという施工が行われている。
 一般的に、ろう付け処理は、真空中や窒素雰囲気中などの非酸化性雰囲気で1150℃程度の高温で行われる。そのため、ろう材を塗布していない平箔と波箔の接点でも、ステンレス箔同士が拡散接合してしまう場合がある。このような意図せぬ拡散接合が生じると、熱応力が緩和できず、メタルハニカムの耐久性が低下してしまう。
 そのため、メタルハニカムに用いられるステンレス箔には、上記のような意図せぬ拡散接合の防止、すなわち、耐拡散接合性の向上が求められている。
 耐拡散接合性の向上を図る技術として、例えば、特許文献1には、
「原子%比で、N%/(Fe%+Cr%+Al%+O%+N%)≧0.10の条件を満たす領域を表層に有することを特徴とする耐拡散接合性に優れたAl含有フェライト系ステンレス鋼板。」
が開示されている。
 特許文献2には、
「質量%で、C:0.05%以下、Si:2.0%以下、Mn:1.0%以下、Cr:13.0~30.0%、Al:3.0~10.0%、N:0.10%以下、Ti:0.02%以下、Zr:0.005~0.20%、REM:0.03~0.20%、Ca:0.0010~0.0300%、Mg:0.0015~0.0300%を含み、残部がFeおよび不可避的不純物からなる組成を有し、表面には皮膜厚みが30~200nmであり、そのうちAl2O3の皮膜厚みが全皮膜厚みの50%以上を占める酸化皮膜を有し、かつ表面粗度Raが0.5~1.5μmであることを特徴とする拡散接合しにくいステンレス箔。」
が開示されている。
 特許文献3には、
「Fe-Cr-Al系合金箔の平箔と波箔が交互に円筒状に巻かれたハニカム構造を有し、前記平箔と前記波箔との接触面において、一方の箔の巻き方向に測定した平均粗さRa(1)が0.10~0.50μmであり、他方の箔の巻き方向に測定した平均粗さRa(2)が前記Ra(1)より0.30~0.80μmだけ大きいことを特徴とする排ガス浄化装置の触媒担体。」
が開示されている。
特開2001-32051号公報 特許第5504778号 特許第4941320号
 特許文献1および2の技術は、所定条件の熱処理を施してステンレス箔の表面に窒化物や酸化物などの皮膜(以下、表面皮膜ともいう)を生成させるものであり、このような表面皮膜によって拡散接合を防止しようとする技術である。しかし、ステンレス箔の表面にこのような表面皮膜が存在すると、ろう付け性が低下し、ろう材を塗布した平箔と波箔の接点において接合不良が発生する場合があった。
 また、特許文献3の技術では、耐拡散接合性が必ずしも十分ではない場合があり、さらなる耐拡散接合性の向上が求められているのが現状である。
 本発明は、上記の現状に鑑み開発されたものであって、優れた耐拡散接合性とろう付け性とを両立し、高温での耐酸化性にも優れるステンレス箔を提供することを目的とする。
 さて、発明者らは、上記の課題を解決すべく、種々検討を重ねたところ、ステンレス箔の表面に凹凸を設けたうえで、当該凹凸の高さを大きくし、かつ、当該凹凸の形状を等方的にすることが有効であることを知見した。以下、上記の知見を得るに至った検討経緯について、説明する。
(1)まず、発明者らは、上掲特許文献3の技術において、耐拡散接合性が十分には得られない理由について検討すべく、特許文献3に開示されるFe-Cr-Al系合金箔の表面状態を観察した。その結果、特許文献3に開示されるFe-Cr-Al系合金箔の表面では、図2に示すような一方向(圧延方向)に伸びた筋状の凹凸が全面に形成されており、これが原因となって、十分な耐拡散接合性が得られないことが分かった。
(なお、図2は、質量%で、C:0.005%、Si:0.15%、Mn:0.12%、P:0.03%、S:0.001%、Cr:20.3%、Al:5.8%、N:0.006%、Zr:0.03%およびLa:0.08%を含有し、残部がFeおよび不可避的不純物であるFe-Cr-Al系合金を、厚さ50μmに冷間圧延したFe-Cr-Al系合金箔の表面状態をレーザー顕微鏡で観察した写真である。なお、このFe-Cr-Al系合金箔のSaは0.23μm、Strは0.04である。SaおよびStrの定義および測定方法については、後述する。)
(2)この理由について、発明者らは以下のように考えている。
 すなわち、特許文献3の技術は、Fe-Cr-Al系合金箔の表面粗度を高めるとともに、互いに接触する平箔と波箔の表面粗度をそれぞれ異なるものとすることにより、平箔と波箔の接点での接触面積を減少させて拡散接合を防止しようとする技術である。そして、この技術では、冷間圧延の際に高粗度のワークロールを用いることにより、箔の表面粗度を調整しており、この際に、圧延方向に伸びた筋状の凹凸が形成される。メタルハニカムに用いられる箔材には、波箔および平箔ともに数10m程度の長さが必要となる。そのため、波箔および平箔の長手方向はいずれも、冷間圧延コイルの圧延方向と平行になる。このような波箔および平箔を用いてメタルハニカムを製造すると、波箔と平箔の接点において筋状の凹凸の方向が揃うことになる。また、筋状の凹凸の間隔はほとんど一定である。よって、筋状の凹凸が表面に存在する箔材同士を接触させると、筋状の凸部同士の接触や、筋状の凸部と凹部のかみ合わせが発生し、平箔と波箔の接点での接触面積が増大する。その結果、特許文献3の技術では、十分な耐拡散接合性が得られない。
(3)上記の知見を踏まえ、発明者らは、凹凸の高さを増加させることにより、耐拡散接合性を向上させることを試みた。しかし、凹凸の高さを増加させるだけでは、筋状の凸部同士の接触や筋状の凸部と凹部のかみ合わせを完全には解消することはできず、十分な耐拡散接合性の向上効果を得ることはできなかった。
(4)そこで、発明者らがさらに検討を重ねたところ、ステンレス箔の表面の凹凸の高さを増加させるとともに、凹凸の形状を等方的にする、具体的には、ISO 25178に規定されるパラメータSaを0.50~3.00μmとし、かつ、ISO 25178に規定されるパラメータStrを0.20~1.00とすることにより、優れたろう付け性を担保しながら、耐拡散接合性を大幅に向上できるとの知見を得た。ここで、ISO 25178に規定されるパラメータSaは、面粗さのパラメータの一種であり、算術平均高さを表すものである。算術平均高さとは、表面の平均面に対する各点の高さの差の絶対値の平均であり、表面粗度を評価する際に一般的に利用されるパラメータである。また、ISO 25178に規定されるパラメータStrは、面粗さパラメータの一種であり、表面性状のアスペクト比を表すものである。なお、表面性状のアスペクト比は、表面性状の等方性・異方性を示すもので0~1.00の値をとる。表面性状のアスペクト比は、0に近いほど表面性状の異方性が強く、一方向にのびた筋目(筋状の凹凸)が多いことを示し、1に近いほど表面性状の等方性が強く、表面性状が方向に依存しない(筋状の凹凸が少ない)ことを示す。
(参考のため、図3に、本発明の一実施形態に従うステンレス箔の表面状態をレーザー顕微鏡で観察した写真を示す。なお、このステンレス箔のSaは2.0μm、Strは0.65である。)
(5)また、発明者らは、上記のような表面性状を有するステンレス箔を得るべく、その製造方法についても検討したところ、所定の成分組成を有するステンレス箔に対し、所定条件の表面処理を行う、具体的には、
・第1の浸漬処理として、処理液に、過酸化水素、銅イオンおよびハロゲン化物イオンを含む水溶液を使用し、かつ、処理温度および処理時間をそれぞれ20~60℃および30~120秒とした浸漬処理を施し、
・当該第1の浸漬処理後、さらに、第2の浸漬処理として、処理液に、過酸化水素を含む酸性水溶液、または、硝酸を含む水溶液を使用し、処理温度および処理時間をそれぞれ30~60℃および5~120秒とした浸漬処理を行う、
ことが重要であるとの知見を得た。
(6)さらに、第1の浸漬処理時の溶解挙動に対するステンレス箔の平均結晶粒径の影響を調査したところ、ステンレス箔の平均結晶粒径を15μm以上25μm以下にすることが好ましい、との知見を得た。
