WO2022123906A1 - 積層ホース - Google Patents

積層ホース Download PDF

Info

Publication number
WO2022123906A1
WO2022123906A1 PCT/JP2021/038142 JP2021038142W WO2022123906A1 WO 2022123906 A1 WO2022123906 A1 WO 2022123906A1 JP 2021038142 W JP2021038142 W JP 2021038142W WO 2022123906 A1 WO2022123906 A1 WO 2022123906A1
Authority
WO
WIPO (PCT)
Prior art keywords
reinforcing
hose
wire
reinforcing layer
laminated
Prior art date
Application number
PCT/JP2021/038142
Other languages
English (en)
French (fr)
Inventor
高滋 外輪
泰介 黒田
亮 宮脇
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to US18/255,174 priority Critical patent/US20230407997A1/en
Priority to EP21903010.3A priority patent/EP4261449A4/en
Priority to CN202180083081.4A priority patent/CN116568954A/zh
Publication of WO2022123906A1 publication Critical patent/WO2022123906A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/08Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall
    • F16L11/081Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall comprising one or more layers of a helically wound cord or wire
    • F16L11/083Hoses, i.e. flexible pipes made of rubber or flexible plastics with reinforcements embedded in the wall comprising one or more layers of a helically wound cord or wire three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2597/00Tubular articles, e.g. hoses, pipes

Definitions

  • the present invention relates to a laminated hose.
  • the laminated hose includes, for example, a high-pressure hose provided with a reinforcing layer in which a reinforcing wire is spirally wound (see, for example, "Patent Document 1" and “Patent Document 2").
  • a high-pressure hose provided with a reinforcing layer in which a reinforcing wire is spirally wound (see, for example, "Patent Document 1" and "Patent Document 2").
  • a plurality of the reinforcing layers are laminated on the inner tube rubber layer.
  • the durability performance of a laminated hose includes what is called rocking durability performance.
  • the swing durability performance refers to the durability performance when an internal pressure is applied to the laminated hose while repeatedly bending the laminated hose. The swing durability performance may be rather deteriorated when the flexibility of the laminated hose is impaired by increasing the density of the reinforcing wire.
  • An object of the present invention is to provide a laminated hose capable of achieving both pressure resistance and rocking durability.
  • the laminated hose according to the present invention is a laminated hose having a hose main body and a plurality of reinforcing layers laminated on the outer peripheral side of the hose main body, each of the plurality of reinforcing layers including a reinforcing wire.
  • the wire densities of all of the plurality of reinforcing layers are 90% or more and less than 96%. According to the laminated hose according to the present invention, it is possible to achieve both pressure resistance and rocking durability.
  • the laminated hose according to the present invention is a laminated hose having a hose main body and a plurality of reinforcing layers laminated on the outer peripheral side of the hose main body, each of the plurality of reinforcing layers including a reinforcing wire.
  • the wire densities of all of the plurality of reinforcing layers are 90% or more and less than 95%. According to the laminated hose according to the present invention, it is possible to achieve both pressure resistance and rocking durability.
  • the wire density of each of the plurality of reinforcing layers is from the innermost reinforcing layer closest to the hose body to the outermost reinforcing layer farthest from the hose body. It is preferable that the size becomes smaller as the size increases. In this case, the pressure resistance performance and the swing durability performance can be effectively compatible with each other.
  • the winding angle of the reinforcing wire of each of the plurality of reinforcing layers is preferably 40 ° or more and 70 ° or less. In this case, 50 ° to 60 ° is particularly preferable.
  • the wire density of the reinforcing layer of each of the plurality of reinforcing layers is 100%. It is preferable that the wire density does not exceed. In this case, the swing durability performance can be further improved.
  • the laminated hose is preferably a wire spiral hose in which the reinforcing wire is wound in a spiral shape.
  • the laminated hose is a laminated hose that can be easily manufactured.
