WO2021044826A1 - 加熱用電磁波制御体及び加熱用電磁波制御体付き物品 - Google Patents

加熱用電磁波制御体及び加熱用電磁波制御体付き物品 Download PDF

Info

Publication number
WO2021044826A1
WO2021044826A1 PCT/JP2020/030805 JP2020030805W WO2021044826A1 WO 2021044826 A1 WO2021044826 A1 WO 2021044826A1 JP 2020030805 W JP2020030805 W JP 2020030805W WO 2021044826 A1 WO2021044826 A1 WO 2021044826A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
heating
radiators
article
radiated
Prior art date
Application number
PCT/JP2020/030805
Other languages
English (en)
French (fr)
Inventor
石塚 健一
真一郎 仲嶺
賢太郎 三川
宏充 伊藤
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2021517730A priority Critical patent/JP6923109B1/ja
Publication of WO2021044826A1 publication Critical patent/WO2021044826A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J27/00Cooking-vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/34Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents for packaging foodstuffs or other articles intended to be cooked or heated within the package
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/02Stoves or ranges heated by electric energy using microwaves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/72Radiators or antennas

Definitions

  • the present invention relates to a heating electromagnetic wave controller and an article with a heating electromagnetic wave controller used in a device for heating an article with a heating electromagnetic wave.
  • Patent Document 1 The tool shown in Patent Document 1 is used by covering the rice cake to be heated.
  • This tool shields microwaves with a shield made of aluminum foil, uses the opening of the aluminum foil as a microwave transmission part, and heats the rice cake directly with a heating element made of a mixed material of alumina and aluminum or other metals. It is configured in.
  • Patent Document 1 The tool described in Patent Document 1 has the following problems.
  • an object of the present invention is an electromagnetic wave controller for heating that enables selective heating or non-heating of an article by controlling the electromagnetic wave radiated to the article to be heated by receiving the electromagnetic wave for heating.
  • the purpose is to provide an article with an electromagnetic wave controller for heating.
  • the electromagnetic wave controller for heating of the present invention is arranged inside the electromagnetic wave heating device together with an article having a first region and a second region to be heated by the electromagnetic wave heating device, and is for heating that controls the electromagnetic wave radiated to the article.
  • It is an electromagnetic wave control body and includes an antenna composed of a plurality of radiators that receive the electromagnetic waves radiated by the electromagnetic wave heating device and re-radiate the electromagnetic waves, and the plurality of radiators are caused by the interference of the re-radiated electromagnetic waves.
  • the article with an electromagnetic wave controller for heating of the present invention includes an article having a first region and a second region heated by the electromagnetic wave heating device, and an electromagnetic wave that is arranged inside the electromagnetic wave heating device together with the article and irradiates the article. It is provided with an electromagnetic wave control body for heating, which controls the above.
  • the heating electromagnetic wave controller is arranged inside the electromagnetic wave heating device together with the article having the first region and the second region to be heated by the electromagnetic wave heating device, and is used for heating to control the electromagnetic wave radiated to the article.
  • the amplitude distribution of electromagnetic waves becomes non-uniform due to the interference of electromagnetic waves re-radiated from a plurality of radiators (by controlling the phase), so that a region of selective heating or selective non-heating can be defined. it can.
  • the article by receiving the electromagnetic wave for heating and controlling the electromagnetic wave radiated to the article to be heated, the article is selectively heated or not selectively heated, so that the following effects are obtained.
  • the electromagnetic wave controller for heating does not need to be in contact with the article to be heated, and sticking of the article can be avoided.
  • the electromagnetic wave controller for heating does not come into direct contact with the article, there is no concern about hygiene when the article is food or the like.
  • the radiation efficiency of the radiator is high, the heat generation of the radiator can be suppressed.
  • FIG. 1 is a diagram showing a heating state of the article 201 with an electromagnetic wave control body for heating according to the first embodiment.
  • FIG. 2A is a plan view of the article 201 with the electromagnetic wave controller for heating.
  • FIG. 2B is a perspective view of the article 201 with the electromagnetic wave controller for heating.
  • FIG. 3 is a diagram showing a radiation pattern of the re-radiated electromagnetic wave of the radiator 11A.
  • 4 (A) and 4 (B) are diagrams showing how the electromagnetic waves re-radiated from the radiators 11A, 11B, 11C, and 11D have a large amplitude in the centralized heating unit HP.
  • FIG. 1 is a diagram showing a heating state of the article 201 with an electromagnetic wave control body for heating according to the first embodiment.
  • FIG. 2A is a plan view of the article 201 with the electromagnetic wave controller for heating.
  • FIG. 2B is a perspective view of the article 201 with the electromagnetic wave controller for heating.
  • FIG. 3 is a diagram showing
  • FIG. 5 is a plan view showing the potential distribution in a certain phase in a state where the radiators 11A, 11B, 11C, and 11D re-radiate electromagnetic waves.
  • FIG. 6A is a plan view of the article 202 with the electromagnetic wave control body for heating according to the second embodiment.
  • FIG. 6B is a perspective view of an article 202 with an electromagnetic wave controller for heating.
  • FIG. 7 is a diagram showing electromagnetic waves re-radiated from the radiators 11A, 11B, 11C, and 11D of the article 202 with the heating electromagnetic wave controller according to the second embodiment.
  • FIG. 8A is a plan view of the article 203A with the electromagnetic wave control body for heating according to the third embodiment.
  • FIG. 8B is a perspective view of the article 203A with an electromagnetic wave controller for heating.
  • FIG. 9A is a plan view of another article 203B with an electromagnetic wave controller for heating according to the third embodiment.
  • FIG. 9B is a perspective view of the article 203B with an electromagnetic wave controller for heating.
  • FIG. 10A is a plan view of the article 204 with the electromagnetic wave control body for heating according to the fourth embodiment.
  • FIG. 10B is a perspective view of an article 204 with an electromagnetic wave controller for heating.
  • FIG. 11 is a perspective view of the article 205 with the electromagnetic wave control body for heating according to the fifth embodiment.
  • FIG. 12 is a perspective view of the article 206 with the electromagnetic wave controller for heating according to the sixth embodiment.
  • FIG. 13A is a plan view of the heating electromagnetic wave control body 107A according to the seventh embodiment, and FIG. 13B is a front view thereof.
  • FIG. 14A is a plan view of another heating electromagnetic wave controller 107B according to the seventh embodiment, and FIG. 14B is a front view thereof.
  • 15 (A) is a plan view of still another electromagnetic wave control body for heating 107C according to the seventh embodiment, and FIG. 15 (B) is a cross-sectional view of the XX portion in FIG. 15 (A).
  • FIG.. FIG. FIG. 16A is a plan view of the heating electromagnetic wave control body 108 according to the eighth embodiment, and FIG. 16B is a plan view of the heating electromagnetic wave control body 108 as a comparative example thereof.
  • FIG. 17 is a plan view of the article 209 with the electromagnetic wave controller for heating according to the ninth embodiment.
  • FIG. 18A is a plan view of the article 210 with the electromagnetic wave control body for heating according to the tenth embodiment, and FIG. 18B is a front view thereof.
  • FIG. 19A is a plan view of the article 211 with the electromagnetic wave control body for heating according to the eleventh embodiment, and FIG. 19B is a front view thereof.
  • FIG. 20 is a front view of the article 212 with the electromagnetic wave control body for heating according to the twelfth embodiment.
  • FIG. 1 is a diagram showing a heating state of the article 201 with an electromagnetic wave control body for heating according to the first embodiment.
  • the article 201 with the electromagnetic wave control body for heating is put in the refrigerator 55 of the electromagnetic wave heating device (microwave oven) 300.
  • the electromagnetic wave heating device 300 includes a high-voltage transformer 51, a magnetron 52, an antenna 53, a waveguide 54, a refrigerator 55, a turntable 56, and the like.
  • the magnetron 52 oscillates microwaves using the high voltage from the high voltage transformer 51 as a power source, and the microwaves radiated from the antenna 53 propagate through the waveguide 54 and are irradiated into the refrigerator 55.
  • the article 201 with the electromagnetic wave controller for heating receives the microwave and generates heat.
  • the arrangement of the components of the electromagnetic wave heating device 300 such as the magnetron 52 and the interior 55 is not limited to that shown in FIG.
  • the magnetron 52 and the waveguide 54 may be provided below or above and below the inside 55.
  • FIG. 2A is a plan view of the article 201 with an electromagnetic wave controller for heating.
  • FIG. 2B is a perspective view thereof.
  • the article 201 with an electromagnetic wave control body for heating is, for example, a lunch box packed in a resin container.
  • An antenna 11, which will be described later, is formed in the resin container.
  • the heating electromagnetic wave controller 101 includes an antenna 11 composed of radiators 11A, 11B, 11C, and 11D that receive the electromagnetic waves radiated by the electromagnetic wave heating device 300 and re-radiate the electromagnetic waves.
  • These radiators 11A, 11B, 11C, and 11D are composed of a plurality of linear conductor patterns having different lengths formed along the surface of the resin container.
  • the resin container is a resin molded body such as PP (polypropylene) or PS (polystyrene), and the radiators 11A, 11B, 11C, and 11D are conductor patterns formed by, for example, patterning of aluminum foil.
  • the radiators 11A, 11B, 11C, 11D determine the phase of the re-radiated electromagnetic wave. By interfering with the electromagnetic waves re-radiated from the radiators 11A, 11B, 11C, and 11D, a region in which the amplitude of the electromagnetic wave is strengthened and a region in which the amplitude of the electromagnetic wave is weakened is formed in the electromagnetic wave heating device. In the examples shown in FIGS. 2 (A) and 2 (B), the line lengths of the radiators 11A, 11B, 11C, and 11D are determined so that the line lengths of the radiators 11A, 11B, 11C, and 11D become longer in this order.
  • the electrical lengths of the radiators 11A, 11B, 11C, and 11D are preferably about 1/2 or more or about 1/2 or less of the wavelength of the input electromagnetic wave EMW0.
  • phase inversion occurs, such as when a radiator having an electric length longer than about 1/2 the wavelength of the input electromagnetic wave EMW0 and a radiator shorter than about 1/2 the wavelength of the input electromagnetic wave EMW0 are close to each other. There is no such thing, and the resulting discharge is less likely to occur.
  • all the electric lengths are about 1/2 or more of the wavelength of the input electromagnetic wave EMW0. Further, when all the electric lengths are about 1 ⁇ 2 or more of the wavelength of the input electromagnetic wave EMW0, it is preferable that all the electric lengths are one wavelength or less of the input electromagnetic wave EMW0. As a result, discharge due to further phase inversion is less likely to occur.
  • the electrical lengths of all the radiators 11A, 11B, 11C, and 11D are larger than about 1/2 or smaller than about 1/2 of the wavelength of the input electromagnetic wave EMW0.
  • the phase inversion caused by the dimensional error caused by the error of the manufacturing accuracy can be reduced, and the discharge is less likely to occur. That is, when the wavelength of the input electromagnetic wave EMW0 is represented by ⁇ , it is preferable that the relationship is such that the electrical length of the shortest radiator> ⁇ / 2 rather than the relationship of the electrical length of the shortest radiator ⁇ ⁇ / 2.
  • the relationship of the electrical length of the longest radiator ⁇ / 2 is preferable to the relationship of the electrical length of the longest radiator ⁇ ⁇ / 2.
  • the electric length is a length that takes into consideration the effect of shortening the wavelength due to the dielectric and magnetic permeability of the base material on which each radiator is provided and the shape of the conductor pattern with respect to the line length. For example, if the frequency of the input electromagnetic wave EMW0 is 2.4 GHz, about 1/2 of the wavelength is 62.5 mm. At this time, even if the line length, which is the physical length, is shorter than this, the electric length may be equivalent to about 1/2 of the wavelength in consideration of the wavelength shortening effect.
  • the radiators 11A, 11B, 11C, 11D receive the input electromagnetic wave EMW0 and emit the synthesized re-radiated electromagnetic wave EMW1. As will be shown later, this re-radiated electromagnetic wave enhances the amplitudes in the direction having the components in the direction from the short line length radiator 11A to the long line length radiator 11D.