 本発明は上記の知見に基づき、さらに検討を重ねた末に完成されたものである。
 すなわち、本発明の要旨構成は次のとおりである。
1.質量%で、
 C:0.020%以下、
 Si:1.0%以下、
 Mn:1.0%以下、
 P:0.040%以下、
 S:0.004%以下、
 Cr:16.0~30.0%、
 Al:2.00~6.50%、
 N:0.020%以下および
 Ni:0.50%以下
であり、さらに、
 Ti:0.30%以下、
 Zr:0.20%以下、
 Hf:0.20%以下および
 REM:0.20%以下
のうち少なくとも1種を含有し、
 残部がFeおよび不可避的不純物である成分組成を有し、
 ISO 25178に規定されるパラメータSaが0.50~3.00μmであり、かつ、ISO 25178に規定されるパラメータStrが0.20~1.00である、
排ガス浄化装置の触媒担体用ステンレス箔。
2.前記成分組成が、さらに質量%で、
 Cu:0.10%以下、
 Nb:0.30%以下、
 V:0.30%以下、
 Ca:0.0100%以下、
 Mg:0.0100%以下および
 B:0.0050%以下
のうち少なくとも1種を含有する、前記1に記載の排ガス浄化装置の触媒担体用ステンレス箔。
3.前記成分組成が、さらに、MoおよびWのうち少なくとも1種を含有し、MoおよびWの合計含有量が6.0質量%以下である、前記1または2に記載の排ガス浄化装置の触媒担体用ステンレス箔。
4.平均結晶粒径が15μm以上25μm以下である、前記1~3のいずれかに記載の排ガス浄化装置の触媒担体用ステンレス箔。
 本発明によれば、優れた耐拡散接合性とろう付け性とを両立し、高温での耐酸化性にも優れるステンレス箔が得られる。また、本発明のステンレス箔は、自動車、オートバイ、マリンバイク、スノーモービル、船舶などの排ガス浄化装置の触媒担体のみならず、その他の燃焼ガス排気系部材に用いても好適である。
一般的なメタルハニカムの断面の模式図である。 従来技術に従うFe-Cr-Al系合金箔の表面状態をレーザー顕微鏡で観察した写真である。 本発明の一実施形態に従うステンレス箔の表面状態をレーザー顕微鏡で観察した写真である。 耐拡散接合性の評価に使用する試験片の作成要領を示す模式図である。
 本発明を、以下の実施形態に基づき説明する。
 まず、本発明の一実施形態に係るステンレス箔の成分組成について説明する。なお、成分組成における単位はいずれも「質量%」であるが、以下、特に断らない限り、単に「%」で示す。
C:0.020%以下
 C含有量が0.020%を超えると、ステンレス箔の中間製造素材である熱延鋼板や冷延鋼板(以下、単に熱延鋼板や冷延鋼板ともいう)の靭性が低下してステンレス箔の製造が困難になる。このため、C含有量は0.020%以下とする。C含有量は、好ましくは0.015%以下、より好ましくは0.010%以下である。ただし、Cを過度に低減しようとすると、精錬の時間がかかり製造が困難になる。よって、C含有量は0.002%以上が好ましい。
Si:1.0%以下
 Si含有量が1.0%を超えると、熱延鋼板や冷延鋼板の靭性が低下してステンレス箔の製造が困難になる。このため、Si含有量は1.0%以下とする。Si含有量は、好ましくは0.5%以下、より好ましくは0.2%以下である。ただし、Si含有量を0.01%未満にしようとすると、精錬が困難になる。よって、Si含有量は0.01%以上が好ましい。
Mn:1.0%以下
 Mn含有量が1.0%を超えると、ステンレス箔の耐酸化性が失われる。このため、Mn含有量は1.0%以下とする。Mn含有量は、好ましくは0.5%以下、より好ましくは0.15%以下である。ただし、Mn含有量を0.01%未満にしようとすると、精錬が困難になる。よって、Mn含有量は0.01%以上が好ましい。
P:0.040%以下
 P含有量が0.040%を超えると、熱延鋼板や冷延鋼板の靭性および延性が低下してステンレス箔の製造が困難になる。このため、P含有量は0.040%以下とする。P含有量は、好ましくは0.030%以下である。なお、Pは極力低減することが望ましく、P含有量は0%であってもよい。
S:0.004%以下
 S含有量が0.004%を超えると、熱間加工性が低下して熱延鋼板の製造が困難になる。その結果、ステンレス箔の製造が困難になる。このため、S含有量は0.004%以下とする。S含有量は、好ましくは0.003%以下、より好ましくは0.002%以下である。なお、Sは極力低減することが望ましく、S含有量は0%であってもよい。
Cr:16.0~30.0%
 Crは、高温での耐酸化性を確保する上で必要不可欠な元素である。ここで、Cr含有量が16.0%未満では、高温での十分な耐酸化性を確保できない。一方、Cr含有量が30.0%を超えると、ステンレス箔の中間製造素材であるスラブや熱延鋼板の靭性が低下してステンレス箔の製造が困難になる。このため、Cr含有量は16.0~30.0%とする。Cr含有量は、好ましくは17.0%以上である。また、Cr含有量は、好ましくは26.0%以下、より好ましくは22.0%以下である。
Al:2.00~6.50%
 Alは、高温でAlを主成分とする酸化皮膜を生成させて耐酸化性を大きく向上させる元素である。この効果は、Al含有量を2.00%以上とすることにより得られる。一方、Al含有量が6.50%を超えると、鋼の靭性が低下してステンレス箔の製造が困難になる。このため、Al含有量は2.00~6.50%とする。Al含有量は、好ましくは3.00%以上、より好ましくは4.50%以上である。また、Al含有量は、好ましくは6.00%以下である。
N:0.020%以下
 N含有量が0.020%を超えると、熱延鋼板や冷延鋼板の靱性が低下してステンレス箔の製造が困難になる。このため、N含有量は0.020%以下とする。N含有量は、好ましくは0.010%以下である。N含有量は0%でもよいが、Nを過度に低減しようとすると、精錬の時間がかかり製造が困難になる。よって、N含有量は0.002%以上が好ましい。
Ni:0.50%以下
 Niは、オーステナイト生成元素である。ここで、Ni含有量が0.50%を超えると、高温での酸化が進み、ステンレス箔中のAlが酸化により枯渇した場合に、オーステナイト相が生成するようになる。オーステナイト相は、ステンレス箔の熱膨張係数を大きくするので、ステンレス箔の括れや破断などの不具合を発生させる。このため、Ni含有量は0.50%以下とする。Ni含有量は、好ましくは0.20%以下である。ただし、Ni含有量を0.01%未満にしようとすると、精錬が困難になる。よって、Ni含有量は0.01%以上が好ましい。
 本発明の一実施形態に係るステンレス箔の成分組成は、さらに、Ti:0.30%以下、Zr:0.20%以下、Hf:0.20%以下、REM:0.20%以下のうち少なくとも1種を含有する。なお、Ti、Zr、HfおよびREMの合計の含有量は、0.01%以上とすることが好ましい。また、Ti、Zr、HfおよびREMの合計の含有量は、0.30%以下とすることが好ましい。ここで、Ti、Zr、HfおよびREMは単独で含有させても、複合して含有させてもよい。
Ti:0.30%以下
 Tiは、Al酸化皮膜の密着性を改善して耐酸化性を向上させる効果や、C、Nを固定して靭性を向上させる効果がある。このような効果は、Ti含有量が0.01%以上で得られる。しかし、Ti含有量が0.30%を超えると、Al酸化皮膜の成長速度が増大して耐酸化性が低下する。よって、Ti含有量は0.30%以下とする。Ti含有量は、好ましくは0.10%以下である。また、Ti含有量は、好ましくは0.01%以上、より好ましくは0.02%以上である。
Zr:0.20%以下
