WO2022130915A1 - 加熱用電磁波制御体及び加熱用電磁波制御体付き物品 - Google Patents

加熱用電磁波制御体及び加熱用電磁波制御体付き物品 Download PDF

Info

Publication number
WO2022130915A1
WO2022130915A1 PCT/JP2021/042895 JP2021042895W WO2022130915A1 WO 2022130915 A1 WO2022130915 A1 WO 2022130915A1 JP 2021042895 W JP2021042895 W JP 2021042895W WO 2022130915 A1 WO2022130915 A1 WO 2022130915A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
antenna
heating
control body
article
Prior art date
Application number
PCT/JP2021/042895
Other languages
English (en)
French (fr)
Inventor
宏充 伊藤
昌良 山本
健一 石塚
誠道 田村
数矢 加藤
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2022569812A priority Critical patent/JPWO2022130915A1/ja
Publication of WO2022130915A1 publication Critical patent/WO2022130915A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/72Radiators or antennas

Definitions

  • the present invention relates to a heating electromagnetic wave control body and an article with a heating electromagnetic wave control body used in a device for heating an article with a heating electromagnetic wave.
  • Patent Document 1 The tool shown in Patent Document 1 is used by covering the rice cake to be heated.
  • This tool shields microwaves with a shield made of aluminum foil, the opening of the aluminum foil is used as a transmitting part for microwaves, and a heating element made of a mixed material of alumina and aluminum and other metals is provided, and the eddy current of the heating element is provided. It is configured to heat the rice cake directly by the heat of Joule.
  • Patent Document 1 The tool described in Patent Document 1 has the following problems.
  • an object of the present invention is an electromagnetic wave control body for heating that enables selective heating or non-heating of an article by controlling the electromagnetic wave radiated to the article to be heated by receiving the electromagnetic wave for heating.
  • the purpose is to provide an article with an electromagnetic wave control body for heating.
  • the electromagnetic wave control body for heating of the present invention is a plurality of electromagnetic wave control bodies for heating that are arranged inside the electromagnetic wave heating device together with an article heated by the electromagnetic wave heating device to control the electromagnetic wave radiated to the article.
  • the above-mentioned electromagnetic waves are provided, and between these plurality of antennas, there is a region that is easily heated or a region that is difficult to be heated as compared with other parts.
  • the article with an electromagnetic wave control body for heating of the present invention is an article heated by an electromagnetic wave heating device and an article placed inside the electromagnetic wave heating device together with the article to control the electromagnetic wave radiated to the article.
  • the heating electromagnetic wave control body includes a body, and the heating electromagnetic wave control body includes a plurality of antennas, and has a region that is easily heated or a region that is difficult to be heated as compared with other parts between the plurality of antennas.
  • the article by receiving the electromagnetic wave for heating and controlling the electromagnetic wave radiated to the article to be heated, the article is selectively heated or selectively deheated, so that the following effects are obtained.
  • the electromagnetic wave controller for heating uses the re-radiation of the antenna, it is not necessary to bring the antenna into contact with the article, and the sticking of the article can be avoided.
  • the electromagnetic wave control body for heating uses the re-radiation of the antenna, it is possible to selectively heat the article without generating a high temperature part like a heating element, and the safety is improved.
  • the electromagnetic wave controller for heating does not come into direct contact with the article, there is no concern about hygiene when the article is food or the like.
  • the radiation efficiency of the radiator is high, the heat generation of the radiator can be suppressed.
  • FIG. 1 is a diagram showing a heating state of the article 201 with an electromagnetic wave control body for heating according to the first embodiment.
  • FIG. 2A is a perspective view of the article 201 with the electromagnetic wave control body for heating.
  • FIG. 2B is a vertical sectional view thereof.
  • 3A and 3B are perspective views showing an example of the distance between the first antenna 11 and the second antenna 12.
  • FIG. 4 (A) is an example in which a food material to be heated with high efficiency is arranged in a selective heating unit
  • FIG. 4 (B) is an example in which a non-heated food material is arranged in a selective non-heating unit.
  • FIG. 4 (A) is an example in which a food material to be heated with high efficiency is arranged in a selective heating unit
  • FIG. 4 (B) is an example in which a non-heated food material is arranged in a selective non-heating unit.
  • FIG. 5 is a diagram showing the relationship between the electromagnetic wave in the refrigerator 55 of the electromagnetic wave heating device 300 and the electromagnetic wave re-radiated from the antenna in response to the electromagnetic wave.
  • FIG. 6 is a diagram showing the strength of the electric field at the distance D between the first antenna 11 and the second antenna 12.
  • FIG. 7 is a diagram showing the strength of the electric field at the distance D between the first antenna 11 and the second antenna 12.
  • FIG. 8 is a perspective view showing an example of the sizes of the first antenna 11 and the second antenna 12.
  • 9 (A), 9 (B), and 9 (C) are partial cross-sectional views showing the support structure of the antenna, respectively.
  • 10 (A) and 10 (B) are perspective views of two antennas constituting the heating electromagnetic wave control body according to the second embodiment.
  • FIG. 11 is a perspective view of two antennas constituting another heating electromagnetic wave control body according to the second embodiment.
  • 12 (A), 12 (B), and 12 (C) are all plan views of one antenna included in the heating electromagnetic wave control body according to the third embodiment.
  • FIG. 12D is a perspective view of one antenna included in the heating electromagnetic wave controller according to the third embodiment.
  • FIG. 13 is a vertical cross-sectional view of the article 204A with the electromagnetic wave control body for heating.
  • FIG. 14 is a perspective view of articles 204B and 204C with an electromagnetic wave control body for heating.
  • FIG. 15 is a perspective view showing a state of arrangement of the heating electromagnetic wave control body by the first antenna 11 and the second antenna 12.
  • FIG. 16 is a diagram showing the temperature distribution on the central YZ plane in the space when the distance D between the first antenna 11 and the second antenna 12 is changed.
  • FIG. 17 is a perspective view showing a state in which a heating electromagnetic wave control body by the first antenna 11 and the second antenna 12 is arranged.
  • FIG. 18 is a diagram showing the temperature distribution on the central YZ plane in the space when the distance D between the first antenna 11 and the second antenna 12 is changed.
  • FIG. 19 is a vertical sectional view of the structure to be measured according to the sixth embodiment.
  • FIG. 20 (A) is a measurement result by the measured structure of the sixth embodiment
  • FIG. 20 (B) is a measurement result by the measured structure as a comparative example.
  • FIG. 1 is a diagram showing a heating state of the article 201 with an electromagnetic wave control body for heating according to the first embodiment.
  • the article 201 with the electromagnetic wave control body for heating is put in the refrigerator 55 of the electromagnetic wave heating device (microwave oven) 300.
