WO2022124821A1 - 인쇄배터리 제조방법 및 이를 통해 제조된 인쇄배터리 - Google Patents

인쇄배터리 제조방법 및 이를 통해 제조된 인쇄배터리 Download PDF

Info

Publication number
WO2022124821A1
WO2022124821A1 PCT/KR2021/018648 KR2021018648W WO2022124821A1 WO 2022124821 A1 WO2022124821 A1 WO 2022124821A1 KR 2021018648 W KR2021018648 W KR 2021018648W WO 2022124821 A1 WO2022124821 A1 WO 2022124821A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
printing
printed
exterior material
gel
Prior art date
Application number
PCT/KR2021/018648
Other languages
English (en)
French (fr)
Inventor
강민선
우상철
Original Assignee
주식회사 아모그린텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모그린텍 filed Critical 주식회사 아모그린텍
Publication of WO2022124821A1 publication Critical patent/WO2022124821A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/22Immobilising of electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/40Printed batteries, e.g. thin film batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for manufacturing a printed battery and to a printed battery manufactured through the same.
  • the label-type sensor market is predicted to be a field with great potential in the future, and a low-cost, thin battery with a thickness of several hundred microns is required as a power source that can operate the sensor.
  • a thin-film battery is a generic term for a thin film-shaped battery and includes a positive electrode, a negative electrode, and an electrolyte, and the positive electrode, negative electrode, and electrolyte are encapsulated inside a thin film-type packaging material.
  • an electrolyte used in a thin battery is a liquid type electrolyte, and the injection process time is consumed, and when the thin battery is open, it is rapidly depleted in a dry environment.
  • gel-type electrolytes have been developed, but the existing gel-type electrolytes have poor surface quality and physical properties when implemented in a printing process, and are difficult to repeat printing processes, so printing workability and mass productivity are disadvantageous.
  • the present invention has been devised in view of the above points, and a method for manufacturing a printed battery, which is a primary battery, which can be mass-produced by a printing method through a gel electrolyte composition having excellent thixotropic properties, print quality and repeatable printing process, and An object of the present invention is to provide a printed battery manufactured through this.
  • the present invention has excellent thixotropic properties, repetitive printing workability and mass productivity, and does not change the quality of the separator even when printing on a paper-type separator, and does not generate bubbles after printing.
  • Another object of the present invention is to provide a gel electrolyte composition for a printed battery in which quality and deterioration of properties due to air bubbles are prevented.
  • the present invention provides the steps of (1) printing a positive electrode layer on a partial area of a first exterior material and printing a negative electrode layer on a partial area of a second exterior material, (2) on the positive electrode layer or the negative electrode layer Forming a gel electrolyte layer by printing a gel electrolyte composition containing an acidic, electrolyte component, water and a gel-forming component that is silicon dioxide (SiO 2 ), (3) corresponding to the outer edge of the printed gel electrolyte layer Printing an adhesive layer on the edge area of the first exterior material or the second exterior material, and (4) laminating the first exterior material and the second exterior material printed on each layer through the adhesive layer to the edge of the first exterior material and the second exterior material It provides a printing battery manufacturing method comprising the step of sealing.
  • a separator is disposed on the positive electrode or the negative electrode on which the gel electrolyte composition is printed in step (3), and the gel electrolyte composition may be printed on the separator.
  • the electrolyte component may include 2 to 10 parts by weight of ammonium chloride (NH 4 Cl) based on 100 parts by weight of zinc chloride (ZnCl 2 ).
  • NH 4 Cl ammonium chloride
  • ZnCl 2 zinc chloride
  • water may be included in an amount of 95 to 120 parts by weight based on 100 parts by weight of the electrolyte component.
  • the gel-forming component may be included in an amount of 2 to 14 parts by weight based on 100 parts by weight of the electrolyte component, and more preferably, the gel-forming component may be included in an amount of 6 to 10 parts by weight based on 100 parts by weight of the electrolyte component.
  • the silicon dioxide is an amorphous fumed silica, and may have a BET specific surface area of 170 to 230 m 2 /g.
  • the silicon dioxide may have a pH of 3.7 to 4.5 when dispersed in water at 4% by weight.
  • the separator may include kraft paper, and the printing may be screen printing.
  • the present invention includes a positive electrode layer, a negative electrode layer, a gel electrolyte layer interposed between the positive electrode layer and the negative electrode layer and including an electrolyte component and a gel-forming component, and a casing for sealing the positive electrode layer, the negative electrode layer and the gel electrolyte layer A printing battery is provided.
  • the positive electrode layer may include manganese dioxide (MnO 2 ), the negative electrode layer may include zinc (Zn), and the electrolyte component may include zinc chloride and ammonium chloride.
  • the printed battery may have a thickness of 0.5 to 2.0 mm.
  • the gel electrolyte layer may have a thickness of 0.04 to 0.4 mm.
  • the present invention provides a gel electrolyte composition for a printed battery, which is acidic, and includes an electrolyte component, water, and a gel-forming component that is silicon dioxide.
  • the gel electrolyte composition for a printed battery has excellent thixotropic properties, repetitive printing workability and mass productivity, and does not change the quality of the separator even when printing on a paper-type separator, and after printing Since air bubbles are not generated, print quality and deterioration of properties due to air bubbles can be prevented. For this reason, it is possible to mass-produce a printed battery, which is a primary battery, with excellent quality through the gel electrolyte composition for a printed battery.
  • FIG. 1 is a view schematically showing a printed battery according to an embodiment of the present invention
  • Figure 2 is a cross-sectional view taken along the line A-A' of the printed battery for Figure 1, and
  • 3 and 4 are cross-sectional views of a printed battery according to another embodiment of the present invention.
  • the printed battery 100 is a primary battery and may be a plate-shaped battery having a predetermined area.
  • the printed battery 100 includes an exterior material 110 , a positive electrode layer 120 , a negative electrode layer 130 , and a gel electrolyte layer 150 .
  • a separator 140 may be further included between the anode layer 120 and the cathode layer 130 .
  • the exterior material 110 may be a plate-shaped member having a predetermined area.
  • the exterior material 110 physically protects the positive electrode layer 120, the negative electrode layer 130, the gel electrolyte layer 150, and the separator 140 disposed therein from the external environment, and the gel electrolyte layer 150 therein. ) serves to prevent the evaporated moisture from penetrating to the outside.
  • the exterior material 110 may include a pair of the first exterior material 111 and the second exterior material 112 as shown in FIGS. 2 and 3 , and the first exterior material 111 and the second exterior material 111 .
  • the second exterior material 112 may be bonded to each other through an adhesive layer 160 disposed along edges facing each other.
  • first exterior material 111 and the second exterior material 112 are made of a single member, and after being folded in half along the width or length direction, the remaining edge portions in contact with each other may be bonded through the adhesive layer 160 . have.
  • the exterior material 110 may be used without limitation in the case of a known exterior material used in a printed battery.
  • the first exterior material 111 and the second exterior material 112 are each independently a polyester film such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, a polyolefin film such as polyethylene, polypropylene, It may be composed of a single layer having one film selected from the group consisting of a polyamide film, a polyimide film, and a polyamideimide film, or a composite layer having two or more films.
  • the battery in the printed battery 100 ′′ shown in FIG. 4 has a part of the exterior material 111 ′ of the exterior material so that the evaporated moisture of the gel electrolyte layer 150 is released to the outside.
  • an exterior material 111' having a metal layer 111b inside the polymer films 111a and 111c may be used.
  • the metal layer 111b may be a thin metal plate such as a foil, and the first number It may be a metal deposition film formed on one surface of the base layer 111b or the second resin layer 112b through sputtering, chemical vapor deposition, etc.
  • the metal layer 111b may include aluminum, copper, or phosphor bronze (PB).
  • the metal layer 111b may have a thickness of 5 to 50 ⁇ m, more preferably 10 to 35 ⁇ m, and if When the thickness of the metal layer 111b is less than 5 ⁇ m, the evaporated moisture from the gel electrolyte layer 150 inside the printed battery 100 ′′ may leak to the outside. In addition, when the thickness exceeds 50 ⁇ m, hydrogen gas generated inside does not leak properly, causing excessive swelling of the printed battery, which may cause leakage of the gel electrolyte.
  • the polymer films 111a and 111c surrounding the metal layer 111b are polyester films such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyolefin films such as polyethylene and polypropylene, polyamide It may be a film selected from the group consisting of a film, a polyimide film, and a polyamideimide film, and preferably polyethylene terephthalate.
  • the exterior material 111' having the metal layer 111b inside the polymer films 111a and 111c may be used as an exterior material of the printed battery.
  • the phenomenon of parts may be excessive.
  • the metal layer 111b is provided inside the polymer film 111a, 111c only on either one of the first and second exterior materials so that the hydrogen gas generated inside is discharged smoothly and moisture evaporation of the internal gel electrolyte layer is minimized. It may be desirable to be provided.
  • each of the first exterior materials 111 and 111' and the second exterior material 112 may each independently have a thickness of 10 to 100 ⁇ m.
  • Each of the positive electrode layer 120 and the negative electrode layer 130 may include current collector layers 122 and 132 and active material layers 121 and 131 formed on the current collector layers 122 and 132 .
  • the active material layers 121 and 131 may be provided corresponding to the entire area of the current collector layers 122 and 132 or may be provided locally only on a partial area of the current collector layers 122 and 132 .
  • each of the positive electrode current collector layer 122 and the negative electrode current collector layer 132 is printed on the inner surface of the exterior material 110, specifically, the inner surface of the first exterior material 111 and 111' and the inner surface of the second exterior material 112, respectively. can be formed through
  • each of the positive electrode active material layer 121 and the negative electrode active material layer 131 may be formed on one surface of the positive electrode current collector layer 122 and the negative electrode current collector layer 132 by printing.
  • one end of the positive electrode current collector layer 122 and the negative electrode current collector layer 132 may extend to a predetermined width, and the extended portion of the printed batteries 100 and 100 ′ sealed with the respective exterior materials 110 , 100") may protrude to the outside of the body and serve as a positive terminal 123 and a negative terminal 133 for electrical connection with an external device.
  • each of the positive electrode current collector layer 122 and the negative electrode current collector layer 132 may be implemented with a known conductive printable paste or ink, for example copper, aluminum, stainless steel, nickel, titanium, chromium, It may be formed through printing using a paste or ink containing manganese, iron, cobalt, zinc, molybdenum, tungsten, silver, gold, and one or more of these metals or conductive carbon, or conductive polymers.
  • each of the positive electrode current collector layer 122 and the negative current collector layer 132 may have a thickness of 5 to 200 ⁇ m.
  • the positive electrode active material layer 121 and the negative electrode active material layer 131 may be formed on the positive electrode current collector layer 122 and the negative electrode current collector layer 132 by printing, respectively, and printable ink or paste is applied thereto.
  • the ink or paste may contain a conductive material, a binder resin, and an active material, and the conductive agent may contain graphite, carbon black, denka black, and the like.
  • the binder resin is polytetrafluoroethylene, polyvinylidene fluoride, a copolymer of vinylidene fluoride and hexafluoropropylene, a copolymer of vinylidene fluoride and trifluoroethylene, vinylidene fluoride and tetra Fluoroethylene copolymer, polyethylene oxide, polypropylene oxide, polyvinyl chloride, polybutadiene, polystyrene, polyethylene, polypropylene, polymethyl acrylate, polyethyl acrylate, polymethyl methacrylate, polyethyl methacrylate, Polybutyl acrylate, polybutyl methacrylate, polyacrylonitrile, cellulose, carboxymethyl cellulose, starch, polyacrylic acid, polyvinyl alcohol, polyvinyl acetate, nylon, high molecular weight compounds such as Nafion, or copolymers thereof; Or a mixture thereof may be used.
  • the active material may be used without limitation in the case of a cathode active material and a cathode active material that are typically used in a primary battery, and as an example, the cathode active material is manganese dioxide (MnO 2 ), nickel oxide, lead oxide, lead dioxide, silver One or more kinds of oxide, iron sulfide particles, etc. may be included, and the negative active material may include one or more kinds of zinc (Zn), aluminum, iron, lead, magnesium particles, and the like. In addition, the average particle diameter of the active material particles used in the positive active material and the negative active material may be about 10 nm to 50 ⁇ m.
  • the positive electrode active material and the negative electrode active material may be appropriately selected according to the type of electrolyte component of the gel electrolyte layer 150 to be described later.
  • the electrolyte component includes zinc chloride and ammonium chloride
  • the positive active material is manganese dioxide
  • the negative active material is It may be zinc.
  • each of the positive active material layer 121 and the negative active material layer 131 may have a thickness of 10 to 200 ⁇ m.
  • the gel electrolyte layer 150 may be formed by printing a gel electrolyte composition including an electrolyte component, water, and a gel-forming component, and including silicon dioxide as a gel-forming component, the gel electrolyte composition has excellent repeatability, It may have excellent thixotropic properties.
  • the electrolyte component a known electrolyte component used in a primary battery may be used, and a component having an acidity in an aqueous solution is preferred, and preferably zinc chloride and ammonium chloride may be included.
  • the electrolyte component contains 2 to 10 parts by weight of ammonium chloride (NH 4 Cl) based on 100 parts by weight of zinc chloride (ZnCl 2 ), which may be advantageous to achieve the object of the present invention.