 Zrは、Al酸化皮膜の密着性を改善するとともに、Al酸化皮膜の成長速度を低減して耐酸化性を向上させる効果がある。また、Zrは、CおよびNを固定して靭性を向上させる効果がある。このような効果は、Zr含有量が0.01%以上で得られる。しかし、Zr含有量が0.20%を超えると、金属間化合物が生成して熱延鋼板や冷延鋼板の靭性が低下する。これにより、ステンレス箔の製造が困難になる。よって、Zr含有量は0.20%以下とする。Zr含有量は、好ましくは0.10%以下である。また、Zr含有量は、好ましくは0.01%以上、より好ましくは0.02%以上である。
Hf:0.20%以下
 Hfは、Al酸化皮膜の密着性を改善するとともに、Al酸化皮膜の成長速度を低減して耐酸化性を向上させる効果がある。このような効果は、Hf含有量が0.01%以上で得られる。しかし、Hf含有量が0.20%を超えると、金属間化合物が生成して熱延鋼板や冷延鋼板の靭性が低下する。これにより、ステンレス箔の製造が困難になる。よって、Hf含有量は0.20%以下とする。Hf含有量は、好ましくは0.10%以下である。また、Hf含有量は、好ましくは0.01%以上、より好ましくは0.02%以上である。
REM:0.20%以下
 REM(希土類元素、rare earth metals)は、Sc、Yおよびランタノイド系元素(La、Ce、Pr、Nd、Smなど原子番号57~71までの元素)をいう。REMは、Al酸化皮膜の密着性を改善し、耐酸化性を向上させる効果がある。このような効果は、REM含有量が0.01%以上で得られる。しかし、REM含有量が0.20%を超えると、熱間加工性が低下してステンレス箔の製造が困難になる。よって、REM含有量は0.20%以下とする。REM含有量は、好ましくは0.10%以下である。また、REM含有量は、好ましくは0.01%以上、より好ましくは0.03%以上である。
 なお、REMの添加には、コスト低減のためこれらが分離精製されていない金属(ミッシュメタル等)を用いることもできる。
 以上、基本成分について説明したが、本発明の一実施形態に係るステンレス箔の成分組成は、さらに、
 Cu:0.10%以下、Nb:0.30%以下、V:0.30%以下、Ca:0.0100%以下、Mg:0.0100%以下およびB:0.0050%以下のうち少なくとも1種を含有してもよい。
Cu:0.10%以下
 Cuは、鋼中に析出しステンレス箔の高温強度を向上させる効果がある。このような効果は、Cu含有量が0.01%以上で得られる。しかし、Cu含有量が0.10%を超えると、熱延鋼板や冷延鋼板の靭性が低下してステンレス箔の製造が困難になる。よって、Cuを含有させる場合、Cu含有量は0.10%以下とする。また、Cu含有量は、好ましくは0.01%以上、より好ましくは0.02%以上である。
Nb:0.30%以下
 Nbは、CおよびNを固定して熱延鋼板や冷延鋼板の靭性を向上させる効果がある。このような効果は、Nb含有量が0.01%以上で得られる。しかし、Nb含有量が0.30%を超えると、Nb酸化物が生成して高温での耐酸化性が低下する。よって、Nbを含有させる場合、Nb含有量は0.30%以下とする。また、Nb含有量は、好ましくは0.01%以上である。
V:0.30%以下
 Vは、CおよびNを固定して熱延鋼板や冷延鋼板の靭性を向上させる効果がある。このような効果は、V含有量が0.01%以上で得られる。しかし、V含有量が0.30%を超えると、V酸化物が生成して高温での耐酸化性が低下する。よって、Vを含有させる場合、V含有量は0.30%以下とする。V含有量は、好ましくは0.10%以下である。また、V含有量は、好ましくは0.01%以上、より好ましくは0.02%以上である。
Ca:0.0100%以下
 Caは、耐酸化性を向上させる効果がある。このような効果は、Ca含有量が0.0002%以上で得られる。しかし、Ca含有量が0.0100%を超えると、熱延鋼板および冷延鋼板の靭性の低下やステンレス箔の耐酸化性の低下が起こる。よって、Caを含有させる場合、Ca含有量は0.0100%以下とする。Ca含有量は、好ましくは0.0050%以下、より好ましくは0.0030%以下である。また、Ca含有量は、好ましくは0.0002%以上、より好ましくは0.0010%以上である。
Mg:0.0100%以下
 Mgは、耐酸化性を向上させる効果がある。このような効果は、Mg含有量が0.0002%以上で得られる。しかし、Mg含有量が0.0100%を超えると、熱延鋼板および冷延鋼板の靭性の低下やステンレス箔の耐酸化性の低下が起こる。よって、Mgを含有させる場合、Mg含有量は0.0100%以下とする。Mg含有量は、好ましくは0.0050%以下、より好ましくは0.0030%以下である。また、Mg含有量は、好ましくは0.0002%以上、より好ましくは0.0010%以上である。
B:0.0050%以下
 Bは、結晶粒界に偏析して熱延鋼板の靭性を向上させる効果がある。このような効果は、B含有量が0.0002%以上で得られる。しかし、B含有量が0.0050%を超えると、鋼が硬質化してかえって靭性の低下を招く。よって、Bを含有させる場合、B含有量は0.0050%以下とする。B含有量は、好ましくは0.0030%以下である。また、B含有量は、好ましくは0.0002%以上、より好ましくは0.0010%以上である。
 また、本発明の一実施形態に係るステンレス箔の成分組成は、さらに、MoおよびWのうち少なくとも1種を、MoおよびWの合計含有量が6.0%以下の範囲で含有してもよい。
MoおよびWの合計含有量:6.0%以下
 MoおよびWは、高温強度を増大させる。このため、MoおよびWは、ステンレス箔を触媒担体として用いるときに、触媒担体の寿命を伸ばす効果がある。このような効果は、MoおよびWの合計含有量が0.5%以上で得られる。しかし、MoおよびWの合計含有量が6.0%を超えると、熱延鋼板や冷延鋼板の加工性が低下してステンレス箔の製造が困難になる。よって、Moおよび/またはWを含有させる場合、MoおよびWの合計含有量は6.0%以下とする。MoおよびWの合計含有量は、好ましくは4.5%以下である。また、MoおよびWの合計含有量は、好ましくは0.5%以上、より好ましくは2.5%以上である。なお、MoおよびWについては、このうちの少なくとも1種、すなわち、MoおよびWのいずれか一方を含有しても、MoおよびWの両方を含有してもよい。
 上記の成分以外の残部は、Feおよび不可避的不純物である。なお、不可避的不純物としては、Co、Zn、Snなどが挙げられ、これらの元素の含有量は、それぞれ0.3%以下が好ましい。
 次に、本発明の一実施形態に係るステンレス箔の表面性状について説明する。
 上述したように、本発明の一実施形態に係るステンレス箔では、表面の凹凸の高さを増加させ、かつ、凹凸の形状を等方的にする、具体的には、ISO 25178に規定されるパラメータSaを0.50~3.00μmとし、かつ、ISO 25178に規定されるパラメータStrを0.20~1.00とすることが重要である。これにより、優れたろう付け性を担保しながら、耐拡散接合性を大幅に向上することが可能となる。
ISO 25178に規定されるパラメータSa:0.50~3.00μm
 Saは、ISO 25178に規定される面粗さのパラメータの一種であり、算術平均高さを表すものである。算術平均高さとは、表面の平均面に対する各点の高さの差の絶対値の平均であり、表面粗度を評価する際に一般的に利用されるパラメータである。ここで、Saが0.50μm未満では、表面の凹凸の高さが十分ではないため、平箔と波箔の接点での接触面積を十分には低減することができず、優れた耐拡散接合性が得られない。一方、Saが3.00μmを超えると、耐拡散接合性の向上効果が飽和する。また、ステンレス箔が過度に薄くなり、好ましくない。よって、Saは、0.50μm~3.00μmの範囲とする。Saは、好ましくは0.80μm以上、より好ましくは1.00μm以上である。
ISO 25178に規定されるパラメータStr:0.20~1.00