  • the electromagnetic wave heating device 300 includes a high-voltage transformer 51, a magnetron 52, an antenna 53, a waveguide 54, a refrigerator 55, a turntable 56, and the like.
  • the magnetron 52 oscillates microwaves using the high voltage from the high voltage transformer 51 as a power source.
  • the microwave radiated from the antenna 53 propagates through the waveguide 54 and irradiates the inside of the refrigerator 55.
  • Article 201 with an electromagnetic wave control body for heating receives this microwave and generates heat.
  • the arrangement of the components of the electromagnetic wave heating device 300 such as the magnetron 52 and the refrigerator 55 is not limited to that shown in FIG.
  • the magnetron 52 and the waveguide 54 may be provided below or above and below the inside 55.
  • FIG. 2A is a perspective view of an article 201 with an electromagnetic wave control body for heating.
  • FIG. 2B is a vertical sectional view thereof.
  • the article 201 with the electromagnetic wave control body for heating includes the article 100 and the electromagnetic wave control body 101 for heating.
  • Article 100 is, for example, a bento packed in a resin container.
  • the heating electromagnetic wave controller 101 is composed of a first antenna 11 and a second antenna 12.
  • the resin container is a resin molded body such as PP (polypropylene) or PS (polystyrene), and the first antenna 11 and the second antenna 12 are, for example, a conductor pattern formed by an aluminum vapor deposition film or aluminum foil patterning. be.
  • the first antenna 11 and the second antenna 12 receive the electromagnetic wave radiated by the electromagnetic wave heating device 300 shown in FIG. 1 and re-radiate the electromagnetic wave.
  • the electromagnetic wave in the refrigerator 55 of the electromagnetic wave heating device 300, the electromagnetic wave re-radiated by the first antenna 11, and the electromagnetic wave re-radiated by the second antenna 12 interfere with each other. Due to this interference, the amplitude of the electromagnetic wave in the region Z1 between the first antenna 11 and the second antenna 12 is strengthened as compared with the amplitude of the electromagnetic wave in the region ZA. That is, the region Z1 between the first antenna 11 and the second antenna 12 is more likely to be heated than the region ZA which is the other portion.
  • Both the first antenna 11 and the second antenna 12 are circular or approximately circular conductors, and are provided on the package 21.
  • the first antenna 11 and the second antenna 12 face each other and overlap each other in a plan view in the opposite direction.
  • 3 (A) and 3 (B) are perspective views showing an example of the distance between the first antenna 11 and the second antenna 12.
  • the distance D between the first antenna 11 and the second antenna 12 facing each other exceeds half the wavelength ( ⁇ / 2) of the electromagnetic wave and is less than one wavelength ( ⁇ ).
  • the distance D between the first antenna 11 and the second antenna 12 facing each other is equal to or less than the half wavelength ( ⁇ / 2) of the electromagnetic wave.
  • the distance D between the first antenna 11 and the second antenna 12 when compared with the wavelength of the electromagnetic wave is the wavelength due to the dielectric and magnetic transmission of the member existing between the first antenna 11 and the second antenna 12. Due to the shortening effect, it may differ from the actual physical length.
  • the region sandwiched between the first antenna 11 and the second antenna 12 is the selective heating unit. Is. This selective heating unit has higher heating efficiency than other regions. Further, if the distance D between the first antenna 11 and the second antenna 12 is the relationship shown in FIG. 3B, the region sandwiched between the first antenna 11 and the second antenna 12 is the selective non-heating portion. be. This selective non-heating portion has lower heating efficiency than other regions.
  • FIG. 4 (A) is an example in which a food ingredient to be heated with high efficiency is arranged in a selective heating portion
  • FIG. 4 (B) is an example in which a non-heated food ingredient is arranged in a selective non-heating portion.
  • the food material F1 is heated with high efficiency
  • the food material F2 has low heating efficiency.
  • FIG. 5 is a diagram showing the relationship between the electromagnetic wave in the refrigerator 55 of the electromagnetic wave heating device 300 and the electromagnetic wave that receives the electromagnetic wave and is re-radiated from the antenna (first antenna 11 in this example).
  • the thick arrow in FIG. 5 indicates the electric field direction of the electromagnetic wave (incident wave) in the refrigerator 55, and the thin arrow indicates the electric field direction of the electromagnetic wave re-radiated by the first antenna 11.
  • an electromagnetic wave (electromagnetic wave having a phase difference of about 180 degrees) in which the electric field is directed in the direction of canceling the electric field of the incident wave is re-radiated.
  • the electric field strength is weakened in the vicinity region Z0 of the first antenna 11.
  • the electric field direction of the electromagnetic wave re-radiated from the first antenna 11 is aligned with the electric field direction of the incident wave (becomes in phase), and the electric field strength in the region Z01 is It will increase.
  • 6 and 7 are diagrams showing the strength of the electric field at the distance D between the first antenna 11 and the second antenna 12.
  • the electromagnetic wave re-radiated from the first antenna 11 and the electromagnetic wave of the incident wave are in phase or in phase.
  • the region Z1 having substantially the same phase expands.
  • FIG. 8 is a perspective view showing an example of the sizes of the first antenna 11 and the second antenna 12.
  • the diameter ⁇ of the circular first antenna 11 and the second antenna 12 is 1/4 wavelength or more and 3/4 wavelength or less (3 ⁇ / 4 ⁇ ⁇ ⁇ ⁇ / 4) of the electromagnetic wave.
  • the size of the first antenna 11 and the second antenna 12 in the plane direction becomes close to 1/2 of the wavelength of the electromagnetic wave, and the first antenna 11 and the second antenna 12 re-radiate with high efficiency. Will be done.
  • the first antenna 11 is supported by the insulating base material 22.
  • the insulating base material 22 is an electric insulator, and is, for example, a resin film such as PET (polyethylene terephthalate), PE (polyimide), and LCP (liquid crystal polymer).
  • the first antenna 11 is, for example, a thin-film aluminum film or aluminum foil.
  • the adhesive layer 24 is formed on one side of the first antenna 11.
  • the first antenna 11 is formed on the first surface of the insulating base material 22, and the pressure-sensitive adhesive layer 24 is formed on the second surface of the insulating base material 22.
  • the insulating base material 22 is, for example, a package in which an antenna is formed in a package for packaging an article.
  • the first antenna 11 with the pressure-sensitive adhesive layer 24 shown in FIGS. 9 (B) and 9 (C) is attached to, for example, a package or a container for packaging an article.
  • the first antenna 11 is shown, but the same applies to a plurality of other antennas such as the second antenna 12.
  • the selective heating part of the article can be set.
  • a selective non-heating part of the article can be set.
  • Second Embodiment an antenna having a shape different from that of the antenna included in the above-mentioned heating electromagnetic wave controller will be exemplified.
  • FIG. 10A and 10 (B) are perspective views of two antennas constituting the heating electromagnetic wave control body according to the second embodiment.
