WO2022127551A1 - 加氢催化剂及其制备方法和应用以及氢化反应方法 - Google Patents

加氢催化剂及其制备方法和应用以及氢化反应方法 Download PDF

Info

Publication number
WO2022127551A1
WO2022127551A1 PCT/CN2021/133098 CN2021133098W WO2022127551A1 WO 2022127551 A1 WO2022127551 A1 WO 2022127551A1 CN 2021133098 W CN2021133098 W CN 2021133098W WO 2022127551 A1 WO2022127551 A1 WO 2022127551A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
weight
compound
hydrogenation
nickel
Prior art date
Application number
PCT/CN2021/133098
Other languages
English (en)
French (fr)
Inventor
向明林
敖博
汪永军
周冬京
简振兴
佘喜春
Original Assignee
湖南长岭石化科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南长岭石化科技开发有限公司 filed Critical 湖南长岭石化科技开发有限公司
Priority to US18/258,121 priority Critical patent/US20240123432A1/en
Publication of WO2022127551A1 publication Critical patent/WO2022127551A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/17Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds
    • C07C29/19Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds in six-membered aromatic rings
    • C07C29/20Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrogenation of carbon-to-carbon double or triple bonds in six-membered aromatic rings in a non-condensed rings substituted with hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C35/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C35/21Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a ring other than a six-membered aromatic ring polycyclic, at least one hydroxy group bound to a non-condensed ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a hydrogenation catalyst and a preparation method and application thereof, and also relates to a hydrogenation reaction method using the hydrogenation catalyst.
  • Hydrogenated bisphenol A (HBPA, CAS: 1980-4-6, C 15 H 28 O 2 ) is an alicyclic diol obtained by hydrogenating and saturating the two benzene rings in the bisphenol A molecule.
  • One of the key monomers of polymers such as epoxy resins, polycarbonates, polyacrylic resins and unsaturated resins.
  • hydrogenated bisphenol A has significantly improved thermal stability, chemical stability and weather resistance, is more suitable for outdoor engineering, and is more beneficial to human health.
  • CN1375484A discloses a method for preparing 2,2'-bis(4-hydroxycyclohexyl)propane by hydrogenating 4,4'-dihydroxydiphenylpropane, wherein the acid activity index is 10% when the acid activity index is 10%.
  • a solution of 4,4'-dihydroxydiphenylpropane in a solvent is contacted with hydrogen in the presence of a catalyst of ruthenium on silica or less, the acid activity index defined as when the 2- Conversion of 2-propanol when a gas stream consisting of propanol and 95 vol% helium was passed through a fixed bed reactor containing 1.00 g of catalyst at a helium flow rate of 50 mL/min at 250°C.
  • the hydrogenation catalyst is improved in preventing by-products due to dehydration.
  • CN106866365A provides a fixed-bed hydrogenation process, which adopts a precious metal supported catalyst, which uses alumina modified with alkali metal or phosphorus element as a carrier, and its active component is one or more of Pd, Ru, Rh, And a trace amount of one or more VIIB, VIII group metal elements as activity improvers.
  • noble metal catalysts show good catalytic activity in the hydrogenation reaction of bisphenol A, the cost of noble metal catalysts is relatively high, which is not conducive to the improvement of economy.
  • US2118954 uses a supported nickel-based catalyst for bisphenol A liquid-phase kettle type hydrogenation reaction to prepare hydrogenated bisphenol A.
  • the reaction temperature is 200 ° C and the pressure is 10-20 MPa.
  • the reaction time of this method is long, and the product yield is high. rate is low.
  • the main problems of the nickel-based catalyst in this invention are low catalytic activity, high reaction temperature, and difficulty in realizing continuous production.
  • the traditional bisphenol A noble metal hydrogenation catalyst has high cost, low catalytic activity of nickel-based catalyst, high reaction temperature, and it is difficult to realize continuous production. Therefore, it is necessary to develop a hydrogenation catalyst with low cost, high activity and suitable for continuous production of hydrogenated bisphenol A.
  • the object of the present invention is to overcome the low activity of the existing nickel-based catalyst in the hydrogenation reaction of bisphenol A, the hydrogenation reaction needs to be carried out at a higher temperature, and it is difficult to realize the deficiency of continuous production, and a hydrogenation catalyst is provided.
  • the catalyst shows significantly improved catalytic activity in the hydrogenation reaction of bisphenol A, the hydrogenation reaction can be carried out at a lower temperature, and a higher catalytic activity can be obtained.
  • the present invention provides a hydrogenation catalyst containing a binder and an active component, the active component containing a nickel element and a Group VIB metal element, the binder Contains zirconia and alumina.
  • the present invention provides a method for preparing a hydrogenation catalyst, the method comprising the following steps:
  • the precipitate with a Group VIB metal compound and an aluminum-containing compound to obtain a shaped body, wherein the Group VIB metal compound is a Group VIB metal oxide and/or a compound of a Group VIB metal oxide
  • the aluminum-containing compounds are aluminum oxides and/or precursors of aluminum oxides
  • the present invention provides a hydrogenation catalyst prepared by the method of the second aspect of the present invention.
  • the present invention provides the use of the catalyst according to the first aspect or the third aspect of the present invention as a catalyst for a hydrogenation reaction.
  • the present invention provides a hydrogenation reaction method, the method comprising, under hydrogenation reaction conditions, in the presence of at least one solvent, mixing the phenolic compound shown in formula I and hydrogen with added Contacting a hydrogen catalyst, wherein the hydrogenation catalyst is the catalyst described in the first aspect or the third aspect of the present invention,
  • R 1 and R 2 are the same or different, and are each independently a hydrogen atom or a C 1 -C 5 alkyl group.
  • the catalyst according to the present invention uses nickel as the main active component, and the cost is low.
  • the catalyst according to the present invention shows improved catalytic activity in the hydrogenation reaction of phenolic compounds, especially has improved low temperature reaction activity, and can be used as a catalyst for the reaction of hydrogenating bisphenol A to prepare hydrogenated bisphenol A. Under milder reaction conditions (the reaction temperature is lower than 150°C), higher catalytic activity is obtained.
  • the catalyst according to the present invention is suitable for the continuous production process, so that the continuous preparation of the hydrogenated bisphenol A product can be realized, and the product quality is high and stable.
  • Figure 1 is used to illustrate a preferred embodiment of the hydrogenation reaction method according to the present invention.
  • the present invention provides a hydrogenation catalyst containing a binder and an active component, the active component containing a nickel element and a Group VIB metal element, the binder Contains zirconia and alumina.
  • the content of nickel element is 20-60% by weight, preferably 30-50% by weight, and the content of group VIB metal oxide is 0.1-15% by weight, preferably
  • the content of zirconia is 0.5-10% by weight, the content of zirconia is 1-40% by weight, preferably 5-30% by weight, and the content of alumina is 5-70% by weight, preferably 10-64.5% by weight.
  • the nickel in the catalyst is calculated as an element.
  • the content of nickel element can be specifically 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34 , 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59 or 60% by weight.
  • the content of the metal element of Group VIB in the catalyst is calculated as oxide.
  • the content of the Group VIB metal oxide can be 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7, 7.1, 7.2,
  • the content of zirconia can be specifically 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 , 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 or 40 weight%.
  • the content of alumina can be 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 64.5, 65, 66, 67, 68, 69 or 70% by weight.
  • the binders are preferably zirconia and alumina.
  • the composition of the catalyst is determined by X-ray fluorescence spectroscopy.
  • the molar ratio of nickel element to zirconia in the catalyst is preferably 2-21:1, more preferably 2.2-18:1.
  • the catalyst according to the present invention uses nickel as an active component, and can obtain improved catalytic activity, especially good low-temperature catalytic activity, even if no noble metal active component is introduced into the catalyst.
  • the catalyst according to the present invention preferably does not contain noble metal elements.
  • the present invention provides a method for preparing a hydrogenation catalyst, the method comprising the following steps:
  • VIB group metal compound is a group VIB metal oxide compounds and/or precursors of Group VIB metal oxides, said aluminum-containing compounds being alumina and/or precursors of alumina;
  • step (1) the nickel compound and the zirconium compound are subjected to a liquid phase precipitation reaction with a precipitant to obtain a precipitate containing nickel and zirconium.
  • the nickel compound and the zirconium compound may be water-soluble compounds capable of a precipitation reaction.
  • the nickel compound can be one or more of nickel sulfate, nickel nitrate, nickel chloride, nickel acetate and nickel formate.
  • the zirconium compound may be one or more of zirconium sulfate, zirconium nitrate, zirconium oxide and zirconium oxynitrate.
  • the solvent of the solution containing the nickel compound and the zirconium compound is preferably water.
  • the nickel compound and the zirconium compound can be dissolved in water to obtain a solution containing the nickel compound and the zirconium compound.
  • the concentrations of the nickel compound and the zirconium compound may be conventionally selected.
  • the precipitating agent may be a substance capable of causing a precipitation reaction of the nickel compound and the zirconium compound in a liquid phase.
  • the precipitating agent can be an inorganic base, such as: one or more of alkali metal hydroxide, alkali metal carbonate and ammonia (NH 3 ).
  • Specific examples of the precipitating agent may include, but are not limited to, one or more of sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium carbonate, potassium carbonate and ammonia.
  • the precipitants are alkali metal hydroxides and alkali metal carbonates.
  • the molar ratio of the alkali metal hydroxide and the alkali metal carbonate is preferably 1:1-5, such as 1:2-5.
  • the precipitant is preferably pre-dissolved in water to form a precipitant solution, and the precipitant solution is contacted with a solution containing a nickel compound and a zirconium compound to perform a precipitation reaction.
  • the solution containing the nickel compound and the zirconium compound and the precipitant solution are subjected to a co-precipitation reaction in a co-current manner, thereby obtaining a precipitate.
  • the present invention has no particular limitation on the specific operating conditions for the co-precipitation reaction, which can be carried out under conventional conditions.
  • step (1) the precipitant is brought into contact with the solution containing the nickel compound and the zirconium compound with stirring to carry out the precipitation reaction.
  • the precipitation reaction can be carried out under conventional conditions.
  • the precipitant can be contacted with a solution containing nickel compounds and zirconium compounds at a temperature of 40-60°C, such as 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51 , 52, 53, 54, 55, 56, 57, 58, 59 or 60°C.
  • the pH value at the end point of the contact reaction is controlled to be 11-12, such as 11.1, 11.2, 11.3, 11.4, 11.5, 11.6, 11.7, 11.8, 11.9 or 12.
  • step (1) a conventional method can be used to separate the solid-phase substance from the liquid-solid mixture obtained by the contact to obtain a precipitate containing nickel and zirconium.
  • the mixture obtained by the contact can be filtered, and the solid matter obtained by the filtration can be washed to obtain a precipitate.
  • the washing is based on the ability to basically remove the ions contained in the solid matter obtained by filtration. Generally, the number of times of the washing can be 3-6 times.
  • step (2) the precipitate obtained in step (1) is mixed with a Group VIB metal compound and an aluminum-containing compound.
  • the Group VIB metal compound is a Group VIB metal oxide and/or a precursor of a Group VIB metal oxide.
  • the precursor of the Group VIB metal oxide refers to a substance capable of introducing the Group VIB metal oxide into the catalyst.
  • the Group VIB metal compound is a Group VIB metal oxide.
  • the Group VIB metal may be one or more of chromium, molybdenum and tungsten.
  • the Group VIB metal is molybdenum
  • the Group VIB metal oxide is preferably an oxide of molybdenum, such as molybdenum oxide.
  • the aluminum-containing compound is aluminum oxide and/or a precursor of aluminum oxide.
  • the aluminium-containing compound is a precursor of aluminium oxide. More preferably, the aluminum-containing compound is pseudoboehmite.
  • step (2) the precipitate obtained in step (1) can be mixed with the Group VIB metal compound and the aluminum-containing compound by a conventional method.
  • the precipitate obtained in the step (1) can be mixed with the Group VIB metal compound and the aluminum-containing compound, and then mixed.
  • step (2) the mixture obtained by mixing is successively dried and calcined to obtain a calcined solid substance.
  • the drying can be carried out at a temperature of 80-120°C.
  • the drying can be selected according to the drying temperature.
  • the duration of the drying may be 4-20 hours, such as 2-20 hours.