  • the article 201 with the electromagnetic wave control body for heating has a centralized heating unit HP for locally particularly heating in the resin container.
  • the re-radiated electromagnetic wave EMW1 enhances the amplitudes of the centralized heating unit HP.
  • the centralized heating unit HP is intensively heated. That is, heating is promoted in the central heating unit HP as compared with a part other than the central heating unit HP.
  • the centralized heating unit HP corresponds to the "first region" of the present invention, and a part other than the centralized heating unit HP corresponds to the "second region" of the present invention.
  • the temperature rise per unit time of the first region when the first region and the second region of the article are the same substance, the temperature rise per unit time of the first region.
  • the rate is higher than the rate of temperature rise per unit time in the second region.
  • FIG. 3 is a diagram showing a radiation pattern of the re-radiated electromagnetic wave of the radiator 11A.
  • the upper part in FIG. 3 is a field emission pattern in front of the radiator 11A, and the lower part in FIG. 3 is a field emission pattern in the plane of the radiator 11A. Since the radiator 11A acts as a dipole antenna (as well as the radiators 11B, 11C, 11D), it re-radiates electromagnetic waves with the intensity distribution of the donut-shaped radiation pattern as shown in FIG.
  • FIGS. 4 (A) and 4 (B) are diagrams showing how electromagnetic waves re-radiated from the radiators 11A, 11B, 11C, and 11D strengthen their amplitudes in the centralized heating unit HP.
  • FIG. 4B is a diagram showing the spread of electromagnetic waves re-radiated from the radiators 11A, 11B, 11C, and 11D, and the circles indicate the positions of the re-radiated electromagnetic waves in phase.
  • the re-radiated electromagnetic waves increase their amplitudes from the short line length radiator 11A to the long line length radiator 11D.
  • the centralized heating section HP of the article 100 of the article 201 with the heating electromagnetic wave controller is selectively and intensively heated.
  • FIG. 5 is a plan view showing the potential distribution in a certain phase in a state where the radiators 11A, 11B, 11C, and 11D re-radiate electromagnetic waves. Since the radiators 11A, 11B, 11C, and 11D all act as dipole antennas, and the phase difference of the re-radiation of adjacent radiation elements is within 90 degrees, the radiators 11A, 11B, 11C, and 11D are close to each other. The polarities of the potentials at both ends in the resonance state of the above are aligned as shown in FIG. 5. In this state, adjacent radiators are close to each other at the same potential portion, so that the radiators 11A, 11B, 11C, Of 11D, the potential difference between adjacent radiators is small. Therefore, no discharge (spark) occurs between adjacent radiators.
  • spark no discharge
  • the centralized heating portion of an article can be selectively heated.
  • the second embodiment shows a heating electromagnetic wave controller that suppresses heating of a predetermined portion of an article.
  • FIG. 6A is a plan view of the article 202 with the electromagnetic wave controller for heating according to the second embodiment.
  • FIG. 6B is a perspective view thereof.
  • the article 202 with an electromagnetic wave control body for heating is, for example, a lunch box packed in a resin container.
  • An antenna 11 is formed in the resin container.
  • the electromagnetic wave control body 102 for heating includes an antenna 11 composed of radiators 11A, 11B, 11C, and 11D, which receives the electromagnetic waves radiated by the electromagnetic wave heating device 300 shown in FIG. 1 and re-radiates the electromagnetic waves.
  • These radiators 11A, 11B, 11C, and 11D are composed of a plurality of linear conductor patterns having different lengths formed along the surface of the resin container.
  • the electromagnetic waves re-radiated from the radiators 11A, 11B, 11C, and 11D are prevented from being irradiated to the non-heated portion.
  • the radiators 11A, 11B, 11C, and 11D define a region in which the amplitudes of the re-radiated electromagnetic waves are strengthened by determining the phase of the re-radiated electromagnetic waves.
  • the line lengths of the radiators 11A, 11B, 11C, and 11D are determined so that the line lengths of the radiators 11A, 11B, 11C, and 11D become longer in this order.
  • the radiators 11A, 11B, 11C, and 11D receive the input electromagnetic wave EMW0 and emit the re-radiated electromagnetic wave EMW1.
  • this re-radiated electromagnetic wave enhances the amplitudes in the direction having the components in the direction from the short line length radiator 11A to the long line length radiator 11D.
  • This action itself is the same as that of the heating electromagnetic wave controller 101 shown in the first embodiment.
  • FIG. 7 is a diagram showing the directional action of electromagnetic waves re-radiated from the radiators 11A, 11B, 11C, and 11D.
  • the article 202 with the electromagnetic wave controller for heating of the present embodiment has a non-heating portion NHP that is not particularly locally heated in the resin container.
  • the non-heated portion NHP overlaps a part of the radiators 11A, 11B, 11C, and 11D in a plan view, and the re-radiated electromagnetic wave EMW1 weakens the amplitude in the non-heated portion NHP.
  • the heating of the non-heated portion NHP is particularly suppressed. That is, selective non-heating control is performed.
  • the non-heated portion NHP corresponds to the second region of the present invention, and a part other than the non-heated portion NHP corresponds to the first region of the present invention.
  • the combination of the first embodiment and the second embodiment is possible.
  • the article 202 with the electromagnetic wave control body for heating is a lunch box
  • rice, fried chicken, etc. are arranged in the area corresponding to the central heating part HP
  • potato salad, etc. are arranged in the area corresponding to the non-heating part NHP. So, rice and fried chicken are heated by electromagnetic waves, and potato salad and the like can be avoided from being heated by electromagnetic waves.
  • food may be arranged in addition to the centrally heated portion HP and the non-heated portion NHP.
  • the electromagnetic wave control body for heating which has a different shape of the radiator from the examples shown in the first and second embodiments, is shown.
  • FIG. 8A is a plan view of the article 203A with an electromagnetic wave controller for heating according to the third embodiment.
  • FIG. 8B is a perspective view thereof.
  • the electromagnetic wave control body 103A for heating includes an antenna 11 composed of radiators 11A, 11B, and 11C, which receives the electromagnetic waves radiated by the electromagnetic wave heating device 300 shown in FIG. 1 and re-radiates the electromagnetic waves.
  • These radiators 11A, 11B, 11C are composed of a plurality of conductor patterns formed along the surface of the resin container.
  • the radiators 11A, 11B, and 11C all have a cross-shaped conductor pattern and act as a cross dipole antenna.
  • the radiators 11A, 11B, and 11C receive electromagnetic waves radiated by the electromagnetic wave heating device 300, and are excited by a polarization component whose electric field oscillates in the Y direction at a conductor portion extending in the Y direction, and re-radiates this polarization. It emits electromagnetic waves. Further, in the conductor portion extending in the X direction, the electric field is excited by a polarization component that oscillates in the X direction, and a re-radiated electromagnetic wave of this polarization is emitted. That is, both the component whose plane of polarization faces the X direction and the component whose plane of polarization faces the Y direction are excited and re-radiated.
  • FIG. 9A is a plan view of another article 203B with an electromagnetic wave controller for heating according to the third embodiment.
  • FIG. 9B is a perspective view thereof.
  • the heating electromagnetic wave controller 103B receives the electromagnetic wave radiated by the electromagnetic wave heating device 300 shown in FIG. 1 and re-radiates the electromagnetic wave.
  • the orientation of the radiator 11B is different from the examples shown in FIGS. 8 (A) and 8 (B). In this example as well, the radiators 11A, 11B and 11C act as cross dipole antennas.
  • the arrows at both ends are the shortest distance between adjacent radiators.
  • the shortest distance between adjacent radiators is larger than that of the article 203A with the electromagnetic wave controller for heating shown in FIGS. 8 (A) and 8 (B). Therefore, among the radiators 11A, 11B, and 11C, the discharge between the adjacent radiators can be effectively suppressed.
  • radiators 11A, 11B, and 11C have a cross shape, but a plurality of radiations are emitted. Of the bodies, only one or several may be cross-shaped radiators.
  • the fourth embodiment shows a heating electromagnetic wave controller including a plurality of antennas.
  • FIG. 10A is a plan view of the article 204 with the electromagnetic wave controller for heating according to the fourth embodiment.
  • FIG. 10B is a perspective view thereof.
  • the heating electromagnetic wave controller 104 includes antennas 11, 12, and 13 that receive the electromagnetic waves radiated by the electromagnetic wave heating device 300 shown in FIG. 1 and re-radiate the electromagnetic waves.
  • the antenna 11 is composed of radiators 11A, 11B, 11C, 11D
  • the antenna 12 is composed of radiators 12A, 12B, 12C, 12D
  • the antenna 13 is composed of radiators 13A, 13B, 13C, 13D.
  • the radiators 11A, 11B, 11C, 11D are composed of a plurality of conductor patterns formed along the surface of the resin container.
  • the radiators 12A, 12B, 12C, and 12D are composed of a plurality of conductor patterns formed along the surface of the resin container.
  • the radiators 13A, 13B, 13C, and 13D are also composed of a plurality of conductor patterns formed along the surface of the resin container.
  • the re-radiated electromagnetic wave has a + X direction component. In the direction, the amplitudes are strengthened. Since the line lengths of the radiators 12A, 12B, 12C, and 12D constituting the antenna 12 are determined so that the line lengths are sequentially increased in the ⁇ X direction, the re-radiated electromagnetic wave is a component in the ⁇ X direction. In the direction of having, the amplitudes are strengthened.
  • the re-radiated electromagnetic wave is ⁇ Y.
  • the amplitudes are strengthened in the direction having the directional component.
  • the direction in which these amplitudes are strengthened corresponds to the "direction in which the amplitudes of the re-radiated electromagnetic waves are strengthened" in the present invention.
  • the directions in which the amplitudes of the antennas 11, 12, and 13 are strengthened are all the directions of the centralized heating unit HP. Since the centralized heating unit HP is intensively heated by the plurality of antennas having different directions in this way, the electromagnetic wave energy of a wide area is converted into the re-radiated electromagnetic wave, and the centralized heating unit HP is heated with high efficiency.
  • a fifth embodiment shows a heating electromagnetic wave controller having antennas on a plurality of different surfaces.
  • FIG. 11 is a perspective view of the article 205 with the electromagnetic wave control body for heating according to the fifth embodiment.
  • the electromagnetic wave control body 105 for heating includes antennas 11 and 12 that receive the electromagnetic waves radiated by the electromagnetic wave heating device 300 shown in FIG. 1 and re-radiate the electromagnetic waves.
  • the antenna 11 is composed of radiators 11A, 11B, 11C, 11D
  • the antenna 12 is composed of radiators 12A, 12B, 12C, 12D.
  • the radiators 11A, 11B, 11C, and 11D are composed of a plurality of conductor patterns formed along a plane parallel to the XY plane of the resin container.
  • the radiators 12A, 12B, 12C, and 12D are composed of a plurality of conductor patterns formed along a plane parallel to the XX plane of the resin container.
  • the line lengths of the radiators 11A, 11B, 11C, and 11D constituting the antenna 11 are determined so that the line lengths are sequentially increased in the X direction
  • the line lengths of the radiators 11A, 11B, 11C, and 11D are determined in the + X direction in response to the input electromagnetic wave EMW01.
  • the re-radiated electromagnetic wave EMW11 that strengthens the amplitude is emitted in the direction having the component and the component in the ⁇ Z direction.
  • the radiators 12A, 12B, 12C, and 12D constituting the antenna 12 are determined so that the line lengths are sequentially increased in the + X direction component
  • the radiators 12A, 12B, 12C, and 12D receive the input electromagnetic wave EMW02.
  • the re-radiated electromagnetic wave EMW12 that strengthens the amplitude is emitted in the direction having the + X direction component and the + Y direction component.
  • the directions of these re-radiated electromagnetic waves correspond to the "directions in which the amplitudes of the re-radiated electromagnetic waves are strengthened" of the present invention.
  • the centralized heating unit HP is intensively heated. Therefore, the electromagnetic wave energy of a wide area is converted into the re-radiated electromagnetic wave, and the centralized heating unit HP is heated with high efficiency.
  • a heating electromagnetic wave controller having an antenna on a member other than the article to be heated will be described.
  • FIG. 12 is a perspective view of the article 206 with the electromagnetic wave controller for heating according to the sixth embodiment.
  • the article 206 with the electromagnetic wave control body for heating is a lunch box packed in a resin container, and the package 21 is packaged on the outer surface of the resin container.
  • the package 21 constitutes the heating electromagnetic wave control body 106.