  • the heating electromagnetic wave control body shown in FIG. 10A is composed of a first antenna 11 and a second antenna 12, and the first antenna 11 is a ring-shaped conductor having an opening AP, and the second antenna 12 Is a circular conductor.
  • both the first antenna 11 and the second antenna 12 are ring-shaped conductors having an opening AP.
  • FIG. 11 is a perspective view of two antennas constituting another heating electromagnetic wave controller according to the second embodiment.
  • the heating electromagnetic wave controller shown in FIG. 11 is composed of a first antenna 11 and a second antenna 12, but the first antenna 11 is a conductor having a circular outer shape and having a plurality of openings APs, and is a second antenna.
  • the antenna 12 is a circular conductor.
  • the plurality of antennas constituting the heating electromagnetic wave control body may have openings in any or all of them. If the heating electromagnetic wave control body shown in FIGS. 10 (A), 10 (B), and 11 is applied to the heating electromagnetic wave control body 101 shown in FIGS. 2 (A) and 2 (B), heating is performed. It has the effect of not impairing the visibility of the article 201 with the electromagnetic wave control body in the resin container.
  • FIG. 12 (A), 12 (B), and 12 (C) are all plan views of one antenna included in the heating electromagnetic wave controller according to the third embodiment. Further, FIG. 12D is a perspective view of one antenna included in the heating electromagnetic wave controller according to the third embodiment.
  • the antenna may be linear or rod-shaped as shown in FIG. 12 (A), may be rectangular as shown in FIG. 12 (B), or may be rectangular as shown in FIG. 12 (C). It may be oval or oval. Further, it may be a solid such as a dome shape shown in FIG. 12 (D).
  • FIG. 13 is a vertical sectional view of an article 204A with an electromagnetic wave control body for heating.
  • the article 204A with the electromagnetic wave control body for heating includes the electromagnetic wave control body 104 for heating by the first antenna 11 and the second antenna 12, and the article 100.
  • Article 100 is, for example, a bento packed in a resin container.
  • the first antenna 11 is provided on the inner surface of the cover of the resin container, and the second antenna 12 is provided on the inner surface of the main body of the resin container.
  • the plurality of antennas constituting the heating electromagnetic wave control body may be arranged inside the article 100. In the example shown in FIG.
  • the distance D between the first antenna 11 and the second antenna 12 has a relationship of D ⁇ ⁇ / 2
  • the region between the first antenna 11 and the second antenna 12 Z2 has poor heating efficiency as compared with other regions ZA. That is, the region Z2 between the first antenna 11 and the second antenna 12 is less likely to be heated than the region ZA which is the other portion. That is, the heating electromagnetic wave control body 104 is provided in the selective non-heating portion.
  • FIG. 14 is a perspective view of articles 204B and 204C with an electromagnetic wave control body for heating.
  • Each of the articles 204B and 204C with the electromagnetic wave control body for heating includes the first antenna 11 and the second antenna 12 on the side surfaces of the article 100 facing each other, not on the upper and lower surfaces of the article 100.
  • the electromagnetic wave control body for heating can be configured by a plurality of antennas arranged on the side of the article 100.
  • the first antenna 11 and the second antenna 12 are circular conductors having a diameter of 60 mm.
  • the temperature distribution in the space was simulated under the condition that the electromagnetic wave in the plane wave traveling direction in the + X direction and the polarization direction in the Y direction is incident on this space.
  • FIG. 16 is a diagram showing the temperature distribution on the central YZ plane in the space when the distance D between the first antenna 11 and the second antenna 12 is changed.
  • the low concentration corresponds to the high temperature. Since the frequency of the electromagnetic wave is 2.45 GHz, ⁇ 120 mm.
  • the first antenna 11 is a ring-shaped conductor having an inner diameter of 40 mm and an outer diameter of 60 mm
  • the second antenna 12 is a circular conductor having a diameter of 60 mm. Except for the shape of the first antenna 11, the configuration is the same as that shown in FIG.
  • FIG. 18 is a diagram showing the temperature distribution on the central YZ plane in the space when the distance D between the first antenna 11 and the second antenna 12 is changed, as in the example shown in FIG.
  • FIG. 19 is a vertical sectional view of the structure to be measured according to the sixth embodiment.
  • the dummy food material F is a member made of FR4 in which four plates are combined in a cross shape.
  • the width of each piece is 50 mm and the height is 40 mm.
  • the first antenna 11 is a ring-shaped conductor having an inner diameter of 40 mm and an outer diameter of 60 mm
  • the second antenna 12 is a circular conductor having a diameter of 60 mm.
  • An insulator plate 100U imitating the exterior of the upper part of the article is arranged on the upper part of the first antenna 11, and an insulator plate 100B imitating the exterior of the lower part of the article is arranged on the lower part of the second antenna 12.
  • FIG. 20 (A) is a measurement result of the thermo camera by the measured structure of the present embodiment
  • FIG. 20 (B) is a measurement result of the thermo camera by the measured structure as a comparative example.
  • the measured structure of this comparative example does not include the first antenna 11 and the second antenna 12.
  • the temperature rise when heated at 1800 W for 15 seconds was measured.
  • the measurement was performed with the first antenna 11 and the insulator plate 100U removed after heating.
  • the temperature rise in the upper part of the dummy food material F is 23.9 ° C
  • the temperature rise in the central part is 28.6 ° C
  • the temperature rise in the lower part is 36.1 ° C
  • the dummy is used.
  • the temperature rise in the upper part of the food material F is 22.7 ° C
  • the temperature rise in the central part is 18.7 ° C
  • the temperature rise in the lower part is 15.9 ° C.
  • a heating suppressing effect of about 45% can be obtained.
  • the first antenna 11 and the second antenna 12 overlap each other in a plan view in the opposite direction, but the first antenna 11 and the second antenna 12 have the same structure. In a plan view, the first antenna 11 and the second antenna 12 may partially overlap each other.
  • first antenna 11 and the second antenna 12 having the same outer shape are provided, but the outer shape of each antenna may be different.
  • the heating electromagnetic wave control body 101 is formed on the package covering the container of the article, but the heating electromagnetic wave control body 101 may be formed on the label or the seal attached to the container of the article. good.
  • the electromagnetic wave control body for heating is not limited to being provided in the container for storing the article, and may be directly arranged on the selective heating object or the selective non-heating object.
  • the electromagnetic wave control body for heating is not limited to being provided on the container or the packaging body, but may be provided on a cover or the like covering the target article.
  • the conductor pattern as a radiator may be formed by printing a conductive paste in addition to patterning a metal foil.
  • Electromagnetic wave controller for heating 201, 204A, 204B, 204C ... Heating Article 300 with electromagnetic wave controller ... Electromagnetic wave heating device

