WO2022127410A1 - 催化剂、其制备方法和在制备氮氧自由基哌啶醇中的用途 - Google Patents

催化剂、其制备方法和在制备氮氧自由基哌啶醇中的用途 Download PDF

Info

Publication number
WO2022127410A1
WO2022127410A1 PCT/CN2021/128075 CN2021128075W WO2022127410A1 WO 2022127410 A1 WO2022127410 A1 WO 2022127410A1 CN 2021128075 W CN2021128075 W CN 2021128075W WO 2022127410 A1 WO2022127410 A1 WO 2022127410A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
tetramethyl
hours
water
hydroxypiperidine
Prior art date
Application number
PCT/CN2021/128075
Other languages
English (en)
French (fr)
Inventor
熊德胜
罗从光
庄岩
崔曜
褚小东
Original Assignee
上海华谊新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海华谊新材料有限公司 filed Critical 上海华谊新材料有限公司
Publication of WO2022127410A1 publication Critical patent/WO2022127410A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/92Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with a hetero atom directly attached to the ring nitrogen atom
    • C07D211/94Oxygen atom, e.g. piperidine N-oxide

Definitions

  • the invention relates to a titanium-containing solid catalyst, a preparation method of the catalyst and a method for preparing nitroxide radical piperidinol (ie 2,2,6,6-tetramethyl-4-hydroxypiperidine nitroxide radical) use in.
  • nitroxide radical piperidinol ie 2,2,6,6-tetramethyl-4-hydroxypiperidine nitroxide radical
  • nitroxide radical also known as nitroxide radical piperidinol or Inhibitor 701
  • nitroxide radical piperidinol or Inhibitor 701 is a new type of polymerization inhibitor, which is a stable
  • the free radicals are extremely stable to light and heat, can terminate the oxidation chain, and can act as a polymerization inhibitor for polymer monomers, an anti-aging agent for polymer materials, a high-efficiency UV absorber, and thermal degradation of polyformyl and polyvinylamine. inhibitor.
  • CN108569996A discloses a synthesis process for nitroxide radical piperidinol, including : add tetramethylpiperidol, catalyst and stabilizer to the reaction vessel, optionally add water; optionally under stirring, add hydrogen peroxide to carry out the reaction; after the reaction is completed, add a quencher; after post-processing, the target is obtained product.
  • the catalyst can be an inorganic hydroxide, preferably magnesium hydroxide is used as the catalyst; High catalytic efficiency and selectivity, among which magnesium hydroxide is the most excellent in catalytic efficiency and selectivity.
  • Wastewater treatment is difficult, and environmental protection pressure is high.
  • magnesium hydroxide or sodium tungstate-disodium edetate as catalyst, the raw material hydrogen peroxide itself can be decomposed in a large amount, generate oxygen and water, cause the effective utilization rate of hydrogen peroxide to be very low, and production cost rises.
  • An object of the present invention is to provide a catalyst for synthesizing nitroxide free radical piperidinol, which not only has high activity, high selectivity, and high catalytic reaction speed, but also requires that it has less dosage and a self-decomposing amount of hydrogen peroxide. It has the advantages of small size, high product yield, good chemical stability, simple post-processing and no corrosion of equipment.
  • Another object of the present invention is to provide a method for preparing the catalyst.
  • one aspect of the present invention relates to a catalyst for synthesizing nitroxide radical piperidinol, which comprises 0.1-5.0% titanium element, 30-48% silicon element and the balance based on the total weight of the catalyst of oxygen element, the catalyst is prepared by the following method:
  • the two mixed solutions are mixed, stirred, and calcined to obtain a catalyst product.
  • Another aspect of the present invention relates to a method for preparing a catalyst for synthesizing nitroxide radical piperidinol, based on the total weight of the catalyst, the catalyst comprises 0.1-5.0% titanium element, 30-48% silicon element and the balance of oxygen, the method comprising the steps of:
  • the two mixed solutions are mixed, stirred, and calcined to obtain a catalyst product.
  • Yet another aspect of the present invention relates to the use of the catalyst in the synthesis of nitroxyl piperidinol.
  • the present invention relates to a catalyst for the synthesis of nitroxide radical piperidinol.
  • nitroxide radical piperidinol 2,2,6,6-tetramethyl-4-hydroxypiperidine nitroxide radical
  • polymerization inhibitor 701 refers to compounds with the following structures:
  • the catalyst of the present invention is a titanium-containing solid catalyst. Based on the total weight of the catalyst, it includes:
  • the preparation method of the catalyst of the present invention comprises the following steps:
  • the mass ratio of tetraethyl silicate and water in the mixed solution of tetraethyl silicate and water of the present invention is between 0.05 and 0.5, preferably between 0.08 and 0.46, more preferably between 0.12 and 0.42, preferably Between 0.16 and 0.38, preferably between 0.20 and 0.32, preferably between 0.25 and 0.28.
  • the method of the present invention includes the step of adjusting the pH value of the mixed solution of tetraethyl silicate and water to between 10.0 and 12.0, preferably between 10.5 and 11.5.
  • the base used for pH adjustment is not particularly limited, and can be conventional bases known in the art, such as alkali metal hydroxides, ammonia water, organic bases, and the like. Ammonia is preferably used.
  • the method of the present invention also includes the step of stirring the mixed solution with the above pH value.
  • the above mixture is stirred at room temperature for 2-6 hours, preferably 2.5-5.5 hours, more preferably 3-5 hours, preferably 3.5-4.5 hours.
  • tetraethyl silicate slowly undergoes hydrolysis reaction.
  • the mass ratio of tetraethyl titanate to absolute ethanol is between 0.02 and 0.5, preferably between 0.06 and 0.45, more preferably between 0.10 and 0.40 is preferably between 0.14 and 0.35, preferably between 0.18 and 0.30.