  • the electromagnetic wave control body 106 for heating includes an antenna 11 composed of radiators 11A, 11B, 11C, and 11D, which receives the electromagnetic waves radiated by the electromagnetic wave heating device 300 shown in FIG. 1 and re-radiates the electromagnetic waves.
  • the plurality of radiators 11A, 11B, 11C, and 11D are composed of a plurality of linear conductor patterns having different lengths formed along the surface of the package 21.
  • the package 21 is, for example, a PET (polyethylene terephthalate) film, and the radiators 11A, 11B, 11C, and 11D are conductor patterns formed by patterning an aluminum foil.
  • the operation of the antenna 11 composed of the radiators 11A, 11B, 11C, and 11D is as shown in the first embodiment or the second embodiment.
  • the antenna such as the antenna 11 may be formed on a package other than the article to be heated.
  • the antenna 11 is formed on the package covering the container of the article, but the antenna 11 or the like may be formed on the label or the sticker attached to the container of the article.
  • the electromagnetic wave control body for heating to be attached to the article to be heated is shown.
  • FIG. 13 (A) is a plan view of the heating electromagnetic wave controller 107A according to the seventh embodiment
  • FIG. 13 (B) is a front view thereof.
  • the heating electromagnetic wave control body 107A is composed of an insulating base material 22 and radiators 11A, 11B, and 11C formed on the surface thereof and having a conductor pattern.
  • the insulating base material 22 is, for example, a resin film such as PET (polyethylene terephthalate), PE (polyimide), and LCP (liquid crystal polymer).
  • the radiators 11A, 11B, and 11C are conductor patterns of aluminum, copper, silver, and the like. According to this embodiment, the line lengths of the radiators 11A, 11B, and 11C are shortened due to the wavelength shortening effect of the dielectric constant of the insulating base material 22, and the overall size can be reduced.
  • FIG. 14 (A) is a plan view of another heating electromagnetic wave controller 107B according to the seventh embodiment
  • FIG. 14 (B) is a front view thereof.
  • the heating electromagnetic wave control body 107B is provided with an adhesive 24 on the radiator 11A, 11B, 11C forming surfaces of the insulating base material 22 shown in FIGS. 13 (A) and 13 (B).
  • the forming surface of the adhesive 24 is attached to, for example, the surface of the article storage container.
  • an article with an electromagnetic wave control body for heating can be easily constructed only by attaching it to an existing container or package. Further, since the electromagnetic wave control body 107B for heating may be smaller than the package body, the cost can be reduced.
  • FIG. 15 (A) is a plan view of still another electromagnetic wave control body for heating 107C according to the seventh embodiment
  • FIG. 15 (B) is a cross-sectional view of the XX portion in FIG. 15 (A).
  • the heating electromagnetic wave control body 107C is provided with radiators 11A, 11B, and 11C between the layers of the two insulating base materials 22, 23.
  • the insulating base material 23 is a resin film such as PET (polyethylene terephthalate), PE (polyimide), LCP (liquid crystal polymer) or the like.
  • PET polyethylene terephthalate
  • PE polyimide
  • LCP liquid crystal polymer
  • the electromagnetic wave control body for heating which has a different structure of the insulating base material from the embodiments shown so far, is shown.
  • FIG. 16A is a plan view of the heating electromagnetic wave control body 108 according to the eighth embodiment
  • FIG. 16B is a plan view of the heating electromagnetic wave control body 108 as a comparative example thereof.
  • the electromagnetic wave control body 108 for heating is composed of insulating base materials 22A, 22B, 22C and radiators 11A, 11B, 11C formed on the surface thereof and having a conductor pattern.
  • the radiator 11A is formed on the insulating base material 22A
  • the radiator 11B is formed on the insulating base material 22B
  • the radiator 11C is formed on the insulating base material 22C.
  • the permittivity of the insulating base material 22A is expressed by ⁇ a
  • the permittivity of the insulating base material 22B is expressed by ⁇ b
  • the permittivity of the insulating base material 22C is expressed by ⁇ c
  • ⁇ a ⁇ b ⁇ c there is a relationship of ⁇ a ⁇ b ⁇ c. Therefore, the wavelength shortening effect of the insulating base material 22C is the highest, the wavelength shortening effect of the insulating base material 22A is the lowest, and the wavelength shortening effect of the insulating base material 22B is intermediate.
  • the line lengths of the radiators 11A, 11B, and 11C are the same, but due to the wavelength shortening effect, the effective line length is the longest for the radiator 11C and the radiator 11A.
  • the shortest, radiator 11B is an intermediate length. Therefore, it is possible to control the position of the region where the amplitudes of the re-radiated electromagnetic waves are strengthened, as in the case of the radiators of the embodiments shown so far.
  • the radiators 11A, 11B, and 11C are formed on the insulating base material 22 having a uniform dielectric constant. These radiators 11A, 11B, 11C have different line lengths in adjacent radiators. Therefore, as shown by the arrows at both ends in FIG. 16B, the potential difference at the position where one end of the adjacent radiator is closest to each other is relatively large.
  • the wavelength shortening effect can be changed not only by the dielectric constant of the insulating base material but also by the thickness of the insulating base material, the arrangement of the dielectric material around the radiator, and the like. Further, by forming adjacent radiators on both sides of the insulating base material, the magnitude of the wavelength shortening effect due to the dielectric constant of the insulating base material can be determined.
  • FIG. 17 is a plan view of the article 209 with the electromagnetic wave control body for heating according to the ninth embodiment.
  • the heating electromagnetic wave control body 109 receives the electromagnetic wave radiated by the electromagnetic wave heating device 300 shown in FIG. 1 and re-radiates the electromagnetic wave.
  • the heating electromagnetic wave control body 109 is the radiators 11A, 11B, 11C, 11D, 12A. , 12B, 12C, 12D, 13A, 13B, 13C, 13D.
  • the radiators 12A, 12B, 12C, 12D are the same as the radiators 11A, 11B, 11C, 11D, and the radiators 13A, 13B, 13C, 13D are the same as the radiators 11A, 11B, 11C, 11D.
  • the centralized heating unit HP extends in the arrangement direction of the radiators 11A, 11B, 11C, 11D, 12A, 12B, 12C, 12D, 13A, 13B, 13C, 13D.
  • the centralized heating section HP in a relatively wide range can be efficiently heated.
  • ⁇ 10th Embodiment An example of a heating electromagnetic wave controller including a reflective conductor is shown.
  • FIG. 18A is a plan view of the article 210 with the electromagnetic wave control body for heating according to the tenth embodiment
  • FIG. 18B is a front view thereof.
  • the article 210 with an electromagnetic wave control body for heating is, for example, a lunch box packed in a resin container.
  • An electromagnetic wave control body 110 for heating is provided on the upper surface of the resin container.
  • the heating electromagnetic wave control body 110 includes an antenna 11 composed of radiators 11A, 11B, 11C, and 11D.
  • the radiators 11A, 11B, 11C and 11D are formed on the lower surface of the insulating base material 22.
  • a reflective conductor 31 is provided on the upper surface of the insulating base material 22.
  • the reflective conductor 31 is, for example, an aluminum foil laminated on the insulating base material 22.
  • the article 210 with the electromagnetic wave control body for heating of the present embodiment has a non-heating portion NHP that is not particularly locally heated in the resin container.
  • the heating electromagnetic wave control body 110 is provided above the non-heating portion NHP. Therefore, the input electromagnetic wave EMW0 originally irradiated to the non-heated portion NHP is shielded by the heating electromagnetic wave controller 110, and the heating of the non-heated portion NHP is suppressed.
  • the antenna 11 receives the electromagnetic wave incident on the reflective conductor 31 from below and re-receives the electromagnetic wave.
  • the direction in which the amplitudes of the radiated electromagnetic waves EMW1 are strengthened is controlled. Since the re-radiated electromagnetic wave EMW1 faces the direction of avoiding the non-heated portion NHP, the heating of the non-heated portion NHP is also suppressed.
  • the conductor pattern of the radiator shows the electromagnetic wave control body for heating which is different from the examples shown so far.
  • FIG. 19A is a plan view of the article 211 with the electromagnetic wave control body for heating according to the eleventh embodiment, and FIG. 19B is a front view thereof.
  • Article 211 with an electromagnetic wave control body for heating is, for example, a lunch box packed in a resin container.
  • An electromagnetic wave controller 111 for heating is provided on the upper surface of the resin container.
  • the heating electromagnetic wave control body 111 includes an antenna 11 composed of radiators 11A, 11B, and 11C, and an antenna 12 composed of radiators 12A, 12B, and 11C.
  • the radiators 11A, 11B, 11C, 12A, and 12B are formed on the lower surface of the insulating base material 22.
  • the heating electromagnetic wave controller 111 intensively heats the centralized heating unit HP in the resin container.
  • the radiators 11A, 11B, 11C, 12A, and 12B are all rectangular conductor patterns, and each acts as a patch antenna.
  • the radiators 11A, 11B, and 11C are arranged in the ⁇ X direction in this order. Further, the radiators 12A, 12B and 11C are arranged in the + Y direction in this order.
  • the line length of each radiator is determined so that the size of one side becomes longer in this order.
  • the line length of each radiator is determined so that the size of one side becomes longer in this order.
  • the electrical length of each side of the radiators 11A, 11B, and 11C is preferably about 1/2 or more or about 1/2 or less of the wavelength of the input electromagnetic wave EMW0.
  • the electrical length of each side of the radiators 12A, 12B, and 11C is preferably about 1/2 or more or about 1/2 or less of the wavelength of the input electromagnetic wave EMW0.
  • phase inversion occurs, such as when a radiator having an electric length longer than about 1/2 the wavelength of the input electromagnetic wave EMW0 and a radiator shorter than about 1/2 the wavelength of the input electromagnetic wave EMW0 are close to each other. There is no such thing, and the resulting discharge is less likely to occur.
  • the electric length of all sides is about 1/2 or more of the wavelength of the input electromagnetic wave EMW0. Further, when the electric lengths of all sides are about 1 ⁇ 2 or more of the wavelength of the input electromagnetic wave EMW0, it is preferable that the electric lengths of all sides are one wavelength or less of the input electromagnetic wave EMW0. As a result, discharge due to further phase inversion is less likely to occur.
  • the electric length of each side of all the radiators 11A, 11B, 11C, 12A, 12B is larger than about 1/2 or smaller than about 1/2 of the wavelength of the input electromagnetic wave EMW0.
  • the antenna 11 determines the direction in which the amplitudes of the re-radiated electromagnetic waves in the XX plane are strengthened.
  • the antenna 12 determines the direction in which the amplitudes of the re-radiated electromagnetic waves in the YY plane are strengthened. Therefore, in this example, the amplitude of the heating electromagnetic wave controller 111 is strengthened in the direction inclined in the direction having the + Y direction component and the ⁇ X direction component from directly below, and the centralized heating unit HP is intensively heated.
  • the radiator is not limited to the dipole antenna, and any conductor pattern that is excited by receiving an input electromagnetic wave and re-radiates the electromagnetic wave can be used.
  • ⁇ 12th Embodiment an example of an article with an electromagnetic wave controller for heating is shown in which the arrival direction of the input electromagnetic wave and the positional relationship between the antenna and the centralized heating unit are different from the examples shown so far.
  • FIG. 20 is a front view of the article 212 with the electromagnetic wave control body for heating according to the twelfth embodiment.
  • the article 212 with an electromagnetic wave control body for heating is, for example, a lunch box packed in a resin container.
  • An electromagnetic wave controller 112 for heating is provided on the lower surface of the resin container.
  • the heating electromagnetic wave control body 112 includes an antenna 11 composed of radiators 11A, 11B, 11C, and 11D.
  • the heating electromagnetic wave controller 112 intensively heats the centralized heating unit HP.
  • the heating electromagnetic wave controller may be provided on the side of the surface of the container for storing the article, which is far from the arrival direction of the input electromagnetic wave EMW0.
  • the electromagnetic wave controller for heating may be provided on the inner surface of the container.
  • the electromagnetic wave control body for heating is not limited to being provided in the container for storing the article, and may be directly arranged on the article to be heated.
  • the conductor pattern as a radiator may be formed by printing a conductive paste in addition to patterning the metal foil.
  • the electromagnetic wave control body for heating is not limited to being provided on the container or packaging, but can also be provided on a cover or the like that covers the article to be heated.