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

加熱用電磁波制御体101は、電磁波加熱装置で加熱される物品と共に電磁波加熱装置の内部に配置されて、物品100へ照射される電磁波を制御する。加熱用電磁波制御体101は、第1アンテナ11及び第2アンテナ12を備え、これらアンテナは、電磁波加熱装置の内部の電磁波を受けて電磁波を再放射し、電磁波加熱装置の内部の電磁波及び再放射による電磁波の干渉によって、例えば領域Z1の電磁波の振幅を強める。

Description

加熱用電磁波制御体及び加熱用電磁波制御体付き物品
 本発明は、加熱用電磁波で物品を加熱する装置に用いられる加熱用電磁波制御体及び加熱用電磁波制御体付き物品に関する。
 電子レンジ内で用いられる包装において、マイクロ波を、遮蔽する部分、透過する部分、吸収して発熱する部分、をそれぞれ設けることによって、焦げ目をつけたりバランスよく加熱させたりすることを目的とした用具が特許文献1に開示されている。
 特許文献1に示されている用具は、加熱対象である餅に被せて用いられる。この用具は、アルミニウム箔による遮蔽体でマイクロ波を遮蔽し、アルミニウム箔の開口をマイクロ波の透過部とし、アルミナとアルミニウムの混合材料やその他の金属類による発熱体を備え、発熱体の渦電流のジュール熱により餅を直接加熱するように構成されている。
特開2005-351486号公報
 特許文献1に記載の用具では、次のような課題がある。
・発熱体の熱が食品に直接伝わるように、発熱体を食品に接触させる必要があり、食品が発熱体側に貼りつきやすい。
・用具が食品に直接接するので、衛生面での懸念がある。
・加熱を促進する発熱体が高温となるため、電子レンジから取り出す際にやけどなどの危険性が高まる。
・加熱を抑制したい部分に対してはマイクロ波が遮蔽されるため、全体として熱効率が低下する。
・発熱体や遮蔽体に金属を用いるので、金属が発熱して燃える懸念がある。
 そこで、本発明の目的は、加熱用電磁波を受けて、加熱対象物品に対し照射される電磁波を制御することで、物品の選択的加熱又は選択的非加熱を可能とした加熱用電磁波制御体及び加熱用電磁波制御体付き物品を提供することにある。
 本発明の加熱用電磁波制御体は、電磁波加熱装置で加熱される物品と共に前記電磁波加熱装置の内部に配置されて、前記物品へ照射される電磁波を制御する加熱用電磁波制御体であって、複数のアンテナを備え、これら複数のアンテナ同士の間に、他部に比べて加熱されやすい領域又は加熱されにくい領域を有する。
 本発明の加熱用電磁波制御体付き物品は、電磁波加熱装置で加熱される物品と、当該物品と共に前記電磁波加熱装置の内部に配置されて、前記物品へ照射される電磁波を制御する加熱用電磁波制御体と、を有し、前記加熱用電磁波制御体は、複数のアンテナを備え、これら複数のアンテナ同士の間に、他部に比べて加熱されやすい領域又は加熱されにくい領域を有する。
 本発明によれば、加熱用電磁波を受けて、加熱対象物品に対し照射される電磁波を制御することで、物品の選択的加熱又は選択的非加熱を行うので、次のような効果を奏する。
・加熱用電磁波制御体はアンテナの再放射を利用するため、アンテナを物品に接触させる必要がなく、物品の貼り付き等が回避できる。
・加熱用電磁波制御体はアンテナの再放射を利用するため、発熱体のような高温部を発生させることなく、物品の選択的加熱が可能となり、安全性が向上する。
・加熱用電磁波制御体が物品に直接接しないので、物品が食品等である場合の衛生面での懸念がない。
・加熱を促進する発熱体が無いので、発熱体が高温になることによる問題が生じない。
・加熱用電磁波が遮蔽されるわけではないので、全体の熱効率が低下しない。
・放射体の放射効率は高いため、放射体の発熱を抑えることができる。
図1は第1の実施形態に係る加熱用電磁波制御体付き物品201の加熱状態を示す図である。 図2(A)は加熱用電磁波制御体付き物品201の斜視図である。図2(B)はその縦断面図である。 図3(A)、図3(B)は、第1アンテナ11と第2アンテナ12との間隔の例を示す斜視図である。 図4(A)は、選択的加熱部に高効率で加熱すべき食材を配置した例であり、図4(B)は、選択的非加熱部に非加熱食材を配置した例である。 図5は、電磁波加熱装置300の庫内55内の電磁波と、その電磁波を受けてアンテナから再放射される電磁波との関係を示す図である。 図6は第1アンテナ11と第2アンテナ12との間隔Dにおける電界の強度を示す図である。 図7は第1アンテナ11と第2アンテナ12との間隔Dにおける電界の強度を示す図である。 図8は第1アンテナ11及び第2アンテナ12の大きさについての例を示す斜視図である。 図9(A)、図9(B)、図9(C)は、それぞれアンテナの支持構造を示す部分断面図である。 図10(A)、図10(B)は、第2の実施形態に係る加熱用電磁波制御体を構成する2つのアンテナの斜視図である。 図11は第2の実施形態に係る別の加熱用電磁波制御体を構成する2つのアンテナの斜視図である。 図12(A)、図12(B)、図12(C)は、いずれも第3の実施形態に係る加熱用電磁波制御体が備える1つのアンテナの平面図である。図12(D)は第3の実施形態に係る加熱用電磁波制御体が備える1つのアンテナの斜視図である。 図13は加熱用電磁波制御体付き物品204Aの縦断面図である。 図14は加熱用電磁波制御体付き物品204B,204Cの斜視図である。 図15は第1アンテナ11及び第2アンテナ12による加熱用電磁波制御体の配置の様子を示す斜視図である。 図16は、第1アンテナ11と第2アンテナ12との間隔Dを変化させたときの、空間内の中央のYZ面における温度分布を示す図である。 図17は第1アンテナ11及び第2アンテナ12による加熱用電磁波制御体を配置した様子を示す斜視図である。 図18は、第1アンテナ11と第2アンテナ12との間隔Dを変化させたときの、空間内の中央のYZ面における温度分布を示す図である。 図19は第6の実施形態に係る被測定構造の縦断面図である。 図20(A)は第6の実施形態の被測定構造による測定結果であり、図20(B)は比較例としての被測定構造による測定結果である。
 以降、図を参照して幾つかの具体的な例を挙げて、本発明を実施するための複数の形態を示す。各図中には同一箇所に同一符号を付している。要点の説明又は理解の容易性を考慮して、便宜上実施形態を分けて示すが、異なる実施形態で示した構成の部分的な置換又は組み合わせは可能である。第2の実施形態以降では第1の実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
《第1の実施形態》
 図1は第1の実施形態に係る加熱用電磁波制御体付き物品201の加熱状態を示す図である。加熱用電磁波制御体付き物品201は電磁波加熱装置(電子レンジ)300の庫内55に入れられる。電磁波加熱装置300は、高圧トランス51、マグネトロン52、アンテナ53、導波管54、庫内55、ターンテーブル56等を備える。
 マグネトロン52は高圧トランス51からの高電圧を電源としてマイクロ波発振する。アンテナ53から放射されるマイクロ波は導波管54を伝搬し、庫内55内に照射される。加熱用電磁波制御体付き物品201はこのマイクロ波を受けて発熱する。なお、マグネトロン52や庫内55などの電磁波加熱装置300の構成要素の配置関係は、図1に示したものに限定されない。例えば、庫内55に対して、下方もしくは上下両方にマグネトロン52や導波管54があってもよい。
 図2(A)は加熱用電磁波制御体付き物品201の斜視図である。図2(B)はその縦断面図である。
 加熱用電磁波制御体付き物品201は物品100と加熱用電磁波制御体101とを備える。物品100は例えば樹脂容器でパックされた弁当である。
 加熱用電磁波制御体101は第1アンテナ11及び第2アンテナ12で構成されている。上記樹脂容器はPP(ポリプロピレン)やPS(ポリスチレン)等の樹脂成型体であり、第1アンテナ11及び第2アンテナ12は、例えばアルミニウムの蒸着膜やアルミニウム箔のパターンニングにより形成された導体パターンである。