  • the gel electrolyte composition may contain 95 to 120 parts by weight of water with respect to 100 parts by weight of the electrolyte component, through which it is advantageous to exhibit excellent performance as a primary battery and at the same time helps the gel-forming component to have excellent thixotropic properties It may be advantageous to achieve the object of the present invention, and so forth.
  • silicon dioxide is contained as the gel-forming component.
  • a polymer capable of forming a porous structure for example, polyethylene oxide, polyvinyl alcohol, and polyvinyl pyrrolidone, in addition to the above-described electrolyte component, is used together, and these components are gel
  • the formability is low, and when the gel electrolyte composition containing these components is directly printed on paper, for example, kraft paper or a separator such as starch-coated kraft paper, there is a risk of infringing the separator.
  • the present invention is easy to apply a printing method due to its excellent thixotropic properties, and does not block the screen mesh or nozzle of the printing device or does not leave unprinted residues on the printing roller, so the printing repeatability is excellent and excellent thixotropic properties
  • the flowability after printing is drastically reduced, and the printability is excellent in the desired shape in the desired area, and silicon dioxide is used to improve the print quality because there are no air bubbles on the surface and inside of the printed gel electrolyte layer.
  • other types of inorganic materials such as titanium dioxide and alumina, can form a gel, but when considering the thixotropic properties, repeatability and print quality, the desired properties are expressed compared to when silicon dioxide is used. It may not be enough to
  • the silicon dioxide may be amorphous.
  • the silicon dioxide may be fumed silica, and excellent repeatability, printed gel electrolyte layer, in case any one or more of other types, for example, precipitated silica, silica gel, and silica airgel are used. It is advantageous to achieve the print quality of the surface, and it is possible to minimize the invasion of the separator.
  • the silicon dioxide may be hydrophilic fumed silica in which a silanol group is not capped, and it may be difficult to express a desired effect when hydrophobic fumed silica in which a silanol group is capped with a hydrocarbon group is used.
  • the silicon dioxide preferably has a BET specific surface area of 170 to 230 m 2 / g, and may have a pH of 3.7 to 4.5 when dispersed in water at 4% by weight, and through silicon dioxide through satisfying such physical property values It may be advantageous to develop a desired effect. If the BET specific surface area and/or the pH value during water dispersion is out of the above range, any one or more of the properties of print repeatability, surface quality after printing, shape realization after printing, and invasiveness of the separator may not be expressed at the desired level. have.
  • the silicon dioxide gel-forming component may be contained in the gel electrolyte composition in an amount of 2 to 14 parts by weight, more preferably 6 to 10 parts by weight, based on 100 parts by weight of the electrolyte component. If the content of the gel-forming component is less than 2 parts by weight, the flowability during printing is strong, so that it may be printed out of the specified area, the surface quality after printing and the shape implementation after printing are not good, and the separation membrane invasion may increase. In addition, when the amount of the gel-forming component exceeds 14 parts by weight, it is difficult to implement the gel electrolyte layer through printing, or there is a fear that the print repeatability may be lowered. In addition, an unprinted blank portion or a dent due to improper printing may exist in the printed gel electrolyte layer region, and thus print quality may be deteriorated.
  • the gel electrolyte layer 150 may have a thickness of 0.04 to 0.4 mm. If the thickness is less than 0.04 mm, sufficient battery performance may be difficult to express, and if the thickness exceeds 0.4 mm, there is a risk that the gel electrolyte may leak in the battery assembly and sealing process.
  • the gel electrolyte layer 150 implemented with the gel electrolyte composition according to the present invention has very good thixotropic properties, so it has excellent shape retention after printing, thereby reducing the separation effect between the positive electrode layer 120 and the negative electrode layer 130 . Since it is expressed, there is an advantage that a separate separator can be omitted, and there is an advantage in that it has excellent flexibility compared to the solid electrolyte layer, but does not generate cracks, so that it is possible to minimize the change in battery properties due to bending.
  • the printed battery 100 ′ of the present invention is disposed between the positive electrode layer 120 and the negative electrode layer 130 to prevent a short circuit between the positive electrode layer 120 and the negative electrode layer 130 .
  • the gel electrolyte layer 150 may be disposed between the positive electrode layer 120 and the separator 140 or between the negative electrode layer 130 and the separator 140 .
  • the separator 140 may be formed of a plate-shaped member having a predetermined area, and may be disposed between the positive electrode active material layer 121 and the negative electrode active material layer 131 .
  • the separator 140 may be used without limitation in the case of a known porous layer used in a printed battery, and may be made of, for example, a cellulose component, which can be collectively referred to as paper, or a synthetic polymer.
  • the separator may use kraft paper, which is an example of paper, or kraft paper coated with starch.
  • the adhesive layer 160 may be disposed along edges of the first exterior material 111 and the second exterior material 112 facing each other, and the edges of the first exterior material 111 and the second exterior material 112 . can be interconnected.
  • the adhesive layer 160 may be an inorganic type liquid or gel adhesive, or a double-sided tape having an adhesive applied to both surfaces of the substrate.
  • the printed battery 100, 100', 100' according to the present invention may have a thickness of 0.5 to 2.0 mm, but is not limited thereto, and may be appropriately changed according to the purpose.
  • the printed batteries 100, 100', 100' according to the present invention described above may be manufactured by the manufacturing method described below, but is not limited thereto.
  • a printed battery comprises the steps of (1) printing a positive electrode layer on a partial area of a first exterior material and printing a negative electrode layer on a partial area of a second exterior material, (2) on the positive electrode layer or the negative electrode layer Forming a gel electrolyte layer by printing a gel electrolyte composition containing an electrolyte component, water and a gel-forming component that is silicon dioxide (SiO2), (3) corresponding to the outer edge of the printed gel electrolyte layer Printing an adhesive layer on the edge area of the first exterior material or the second exterior material, and (4) laminating the first exterior material and the second exterior material printed on each layer, through the adhesive layer, the edge of the first exterior material and the second exterior material It can be manufactured including the step of sealing.
  • step (1) of the present invention a step of printing the anode layer on a partial area of the first exterior material and printing the negative electrode layer on a partial area of the second exterior material is performed.
  • the printing may be performed through a conventional printing method, for example, screen printing, stencil printing, offset printing and/or jet printing, preferably through screen printing considering the properties of the gel electrolyte composition according to the present invention.
  • Specific printing conditions can be performed by appropriately using known conditions and devices for each printing method, and thus, detailed description thereof will be omitted in the present invention.
  • the positive electrode current collector composition is printed on one surface of the first exterior material 111 to form the positive electrode layer 120 and dried to form the positive electrode current collector layer 122, and then the positive electrode current collector again
  • the cathode layer 120 may be implemented by printing the cathode active material composition on the layer 122 and drying the cathode active material layer 121 to form the cathode active material layer 121 .
  • the negative electrode layer 130 is also printed on one surface of the second exterior material 112 in the same manner, and then dried to form the negative electrode current collector layer 132 , and then again on the negative electrode current collector layer 132 .
  • the anode active material composition may be printed and dried to form the anode active material layer 131 to implement the anode layer 130 . In this case, the drying may be a conventional drying method, for example, natural drying at room temperature.
  • a step of forming the gel electrolyte layer 150 by printing is performed.
  • the printing may also be performed using the above-mentioned known printing method, preferably screen printing.
  • step (2) the separator is first disposed on the anode layer 120 or the cathode layer 130 on which the gel electrolyte composition is printed, and the gel electrolyte composition is the separator may be printed on 140 .
  • step (3) the adhesive layer 160 is printed on the edge area of the first exterior material 111 or the second exterior material 112 corresponding to the outside of the edge of the printed gel electrolyte layer 150 . perform the steps to
  • the adhesive layer 160 may be formed through a known adhesive composition designed to be printable, and may be an inorganic adhesive layer made of the adhesive composition or an adhesive layer in which the adhesive composition is disposed on both surfaces of the substrate.
  • a predetermined drying process may be performed, and the drying may be performed by natural drying or by applying heat.
  • step (4) the first exterior material 111 and the second exterior material 112 are laminated with each layer printed on the first exterior material 111 and the second exterior material 112 through the adhesive layer 160 ( 112) performs the step of sealing the edge portion.
  • the sealing may be performed by applying a temperature according to the pressure and additionally the type of the adhesive composition.
  • the conditions of the applied pressure and temperature may be appropriately changed in consideration of the type and thickness of the adhesive layer 160 , and the present invention is not particularly limited thereto.
  • a second exterior material which is a polyimide film with a thickness of 50 ⁇ m, and a first exterior material with a total thickness of 54 ⁇ m, in which PET is laminated on and below an aluminum deposition film having a thickness of 20 ⁇ m, were prepared, respectively, and then carbon ink was placed on each polyimide film.
  • (Nippon Graphite, EVERYOHM T-30PLB-U) was dried at 150° C. after screen printing so as to have a thickness of 150 ⁇ m after drying to prepare a positive electrode current collector layer and a negative electrode current collector layer, respectively.
  • the positive electrode active material ink containing the positive electrode active material of manganese dioxide and the negative electrode active material ink containing the negative electrode active material of zinc are heated and dried, and then screen printed to a thickness of 80 ⁇ m. It was dried to prepare a positive electrode active material layer and a negative electrode active material layer, respectively. Thereafter, a 150 ⁇ m thick starch-coated kraft paper separator was placed on the positive electrode active material layer, and the gel electrolyte composition was screen-printed to a thickness of 200 ⁇ m to prepare a gel electrolyte layer.
  • an acrylic adhesive composition is placed on the edge of the first exterior material to surround each layer formed on the first exterior material, and the inner side of the printed second exterior material and the inside of the first exterior material are laminated to face each other, and then the edge is sealed by applying pressure.
  • a printed battery as shown in FIG. 1 was prepared.
  • the gel electrolyte composition used was 100 parts by weight of water and silicon dioxide A (amorphous hydrophilic fumed silica, according to ISO 9277) based on 100 parts by weight of the electrolyte component containing 4 parts by weight of ammonium chloride with respect to 100 parts by weight of zinc chloride.
  • silicon dioxide A amorphous hydrophilic fumed silica, according to ISO 9277
  • silicon dioxide A amorphous hydrophilic fumed silica, BET specific surface area according to ISO 9277 of 175 to 225 m 2 / g, after being dispersed in water at 4% by weight, pH 3.7-4.5, tap density of about 50g/l, primary particle average particle size of 14nm, secondary particle size of 117-198nm
  • silicon dioxide A amorphous hydrophilic fumed silica, BET specific surface area according to ISO 9277 of 175 to 225 m 2 / g, after being dispersed in water at 4% by weight, pH 3.7-4.5, tap density of about 50g/l, primary particle average particle size of 14nm, secondary particle size of 117-198nm
  • a gel electrolyte composition was prepared in the same manner as in Example 1 except that polyethylene oxide or polyvinyl alcohol was used instead of silicon dioxide in the gel electrolyte.
  • the gel electrolyte layer was repeatedly printed 10 times on starch-coated kraft paper (manufacturer, trade name) through a screen printing device to evaluate whether there is any problem during printing.
  • Area change rate (%) [(Area after 10 minutes (mm2) - Area after 5 minutes (mm2)) ⁇ 100]/ Area after 5 minutes (mm2)
  • Ease of printing was evaluated to confirm whether mass production was possible. Specifically, by observing the surface of the printed gel electrolyte layer after printing 100 times with an area of 200 ⁇ m in thickness, 15 mm in width, and 15 mm in length for each Example, whether there are unprinted blanks or dents in the printed area If there are at least one empty part and/or two or more dents after printing, it is counted as defective and the number of good products out of 100 is expressed as a percentage.
  • Example 1 Example 2
  • Example 3 Example 4 gel-forming ingredients division Silicon Dioxide A silicon dioxide B silicon dioxide C silicon dioxide D type Fumed Silica Fumed Silica Fumed Silica precipitated silica BET specific surface area (m2/g) 175 to 225 130 ⁇ 170 270 to 330 180 ⁇ 230 pH 3.7 ⁇ 4.5 3.7 ⁇ 4.7 3.7 ⁇ 4.7 5.5 to 6.5 Content (parts by weight) 9.5 9.5 9.5 9.5 9.5 9.5
  • Shape retention after printing Relative area change rate (%)
  • Print quality (%) 100 94 90 68
  • Ease of printing was evaluated to confirm whether mass production was possible. Specifically, by observing the surface of the printed gel electrolyte layer after printing 100 times with an area of 200 ⁇ m in thickness, 15 mm in width, and 15 mm in length for each Example, whether there are empty or dents that are not printed in the printed area Count as defective if there is at least 1 blank part, 2 or more dents are printed, and/or the uneven surface is 10% or more of the total area (15mm ⁇ 15mm) 100 The number of good products among dogs is expressed as a percentage.
  • Example 1 Example 5 Example 6 Example 7 Example 8 Example 9 Example 10 gel-forming ingredients division Silicon Dioxide A Silicon Dioxide A Silicon Dioxide A Silicon Dioxide A Silicon Dioxide A Silicon Dioxide A content (parts by weight) 9.5 1.5 2.2 5.5 6.2 12.5 16.0 Print Bleeding (%) 0 28 10 6 0 0 0 Print quality (%) 100 78 85 92 100 90 73
  • Examples 1 and 6 to 9 in which the content of silicon dioxide A is contained within the range of a preferred embodiment of the present invention, are excellent in print spreadability and print quality compared to Examples 5 and 10.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Primary Cells (AREA)