  • FIG. 1 It is a partial perspective view which shows roughly the internal structure of the laminated hose which concerns on 1st Embodiment of this invention. It is a figure which shows the part of the reinforcing layer of the laminated hose of FIG. 1 schematically. It is a figure which shows roughly the winding state of the reinforcing wire, taking a part of the reinforcing wire included in the reinforcing layer of FIG. 2 as an example. It is a figure which shows roughly the bending state of the laminated hose when the laminated hose of FIG. 1 is bent by the bending radius Rb.
  • FIG. 1 is a partial perspective view schematically showing the internal structure of the laminated hose 1 according to the first embodiment of the present invention.
  • the laminated hose 1 has a hose main body 11 and a plurality of reinforcing layers 12 laminated on the outer peripheral side of the hose main body 11, and each of the plurality of reinforcing layers 12 has a reinforcing wire 13. Includes.
  • the laminated hose 1 is formed by laminating a plurality of tubular layers concentrically.
  • the laminated hose 1 functions as a flow path for flowing a liquid, and can be used, for example, as a hydraulic hose.
  • the laminated hose 1 is used as a high-pressure hose for circulating hydraulic oil from a pump in a device operated by hydraulic pressure.
  • reference numeral 11 is a hose body as described above.
  • the hose body 11 is an inner layer arranged on the innermost side of the tubular layers constituting the laminated hose 1.
  • the hose body 11 is an inner rubber layer (rubber member) containing rubber.
  • the inside of the hose body 11 is filled with high-pressure hydraulic oil (liquid).
  • the hydraulic oil can, for example, transmit the supply pressure from the hydraulic pump to an operating device (for example, a construction machine) using the pressure of the hydraulic oil to operate the device.
  • Reference numeral 12 is the reinforcing layer 12.
  • the reinforcing layer 12 is an intermediate layer arranged between the inner layer and the outer layer of the laminated hose 1 among the tubular layers constituting the laminated hose 1.
  • the reinforcing layer 12 includes a reinforcing wire 13.
  • the reinforcing wire 13 is made of a steel wire (wire rope) wound in a spiral shape.
  • the laminated hose 1 is provided with the reinforcing layer 12, so that the pressure resistance of the laminated hose 1 is enhanced.
  • the laminated hose 1 is provided with a plurality of reinforcing layers 12 to further enhance the pressure resistance performance.
  • the laminated hose 1 can handle a high pressure of 80 MPa or more, for example.
  • the laminated hose 1 includes four reinforcing layers 12. As shown in FIG. 1, the winding direction of the reinforcing wire 13 of the reinforcing layer 12 of each of the four reinforcing layers 12 is the winding direction of the reinforcing wires 13 of the reinforcing layers 12 adjacent to each other in the hose thickness direction (hose radial direction). It is in the opposite direction to each other. Thereby, the laminated hose 1 can handle a high pressure of, for example, 112 MPa to 168 MPa.
  • the four reinforcing layers 12 are the first reinforcing layer 12a, the second reinforcing layer 12b, the third reinforcing layer 12c, and the fourth reinforcing layer 12d, respectively.
  • the first reinforcing layer 12a is the innermost reinforcing layer closest to the hose body 11.
  • the second reinforcing layer 12b is an intermediate reinforcing layer farther from the hose body 11 than the first reinforcing layer 12a.
  • the third reinforcing layer 12c is an intermediate reinforcing layer farther from the hose body 11 than the second reinforcing layer 12b.
  • the fourth reinforcing layer 12d is the outermost reinforcing layer farther from the hose body 11 than the third reinforcing layer 12c.
  • the fourth reinforcing layer 12d is the reinforcing layer farthest from the hose body 11.
  • Reference numeral 10 is an outer cover layer.
  • the outer cover layer 10 is an outer layer arranged on the outermost side of the tubular layers constituting the laminated hose 1.
  • the outer cover layer 10 is a rubber layer (rubber member) containing rubber.
  • the outer cover layer 10 is integrally formed with the hose body 11 via the reinforcing layer 12 and the intermediate rubber layer 13.
  • the laminated hose 1 can be provided with six reinforcing layers 12.