 第1アンテナ11及び第2アンテナ12は、図1に示した電磁波加熱装置300により放射される電磁波を受けて電磁波を再放射する。電磁波加熱装置300の庫内55の電磁波、第1アンテナ11による再放射の電磁波及び第2アンテナ12による再放射の電磁波は干渉する。この干渉によって、第1アンテナ11と第2アンテナ12との間の領域Z1における電磁波の振幅を、領域ZAにおける電磁波の振幅に比べて強める。つまり、第1アンテナ11と第2アンテナ12との間の領域Z1は、その他部である領域ZAに比べて加熱されやすくなる。
 第1アンテナ11及び第2アンテナ12はいずれも円状又は概円状の導体であり、包装体21に設けられている。
 第1アンテナ11と第2アンテナ12とは、互いに対向し、当該対向の方向での平面視で重なる。
 図3(A)、図3(B)は、第1アンテナ11と第2アンテナ12との間隔の例を示す斜視図である。図3(A)に示す例では、互いに対向する第1アンテナ11と第2アンテナ12との間隔Dは電磁波の半波長(λ/2)を超え、1波長(λ)未満である。また、図3(B)に示す例では、互いに対向する第1アンテナ11と第2アンテナ12との間隔Dは電磁波の半波長(λ/2)以下である。
 なお、電磁波の波長と対比する際の第1アンテナ11と第2アンテナ12との間隔Dは、この第1アンテナ11と第2アンテナ12との間に存在する部材の誘電性及び透磁性による波長短縮効果のため、実際の物理長と異なる場合がある。
 後に示すように、第1アンテナ11と第2アンテナ12との間隔が図3(A)に示す関係であれば、この第1アンテナ11と第2アンテナ12とで挟まれる領域が選択的加熱部である。この選択的加熱部はその他の領域に比べて加熱効率が高い。また、第1アンテナ11と第2アンテナ12との間隔Dが図3(B)に示す関係であれば、この第1アンテナ11と第2アンテナ12とで挟まれる領域が選択的非加熱部である。この選択的非加熱部はその他の領域に比べて加熱効率が低い。
 図4(A)は、選択的加熱部に高効率で加熱すべき食材を配置した例であり、図4(B)は、選択的非加熱部に非加熱食材を配置した例である。選択的加熱部では食材F1は高効率で加熱され、選択的非加熱部では食材F2は加熱効率が低い。
 図5は、電磁波加熱装置300の庫内55内の電磁波と、その電磁波を受けてアンテナ(この例では第1アンテナ11)から再放射される電磁波との関係を示す図である。図5中の太い矢印は庫内55内の電磁波(入射波)の電界方向を示し、細い矢印は第1アンテナ11により再放射された電磁波の電界方向を示す。
 断面において、第1アンテナ11の近傍領域Z0では、入射波の電界を打ち消す方向に電界が向く電磁波(位相差がほぼ180度の電磁波)が再放射される。このことにより、第1アンテナ11の近傍領域Z0では電界強度は弱められる。
 一方、第1アンテナ11からλ/2程度離れた領域Z01では、第1アンテナ11からの再放射の電磁波の電界方向は入射波の電界方向と揃い(同相となり)、領域Z01での電界強度は高まる。
 図6及び図7は、第1アンテナ11と第2アンテナ12との間隔Dにおける電界の強度を示す図である。
 図6のように、第1アンテナ11と第2アンテナ12との間隔Dがλ/2を超えλ未満であれば、第1アンテナ11からの再放射の電磁波と入射波の電磁波とが同相又はほぼ同相となる領域Z1が拡がる。
 一方、図7のように、第1アンテナ11と第2アンテナ12との間隔Dがλ/2以下であれば、第1アンテナ11からの再放射の電磁波と入射波の電磁波とが逆相又はほぼ逆相となる領域Z2が第1アンテナ11と第2アンテナ12との間に形成される。
 図8は第1アンテナ11及び第2アンテナ12の大きさについての例を示す斜視図である。この例では、円形の第1アンテナ11及び第2アンテナ12の直径φは電磁波の1/4波長以上3/4波長以下(3λ/4≧φ≧λ/4)である。この大きさであることにより、第1アンテナ11及び第2アンテナ12の面方向の大きさが電磁波の波長の1/2に近くなり、第1アンテナ11及び第2アンテナ12から高効率で再放射される。
 図9(A)、図9(B)、図9(C)は、それぞれアンテナの支持構造を示す部分断面図である。図9(A)に示す例では、第1アンテナ11は絶縁基材22に支持されている。例えば、絶縁基材22は電気絶縁体であり、例えばPET(ポリエチレンテレフタレート)、PE(ポリイミド)、LCP(液晶ポリマー)等の樹脂フィルムである。第1アンテナ11は例えばアルミニウムの蒸着膜やアルミニウム箔である。図9(B)に示す例では、第1アンテナ11の片面に粘着剤層24が形成されている。図9(C)に示す例では、絶縁基材22の第1面に第1アンテナ11が形成されていて、絶縁基材22の第2面に粘着剤層24が形成されている。
 図9(A)において、絶縁基材22は、例えば、アンテナを、物品を包装する包装体に形成する場合の包装体である。図9(B)、図9(C)に示す粘着剤層24付きの第1アンテナ11は、例えば、物品を包装する包装体や容器に貼付される。
 以上に示した例では第1アンテナ11について示したが、第2アンテナ12等、他の複数のアンテナに関しても同様である。
 本実施形態によれば、次のような効果を奏する。
(a)物品の選択的加熱部を設定できる。また、物品の選択的非加熱部を設定できる。
(b)加熱用電磁波制御体を物品に接触させる必要がないので、両者が貼り付くことがない。
(c)アンテナの再放射で加熱を促進するため、それ自体が発熱する「発熱体」を近接させることなく、食品の選択的加熱が可能となり、安全性が向上する。
(d)入力電磁波を遮断するわけではないので、エネルギー利用効率が高い。
《第2の実施形態》
 第2の実施形態では、以上に示した加熱用電磁波制御体が備えるアンテナとは形状が異なるアンテナについて例示する。
 図10(A)、図10(B)は、第2の実施形態に係る加熱用電磁波制御体を構成する2つのアンテナの斜視図である。図10(A)に示す加熱用電磁波制御体は第1アンテナ11と第2アンテナ12とで構成されるが、第1アンテナ11は開口部APを有するリング状の導体であり、第2アンテナ12は円状の導体である。図10(B)に示す加熱用電磁波制御体では、第1アンテナ11と第2アンテナ12のいずれも開口部APを有するリング状の導体である。
 図11は第2の実施形態に係る別の加熱用電磁波制御体を構成する2つのアンテナの斜視図である。図11に示す加熱用電磁波制御体は第1アンテナ11と第2アンテナ12とで構成されるが、第1アンテナ11は外形が円状で、複数の開口部APを有する導体であり、第2アンテナ12は円状の導体である。
 このように、加熱用電磁波制御体を構成する複数のアンテナは、そのいずれか又は全てに開口部を有していてもよい。図10(A)、図10(B)、図11に示した加熱用電磁波制御体を、図2(A)、図2(B)に示した加熱用電磁波制御体101に適用すれば、加熱用電磁波制御体付き物品201の樹脂容器内の視認性が阻害されない、という作用効果を奏する。
 特に、大きな開口部を形成するよりも、図11に示した例のように、複数の小さな開口部を分散配置すれば、開口部を設けることによる、アンテナとしての動作への影響を小さくできる。
《第3の実施形態》
 第3の実施形態では、以上に示した加熱用電磁波制御体が備えるアンテナとは形状が異なるアンテナについて例示する。
 図12(A)、図12(B)、図12(C)は、いずれも第3の実施形態に係る加熱用電磁波制御体が備える1つのアンテナの平面図である。また、図12(D)は第3の実施形態に係る加熱用電磁波制御体が備える1つのアンテナの斜視図である。
 アンテナは、図12(A)に示すように線状や棒状であってもよいし、図12(B)に示すように長方形状であってもよいし、図12(C)に示すように楕円状や長円状であってもよい。また、図12(D)に示すドーム型などの立体であってもよい。
 本実施形態によれば、いろいろなバリエーションの加熱ムラを実現できる。また、曲面にも容易に貼り付けることができる。