  • the roasting may be performed at a temperature of 400-600° C., and the duration of the roasting may be 2-10 hours, preferably 2-5 hours.
  • step (2) the solid material obtained by calcination is shaped to obtain a catalyst precursor.
  • the present invention does not specifically limit the molding method, and conventional methods can be used for molding.
  • the molding method can be one or a combination of two or more of extrusion and tableting.
  • the catalyst precursor obtained in step (2) is contacted with a reducing agent under reduction reaction conditions to activate the catalyst precursor, thereby obtaining the catalyst according to the present invention.
  • the reducing agent is hydrogen.
  • the catalyst precursor can be activated in a reducing atmosphere.
  • the reducing atmosphere can be a hydrogen atmosphere, or a mixed atmosphere formed by hydrogen gas and a diluent gas, and the diluent gas can be nitrogen gas and/or group zero gas (eg, helium gas, argon gas).
  • group zero gas eg, helium gas, argon gas
  • the content of hydrogen may be 1-30 vol%, preferably 2-25 vol%, more preferably 5-20 vol%, such as 5-15 vol%.
  • the catalyst precursor and the reducing agent may be contacted at a temperature of 400-460°C.
  • the contacting can be carried out at a pressure of 0.1-5 MPa, which is gauge pressure.
  • the duration of the contact can be 2-15 hours, preferably 4-10 hours.
  • the amounts of the nickel compound, the zirconium compound, the Group VIB metal compound and the aluminum-containing compound can be selected according to the expected catalyst composition.
  • the amounts of the nickel compound, the zirconium compound, the Group VIB metal compound and the aluminum-containing compound are such that, based on the total amount of the catalyst finally prepared, the amount of nickel element
  • the content is 20-60% by weight, preferably 30-50% by weight
  • the content of group VIB metal oxide is 0.1-15% by weight, preferably 0.5-10% by weight
  • the content of zirconia is 1-40% by weight
  • the content of alumina is 5-70% by weight, preferably 10-64.5% by weight.
  • the amounts of the nickel compound and the zirconium compound are such that, based on the total amount of the finally prepared catalyst, nickel element and zirconia
  • the molar ratio is preferably 2-21:1, more preferably 2.2-18:1.
  • the present invention provides a hydrogenation catalyst prepared by the method of the second aspect of the present invention.
  • the present invention provides the use of the catalyst according to the first aspect or the third aspect of the present invention as a catalyst for a hydrogenation reaction.
  • the hydrogenation reaction can be, for example, a hydrogenation reaction of hydrogenating a benzene ring to saturation, such as a hydrogenation reaction of hydrogenating a phenolic compound to a corresponding alicyclic alcohol.
  • the present invention provides a hydrogenation reaction method, the method comprising, under hydrogenation reaction conditions, in the presence of at least one solvent, mixing the phenolic compound shown in formula I and hydrogen with added
  • the hydrogen catalyst is contacted in the hydrogenation reaction zone, wherein the hydrogenation catalyst is the catalyst described in the first aspect or the third aspect of the present invention.
  • the phenolic compound is the compound shown in formula I,
  • R 1 and R 2 are the same or different, and each is a hydrogen atom or a C 1 -C 5 alkyl group.
  • Specific examples of the C 1 -C 5 alkyl group may include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl base or isopentyl.
  • the phenolic compound is preferably 2,2-bis(4-hydroxyphenyl)propane (ie, bisphenol A) and/or bis(4-hydroxyphenyl)methane (ie, bisphenol F).
  • the phenolic compound and hydrogen are contacted with a hydrogenation catalyst in the presence of at least one solvent.
  • the solvent can be one or more of alcohol type solvent, ester type solvent and alcohol ether type solvent.
  • the alcoholic solvent may be a C 1 -C 5 fatty alcohol.
  • the ester type solvent may be an acetate type solvent.
  • the alcohol ether type solvent may be a monoether of aliphatic diol and/or a diether of aliphatic diol.
  • the solvent may include, but are not limited to, methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, tert-butanol, methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate
  • the amount of the solvent used can be conventionally selected. Generally, the amount of the solvent is such that, based on the total amount of the solvent and the phenolic compound, the content of the phenolic compound is 5-30% by weight.
  • hydrogen gas and phenolic compounds can be respectively sent to the hydrogenation reaction zone to contact and react with the hydrogenation catalyst.
  • the phenolic compound and hydrogen are mixed and fed into the hydrogenation reaction zone to be contacted with the hydrogenation catalyst.
  • a phenolic compound, hydrogen and a solvent are mixed to form a raw material mixture, and the raw material mixture is sent to a hydrogenation reaction zone to be contacted with a hydrogenation catalyst to carry out a hydrogenation reaction.
  • the raw material mixture can be obtained by mixing hydrogen gas with a raw material liquid containing a phenolic compound and a solvent by a conventional method.
  • the hydrogen gas can be mixed with the raw material liquid containing the phenolic compound and the solvent in a mixer
  • the mixer can be one of a dynamic mixer, a static mixer, or a combination of two or more.
  • the static mixer realizes the uniform mixing of gas and liquid by changing the flow state of the fluid, which may be, but not limited to, SV type static mixer, SK type static mixer, SX type static mixer, SH type static mixer and One or a combination of two or more of the SL-type static mixers.
  • the dynamic mixer can be any kind of mixing device that realizes uniform mixing of gas and liquid through the movement of moving parts, for example, the moving parts can be various common parts with stirring function.
  • hydrogen is injected into the raw material liquid through a gas-liquid mixer, so as to obtain the raw material mixture
  • the gas-liquid mixer includes at least one liquid for containing the raw material liquid a channel and at least one gas channel for accommodating the hydrogen gas, the liquid channel and the gas channel are adjoined by a member, at least a part of the member is a perforated area, and the hydrogen gas passes through the perforated area be injected into the raw material solution.
  • the term "liquid channel” refers to a space capable of accommodating liquid flow
  • gas channel refers to a space capable of accommodating hydrogen gas.
  • the perforated region covers the entire member (ie, the liquid channel and the gas channel are adjoined by a member having pores with an average pore size of nanometer size, through which the hydrogen gas is injected into the liquid phase stream).
  • the perforated region has pores with an average pore size of nanometer size, such that hydrogen gas is injected into the liquid phase stream through the pores with an average pore size of nanometer size.
  • the pores in the porous region may be micropores and/or nanopores.
  • micropores refers to pores with an average pore diameter greater than 1000 nm, and the average pore diameter of the micropores is preferably not greater than 600 ⁇ m, more preferably not greater than 500 ⁇ m.
  • nanopore refers to pores with an average pore diameter not greater than 1000 nm, such as pores with an average pore diameter of 1 nm to 1000 nm. More preferably, the pores in the porous region are nanopores. Further preferably, the average pore diameter of the pores in the porous region is 50 nm to 500 nm. The average pore diameter is determined by scanning electron microscopy.
  • the member may be one or a combination of two or more of porous membranes, porous plates and porous pipes.
  • porous conduit is meant that the walls of the channel are porous.
  • Porous membranes can be attached to the inner surface and/or outer surface of the porous pipe, so that the pore size of the holes on the pipe can be adjusted.
  • the pores on the porous membrane on the inner surface and/or the outer surface can be nanopores.
  • the pipelines with the porous membranes in which the pores are nanopores are attached to the inner surface and/or the outer surface are also regarded as having pores.
  • the pores in the regions are nanopores.
  • the porous conduit may be a membrane tube.
  • the number of channels in the porous pipe is not particularly limited, and generally, the number of channels in the porous pipe can be 4-20.
  • the gas-liquid mixer can be arranged at the inlet end of the reactor, so that the raw material mixture output from the gas-liquid mixer is directly fed into the reactor.
  • the injection amount of hydrogen can be selected according to the content of the phenolic compound in the raw material liquid, which is sufficient to hydrogenate the phenolic compound, for example, to hydrogenate the phenolic compound to the corresponding alicyclic alcohol.
  • the molar ratio of the injected amount of hydrogen gas to the phenolic compound in the raw material liquid can be 4-10:1.
  • the hydrogenation catalyst of the present invention by using the hydrogenation catalyst of the present invention, even if the hydrogen gas and the phenolic compound are contacted and reacted with the hydrogenation catalyst at a relatively low temperature, the phenolic compound can be converted at a higher conversion rate, and The selectivity to the corresponding alicyclic alcohol can be significantly improved.
  • the hydrogen gas and the phenolic compound may be contacted with the hydrogenation catalyst at a temperature of 50-140°C.
  • the hydrogen gas and the phenolic compound can be contacted with the hydrogenation catalyst under relatively low pressure.
  • the pressure in the hydrogenation reaction zone may be 1-6 MPa.
  • the process according to the invention can be carried out continuously or batchwise.
  • the catalysts employed in the process according to the invention have increased catalytic activity and are particularly suitable for hydrogenation in a continuous process.
  • the hydrogenation reaction is preferably carried out in one of a fixed bed reactor, a shell and tube reactor, or a combination of both.
  • a fixed bed reactor refers to a reactor in which catalysts are loaded in the reaction zone of the reactor to form a catalyst bed (the ratio of the inner diameter of the catalyst bed to the total height of the catalyst loaded in the reactor is usually greater than 1, preferably 3-10:1)
  • the tubular reactor refers to that two or more reaction tubes are arranged in the reactor, and the catalyst is filled in the reaction tubes (the ratio of the inner diameter of the reaction tube to the catalyst loaded in the reaction tube is usually less than 1).
  • the number of the hydrogenation reaction zones may be one, or two or more. Two or more hydrogenation reaction zones may be connected in series, may also be connected in parallel, and may also be a combination of series and parallel. When there are two or more hydrogenation reactants, the hydrogenation reaction zones may be located in different regions of the same reactor, or may be located in different reactors.
  • the contact between the phenolic compound and the hydrogen gas and the hydrogenation catalyst includes a first contact and a second contact, and in the first contact In the first contact, under the first hydrogenation reaction conditions, the phenolic compound and hydrogen are contacted with the first part of the hydrogenation catalyst to obtain a first contact product mixture; in the second contact, under the second hydrogenation reaction conditions, the first The contacted product mixture and make-up hydrogen are contacted with the second portion of the hydrogenation catalyst to obtain a second contacted product mixture.
  • the hydrogenation catalyst used in the method according to the present invention has improved low-temperature reaction activity, and even if the reaction is carried out at a lower temperature, the phenolic compound used as the raw material for the hydrogenation reaction can be effectively converted at a high conversion rate, and a higher conversion rate can be obtained. product selectivity.
  • the first contact can be carried out at a temperature of 60-90°C, such as 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89 or 90°C.
  • the second contact can be carried out at a temperature of 80-140°C, such as 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139 or 140°C .
  • 80-140°C such as 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,
  • the temperature of the second contact is preferably not lower than the temperature of the first contact, so that a further improved raw material conversion rate and product selectivity can be obtained. More preferably, the temperature of the second contact is 20-50°C higher than the temperature of the first contact.
  • the molar ratio of the phenolic compound, hydrogen (ie, the hydrogen used in the first contact) and supplementary hydrogen (ie, the hydrogen used in the second contact) is preferably 1:4-6: 1-4.
  • the pressure may be the same or different, each may be 1-5 MPa, and the pressure is gauge pressure.
  • the weight hourly space velocity in the first contact is 1-6h -1 , such as 1-5h -1
  • the weight hourly space velocity in the second contact is 0.5-3h -1
  • the weight hourly space velocity is calculated as a phenolic compound .
  • the first contact and the second contact may use the same hydrogenation catalyst, or may use different hydrogenation catalysts.
  • the first contact is preferably carried out in a shell and tube reactor through which the phenolic compound and the solvent preferably flow in an upward flow.
  • the second contacting is preferably carried out in a fixed bed reactor through which the first contacting product mixture is preferably passed in an upward flow.
  • the reaction mixture obtained by the hydrogenation reaction can be separated by a conventional method, thereby obtaining a hydrogenated product.
  • the solvent in the reaction mixture obtained by the hydrogenation reaction can be removed, thereby separating the hydrogenation product and recovering the solvent, preferably at least part of the recovered solvent is recycled for the hydrogenation reaction.