 Strは、ISO 25178に規定される面粗さパラメータの一種であり、表面性状のアスペクト比を表すものである。なお、表面性状のアスペクト比は、表面性状の等方性・異方性を示すもので0~1.00の値をとる。表面性状のアスペクト比は、0に近いほど表面性状の異方性が強く、一方向にのびた筋目(筋状の凹凸)が多いことを示し、1.00に近いほど表面性状の等方性が強く、表面性状が方向に依存しない(筋状の凹凸が少ない)ことを示す。上述したように、耐拡散接合性を向上させるには、筋状の凹凸を低減させる必要がある。よって、Strの値が1.00に近い、すなわち、凹凸の形状が等方的であるほどよい。ここで、十分な耐拡散接合性の向上効果を得るためには、Strを0.20以上とする必要である。Strが0.20未満の場合、ステンレス箔の表面に筋状の凹凸が多く存在するため、優れた耐拡散接合性が得られない。よって、Strは、0.20~1.00の範囲とする。Strは、好ましくは0.40以上、より好ましくは0.60以上である。
 なお、SaおよびStrは、ISO 25178に準拠して測定すればよい。測定装置としては、例えば、レーザー顕微鏡を用いればよい。また、SaおよびStrの測定はそれぞれ、ステンレス箔の両面において各面につき5点ずつ計10点で行い、得られた値の平均値を、当該ステンレス箔のSaおよびStrとする。
 また、本発明の一実施形態に従うステンレス箔では、平均結晶粒径を15μm以上25μm以下とすることが好適である。
平均結晶粒径:15μm以上25μm以下
 焼鈍を行っていない圧延ままのステンレス箔は、再結晶していない均一な加工組織を有する。このような圧延ままのステンレス箔に後述する第1の浸漬処理を施すと、ステンレス箔において溶解が均一に進行する。一方、圧延ままのステンレス箔に焼鈍を施したステンレス箔(以下、焼鈍ステンレス箔ともいう)では、再結晶した各結晶粒の境界(以下、結晶粒界ともいう)が溶解の起点となる。そのため、このような焼鈍ステンレス箔に後述する第1の浸漬処理を施すと、ステンレス箔において溶解が不均一に進行する。第1の浸漬処理においてステンレス箔の溶解が不均一に進行する場合には、溶解が均一に進行する場合に比べ、より溶解量の少ない段階からステンレス箔の表面の凹凸が生じやすい。
 本発明者らが上記の知見を基に検討を重ねたところ、ステンレス箔の結晶粒のサイズを適切に制御する、具体的には、平均結晶粒径を15μm以上25μm以下の範囲に制御することによって、より少ない溶解量でステンレス箔の所望の表面性状(SaおよびStr)が得られることがわかった。溶解量が低減できれば、第1の浸漬処理における処理時間(浸漬時間)の短縮、処理温度の低下、処理液使用量の低減、および、使用済み処理液の処理費用の削減、ならびに、製品歩留まりの向上等の多くの利点が得られる。
 ここで、平均結晶粒径を15μm以上にすると、結晶粒界に十分な量の欠陥が蓄積し、結晶粒界と結晶粒内の溶解特性の違いが大きくなり、上記の溶解量の低減効果が好適に得られる。一方、平均結晶粒径が25μmを超えると、単位面積当たり結晶粒界の量が減少し、上記の溶解量の低減効果が低下する。そのため、ステンレス箔の平均結晶粒径は15μm以上25μm以下とすることが好ましい。
 また、ステンレス箔の平均結晶粒径は、EBSD(電子線後方散乱回折)解析によって求める。
 すなわち、ステンレス箔の圧延方向と平行な断面が露出するように、ステンレス箔を樹脂に埋め込んで表面を研磨する。ついで、EBSD解析を行い、Area Fraction法に基づいて平均結晶粒径を算出する。なお、EBSD解析を行う際の視野面積は0.025mm以上確保することが望ましい。例えば、板厚0.05mmのステンレス箔の場合、視野の幅を0.5mm以上とすることが望ましい。その他の条件については常法に従えばよい。また、各結晶粒の粒径は、Area Fraction法により求めた各結晶粒の面積から円相当径を算出して求める。
 また、本発明の一実施形態に係るステンレス箔の厚さは、200μm以下である。なお、ステンレス箔を排ガス浄化装置の触媒担体に使用する場合、排気抵抗を低下させる観点から、その厚さは薄いほうが有利である。そのため、本発明の一実施形態に係るステンレス箔の厚さの下限は特に限定されない。なお、排ガス浄化装置の触媒担体は、一般的な用途より苛酷な環境で使用され、ステンレス箔が切れたり折れたりするなどの問題が起こる場合がある。そのため、本発明の一実施形態に係るステンレス箔の厚さは、20μm以上とすることが好ましい。また、排ガス浄化装置の触媒担体には、優れた耐振動性や耐久性を有することが求められる場合がある。この場合には、ステンレス箔の厚さを100~200μmとすることが好ましい。一方、排ガス浄化装置の触媒担体は、高いセル密度や低背圧であることが求められる場合がある。この場合には、ステンレス箔の厚さを20~100μmとすることが好ましい。
 次に、本発明の一実施形態に係るステンレス箔の製造方法について説明する。
 まず、上記の成分組成を有する素材ステンレス箔を準備する。例えば、上記の成分組成を有する鋼を、転炉や電炉で溶製し、VODやAODなどで精錬後、分塊圧延や連続鋳造によりスラブとし、これを1050~1250℃に温度に加熱したのち、熱間圧延し、熱延鋼板とする。なお、上記の熱延鋼板に、熱延板焼鈍を施してもよい。また、表面のスケールや汚染物などを除去するために、上記の熱延鋼板に、グラインダーによる研磨処理やサンドブラスト処理、スチールグリッドブラスト処理、アルカリ脱脂、酸洗処理などを施してもよい。ついで、上記の熱延鋼板を冷間圧延し、任意に焼鈍と冷間圧延を繰り返し、さらに任意に仕上げ焼鈍を施すことにより、所定の厚さとした素材ステンレス箔を得ることができる。
 また、ステンレス箔の平均結晶粒径を所定の範囲に制御する観点から、仕上げ焼鈍の条件、特には、仕上げ焼鈍温度および仕上げ焼鈍時間を適切に制御することが好適である。例えば、仕上げ焼鈍温度を850~950℃の範囲とし、かつ、仕上げ焼鈍時間を20~60秒の範囲に制御することが好適である。また、仕上げ焼鈍の雰囲気は、非酸化性雰囲気(例えば、HとNの混合雰囲気(体積比でH:N=75:25、露点:-50℃))とすることが好ましい。
[第1の浸漬処理(表面処理)]
 ついで、上記のようにして得た素材ステンレス箔に対し、過酸化水素:0.1~20質量%、銅イオン:0.25~40質量%およびハロゲン化物イオン:1.0~30質量%を含む水溶液を処理液として、該処理液中に処理温度:20~60℃および処理時間:30~120秒の条件で浸漬する、表面処理を行う。すなわち、素材ステンレス箔の表面には、圧延時に形成された圧延方向に伸びた筋状の凹凸が存在している。上記の条件に従う表面処理を行うことにより、この筋状の凹凸を解消して、ステンレス箔の表面の凹凸の高さを増加させながら、凹凸の形状を等方的にする、具体的には、ISO 25178に規定されるパラメータSaを0.50~3.00μmとし、かつ、ISO 25178に規定されるパラメータStrを0.20~1.00とすることができる。以下、当該表面処理条件について、説明する。
 まず、上記の水溶液(処理液)に含まれる各成分の機能と好適濃度について、説明する。
・過酸化水素:0.1~20質量%
 上記の水溶液に含まれる過酸化水素の濃度は、0.1~20質量%とする。上記の水溶液に過酸化水素を含有させることで、表面処理反応を促進する効果がある。また、表面処理反応により生成するスマット(Cuを主要な構成元素とし、その他に、C、N、S、O、Fe、Cr、Niなどを含有する混合物)を除去しやすくする効果もある。そのため、過酸化水素の濃度は、0.1質量%以上とすることが好ましい。過酸化水素の濃度は、より好ましくは0.2質量%以上である。ただし、過酸化水素の濃度が20質量%を超えると、その効果が飽和する。そのため、過酸化水素の濃度は20質量%以下とする。過酸化水素の濃度は、好ましくは15質量%以下、より好ましくは10質量%以下、さらに好ましくは8質量%以下である。