《第4の実施形態》
 第4の実施形態では、加熱用電磁波制御体付き物品における加熱用電磁波制御体の配置に関して幾つかの例を示す。
 図13は加熱用電磁波制御体付き物品204Aの縦断面図である。加熱用電磁波制御体付き物品204Aは、第1アンテナ11及び第2アンテナ12による加熱用電磁波制御体104と物品100とを備える。物品100は例えば樹脂容器でパックされた弁当である。第1アンテナ11は樹脂容器のカバーの内面に設けられていて、第2アンテナ12は樹脂容器の本体部の内面に設けられている。このように、加熱用電磁波制御体を構成する複数のアンテナは物品100の内部に配置されていてもよい。なお、図13に示す例では、第1アンテナ11と第2アンテナ12との間隔Dが、D≦λ/2の関係にあって、この第1アンテナ11と第2アンテナ12との間の領域Z2は他の領域ZAに比べて加熱効率が悪い。つまり、第1アンテナ11と第2アンテナ12との間の領域Z2は、その他部である領域ZAに比べて加熱されにくくなる。すなわち、加熱用電磁波制御体104は選択的非加熱部に設けられている。
 図14は加熱用電磁波制御体付き物品204B,204Cの斜視図である。加熱用電磁波制御体付き物品204B,204Cは、いずれも物品100の上下面ではなく物品100の互いに対向する側面に第1アンテナ11及び第2アンテナ12を備える。このように、物品100の側部に配置した複数のアンテナによって加熱用電磁波制御体を構成することもできる。
《第5の実施形態》
 第5の実施形態では、加熱用電磁波制御体を構成する第1アンテナ11と第2アンテナ12との間隔Dの違いによる加熱/非加熱の作用についてのシミュレーション結果を示す。
 図15は、幅Wx=300mm、奥行=300mm、高さH=400mmの空間の中央に、第1アンテナ11及び第2アンテナ12による加熱用電磁波制御体を配置した様子を示す斜視図である。第1アンテナ11及び第2アンテナ12は直径60mmの円状の導体である。この空間に平面波進行方向が+X方向、偏波方向がY方向の電磁波が入射する条件で、空間内の温度分布をシミュレーションした。
 図16は、第1アンテナ11と第2アンテナ12との間隔Dを変化させたときの、空間内の中央のYZ面における温度分布を示す図である。ここで、濃度の薄さが温度の高さに対応する。電磁波の周波数は2.45GHzであるので、λ≒120mmである。
 D=20mm、D=40mm、D=60mmのように、D≦λ/2であるとき、第1アンテナ11と第2アンテナ12とで挟まれた領域の電界強度は弱い。そのため、この第1アンテナ11と第2アンテナ12とで挟まれた領域は選択的非加熱領域として作用する。
 一方、D=80mm、D=100mm、D=120mmのように、λ>D>λ/2であるとき、第1アンテナ11と第2アンテナ12とで挟まれた領域の電界強度は強い。そのため、この第1アンテナ11と第2アンテナ12とで挟まれた領域は選択的加熱領域として作用する。
 図17は、幅Wx=300mm、奥行=300mm、高さH=400mmの空間の中央に、第1アンテナ11及び第2アンテナ12による加熱用電磁波制御体を配置した様子を示す斜視図である。第1アンテナ11は内径40mm、外径60mmのリング状の導体であり、第2アンテナ12は直径60mmの円状の導体である。第1アンテナ11の形状以外は図15に示した構成と同じである。
 図18は、図16に示した例と同様に、第1アンテナ11と第2アンテナ12との間隔Dを変化させたときの、空間内の中央のYZ面における温度分布を示す図である。
 D=20mm、D=40mm、D=60mmのように、D≦λ/2であるとき、第1アンテナ11と第2アンテナ12とで挟まれた領域の電界強度は弱い。そのため、この第1アンテナ11と第2アンテナ12とで挟まれた領域は選択的非加熱領域として作用する。
 一方、D=80mm、D=100mm、D=120mmのように、λ>D>λ/2であるとき、第1アンテナ11と第2アンテナ12とで挟まれた領域の電界強度は強い。そのため、この第1アンテナ11と第2アンテナ12とで挟まれた領域は選択的加熱領域として作用する。
《第6の実施形態》
 第6の実施形態では、加熱用電磁波制御体による加熱抑制効果について例示する。
 図19は第6の実施形態に係る被測定構造の縦断面図である。図19において、ダミー食材Fは、四片の板が十字状に組み合わされたFR4による部材である。各片の幅は50mm、高さは40mmである。第1アンテナ11は内径40mm、外径60mmのリング状の導体であり、第2アンテナ12は直径60mmの円状の導体である。第1アンテナ11の上部には物品の上部の外装を模した絶縁体板100U、第2アンテナ12の下部には物品の下部の外装を模した絶縁体板100Bが配置されている。これらの構造体が電子レンジのターンテーブル56に載置されている。このように、第1アンテナ11と第2アンテナ12との間隔D≦λ/2であるので、第1アンテナ11と第2アンテナ12とで挟まれた領域は選択的非加熱領域である。
 図20(A)は本実施形態の被測定構造によるサーモカメラの測定結果、図20(B)は比較例としての被測定構造によるサーモカメラの測定結果である。この比較例の被測定構造では第1アンテナ11及び第2アンテナ12を備えていない。この例では、1800Wで15秒加熱したときの温度上昇を測定した。なお、構造が視認しやすいように、加熱後に第1アンテナ11および絶縁体板100Uを取り除いた状態で測定を行った。
 比較例では、ダミー食材Fの上部の温度上昇は23.9℃、中央部の温度上昇は28.6℃、下部の温度上昇は36.1℃であるのに対し、本実施形態では、ダミー食材Fの上部の温度上昇は22.7℃、中央部の温度上昇は18.7℃、下部の温度上昇は15.9℃である。比較例に対し、本実施形態のダミー食材Fの上部の温度上昇比は22.7/23.9=0.95、中央部の温度上昇比は18.7/28.6=0.65、下部の温度上昇比は15.9/36.1=0.44である。このように、本実施形態によれば、約45%の加熱抑制効果が得られる。
 最後に、上述の実施形態の説明は、すべての点で例示であって、制限的なものではない。当業者にとって変形及び変更が適宜可能である。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲内と均等の範囲内での実施形態からの変更が含まれる。
 例えば、以上に示した各実施形態では、第1アンテナ11と第2アンテナ12とが、当該対向方向での平面視で全体が重なる例を示したが、第1アンテナ11及び第2アンテナ12の平面視で、第1アンテナ11と第2アンテナ12とが部分的に重なる構成であってもよい。
 また、以上に示した各実施形態では、それぞれの外形が同じ第1アンテナ11及び第2アンテナ12を設けた例を示したが、各アンテナの外形は異なっていてもよい。
 また、図2に示した例では、物品の容器を覆う包装体に加熱用電磁波制御体101を形成したが、物品の容器に貼り付けるラベルやシールに加熱用電磁波制御体101を形成してもよい。
 また、加熱用電磁波制御体は、物品を収める容器に設けることに限らず、選択的加熱対象物又は選択的非加熱対象物に直接的に配置してもよい。
 また、加熱用電磁波制御体は、容器や包装体に設けることに限らず、対象物品に被せるカバー等に設けてもよい。
 また、例えば、放射体としての導体パターンは金属箔をパターンニングすること以外に導電性ペーストの印刷により形成してもよい。
AP…開口部
F…ダミー食材
F1,F2…食材
Z0…近傍領域
Z01…領域
Z1,Z2…領域
11…第1アンテナ
12…第2アンテナ
21…包装体
22…絶縁基材
24…粘着剤層
51…高圧トランス
52…マグネトロン
53…アンテナ
54…導波管
55…庫内
56…ターンテーブル
100…物品
100B,100U…絶縁体板
101,104…加熱用電磁波制御体
201,204A,204B,204C…加熱用電磁波制御体付き物品
300…電磁波加熱装置