  • the solvent can be separated from the reaction mixture obtained by the hydrogenation reaction by means of distillation to obtain the hydrogenated product.
  • the distillation may be atmospheric distillation, vacuum distillation, or a combination of the two.
  • the reaction mixture obtained by the hydrogenation reaction is subjected to atmospheric distillation and vacuum distillation successively, thereby obtaining a hydrogenated product and recovering a solvent.
  • the atmospheric distillation can be carried out in an atmospheric pressure desolvation tower, and the atmospheric distillation can be carried out under the condition that the bottom temperature of the distillation column is 200-240°C, preferably 210-230°C.
  • the vacuum distillation preferably adopts a wiped film distillation column.
  • the vacuum distillation can be carried out under the condition that the temperature at the bottom of the column is 180-220° C., and the pressure at the top of the distillation column is preferably controlled to be -0.08MPa to -0.1MPa during the vacuum distillation process.
  • Figure 1 shows a preferred embodiment of the hydrogenation reaction method according to the present invention. The preferred embodiment will be described below with reference to FIG. 1 .
  • the bisphenol A and the solvent from the solvent tank 15 are stirred and dissolved in the dissolving tank 1 to form a raw material liquid containing 5-30% by weight of bisphenol A, the raw material liquid is sent to the hydrogenation raw material buffer tank 2, and the raw material liquid is measured After the pump 3 is metered and pressurized, it is mixed with the high-pressure hydrogen measured by the flow controller 4 in the pipeline, and then enters the main hydrogenation shell and tube reactor 5 from bottom to top together, and is filled with the main hydrogenation shell and tube reactor 5. The hydrogenation catalyst in the tube is contacted to carry out the main hydrogenation reaction.
  • the outlet mixture of the main hydrogenation shell-and-tube reactor 5 is mixed with the high-pressure supplementary hydrogen measured by the flow controller 6 in the pipeline, and then enters the post-hydrogenation fixed-bed reactor 7 together from bottom to top, and is filled with the post-hydrogenation fixed-bed reactor 7.
  • the hydrogenation catalyst in the hydrogen fixed bed reactor 7 is contacted to carry out the hydrogenation reaction.
  • the outlet mixture of the post-hydrogenation fixed bed reactor 7 is cooled by the condenser 8, it enters the high fraction tank 9 for gas-liquid separation, and the separated hydrogen removes the entrained small amount of vaporized solvent and enters the hydrogen tail gas treatment system.
  • the hydrogen product solution enters the hydrogenation crude product tank 11 through the control valve 10 .
  • the hydrogenation product solution in the hydrogenation crude product tank 11 is metered into the atmospheric pressure desolvation tower 13 to remove the solvent by the metering pump 12, and the removed solvent is collected and sent into the solvent recovery tank 15 after being cooled by the condenser 14, The recovered solvent in the solvent recovery tank 15 can be recycled.
  • the bottom material of the atmospheric pressure desolvation tower 13 enters the decompression tower 17 through the pump 16 to further remove the hydrogenation by-product, the decompression tower 17 is preferably a scraped film distillation tower, and the removed hydrogenation by-product is sent to the by-product tank 18
  • the hydrogenated product from which the solvent and by-products have been removed enters the flake machine 19 for flake treatment to obtain a hydrogenated bisphenol A product.
  • the pressures are all gauge pressures.
  • gas chromatography was used to measure the composition of the reaction solution output from the reactor, and the following formulas were used to calculate the raw material conversion rate and product selectivity according to the measured composition data,
  • Raw material conversion rate (molar amount of raw materials added-molar amount of remaining raw materials)/molar amount of raw materials added ⁇ 100%;
  • Product selectivity molar amount of product produced by the reaction/(molar amount of raw material added ⁇ molar amount of remaining raw material) ⁇ 100%.
  • the hydrogenation catalyst A is: based on the total amount of the catalyst, the content of nickel element is 30% by weight, the content of molybdenum oxide (MoO 3 ) is 5% by weight, the content of zirconia is 20% by weight, and the content of alumina is 20% by weight. 45% by weight.
  • the aqueous solution containing nickel nitrate and zirconium nitrate and the aqueous solution containing sodium hydroxide and sodium carbonate were co-currently mixed at 40°C with stirring. Precipitation, controlling the pH value of the end point to be 11, filtering the obtained reaction mixture, and washing the collected solid matter with deionized water 5 times to obtain a nickel-zirconium coprecipitate.
  • the nickel-zirconium precipitate is mixed with molybdenum oxide and pseudo-boehmite, slurried, then dried at 120 °C for 6 hours, and then calcined at 500 °C for 3 hours, and the calcined powder is pressed into tablets to obtain a catalyst precursor.
  • the catalyst precursor is activated in a mixed atmosphere of hydrogen and nitrogen (the hydrogen content is 10% by volume) to obtain the hydrogenation catalyst A according to the present invention, wherein the temperature is 430° C., the pressure is 0.2 MPa, and the time is 10h.
  • the hydrogenation catalyst B is: based on the total amount of the catalyst, the content of nickel element is 50% by weight, the content of molybdenum oxide is 0.5% by weight, the content of zirconia is 30% by weight, and the content of alumina is 19.5% by weight .
  • the catalyst precursor is activated in a mixed atmosphere of hydrogen and nitrogen (the hydrogen content is 15% by volume) to obtain a hydrogenation catalyst B according to the present invention, wherein the temperature is 420° C., the pressure is 5MPa, and the time is 4h.
  • the hydrogenation catalyst CD1 is: based on the total amount of the catalyst, the content of nickel element is 50% by weight, the content of zirconia is 30% by weight, and the content of alumina is 20% by weight.
  • the hydrogenation catalyst was prepared by the same method as in Preparation Example 2, except that molybdenum oxide was not used in step (2), thereby preparing the hydrogenation catalyst CD1.
  • the hydrogenation catalyst C is: based on the total amount of the catalyst, the content of nickel element is 40% by weight, the content of molybdenum oxide is 10% by weight, the content of zirconia is 5% by weight, and the content of alumina is 45% by weight .
  • the aqueous solution containing nickel sulfate and zirconium sulfate and the aqueous solution containing potassium hydroxide and potassium carbonate were co-currently mixed at 50°C with stirring.
  • the catalyst precursor is activated in a mixed atmosphere of hydrogen and nitrogen (the hydrogen content is 5% by volume) to obtain the hydrogenation catalyst C according to the present invention, wherein the temperature is 460° C., the pressure is 0.1 MPa, and the time is 10h.
  • the hydrogenation catalyst CD2 is: based on the total amount of the catalyst, the content of nickel element is 40% by weight, the content of molybdenum oxide is 10% by weight, and the content of alumina is 50% by weight.
  • the hydrogenation catalyst CD3 is: based on the total amount of the catalyst, the content of nickel element is 40% by weight, the content of molybdenum oxide is 10% by weight, the content of silicon oxide is 5% by weight, and the content of alumina is 45% by weight %.
  • the hydrogenation catalyst is prepared by the same method as in Preparation Example 3, except that the zirconium sulfate is replaced by the same amount of sodium silicate, thereby preparing the hydrogenation catalyst CD3.
  • the hydrogenation catalyst D is: based on the total amount of the catalyst, the content of nickel element is 35% by weight, the content of molybdenum oxide is 4% by weight, the content of zirconia is 30% by weight, and the content of alumina is 31% by weight .
  • aqueous solution containing nickel formate and zirconium oxynitrate and the aqueous solution containing sodium hydroxide and potassium carbonate (molar ratio of sodium hydroxide:potassium carbonate: 1:4) were co-currently mixed at 50°C with stirring Co-precipitation, controlling the pH value of the end point to be 11.5, filtering the obtained reaction mixture, washing the collected solid matter with deionized water 3 times to obtain nickel-zirconium co-precipitate.
  • the catalyst precursor is activated in a mixed atmosphere of hydrogen and nitrogen (the hydrogen content is 5% by volume) to obtain a hydrogenation catalyst D according to the present invention, wherein the temperature is 460° C., the pressure is 5MPa, and the time is 4h.
  • the hydrogenation catalyst E is: based on the total amount of the catalyst, the content of nickel element is 50% by weight, the content of molybdenum oxide is 0.3% by weight, the content of zirconia is 30% by weight, and the content of alumina is 19.7% by weight .
  • the hydrogenation catalyst is prepared by the same method as in Preparation Example 2, except that the amount of molybdenum oxide in step (2) is reduced, thereby preparing the hydrogenation catalyst E.
  • the hydrogenation catalyst F is: based on the total amount of the catalyst, the content of nickel element is 55% by weight, the content of molybdenum oxide is 0.5% by weight, the content of zirconia is 30% by weight, and the content of alumina is 14.5% by weight .
  • the hydrogenation catalyst is prepared by the same method as in Preparation Example 2, except that the amount of nickel chloride in step (1) is increased, thereby preparing the hydrogenation catalyst F.
  • the hydrogenation catalyst G is: based on the total amount of the catalyst, the content of nickel element is 25% by weight, the content of molybdenum oxide is 5% by weight, the content of zirconia is 20% by weight, and the content of alumina is 50% by weight .
  • the hydrogenation catalyst is prepared by the same method as in Preparation Example 1, except that the consumption of nickel nitrate in step (1) is reduced, thereby preparing the hydrogenation catalyst G.
  • the hydrogenation catalyst H is: based on the total amount of the catalyst, the content of nickel element is 40% by weight, the content of molybdenum oxide is 10% by weight, the content of zirconia is 3% by weight, and the content of alumina is 47% by weight .
  • the hydrogenation catalyst is prepared by the same method as in Preparation Example 3, except that the amount of zirconium sulfate in step (1) is reduced, thereby preparing the hydrogenation catalyst H.
  • the hydrogenation catalyst I is: based on the total amount of the catalyst, the content of nickel element is 35% by weight, the content of molybdenum oxide is 4% by weight, the content of zirconia is 35% by weight, and the content of alumina is 26% by weight .
  • Examples 1-13 are used to illustrate the hydrogenation reaction process according to the present invention.
  • Embodiment 1-13 Referring to the mode shown in Figure 1, using the conditions listed in Table 1-3, bisphenol A is subjected to hydrogenation reaction to prepare hydrogenated bisphenol A, and the specific process flow is described as follows:
  • the outlet head is installed at the bottom of the reactor, and the inert ceramic balls are loaded on it to support and preheat the material, and then the hydrogenation catalyst is loaded above the ceramic balls in a random manner, and finally the top of the bed is refilled. Pack inert ceramic balls and install the top of the reactor head.
  • the outlet mixture of the main hydrogenation shell-and-tube reactor 5 is mixed with the high-pressure supplementary hydrogen measured by the flow controller 6 in the pipeline, and then enters the post-hydrogenation fixed-bed reactor 7 together from bottom to top, and is filled with the post-hydrogenation fixed-bed reactor 7.
  • the hydrogenation catalyst in the hydrogen fixed bed reactor 7 is contacted to carry out the hydrogenation reaction.
  • the hydrogen product solution enters the hydrogenation crude product tank 11 through the control valve 10 .
  • the hydrogenation product solution in the hydrogenation crude product tank is metered into the atmospheric pressure desolvation tower 13 to remove the solvent by the metering pump 12, and the solvent removed is collected and sent into the solvent recovery tank 15 after the cooling of the condenser 14. , the recovered solvent in the solvent recovery tank 15 can be recycled.
  • the bottom material of the atmospheric pressure desolvation tower 13 enters the decompression tower 17 through the pump 16 to further remove the hydrogenation by-product, the decompression tower 17 is a scraped film distillation tower, and the removed hydrogenation by-product is sent into the by-product tank 18 , the hydrogenated product from which the solvent and by-products are removed enters into the flake machine 19 for flake processing to obtain a hydrogenated bisphenol A product.
  • the hydrogenation reaction was carried out in the same manner as in Examples 1-13, except that the hydrogenation catalysts prepared in Comparative Examples 1-3 were respectively used and the step (3) was not carried out.
  • the specific operating conditions and reaction results are listed in Table 1. out.
  • the hydrogenation catalyst according to the present invention shows an improved catalytic activity in the hydrogenation reaction of bisphenol A, and even if the hydrogenation reaction is carried out at a lower temperature, a good catalytic reaction effect can be obtained.
  • the results in Table 1 and Table 2 also confirm that the hydrogenation catalyst according to the present invention is suitable for continuous production, and can produce a hydrogenated bisphenol A product with stable quality.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种加氢催化剂及其制备方法和应用,本发明还公开了采用所述加氢催化剂的氢化反应方法。根据本发明的加氢催化剂含有粘结剂和活性组分,所述活性组分含有镍和第VIB族金属元素,所述粘结剂含有氧化锆和氧化铝。根据本发明的催化剂以镍作为主活性成分,成本低。并且,根据本发明的催化剂在酚类化合物的氢化反应中显示出提高的催化活性,特别是具有提高的低温反应活性。根据本发明的催化剂适用于连续化生产工艺,从而能实现氢化双酚A产品的连续化制备,并且产品质量高且稳定。