・銅イオン:0.25~40質量%
 ISO 25178に規定されるパラメータSaを0.50~3.00μmとし、かつ、ISO 25178に規定されるパラメータStrを0.20~1.00とするには、上記の水溶液に含まれる銅イオンの濃度を0.25質量%以上とする必要がある。ただし、銅イオンの濃度が40質量%を超えると、鋼板表面に付着するスマットが多くなり、次工程の第2の浸漬処理を行っても、スマットを十分に除去できなくなる。そのため、銅イオンの濃度は、0.25~40質量%とする。銅イオンの濃度は、好ましくは0.5質量%以上、より好ましくは1.0質量%以上、さらに好ましくは1.5質量%以上である。また、銅イオンの濃度は、好ましくは30質量%以下、より好ましくは20質量%以下、さらに好ましくは10質量%以下である。
・ハロゲン化物イオン:1.0~30質量%
 ISO 25178に規定されるパラメータSaを0.50~3.00μmとし、かつ、ISO 25178に規定されるパラメータStrを0.20~1.00とするには上記の水溶液に含まれるハロゲン化物イオンの濃度を1.0質量%以上とする必要がある。一方、ハロゲン化物イオンの濃度が30質量%を超えると、その効果が飽和する。そのため、ハロゲン化物イオンの濃度は、1.0~30質量%とする。ハロゲン化物イオンの濃度は、好ましくは5.0質量%以上、より好ましくは10.0質量%以上である。また、ハロゲン化物イオンの濃度は、好ましくは25質量%以下、より好ましくは20質量%以下、さらに好ましくは15質量%以下である。なお、ハロゲン化物イオン源の種類については特に限定されるものではないが、例えばハロゲン化水素あるいはアルカリ金属のハロゲン化物が好ましく、塩酸または塩化ナトリウムがより好ましい。
 上記の水溶液は、過酸化水素水溶液、銅イオンを供給できる銅化合物、ハロゲン化物イオンを供給できるハロゲン化物成分、および、水とを、均一になるまで攪拌することにより調製することができる。上記の水性組成物の性状については特に限定されないが、pH値は、-1.0~4.0の範囲が好ましい。pH値は、より好ましくは-0.5以上、さらに好ましくは-0.25以上、よりさらに好ましくは、0.0以上である。また、pH値は、より好ましくは3.0以下、さらに好ましくは2.5以下、よりさらに好ましくは2.0以下である。
処理温度(処理液の温度):20~60℃
 処理温度は、20~60℃の範囲とする。すなわち、処理温度が20℃未満になると、反応速度が遅くなって処理効率が低下する。一方、処理温度が60℃を超えると、反応速度が過度に上昇し、表面形状の制御が困難となる。よって、処理温度は20~60℃の範囲とする。処理温度は、好ましくは25℃以上、より好ましくは30℃以上である。また、処理温度は、好ましくは55℃以下、より好ましくは50℃以下である。
処理時間(浸漬時間):30~120秒
 処理時間は、30~120秒の範囲とする。すなわち、処理時間が30秒未満では十分な効果が得られず、処理時間が120秒を超えると素材ステンレス箔が過剰に溶解して歩留まりが低下する。よって、処理時間は30~120秒の範囲とする。処理時間は、好ましくは40秒以上、より好ましくは50秒以上である。また、処理時間は、好ましくは100秒以下、より好ましくは90秒以下である。
 上記以外の条件については特に限定されず、常法に従えばよい。なお、上記の説明では、素材ステンレス箔を、処理液となる水溶液中に浸漬する態様の表面処理を挙げたが、素材ステンレス箔と水溶液とが接触すれば、例えば、処理液となる上記の水溶液を滴下またはスプレーするなどの形式をとることもできる。これらの場合、処理時間は、素材ステンレス箔と水溶液の接触時間となる。
[第2の浸漬処理(スマット除去処理)]
 第1の浸漬処理後、素材ステンレス箔の表面にスマット(Cuを主要な構成元素とし、その他に、C、N、S、O、Fe、Cr、Niなどを含有する混合物)が生成する。これらが残存すると、製品外観の悪化や、触媒担体製造ラインの汚染を引き起こす。そこで、上記の第1の浸漬処理後、素材ステンレス箔に、スマットを除去するために第2の浸漬処理(スマット除去処理)を施す。
 すなわち、上記の第1の浸漬処理後、素材ステンレス箔に、さらに第2の浸漬処理として、
 (A)処理液に過酸化水素を含む酸性水溶液を使用し、処理温度および浸漬時間をそれぞれ30~60℃および5~120秒とした浸漬処理、または
 (B)処理液に硝酸を含む水溶液を使用し、処理温度および浸漬時間をそれぞれ30~60℃および5~120秒とした浸漬処理、
を施す。
 ここで、過酸化水素を含む酸性水溶液とは、過酸化水素と硫酸の混合水溶液が挙げられる。また、硝酸を含有する水溶液とは、硝酸水溶液が挙げられる。また、過酸化水素と硫酸の混合水溶液を使用する場合、過酸化水素の濃度は0.1~20質量%、硫酸の濃度は1.0~20質量%とすることが好ましい。さらに、硝酸水溶液を使用する場合、硝酸の濃度は1.0~40.0質量%とすることが好ましい。さらに、スマットを除去しやすくする目的で、処理液に、アルコールを加えてもよい。アルコールとしては、例えば、メタノール、エタノール、n-プロパノールなどを用いることができ、アルコールの濃度は、処理液全量を基準として0.1~5.0質量%とすればよい。特に、硝酸を含む水溶液を適用すれば、スマット除去と同時に、ステンレス箔表面が不動態化されて耐食性が高まる効果も得られるため、より好ましい。なお、過酸化水素と硫酸の混合水溶液における過酸化水素、硫酸および任意のアルコール以外の成分、ならびに、硝酸水溶液における硝酸および任意のアルコール以外の成分は、基本的に水である。
 さらに、第2の浸漬処理における処理温度(処理液の温度)は、上記(A)および(B)いずれの場合も、30~60℃とすることが好適である。
 加えて、処理時間(浸漬時間)は長いほど、スマット等の除去を促すが、長すぎるとその効果が飽和し、また生産性が低下する。そのため、処理時間は、上記(A)および(B)いずれの場合も、5~120秒とすることが好ましい。この場合、処理時間は、より好ましくは30秒以上である。また、処理時間は、より好ましくは90秒以下である。
 なお、第2の浸漬処理の際、必要に応じて、不織布ワイパー等を用いて被処理材のステンレス鋼板の表面を擦ると、スマット等が除去され易くなる。また、上記の説明では、素材ステンレス箔を、処理液となる水溶液中に浸漬する態様の処理を挙げたが、素材ステンレス箔と水溶液とが接触すれば、例えば、処理液となる上記の水溶液を滴下またはスプレーするなどの形式をとることもできる。これらの場合、処理時間は、素材ステンレス箔と水溶液の接触時間となる。
 なお、上記以外の条件については、常法に従えばよい。
・実施例1
 50kg小型真空溶解炉によって溶製した表1に示す成分組成(残部はFeおよび不可避的不純物)の鋼を、1200℃に加熱後、900~1200℃の温度域で熱間圧延して厚さ:2.0mmの熱延鋼板とした。ついで、熱延鋼板を大気中、900℃、1分間の条件で焼鈍し、グラインダーで表面スケールを除去した後、厚さ:0.3mmまで冷間圧延して冷延鋼板とした。この冷延鋼板をHとNの混合雰囲気(体積比でH:N=75:25、露点:-50℃)において、900℃、20秒間の条件で焼鈍した後、さらに冷間圧延を施して厚さ:50μmの素材ステンレス箔を得た。また、一部の素材ステンレス箔に対しては、冷間圧延後、さらに、HとNの混合雰囲気(体積比でH:N=75:25、露点:-50℃)において、900℃、20秒間の条件で焼鈍(以下、仕上焼鈍ともいう)を行った(当該仕上焼鈍の有無については表2参照)。
 ついで、素材ステンレス箔に、表2に示す条件の第1の浸漬処理(表面処理)および第2の浸漬処理(スマット除去処理)を施し、最終製品となるステンレス箔を得た。なお、上記の処理では、第2の浸漬処理後、ステンレス箔を純水中に浸漬して反応を停止させた。また、比較のため、鋼記号AおよびBの鋼を使用して、「表面処理無し」、「予備酸化実施、表面処理無し」および「高粗度ロール圧延実施、表面処理無し」の3種類の最終製品となるステンレス箔を製造した。