Abstract

인쇄배터리 제조방법을 제공한다. 본 발명에 따른 인쇄배터리는 (1) 제1외장재의 일부 영역에 양극층을 인쇄하고, 제2외장재의 일부 영역에 음극층을 인쇄하는 단계, (2) 양극층 또는 음극층 상에 산성을 띠며, 전해질 성분, 물 및 이산화규소(SiO2)인 겔 형성성분을 포함하는 겔 전해질 조성물을 인쇄시켜서 겔 전해질층을 형성시키는 단계, (3) 인쇄된 겔 전해질층의 테두리 외측에 대응하는 제1외장재 또는 제2외장재의 테두리 영역 상에 접착층을 인쇄하는 단계 및 (4) 각 층이 인쇄된 제1외장재 및 제2외장재를 합지해 접착층을 통해 제1외장재 및 제2외장재의 테두리 부분을 실링하는 단계를 포함하여 구현된다. 이에 의하면, 우수한 요변성 특성과, 반복적인 인쇄 작업성 및 양산성이 우수하며, 종이타입의 분리막에 인쇄하는 경우에도 분리막의 품질을 변동시키지 않고, 인쇄된 후 기포 등이 발생되지 않는 겔 전해질 조성물을 이용함을 통해서 1차 전지인 인쇄배터리를 우수한 품질로 대량생산이 가능하다.