Claims (11)

  1.  電磁波加熱装置で加熱される物品と共に前記電磁波加熱装置の内部に配置されて、前記物品へ照射される電磁波を制御する加熱用電磁波制御体であって、
     複数のアンテナを備え、
     前記複数のアンテナ同士の間に、他部に比べて加熱されやすい領域又は加熱されにくい領域を有する、
     加熱用電磁波制御体。
  2.  前記複数のアンテナは、互いに対向し、当該対向の方向での平面視で重なる部分を有する、
     請求項1に記載の加熱用電磁波制御体。
  3.  前記複数のアンテナはそれぞれ概円状の導体で構成されている、
     請求項1又は2に記載の加熱用電磁波制御体。
  4.  前記複数のアンテナのうち、互いに対向する少なくとも一方のアンテナは開口部を有する、
     請求項3に記載の加熱用電磁波制御体。
  5.  前記複数のアンテナのうち、互いに対向する2つのアンテナの間隔は前記電磁波の半波長以下である、
     請求項2から4のいずれかに記載の加熱用電磁波制御体。
  6.  前記複数のアンテナのうち、互いに対向する2つのアンテナの間隔は前記電磁波の半波長を超え、1波長未満である、
     請求項2から4のいずれかに記載の加熱用電磁波制御体。
  7.  前記アンテナの直径は前記電磁波の1/4波長以上3/4波長以下である、
     請求項5又は6に記載の加熱用電磁波制御体。
  8.  前記複数のアンテナは、前記物品の所定箇所を挟む2箇所にそれぞれ配置されている、
     請求項5から7のいずれかに記載の加熱用電磁波制御体。
  9.  前記複数のアンテナは、前記物品を包装する包装体に形成されている、
     請求項1から8のいずれかに記載の加熱用電磁波制御体。
  10.  前記複数のアンテナは、前記物品に貼付される絶縁基材に形成されている、
     請求項1から8のいずれかに記載の加熱用電磁波制御体。
  11.  電磁波加熱装置で加熱される物品と、当該物品と共に前記電磁波加熱装置の内部に配置されて、前記物品へ照射される電磁波を制御する加熱用電磁波制御体と、を有し、
     前記加熱用電磁波制御体は、複数のアンテナを備え、これら複数のアンテナ同士の間に、他部に比べて加熱されやすい領域又は加熱されにくい領域を有する、
     加熱用電磁波制御体付き物品。
PCT/JP2021/042895 2020-12-14 2021-11-24 加熱用電磁波制御体及び加熱用電磁波制御体付き物品 WO2022130915A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022569812A JPWO2022130915A1 (ja) 2020-12-14 2021-11-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-206549 2020-12-14
JP2020206549 2020-12-14