Abstract

加熱用電磁波制御体(101)は、電磁波加熱装置で加熱される物品の近傍に配置されて、物品へ照射される電磁波を制御する。加熱用電磁波制御体(101)は、電磁波加熱装置により放射される電磁波を受けて、電磁波を再放射する複数の放射体(11A,11B,11C,11D)で構成されるアンテナ(11)を備える。複数の放射体(11A,11B,11C,11D)は、再放射の電磁波の位相を定めることで、当該再放射の電磁波の振幅を強め合う方向を定める。このように、加熱用電磁波を受けて、加熱対象物品に対し照射される電磁波を制御することで、物品の選択的加熱又は選択的非加熱を行う加熱用電磁波制御体を構成する。

Description

加熱用電磁波制御体及び加熱用電磁波制御体付き物品
 本発明は、加熱用電磁波で物品を加熱する装置に用いられる加熱用電磁波制御体及び加熱用電磁波制御体付き物品に関する。
 電子レンジ内で用いられる包装において、マイクロ波を、遮蔽する部分、透過する部分、吸収して発熱する部分、をそれぞれ設けることによって、焦げ目をつけたりバランスよく加熱させたりすることを目的とした用具が特許文献1に開示されている。
 特許文献1に示されている用具は、加熱対象である餅に被せて用いられる。この用具は、アルミ箔による遮蔽体でマイクロ波を遮蔽し、アルミ箔の開口をマイクロ波の透過部とし、アルミナとアルミニウムの混合材料やその他の金属類による発熱体で、餅を直接加熱するように構成されている。
特開2005-351486号公報
 特許文献1に記載の用具では、次のような課題がある。
・発熱体の熱が食品に直接伝わるように、発熱体を食品に接触させる必要があり、食品が発熱体側に貼りつきやすい。
・用具が食品に直接接するので、衛生面での懸念がある。
・加熱を促進する発熱体が高温となるため、電子レンジから取り出す際にやけどなどの危険性が高まる。
・加熱を抑制したい部分に対してはマイクロ波が遮蔽されるため、全体として熱効率が低下する。
・発熱体や遮蔽体に金属を用いるので、金属が発熱して燃える懸念がある。
 そこで、本発明の目的は、加熱用電磁波を受けて、加熱対象物品に対し照射される電磁波を制御することで、物品の選択的加熱又は選択的非加熱を可能とした加熱用電磁波制御体及び加熱用電磁波制御体付き物品を提供することにある。
 本発明の加熱用電磁波制御体は、電磁波加熱装置で加熱される第1領域及び第2領域を有する物品と共に電磁波加熱装置の内部に配置されて、前記物品へ照射される電磁波を制御する加熱用電磁波制御体であって、電磁波加熱装置により放射される電磁波を受けて電磁波を再放射する複数の放射体で構成されるアンテナを備え、前記複数の放射体は、前記再放射の電磁波の干渉によって、電磁波加熱装置の内部に、電磁波の振幅を強め合う領域と弱め合う領域とを形成することで、前記物品の第2領域に比べて第1領域の加熱を促進する。
 本発明の加熱用電磁波制御体付き物品は、電磁波加熱装置で加熱される第1領域及び第2領域を有する物品と、この物品と共に電磁波加熱装置の内部に配置されて、物品へ照射される電磁波を制御する加熱用電磁波制御体と、を備える。そして、この加熱用電磁波制御体は、電磁波加熱装置で加熱される第1領域及び第2領域を有する物品と共に電磁波加熱装置の内部に配置されて、前記物品へ照射される電磁波を制御する加熱用電磁波制御体であって、電磁波加熱装置により放射される電磁波を受けて電磁波を再放射する複数の放射体で構成されるアンテナを備え、前記複数の放射体は、前記再放射の電磁波の干渉によって、電磁波加熱装置の内部に、電磁波の振幅を強め合う領域と弱め合う領域とを形成することで、前記物品の第2領域に比べて第1領域の加熱を促進する。
 本発明によれば、複数の放射体から再放射される電磁波の干渉によって(位相の制御によって)電磁波の振幅分布を不均一にするので、選択的加熱又は選択的非加熱の領域を定めることができる。
 本発明によれば、加熱用電磁波を受けて、加熱対象物品に対し照射される電磁波を制御することで、物品の選択的加熱又は選択的非加熱を行うので、次のような効果を奏する。
・加熱用電磁波制御体は加熱対象の物品に接触させる必要がなく、物品の貼り付き等が回避できる。
・加熱用電磁波制御体が物品に直接接しないので、物品が食品等である場合の衛生面での懸念がない。
・加熱を促進する発熱体が無いので、発熱体が高温になることによる問題が生じない。
・加熱用電磁波が遮蔽されるわけではないので、全体の熱効率が低下しない。
・放射体の放射効率は高いため、放射体の発熱を抑えることができる。
図1は第1の実施形態に係る加熱用電磁波制御体付き物品201の加熱状態を示す図である。 図2(A)は加熱用電磁波制御体付き物品201の平面図である。図2(B)は加熱用電磁波制御体付き物品201の斜視図である。 図3は放射体11Aの再放射電磁波の放射パターンを示す図である。 図4(A)、図4(B)は放射体11A,11B,11C,11Dから再放射される電磁波が集中加熱部HPにおいて振幅が大きくなる様子を示す図である。 図5は、放射体11A,11B,11C,11Dが電磁波を再放射する状態での、ある位相における電位分布を示す平面図である。 図6(A)は第2の実施形態に係る加熱用電磁波制御体付き物品202の平面図である。図6(B)は加熱用電磁波制御体付き物品202の斜視図である。 図7は、第2の実施形態に係る加熱用電磁波制御体付き物品202の放射体11A,11B,11C,11Dから再放射される電磁波を示す図である。 図8(A)は第3の実施形態に係る加熱用電磁波制御体付き物品203Aの平面図である。図8(B)は加熱用電磁波制御体付き物品203Aの斜視図である。 図9(A)は第3の実施形態に係る、別の加熱用電磁波制御体付き物品203Bの平面図である。図9(B)は加熱用電磁波制御体付き物品203Bの斜視図である。 図10(A)は第4の実施形態に係る加熱用電磁波制御体付き物品204の平面図である。図10(B)は加熱用電磁波制御体付き物品204の斜視図である。 図11は第5の実施形態に係る加熱用電磁波制御体付き物品205の斜視図である。 図12は第6の実施形態に係る加熱用電磁波制御体付き物品206の斜視図である。 図13(A)は第7の実施形態に係る加熱用電磁波制御体107Aの平面図であり、図13(B)はその正面図である。 図14(A)は第7の実施形態に係る別の加熱用電磁波制御体107Bの平面図であり、図14(B)はその正面図である。 図15(A)は第7の実施形態に係るさらに別の加熱用電磁波制御体107Cの平面図であり、図15(B)は、図15(A)におけるX-X部分の断面図である。 図16(A)は第8の実施形態に係る加熱用電磁波制御体108の平面図であり、図16(B)はその比較例としての加熱用電磁波制御体の平面図である。 図17は第9の実施形態に係る加熱用電磁波制御体付き物品209の平面図である。 図18(A)は第10の実施形態に係る加熱用電磁波制御体付き物品210の平面図であり、図18(B)はその正面図である。 図19(A)は第11の実施形態に係る加熱用電磁波制御体付き物品211の平面図であり、図19(B)はその正面図である。 図20は第12の実施形態に係る加熱用電磁波制御体付き物品212の正面図である。
 以降、図を参照して幾つかの具体的な例を挙げて、本発明を実施するための複数の形態を示す。各図中には同一箇所に同一符号を付している。要点の説明又は理解の容易性を考慮して、便宜上実施形態を分けて示すが、異なる実施形態で示した構成の部分的な置換又は組み合わせは可能である。第2の実施形態以降では第1の実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。
《第1の実施形態》
 図1は第1の実施形態に係る加熱用電磁波制御体付き物品201の加熱状態を示す図である。加熱用電磁波制御体付き物品201は電磁波加熱装置(電子レンジ)300の庫内55に入れられる。電磁波加熱装置300は、高圧トランス51、マグネトロン52、アンテナ53、導波管54、庫内55、ターンテーブル56等を備える。
 マグネトロン52は高圧トランス51からの高圧を電源としてマイクロ波発振し、アンテナ53から放射されるマイクロ波は導波管54を伝搬し、庫内55内に照射される。加熱用電磁波制御体付き物品201はこのマイクロ波を受けて発熱する。なお、マグネトロン52や庫内55などの電磁波加熱装置300の構成要素の配置関係は、図1に示したものに限定されない。例えば、庫内55に対して、下方もしくは上下両方にマグネトロン52や導波管54があってもよい。
 図2(A)は加熱用電磁波制御体付き物品201の平面図である。図2(B)はその斜視図である。
 加熱用電磁波制御体付き物品201は、例えば樹脂容器でパックされた弁当である。樹脂容器には後述するアンテナ11が形成されている。
 加熱用電磁波制御体101は、上記電磁波加熱装置300により放射される電磁波を受けて電磁波を再放射する、放射体11A,11B,11C,11Dで構成されるアンテナ11を備える。これら放射体11A,11B,11C,11Dは、樹脂容器の面に沿って形成された、長さの異なる線状の複数の導体パターンで構成される。上記樹脂容器はPP(ポリプロピレン)やPS(ポリスチレン)等の樹脂成型体であり、放射体11A,11B,11C,11Dは、例えばアルミニウム箔のパターンニングにより形成された導体パターンである。