Description

인쇄배터리 제조방법 및 이를 통해 제조된 인쇄배터리
본 발명은 인쇄배터리 제조방법 및 이를 통해 제조된 인쇄배터리에 관한 것이다.
최근 사물인터넷과 관련된 각종 센서태그, RFID 태그, 스마트카드와 의료용 패치 산업의 활기에 힘입어 박형 전지의 수요가 증가하고 있다.
특히, 라벨형 센서의 시장은 향후 잠재성이 큰 분야로 예측되고 있으며 센서를 가동시킬 수 있는 전원으로 저렴하면서 수백 미크론 이내의 두께를 가진 박형 전지가 요구되고 있다.
박형 전지는 필름 모양의 얇은 전지를 총칭하는 것으로서 양극, 음극 및 전해질을 포함하며, 얇은 필름형 외장재의 내부에 양극, 음극 및 전해질이 봉지된다.
일반적으로 박형 전지에 사용되는 전해질은 액체 타입의 전해질을 사용하는데, 주입 공정 시간이 많이 소모될 뿐만 아니라, 박형 전지가 개방되어 있을 경우, 건조한 환경에서 고갈이 빠른 단점이 있다.
이와 같은 단점을 보완하고자, 겔 타입 전해질이 개발되어 있지만, 기존 겔 타입 전해질은 인쇄공정으로 구현 시 표면품질 및 물성이 좋지 않고, 반복적인 인쇄 공정이 어려워 인쇄 작업성 및 양산성이 불리하다.
본 발명은 상기와 같은 점을 감안하여 안출한 것으로, 요변성 특성이 우수하고, 인쇄품질 및 반복적인 인쇄공정이 가능한 겔 전해질 조성물을 통해서 인쇄방식으로 대량생산이 가능한 1차전지인 인쇄배터리 제조방법 및 이를 통해 제조된 인쇄배터리를 제공하는데 목적이 있다.
또한, 본 발명은 우수한 요변성 특성과, 반복적인 인쇄 작업성 및 양산성이 우수하며, 종이타입의 분리막에 인쇄하는 경우에도 분리막의 품질을 변동시키지 않고, 인쇄된 후 기포 등이 발생되지 않아서 인쇄품질과 기포로 인한 물성저하가 방지된 인쇄배터리용 겔 전해질 조성물을 제공하는데 다른 목적이 있다.
상술한 과제를 해결하기 위하여 본 발명은 (1) 제1외장재의 일부 영역에 양극층을 인쇄하고, 제2외장재의 일부 영역에 음극층을 인쇄하는 단계, (2) 양극층 또는 음극층 상에 산성을 띠며, 전해질 성분, 물 및 이산화규소(SiO2)인 겔 형성성분을 포함하는 겔 전해질 조성물을 인쇄시켜서 겔 전해질층을 형성시키는 단계, (3) 인쇄된 겔 전해질층의 테두리 외측에 대응하는 제1외장재 또는 제2외장재의 테두리 영역 상에 접착층을 인쇄하는 단계, 및 (4) 각 층이 인쇄된 제1외장재 및 제2외장재를 합지해 접착층을 통해 제1외장재 및 제2외장재의 테두리 부분을 실링하는 단계를 포함하는 인쇄배터리 제조방법을 제공한다.
본 발명의 일 실시예에 의하면, 상기 (3) 단계에서 겔 전해질 조성물이 인쇄되는 양극 또는 음극 상에 분리막이 배치되며, 겔 전해질 조성물은 상기 분리막 상에 인쇄될 수 있다.
또한, 상기 전해질 성분은 염화아연(ZnCl2) 100 중량부에 대하여 염화암모늄(NH4Cl)을 2 ~ 10 중량부로 포함할 수 있다.
또한, 상기 전해질 성분 100 중량부에 대해서 물은 95 ~ 120 중량부로 포함될 수 있다.
또한, 상기 전해질 성분 100 중량부에 대하여 겔 형성성분은 2 ~ 14 중량부로 포함될 수 있고, 보다 바람직하게는 상기 전해질 성분 100 중량부에 대하여 겔 형성성분은 6 ~ 10 중량부로 포함될 수 있다.
또한, 상기 이산화규소는 무정형인 흄드실리카이며, BET 비표면적이 170 ~ 230㎡/g일 수 있다.
또한, 상기 이산화규소는 4중량%로 수분산 시 pH가 3.7 ~ 4.5일 수 있다.
또한, 상기 분리막은 크라프트지를 포함하고, 상기 인쇄는 스크린 인쇄일 수 있다.
또한, 본 발명은 양극층, 음극층, 상기 양극층과 음극층 사이에 개재되며 전해질 성분 및 겔 형성성분을 포함하는 겔 전해질층 및 상기 양극층, 음극층 및 겔 전해질층을 봉지하는 외장재를 포함하는 인쇄배터리를 제공한다.
본 발명의 일 실시예에 의하면, 상기 양극층은 이산화망간(MnO2)을 포함하고, 상기 음극층은 아연(Zn)을 포함하며, 상기 전해질 성분은 염화아연 및 염화암모늄을 포함할 수 있다.
또한, 상기 인쇄배터리는 두께가 0.5 ~ 2.0㎜일 수 있다.
또한, 상기 겔 전해질층은 두께가 0.04 ~ 0.4㎜일 수 있다.
또한, 본 발명은 산성을 띠며, 전해질 성분, 물 및 이산화규소인 겔 형성성분을 포함하는 인쇄배터리용 겔 전해질 조성물을 제공한다.
본 발명에 의하면, 인쇄배터리용 겔 전해질 조성물은 우수한 요변성 특성과, 반복적인 인쇄 작업성 및 양산성이 우수하며, 종이타입의 분리막에 인쇄하는 경우에도 분리막의 품질을 변동시키지 않고, 인쇄된 후 기포 등이 발생되지 않아서 인쇄품질과 기포로 인한 물성저하가 방지될 수 있다. 이로 인해서 인쇄배터리용 겔 전해질 조성물을 통해서 1차 전지인 인쇄배터리를 우수한 품질로 대량생산이 가능하다.
도 1은 본 발명의 일 실시예에 따른 인쇄배터리를 개략적으로 나타낸 도면,
도 2는 도 1에 대한 인쇄배터리의 A-A' 경계선에 따른 단면도, 그리고
도 3 및 도 4는 본 발명의 다른 실시예에 따른 인쇄배터리의 단면도이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 부가한다.
도 1 및 도 2를 참조하여 설명하면, 본 발명의 일 실시예에 따른 인쇄배터리(100)는 1차 전지로써, 소정의 면적을 갖는 판상의 배터리일 수 있다.
구체적으로 인쇄배터리(100)는 외장재(110), 양극층(120), 음극층(130) 및 겔 전해질층(150)을 포함한다. 또한, 도 3에 도시된 바와 같이 양극층(120), 음극층(130) 사이에 분리막(140)을 더 포함할 수 있다. 달리 말하면, 본 발명의 일 실시예에 따른 인쇄배터리(100)는 외장재(110)의 내부에 양극층(120), 음극층(130) 및 겔 전해질층(150) 또는 양극층(120), 음극층(130), 겔 전해질층(150) 및 분리막(140)이 봉지되는 인쇄배터리일 수 있다.
상기 외장재(110)는 일정면적을 갖는 판상의 부재일 수 있다. 상기 외장재(110)는 내부에 배치되는 상기 양극층(120), 음극층(130), 겔 전해질층(150) 및 분리막(140)을 외부환경으로부터 물리적으로 보호하고, 내부의 겔 전해질층(150)에 함유된 물이 증발된 수분이 외부로 투과하는 것을 방지하는 역할을 한다.
이를 위해, 상기 외장재(110)는 도 2 및 도 3에 도시된 바와 같이 한 쌍의 제1외장재(111) 및 제2외장재(112)를 포함할 수 있으며, 상기 제1외장재(111) 및 제2외장재(112)는 서로 마주하는 테두리를 따라 배치되는 접착층(160)을 통해 상호 접합될 수 있다.
대안으로, 상기 제1외장재(111) 및 제2외장재(112)는 하나의 부재로 이루어져 폭방향 또는 길이방향을 따라 반으로 접혀진 후 맞접하는 나머지 테두리 부분이 상기 접착층(160)을 통해 접합될 수도 있다.
상기 외장재(110)는 인쇄배터리에 사용되는 공지의 외장재의 경우 제한 없이 사용할 수 있다. 일 예로 상기 제1외장재(111) 및 제2외장재(112)는 각각 독립적으로 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리에틸렌나프탈레이트 등과 같은 폴리에스테르계 필름, 폴리에틸렌, 폴리프로필렌 등과 같은 폴리올레핀계 필름, 폴리아미드 필름, 폴리이미드 필름 및 폴리아미드이미드 필름으로 이루어진 군에서 선택된 필름을 1종 구비한 단일층, 또는 2종 이상 구비한 복합층으로 구성될 수 있다.
한편, 본 발명의 일 실시예에 따르면, 도 4에 도시된 인쇄배터리(100")에 배터리는 외장재 중 일부 외장재(111')가 겔 전해질층(150)의 증발된 수분이 외부로 방출되는 것을 방지하기 위하여 고분자 필름(111a,111c) 내부에 금속층(111b)이 구비된 외장재(111')를 사용할 수 있다. 상기 금속층(111b)은 포일(foil)고 같은 금속박판일 수도 있고, 상기 제1수지층(111b) 또는 제2수지층(112b)의 일면에 스퍼터링, 화학기상증착 등의 방법을 통해 형성되는 금속증착막일 수도 있다. 또한, 상기 금속층(111b)은 알루미늄, 구리, 인청동(phosphorbronze, PB), 알루미늄청동(aluminium bronze), 백동, 베릴륨-구리(Berylium-copper), 크롬-구리, 티탄-구리, 철-구리, 코르손 합금 및 크롬-지르코늄 구리 합금 중에서 선택된 1종 이상을 포함할 수 있고, 보다 바람직하게는 알루미늄을 구비할 수 있으며, 상기 알루미늄은 알루미늄 증착층일 수 있다. 또한, 상기 금속층(111b)은 두께가 5 ~ 50㎛, 보다 바람직하게는 10 ~ 35㎛일 수 있고, 만일 금속층(111b)의 두께가 5㎛ 미만이면 인쇄배터리(100") 내부 겔 전해질층(150) 유래의 증발된 수분이 외부로 누설될 수 있다. 또한, 두께가 50㎛를 초과할 경우 내부에서 발생된 수소가스가 적절히 누출되지 못해 인쇄배터리의 부풀음이 과다하고 이로 인해 겔 전해질의 누출이 발생할 우려가 있다.
또한, 상기 금속층(111b)을 둘러싸는 고분자 필름(111a,111c)은 폴리에틸렌테레프탈레이트, 폴리부틸렌테레프탈레이트, 폴리에틸렌나프탈레이트 등과 같은 폴리에스테르계 필름, 폴리에틸렌, 폴리프로필렌 등과 같은 폴리올레핀계 필름, 폴리아미드 필름, 폴리이미드 필름 및 폴리아미드이미드 필름으로 이루어진 군에서 선택된 필름일 수 있고, 바람직하게는 폴리에틸렌테레프탈레이트일 수 있다.
한편, 고분자 필름(111a,111c) 내부에 금속층(111b)이 구비된 외장재(111')가 인쇄배터리의 외장재로써 전부 사용될 수 있으나, 이 경우 내부에서 발생한 수소가스가 외부로 방출되기 어려워서 인쇄배터리의 사용 중 부품 현상이 과도할 수 있다. 이에 내부에서 발생한 수소가스의 배출이 원활하면서 및 내부 겔 전해질층의 수분증발이 최소화되도록 제1외장재와 제2외장재 중 어느 하나에만 고분자 필름(111a,111c) 내부에 금속층(111b)이 구비된 외장재가 구비되는 것이 바람직할 수 있다.
또한 상기 제1외장재(111,111') 및 제2외장재(112)는 각각 독립적으로 두께가 10 ~ 100㎛일 수 있다.
다음으로 양극층(120) 및 음극층(130)에 대해 설명한다.
상기 양극층(120) 및 음극층(130) 각각은 집전체층(122,132) 및 상기 집전체층(122,132) 상에 형성된 활물질층(121,131)을 구비할 수 있다. 또한, 상기 활물질층(121,131)은 집전체층(122,132)의 전체면적에 대응하여 구비될 수도 있고 또는 집전체층(122,132)의 일부 면적에만 국부적으로 구비될 수도 있다.
이때, 양극 집전체층(122) 및 음극 집전체층(132) 각각은 외장재(110)의 내면, 구체적으로 제1외장재(111,111')의 내면 및 제2외장재(112)의 내면에 각각 인쇄를 통해서 형성될 수 있다. 또한, 양극 활물질층(121) 및 음극 활물질층(131) 각각은 상기 양극 집전체층(122) 및 음극 집전체층(132)의 일면에 인쇄를 통해서 형성될 수 있다.
여기서, 상기 양극 집전체층(122) 및 음극 집전체층(132)의 일단은 소정의 폭으로 길게 연장될 수 있고, 연장된 부분은 각각의 외장재(110)로 봉지된 인쇄배터리(100,100',100") 몸체 외부로 돌출되어 외부기기와의 전기적인 연결을 위한 양극단자(123) 및 음극단자(133)로써 역할을 할 수 있다.