  • the laminated hose 1 can handle a high pressure of, for example, 112 MPa to 168 MPa.
  • the six reinforcing layers 12 are not shown in addition to the first reinforcing layer 12a, the second reinforcing layer 12b, the third reinforcing layer 12c, and the fourth reinforcing layer 12d, respectively.
  • the first reinforcing layer 12a is the innermost reinforcing layer closest to the hose body 11.
  • the second reinforcing layer 12b is an intermediate reinforcing layer farther from the hose body 11 than the first reinforcing layer 12a.
  • the third reinforcing layer 12c is an intermediate reinforcing layer farther from the hose body 11 than the second reinforcing layer 12b.
  • the fourth reinforcing layer 12d is an intermediate reinforcing layer farther from the hose body 11 than the third reinforcing layer 12c.
  • the fifth reinforcing layer 12e is an intermediate reinforcing layer farther from the hose body 11 than the fourth reinforcing layer 12d.
  • the sixth reinforcing layer 12f is the outermost reinforcing layer farther from the hose body 11 than the fifth reinforcing layer 12e. In this example, the sixth reinforcing layer 12f is the reinforcing layer farthest from the hose body 11.
  • Reference numeral 14 is an intermediate rubber layer. Like the reinforcing layer 12, the intermediate rubber layer 14 is an intermediate layer arranged between the inner layer and the outer layer of the laminated hose 1 among the tubular layers constituting the laminated hose 1. In the present embodiment, the intermediate rubber layer 14 is a rubber member containing rubber. In the present embodiment, the intermediate rubber layer 14 includes four intermediate rubber layers 14. The four intermediate rubber layers 14 are formed between the hose body 11 and the first reinforcing layer 12a, between the first reinforcing layer 12a and the second reinforcing layer 12b, and between the second reinforcing layer 12b and the third reinforcing layer, respectively. It is arranged between the layers 12c and between the third reinforcing layer 12c and the fourth reinforcing layer 12d.
  • the laminated hose 1 in which a plurality of reinforcing layers 12 are laminated if the wire density ⁇ of the reinforcing layer 12 is increased, the pressure resistance performance of the laminated hose 1 can be ensured, but the swing durability performance of the laminated hose 1 may be deteriorated. ..
  • the laminated hose 1 if the wire density ⁇ of all of the plurality of reinforcing layers 12 is 90% or more and less than 96%, the wire density ⁇ for ensuring the pressure resistance performance is set. It is possible to improve the swing durability performance while maintaining it. Therefore, according to the laminated hose 1, it is possible to improve the swing durability performance while ensuring the pressure resistance performance. As a result, the laminated hose 1 can achieve both pressure resistance and rocking durability. Further, when the wire density ⁇ is lowered, it tends to be difficult for the reinforcing wires 13 to be uniformly arranged at the time of manufacturing.
  • the laminated hose 1 since the wire density ⁇ of each of the reinforcing layers 12 is increased to a constant density, the reinforcing wires 13 can be easily arranged uniformly at the time of manufacture. Therefore, the laminated hose 1 is a laminated hose having uniform quality.
  • the laminated hose 1 if the wire density ⁇ of all of the plurality of reinforcing layers 12 is 90% or more and less than 95%, the wire density ⁇ for ensuring the pressure resistance performance is maintained. At the same time, the swing durability performance can be improved. Therefore, according to the laminated hose 1, it is possible to improve the swing durability performance while ensuring the pressure resistance performance. As a result, the laminated hose 1 can achieve both pressure resistance and rocking durability. Further, also in the laminated hose 1 having the wire density ⁇ , the reinforcing wires 13 can be easily arranged uniformly at the time of manufacturing. Therefore, the laminated hose 1 is a laminated hose having uniform quality.
  • the wire density ⁇ of the reinforcing layer 12 refers to the ratio (%) of the area Sw of the reinforcing wire 13 to the unit area S12 of the reinforcing layer 12.