Description

加氢催化剂及其制备方法和应用以及氢化反应方法
相关申请的交叉引用
本申请要求于2020年12月18日提交的中国专利申请202011513316.2的权益,该申请的内容通过引用被合并于本文。
技术领域
本发明涉及一种加氢催化剂及其制备方法和应用,本发明还涉及采用所述加氢催化剂的氢化反应方法。
背景技术
氢化双酚A(HBPA,CAS:1980-4-6,C 15H 28O 2),是将双酚A分子中的两个苯环进行氢化饱和所得到的脂环族二元醇,是制备聚合物如环氧树脂、聚碳酸酯、聚丙烯酸树脂以及不饱和树脂等的关键单体之一。较双酚A而言,氢化双酚A的热稳定性、化学稳定性及耐气候性显著提高,更适于户外工程,并且对于人体的健康更有益。
氢化双酚A的制备类似于苯环加氢,通常采用贵金属催化剂或镍基催化剂。例如,CN1375484A公开了一种通过氢化4,4’-二羟基二苯基丙烷制备2,2’-二(4-羟基环己基)丙烷的方法,其中,在包含负载在酸活性指数为10%或更少的二氧化硅上的钌的催化剂存在下将4,4’-二羟基二苯基丙烷在溶剂中的溶液与氢气接触,所述的酸活性指数定义为当由5体积%2-丙醇和95体积%氦组成的气流以50mL/min的氦流速在250℃下通过含有1.00g催化剂的固定床反应器时2-丙醇的转化率。该氢化催化剂在防止由于脱水生成的副产物方面有所改进。
CN106866365A提供了一种固定床加氢工艺,采用贵金属负载型催化剂,其以碱金属或磷元素改性的氧化铝作为载体,其活性组分为Pd、Ru、Rh中的一种或多种,以及微量的一种或多种VIIB、VIII族金属元素作为活性改进剂。
尽管贵金属催化剂在双酚A加氢反应中显示出较好的催化活性,但是贵金属催化剂的成本较高,不利于经济性的提高。
US2118954将负载型镍基催化剂用于双酚A液相釜式加氢反应,制备氢化 双酚A,其反应温度为200℃、压力为10-20MPa,但是,该方法的反应时间长,产品收率低。并且,该发明中镍基催化剂的主要问题为催化活性低,反应温度高,难于实现连续化生产。
综上所述,传统的双酚A贵金属加氢催化剂成本高,镍基催化剂的催化活性低,反应温度高,难于实现连续化生产。因此,有必要开发一种低成本、高活性并适用于连续化生产氢化双酚A的加氢催化剂。
发明内容
本发明的目的在于克服现有的镍基催化剂在双酚A加氢反应中的活性低,需要在较高的温度下进行加氢反应,难于实现连续化生产的不足,提供一种加氢催化剂,该催化剂在双酚A加氢反应中显示出明显提高的催化活性,能在较低的温度下进行加氢反应,并且能获得较高的催化活性。
根据本发明的第一个方面,本发明提供了一种加氢催化剂,该催化剂含有粘结剂和活性组分,所述活性组分含有镍元素和第VIB族金属元素,所述粘结剂含有氧化锆和氧化铝。
根据本发明的第二个方面,本发明提供了一种加氢催化剂的制备方法,该方法包括以下步骤:
(1)将沉淀剂与含有镍化合物和锆化合物的溶液接触,从接触得到的混合物中分离出固相物质,得到沉淀物;
(2)将所述沉淀物与第VIB族金属化合物和含铝化合物混合后成型,得到成型体,所述第VIB族金属化合物为第VIB族金属氧化物和/或第VIB族金属氧化物的前身物,所述含铝化合物为氧化铝和/或氧化铝的前身物;
(3)将所述成型体先后进行干燥和焙烧,得到催化剂前体;
(4)在还原反应条件下,将所述催化剂前体与还原剂接触。
根据本发明的第三个方面,本发明提供了一种由本发明第二个方面所述的方法制备的加氢催化剂。
根据本发明的第四个方面,本发明提供了根据本发明第一个方面或者第三个方面所述的催化剂作为氢化反应的催化剂的应用。
根据本发明的第五个方面,本发明提供了一种氢化反应方法,该方法包括 在氢化反应条件下,在至少一种溶剂的存在下,将式I所示的酚类化合物和氢气与加氢催化剂接触,其中,所述加氢催化剂为本发明第一个方面或者第三个方面所述的催化剂,
Figure PCTCN2021133098-appb-000001
式I中,R 1和R 2相同或不同,各自独立地为氢原子、或者C 1-C 5的烷基。
根据本发明的催化剂以镍作为主活性成分,成本低。并且,根据本发明的催化剂在酚类化合物的氢化反应中显示出提高的催化活性,特别是具有提高的低温反应活性,在作为双酚A氢化制备氢化双酚A的反应的催化剂时,能在较为温和的反应条件(反应温度为低于150℃)下,获得较高的催化活性。
根据本发明的催化剂适用于连续化生产工艺,从而能实现氢化双酚A产品的连续化制备,并且产品质量高且稳定。
附图说明
图1用于说明根据本发明的氢化反应方法的一种优选实施方式。
附图标记说明
1:溶解槽                         2:加氢原料缓冲罐
3:计量泵                         4:流量控制仪
5:主加氢列管反应器               6:流量控制仪
7:后加氢固定床反应器             8:冷凝器
9:高分罐                         10:控制阀
11:加氢粗产品罐                  12:计量泵
13:常压脱溶剂塔                  14:冷凝器
15:溶剂回收罐                    16:泵
17:减压塔                        18:副产物罐
19:结片机
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
根据本发明的第一个方面,本发明提供了一种加氢催化剂,该催化剂含有粘结剂和活性组分,所述活性组分含有镍元素和第VIB族金属元素,所述粘结剂含有氧化锆和氧化铝。
根据本发明的催化剂,以该催化剂的总量为基准,镍元素的含量为20-60重量%,优选为30-50重量%,第VIB族金属氧化物的含量为0.1-15重量%,优选为0.5-10重量%,氧化锆的含量为1-40重量%,优选为5-30重量%,氧化铝的含量为5-70重量%,优选为10-64.5重量%。
本发明中,催化剂中的镍以元素计。根据本发明的催化剂,以催化剂的总量为基准,镍元素的含量具体可以为20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59或者60重量%。
根据本发明的催化剂,催化剂中第VIB族金属元素的含量以氧化物计。根据本发明的催化剂,以催化剂的总量为基准,第VIB族金属氧化物的含量可以为0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3、3.1、3.2、3.3、3.4、3.5、3.6、3.7、3.8、3.9、4、4.1、4.2、4.3、4.4、4.5、4.6、4.7、4.8、4.9、5、5.1、5.2、5.3、5.4、5.5、5.6、5.7、5.8、5.9、6、6.1、6.2、6.3、6.4、6.5、6.6、6.7、6.8、6.9、7、7.1、7.2、7.3、7.4、7.5、7.6、7.7、7.8、7.9、8、8.1、8.2、8.3、8.4、8.5、8.6、8.7、8.8、8.9、9、9.1、9.2、9.3、9.4、9.5、9.6、9.7、9.8、9.9、10、10.1、10.2、10.3、10.4、10.5、10.6、10.7、10.8、10.9、11、11.1、11.2、11.3、11.4、11.5、11.6、11.7、11.8、11.9、12、12.1、12.2、12.3、12.4、12.5、12.6、12.7、12.8、12.9、13、13.1、13.2、13.3、13.4、13.5、13.6、13.7、13.8、13.9、14、14.1、14.2、14.3、14.4、14.5、14.6、14.7、14.8、 14.9或者15重量%。所述第VIB族金属元素优选为钼。
根据本发明的催化剂,以催化剂的总量为基准,氧化锆的含量具体可以为1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39或者40重量%。
根据本发明的催化剂,以催化剂的总量为基准,氧化铝的含量可以为5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、64.5、65、66、67、68、69或者70重量%。
根据本发明的催化剂,所述粘结剂优选为氧化锆和氧化铝。
本发明中,催化剂的组成采用X射线荧光光谱法测定。
根据本发明的催化剂,从进一步提高催化剂的催化活性的角度出发,催化剂中的镍元素与氧化锆的摩尔比优选为2-21:1,更优选为2.2-18:1。
根据本发明的催化剂以镍作为活性成分,即便不在催化剂中引入贵金属活性成分,也能获得提高的催化活性,特别是良好的低温催化活性。根据本发明的催化剂,优选不含有贵金属元素。
根据本发明的第二个方面,本发明提供了一种加氢催化剂的制备方法,该方法包括以下步骤:
(1)将沉淀剂与含有镍化合物和锆化合物的溶液接触,从接触得到的混合物中分离出固相物质,得到沉淀物;
(2)将所述沉淀物与第VIB族金属化合物和含铝化合物混合,将得到的混合物先后进行干燥、焙烧和成型,得到催化剂前体,所述第VIB族金属化合物为第VIB族金属氧化物和/或第VIB族金属氧化物的前身物,所述含铝化合物为氧化铝和/或氧化铝的前身物;
(3)在还原反应条件下,将所述催化剂前体与还原剂接触。
步骤(1)中,将镍化合物和锆化合物与沉淀剂进行液相沉淀反应,得到含有镍和锆的沉淀物。所述镍化合物和所述锆化合物可以为能发生沉淀反应的水溶性化合物。具体地,所述镍化合物可以为硫酸镍、硝酸镍、氯化镍、乙酸镍和甲 酸镍中的一种或两种以上。所述锆化合物可以为硫酸锆、硝酸锆、氧化锆和硝酸氧锆中的一种或两种以上。
步骤(1)中,含有镍化合物和锆化合物的溶液的溶剂优选为水。可以将镍化合物和锆化合物溶解在水中从而得到含有镍化合物和锆化合物的溶液。所述镍化合物和所述锆化合物的浓度可以为常规选择。
所述沉淀剂可以为能使得所述镍化合物和所述锆化合物在液相中发生沉淀反应的物质。一般地,所述沉淀剂可以为无机碱,例如:碱金属的氢氧化物、碱金属的碳酸盐和氨(NH 3)中的一种或两种以上。所述沉淀剂的具体实例可以包括但不限于:氢氧化钠、氢氧化钾、氢氧化锂、碳酸钠、碳酸钾和氨中的一种或两种以上。在一种更为优选的实施方式中,所述沉淀剂为碱金属的氢氧化物和碱金属的碳酸盐。在该更为优选的实施方式中,所述碱金属的氢氧化物和所述碱金属的碳酸盐的摩尔比优选为1:1-5,如1:2-5。
所述沉淀剂优选预先溶解在水中形成沉淀剂溶液,并将沉淀剂溶液与含有镍化合物和锆化合物的溶液接触进行沉淀反应。在一种优选的实施方式中,将含有镍化合物和锆化合物的溶液与沉淀剂溶液以并流的方式进行共沉淀反应,从而得到沉淀物。本发明对于并流进行共沉淀反应的具体操作条件没有特别限定,可以在常规条件下进行。步骤(1)中,沉淀剂与含有镍化合物和锆化合物的溶液伴随搅拌接触,进行沉淀反应。
步骤(1)中,沉淀反应可以在常规条件下进行。具体地,可以将沉淀剂与含有镍化合物和锆化合物的溶液在40-60℃的温度下接触,如40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59或者60℃。优选控制接触反应终点的pH值为11-12,如11.1、11.2、11.3、11.4、11.5、11.6、11.7、11.8、11.9或者12。
步骤(1)中,可以采用常规方法从接触得到的液固混合物中分离出固相物质,得到含有镍和锆的沉淀物。具体地,可以将接触得到的混合物进行过滤,并将过滤得到的固体物质进行洗涤,从而得到沉淀物。所述洗涤以能将过滤得到的固体物质中夹杂的离子基本去除为准,一般地,所述洗涤的次数可以为3-6次。
根据本发明的方法,步骤(2)中,将步骤(1)得到的沉淀物与第VIB族金属化合物和含铝化合物混合。