또한, 상기 양극 집전체층(122) 및 음극 집전체층(132) 각각은 전도성의 인쇄가능한 공지된 페이스트 또는 잉크로 구현될 수 있고, 일 예로 구리, 알루미늄, 스테인리스 스틸, 니켈, 티타늄, 크롬, 망간, 철, 코발트, 아연, 몰리브덴, 텅스텐, 은, 금 및 이들 중 1종 이상의 금속이나 전도성 카본, 또는 전도성 폴리머가 함유된 페이스트 또는 잉크를 사용하여 인쇄를 통해 형성될 수 있다.
또한, 상기 양극 집전체층(122) 및 음극 집전체층(132) 각각은 두께가 5 ~ 200㎛로 형성될 수 있다.
또한, 상기 양극 활물질층(121) 및 음극 활물질층(131)은 각각 양극 집전체층(122) 및 음극 집전체층(132) 상에 인쇄를 통해 형성될 수 있으며, 이에 인쇄 가능한 잉크 또는 페이스트가 사용될 수 있다. 상기 잉크 또는 페이스트는 도전재, 바인더 수지 및 활물질을 함유할 수 있고, 상기 도전제는 그라파이트, 카본블랙, 덴카블랙 등을 함유할 수 있다. 또한, 상기 바인더 수지는 폴리테트라플루오로에틸렌, 폴리비닐리덴플루오라이드, 비닐리덴플루오라이드와 헥사플루오로프로필렌의 공중합체, 비닐리덴플루오라이드와 트리플루오로에틸렌의 공중합체, 비닐리덴플루오라이드와 테트라플루오로에틸렌의 공중합체, 폴리에틸렌옥사이드, 폴리프로필렌옥사이드, 폴리염화비닐, 폴리부타디엔, 폴리스티렌, 폴리에틸렌, 폴리프로필렌, 폴리메틸아크릴레이트, 폴리에틸아크릴레이트, 폴리메틸메타크릴레이트, 폴리에틸메타크릴레이트, 폴리부틸아크릴레이트, 폴리부틸메타크릴레이트, 폴리아크릴로나이트릴, 셀룰로오스, 카르복시메틸셀룰로오스, 전분, 폴리아크릴산, 폴리비닐알콜, 폴리비닐아세테이트, 나일론, 나피온 등의 고분자 화합물 또는 이들의 공중합체, 또는 이들의 혼합물을 사용할 수 있다.
또한, 상기 활물질은 통상적으로 1차 전지에 사용하는 양극 활물질 및 음극 활물질 재료의 경우 제한 없이 사용할 수 있고, 일 예로서, 양극 활물질은 이산화망간(MnO2), 니켈옥사이드, 산화납, 이산화납, 실버옥사이드, 황화철 입자 등을 1종 이상 포함할 수 있고, 음극 활물질은 아연(Zn), 알루미늄, 철, 납, 마그네슘 입자 등을 1종 이상 포함할 수 있다. 또한, 양극 활물질 및 음극 활물질에 사용되는 활물질 입자의 평균입경은 약 10㎚ ~ 50㎛일 수 있다.
한편, 양극 활물질 및 음극 활물질은 후술하는 겔 전해질층(150)의 전해질성분의 종류에 따라서 적정한 것을 선택할 수 있고, 전해질 성분이 염화아연 및 염화암모늄을 포함할 경우 상기 양극 활물질은 이산화망간, 음극 활물질은 아연일 수 있다.
또한, 상기 양극 활물질층(121) 및 음극 활물질층(131)은 각각 두께가 10 ~ 200㎛로 형성될 수 있다.
다음으로 양극층(120)과 음극층(130) 사이에 배치되는 겔 전해질층(150)에 대해 설명한다.
상기 겔 전해질층(150)은 전해질 성분, 물 및 겔 형성성분을 포함하는 겔 전해질 조성물이 인쇄되어 형성될 수 있으며, 이산화규소를 겔 형성성분으로 포함해 상기 겔 전해질 조성물은 반복 인쇄성이 뛰어나고, 우수한 요변성 특성을 가질 수 있다.
상기 전해질 성분은 1차 전지에 사용되는 공지의 전해질 성분을 사용할 수 있으며, 수용액에서 산성을 띠는 성분이 좋고, 바람직하게는 염화아연 및 염화암모늄을 포함할 수 있다. 이때 전해질 성분은 염화아연(ZnCl2) 100 중량부에 대하여 염화암모늄(NH4Cl)을 2 ~ 10 중량부로 포함하며, 이를 통해 본 발명의 목적을 달성하기에 유리할 수 있다.
또한, 겔 전해질 조성물은 전해질 성분 100 중량부에 대해서 물을 95 ~ 120 중량부로 포함할 수 있으며, 이를 통해 1차 전지로서 우수한 성능을 발휘하기 유리한 동시에 겔 형성성분이 우수한 요변성 특성을 갖도록 하는데 도움이 될 수 있는 등 본 발명의 목적을 달성하기에 유리할 수 있다.
또한, 상기 겔 형성성분으로 이산화규소가 함유된다. 종래 인쇄배터리에 사용되는 전해질층에는 상술한 전해질 성분 이외에 다공질 구조를 형성시킬 수 있는 폴리머, 예를 들어 폴리에틸렌옥사이드, 폴리비닐알코올, 폴리비닐피롤리돈과 같은 성분이 함께 사용되었는데, 이들 성분들은 겔 형성성이 적고, 이들 성분을 함유한 겔 전해질 조성물이 종이, 예를 들어 크라프트지나, 전분이 코팅된 크라프트지와 같은 분리막에 직접 인쇄되는 경우 분리막을 침해할 우려가 있다. 이에 본 발명은 우수한 요변성 특성으로 인해 인쇄방식을 적용하기에 용이하면서, 인쇄장치의 스크린 메쉬 또는 노즐을 막지 않거나 인쇄롤러에 인쇄되지 못한 잔여물이 남지 않아서 인쇄반복성이 우수하고, 우수한 요변성 특성으로 인해서 인쇄 후 흐름성이 급격히 적어져 목적한 영역에 목적한 모양으로 인쇄성이 뛰어나며, 인쇄된 겔 전해질층 표면과 내부에 공기거품이 구비되지 않아 인쇄품질이 개선되도록 이산화규소를 사용한다. 한편, 다른 종류의 무기재료, 예를 들어 이산화티타늄, 알루미나 등은 겔을 형성시킬 수는 있으나 요변성 특성, 반복 인쇄성 및 인쇄품질 등을 고려할 때 이산화규소를 사용했을 때에 대비해 목적하는 물성을 발현하기에 부족할 수 있다.
바람직하게는 상기 이산화규소는 비정질일 수 있다. 또한, 상기 이산화규소는 흄드 실리카일 수 있고, 다른 종류, 예를 들어 침전된 실리카(precitated silica)나, 실리카겔, 실리카 에어로겔 중 어느 하나 이상을 사용한 경우에 대비해 우수한 반복 인쇄성, 인쇄된 겔 전해질층 표면의 인쇄품질을 달성하기 유리하고, 분리막 침해를 최소화시킬 수 있다. 또한, 상기 이산화규소는 실라놀기가 캡핑되지 않는 친수성 흄드 실리카일 수 있고, 실라놀기가 탄화수소기로 캡핑된 소수성의 흄드실리카를 사용 시 목적하는 효과를 발현하기 어려울 수 있다.
상기 이산화규소는 바람직하게는 BET 비표면적이 170 ~ 230㎡/g인 것을 사용할 수 있고, 4중량%로 수분산 시 pH가 3.7 ~ 4.5일 수 있으며, 이와 같은 물성값을 만족함을 통해서 이산화규소를 통해 목적하는 효과를 발현하기에 유리할 수 있다. 만일 BET 비표면적 및/또는 수분산 시 pH 값이 전술된 범위를 벗어날 경우 인쇄반복성, 인쇄후 표면품질, 인쇄후 형상 구현성 및 분리막 침해성 중 어느 하나 이상의 특성이 목적한 수준으로 발현되지 않을 수 있다.
상기 이산화규소인 겔 형성성분은 전해질 성분 100 중량부에 대하여 2 ~ 14 중량부, 보다 바람직하게는 6 ~ 10 중량부로 겔 전해질 조성물에 함유될 수 있다. 만일 겔 형성성분이 2 중량부 미만으로 함유 시 인쇄 시 흐름성이 강해 정해진 영역을 벗어나 인쇄될 수 있으며, 인쇄후 표면품질, 인쇄후 형상 구현성이 좋지 않고, 분리막 침해가 증가할 수 있다. 또한, 겔 형성성분이 14 중량부를 초과 시 인쇄를 통해 겔 전해질층의 구현이 어렵거나 인쇄반복성이 저하될 우려가 있다. 또한, 인쇄된 겔 전해질층 영역 내에 인쇄되지 못한 빈 부분이나 인쇄가 제대로 되지 못해서 움푹 패인 부분이 존재할 수 있어서 인쇄품질이 저하될 수 있다.
또한, 겔 전해질층(150)은 두께가 0.04 ~ 0.4mm로 형성될 수 있다. 만일 두께가 0.04㎜ 미만일 경우 충분한 전지성능이 발현되기 어려울 수 있고, 두께가 0.4㎜를 초과 시 배터리 조립 및 실링공정에서 겔 전해질이 누액될 우려가 있다.
한편, 본 발명에 따른 겔 전해질 조성물로 구현된 겔 전해질층(150)은 요변성 특성이 매우 우수해 인쇄된 후에 형상유지력이 뛰어나고 이로 인해 양극층(120)과 음극층(130) 간의 분리효과를 발현하므로 별도의 분리막이 생략될 수 있는 이점이 있고, 고체전해질층에 대비해서는 가요성이 우수하면서도 크랙이 발생하지 않아서 벤딩에 따른 배터리 물성의 변동을 최소화할 수 있는 이점이 있다.
또한, 본 발명의 인쇄배터리(100')는 상기 양극층(120)과 음극층(130) 사이에 배치되어 양극층(120) 및 음극층(130)의 단락을 방지하기 위하여 분리막(140)을 더 포함할 수 있다. 이때 겔 전해질층(150)은 양극층(120)과 분리막(140) 사이 또는 음극층(130)과 분리막(140) 사이에 배치될 수 있다.
상기 분리막(140)은 소정의 면적을 갖는 판상의 부재로 형성될 수 있으며, 상기 양극 활물질층(121) 및 음극 활물질층(131) 사이에 배치될 수 있다.
또한, 상기 분리막(140)은 인쇄배터리에 사용되는 공지의 다공성층의 경우 제한 없이 사용할 수 있고, 일 예로 종이로 통칭될 수 있는 셀룰로오스 성분으로 제조된 것이거나 합성고분자로 제조된 것일 수 있다. 바람직하게는 경량성, 유연성 등 고려해 상기 분리막은 종이의 일 예인 크라프트지 또는 전분 등이 코팅된 크라프트지를 사용할 수 있다.
또한, 상기 접착층(160)은 서로 마주하는 상기 제1외장재(111) 및 제2외장재(112)의 테두리를 따라 배치될 수 있으며, 상기 제1외장재(111) 및 제2외장재(112)의 테두리를 상호 접합할 수 있다.
여기서, 상기 접착층(160)은 무기재 타입의 액상 또는 겔상의 접착제일 수도 있고, 기재의 양면에 접착제가 도포된 양면테이프일 수도 있다.
또한, 본 발명에 따른 상기 인쇄배터리(100,100',100')는 두께가 0.5 ~ 2.0㎜일 수 있으나 이에 제한되는 것은 아니며, 목적에 따른 적절히 변경할 수 있다.
또한, 상술한 본 발명에 따른 인쇄배터리(100,100',100')는 후술하는 제조방법으로 제조될 수 있으나 이에 제한되는 것은 아니다.
본 발명의 일 실시예에 따른 인쇄배터리는 (1) 제1외장재의 일부 영역에 양극층을 인쇄하고, 제2외장재의 일부 영역에 음극층을 인쇄하는 단계, (2) 양극층 또는 음극층 상에 산성을 띠며, 전해질 성분, 물 및 이산화규소(SiO2)인 겔 형성성분을 포함하는 겔 전해질 조성물을 인쇄시켜서 겔 전해질층을 형성시키는 단계, (3) 인쇄된 겔 전해질층의 테두리 외측에 대응하는 제1외장재 또는 제2외장재의 테두리 영역 상에 접착층을 인쇄하는 단계 및 (4) 각 층이 인쇄된 제1외장재 및 제2외장재를 합지해 접착층을 통해 제1외장재 및 제2외장재의 테두리 부분을 실링하는 단계를 포함하여 제조될 수 있다.
먼저, 본 발명의 (1) 단계로써 제1외장재의 일부 영역에 양극층을 인쇄하고, 제2외장재의 일부 영역에 음극층을 인쇄하는 단계를 수행한다. 상기 인쇄는 통상적인 인쇄방법, 예를 들어 스크린 인쇄, 스텐실 인쇄, 오프셋 인쇄 및/또는 제트 인쇄를 통해 수행할 수 있고, 바람직하게는 본 발명에 따른 겔 전해질 조성물의 특성을 고려할 때 스크린 인쇄를 통해 수행할 수 있다. 구체적인 인쇄조건은 각 인쇄법에 대해 공지된 조건, 장치를 적절히 이용해 수행할 수 있으므로 본 발명은 이에 대한 구체적인 설명은 생략한다.
구체적으로 (1) 단계는 양극층(120)을 형성시키기 위해서 제1외장재(111)의 일면에 양극 집전체 조성물을 인쇄 후 건조하여 양극 집전체층(122)을 형성시킨 뒤, 다시 양극 집전체층(122) 상에 양극 활물질 조성물을 인쇄 후 건조해 양극 활물질층(121)을 형성시켜서 양극층(120)을 구현할 수 있다. 또한, 음극층(130) 역시 동일한 방법으로 제2외장재(112)의 일면에 음극 집전체 조성물을 인쇄 후 건조하여 음극 집전체층(132)을 형성시킨 뒤, 다시 음극 집전체층(132) 상에 음극 활물질 조성물을 인쇄 후 건조해 음극 활물질층(131)을 형성시켜서 음극층(130)을 구현할 수 있다. 이때, 건조는 통상의 건조방법, 예를 들어 상온에서의 자연건조일 수 있다.