  • the method of the present invention includes adding dropwise the mixed solution of tetraethyl titanate and absolute ethanol to the mixed solution of tetraethyl silicate and water while stirring, and the dropwise addition amount is such that Each element of the finally formed catalyst may satisfy the element ratio of the catalyst of the present invention.
  • the temperature is controlled to be 20-30°C, preferably 22-28°C, and more preferably 24-26°C.
  • the stirring is continued for 2-6 hours, preferably for 2.5-5.5 hours, more preferably for 3-5 hours, preferably for 3.5-4.5 hours.
  • the method of the present invention further comprises the steps of filtering, washing and drying the reactants.
  • Suitable filtration, washing and drying methods are not particularly limited, and may be conventional filtration, washing and drying methods known in the art, for example, suction filtration of the reaction mixture, followed by washing and drying of the filtered solids.
  • the calcination conditions suitable for the method of the present invention are not particularly limited, and may be conventional calcination conditions known in the art.
  • the dry solid obtained above is calcined at a temperature of 400-600°C, preferably 430-570°C, more preferably 450-520°C for 2-5 hours, more preferably 2.5-4.5 hours, preferably 3-4 hours.
  • the manufacturing method of the titanium-containing catalyst of the present invention comprises the steps:
  • a mixed solution of tetraethyl silicate and water is prepared at 20-30°C, wherein the mass ratio of tetraethyl silicate and water is between 0.05 and 0.5, and then the aqueous ammonia solution is added dropwise until the pH value is between 10.0 and 12.0. , and stirred at room temperature for 2 to 6 hours, the tetraethyl silicate slowly hydrolyzed. Then add a certain amount of mixed solution of tetraethyl titanate and anhydrous ethanol while stirring, the mass ratio of tetraethyl titanate and anhydrous ethanol is between 0.02 and 0.5, and the temperature is controlled to be 20 to 30 ° C during the dropwise addition.
  • titanium-containing solid catalyst The content of titanium is 0.1-5.0% by weight, the content of silicon element is 35-45% by weight, and the rest is oxygen.
  • the titanium-containing catalyst of the invention is suitable for catalyzing the preparation of 2,2,6,6-tetramethyl-4-hydroxypiperidine nitroxide radical compounds.
  • the specific catalyst use method or the synthesis method of the 2,2,6,6-tetramethyl-4-hydroxypiperidine nitroxide radical compound is not particularly limited, and can be a conventional method in the art, such as the 2,2 of the present invention
  • the catalytic reaction equation of the present invention is:
  • the above reaction uses 2,2,6,6-tetramethyl-4-hydroxypiperidine and hydrogen peroxide as raw materials, and uses water as a solvent to react in the presence of the titanium-containing solid catalyst of the present invention. After the reaction is completed, filter out catalyst, all the solvent is evaporated, and the remaining organic phase is cooled, crystallized and filtered to obtain 2,2,6,6-tetramethyl-4-hydroxypiperidine nitroxyl radical.
  • the titanium-containing solid catalyst used in the method of the invention has high activity and high selectivity, fast reaction speed, low dosage, small amount of hydrogen peroxide self-decomposition, high product yield, good chemical stability, simple post-treatment, no corrosion of equipment, etc. advantage.
  • the mass ratio of 2,2,6,6-tetramethyl-4-hydroxypiperidine:hydrogen peroxide:catalyst:solvent (water) is 1:1.0 ⁇ 3.0:0.0001 ⁇ 0.1:1.0 ⁇ 20.0
  • the optimized ratio is 2,2,6,6-tetramethyl-4-hydroxypiperidine: hydrogen peroxide: catalyst: solvent (water) is 1:1.1 ⁇ 2.0:0.001 ⁇ 0.05:2.0 ⁇ 10.0
  • the ratio of 2,2,6,6-tetramethyl-4-hydroxypiperidine: hydrogen peroxide: catalyst: solvent (water) is 1: 1.3-1.6: 0.005-0.02: 4.0-6.0.
  • the titanium-containing solid catalyst used in the method can conveniently realize solid-liquid separation through filtration after the reaction is completed, the catalyst can be recycled and reused, the reaction liquid does not contain metal ions, and the wastewater treatment is convenient.
  • the present invention Compared with the prior art, the present invention has the following advantages: the present invention uses 2,2,6,6-tetramethyl-4-hydroxypiperidine and hydrogen peroxide as raw materials to synthesize 2,2,6,6-tetramethyl-4 -Hydroxypiperidine nitroxide radical, using titanium-containing solid catalyst, the raw materials are easy to obtain, the price is low, the catalyst separation is simple and can be reused, the yield of the product can reach more than 95%, the product purity is high, the energy consumption is low, and the environment The pollution is small and the cost is low, and it is an ideal process for realizing industrial production.
  • the product yield is 97.2%, and the effective utilization rate of hydrogen peroxide is 64.8%.
  • titanium dioxide solid in the synthesis of 2,2,6,6-tetramethyl-4-hydroxypiperidine nitroxide radical was comparatively studied.
  • the synthesis process of titanium dioxide catalyst is as follows:
  • the catalytic activity of titania was tested under conditions similar to those of Example 1. In a 2L three-necked flask, add 157 grams of 2,2,6,6-tetramethyl-4-hydroxypiperidine, 182.2 grams of 28% hydrogen peroxide as raw materials, 1.57 grams of titanium dioxide solid catalyst, 786 grams of water as solvent, and the reaction temperature is 90 °C, the reaction time is 3 hours.
  • the synthesis method of the 2,2,6,6-tetramethyl-4-hydroxypiperidine nitroxide radical polymerization inhibitor of the present invention has the advantages of high product yield and effective utilization of hydrogen peroxide. high advantage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Hydrogenated Pyridines (AREA)