 放射体11A,11B,11C,11Dは、再放射の電磁波の位相を定める。放射体11A,11B,11C,11Dからそれぞれ再放射される電磁波が干渉することで、電磁波加熱装置内に電磁波の振幅が強め合う領域と弱め合う領域とが形成される。図2(A)、図2(B)に示す例では、放射体11A,11B,11C,11Dはこの順に線長が長くなるように、各放射体の線長が定められている。放射体11A,11B,11C,11Dの各電気長は、入力電磁波EMW0の波長の約1/2以上又は約1/2以下であることが好ましい。これにより、入力電磁波EMW0の波長の約1/2より長い電気長の放射体と、入力電磁波EMW0の波長の約1/2より短い放射体とが近接する場合のような、位相反転が生じることがなく、それによる放電が生じにくくなる。
 また、電気長が長い方が短い方に比べて燃えにくいため、すべての電気長が入力電磁波EMW0の波長の約1/2以上であることがさらに好ましい。また、すべての電気長が入力電磁波EMW0の波長の約1/2以上である場合、すべての電気長が入力電磁波EMW0の1波長以下であることが好ましい。これにより、さらなる位相反転による放電が生じにくくなる。
 また、すべての放射体11A,11B,11C,11Dの電気長は、入力電磁波EMW0の波長の約1/2より大きいこと又は約1/2より小さいことが好ましい。これにより、製造精度の誤差により発生してしまう寸法誤差に起因する位相反転を低減でき、さらに放電が生じにくくなる。すなわち、入力電磁波EMW0の波長をλで表すとき、最短放射体の電気長≧λ/2の関係よりも、最短放射体の電気長>λ/2の関係であることが好ましい。同様に、最長放射体の電気長≦λ/2の関係よりも、最長放射体の電気長<λ/2の関係であることが好ましい。
 ここで電気長とは、線長に対して各放射体が設けられている基材の誘電性及び透磁性や導体パターン形状による波長短縮効果を考慮した長さである。例えば入力電磁波EMW0の周波数が2.4GHzであれば、波長の約1/2は62.5mmである。このとき物理的な長さである線長がこれより短い場合であっても、波長短縮効果を考慮すれば電気長が波長の約1/2相当になる場合がある。
 放射体11A,11B,11C,11Dは、入力電磁波EMW0を受けて、合成された再放射電磁波EMW1を放射する。この再放射電磁波は、後に示すとおり、線長の短い放射体11Aから線長の長い放射体11D方向の成分を有する方向において、振幅を強め合う。
 加熱用電磁波制御体付き物品201は、樹脂容器内において局部的に特に加熱させる集中加熱部HPを有する。上記再放射電磁波EMW1は集中加熱部HPにおいて、振幅を強め合う。このことにより、集中加熱部HPは集中的に加熱される。つまり、集中加熱部HPは、集中加熱部HP以外の一部に比べて加熱が促進される。第1の実施形態において集中加熱部HPは本発明の「第1領域」に、集中加熱部HP以外の一部は本発明の「第2領域」にそれぞれ相当する。また、「第2領域に比べて第1領域の加熱を促進する」状態の一例は、物品の第1領域と第2領域とが同じ物質であるとき、第1領域の単位時間あたりの温度上昇率が、第2領域の単位時間あたりの温度上昇率より高い状態である。
 図3は上記放射体11Aの再放射電磁波の放射パターンを示す図である。図3中の上部は放射体11Aの正面における電界放射パターンであり、図3中の下部は放射体11Aの平面における電界放射パターンである。放射体11Aは(放射体11B,11C,11Dについても同様に)ダイポールアンテナとして作用するので、図3に示すとおりドーナツ状放射パターンの強度分布で電磁波を再放射する。
 図4(A)、図4(B)は放射体11A,11B,11C,11Dから再放射される電磁波が集中加熱部HPにおいて振幅を強め合う様子を示す図である。特に、図4(B)は、放射体11A,11B,11C,11Dから再放射される電磁波の拡がりを示す図であり、円は再放射電磁波の同位相の位置を示している。放射体11A,11B,11C,11Dから再放射される電磁波は、線長が長い程、共振に要する時間が掛かる。そのため、線長の長い放射体は、線長の短い放射体に比べて、再放射電磁波の位相が遅れる。その結果、再放射電磁波は、線長の短い放射体11Aから、線長の長い放射体11D方向において振幅を強め合う。図4(A)に示すとおり、加熱用電磁波制御体付き物品201の物品100の集中加熱部HPが選択的集中的に加熱される。
 図5は、放射体11A,11B,11C,11Dが電磁波を再放射する状態での、ある位相における電位分布を示す平面図である。放射体11A,11B,11C,11Dはいずれもダイポールアンテナとして作用するので、かつ隣り合う放射素子の再放射の位相差が90度以内で近接しているので、放射体11A,11B,11C,11Dの共振状態における両端の電位の極性は、図5に示すように揃っているこの状態は、隣接する放射体同士が、同電位部で近接する状態であるので、放射体11A,11B,11C,11Dうち隣接する放射体間の電位差が小さい。そのため、隣接する放射体間で放電(スパーク)が生じることはない。
 本実施形態によれば、次のような効果を奏する。
(a)物品の集中加熱部を選択的に加熱できる。
(b)加熱用電磁波制御体を物品に接触させる必要がないので、両者が貼り付くことがない。
(c)アンテナの再放射で加熱を促進するため、それ自体が発熱する「発熱体」を近接させることなく、食品の局所加熱が可能となり、安全性が向上する。
(d)入力電磁波を遮断することなく、エネルギーを有効活用されるため、加熱効率が高い。
(e)各放射体11A,11B,11C,11Dの共振周波数は入力電磁波EMW0の周波数の近傍であるので、再放射電磁波の放射効率が高い(放射体11A,11B,11C,11Dの放射抵抗が高い状態であって、損失が小さい)。そのため、入力電磁波を受けることによる放射体の発熱量は少ない。
(f)複数の放射体11A,11B,11C,11Dのうち、隣接する放射体間での放電が防止できる。
《第2の実施形態》
 第2の実施形態では、物品の所定部の加熱を抑制する加熱用電磁波制御体について示す。
 図6(A)は第2の実施形態に係る加熱用電磁波制御体付き物品202の平面図である。図6(B)はその斜視図である。
 加熱用電磁波制御体付き物品202は、例えば樹脂容器でパックされた弁当である。樹脂容器にはアンテナ11が形成されている。
 加熱用電磁波制御体102は、図1に示した電磁波加熱装置300により放射される電磁波を受けて電磁波を再放射する、放射体11A,11B,11C,11Dで構成されるアンテナ11を備える。これら放射体11A,11B,11C,11Dは、樹脂容器の面に沿って形成された、長さの異なる線状の複数の導体パターンで構成される。
 第1の実施形態とは異なり、第2の実施形態では、放射体11A,11B,11C,11Dから再放射される電磁波が非加熱部に照射されないようにしている。
 放射体11A,11B,11C,11Dは、再放射の電磁波の位相を定めることによって、当該再放射の電磁波の振幅を強め合う領域を定める。図6(A)、図6(B)に示す例では、放射体11A,11B,11C,11Dはこの順に線長が長くなるように、各放射体の線長が定められている。放射体11A,11B,11C,11Dは、入力電磁波EMW0を受けて、再放射電磁波EMW1を放射する。この再放射電磁波は、後に示すとおり、線長の短い放射体11Aから線長の長い放射体11D方向の成分を有する方向において振幅を強め合う。この作用自体は第1の実施形態で示した加熱用電磁波制御体101と同様である。
 図7は、放射体11A,11B,11C,11Dから再放射される電磁波の指向作用を示す図である。本実施形態の加熱用電磁波制御体付き物品202は、樹脂容器内において、局部的に特に加熱させない非加熱部NHPを有する。この非加熱部NHPは、平面視で放射体11A,11B,11C,11Dの一部と重なり、また、再放射電磁波EMW1は非加熱部NHPにおいて振幅を弱め合う。このことにより、非加熱部NHPの加熱が特別に抑制される。つまり、選択的非加熱の制御が行われる。第2の実施形態において、非加熱部NHPは本発明の第2領域に、非加熱部NHP以外の一部は本発明の第1領域にそれぞれ相当する。
 前述の通り、第1の実施形態と第2の実施形態との組み合わせは可能である。例えば、加熱用電磁波制御体付き物品202が弁当である場合、ごはんや唐揚げなどを集中加熱部HPに相当する領域に配置し、ポテトサラダなどを非加熱部NHPに相当する領域に配置することで、ごはんや唐揚げなどは電磁波により加熱され、ポテトサラダなどは電磁波による加熱を避けることができる。なお、弁当内は、集中加熱部HPや非加熱部NHP以外にも食品が配置され得る。
《第3の実施形態》
 第3の実施形態では、第1、第2の実施形態で示した例とは、放射体の形状が異なる加熱用電磁波制御体について示す。
 図8(A)は第3の実施形態に係る加熱用電磁波制御体付き物品203Aの平面図である。図8(B)はその斜視図である。
 加熱用電磁波制御体103Aは、図1に示した電磁波加熱装置300により放射される電磁波を受けて電磁波を再放射する、放射体11A,11B,11Cで構成されるアンテナ11を備える。これら放射体11A,11B,11Cは、樹脂容器の面に沿って形成された複数の導体パターンで構成される。放射体11A,11B,11Cはいずれも十字形状の導体パターンであり、クロスダイポールアンテナとして作用する。
 放射体11A,11B,11Cは、電磁波加熱装置300により放射される電磁波を受けて、Y方向に延びる導体部分で、電界がY方向に振幅する偏波成分で励振され、この偏波の再放射電磁波を放射する。また、X方向に延びる導体部分で、電界がX方向に振幅する偏波成分で励振され、この偏波の再放射電磁波を放射する。つまり、偏波面がX方向を向く成分と、偏波面がY方向を向く成分のいずれについても励振され再放射される。