所述第VIB族金属化合物为第VIB族金属氧化物和/或第VIB族金属氧化物的前身物。所述第VIB族金属氧化物的前身物是指能在催化剂中引入第VIB族金属氧化物的物质。在一种优选的实施方式中,所述第VIB族金属化合物为第VIB族金属氧化物。根据本发明的方法,所述第VIB族金属可以为铬、钼和钨中的一种或两种以上。在一种优选的实施方式中,所述第VIB族金属为钼,所述第VIB族金属氧化物优选为钼的氧化物,如氧化钼。
所述含铝化合物为氧化铝和/或氧化铝的前身物。优选地,所述含铝化合物为氧化铝的前身物。更优选地,所述含铝化合物为拟薄水铝石。
根据本发明的方法,步骤(2)中,可以采用常规方法将步骤(1)得到的沉淀物与第VIB族金属化合物和含铝化合物混合。作为一个优选实例,可以将步骤(1)得到的沉淀物与第VIB族金属化合物和含铝化合物混合打浆,从而进行混合。
步骤(2)中,将混合得到的混合物先后进行干燥和焙烧,从而得到经焙烧的固体物质。所述干燥可以在80-120℃的温度下进行。所述干燥可以根据干燥的温度进行选择。一般地,所述干燥的持续时间可以为4-20小时,如2-20小时。所述焙烧可以在400-600℃的温度下进行,所述焙烧的持续时间可以为2-10小时,优选为2-5小时。
步骤(2)中,将焙烧得到的固体物质进行成型得到催化剂前体。本发明对于成型的方法没有特别限定,可以采用常规方法进行成型。具体地,所述成型的方法可以为挤出、压片中的一种或两种以上的组合。
根据本发明的方法,步骤(3)中,将步骤(2)得到的催化剂前体与还原剂在还原反应条件下接触,将催化剂前体活化,从而得到根据本发明的催化剂。在一种优选的实施方式中,所述还原剂为氢气。根据该优选的实施方式,可以在还原性气氛中将催化剂前体进行活化。所述还原性气氛可以为氢气气氛,也可以为氢气和稀释气体形成的混合气氛,所述稀释气体可以为氮气和/或零族气体(如氦气、氩气)。在采用氢气和稀释气体形成的混合气氛时,混合气氛中的氢气含量以足以将催化剂前体活化为准。一般地,所述混合气氛中,氢气的含量可以为1-30体积%,优选为2-25体积%,更优选为5-20体积%,如5-15体积%。步骤(3)中,催化剂前体与还原剂可以在400-460℃的温度下进行接触。所述接触可 以在0.1-5MPa的压力下进行,所述压力为表压。步骤(3)中,所述接触的持续时间可以为2-15小时,优选为4-10小时。
根据本发明的制备方法,所述镍化合物、所述锆化合物、所述第VIB族金属化合物和所述含铝化合物的用量可以根据预期的催化剂组成进行选择。在一种优选的实施方式中,所述镍化合物、所述锆化合物、所述第VIB族金属化合物和所述含铝化合物的用量使得,以最终制备的催化剂的总量为基准,镍元素的含量为20-60重量%,优选为30-50重量%,第VIB族金属氧化物的含量为0.1-15重量%,优选为0.5-10重量%,氧化锆的含量为1-40重量%,优选为5-30重量%,氧化铝的含量为5-70重量%,优选为10-64.5重量%。根据该优选的实施方式,从进一步提高最终制备的催化剂的催化活性的角度出发,所述镍化合物和所述锆化合物的用量使得,以最终制备的催化剂的总量为基准,镍元素与氧化锆的摩尔比优选为2-21:1,更优选为2.2-18:1。根据预期的催化剂组成,确定镍化合物、锆化合物、第VIB族金属化合物和含铝化合物的用量的方法是本领域技术人员公知的,本文不再详述。
根据本发明的第三个方面,本发明提供了由本发明第二个方面所述的方法制备的加氢催化剂。
根据本发明的第四个方面,本发明提供了本发明第一个方面或者第三个方面所述的催化剂作为氢化反应的催化剂的应用。
所述氢化反应例如可以为将苯环加氢饱和的氢化反应,例如将酚类化合物加氢饱和成为相应的脂环族醇的氢化反应。
根据本发明的第五个方面,本发明提供了一种氢化反应方法,该方法包括在氢化反应条件下,在至少一种溶剂的存在下,将式I所示的酚类化合物和氢气与加氢催化剂在氢化反应区中接触,其中,所述加氢催化剂为本发明第一个方面或者第三个方面所述的催化剂。
所述加氢催化剂及其制备方法在前文已经进行了详细的说明,此处不再详述。
根据本发明的氢化反应方法,所述酚类化合物为式I所示的化合物,
Figure PCTCN2021133098-appb-000002
式I中,R 1和R 2相同或不同,各自为氢原子、或者C 1-C 5的烷基。所述C 1-C 5的烷基的具体实例可以包括但不限于甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基、叔丁基、正戊基或者异戊基。
所述酚类化合物优选为2,2-二(4-羟基苯基)丙烷(即,双酚A)和/或二(4-羟基苯基)甲烷(即,双酚F)。
根据本发明的氢化反应方法,在至少一种溶剂存在下将所述酚类化合物和氢气与加氢催化剂接触。所述溶剂可以为醇型溶剂、酯型溶剂和醇醚型溶剂中的一种或两种以上。所述醇型溶剂可以为C 1-C 5的脂肪醇。所述酯型溶剂可以为乙酸酯型溶剂。所述醇醚型溶剂可以为脂肪族二醇的单醚和/或脂肪族二醇的双醚。所述溶剂的具体实例可以包括但不限于甲醇、乙醇、正丙醇、异丙醇、正丁醇、异丁醇、叔丁醇、乙酸甲酯、乙酸乙酯、乙酸正丙酯、乙酸异丙酯、乙酸正丁酯、乙酸仲丁酯、乙二醇单甲醚和乙二醇二甲醚中的一种或两种以上的组合。所述溶剂的用量可以为常规选择。一般地,所述溶剂的用量使得,以溶剂和酚类化合物的总量为基准,酚类化合物的含量为5-30重量%。
根据本发明的氢化反应方法,可以将氢气以及酚类化合物分别送入氢化反应区中与加氢催化剂接触反应。优选地,将酚类化合物和氢气混合后送入氢化反应区中与加氢催化剂接触。
在一种优选的实施方式中,将酚类化合物、氢气以及溶剂混合形成原料混合物,并将所述原料混合物送入氢化反应区中与加氢催化剂接触,进行加氢反应。
在该优选的实施方式中,可以采用常规方法将氢气与含有酚类化合物和溶剂的原料液混合,从而得到所述原料混合物。例如,可以在混合器中将氢气与含有酚类化合物和溶剂的原料液混合,所述混合器可以为动态混合器、静态混合器中的一种或两种以上的组合。所述静态混合器通过改变流体的流动状态而实现将气体与液体混合均匀,具体可以为但不限于SV型静态混合器、SK型静态混合器、SX型静态混合器、SH型静态混合器和SL型静态混合器中的一种或两种以 上的组合。所述动态混合器可以为各种通过运动部件的运动实现将气体与液体混合均匀的混合设备,所述运动部件例如可以为常见的各种具有搅拌功能的部件。
在一种优选的实施方式中,将氢气通过一种气液混合器注入所述原料液中,从而得到所述原料混合物,所述气液混合器包括至少一个用于容纳所述原料液的液体通道和至少一个用于容纳所述氢气的气体通道,所述液体通道和所述气体通道之间通过一构件邻接,所述构件的至少部分为有孔区,所述氢气通过所述有孔区被注入所述原料液中。本发明中,术语“液体通道”是指能够容纳液相物流的空间;术语“气体通道”是指能够容纳氢气的空间。
所述构件的至少部分为有孔区,所述有孔区沿所述构件的长度方向延伸。优选地,所述有孔区覆盖整个构件(即,所述液体通道和所述气体通道之间通过具有所述平均孔径为纳米尺寸的孔的构件邻接,所述氢气通过所述孔而被注入到所述液相物流中)。所述有孔区具有所述平均孔径为纳米尺寸的孔,以使氢气通过所述具有平均孔径为纳米尺寸的孔被注入所述液相物流中。
在该优选的实施方式中,所述有孔区中的孔可以为微米孔和/或纳米孔。本发明中,术语“微米孔”是指平均孔径大于1000nm的孔,所述微米孔的平均孔径优选为不大于600μm,更优选为不大于500μm。本发明中,术语“纳米孔”是指平均孔径不大于1000nm的孔,如平均孔径为1nm至1000nm的孔。更优选地,所述有孔区中的孔为纳米孔。进一步优选地,所述有孔区中的孔的平均孔径为50nm至500nm。所述平均孔径采用扫描电镜法测定。
所述构件可以为多孔膜、多孔板和多孔管道中的一种或两种以上的组合。所述多孔管道是指通道的壁为多孔性的。所述多孔管道的内表面和/或外表面可以附着多孔膜,这样可以对管道上的孔的孔径进行调节,例如:所述管道的壁上的孔可以为微米孔,附着在所述管道的内表面和/或外表面上的多孔膜上孔的可以为纳米孔,本发明中,将内表面和/或外表面上附着有其中的孔为纳米孔的多孔膜的管道也视为有孔区中的孔为纳米孔。作为具有多孔膜的管道的一个实例,所述多孔管道可以为膜管。所述多孔管道中的通道的数量没有特别限定,一般地,所述多孔管道中的通道的数量可以为4-20条。
可以将所述气液混合器设置在所述反应器的入口端,从而将气液混合器输出的原料混合物直接送入反应器中。
根据本发明的氢化反应方法,氢气的注入量可以根据原料液中的酚化合物的含量进行选择,以足以将酚化合物氢化为准,例如将酚化合物氢化成为相应的脂环族醇为准。一般地,氢气的注入量与所述原料液中的酚化合物的摩尔比可以为4-10:1。
根据本发明的氢化反应方法,通过采用本发明的加氢催化剂,即使在较低的温度下将氢气和酚化合物与加氢催化剂接触反应,也能将酚化合物以较高的转化率转化,并且能明显提高对相应的脂环族醇的选择性。具体地,可以将氢气和酚化合物与加氢催化剂在50-140℃的温度下进行接触。
根据本发明的氢化反应方法,可以在较低的压力下将氢气和酚化合物与加氢催化剂接触。具体地,以表压计,氢化反应区内的压力可以为1-6MPa。
根据本发明的方法可以连续进行,也可以间歇进行。根据本发明的方法采用的催化剂具有提高的催化活性,特别适于采用连续方法进行氢化反应。根据本发明的方法,所述氢化反应优选在固定床反应器、列管式反应器的一种或两种的组合中进行。本发明中,固定床反应器是指催化剂装填在反应器的反应区中形成催化剂床层的反应器(催化剂床层的内径与反应器内装填的催化剂的总高度的比值通常为大于1,优选为3-10:1),所述列管式反应器是指反应器内设置两根以上反应管,将催化剂装填在反应管(反应管的内径与反应管中装填的催化剂的比值通常为小于1)。
根据本发明的氢化反应方法,所述氢化反应区的数量可以为一个,也可以为两个以上。两个以上氢化反应区可以为串联连接,也可以为并联连接,还可以为串联和并联的组合。在所述氢化反应物为两个以上时,所述氢化反应区可以为位于同一反应器的不同区域,也可以位于不同的反应器中。
根据本发明的氢化反应方法,从进一步提高反应效果的角度出发,在一种优选的实施方式中,酚类化合物和氢气与加氢催化剂的接触包括第一接触和第二接触,在所述第一接触中,在第一氢化反应条件下,将酚类化合物和氢气与第一部分加氢催化剂接触,得到第一接触产物混合物;在第二接触中,在第二氢化反应条件下,将第一接触产物混合物和补充氢气与第二部分加氢催化剂接触,得到第二接触产物混合物。
根据本发明的方法采用的加氢催化剂具有提高的低温反应活性,即便在较 低的温度下进行反应,也能有效地将作为氢化反应原料的酚类化合物以高转化率转化,并获得较高的产物选择性。根据该优选的实施方式,所述第一接触可以在60-90℃的温度下进行,如60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89或者90℃的温度下进行。根据该优选的实施方式,所述第二接触可以在80-140℃的温度下进行,如80、81、82、83、84、85、86、87、88、89、90、91、92、93、94、95、96、97、98、99、100、101、102、103、104、105、106、107、108、109、110、111、112、113、114、115、116、117、118、119、120、121、122、123、124、125、126、127、128、129、130、131、132、133、134、135、136、137、138、139或者140℃的温度下进行。根据该优选的实施方式,所述第二接触的温度优选为不低于所述第一接触的温度,这样能获得进一步提高的原料转化率和产物选择性。更优选地,所述第二接触的温度比所述第一接触的温度高20-50℃。
第一接触和第二接触中,酚类化合物、氢气(即,第一接触中采用的氢气)和补充氢气(即,第二接触中采用的氢气)的摩尔比优选为1:4-6:1-4。
第一接触和第二接触中,压力可以为相同或不同,各自可以为1-5MPa,所述压力为表压。
优选地,第一接触中的重时空速为1-6h -1,如1-5h -1,第二接触中的重时空速为0.5-3h -1,所述重时空速以酚类化合物计。