Abstract

公开了催化剂、其制备方法和在制备氮氧自由基哌啶醇中的用途。所述用于合成氮氧自由基哌啶醇的催化剂,按催化剂的总重量计,包括0.1-5.0%的钛元素、30-48%的硅元素和余量的氧元素,该催化剂是用下列方法制得的:提供硅酸四乙酯和水的混合溶液,其中硅酸四乙酯与水的质量比为0.05~0.5之间,然后将其pH值调节至10.0~12.0之间并搅拌;提供钛酸四乙酯与无水乙醇的混合溶液,钛酸四乙脂和无水乙醇的质量比为0.02~0.5之间;使所述两种混合溶液相混合,搅拌,焙烧得到催化剂产物。

Description

催化剂、其制备方法和在制备氮氧自由基哌啶醇中的用途 技术领域
本发明涉及一种含钛固体催化剂、该催化剂的制备方法及其在制备氮氧自由基哌啶醇(即2,2,6,6-四甲基-4-羟基哌啶氮氧自由基)中的用途。
背景技术
2,2,6,6-四甲基-4-羟基哌啶氮氧自由基(也称为氮氧自由基哌啶醇或者阻聚剂701)是一种新型阻聚剂,是一种稳定的自由基,对光热极为稳定,能终止氧化链,可充当聚合物单体的阻聚剂、高分子材料的抗老化剂、高效紫外光吸收剂以及聚甲酰、聚乙烯胺的热降解抑制剂。由于2,2,6,6-四甲基-4-羟基哌啶氮氧自由基对不饱和化合物的阻聚性能优异,可应用于低碳烯烃的预防聚合结垢,还可应用于丙烯酸酯类、甲基丙烯酸酯类及丙烯酸等化合物,其阻聚性能优于氢醌、氢醌单甲醚、酚噻嗪及二丁基二硫代氨基甲酸铜等化合物阻聚效果,近年来在阻聚剂行业得到越来越广泛的应用。
现有技术提出了多种制备2,2,6,6-四甲基-4-羟基哌啶氮氧自由基的方法,例如CN108569996A公开了一种氮氧自由基哌啶醇的合成工艺,包括:向反应容器中加入四甲基哌啶醇、催化剂和稳定剂,任选加入水;任选在搅拌下,加入双氧水,进行反应;反应结束后,加入淬灭剂;经后处理,得到目标产物。其进一步公开了所述催化剂可以是无机氢氧化物,优选以氢氧化镁为催化剂;并且钨酸钠、钨酸钾、钼酸钠、氢氧化钙、乙酰丙酮钼、氢氧化镁等均获得较高的催化效率和选择性,其中尤以氢氧化镁催化效率和选择性最为优异。
尽管现有技术提出了以氢氧化镁为催化剂,或采用钨酸钠-乙二胺四乙酸二钠催化剂体系在水溶液中用双氧水氧化2,2,6,6-四甲基-4-羟基哌啶合成2,2,6,6-四甲基-4-羟基哌啶氮氧自由基,但是以氢氧化镁作为催化剂时,因为催化活性较低,所需催化剂量较大,原料转化率低;以钨酸钠-乙二胺四乙酸二钠作为催化剂时,催化剂完全溶解在反应体系中,虽然催化剂性能较好,但是反应后催化剂回收困难,反应后的废水中含有会大量的钨金属离子,废水处理困难,环保压力大。另外,以氢氧化镁或者钨酸钠-乙二胺四乙酸二钠作为催化剂时,原料双氧水自身会 发生大量分解,生成氧气和水,造成双氧水的有效利用率很低,生产成本上升。
因此,仍需要寻找一种用于合成氮氧自由基哌啶醇的催化剂,要求其不仅具有高活性、高选择性、高催化反应速度,而且还要求其具有用量少、双氧水自身分解量小、产品收率高、化学稳定性好、后处理简单,不腐蚀设备等优点。
发明内容
本发明的一个目的是提供一种用于合成氮氧自由基哌啶醇的催化剂,其不仅具有高活性、高选择性、高催化反应速度,而且还要求其具有用量少、双氧水自身分解量小、产品收率高、化学稳定性好、后处理简单,不腐蚀设备等优点。
本发明的另一个目的是提供所述催化剂的制备方法。
因此,本发明的一个方面涉及一种用于合成氮氧自由基哌啶醇的催化剂,按催化剂的总重量计,它包括0.1-5.0%的钛元素、30-48%的硅元素和余量的氧元素,该催化剂是用下列方法制得的:
提供硅酸四乙酯和水的混合溶液,其中硅酸四乙酯与水的质量比为0.05~0.5之间,然后将其pH值调节至10.0~12.0之间并搅拌;
提供钛酸四乙酯与无水乙醇的混合溶液,钛酸四乙脂和无水乙醇的质量比为0.02~0.5之间;
使所述两种混合溶液相混合,搅拌,焙烧得到催化剂产物。
本发明的另一方面涉及一种用于合成氮氧自由基哌啶醇的催化剂的制备方法,按催化剂的总重量计,所述催化剂包括0.1-5.0%的钛元素、30-48%的硅元素和余量的氧元素,所述方法包括如下步骤:
提供硅酸四乙酯和水的混合溶液,其中硅酸四乙酯与水的质量比为0.05~0.5之间,然后将其pH值调节至10.0~12.0之间并搅拌;
提供钛酸四乙酯与无水乙醇的混合溶液,钛酸四乙脂和无水乙醇的质量比为0.02~0.5之间;
使所述两种混合溶液相混合,搅拌,焙烧得到催化剂产物。
本发明的再一方面涉及所述催化剂在合成氮氧自由基哌啶醇中的用途。
具体实施方式
本发明涉及用于合成氮氧自由基哌啶醇的催化剂。在本发明中,术语“氮氧自由基哌啶醇”、“2,2,6,6-四甲基-4-羟基哌啶氮氧自由基”和“阻聚剂701”可 互换使用,均是指具有下列结构的化合物:
Figure PCTCN2021128075-appb-000001
本发明催化剂是一种含钛固体催化剂。按催化剂的总重量计,它包括:
0.1-5.0%,较好0.5-4.6%,更好0.9-4.1%,宜1.4-3.6%,最好1.9-3.1%,优选2.4-3.1%的钛元素;
30-48%,较好34-45%,更好38-41%的硅元素;和
余量的氧元素。
本发明催化剂的制备方法包括下列步骤:
1.提供硅酸四乙酯和水的混合溶液
本发明硅酸四乙酯和水的混合溶液中硅酸四乙酯与水的质量比为0.05~0.5之间,较好为0.08~0.46之间,更好为0.12~0.42之间,宜为0.16~0.38之间,最好为0.20~0.32之间,优选0.25~0.28之间。
本发明方法包括将所述硅酸四乙酯和水的混合溶液的pH值调节至10.0~12.0之间,较好调节至10.5-11.5之间的步骤。用于调节pH的碱无特别的限制,可以是本领域已知的常规碱,例如碱金属氢氧化物、氨水、有机碱等。较好使用氨水。
本发明方法还包括对具有上述pH值的混合液进行搅拌的步骤。在本发明的一个实例中,在室温对上述混合液搅拌2-6小时,较好搅拌2.5-5.5小时,更好搅拌3-5小时,优选3.5-4.5小时。在所述搅拌的过程中,硅酸四乙酯缓慢发生水解反应。
2.提供钛酸四乙酯与无水乙醇的混合溶液
本发明钛酸四乙酯与无水乙醇的混合溶液中,钛酸四乙脂和无水乙醇的质量比为0.02~0.5之间,较好为0.06~0.45之间,更好为0.10~0.40之间,宜为0.14~0.35之间,优选为0.18~0.30之间。
3.使所述两种混合溶液相混合,搅拌,焙烧得到催化剂产物
在本发明的一个实例中,本发明方法包括边搅拌边将所述钛酸四乙酯与无水乙醇的混合溶液滴加至硅酸四乙酯和水的混合溶液中,滴加的量使得最终形成的 催化剂各元素满足本发明催化剂的元素配比即可。
在本发明的一个实例中,在所述滴加期间将温度控制为20~30℃,较好控制在22-28℃,更好控制在24-26℃。
在本发明的一个实例中,在滴加完成之后再继续搅拌2~6小时,较好搅拌2.5-5.5小时,更好搅拌3-5小时,优选3.5-4.5小时。
在本发明的一个实例中,本发明方法还包括对反应物进行过滤、洗涤和干燥的步骤。适用的过滤、洗涤和干燥方法无特别的限制,可以是本领域已知的常规过滤、洗涤和干燥方法,例如,对反应混合物进行抽滤,随后对过滤的固体进行洗涤并干燥。
适用于本发明方法的焙烧条件无特别的限制,可以是本领域已知的常规焙烧条件。在本发明的一个实例中,对上面得到的干燥的固体在400-600℃,较好在430-570℃,更好在450-520℃的温度下焙烧2-5小时,更好2.5-4.5小时,最好3-4小时。
在本发明的一个实例中,本发明含钛催化剂的制造方法包括如下步骤:
在20~30℃下配置硅酸四乙酯和水的混合溶液,其中硅酸四乙酯与水的质量比为0.05~0.5之间,然后滴加氨水溶液至pH值为10.0~12.0之间,在室温下搅拌2~6小时,硅酸四乙酯缓慢发生水解反应。然后边搅拌边加入一定量的钛酸四乙酯与无水乙醇的混合溶液,钛酸四乙脂和无水乙醇的质量比为0.02~0.5之间,滴加期间控制温度为20~30℃,滴加完成之后再继续搅拌2~6小时,然后过滤、洗涤,在100~150℃烘干固体,然后在400~600℃焙烧2~5小时,得到含钛的固体催化剂,该固体催化剂中钛含量为0.1~5.0%(重量),硅元素含量为35~45%(重量),其余为氧元素。