  • the unit area S12 of the reinforcing layer 12 can be represented by an arbitrary area of the reinforcing layer 12 when the laminated hose 1 is viewed in a plane.
  • the unit area S12 of the reinforcing layer 12 can be represented by an arbitrary area of the reinforcing layer 12 when the reinforcing layer 12 is deployed.
  • FIG. 2 schematically shows a part of the reinforcing layer 12 of the laminated hose 1.
  • FIG. 2 is a plan view of the reinforcing layer 12, but the developed view of the reinforcing layer 12 has the same composition.
  • Specific examples of the unit area S12 include a certain length Ls along the extending direction d1 of the laminated hose 1 when the laminated hose 1 is linearly extended, and a diameter D12 of the reinforcing layer 12. It can be obtained by the product (Ls ⁇ D12) of these based on.
  • the method for calculating the unit area S12 of the reinforcing layer 12 is not limited to this specific example.
  • the wire density ⁇ of the reinforcing layer 12 is (1) the winding diameter Dw of the reinforcing wire 13, (2) the wire diameter (diameter) D13 of the reinforcing wire 13, (3) the number of reinforcing wires 13 N13, and (4) reinforcement. It can be calculated using the four parameters of the winding angle A13 of the wire 13.
  • An exemplary formula for calculating the wire density ⁇ of the reinforcing layer 12 is as follows.
  • the wire density 13 of each of the plurality of reinforcing layers 12 is the outermost reinforcing layer farthest from the hose body 11 from the innermost reinforcing layer (12a) closest to the hose body 11. It is preferable that the size becomes smaller toward the layer (12d). In this case, the withstand voltage performance can be effectively improved by increasing the wire density ⁇ inside the laminated hose 1 to which pressure is easily applied. On the other hand, the flexibility can be effectively increased by suppressing the increase in the wire density ⁇ inside the laminated hose 1. Therefore, according to the laminated hose 1, the pressure resistance performance and the swing durability performance can be effectively compatible with each other.
  • the wire density ⁇ of each of the four reinforcing layers 12 is set so as to decrease from the first reinforcing layer 12a to the fourth reinforcing layer 12d.
  • the wire density ⁇ 1 of the first reinforcing layer 12a has the highest wire density among the four reinforcing layers 12.
  • the wire density ⁇ 2 of the second reinforcing layer 12b has a lower wire density than the wire density ⁇ 1 of the first reinforcing layer 12a.
  • the wire density ⁇ 3 of the third reinforcing layer 12c has a lower wire density than the wire density ⁇ 2 of the second reinforcing layer 12b.
  • the wire density ⁇ 4 of the fourth reinforcing layer 12d has a lower wire density than the wire density ⁇ 3 of the third reinforcing layer 12c. Therefore, in the present embodiment, the wire density ⁇ 4 of the fourth reinforcing layer 12d has the lowest wire density among the four reinforcing layers 12.
  • the winding angle A of the reinforcing wire 13 of each of the plurality of reinforcing layers 12 is preferably 40 ° or more and 70 ° or less. In this case, 50 to 60 ° is particularly preferable.
  • FIG. 3 schematically shows the winding state of the reinforcing wire 13 by taking a part of the reinforcing wire 13 included in the reinforcing layer 12 of FIG. 2 as an example.
  • the laminated hose 1 all the reinforcing layers 12 from the first reinforcing layer 12a to the fourth reinforcing layer 12d are set so that the winding angle A13 of the reinforcing wire 13 is 50 ° or more and 60 ° or less.
  • the winding angle A13 of the reinforcing wire 13 as shown in FIG. 3, an acute angle side angle formed by the center line L13 of the reinforcing wire 13 with respect to the extending direction d1 of the laminated hose 1 can be mentioned.
  • the winding angle A13 of the reinforcing wire 13 is not limited to this example.
  • the winding angle A13 of the reinforcing wire 13 can be, for example, an obtuse angle side angle with respect to the extending direction d1 of the laminated hose 1.