所述第一接触和第二接触可以采用相同的加氢催化剂,也可以采用不同的加氢催化剂。
根据该优选的实施方式,所述第一接触优选在列管式反应器中进行,所述酚类化合物和所述溶剂优选以向上流的方式流过所述列管式反应器。根据该优选的实施方式,所述第二接触优选在固定床反应器中进行,所述第一接触产物混合物优选以向上流的方式通过所述固定床反应器。
根据本发明的氢化反应方法,氢化反应得到的反应混合物可以采用常规方法进行分离,从而得到氢化产物。具体地,可以脱除氢化反应得到的反应混合物中的溶剂,从而分离出氢化产物以及回收溶剂,优选将至少部分回收溶剂循环用于氢化反应。可以采用蒸馏的方法从氢化反应得到的反应混合物中分离出溶剂, 得到氢化产物。所述蒸馏可以为常压蒸馏、减压蒸馏或者二者的组合。在一种优选的实施方式中,将氢化反应得到的反应混合物先后进行常压蒸馏和减压蒸馏,从而得到氢化产物以及回收溶剂。所述常压蒸馏可以在常压脱溶剂塔中进行,所述常压蒸馏可以在蒸馏塔底温度为200-240℃、优选210-230℃的条件下进行。所述减压蒸馏优选采用刮膜蒸馏塔。所述减压蒸馏可以在塔底温度为180-220℃的条件下进行,所述减压蒸馏过程中优选控制蒸馏塔的塔顶压力为-0.08MPa至-0.1MPa。
图1示出了根据本发明的氢化反应方法的一种优选实施方式。以下结合图1对该优选实施方式进行说明。
将双酚A与来自于溶剂罐15的溶剂在溶解槽1中搅拌溶解形成含5-30重量%双酚A的原料液,将原料液送入加氢原料缓冲罐2中,原料液经计量泵3计量增压后,与经过流量控制仪4计量的高压氢气在管路中混合,然后一起由下往上进入主加氢列管反应器5中,与装填在主加氢列管反应器的列管中的加氢催化剂接触,进行主加氢反应。主加氢列管反应器5的出口混合物与经过流量控制仪6计量的高压补充氢气在管路中混合,然后一起由下往上进入后加氢固定床反应器7中,与装填在后加氢固定床反应器7中的加氢催化剂接触进行加氢反应。后加氢固定床反应器7的出口混合物经冷凝器8冷却后,进入高分罐9进行气液分离,分离出的氢气脱除夹带的少量汽化溶剂后进入氢气尾气处理系统,分离出的加氢产物溶液经过控制阀10进入加氢粗产品罐11中。
加氢粗产品罐11中的加氢产物溶液由计量泵12计量送入常压脱溶剂塔13中脱除溶剂,脱除的溶剂经冷凝器14冷却后,收集送入溶剂回收罐15中,溶剂回收罐15中的回收溶剂可循环使用。常压脱溶剂塔13的塔底物料经泵16进入减压塔17进一步脱除加氢副产物,减压塔17优选为刮膜蒸馏塔,脱除的加氢副产物送入副产物罐18中,经脱除溶剂及副产物的加氢产物进入结片机19中进行结片处理后,得到氢化双酚A产品。
以下结合实施例详细说明本发明,但并不因此限制本发明的范围。
以下实施例和对比例中,如未特别说明,压力均以表压计。
以下实施例和对比例中,采用气相色谱法测定反应器输出的反应液的组成,并根据测定的组成数据采用以下公式计算原料转化率和产物选择性,
原料转化率=(加入的原料的摩尔量-剩余的原料的摩尔量)/加入的原料的摩尔量×100%;
产物选择性=反应生成的产物的摩尔量/(加入的原料的摩尔量-剩余的原料的摩尔量)×100%。
制备例1-9用于制备根据本发明的加氢催化剂。
制备例1
本实施例中,加氢催化剂A为:以催化剂的总量为基准,镍元素含量为30重量%,氧化钼(MoO 3)含量为5重量%,氧化锆含量为20重量%,氧化铝含量为45重量%。采用以下方法制备:
(1)在40℃、伴随搅拌的条件下,将含硝酸镍和硝酸锆的水溶液与含有氢氧化钠和碳酸钠(氢氧化钠:碳酸钠的摩尔比为1:2)的水溶液并流共沉淀,控制终点pH值为11,将得到的反应混合物过滤,用去离子水洗涤收集到的固体物质5次,得到镍锆共沉淀物。
(2)将镍锆沉淀物与氧化钼和拟薄水铝石混合,打浆,然后在120℃干燥6h,接着在500℃焙烧3h,将焙烧得到的粉末进行压片成型,得到催化剂前体。
(3)将催化剂前体在氢气和氮气的混合气氛(氢气含量为10体积%)中进行活化处理,得到根据本发明的加氢催化剂A,其中,温度为430℃,压力为0.2MPa,时间为10h。
制备例2
本制备例中,加氢催化剂B为:以催化剂的总量为基准,镍元素含量为50重量%,氧化钼含量为0.5重量%,氧化锆含量为30重量%,氧化铝含量为19.5重量%。采用以下方法制备:
(1)在60℃、伴随搅拌的条件下,将含氯化镍和氯化锆的水溶液与含有氢氧化钾和碳酸钠(氢氧化钾:碳酸钠的摩尔比为1:3)的水溶液并流共沉淀,控制终点pH值为12,将得到的反应混合物过滤,用去离子水洗涤收集到的固体物质6次,得到镍锆共沉淀物。
(2)将镍锆沉淀物与氧化钼和拟薄水铝石混合,打浆,然后在100℃干燥 6h,接着在400℃焙烧5h,将焙烧得到的粉末进行压片成型,得到催化剂前体。
(3)将催化剂前体在氢气和氮气的混合气氛(氢气含量为15体积%)中进行活化处理,得到根据本发明的加氢催化剂B,其中,温度为420℃,压力为5MPa,时间为4h。
制备对比例1
本制备对比例中,加氢催化剂CD1为:以催化剂的总量为基准,镍元素含量为50重量%,氧化锆含量为30重量%,氧化铝含量为20重量%。
采用与制备例2相同的方法制备加氢催化剂,不同的是,步骤(2)中不采用氧化钼,从而制备得到加氢催化剂CD1。
制备例3
本制备例中,加氢催化剂C为:以催化剂的总量为基准,镍元素含量为40重量%,氧化钼含量为10重量%,氧化锆含量为5重量%,氧化铝含量为45重量%。采用以下方法制备:
(1)在50℃、伴随搅拌的条件下,将含硫酸镍和硫酸锆的水溶液与含有氢氧化钾和碳酸钾(氢氧化钾:碳酸钾的摩尔比为1:5)的水溶液并流共沉淀,控制终点pH值为11.2,将得到的反应混合物过滤,用去离子水洗涤收集到的固体物质3次,得到镍锆共沉淀物。
(2)将镍锆沉淀物与氧化钼和拟薄水铝石混合,打浆,然后在120℃干燥15h,接着在550℃焙烧3h,将焙烧得到的粉末进行压片成型,得到催化剂前体。
(3)将催化剂前体在氢气和氮气的混合气氛(氢气含量为5体积%)中进行活化处理,得到根据本发明的加氢催化剂C,其中,温度为460℃,压力为0.1MPa,时间为10h。
制备对比例2
本制备对比例中,加氢催化剂CD2为:以催化剂的总量为基准,镍元素含量为40重量%,氧化钼含量为10重量%,氧化铝含量为50重量%。采用以下方法制备:采用与制备例3相同的方法制备加氢催化剂,不同的是,步骤(1)中 不采用硫酸锆,从而制备得到加氢催化剂CD2。
制备对比例3
本制备对比例中,加氢催化剂CD3为:以催化剂的总量为基准,镍元素含量为40重量%,氧化钼含量为10重量%,氧化硅含量为5重量%,氧化铝含量为45重量%。采用以下方法制备:采用与制备例3相同的方法制备加氢催化剂,不同的是,硫酸锆用等量的硅酸钠代替,从而制备得到加氢催化剂CD3。
制备例4
本制备例中,加氢催化剂D为:以催化剂的总量为基准,镍元素含量为35重量%,氧化钼含量为4重量%,氧化锆含量为30重量%,氧化铝含量为31重量%。采用以下方法制备:
(1)在50℃、伴随搅拌的条件下,将含甲酸镍和硝酸氧锆的水溶液与含有氢氧化钠和碳酸钾(氢氧化钠:碳酸钾的摩尔比为1:4)的水溶液并流共沉淀,控制终点pH值为11.5,将得到的反应混合物过滤,用去离子水洗涤收集到的固体物质3次,得到镍锆共沉淀物。
(2)将镍锆沉淀物与氧化钼和拟薄水铝石混合,打浆,然后在80℃干燥20h,接着在600℃焙烧2h,将焙烧得到的粉末进行压片成型,得到催化剂前体。
(3)将催化剂前体在氢气和氮气的混合气氛(氢气含量为5体积%)中进行活化处理,得到根据本发明的加氢催化剂D,其中,温度为460℃,压力为5MPa,时间为4h。
制备例5
本制备例中,加氢催化剂E为:以催化剂的总量为基准,镍元素含量为50重量%,氧化钼含量为0.3重量%,氧化锆含量为30重量%,氧化铝含量为19.7重量%。采用以下方法制备:采用与制备例2相同的方法制备加氢催化剂,不同的是,降低步骤(2)中氧化钼的用量,从而制备得到加氢催化剂E。
制备例6
本制备例中,加氢催化剂F为:以催化剂的总量为基准,镍元素含量为55重量%,氧化钼含量为0.5重量%,氧化锆含量为30重量%,氧化铝含量为14.5重量%。采用以下方法制备:采用与制备例2相同的方法制备加氢催化剂,不同的是,提高步骤(1)中氯化镍的用量,从而制备得到加氢催化剂F。
制备例7
本制备例中,加氢催化剂G为:以催化剂的总量为基准,镍元素含量为25重量%,氧化钼含量为5重量%,氧化锆含量为20重量%,氧化铝含量为50重量%。采用以下方法制备:采用与制备例1相同的方法制备加氢催化剂,不同的是,降低步骤(1)中硝酸镍的用量,从而制备得到加氢催化剂G。
制备例8
本制备例中,加氢催化剂H为:以催化剂的总量为基准,镍元素含量为40重量%,氧化钼含量为10重量%,氧化锆含量为3重量%,氧化铝含量为47重量%。采用以下方法制备:采用与制备例3相同的方法制备加氢催化剂,不同的是,降低步骤(1)中硫酸锆的用量,从而制备得到加氢催化剂H。
制备例9
本制备例中,加氢催化剂I为:以催化剂的总量为基准,镍元素含量为35重量%,氧化钼含量为4重量%,氧化锆含量为35重量%,氧化铝含量为26重量%。采用以下方法制备:采用与制备例4相同的方法制备加氢催化剂,不同的是,提高步骤(1)中硝酸氧锆的用量,从而制备得到加氢催化剂I。
实施例1-13用于说明根据本发明的氢化反应方法。
实施例1-13参照图1示出的方式,采用表1-3列出的条件,将双酚A进行氢化反应,制备氢化双酚A,具体工艺流程描述如下:
(1)首先在反应器底部安装出口封头,并在其上装填惰性瓷球起支撑作用和物料预热作用,然后以散堆方式在瓷球上方装填加氢催化剂,最后在床层上方再装填惰性瓷球,并安装反应器顶部封头。
(2)将双酚A与来自于溶剂罐15的溶剂在溶解槽1中搅拌溶解形成含5-30重量%双酚A的原料液,将原料液送入加氢原料缓冲罐2中,原料液经计量泵3计量增压后,与经过流量控制仪4计量的高压氢气在管路中混合,然后一起由下往上进入主加氢列管反应器5中,与装填在主加氢列管反应器的列管中的加氢催化剂接触,进行主加氢反应。主加氢列管反应器5的出口混合物与经过流量控制仪6计量的高压补充氢气在管路中混合,然后一起由下往上进入后加氢固定床反应器7中,与装填在后加氢固定床反应器7中的加氢催化剂接触进行加氢反应。后加氢固定床反应器7的出口混合物经冷凝器8冷却后,进入高分罐9进行气液分离,分离出的氢气脱除夹带的少量汽化溶剂后进入氢气尾气处理系统,分离出的加氢产物溶液经过控制阀10进入加氢粗产品罐11中。
具体氢化反应条件以及反应结果在表1中列出,表1中,①为乙酸仲丁酯,②为乙酸异丙酯,③为正丙醇,④为正丁醇,⑤为乙二醇单甲醚,⑥为乙二醇二甲醚。
(3)加氢粗产品罐中的加氢产物溶液由计量泵12计量送入常压脱溶剂塔13中脱除溶剂,脱除的溶剂经冷凝器14冷却后,收集送入溶剂回收罐15中,溶剂回收罐15中的回收溶剂可循环使用。常压脱溶剂塔13的塔底物料经泵16进入减压塔17进一步脱除加氢副产物,减压塔17为刮膜蒸馏塔,脱除的加氢副产物送入副产物罐18中,经脱除溶剂及副产物的加氢产物进入结片机19中进行结片处理后,得到氢化双酚A产品。
脱溶剂塔13和减压塔的操作条件在表2中列出。
对比例1-3
采用与实施例1-13相同的方法进行氢化反应,不同的是,分别采用制备对比例1-3制备的加氢催化剂并且不进行步骤(3),具体操作条件和反应结果在表1中列出。
Figure PCTCN2021133098-appb-000003
表2
Figure PCTCN2021133098-appb-000004
从表1的数据可以看出,根据本发明的加氢催化剂在双酚A的氢化反应中显示出提高的催化活性,即便在较低温度下进行氢化反应,也能获得良好的催化反应效果。表1和表2的结果还证实,根据本发明的加氢催化剂适用于连续化生产,能制备得到质量稳定的氢化双酚A产品。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (23)