本发明含钛催化剂适合于催化制备2,2,6,6-四甲基-4-羟基哌啶氮氧自由基化合物。具体的催化剂使用方法或者2,2,6,6-四甲基-4-羟基哌啶氮氧自由基化合物的合成方法无特别的限制,可以是本领域的常规方法,例如本发明2,2,6,6-四甲基-4-羟基哌啶氮氧自由基化合物的合成方法可参考CN108569996A公开的方法。
具体地说,本发明所述催化反应方程式为:
Figure PCTCN2021128075-appb-000002
上述反应以2,2,6,6-四甲基-4-羟基哌啶、双氧水为原料,以水为溶剂,在本 发明含钛的固体催化剂存在的条件下反应,反应结束后,滤出催化剂,蒸出全部溶剂,将剩余的有机相进行降温、结晶、过滤,即得2,2,6,6-四甲基-4-羟基哌啶氮氧自由基。
本发明方法所采用的含钛固体催化剂具有高活性和高选择性,反应速度快,用量少,双氧水自身分解量小,产品收率高,化学稳定性好,后处理简单,不腐蚀设备等优点。
在本发明的一个实例中,2,2,6,6-四甲基-4-羟基哌啶:双氧水:催化剂:溶剂(水)的质量比为1:1.0~3.0:0.0001~0.1:1.0~20.0,优化的配比为2,2,6,6-四甲基-4-羟基哌啶:双氧水:催化剂:溶剂(水)为1:1.1~2.0:0.001~0.05:2.0~10.0,更优的配比为2,2,6,6-四甲基-4-羟基哌啶:双氧水:催化剂:溶剂(水)为1:1.3~1.6:0.005~0.02:4.0~6.0。该方法采用的含钛固体催化剂,反应完成之后通过过滤可以方便的实现固液分离,催化剂可以回收再利用,反应液中不含有金属离子,废水处理方便。
本发明与现有技术相比具有以下优点:本发明用2,2,6,6-四甲基-4-羟基哌啶、双氧水为原料合成2,2,6,6-四甲基-4-羟基哌啶氮氧自由基,采用含钛的固体催化剂,原料易得、价格低廉,催化剂分离简单、可重复利用,产品的收率可以达到95%以上,产品纯度高,能耗低,环境污染小,成本低,是实现工业化生产的较理想的工艺。
下面结合实施例更详细地说明本发明。
实施例1
1.催化剂的合成:
在25℃下将20.833克硅酸四乙酯溶解在100克水中,然后滴加25%浓度氨水至pH值为11.0,然后在室温下搅拌4小时,硅酸四乙酯缓慢发生水解反应,溶液逐渐变为乳白色。将0.534克钛酸四乙酯与5.34克无水乙醇混合均匀,然后缓慢滴加到含有二氧化硅的溶液中,控制滴加期间温度为20~30℃,滴加完成之后再继续搅拌4小时,然后将浆料过滤,用100ml蒸馏水洗涤三次,在120℃烘干固体,维持12小时,然后在500℃焙烧4小时,得到含钛的固体催化剂。通过电感耦合原子发射光谱仪(ICP-AES)分析固体催化剂的元素组成,该固体催化剂中钛含量为2%(重量),硅元素含量为43%(重量)。
2.2,2,6,6-四甲基-4-羟基哌啶氮氧自由基的制备:
在2L三口烧瓶中加入157克2,2,6,6-四甲基-4-羟基哌啶、182克28%双氧水为原料、1.57克含钛的固体催化剂,以786克水为溶剂,反应温度80℃,反应时间3小时。反应结束后,滤出催化剂,蒸出全部溶剂,将剩余的有机相进行降温、结晶、过滤,即得2,2,6,6-四甲基-4-羟基哌啶氮氧自由基,通过气相色谱定量分析,产物重量为152.85克。
依据下列公式计算产物收率和双氧水的有效利用率:
Figure PCTCN2021128075-appb-000003
Figure PCTCN2021128075-appb-000004
根据上述公式计算得到,产物收率97.2%,双氧水有效利用率64.8%。
实施例2
在2L三口烧瓶中加入157克2,2,6,6-四甲基-4-羟基哌啶、121.5克28%双氧水为原料、1.57克含钛的固体催化剂(与实施例1相同),以786克水为溶剂,反应温度80℃,反应时间3小时。反应结束后,滤出催化剂,蒸出全部溶剂,将剩余的有机相进行降温、结晶、过滤,即得2,2,6,6-四甲基-4-羟基哌啶氮氧自由基,通过气相色谱定量分析,产物重量为132.6克,产物收率84.3%,双氧水有效利用率84.3%。