다음으로 본 발명에 따른 (2) 단계로써 양극층(120) 또는 음극층(130) 상에 산성을 띠며, 전해질 성분, 물 및 이산화규소(SiO2)인 겔 형성성분을 포함하는 겔 전해질 조성물을 인쇄시켜서 겔 전해질층(150)을 형성시키는 단계를 수행한다. 여기서 인쇄 역시 상술한 공지의 인쇄법을 사용할 수 있고, 바람직하게는 스크린 인쇄를 통해 수행할 수 있다.
또한, 인쇄배터리가 분리막(140)을 포함하는 경우 상기 (2) 단계는 겔 전해질 조성물이 인쇄되는 양극층(120) 또는 음극층(130) 상에 분리막이 먼저 배치되며, 겔 전해질 조성물은 상기 분리막(140) 상에 인쇄될 수 있다.
다음으로 본 발명에 따른 (3) 단계로써, 인쇄된 겔 전해질층(150)의 테두리 외측에 대응하는 제1외장재(111) 또는 제2외장재(112)의 테두리 영역 상에 접착층(160)을 인쇄하는 단계를 수행한다.
상기 접착층(160)은 인쇄가능하도록 설계된 공지된 접착조성물을 통해서 형성시킬 수 있고, 접착조성물로 이루어진 무기재 접착층 또는 접착조성물이 기재 양면에 배치된 접착층 일 수 있다.
접착조성물이 인쇄된 후 소정의 건조과정을 거칠 수 있으며, 상기 건조는 자연건조 또는 열을 가해 수행할 수 있다.
다음으로 본 발명에 따른 (4) 단계로써, 각 층이 인쇄된 제1외장재(111) 및 제2외장재(112)를 합지해 접착층(160)을 통해 제1외장재(111) 및 제2외장재(112)의 테두리 부분을 실링하는 단계를 수행한다.
상기 실링은 압력 및 부가적으로 접착조성물의 종류에 따라서 온도를 가하여 수행될 수 있다. 이때 가해지는 압력 및 온도의 조건은 접착층(160)의 종류, 두께 등을 고려해 적절히 변경될 수 있으며 본 발명은 이에 대해 특별히 한정하지 않는다.
하기의 실시예를 통하여 본 발명을 더욱 구체적으로 설명하기로 하지만, 하기 실시예가 본 발명의 범위를 제한하는 것은 아니며, 이는 본 발명의 이해를 돕기 위한 것으로 해석되어야 할 것이다.
<제조예>
외장재로써 두께가 50㎛인 폴리이미드 필름인 제2외장재와, 두께 20㎛인 알루미늄 증착막 상 하부에 PET가 라미네이션된 총 두께 54㎛인 제1외장재를 각각 준비한 뒤 각각의 폴리이미드 필름 상에 카본 잉크(Nippon Graphite, EVERYOHM T-30PLB-U)를 건조 후 두께가 150㎛가 되도록 스크린 인쇄 후 150℃로 건조시켜서 각각 양극 집전체층과 음극집전체층을 제조했다. 이후 각각의 양극 집전체층과 음극집전체층 상에 다시 이산화망간인 양극활물질을 함유한 양극활물질 잉크와 아연인 음극활물질을 함유한 음극활물질 잉크를 열을 가해 건조 후 두께가 80㎛가 되도록 스크린 인쇄 건조시켜서 각각 양극 활물질층 및 음극활물질층을 제조했다. 이후 양극 활물질층 상에 두께가 150㎛인 전분이 코팅된 크라프트지 분리막을 놓고 겔 전해질 조성물을 두께가 200㎛가 되도록 스크린 인쇄하여 겔 전해질층을 제조했다. 이후 제1외장재에 형성된 각 층을 둘러싸도록 제1외장재 테두리에 아크릴계 접착조성물을 배치시키고, 각 층이 인쇄된 제2외장재 내측과 제1외장재 내측을 서로 마주보도록 합지 후 테두리를 압력을 가해 실링 후 하기 도 1과 같은 인쇄배터리를 제조했다.
이때, 사용된 겔 전해질 조성물은 염화아연 100 중량부에 대해서 염화암모늄이 4중량부로 포함된 전해질 성분 100 중량부에 대해서 물 100 중량부 및 이산화규소 A(비정질의 친수성 흄드 실리카, ISO 9277에 의거한 BET 비표면적 175 ~ 225㎡/g, 물에 4중량%로 분산된 후 pH가 3.7~4.5, 탭밀도 약 50g/l, 1차입자 평균입경 14nm, 2차입자 크기 117 ~ 198nm)를 9.5중량부 혼합된 것을 사용했다.
<실시예 1>
염화아연 100 중량부에 대해서 염화암모늄이 4중량부로 포함된 전해질 성분 100 중량부에 대해서 물 100 중량부 및 이산화규소 A(비정질의 친수성 흄드 실리카, ISO 9277에 의거한 BET 비표면적 175 ~ 225㎡/g, 물에 4중량%로 분산된 후 pH가 3.7~4.5, 탭밀도 약 50g/l, 1차입자 평균입경 14nm, 2차입자 크기 117 ~ 198nm)를 9.5중량부 혼합하여 겔 전해질 조성물을 제조했다.
<비교예 1 ~ 2>
실시예1과 동일하게 실시하여 제조하되 겔 전해액에서 이산화규소 대신에 폴리에틸렌옥사이드 또는 폴리비닐알코올으로 변경해 겔 전해질 조성물을 제조했다.
<실험예 1>
실시예1 및 비교예 1 ~ 2 겔 전해액에 대해서 하기의 물성을 평가해 표 1에 나타내었다.
1. 인쇄반복성
스크린 인쇄장치를 통해 전분이 코팅된 크라프트지(제조사, 상품명)에 겔전해질층을 10회 반복인쇄하여 인쇄 시 문제가 없는지 평가했다.
2. 인쇄품질
인쇄 후 겔전해질층 표면에 공기기포가 발생되는지 여부를 평가했고, 기포가 발생하는 경우 ○, 발생되지 않는 경우 ×로 평가했다.
3. 분리막 침해여부
전분이 코팅된 크라프트지에서 분리막의 침해가 발생했는지 육안으로 관찰 해 전분이 용해되거나 크라프트지의 손상이 발생하는 경우 ○, 발생되지 않는 경우 ×로 평가했다.
실시예1 비교예1 비교예2
겔형성성분 이산화규소A PEO PVA
인쇄반복성 문제없음 4회 인쇄 후 스크린 메쉬막힘으로 중단 문제없음
인쇄후 기포발생여부 ×
분리막침해여부 × ×
표 1을 통해 확인할 수 있듯이,
고분자 화합물을 겔 형성성분으로 사용한 비교예1, 비교예2의 경우 반복인쇄성이 좋지 않고, 인쇄 후 기포가 과량발생해 인쇄품질이 좋지 않으며, 기포로 인해서 저항이 증가함에 따라서 배터리 물성도 저하될 것이 예상되었고, 비교예2의 경우 분리막의 침해를 발생시킨 것을 확인할 수 있다. 그러나 실시예1의 경우 인쇄반복성에도 문제가 없고, 인쇄품질이 우수하며, 분리막 침해를 발생시키지 않음을 확인할 수 있다.
<실시예 2 ~ 4>
실시예1과 동일하게 실시하여 제조하되 겔 전해액에서 사용된 이산화규소 대신에 다른 종류의 이산화규소B(비정질의 친수성 흄드 실리카, ISO 9277에 의거한 BET 비표면적 130 ~ 170㎡/g, 물에 4중량%로 분산된 후 pH가 3.7~4.7, 탭밀도 약 50g/l), 이산화규소C(비정질의 친수성 흄드 실리카, ISO 9277에 의거한 BET 비표면적 270 ~ 330㎡/g, 물에 4중량%로 분산된 후 pH가 3.7~4.7, 탭밀도 약 50g/l), 또는 이산화규소 D(비정질 침전된 이산화규소, 4중량% 수분산액에서 pH 5.5 ~ 6.5, BET 비표면적 180 ~ 230㎡/g)(강신산업주식회사, Nipsil AQ)로 변경하여 겔 전해질 조성물을 제조했다.
<실험예2>
실시예 1 ~ 4에 대하여 하기의 물성을 평가해 하기 표 2에 나타내었다.
1. 인쇄 후 형상 유지성
전분이 코팅된 크라프트지 상에 실시예 별로 동일한 두께 및 면적으로 인쇄 후 5분 경과된 뒤 겔전해질층의 면적을 계산하고, 10분 경과된 뒤 겔 전해질층의 면적을 계산해 면적의 변화 비율을 하기 식에 의해 계산했다. 각 실시예별로 10개의 시편을 제조한 뒤 각각에 대해 면적변동율을 계산했고, 이를 평균값 계산 한 뒤 실시예4의 평균값을 100으로 기준해 나머지 실시예의 평균 면적변동율을 상대적인 백분율로 표에 나타내었다. 면적의 변화가 클 경우 인쇄 시 설계한 면적 및 두께 대비 변동이 큰 것으로 인쇄 후 형상 유지성이 좋지 않음을 의미한다.
[식]
면적변동율(%) = [(10분 경과 후 면적(㎟) - 5분 경과 후 면적(㎟))×100]/ 5분 경과 후 면적(㎟)
2. 인쇄품질
대량생산이 가능한지 여부를 확인하기 위하여 인쇄용이성을 평가했다. 구체적으로 실시예 별로 두께 200㎛, 가로 15㎜, 세로 15㎜ 면적으로 100회 인쇄 후 인쇄된 겔 전해질층 표면을 현미경으로 관찰해 인쇄된 영역에 인쇄되지 않은 빈 부분이나 움푹 패인 부분이 존재하는지 여부를 확인해 빈 부분이 1곳 이상, 및/또는 인쇄는 되었으나 패인 부분이 2곳 이상 존재하는 경우 불량으로 카운트해 100개 중 양품의 개수를 백분율로 나타내었다.
실시예1 실시예2 실시예3 실시예4
겔형성성분 구분 이산화규소A 이산화규소B 이산화규소C 이산화규소D
종류 흄드실리카 흄드실리카 흄드실리카 침전된 실리카
BET비표면적(㎡/g) 175 ~ 225 130 ~ 170 270 ~ 330 180 ~ 230
pH 3.7 ~ 4.5 3.7 ~ 4.7 3.7 ~ 4.7 5.5 ~ 6.5
함량(중량부) 9.5 9.5 9.5 9.5
인쇄 후 형상유지성
(상대적 면적변동율(%))
2.4 7.5 2.1 100
인쇄품질(%) 100 94 90 68
<실시예5 ~ 10>
실시예1과 동일하게 실시하여 제조하되, 이산화규소A의 함량을 표 3과 같이 변경하여 겔 전해질 조성물을 제조했다.
<실험예3>
실시예 1, 실시예 5 ~ 10에 대하여 하기의 물성을 평가해 하기 표 3에 나타내었다.
1. 인쇄 번짐성
전분이 코팅된 크라프트지 상에 실시예 별로 두께 200㎛, 가로 15㎜, 세로 15㎜ 면적으로 100회 인쇄한 뒤 겔 전해질 조성물이 흘러서 인쇄영역을 벗어나 겔 전해질층을 형성했는지 여부를 평가했고, 겔 전해질 조성물이 흘러서 인쇄영역을 벗어나 겔 전해질층을 형성한 경우를 불량으로 카운트해 100개 중 불량의 개수를 백분율로 나타내었다.
2. 인쇄품질
대량생산이 가능한지 여부를 확인하기 위하여 인쇄용이성을 평가했다. 구체적으로 실시예 별로 두께 200㎛, 가로 15㎜, 세로 15㎜ 면적으로 100회 인쇄 후 인쇄된 겔 전해질층 표면을 현미경으로 관찰해 인쇄된 영역에 인쇄되지 않은 빈 부분이나 움푹 패인 부분이 존재하는지 여부를 확인해 빈 부분이 1곳 이상, 인쇄는 되었으나 패인 부분이 2곳 이상 존재하는 경우, 및/또는 표면이 울퉁불퉁한 부분이 전체 면적(15㎜×15㎜)의 10% 이상인 경우 불량으로 카운트해 100개 중 양품의 개수를 백분율로 나타내었다.
실시예1 실시예5 실시예6 실시예7 실시예8 실시예9 실시예10
겔형성성분 구분 이산화규소A 이산화규소A 이산화규소A 이산화규소A 이산화규소A 이산화규소A 이산화규소A
함량
(중량부)
9.5 1.5 2.2 5.5 6.2 12.5 16.0
인쇄 번짐성(%) 0 28 10 6 0 0 0
인쇄품질(%) 100 78 85 92 100 90 73
표 3을 통해 확인할 수 있듯이,
이산화규소A의 함량이 본 발명의 바람직한 일 실시예의 범위로 함유한 실시예1 및 실시예 6 ~ 9가 실시예 5 및 실시예 10에 대비해 인쇄 번짐성 및 인쇄품질에서 우수한 것을 확인할 수 있다.
이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시 예에 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시 예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.