Publications (1)

Publication Number Publication Date
WO2022130915A1 true WO2022130915A1 (ja) 2022-06-23

Family

ID=82059084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042895 WO2022130915A1 (ja) 2020-12-14 2021-11-24 加熱用電磁波制御体及び加熱用電磁波制御体付き物品

Country Status (2)

Country Link
JP (1) JPWO2022130915A1 (ja)
WO (1) WO2022130915A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220079191A1 (en) * 2019-01-04 2022-03-17 Haier Smart Home Co., Ltd. Refrigerating and freezing device
WO2024014151A1 (ja) * 2022-07-15 2024-01-18 東洋製罐グループホールディングス株式会社 マイクロ波照射装置、マイクロ波照射方法及び食品の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02270294A (ja) * 1989-02-09 1990-11-05 Alcan Internatl Ltd 食品等のマイクロ波加熱方法および装置
JPH09185991A (ja) * 1995-12-28 1997-07-15 New Japan Radio Co Ltd 冷凍食品用容器
JP2006026306A (ja) * 2004-07-21 2006-02-02 Toyo Ekco Kk 電子レンジによる食品加熱方法および電子レンジ用食品加熱セット
JP2008066292A (ja) * 2006-08-08 2008-03-21 Matsushita Electric Ind Co Ltd マイクロ波処理装置
JP2010516575A (ja) * 2007-01-22 2010-05-20 グラフィック パッケージング インターナショナル インコーポレイテッド マイクロ波によって均等に加熱可能な容器
US20190141796A1 (en) * 2016-04-20 2019-05-09 Vorwerk & Co. Interholding Gmbh System for preparing and method for operating a system for preparing at least one food
WO2021044826A1 (ja) * 2019-09-02 2021-03-11 株式会社村田製作所 加熱用電磁波制御体及び加熱用電磁波制御体付き物品

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02270294A (ja) * 1989-02-09 1990-11-05 Alcan Internatl Ltd 食品等のマイクロ波加熱方法および装置
JPH09185991A (ja) * 1995-12-28 1997-07-15 New Japan Radio Co Ltd 冷凍食品用容器
JP2006026306A (ja) * 2004-07-21 2006-02-02 Toyo Ekco Kk 電子レンジによる食品加熱方法および電子レンジ用食品加熱セット
JP2008066292A (ja) * 2006-08-08 2008-03-21 Matsushita Electric Ind Co Ltd マイクロ波処理装置
JP2010516575A (ja) * 2007-01-22 2010-05-20 グラフィック パッケージング インターナショナル インコーポレイテッド マイクロ波によって均等に加熱可能な容器
US20190141796A1 (en) * 2016-04-20 2019-05-09 Vorwerk & Co. Interholding Gmbh System for preparing and method for operating a system for preparing at least one food
WO2021044826A1 (ja) * 2019-09-02 2021-03-11 株式会社村田製作所 加熱用電磁波制御体及び加熱用電磁波制御体付き物品

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220079191A1 (en) * 2019-01-04 2022-03-17 Haier Smart Home Co., Ltd. Refrigerating and freezing device
WO2024014151A1 (ja) * 2022-07-15 2024-01-18 東洋製罐グループホールディングス株式会社 マイクロ波照射装置、マイクロ波照射方法及び食品の製造方法

Also Published As

Publication number Publication date
JPWO2022130915A1 (ja) 2022-06-23

Similar Documents

Publication Publication Date Title
WO2022130915A1 (ja) 加熱用電磁波制御体及び加熱用電磁波制御体付き物品
JP6923109B1 (ja) 加熱用電磁波制御体及び加熱用電磁波制御体付き物品
DE60007354D1 (de) Gemusterter mikrowellensuszeptor
JPH0212831B2 (ja)
US11191134B2 (en) Microwave heating apparatus with rotatable antenna and method thereof
CN108702819B (zh) 具有反射能量调向的电烤箱
US20180020510A1 (en) Apparatus and method for defrosting and/or cooking foods
WO2012056957A1 (ja) 誘導加熱装置及びこれを用いた加熱システム
WO2016006249A1 (ja) マイクロ波加熱装置
US4343976A (en) Energy feed system for a microwave oven
JPWO2016017218A1 (ja) マイクロ波加熱照射装置
EP3651552B1 (en) Microwave processing device
US11191133B2 (en) Direct heating through patch antennas
JP6645068B2 (ja) マイクロ波加熱装置
JPH07130463A (ja) 電子レンジ
JP4966649B2 (ja) マイクロ波加熱装置
JPS5911289Y2 (ja) 高周波加熱装置
JP7019703B2 (ja) 加熱調理器
KR102180507B1 (ko) 안테나가 구비된 열선을 이용한 복합 가열 장치
JP6911410B2 (ja) マイクロ波加熱装置
JP4036052B2 (ja) マイクロ波加熱装置
JP2004212367A (ja) 電磁界照射装置とそのインピーダンス整合方法
JP3588943B2 (ja) 焦げ目付け皿付き高周波加熱装置
EP4238459A1 (en) Cooking vessel
JP2008166122A (ja) マイクロ波加熱装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906278

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022569812

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906278

Country of ref document: EP

Kind code of ref document: A1