  • the winding angle A13 of the reinforcing wire 13 is an obtuse angle formed with respect to d2 in a direction orthogonal to the extending direction d1 of the laminated hose 1 (radial direction of the laminated hose 1) when the laminated hose 1 is viewed in a plane. It can also be a side angle or an obtuse side angle.
  • the wire density ⁇ of the reinforcing layer 12 of each of the plurality of reinforcing layers 12 is 100. It is preferable that the wire density does not exceed%. In this case, the reinforcing wires 13 included in the reinforcing layer 12 are less likely to interfere with each other when the laminated hose 1 is bent. Therefore, according to the laminated hose 1, the swing durability performance can be further improved.
  • FIG. 4 schematically shows the bending state of the laminated hose 1 when the laminated hose 1 is bent with a bending radius Rb.
  • the wire bending density ⁇ b is the wire density ⁇ of the reinforcing layer 12 when the laminated hose 1 is bent at the bending radius Rb determined by the specifications of the laminated hose 1.
  • the wire density ⁇ of the reinforcing layer 12 is the wire density ⁇ of the reinforcing layer 12 when the laminated hose 1 is bent and viewed from the inner peripheral side to the outer peripheral side in the bending radius direction.
  • the bending radius Rb is also referred to as an allowable bending radius, and refers to a limit bending radius that can withstand use as a laminated hose.
  • the bending radius Rb is the radius of curvature generated on the innermost peripheral side in the bending radius direction of the laminated hose 1 when the laminated hose 1 is bent.
  • Examples of the specifications of the laminated hose 1 include a standard individually required for each use of the laminated hose, a standard set in advance for each hose maker, and the like.
  • each reinforcing layer 12 of each of the four reinforcing layers 12 when the laminated hose 1 is bent at the bending radius Rb determined by the specifications of the laminated hose 1 is 100%. It is set not to exceed.
  • each reinforcing layer 12 is configured so that all of the wire bending densities ⁇ b of the four reinforcing layers 12 are substantially 100%.
  • substantially 100% means to include an error of "-0.5” with respect to 100%.
  • the error is “ ⁇ 0.3” with respect to 100%, and more preferably, the error is “ ⁇ 0.2” with respect to 100%. That is, in the laminated hose 1, when the laminated hose 1 is bent with a bending radius Rb, all the wire bending densities ⁇ b of the four reinforcing layers 12 are preferably between 99.5 and 99.7. Between 100 and more preferably between 99.8 and 100.
  • the laminated hose 1 is a wire spiral hose in which a reinforcing wire 13 is wound in a spiral shape.
  • the reinforcing wire 13 of the reinforcing layer 12 can be arranged by winding it in a spiral shape. Therefore, the laminated hose 1 is a laminated hose that can be easily manufactured.
  • the laminated hose 1 is a wire spiral hose.
  • the reinforcing layer 12 is a spiral wire layer in which the reinforcing wire 13 is wound in a spiral shape.
  • the reinforcing wire 13 of the reinforcing layer 12 is wound in the direction opposite to the winding direction of the reinforcing wire 13 of the adjacent reinforcing layer 12.
  • Example 1 is a laminated hose in which the reinforcing layer 12 has four layers.
  • the reinforcing layer 12 is a four-layer laminated hose.
  • the hose diameter is the inner diameter (inner diameter) of the hose body 11.
  • the unit is mm.
  • the wire densities ⁇ 1 to ⁇ 4 are the wire densities ⁇ of the first reinforcing layer 12a, the wire density ⁇ of the second reinforcing layer 12b, the wire density ⁇ of the third reinforcing layer 12c, and the fourth reinforcing layer 12d, respectively.
  • the wire density is ⁇ .
  • the wire bending densities ⁇ b1 to ⁇ b4 are the wire bending density ⁇ b of the first reinforcing layer 12a, the wire bending density ⁇ b of the second reinforcing layer 12b, the wire bending density ⁇ b of the third reinforcing layer 12c, and the fourth reinforcing layer 12d, respectively.
  • the wire density ⁇ and the wire bending density ⁇ b are ratios (%).