Claims (14)

  1. (1) 제1외장재의 일부 영역에 양극층을 인쇄하고, 제2외장재의 일부 영역에 음극층을 인쇄하는 단계;
    (2) 양극층 또는 음극층 상에 산성을 띠며, 전해질 성분, 물 및 이산화규소(SiO2)인 겔 형성성분을 포함하는 겔 전해질 조성물을 인쇄시켜서 겔 전해질층을 형성시키는 단계;
    (3) 인쇄된 겔 전해질층의 테두리 외측에 대응하는 제1외장재 또는 제2외장재의 테두리 영역 상에 접착층을 인쇄하는 단계; 및
    (4) 각 층이 인쇄된 제1외장재 및 제2외장재를 합지해 접착층을 통해 제1외장재 및 제2외장재의 테두리 부분을 실링하는 단계;를 포함하는 인쇄배터리 제조방법.
  2. 제1항에 있어서,
    상기 (2) 단계에서 겔 전해질 조성물이 인쇄되는 양극 또는 음극 상에 분리막이 배치되며, 겔 전해질 조성물은 상기 분리막 상에 인쇄되는 것을 특징으로 하는 인쇄배터리 제조방법.
  3. 제1항에 있어서
    상기 전해질 성분은 염화아연(ZnCl2) 100 중량부에 대하여 염화암모늄(NH4Cl)을 2 ~ 10 중량부로 포함하는 것을 특징으로 하는 인쇄배터리 제조방법.
  4. 제1항에 있어서
    전해질 성분 100 중량부에 대해서 물은 95 ~ 120 중량부로 포함되는 것을 특징으로 하는 인쇄배터리 제조방법.
  5. 제1항에 있어서,
    전해질 성분 100 중량부에 대하여 겔 형성성분은 2 ~ 14 중량부로 포함되는 것을 특징으로 하는 인쇄배터리 제조방법.
  6. 제5항에 있어서,
    전해질 성분 100 중량부에 대하여 겔 형성성분은 6 ~ 10 중량부로 포함되는 것을 특징으로 하는 인쇄배터리 제조방법.
  7. 제1항에 있어서,
    상기 이산화규소는 무정형인 흄드실리카이며, BET 비표면적이 170 ~ 230㎡/g인 인쇄배터리 제조방법.
  8. 제1항에 있어서,
    상기 이산화규소는 4중량%로 수분산 시 pH가 3.7 ~ 4.5인 인쇄배터리 제조방법.
  9. 제2항에 있어서,
    상기 분리막은 크라프트지를 포함하고, 상기 인쇄는 스크린 인쇄인 것을 특징으로 하는 인쇄배터리 제조방법.
  10. 양극층, 음극층, 상기 양극층과 음극층 사이에 개재되며 전해질 성분, 물 및 겔 형성성분을 포함하는 겔 전해질층 및 상기 양극층, 음극층 및 겔 전해질층을 봉지하는 외장재를 포함하는 인쇄배터리.
  11. 제10항에 있어서,
    상기 양극층은 이산화망간(MnO2)을 포함하고,
    상기 음극층은 아연(Zn)을 포함하며,
    상기 전해질 성분은 염화아연 및 염화암모늄을 포함하는 것을 특징으로 하는 인쇄배터리.
  12. 제10항에 있어서,
    상기 인쇄배터리는 두께가 0.5 ~ 2.0㎜인 것을 특징으로 하는 인쇄배터리.
  13. 제10항에 있어서,
    상기 겔 전해질층은 두께가 0.04 ~ 0.4㎜인 것을 특징으로 하는 인쇄배터리.
  14. 산성을 띠며, 전해질 성분, 물 및 이산화규소(SiO2)인 겔 형성성분을 포함하는 인쇄배터리용 겔 전해질 조성물.
PCT/KR2021/018648 2020-12-09 2021-12-09 인쇄배터리 제조방법 및 이를 통해 제조된 인쇄배터리 WO2022124821A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0170929 2020-12-09
KR20200170929 2020-12-09