实施例3
在2L三口烧瓶中加入157克2,2,6,6-四甲基-4-羟基哌啶、242.93克28%双氧水为原料、1.57克含钛的固体催化剂(与实施例1相同),以786克水为溶剂,反应温度80℃,反应时间3小时。反应结束后,滤出催化剂,蒸出全部溶剂,将剩余的有机相进行降温、结晶、过滤,即得2,2,6,6-四甲基-4-羟基哌啶氮氧自由基,通过气相色谱定量分析,产物重量为154.89克,产物收率98.5%,双氧水有效利用率49.3%。
实施例4
在2L三口烧瓶中加入157克2,2,6,6-四甲基-4-羟基哌啶、182.2克28%双氧水为原料、1.57克含钛的固体催化剂(与实施例1相同),以786克水为溶剂,反应温度60℃,反应时间5小时。反应结束后,滤出催化剂,蒸出全部溶剂,将剩余的有机相进行降温、结晶、过滤,即得2,2,6,6-四甲基-4-羟基哌啶氮氧自由基,通过气相色谱定量分析,产物重量为154.42克,产物收率98.2%,双氧水有效利用率65.5%。
实施例5
在2L三口烧瓶中加入157克2,2,6,6-四甲基-4-羟基哌啶、182.2克28%双氧水为原料、1.57克含钛的固体催化剂(与实施例1相同),以786克水为溶剂,反应温度90℃,反应时间3小时。反应结束后,滤出催化剂,蒸出全部溶剂,将剩余的有机相进行降温、结晶、过滤,即得2,2,6,6-四甲基-4-羟基哌啶氮氧自由基,通过气相色谱定量分析,产物重量为150.02克,产物收率95.4%,双氧水有效利用率63.6%。
对比例1
在2L三口烧瓶中加入157克2,2,6,6-四甲基-4-羟基哌啶、182.2克28%双氧水为原料、1.57克氢氧化镁催化剂,以786克水为溶剂,反应温度90℃,反应时间3小时。反应结束后,滤出催化剂,蒸出全部溶剂,将剩余的有机相进行降温、结晶、过滤,即得2,2,6,6-四甲基-4-羟基哌啶氮氧自由基,通过气相色谱定量分析,产物重量为143.41克,产物收率91.2%,双氧水有效利用率45.6%。
对比例2
在2L三口烧瓶中加入157克2,2,6,6-四甲基-4-羟基哌啶、182.2克28%双氧水为原料、1.57克钨酸钠催化剂、1.57克EDTA,以786克水为溶剂,反应温度50℃,反应时间10小时。反应结束后,滤出催化剂,蒸出全部溶剂,将剩余的有机相进行降温、结晶、过滤,即得2,2,6,6-四甲基-4-羟基哌啶氮氧自由基,通过气相色谱定量分析,产物重量为129.26克,产物收率82.2%,双氧水有效利用率41.1%。
对比例3
对比研究二氧化钛固体在2,2,6,6-四甲基-4-羟基哌啶氮氧自由基合成中的应用效果。二氧化钛催化剂的合成过程如下:
将5克钛酸四乙酯与50克无水乙醇混合均匀,然后缓慢滴加到100ml水中,然后滴加25%浓度氨水至pH值为11.0,然后在室温下搅拌4小时,然后将浆料过滤,用100ml蒸馏水洗涤三次,在120℃烘干固体,维持12小时,然后在500℃焙烧4小时,得到二氧化钛固体催化剂。
按照实施例1相似的条件测试二氧化钛的催化活性。在2L三口烧瓶中加入157克2,2,6,6-四甲基-4-羟基哌啶、182.2克28%双氧水为原料、1.57克二氧化钛固体催化剂,以786克水为溶剂,反应温度90℃,反应时间3小时。反应结束后,过滤出催化剂,蒸出全部溶剂,将剩余的有机相进行降温、结晶、过滤,即得2,2,6,6-四甲基-4-羟基哌啶氮氧自由基和2,2,6,6-四甲基-4-羟基哌啶的混合物,通过气相色谱定量分析,得到的有机物大部分为2,2,6,6-四甲基-4-羟基哌啶原料,产物2,2,6,6-四甲基-4-羟基哌啶氮氧自由基的重量仅仅23.5克,产物收率14.9%,双氧水有效利用率7.45%。实验结果表明,二氧化钛的催化剂效果很差。
根据上述实施例及对比例的实验结果如下:
Figure PCTCN2021128075-appb-000005
由上面的实验结果可以看出,本发明的2,2,6,6-四甲基-4-羟基哌啶氮氧自由基阻聚剂的合成方法,具有产物收率高、双氧水有效利用率高等优点。