  • the calculated fracture pressure is the limit pressure at which the laminated hose 1 is destroyed when a high-pressure liquid is pressure-fed to the laminated hose 1.
  • the unit is MPa.
  • the calculated fracture pressure is an index for evaluating the withstand voltage performance of the laminated hose 1. The higher the calculated fracture pressure, the better the withstand voltage performance.
  • the calculated fracture pressure of Example 1 is 80 MPa or more.
  • the number of swing impulses is the number of bends when the laminated hose 1 is bent with a bending radius Rb.
  • the unit is 10,000 times.
  • the number of swing impulses is an index for evaluating the swing durability performance of the laminated hose 1. The greater the number of swing impulses, the better the swing durability performance.
  • the bending radius Rb of Example 1 is 140 mm.
  • the bending radius Rb of Comparative Example 1 is 620 mm.
  • the number of swing impulses in Example 1 is 600,000 or more.
  • Example 1 the wire density ⁇ of all four reinforcing layers 12 is 90% or more and less than 96%. Similarly, in Example 1, the wire densities ⁇ of all four reinforcing layers 12 are 90% or more and less than 95%.
  • Example 1 has improved rocking durability while ensuring pressure resistance. Therefore, referring to Table 1, it is clear that the first embodiment can achieve both the withstand voltage performance and the rocking durability performance at the same time.
  • the four reinforcing layers 12 are configured so that the wire density ⁇ of the reinforcing layer 12 decreases from the first reinforcing layer 12a to the fourth reinforcing layer 12d.
  • the wire bending density ⁇ b1 of the first reinforcing layer 12a to the wire bending density ⁇ b4 of the fourth reinforcing layer 12d are all substantially 100%.
  • Each reinforcing layer 12 is configured.
  • the wire bending density ⁇ of the fourth reinforcing layer 12d is configured to be substantially 100%.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