 ここで、「表面処理無し」は、いずれの表面処理も行っていない素材ステンレス箔ままのものである。
 「予備酸化実施、表面処理無し」は、仕上焼鈍無しの圧延ままの素材ステンレス箔を、HとNの混合雰囲気(体積比でH:N=75:25、露点:-10℃)において、950℃、30秒間の条件で焼鈍して、表面皮膜を生成させたものである。
 「高粗度ロール圧延実施、表面処理無し」とは、素材ステンレス箔の製造プロセスにおいて冷間圧延を施す際、最終圧延パスにおいて表面粗度Ra:0.6μmの高粗度ワークロールを用いることにより、表面粗度を高めたものである。なお、その他の素材ステンレス箔の製造プロセスでは、最終圧延パスにおいて表面粗度Ra:0.1μmのワークロールを使用した。
 かくして得られたステンレス箔について、ISO 25178に準拠してSaおよびStrを測定した。なお、測定には、レーザー顕微鏡(キーエンス社製VK-X260)を使用した。具体的には、ステンレス箔から、幅:10mm、長さ:15mmの試験片を採取し、倍率:50倍の対物レンズを用いて、上記のレーザー顕微鏡により幅:202μm、長さ:270μmの領域の表面形状のデータを測定した。得られたデータを装置付属の解析ソフト「マルチ解析アプリケーション」で解析し、SaおよびStrを求めた。フィルター設定は、フィルター種別:ガウシアン、S-フィルター:なし、F-オペレーション:なし、L-フィルター:なし、とした。同様の測定を、ステンレス箔の両面において各面につき5点ずつ計10点で行い、得られた値の平均値を、当該ステンレス箔のSaおよびStrとした。測定結果を表3に示す。なお、最終的に得られたステンレス箔の成分組成はそれぞれ、表1に記載した各鋼記号の成分組成と実質的に同じであり、いずれも本発明の一実施形態に係るステンレス箔の成分組成の範囲を満足するものであった。
 また、上記のステンレス箔について、以下の方法により、(1)耐拡散接合性、(2)ろう付け性、および、(3)耐酸化性を評価した。評価結果を表3に併記する。
(1)耐拡散接合性
 上記のステンレス箔から幅:7mm、長さ:100mmの試験片を2枚採取し、一方に対して波付け加工を行った。すなわち、最小曲げ半径:0.25mm、波ピッチ:3.0mm、波高さ:3.0mmの歯車状ロール2本の間を通過させることにより、波付け加工を施して波箔を作製した。この際、波付け加工を施す長さを、波箔と平箔が接する波形状の頂点が10カ所となるように調整した。その後、図4に示すように、波箔と未加工の箔(平箔)とを重ね合わせた試験体を作製してジルコニア製のセラミック板上に配置し、さらにこの試験体の上に質量32gのジルコニア製のセラミックス板の重りを載せた。図中、符号3はセラミック板である。ついで、この状態で、試験体に、5.3×10―3Pa以下の真空中で、1150℃で30分間保持する熱処理(ろう付け時の熱処理に相当する処理)を施した。この際、波箔と平箔の接点にろう材は塗布しなかった。熱処理後に得られた試験体について、島津製作所製万能引張試験機(AGS-1000B、ロードセル容量1kN)を用いて波箔と平箔を引き剥し、その際の剥離荷重を求めた。ここでは、10カ所ある波箔と平箔の接点それぞれにおける最大剥離荷重を測定し、これら10点の平均値を剥離荷重とした。そして、以下の基準により耐拡散接合性を評価した。
 ◎(合格、特に優れている):剥離荷重<0.20kgf
 ○(合格):0.20kgf≦剥離荷重<0.40kgf
 ×(不合格):0.40kgf≦剥離荷重
(2)ろう付け性
 JIS Z 3191に規定されるろう広がり試験を行った。なお、ろう付け時の雰囲気は5.3×10―3Pa以下の真空中とし、ろう材には、JIS Z 3265に規定されるBNi-5(Ni-20Cr-10Si)を用いた。すなわち、上記のステンレス箔から50mm角の試験片を採取し、それぞれにろう材を0.1g塗布した。ついで、試験片をろう付け炉の内部に挿入し、1150℃で30分間加熱した後に、炉冷する、ろう付け熱処理を行った。その後、試験片をろう付け炉から取り出して、ろう材部の面積(ろう材の広がり面積)を測定した。同様の測定をステンレス箔ごとに3回行い、ろう材部の面積の平均値を算出して、以下の基準によりろう付け性を評価した。
 ○(合格):ろう材部の面積の平均値が200mm以上
 ×(不合格):ろう材部の面積の平均値が200mm未満
(3)耐酸化性
 上記のステンレス箔に、1150℃で30分間保持する熱処理(ろう付け時の熱処理に相当する処理)を5.3×10―3Pa以下の真空中で行った。熱処理後のステンレス箔から、幅:20mm×長さ:30mmの試験片を3枚採取した。これらの試験片に、大気雰囲気中、1100℃で400時間保持する熱処理を施し、3枚の試験片で測定される酸化増量の平均値を求めた。そして、以下の基準により、耐酸化性を評価した。なお、酸化増量は、熱処理前後での質量変化(増加)量(g)を、熱処理前の試験片の表面積(m)で除した値である。
 ◎(合格、優れている):酸化増量の平均値が10.0g/m以下
 ○(合格):酸化増量の平均値が10.0g/m超15.0g/m以下
 ×(不合格):酸化増量の平均値が15.0g/m
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、発明例ではいずれも、優れた耐拡散接合性とろう付け性とを両立できており、高温での耐酸化性にも優れていた。
 一方、比較例ではいずれも、耐拡散接合性、ろう付け性および耐酸化性のうちの少なくとも1つが十分ではなかった。
・実施例2
 表1の鋼記号A、B、EおよびLについて、実施例1と同じ条件で、厚さ:50μmの素材ステンレス箔を得た。また、一部の素材ステンレス箔に対しては、冷間圧延後、さらに、HとNの混合雰囲気(体積比でH:N=75:25、露点:-50℃)において、表4に示す条件で仕上焼鈍を行った。
 ついで、これらの素材ステンレス箔に、表4に示す条件の第1の浸漬処理(表面処理)および第2の浸漬処理(スマット除去処理)を施し、最終製品となるステンレス箔を得た。なお、上記の処理では、第2の浸漬処理後、ステンレス箔を純水中に浸漬して反応を停止させた。
 かくして得られたステンレス箔について、マイクロメーターで厚さを測定した。また、実施例1と同じ要領で、SaおよびStrを測定した。さらに、上述した要領で、平均結晶粒径を測定した。測定結果を表5に併記する。表5の結晶粒径の欄の「測定不能」は、EBSD(電子線後方散乱回折)解析において結晶粒界が観察されず、平均結晶粒径を測定できなかったことを意味する。なお、最終的に得られたステンレス箔の成分組成はそれぞれ、表1に記載した各鋼記号の成分組成と実質的に同じであり、いずれも本発明の一実施形態に係るステンレス箔の成分組成の範囲を満足するものであった。
 また、上記のステンレス箔について、実施例1と同じ方法により、(1)耐拡散接合性、(2)ろう付け性、および、(3)耐酸化性を評価した。評価結果を表5に併記する。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、発明例ではいずれも、優れた耐拡散接合性とろう付け性とを両立できており、高温での耐酸化性にも優れていた。
 なかでも、平均結晶粒径が15μm以上25μm以下である発明例No.2-4、2-5、2-10、2-11、2-14および2-17ではいずれも、第1の浸漬処理におけるステンレス箔の溶解量を低減しつつ(最終製品のステンレス箔の厚さを45μm以上確保する、換言すれば、ステンレス箔の厚さの減少量を5μm以下に抑制しつつ)、特に優れた耐拡散接合性と優れたろう付け性とを両立できており、高温での耐酸化性にも優れていた。
1 平箔
2 波箔
3 セラミック板