Claims (10)

  1. 一种用于合成氮氧自由基哌啶醇的催化剂,按催化剂的总重量计,它包括0.1-5.0%的钛元素、30-48%的硅元素和余量的氧元素,该催化剂是用下列方法制得的:
    提供硅酸四乙酯和水的混合溶液,其中硅酸四乙酯与水的质量比为0.05~0.5之间,然后将其pH值调节至10.0~12.0之间并搅拌;
    提供钛酸四乙酯与无水乙醇的混合溶液,钛酸四乙脂和无水乙醇的质量比为0.02~0.5之间;
    使所述两种混合溶液相混合,搅拌,焙烧得到催化剂产物。
  2. 如权利要求1所述的催化剂,其特征在于将其pH值调节至10.0~12.0之间后在室温搅拌2-6小时。
  3. 如权利要求1或2所述的催化剂,其特征在于使所述两种混合溶液相混合,搅拌2-6小时,过滤、干燥、在400-600℃焙烧2-5小时,得到催化剂产物。
  4. 一种用于合成氮氧自由基哌啶醇的催化剂的制造方法,按催化剂的总重量计,所述催化剂包括0.1-5.0%的钛元素、30-48%的硅元素和余量的氧元素,所述方法包括:
    提供硅酸四乙酯和水的混合溶液,其中硅酸四乙酯与水的质量比为0.05~0.5之间,然后将其pH值调节至10.0~12.0之间并搅拌;
    提供钛酸四乙酯与无水乙醇的混合溶液,钛酸四乙脂和无水乙醇的质量比为0.02~0.5之间;
    使所述两种混合溶液相混合,搅拌,焙烧得到催化剂产物。
  5. 如权利要求4所述的方法,其特征在于将其pH值调节至10.0~12.0之间后在室温搅拌2-6小时。
  6. 如权利要求4或5所述的方法,其特征在于使所述两种混合溶液相混合,搅拌2-6小时,过滤、干燥、在400-600℃焙烧2-5小时,得到催化剂产物。
  7. 如权利要求4或5所述的制备方法,其特征在于包括如下步骤:在20~30℃下配置硅酸四乙酯和水的混合溶液,其中硅酸四乙酯与水的质量比为0.05~0.5之间,然后滴加氨水溶液至pH值为10.0~12.0之间,在室温下搅拌2~6小时,硅酸四乙酯缓慢发生水解反应。然后边搅拌边加入一定量的钛酸四乙酯与无水乙醇的混合溶液,钛酸四乙脂和无水乙醇的质量比为0.02~0.5之间,滴加期间控制温度为20~30℃,滴加完成之后再继续搅拌2~6小时,然后过滤、洗涤,在100~150℃烘干固体,然后在400~600℃焙烧2~5小时,得到含钛的固体催化剂。
  8. 一种2,2,6,6-四甲基-4-羟基哌啶氮氧自由基的制备方法,包括以2,2,6,6-四甲基-4-羟基哌啶、双氧水为原料,以水为溶剂,在权利要求1-3中任一项所述的催化剂存在的条件下反应,制备2,2,6,6-四甲基-4-羟基哌啶氮氧自由基。
  9. 如权利要求7所述的制备方法,其特征在于,所述2,2,6,6-四甲基-4-羟基哌啶、双氧水原料、催化剂、水的用量比例按质量计为:2,2,6,6-四甲基-4-羟基哌啶:双氧水:催化剂:溶剂=1:1.0~3.0:0.0001~0.1:1.0~20.0。
  10. 如权利要求1-3中任一项所述的催化剂在催化反应制备2,2,6,6-四甲基-4-羟基哌啶氮氧自由基中的用途。
PCT/CN2021/128075 2020-12-17 2021-11-02 催化剂、其制备方法和在制备氮氧自由基哌啶醇中的用途 WO2022127410A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011496836.7 2020-12-17
CN202011496836.7A CN112604677B (zh) 2020-12-17 2020-12-17 催化剂、其制备方法和在制备氮氧自由基哌啶醇中的用途

Publications (1)

Publication Number Publication Date
WO2022127410A1 true WO2022127410A1 (zh) 2022-06-23

Family

ID=75240921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/128075 WO2022127410A1 (zh) 2020-12-17 2021-11-02 催化剂、其制备方法和在制备氮氧自由基哌啶醇中的用途

Country Status (2)

Country Link
CN (1) CN112604677B (zh)
WO (1) WO2022127410A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112604677B (zh) * 2020-12-17 2022-09-30 上海华谊新材料有限公司 催化剂、其制备方法和在制备氮氧自由基哌啶醇中的用途
CN117019233B (zh) * 2023-08-10 2024-08-27 宿迁时代储能科技有限公司 一种含金属的纳米片状多孔硅铝胶催化剂的制备方法及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536857A (en) * 1994-07-05 1996-07-16 Ford Motor Company Single source volatile precursor for SiO2.TiO2 powders and films
CN101948421A (zh) * 2010-10-26 2011-01-19 南通惠康国际企业有限公司 阻聚剂(4-苯甲酰基-2,2,6,6-四甲基哌啶-1-氮氧自由基)的制备方法
CN106861703A (zh) * 2017-02-28 2017-06-20 山西大学 一种用于顺酐液相加氢合成γ‑丁内酯的催化剂及其制法和应用
CN111111679A (zh) * 2020-01-06 2020-05-08 湘潭大学 一种无硫镍钼双金属加氢脱氧催化剂
CN112604677A (zh) * 2020-12-17 2021-04-06 上海华谊新材料有限公司 催化剂、其制备方法和在制备氮氧自由基哌啶醇中的用途