耐圧性能と揺動耐久性能とを両立させることが可能な積層ホースを提供する。積層ホース(1)は、複数の補強層(12)がホース本体(11)に積層されており、補強層(12)は補強ワイヤー(13)を含む。複数の補強層(12の全ての、当該補強層12のワイヤー密度ρは、90以上かつ96未満である。

Description

積層ホース
 本発明は、積層ホースに関する。
 積層ホースには、例えば、補強ワイヤーをスパイラル状に巻き付けた補強層を備える高圧ホースがある(例えば、「特許文献1」および「特許文献2」参照。)。前記高圧ホースは、内管ゴム層に前記補強層の複数を積層させている。こうした高圧ホースは、耐圧性能、耐久性能を確保する上で、前記補強層のそれぞれで前記補強ワイヤーを密に巻き付ける必要がある。
特開2013-151994号公報 特開平9-26062号公報
 しかしながら、補強ワイヤーの密度を高めると、積層ホースの柔軟性が損なわれる。その結果、積層ホースの耐久性能は、補強ワイヤーの密度を高めたことにより、むしろ低下することになる場合がある。例えば、積層ホースの耐久性能には、揺動耐久性能と呼ばれるものがある。ここで、揺動耐久性能とは、積層ホースに対して繰り返し屈曲を与えながら、当該積層ホースに内圧を付与したときの耐久性能をいう。前記揺動耐久性能は、補強ワイヤーの密度が高まることにより積層ホースの柔軟性が損なわれると、むしろ低下することになる場合がある。
 これに対して、補強ワイヤーの密度を低くすることも考えられる。しかしながら、補強ワイヤーの密度を低くすると、耐圧性能が低下してしまう場合がある。また、補強ワイヤーの密度を低くすると、製造時において、補強ワイヤーが均一に並び難くなる傾向があった。したがって、従来の積層ホースには、耐圧性能を確保しながら揺動耐久性能を向上させることにより、耐圧性能と揺動耐久性能とを両立させる点で改善の余地があった。
 本発明の目的は、耐圧性能と揺動耐久性能とを両立させることが可能な積層ホースを提供することである。
 本発明に係る積層ホースは、ホース本体と、前記ホース本体の外周側に積層された複数の補強層とを有し、前記複数の補強層のそれぞれが補強ワイヤーを含む、積層ホースであって、前記複数の補強層の全ての、当該補強層のワイヤー密度は、90%以上かつ96%未満である。本発明に係る積層ホースによれば、耐圧性能と揺動耐久性能とを両立させることが可能である。
 本発明に係る積層ホースは、ホース本体と、前記ホース本体の外周側に積層された複数の補強層とを有し、前記複数の補強層のそれぞれが補強ワイヤーを含む、積層ホースであって、前記複数の補強層の全ての、当該補強層のワイヤー密度は、90%以上かつ95%未満である。本発明に係る積層ホースによれば、耐圧性能と揺動耐久性能とを両立させることが可能である。
 本発明に係る積層ホースにおいて、前記複数の補強層のそれぞれの、当該補強層の前記ワイヤー密度は、前記ホース本体に最も近い最内側補強層から、前記ホース本体から最も遠い最外側補強層に向かうに従って小さくなっていることが好ましい。この場合、耐圧性能と揺動耐久性能とを効果的に両立させることができる。
 本発明に係る積層ホースにおいて、前記複数の補強層のそれぞれの、前記補強ワイヤーの巻き付け角度は、40°以上かつ70°以下であることが好ましい。この場合、特に、50°~60°が好ましい。
 本発明に係る積層ホースにおいて、前記積層ホースを当該積層ホースの仕様で決定された曲げ半径で曲げたときの、前記複数の補強層のそれぞれの、当該補強層の前記ワイヤー密度は、100%を超えないワイヤー密度であることが好ましい。この場合、揺動耐久性能をより向上させることができる。
 本発明に係る積層ホースにおいて、前記積層ホースは、前記補強ワイヤーをスパイラル状に巻き付けたワイヤースパイラルホースであることが好ましい。この場合、積層ホースは、簡易に製造可能な積層ホースとなる。
 本発明によれば、耐圧性能と揺動耐久性能とを両立させることが可能な積層ホースを提供することができる。
本発明の第一実施形態に係る積層ホースの内部構造を概略的に示す部分斜視図である。 図1の積層ホースの補強層の一部を概略的に示す図である。 図2の補強層に含まれる補強ワイヤーの一部を例にとり、当該補強ワイヤーの巻き付け状態を概略的に示す図である。 図1の積層ホースを曲げ半径Rbで曲げたときの当該積層ホースの曲げ状態を概略的に示す図である。
 以下、図面を参照して、本発明の様々な実施形態に係る積層ホースについて説明する。
 図1は、本発明の第一実施形態に係る積層ホース1の内部構造を概略的に示す部分斜視図である。図1に示すように、積層ホース1は、ホース本体11と、ホース本体11の外周側に積層された複数の補強層12とを有し、複数の補強層12のそれぞれは、補強ワイヤー13を含んでいる。
 本実施形態では、積層ホース1は、複数の筒状層を同心円状に積層してなる。積層ホース1は、液体を流通させる流路として機能する他、例えば、油圧ホースとして用いることができる。具体的には、積層ホース1は、油圧を使用して作動させる装置において、ポンプからの作動油を流通させる高圧ホースとして使用される。