Claims (4)

  1.  質量%で、
     C:0.020%以下、
     Si:1.0%以下、
     Mn:1.0%以下、
     P:0.040%以下、
     S:0.004%以下、
     Cr:16.0~30.0%、
     Al:2.00~6.50%、
     N:0.020%以下および
     Ni:0.50%以下
    であり、さらに、
     Ti:0.30%以下、
     Zr:0.20%以下、
     Hf:0.20%以下および
     REM:0.20%以下
    のうち少なくとも1種を含有し、
     残部がFeおよび不可避的不純物である成分組成を有し、
     ISO 25178に規定されるパラメータSaが0.50~3.00μmであり、かつ、ISO 25178に規定されるパラメータStrが0.20~1.00である、
     排ガス浄化装置の触媒担体用ステンレス箔。
  2.  前記成分組成が、さらに質量%で、
     Cu:0.10%以下、
     Nb:0.30%以下、
     V:0.30%以下、
     Ca:0.0100%以下、
     Mg:0.0100%以下および
     B:0.0050%以下
    のうち少なくとも1種を含有する、請求項1に記載の排ガス浄化装置の触媒担体用ステンレス箔。
  3.  前記成分組成が、さらに、MoおよびWのうち少なくとも1種を含有し、MoおよびWの合計含有量が6.0質量%以下である、請求項1または2に記載の排ガス浄化装置の触媒担体用ステンレス箔。
  4.  平均結晶粒径が15μm以上25μm以下である、請求項1~3のいずれかに記載の排ガス浄化装置の触媒担体用ステンレス箔。
PCT/JP2021/045802 2020-12-15 2021-12-13 排ガス浄化装置の触媒担体用ステンレス箔 WO2022131203A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180083547.0A CN116568829A (zh) 2020-12-15 2021-12-13 排气净化装置的催化剂载体用不锈钢箔
US18/255,586 US20240011136A1 (en) 2020-12-15 2021-12-13 Stainless steel foil for catalyst support of exhaust gas purifier
EP21906565.3A EP4261297A1 (en) 2020-12-15 2021-12-13 Catalyst support stainless steel foil for exhaust gas purification apparatus
JP2022524290A JP7126105B1 (ja) 2020-12-15 2021-12-13 排ガス浄化装置の触媒担体用ステンレス箔
KR1020237023844A KR20230118961A (ko) 2020-12-15 2021-12-13 배기가스 정화 장치의 촉매 담체용 스테인리스박