 図9(A)は第3の実施形態に係る、別の加熱用電磁波制御体付き物品203Bの平面図である。図9(B)はその斜視図である。加熱用電磁波制御体103Bは、図1に示した電磁波加熱装置300により放射される電磁波を受けて電磁波を再放射する。この加熱用電磁波制御体103Bの放射体11A,11B,11Cのうち、放射体11Bの向きが図8(A)、図8(B)に示した例とは異なる。この例も、放射体11A,11B,11Cはクロスダイポールアンテナとして作用する。
 図9(A)において、両端矢尻の矢印は、隣接する放射体間の最短距離である。加熱用電磁波制御体付き物品203Bにおいては、図8(A)、図8(B)に示した加熱用電磁波制御体付き物品203Aに比べて、隣接する放射体間の最短距離が大きい。そのため、放射体11A,11B,11Cのうち、隣接する放射体間での放電を効果的に抑制できる。
 なお、図8(A)、図8(B)、図9(A)、図9(B)に示した例では、放射体11A,11B,11Cのすべてが十字形状であるが、複数の放射体のうち、一つ又は幾つかだけが十字形状の放射体であってもよい。
《第4の実施形態》
 第4の実施形態では、複数のアンテナを備える加熱用電磁波制御体について示す。
 図10(A)は第4の実施形態に係る加熱用電磁波制御体付き物品204の平面図である。図10(B)はその斜視図である。
 加熱用電磁波制御体104は、図1に示した電磁波加熱装置300により放射される電磁波を受けて電磁波を再放射する、アンテナ11,12,13を備える。アンテナ11は放射体11A,11B,11C,11Dで構成され、アンテナ12は放射体12A,12B,12C,12Dで構成され、アンテナ13は放射体13A,13B,13C,13Dで構成される。
 放射体11A,11B,11C,11Dは、樹脂容器の面に沿って形成された複数の導体パターンで構成される。放射体12A,12B,12C,12Dは、樹脂容器の面に沿って形成された複数の導体パターンで構成される。さらに、放射体13A,13B,13C,13Dも、樹脂容器の面に沿って形成された複数の導体パターンで構成される。
 アンテナ11を構成する放射体11A,11B,11C,11Dは、X方向に線長が順次長くなるように、各放射体の線長が定められているので、再放射電磁波は+X方向成分を有する方向において、振幅を強め合う。アンテナ12を構成する放射体12A,12B,12C,12Dは、-X方向に線長が順次長くなるように、各放射体の線長が定められているので、再放射電磁波は-X方向成分を有する方向において、振幅を強め合う。また、アンテナ13を構成する放射体13A,13B,13C,13Dは、-Y方向に線長が順次長くなるように、各放射体の線長が定められているので、再放射電磁波は-Y方向成分を有する方向において、振幅を強め合う。これらの振幅を強め合う方向が、本発明の「再放射の電磁波の振幅を強めあう方向」に相当する。
 上記アンテナ11,12,13において振幅を強め合う方向はいずれも集中加熱部HP方向である。このように方向が異なる複数のアンテナで集中加熱部HPが集中的に加熱されるので、広面積の電磁波エネルギーが再放射電磁波に変換されて、集中加熱部HPが高効率で加熱される。
《第5の実施形態》
 第5の実施形態では、互いに異なる複数の面にアンテナを備える加熱用電磁波制御体について示す。
 図11は第5の実施形態に係る加熱用電磁波制御体付き物品205の斜視図である。
 加熱用電磁波制御体105は、図1に示した電磁波加熱装置300により放射される電磁波を受けて電磁波を再放射する、アンテナ11,12を備える。アンテナ11は放射体11A,11B,11C,11Dで構成され、アンテナ12は放射体12A,12B,12C,12Dで構成される。
 放射体11A,11B,11C,11Dは、樹脂容器のX-Y面に平行な面に沿って形成された複数の導体パターンで構成される。放射体12A,12B,12C,12Dは、樹脂容器のX-Z面に平行な面に沿って形成された複数の導体パターンで構成される。
 アンテナ11を構成する放射体11A,11B,11C,11Dは、X方向に線長が順次長くなるように、各放射体の線長が定められているので、入力電磁波EMW01を受けて、+X方向成分かつ-Z方向成分を有する方向において、振幅を強め合う再放射電磁波EMW11を放射する。また、アンテナ12を構成する放射体12A,12B,12C,12Dは、+X方向成分に線長が順次長くなるように、各放射体の線長が定められているので、入力電磁波EMW02を受けて、+X方向成分かつ+Y方向成分を有する方向において、振幅を強め合う再放射電磁波EMW12を放射する。これら再放射電磁波の方向が、本発明の「再放射の電磁波の振幅を強めあう方向」に相当する。
 本実施形態では、樹脂容器のX-Y面に入射する電磁波だけでなく、樹脂容器のX-Z面に入射する電磁波からの再放射電磁波が放射されて、集中加熱部HPが集中的に加熱されるので、広面積の電磁波エネルギーが再放射電磁波に変換されて、集中加熱部HPが高効率で加熱される。
《第6の実施形態》
 第6の実施形態では、加熱対象である物品以外の部材にアンテナを備える加熱用電磁波制御体について示す。
 図12は第6の実施形態に係る加熱用電磁波制御体付き物品206の斜視図である。加熱用電磁波制御体付き物品206は樹脂容器でパックされた弁当であり、この樹脂容器の外面に包装体21が包装されている。この包装体21が加熱用電磁波制御体106を構成している。
 加熱用電磁波制御体106は、図1に示した電磁波加熱装置300により放射される電磁波を受けて電磁波を再放射する、放射体11A,11B,11C,11Dで構成されるアンテナ11を備える。これら複数の放射体11A,11B,11C,11Dは、包装体21の面に沿って形成された、長さの異なる線状の複数の導体パターンで構成される。包装体21は例えばPET(ポリエチレンテレフタレート)フィルムであり、放射体11A,11B,11C,11Dはアルミニウム箔のパターンニングにより形成された導体パターンである。
 放射体11A,11B,11C,11Dで構成されるアンテナ11の作用は第1の実施形態又は第2の実施形態で示したとおりである。
 本実施形態に示すように、アンテナ11等のアンテナは、加熱対象である物品以外の包装体に形成してもよい。図12に示した例では、物品の容器を覆う包装体にアンテナ11を形成したが、物品の容器に貼り付けるラベルやシールにアンテナ11等を形成してもよい。
《第7の実施形態》
 第7の実施形態では、加熱対象の物品に貼付する加熱用電磁波制御体について示す。
 図13(A)は第7の実施形態に係る加熱用電磁波制御体107Aの平面図であり、図13(B)はその正面図である。この加熱用電磁波制御体107Aは、絶縁基材22と、その表面に形成された、導体パターンによる放射体11A,11B,11Cとで構成されている。絶縁基材22は例えばPET(ポリエチレンテレフタレート)、PE(ポリイミド)、LCP(液晶ポリマー)等の樹脂フィルムである。放射体11A,11B,11Cは、アルミニウム、銅、銀等の導体パターンである。本実施形態によれば、絶縁基材22の誘電率の波長短縮効果により、放射体11A,11B,11Cの線長が短縮化され、全体に小型化できる。
 図14(A)は第7の実施形態に係る別の加熱用電磁波制御体107Bの平面図であり、図14(B)はその正面図である。この加熱用電磁波制御体107Bは、図13(A)、図13(B)に示した絶縁基材22の、放射体11A,11B,11C形成面に粘着剤24を設けたものである。この粘着剤24の形成面を例えば物品収納容器の面に貼り付ける。本実施形態によれば、既存の容器や包装体に貼付するだけで、加熱用電磁波制御体付き物品を容易に構成できる。また、加熱用電磁波制御体107Bは包装体よりも小型であってもよいので、低コスト化できる。
 図15(A)は第7の実施形態に係るさらに別の加熱用電磁波制御体107Cの平面図であり、図15(B)は、図15(A)におけるX-X部分の断面図である。この加熱用電磁波制御体107Cは、2つの絶縁基材22,23の層間に放射体11A,11B,11Cを設けたものである。絶縁基材23は絶縁基材22と同様に、例えばPET(ポリエチレンテレフタレート)、PE(ポリイミド)、LCP(液晶ポリマー)等の樹脂フィルムである。本実施形態によれば、放射体11A,11B,11Cが絶縁基材22,23の層間に埋設された構造であるので、放射体11A,11B,11Cの発火や燃焼が効果的に防止される。
《第8の実施形態》
 第8の実施形態では、これまでに示した実施形態とは、絶縁基材の構成が異なる加熱用電磁波制御体について示す。
 図16(A)は第8の実施形態に係る加熱用電磁波制御体108の平面図であり、図16(B)はその比較例としての加熱用電磁波制御体の平面図である。加熱用電磁波制御体108は、絶縁基材22A,22B,22Cと、その表面に形成された、導体パターンによる放射体11A,11B,11Cとで構成されている。放射体11Aは絶縁基材22Aに形成されていて、放射体11Bは絶縁基材22Bに形成されていて、放射体11Cは絶縁基材22Cに形成されている。絶縁基材22Aの誘電率をεa、絶縁基材22Bの誘電率をεb、絶縁基材22Cの誘電率をεcで表すと、εa<εb<εc という関係にある。そのため、絶縁基材22Cの波長短縮効果は最も高く、絶縁基材22Aの波長短縮効果は最も低く、絶縁基材22Bの波長短縮効果は中間的である。
 図16(A)に示した例では、放射体11A,11B,11Cの線長が同じであるが、上記波長短縮効果によって、実効的な線長は放射体11Cが最も長く、放射体11Aが最も短く、放射体11Bが中間的な長さである。したがって、これまでに示した実施形態の放射体と同様に再放射電磁波の振幅を強め合う領域の位置を制御することが可能となる。