  1. 一种加氢催化剂,该催化剂含有粘结剂和活性组分,所述活性组分含有镍元素和第VIB族金属元素,所述粘结剂含有氧化锆和氧化铝。
  2. 根据权利要求1所述的催化剂,其中,以该催化剂的总量为基准,镍元素的含量为20-60重量%,优选为30-50重量%,第VIB族金属氧化物的含量为0.1-15重量%,优选为0.5-10重量%,氧化锆的含量为1-40重量%,优选为5-30重量%,氧化铝的含量为5-70重量%,优选为10-64.5重量%。
  3. 根据权利要求1或2所述的催化剂,其中,镍元素与氧化锆的摩尔比为2-21:1,优选为2.2-18:1。
  4. 根据权利要求1-3中任意一项所述的催化剂,其中,所述第VIB族金属元素为钼。
  5. 一种加氢催化剂的制备方法,该方法包括以下步骤:
    (1)将沉淀剂与含有镍化合物和锆化合物的溶液接触,从接触得到的混合物中分离出固相物质,得到沉淀物;
    (2)将所述沉淀物与第VIB族金属化合物和含铝化合物混合,将得到的混合物先后进行干燥、焙烧和成型,得到催化剂前体,所述第VIB族金属化合物为第VIB族金属氧化物和/或第VIB族金属氧化物的前身物,所述含铝化合物为氧化铝和/或氧化铝的前身物;
    (3)在还原反应条件下,将所述催化剂前体与还原剂接触。
  6. 根据权利要求5所述的方法,其中,步骤(1)中,所述沉淀剂为无机碱,优选为碱金属的氢氧化物和/或碱金属的碳酸盐;
    优选地,所述沉淀剂为碱金属的氢氧化物和碱金属的碳酸盐,所述碱金属的氢氧化物与所述碱金属的碳酸盐的摩尔比优选为1:1-5。
  7. 根据权利要求5或6所述的方法,其中,步骤(1)中,所述镍化合物为硫酸镍、硝酸镍、氯化镍、乙酸镍和甲酸镍中的一种或两种以上;
    步骤(1)中,所述锆化合物为硫酸锆、硝酸锆、氧化锆和硝酸氧锆中的一种或两种以上。
  8. 根据权利要求5-7中任意一项所述的方法,其中,步骤(1)中,所述接触在pH值为11-12的条件下进行;
    优选地,步骤(1)中,所述接触的温度为40-60℃。
  9. 根据权利要求5所述的方法,其中,步骤(2)中,所述第VIB族金属化合物为第VIB族金属氧化物;
    步骤(2)中,所述含铝化合物为氧化铝和/或拟薄水铝石,优选为拟薄水铝石。
  10. 根据权利要求5-9中任意一项所述的方法,其中,所述镍化合物、所述锆化合物、所述第VIB族金属化合物和所述含铝化合物的用量使得,以最终制备的催化剂的总量为基准,镍元素的含量为20-60重量%,优选为30-50重量%,第VIB族金属元素氧化物的含量为0.1-15重量%,优选为0.5-10重量%,氧化锆的含量为1-40重量%,优选为5-30重量%,氧化铝的含量为5-70重量%,优选为10-64.5重量%;
    优选地,所述镍化合物和所述锆化合物的用量使得,以最终制备的催化剂的总量为基准,镍元素与氧化锆的摩尔比为2-21:1,优选为2.2-18:1。
  11. 根据权利要求5-10中任意一项所述的方法,其中,所述第VIB族金属元素为钼。
  12. 根据权利要求5所述的方法,其中,步骤(2)中,所述干燥在80-120℃的温度下进行,所述干燥的持续时间优选为4-20小时;
    优选地,步骤(2)中,所述焙烧在400-600℃的温度下进行,所述焙烧的 持续时间优选为2-10小时。
  13. 根据权利要求5所述的方法,其中,步骤(3)中,所述还原剂为氢气;
    优选地,步骤(3)中,所述接触在400-460℃的温度下进行,所述接触在压力为0.1-5MPa的条件下进行,所述压力为表压,所述接触的持续时间为2-15小时。
  14. 一种由权利要求5-13中任意一项所述的方法制备的加氢催化剂。
  15. 权利要求1-4和14中任意一项所述的催化剂作为氢化反应的催化剂的应用。
  16. 一种氢化反应方法,该方法包括在氢化反应条件下,在至少一种溶剂的存在下,将式I所示的酚类化合物和氢气与加氢催化剂接触,其特征在于,所述加氢催化剂为权利要求1-4和14中任意一项所述的催化剂,
    Figure PCTCN2021133098-appb-100001
    式I中,R 1和R 2相同或不同,各自独立地为氢原子、或者C 1-C 5的烷基。
  17. 根据权利要求16所述的方法,其中,所述接触包括第一接触和第二接触,在所述第一接触中,在第一氢化反应条件下,在至少一种溶剂的存在下,将所述酚类化合物和氢气与第一部分加氢催化剂接触,得到第一接触产物混合物;在第二接触中,在第二氢化反应条件下,将第一接触产物混合物和补充氢气与第二部分加氢催化剂接触,得到第二接触产物混合物。
  18. 根据权利要求17所述的方法,其中,所述第一接触的温度为60-90℃,所述第二接触的温度为80-140℃;
    优选地,所述第二接触的温度不低于所述第一接触的温度;
    更优选地,所述第二接触的温度比所述第一接触的温度高20-50℃。
  19. 根据权利要求17或18所述的方法,其中,第一接触和第二接触中,压力相同或不同,各自为1-5MPa,所述压力为表压;
    优选地,第一接触的重时空速为1-6h -1,第二接触的重时空速为0.5-3h -1,所述重时空速以酚类化合物计。
  20. 根据权利要求17-19中任意一项所述的方法,其中,所述第一接触在列管式反应器中进行,所述酚类化合物和所述溶剂优选以向上流的方式流过所述列管式反应器;
    优选地,所述第二接触在固定床反应器中进行,所述第一接触产物混合物优选以向上流的方式通过所述固定床反应器。
  21. 根据权利要求17-20中任意一项所述的方法,其中,所述酚类化合物、氢气和补充氢气的摩尔比为1:4-6:1-4。
  22. 根据权利要求16-21中任意一项所述的方法,其中,所述溶剂为甲醇、乙醇、正丙醇、异丙醇、正丁醇、异丁醇、叔丁醇、乙酸甲酯、乙酸乙酯、乙酸正丙酯、乙酸异丙酯、乙酸正丁酯、乙酸仲丁酯、乙二醇单甲醚和乙二醇二甲醚中的一种或两种以上的组合;
    优选地,以所述溶剂和所述酚类化合物的总量为基准,所述酚类化合物的含量为5-30重量%。
  23. 根据权利要求16-22中任意一项所述的方法,其中,式IV所示的酚类化合物为2,2-二(4-羟基苯基)丙烷和/或二(4-羟基苯基)甲烷。
PCT/CN2021/133098 2020-12-18 2021-11-25 加氢催化剂及其制备方法和应用以及氢化反应方法 WO2022127551A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/258,121 US20240123432A1 (en) 2020-12-18 2021-11-25 Hydrogenation catalyst, preparation method for same, applications thereof, and hydrogenation reaction method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011513316.2 2020-12-18
CN202011513316.2A CN114643060B (zh) 2020-12-18 2020-12-18 加氢催化剂及其制备方法和应用以及氢化反应方法