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-207211 2020-12-15
JP2020207211 2020-12-15

Publications (1)

Publication Number Publication Date
WO2022131203A1 true WO2022131203A1 (ja) 2022-06-23

Family

ID=82059169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045802 WO2022131203A1 (ja) 2020-12-15 2021-12-13 排ガス浄化装置の触媒担体用ステンレス箔

Country Status (6)

Country Link
US (1) US20240011136A1 (ja)
EP (1) EP4261297A1 (ja)
JP (1) JP7126105B1 (ja)
KR (1) KR20230118961A (ja)
CN (1) CN116568829A (ja)
WO (1) WO2022131203A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024058249A1 (ja) * 2022-09-15 2024-03-21 三菱瓦斯化学株式会社 ステンレス鋼の製造方法、軽量化処理方法、ステンレス鋼及び水性組成物
WO2024058250A1 (ja) * 2022-09-15 2024-03-21 三菱瓦斯化学株式会社 水性組成物、これを用いたステンレス鋼の製造方法ならびに薄膜化処理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001032051A (ja) 1999-07-22 2001-02-06 Nippon Steel Corp 耐拡散接合性に優れたAl含有フェライト系ステンレス鋼板および製造方法
US20010032687A1 (en) * 2000-03-29 2001-10-25 Laurent Antoni Coated ferrite stainless steel sheet usable in the automobile exhaust sector
JP2002080944A (ja) * 2000-06-30 2002-03-22 Kawasaki Steel Corp 極薄Fe−Cr−Al系合金箔およびその製造方法
JP2009046718A (ja) * 2007-08-17 2009-03-05 Jfe Steel Kk 合金箔と排気ガス浄化装置用触媒担体
JP4941320B2 (ja) 2008-01-17 2012-05-30 Jfeスチール株式会社 排ガス浄化装置の触媒担体およびそれに使用されるFe−Cr−Al系合金箔
JP2014083550A (ja) * 2012-10-22 2014-05-12 Jfe Steel Corp 拡散接合し難いステンレス箔およびその製造方法
JP5504778B2 (ja) 2009-09-16 2014-05-28 Jfeスチール株式会社 拡散接合しにくいステンレス箔およびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4941320B1 (ja) 1970-09-14 1974-11-08
JPS554778U (ja) 1978-06-26 1980-01-12

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001032051A (ja) 1999-07-22 2001-02-06 Nippon Steel Corp 耐拡散接合性に優れたAl含有フェライト系ステンレス鋼板および製造方法
US20010032687A1 (en) * 2000-03-29 2001-10-25 Laurent Antoni Coated ferrite stainless steel sheet usable in the automobile exhaust sector
JP2002080944A (ja) * 2000-06-30 2002-03-22 Kawasaki Steel Corp 極薄Fe−Cr−Al系合金箔およびその製造方法
JP2009046718A (ja) * 2007-08-17 2009-03-05 Jfe Steel Kk 合金箔と排気ガス浄化装置用触媒担体
JP4941320B2 (ja) 2008-01-17 2012-05-30 Jfeスチール株式会社 排ガス浄化装置の触媒担体およびそれに使用されるFe−Cr−Al系合金箔
JP5504778B2 (ja) 2009-09-16 2014-05-28 Jfeスチール株式会社 拡散接合しにくいステンレス箔およびその製造方法
JP2014083550A (ja) * 2012-10-22 2014-05-12 Jfe Steel Corp 拡散接合し難いステンレス箔およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024058249A1 (ja) * 2022-09-15 2024-03-21 三菱瓦斯化学株式会社 ステンレス鋼の製造方法、軽量化処理方法、ステンレス鋼及び水性組成物
WO2024058250A1 (ja) * 2022-09-15 2024-03-21 三菱瓦斯化学株式会社 水性組成物、これを用いたステンレス鋼の製造方法ならびに薄膜化処理方法

Also Published As

Publication number Publication date
EP4261297A1 (en) 2023-10-18
US20240011136A1 (en) 2024-01-11
KR20230118961A (ko) 2023-08-14
JP7126105B1 (ja) 2022-08-26
CN116568829A (zh) 2023-08-08
JPWO2022131203A1 (ja) 2022-06-23

Similar Documents

Publication Publication Date Title
JP5700181B1 (ja) フェライト系ステンレス箔
JP5522330B2 (ja) フェライト系ステンレス箔
WO2022131203A1 (ja) 排ガス浄化装置の触媒担体用ステンレス箔
KR101898564B1 (ko) 페라이트계 스테인리스박 및 그의 제조 방법
JP5561447B1 (ja) ステンレス鋼板およびステンレス箔
EP2554700B1 (en) Stainless steel foil and catalyst carrier for exhaust gas purification device using the foil
TWI507545B (zh) 不銹鋼箔及使用該箔之排氣淨化裝置用觸媒載體
JP6319537B1 (ja) ステンレス鋼板およびステンレス箔
KR101994559B1 (ko) 페라이트계 스테인리스박 및 그 제조 방법
JP6813142B1 (ja) Al系めっきステンレス鋼板、および、フェライト系ステンレス鋼板の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022524290

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906565

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18255586

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180083547.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237023844

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021906565

Country of ref document: EP

Effective date: 20230713

NENP Non-entry into the national phase

Ref country code: DE