Publications (1)

Publication Number Publication Date
WO2022124821A1 true WO2022124821A1 (ko) 2022-06-16

Family

ID=81974471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/018648 WO2022124821A1 (ko) 2020-12-09 2021-12-09 인쇄배터리 제조방법 및 이를 통해 제조된 인쇄배터리

Country Status (2)

Country Link
KR (1) KR20220081939A (ko)
WO (1) WO2022124821A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040082422A (ko) * 2002-02-12 2004-09-24 에버레디 배터리 컴퍼니, 인크. 가요성의 얇은 인쇄 전지 및 장치와 그것의 제조 방법
KR20080002858A (ko) * 2005-03-22 2008-01-04 씬 배터리 테크놀러지스 인크 픽쳐 프레임을 이용하는 얇고 인쇄 가능한 전기화학 셀 및 그 제조 방법
KR20130115246A (ko) * 2010-09-13 2013-10-21 더 리전츠 오브 더 유니버시티 오브 캘리포니아 이온성 겔 전해질, 에너지 저장 장치, 및 이의 제조 방법
KR20180117556A (ko) * 2017-04-19 2018-10-29 존슨 앤드 존슨 비젼 케어, 인코포레이티드 가요성 마이크로-배터리
US20200350598A1 (en) * 2012-10-10 2020-11-05 Printed Energy Pty Ltd Printed energy storage device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100588089B1 (ko) 2004-11-18 2006-06-08 주식회사로케트전기 초박형 망간전지의 양극 및 그의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040082422A (ko) * 2002-02-12 2004-09-24 에버레디 배터리 컴퍼니, 인크. 가요성의 얇은 인쇄 전지 및 장치와 그것의 제조 방법
KR20080002858A (ko) * 2005-03-22 2008-01-04 씬 배터리 테크놀러지스 인크 픽쳐 프레임을 이용하는 얇고 인쇄 가능한 전기화학 셀 및 그 제조 방법
KR20130115246A (ko) * 2010-09-13 2013-10-21 더 리전츠 오브 더 유니버시티 오브 캘리포니아 이온성 겔 전해질, 에너지 저장 장치, 및 이의 제조 방법
US20200350598A1 (en) * 2012-10-10 2020-11-05 Printed Energy Pty Ltd Printed energy storage device
KR20180117556A (ko) * 2017-04-19 2018-10-29 존슨 앤드 존슨 비젼 케어, 인코포레이티드 가요성 마이크로-배터리

Also Published As

Publication number Publication date
KR20220081939A (ko) 2022-06-16

Similar Documents

Publication Publication Date Title
WO2018004277A1 (ko) 이차 전지용 분리막 및 이를 포함하는 리튬 이차 전지
WO2015047034A1 (ko) 리튬 이차전지용 세퍼레이터의 제조방법, 그 방법에 의해 제조된 세퍼레이터, 및 이를 포함하는 리튬 이차전지
WO2021029629A1 (ko) 개선된 전극접착력 및 저항 특성을 갖는 리튬이차전지용 분리막 및 상기 분리막을 포함하는 리튬이차전지
WO2021210908A1 (ko) 파우치 형 전지 케이스 및 파우치 형 이차 전지
WO2020067845A1 (ko) 개선된 전극접착력 및 저항 특성을 갖는 리튬이차전지용 분리막 및 상기 분리막을 포함하는 리튬이차전지
WO2019009564A1 (ko) 분리막, 이를 채용한 리튬전지 및 분리막의 제조 방법
WO2014081227A1 (ko) 방청성 와셔 및 이를 포함하는 이차전지
WO2017099333A1 (ko) 가스 흡착제가 포함되어 있는 전극 리드를 구비한 전지셀
WO2021251736A1 (ko) 파우치 필름 적층체, 파우치 형 전지 케이스 및 파우치 형 이차 전지
WO2019168308A1 (ko) 양극 및 상기 양극을 포함하는 이차 전지
WO2019135640A1 (ko) 절연 코팅층이 구비된 전극탭을 포함하는 이차전지
WO2016114474A1 (ko) 전극용 슬러리 조성물, 전극 및 이차전지
WO2019117605A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2019054811A1 (ko) 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지
WO2019168278A1 (ko) 음극 슬러리 조성물, 이를 이용하여 제조된 음극 및 이차전지
WO2022124821A1 (ko) 인쇄배터리 제조방법 및 이를 통해 제조된 인쇄배터리
WO2021206431A1 (ko) 전기화학소자용 분리막 및 이를 제조하는 방법
WO2020251230A1 (ko) 세퍼레이터 및 이를 포함하는 전기화학소자
WO2022098049A1 (ko) 음극보다 면적이 넓은 양극을 포함하는 전고체전지 및 이의 제조방법
WO2021101222A1 (ko) 전기화학소자용 분리막 및 이를 포함하는 전기화학소자
WO2023101278A1 (ko) 파우치형 전지 및 파우치형 전지의 실링장치
WO2024085735A1 (ko) 이차전지용 분리막, 이의 제조방법 및 이차전지
WO2021101343A1 (ko) 플렉시블 이차전지용 패키징 및 그를 포함하는 플렉시블 이차전지
WO2024090718A1 (ko) 전고체전지 및 그 제조방법
WO2024112147A1 (ko) 파우치형 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903867

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21903867

Country of ref document: EP

Kind code of ref document: A1