Publications (1)

Publication Number Publication Date
WO2022127551A1 true WO2022127551A1 (zh) 2022-06-23

Family

ID=81991636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/133098 WO2022127551A1 (zh) 2020-12-18 2021-11-25 加氢催化剂及其制备方法和应用以及氢化反应方法

Country Status (3)

Country Link
US (1) US20240123432A1 (zh)
CN (1) CN114643060B (zh)
WO (1) WO2022127551A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2809995A1 (de) * 1977-03-10 1978-09-14 Inst Francais Du Petrol Verfahren zur herstellung von dicyclohexanol-propan durch hydrierung von diphenol-propan
CN1362487A (zh) * 2001-01-05 2002-08-07 中国石油化工股份有限公司 一种加氢精制催化剂及其制备方法
CN101491775A (zh) * 2008-01-23 2009-07-29 中国石油化工股份有限公司 一种催化剂载体及其制备方法
CN109232188A (zh) * 2018-10-17 2019-01-18 常州大学 一种氢化双酚a的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101367052B (zh) * 2007-08-15 2011-03-30 中国石油天然气集团公司 铝锆复合氧化物载体和负载型加氢脱硫催化剂
CN102180762B (zh) * 2011-03-23 2014-03-12 北京燕山集联石油化工有限公司 一种制备环已烷的方法
US8889922B2 (en) * 2011-12-30 2014-11-18 E I Du Pont De Nemours And Company Process for preparing 1, 6-hexanediol
CN105050716A (zh) * 2013-03-25 2015-11-11 埃克森美孚化学专利公司 制造烷基化芳族化合物的方法
CN106083529B (zh) * 2016-06-03 2018-09-25 江苏清泉化学股份有限公司 一种氢化双酚a的制备方法及双酚a加氢用催化剂
CN109364925B (zh) * 2018-09-27 2021-08-10 中国科学院广州能源研究所 一种催化酚类化合物加氢脱氧制备环烷烃的催化剂及其制备方法
CN109678661B (zh) * 2018-12-17 2022-01-25 常州大学 用于连续化制备氢化双酚a的设备及氢化双酚a的连续化制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2809995A1 (de) * 1977-03-10 1978-09-14 Inst Francais Du Petrol Verfahren zur herstellung von dicyclohexanol-propan durch hydrierung von diphenol-propan
CN1362487A (zh) * 2001-01-05 2002-08-07 中国石油化工股份有限公司 一种加氢精制催化剂及其制备方法
CN101491775A (zh) * 2008-01-23 2009-07-29 中国石油化工股份有限公司 一种催化剂载体及其制备方法
CN109232188A (zh) * 2018-10-17 2019-01-18 常州大学 一种氢化双酚a的制备方法

Also Published As

Publication number Publication date
US20240123432A1 (en) 2024-04-18
CN114643060B (zh) 2023-08-01
CN114643060A (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
JP2655034B2 (ja) 前駆体アルデヒド水素化触媒
CN108236955A (zh) 一种草酸二甲酯加氢合成乙醇用催化剂的制备方法以及由此得到的催化剂和其应用
US7348463B2 (en) Hydrogenation of aromatic compounds
US20110060169A1 (en) Hydrogenation catalyst and process for preparing alcohols by hydrogenation of carbonyl compounds
JPH02270829A (ja) イソプロパノールの製造方法
CN102245549B (zh) 在一氧化碳存在下氢化烷基酯的改进方法
TWI421234B (zh) 2-丙醇之製造方法
US20230322651A1 (en) Composition of catalysts for conversion of ethanol to n-butanol and higher alcohols
EP0149255A2 (en) Process for producing alcohols from carbon monoxide and hydrogen using an alkali-molybdenum sulfide catalyst
JP4963112B2 (ja) メタノール合成用触媒の製造方法、及びメタノールの製造方法
US8399718B2 (en) Promoted copper/zinc catalyst for hydrogenating aldehydes to alcohols
CN103664587B (zh) 制备乙酸环己酯的方法及制备环己醇和乙醇的方法
JPH01503454A (ja) 不飽和有機化合物の水素化方法
WO2022127551A1 (zh) 加氢催化剂及其制备方法和应用以及氢化反应方法
JP5187675B2 (ja) 3価以上のアルコールからのヒドロキシケトン製造方法およびそれに用いる触媒
WO2014034880A1 (ja) 7-オクテナールの製造方法
WO2022127550A1 (zh) 一种加氢催化剂和一种苯甲酸加氢反应方法
JP7177156B2 (ja) 2,3-ブタンジオールの連続製造方法
CN106238048B (zh) 氧化物合成用催化剂及其制造方法、氧化物的制造装置以及氧化物的制造方法
CN113713817B (zh) 一种采用镍基催化剂催化丙醛加氢制正丙醇的方法
JP7160721B2 (ja) 酸化鉄触媒の製造方法、並びにアルデヒド及び/又はアルコールの製造方法
CN114478408B (zh) 连续合成高哌嗪的方法
JP4288348B2 (ja) ナフトール類の水素化物の製造方法
CN108097263B (zh) 一种利用工业副产废液丙酮制备mibk的方法
KR102556477B1 (ko) 슬러리 반응기를 이용하여 이산화탄소로부터 알코올을 제조하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905480

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202317047612

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21905480

Country of ref document: EP

Kind code of ref document: A1