 図16(B)に示す比較例の加熱用電磁波制御体では、誘電率が均一の絶縁基材22に放射体11A,11B,11Cが形成されている。これら放射体11A,11B,11Cは、隣接放射体で線長が異なる。そのため、図16(B)中に両端矢尻の矢印で示すように、隣接する放射体の一方の端部が最接近する箇所での電位差が比較的大きい。
 本実施形態によれば、隣接する箇所での電位差を比較的小さくできるため、隣接する放射体間での放電がより発生しにくくなる。
 上記波長短縮効果は、単に、絶縁基材の誘電率だけでなく、絶縁基材の厚み、放射体周辺の誘電体材料の配置等によっても変更可能である。また、隣接する放射体を絶縁基材の両面に形成することによっても、絶縁基材の誘電率による波長短縮効果の大きさを定めることができる。
《第9の実施形態》
 第9の実施形態では、アンテナの放射体のパターンがこれまでに示した例とは異なる加熱用電磁波制御体について示す。
 図17は第9の実施形態に係る加熱用電磁波制御体付き物品209の平面図である。加熱用電磁波制御体109は、図1に示した電磁波加熱装置300により放射される電磁波を受けて電磁波を再放射する、この加熱用電磁波制御体109は放射体11A,11B,11C,11D,12A,12B,12C,12D,13A,13B,13C,13Dで構成される。放射体12A,12B,12C,12Dは、放射体11A,11B,11C,11Dと同様であり、放射体13A,13B,13C,13Dは、放射体11A,11B,11C,11Dと同様である。つまり、線長の異なる放射体の配置パターンが繰り返されている。集中加熱部HPは放射体11A,11B,11C,11D,12A,12B,12C,12D,13A,13B,13C,13Dの配列方向に拡がっている。
 本実施形態によれば、広範囲に亘って再放射電磁波の振幅を強め合う方向が制御されるので、比較的広範囲の集中加熱部HPを効率良く加熱できる。
《第10の実施形態》
 第10の実施形態では、反射導体を備える加熱用電磁波制御体の例を示す。
 図18(A)は第10の実施形態に係る加熱用電磁波制御体付き物品210の平面図であり、図18(B)はその正面図である。
 加熱用電磁波制御体付き物品210は、例えば樹脂容器でパックされた弁当である。この樹脂容器の上面に加熱用電磁波制御体110が設けられている。加熱用電磁波制御体110は、放射体11A,11B,11C,11Dで構成されるアンテナ11を備える。放射体11A,11B,11C,11Dは絶縁基材22の下面に形成されている。この絶縁基材22の上面には反射導体31が設けられている。反射導体31は、例えば絶縁基材22にラミネートされたアルミニウム箔である。
 上記反射導体31は、入力電磁波EMW0を受けても、これを透過させず反射する。つまり、入力電磁波EMW0を遮蔽する。本実施形態の加熱用電磁波制御体付き物品210は、樹脂容器内において、局部的に特に加熱させない非加熱部NHPを有する。加熱用電磁波制御体110は非加熱部NHPの上部に設けられている。そのため、本来非加熱部NHPに照射される入力電磁波EMW0は加熱用電磁波制御体110によって遮蔽されて非加熱部NHPの加熱が抑制される。また、樹脂容器の下方から照射される入力電磁波が反射導体31で反射して非加熱部NHPを照射するような条件でも、アンテナ11が、下方から反射導体31に入射する電磁波を受けて、再放射電磁波EMW1の振幅を強め合う方向が制御される。この再放射電磁波EMW1は非加熱部NHPを避ける方向を向くので、やはり非加熱部NHPの加熱が抑制される。
《第11の実施形態》
 第11の実施形態では、放射体の導体パターンが、これまでに示した例とは異なる加熱用電磁波制御体について示す。
 図19(A)は第11の実施形態に係る加熱用電磁波制御体付き物品211の平面図であり、図19(B)はその正面図である。
 加熱用電磁波制御体付き物品211は、例えば樹脂容器でパックされた弁当である。この樹脂容器の上面に加熱用電磁波制御体111が設けられている。加熱用電磁波制御体111は、放射体11A,11B,11Cで構成されるアンテナ11、及び放射体12A,12B,11Cで構成されるアンテナ12を備える。放射体11A,11B,11C,12A,12Bは絶縁基材22の下面に形成されている。以降に示すように、加熱用電磁波制御体111は、樹脂容器内に集中加熱部HPを集中的に加熱する。
 放射体11A,11B,11C,12A,12Bはいずれも矩形の導体パターンであり、それぞれパッチアンテナとして作用する。放射体11A,11B,11Cは、この順に-X方向に配列されている。また、放射体12A,12B,11Cは、この順に+Y方向に配列されている。
 放射体11A,11B,11Cは、この順で一辺の寸法が長くなるように、各放射体の線長が定められている。同様に、放射体12A,12B,11Cは、この順で一辺の寸法が長くなるように、各放射体の線長が定められている。放射体11A,11B,11Cの各辺の電気長は、入力電磁波EMW0の波長の約1/2以上又は約1/2以下であることが好ましい。同様に、放射体12A,12B,11Cの各辺の電気長は、入力電磁波EMW0の波長の約1/2以上又は約1/2以下であることが好ましい。これにより、入力電磁波EMW0の波長の約1/2より長い電気長の放射体と、入力電磁波EMW0の波長の約1/2より短い放射体とが近接する場合のような、位相反転が生じることがなく、それによる放電が生じにくくなる。
 また、各辺の電気長が長い方が短い方に比べて燃えにくいため、すべての辺の電気長が入力電磁波EMW0の波長の約1/2以上であることがさらに好ましい。また、すべての辺の電気長が入力電磁波EMW0の波長の約1/2以上である場合、すべての辺の電気長が入力電磁波EMW0の1波長以下であることが好ましい。これにより、さらなる位相反転による放電が生じにくくなる。
 また、すべての放射体11A,11B,11C,12A,12Bの各辺の電気長は、入力電磁波EMW0の波長の約1/2より大きいこと又は約1/2より小さいことが好ましい。これにより、製造精度の誤差により発生してしまう寸法誤差に起因する位相反転を低減でき、さらに放電が生じにくくなる。
 上記アンテナ11によって、X-Z面内での再放射電磁波の振幅の強め合う方向が定められる。同様に、上記アンテナ12によって、Y-Z面内での再放射電磁波の振幅の強め合う方向が定められる。したがって、この例では加熱用電磁波制御体111は、その真下より+Y方向成分及び-X方向成分を有する方向に傾斜した方向において振幅が強め合って、集中加熱部HPが集中的に加熱される。
 本実施形態で示したように、放射体はダイポールアンテナに限らず、入力電磁波を受けて励振され、電磁波を再放射する導体パターンであれば、それを用いることができる。
《第12の実施形態》
 第12の実施形態では、入力電磁波の到来方向、アンテナ及び集中加熱部の位置関係が、これまでに示した例とは異なる、加熱用電磁波制御体付き物品の例を示す。
 図20は第12の実施形態に係る加熱用電磁波制御体付き物品212の正面図である。加熱用電磁波制御体付き物品212は、例えば樹脂容器でパックされた弁当である。この樹脂容器の下面に加熱用電磁波制御体112が設けられている。加熱用電磁波制御体112は、放射体11A,11B,11C,11Dで構成されるアンテナ11を備える。
 アンテナ11から再放射される電磁波EMW1は、入力電磁波の到来方向(つまり戻る方向)へも放射されるので、加熱用電磁波制御体112は、集中加熱部HPを集中的に加熱する。
 このように、加熱用電磁波制御体は、物品を収める容器の面のうち、入力電磁波EMW0の到来方向から遠い側に設けてもよい。
 最後に、上述の実施形態の説明は、すべての点で例示であって、制限的なものではない。当業者にとって変形及び変更が適宜可能である。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲内と均等の範囲内での実施形態からの変更が含まれる。
 例えば、加熱用電磁波制御体は容器の内面に設けられていてもよい。また、加熱用電磁波制御体は物品を収める容器に設けることに限らず、加熱対象の物品に直接的に配置してもよい。
 また、例えば、放射体としての導体パターンは金属箔をパターンニングすること以外に導電性ペーストの印刷により形成してもよい。
 また、加熱用電磁波制御体は容器や包装体に設けることに限らず、加熱対象の物品に被せるカバー等に設けることもできる。
EMW0,EMW01,EMW02…入力電磁波
EMW1,EMW11,EMW12…再放射電磁波
HP…集中加熱部
NHP…非加熱部
11,12,13…アンテナ
11A,11B,11C,11D…放射体
12A,12B,12C,12D…放射体
13A,13B,13C,13D…放射体
12,13…アンテナ
21…包装体
22,23…絶縁基材
22A,22B,22C…絶縁基材
24…粘着剤
31…反射導体
51…高圧トランス
52…マグネトロン
53…アンテナ
54…導波管
55…庫内
56…ターンテーブル
100…物品
101,102…加熱用電磁波制御体
103A,103B…加熱用電磁波制御体
104~106…加熱用電磁波制御体
107A,107B,107C…加熱用電磁波制御体
108~112…加熱用電磁波制御体
201,202…加熱用電磁波制御体付き物品
203A,203B…加熱用電磁波制御体付き物品
204~206…加熱用電磁波制御体付き物品
209~212…加熱用電磁波制御体付き物品
300…電磁波加熱装置