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101367919B (zh) * 2007-08-16 2011-07-20 广州金发科技股份有限公司 一种钛硅催化剂及其制备方法与应用
CN101148260A (zh) * 2007-08-20 2008-03-26 华东师范大学 具有mww结构的钛硅分子筛及其合成和应用
JP2012158511A (ja) * 2011-01-14 2012-08-23 Sumitomo Chemical Co Ltd チタノシリケートの製造方法、及び、オレフィンオキサイドの製造方法
CN107721910A (zh) * 2017-08-28 2018-02-23 新秀化学(烟台)有限公司 一种双(1‑烷氧基‑2,2,6,6‑四甲基‑4‑哌啶基)烷基二酸酯的生产工艺
CN107792863B (zh) * 2017-11-28 2019-10-22 上海绿强新材料有限公司 催化过氧化氢氧化反应用钛硅分子筛ts-1的合成方法
CN108569996B (zh) * 2017-12-29 2022-06-03 江苏富比亚化学品有限公司 一种高效阻聚剂701的合成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536857A (en) * 1994-07-05 1996-07-16 Ford Motor Company Single source volatile precursor for SiO2.TiO2 powders and films
CN101948421A (zh) * 2010-10-26 2011-01-19 南通惠康国际企业有限公司 阻聚剂(4-苯甲酰基-2,2,6,6-四甲基哌啶-1-氮氧自由基)的制备方法
CN106861703A (zh) * 2017-02-28 2017-06-20 山西大学 一种用于顺酐液相加氢合成γ‑丁内酯的催化剂及其制法和应用
CN111111679A (zh) * 2020-01-06 2020-05-08 湘潭大学 一种无硫镍钼双金属加氢脱氧催化剂
CN112604677A (zh) * 2020-12-17 2021-04-06 上海华谊新材料有限公司 催化剂、其制备方法和在制备氮氧自由基哌啶醇中的用途

Also Published As

Publication number Publication date
CN112604677B (zh) 2022-09-30
CN112604677A (zh) 2021-04-06

Similar Documents

Publication Publication Date Title
WO2022127410A1 (zh) 催化剂、其制备方法和在制备氮氧自由基哌啶醇中的用途
TW201625484A (zh) 一種製備高純度氫氧化鋁及高純度氧化鋁之方法
CN1212321C (zh) 工业合成雷尼酸锶盐及其水合物的新方法
CN107899612B (zh) 一种功能化多酸类离子液体催化剂、制备方法以及用其催化合成乙酸异龙脑酯的方法
CN107501059B (zh) 一种绿色环保的4-(4’-烷基环己基)环己酮的合成方法
WO2021114893A1 (zh) 一种 5- 乙酰乙酰氨基苯并咪唑酮的制备方法
CN114315759B (zh) 一种2-甲基-1-(4-吗啉苯基)-2-吗啉基-1-丙酮的制备方法
CN112973406A (zh) 一种硝基甲烷废气资源化利用治理方法
CN113264843B (zh) 一种3-氨基二环[1.1.1]戊烷-1-羧酸酯类衍生物的合成方法
CN111072492A (zh) 一种合成3,4-二氯-2-氨基-5-氟联苯的方法
CN103012114B (zh) 同时制备dl-酒石酸和dl-酒石酸氢钾的方法
CN111454216B (zh) HMG-CoA还原酶抑制剂及其中间体的制备方法
CN105111128B (zh) 一种n‑羟基邻苯二甲酰亚胺的制备方法
JP4363952B2 (ja) カルボン酸無水物製造用固体酸触媒及びそれを用いたカルボン酸無水物製造方法
CN107879910B (zh) 一种2,4-二羟基二苯甲酮的绿色合成工艺
JP4065689B2 (ja) 2−アダマンタノンの製造方法
CN109608491B (zh) 一种二乙基次膦酸盐的制备方法
CN108203455B (zh) 一种双氢非那雄胺碘化物脱碘制备非那雄胺的方法
CN113603626A (zh) 一种自由基引发剂的制备方法及其在氧化反应中的应用
CN102381996A (zh) 一种甲基丙烯酸二乙基氨基乙酯的制备方法
CN105152931B (zh) 一种一步催化合成乙二醇甲醚苯甲酸酯的方法
CN113861249B (zh) 一种索非布韦中间体的合成方法
CN113980057B (zh) 一锅法制备双烯合铑(I)硝酸盐[RhL2]NO3的合成方法
CN112142587B (zh) 一种苯乙酮酸及其制备方法和用途
CN110590617B (zh) 一种催化氧化硫醚制备砜的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21905339

Country of ref document: EP

Kind code of ref document: A1