Claims (16)

  1.  電磁波加熱装置で加熱される第1領域及び第2領域を有する物品と共に前記電磁波加熱装置の内部に配置されて、前記物品へ照射される電磁波を制御する加熱用電磁波制御体であって、
     前記電磁波加熱装置により放射される電磁波を受けて電磁波を再放射する複数の放射体で構成されるアンテナを備え、
     前記複数の放射体は、前記再放射の電磁波の干渉によって、前記電磁波加熱装置の内部に、電磁波の振幅を強め合う領域と弱め合う領域とを形成することで、前記物品の前記第2領域に比べて前記第1領域の加熱を促進する、
     加熱用電磁波制御体。
  2.  前記複数の放射体が並ぶ方向を第1方向とし、前記第1方向に交差する方向を第2方向とするとき、
     前記複数の放射体は、面に沿って形成された、前記第2方向の長さの異なる線状または面状の導体パターンで構成される、
     請求項1に記載の加熱用電磁波制御体。
  3.  前記複数の放射体は、誘電率が一様でない基材に形成された、線状または面状の導体パターンで構成される、
     請求項1に記載の加熱用電磁波制御体。
  4.  前記複数の放射体の前記導体パターンのうち、最長の電気長は、前記電磁波加熱装置により放射される電磁波の波長の1/2以下であり、最短の電気長は、前記電磁波加熱装置により放射される電磁波の波長の1/2以上である、
     請求項2又は3に記載の加熱用電磁波制御体。
  5.  前記導体パターンはダイポールアンテナである、
     請求項4に記載の加熱用電磁波制御体。
  6.  前記導体パターンは十字形状である、
     請求項5に記載の加熱用電磁波制御体。
  7.  前記複数の放射体を構成する導体パターンのうち、互いに隣接する導体パターンは、向きが異なる十字形状である、
     請求項6に記載の加熱用電磁波制御体。
  8.  前記アンテナは、前記再放射の電磁波の振幅を強めあう方向が異なる複数のアンテナで構成される、
     請求項1から7のいずれかに記載の加熱用電磁波制御体。
  9.  前記複数のアンテナの前記放射体は同一の面又は同一の層に存在する、
     請求項8に記載の加熱用電磁波制御体。
  10.  前記複数のアンテナの前記放射体はアンテナごとに異なる面又は異なる層に存在する、
     請求項8に記載の加熱用電磁波制御体。
  11.  前記複数の放射体は、前記物品を包装する包装体に形成されている、
     請求項1から10のいずれかに記載の加熱用電磁波制御体。
  12.  前記複数の放射体は、前記物品に貼付される絶縁基材に形成されている、
     請求項1から10のいずれかに記載の加熱用電磁波制御体。
  13.  前記複数の放射体は、少なくとも2つの前記絶縁基材の層間に形成されている、
     請求項12に記載の加熱用電磁波制御体。
  14.  前記放射体に重なる反射導体を備える、
     請求項1から13のいずれかに記載の加熱用電磁波制御体。
  15.  電磁波加熱装置で加熱される物品の近傍に配置されて、前記物品へ照射される電磁波を制御する加熱用電磁波制御体であって、
     前記電磁波加熱装置により放射される電磁波を受けて、電磁波を再放射する複数の放射体で構成されるアンテナを備え、
     前記複数の放射体は、面に沿って形成された、長さの異なる線状の導体パターンで構成され、
     前記複数の放射体の前記導体パターンのうち、最長の電気長は、前記電磁波加熱装置により放射される電磁波の波長の1/2以下であり、最短の電気長は、前記電磁波加熱装置により放射される電磁波の波長の1/2以上である、
     加熱用電磁波制御体。
  16.  電磁波加熱装置で加熱される第1領域及び第2領域を有する物品と、
     前記物品と共に前記電磁波加熱装置の内部に配置されて、前記物品へ照射される電磁波を制御する加熱用電磁波制御体と、を備え、
     前記電磁波加熱装置により放射される電磁波を受けて、電磁波を再放射する複数の放射体で構成されるアンテナを備え、
     前記複数の放射体は、前記再放射の電磁波の干渉によって、前記電磁波加熱装置の内部に、電磁波の振幅を強め合う領域と弱め合う領域とを形成することで、前記物品の前記第2領域に比べて前記第1領域の加熱を促進する、
     加熱用電磁波制御体付き物品。
PCT/JP2020/030805 2019-09-02 2020-08-13 加熱用電磁波制御体及び加熱用電磁波制御体付き物品 WO2021044826A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021517730A JP6923109B1 (ja) 2019-09-02 2020-08-13 加熱用電磁波制御体及び加熱用電磁波制御体付き物品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-159771 2019-09-02
JP2019159771 2019-09-02

Publications (1)

Publication Number Publication Date
WO2021044826A1 true WO2021044826A1 (ja) 2021-03-11

Family

ID=74852718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030805 WO2021044826A1 (ja) 2019-09-02 2020-08-13 加熱用電磁波制御体及び加熱用電磁波制御体付き物品

Country Status (2)

Country Link
JP (1) JP6923109B1 (ja)
WO (1) WO2021044826A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022130915A1 (ja) * 2020-12-14 2022-06-23 株式会社村田製作所 加熱用電磁波制御体及び加熱用電磁波制御体付き物品
WO2022270221A1 (ja) * 2021-06-21 2022-12-29 株式会社村田製作所 加熱用電磁波制御体及び加熱用電磁波制御体付き物品
WO2023175738A1 (ja) * 2022-03-15 2023-09-21 三菱電機株式会社 マイクロ波処理装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5676190A (en) * 1979-11-26 1981-06-23 Matsushita Electric Ind Co Ltd High frequency heater
JPH09185991A (ja) * 1995-12-28 1997-07-15 New Japan Radio Co Ltd 冷凍食品用容器
JP2007522041A (ja) * 2004-02-09 2007-08-09 グラフィック パッケージング インターナショナル インコーポレイテッド 電子レンジ調理用パッケージ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5676190A (en) * 1979-11-26 1981-06-23 Matsushita Electric Ind Co Ltd High frequency heater
JPH09185991A (ja) * 1995-12-28 1997-07-15 New Japan Radio Co Ltd 冷凍食品用容器
JP2007522041A (ja) * 2004-02-09 2007-08-09 グラフィック パッケージング インターナショナル インコーポレイテッド 電子レンジ調理用パッケージ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022130915A1 (ja) * 2020-12-14 2022-06-23 株式会社村田製作所 加熱用電磁波制御体及び加熱用電磁波制御体付き物品
WO2022270221A1 (ja) * 2021-06-21 2022-12-29 株式会社村田製作所 加熱用電磁波制御体及び加熱用電磁波制御体付き物品
WO2023175738A1 (ja) * 2022-03-15 2023-09-21 三菱電機株式会社 マイクロ波処理装置

Also Published As

Publication number Publication date
JP6923109B1 (ja) 2021-08-18
JPWO2021044826A1 (ja) 2021-09-27

Similar Documents

Publication Publication Date Title
WO2021044826A1 (ja) 加熱用電磁波制御体及び加熱用電磁波制御体付き物品
US9967925B2 (en) RF oven with inverted F antenna
JP2020042832A (ja) 電子レンジ対応食品の包装容器に組み込むための遮蔽構造を有するrfidタグ
RU2215380C2 (ru) Микроволновая печь и волновод для устройства, использующего высокую частоту излучения
CN108702819B (zh) 具有反射能量调向的电烤箱
JP6528088B2 (ja) マイクロ波加熱装置
JP6614401B1 (ja) 無線通信デバイス
WO2022130915A1 (ja) 加熱用電磁波制御体及び加熱用電磁波制御体付き物品
CA2757004A1 (en) Multilayer susceptor structure
WO2004010740A1 (en) Dielectric antennas for use in microwave heating applications
JP6645068B2 (ja) マイクロ波加熱装置
US20090032528A1 (en) Microwave heating applicator
JP2017528884A (ja) パッチアンテナを介した直接加熱
JP4966649B2 (ja) マイクロ波加熱装置
JP4966650B2 (ja) マイクロ波加熱装置
US20170188751A1 (en) Susceptor On A Fiber Reinforced Film For Extended Functionality
US20190248110A1 (en) Laminate Structure, Construct, And Methods Of Using The Same
JP2019083410A (ja) 周波数選択板付きrfidタグ及び電子レンジ加熱用容器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021517730

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20861293

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20861293

Country of ref document: EP

Kind code of ref document: A1