 以下、積層ホース1について、より具体的に説明する。
 図1中、符号11は、上述のとおり、ホース本体である。ホース本体11は、積層ホース1を構成する筒状層のうち、最も内側に配置された内層である。本実施形態では、ホース本体11は、ゴムを含有する内側ゴム層(ゴム部材)である。本実施形態では、ホース本体11の内側には、高圧の作動油(液体)が充填されている。前記作動油は、例えば、油圧ポンプからの供給圧を、当該作動油の圧力を利用して作動する装置(例えば、建設機械)に伝達し、当該装置を作動させることができる。
 符号12は、補強層12である。補強層12は、積層ホース1を構成する筒状層のうち、積層ホース1の内層と外層との間に配置された中間層である。補強層12は、補強ワイヤー13を含んでいる。本実施形態では、補強ワイヤー13は、スパイラル(螺旋)状に巻き付けられた鋼線(ワイヤロープ)からなる。積層ホース1は、補強層12を備えることにより、積層ホース1の耐圧性能が高められている。
 本実施形態では、積層ホース1は、複数の補強層12を備えることにより、耐圧性能がより高められている。これにより、積層ホース1は、例えば、80MPa以上の高圧に対応できる。本実施形態では、積層ホース1は、4つの補強層12を備えている。図1に示すように、4つの補強層12のそれぞれの、当該補強層12の補強ワイヤー13の巻き付け方向は、ホース厚み方向(ホース径方向)で隣り合う補強層12の補強ワイヤー13の巻き付け方向に対して互いに逆方向である。これにより、積層ホース1は、例えば、112MPa~168MPaの高圧に対応できる。
 本実施形態では、4つの補強層12は、それぞれ、第1補強層12a、第2補強層12b、第3補強層12cおよび第4補強層12dである。第1補強層12aは、ホース本体11に最も近い最内側補強層である。第2補強層12bは、第1補強層12aよりもホース本体11から遠い中間補強層である。第3補強層12cは、第2補強層12bよりもホース本体11から遠い中間補強層である。第4補強層12dは、第3補強層12cよりもホース本体11から遠い最外側補強層である。本実施形態では、第4補強層12dは、当該ホース本体11から最も遠い補強層である。
 符号10は、外被層である。外被層10は、積層ホース1を構成する筒状層のうち、最も外側に配置された外層である。本実施形態では、外被層10は、ゴムを含有するゴム層(ゴム部材)である。外被層10は、補強層12及び中間ゴム層13を介して、ホース本体11と一体に形成されている。
 また、積層ホース1は、6つの補強層12を備えることができる。この場合、積層ホース1は、例えば、112MPa~168MPaの高圧に対応できる。
 補強層12が6つの場合、当該6つの補強層12は、それぞれ、第1補強層12a、第2補強層12b、第3補強層12c、第4補強層12dに加えて、図示が省略された第5補強層12eおよび第6補強層12fである。第1補強層12aは、ホース本体11に最も近い最内側補強層である。第2補強層12bは、第1補強層12aよりもホース本体11から遠い中間補強層である。第3補強層12cは、第2補強層12bよりもホース本体11から遠い中間補強層である。第4補強層12dは、第3補強層12cよりもホース本体11から遠い中間補強層である。第5補強層12eは、第4補強層12dよりもホース本体11から遠い中間補強層である。第6補強層12fは、第5補強層12eよりもホース本体11から遠い最外側補強層である。この例では、第6補強層12fは、ホース本体11から最も遠い補強層である。
 符号14は、中間ゴム層である。中間ゴム層14は、補強層12と同様、積層ホース1を構成する筒状層のうち、積層ホース1の内層と外層との間に配置された中間層である。本実施形態では、中間ゴム層14は、ゴムを含有するゴム部材である。本実施形態では、中間ゴム層14は、4つの中間ゴム層14を含む。4つの中間ゴム層14は、それぞれ、ホース本体11と第1補強層12aとの相互間と、第1補強層12aと第2補強層12bの相互間と、第2補強層12bと第3補強層12cの相互間と、第3補強層12cと第4補強層12dの相互間と、に配置されている。
 複数の補強層12が積層された積層ホース1において、補強層12のワイヤー密度ρを高めれば、積層ホース1の耐圧性能を確保できる一方、積層ホース1の揺動耐久性能が低下することがある。
 これに対し、積層ホース1において、複数の補強層12の全ての、当該補強層12のワイヤー密度ρを、90%以上かつ96%未満とすれば、耐圧性能を確保するためのワイヤー密度ρを維持しつつ、揺動耐久性能を向上させることができる。したがって、積層ホース1によれば、耐圧性能を確保しながら揺動耐久性能を向上させることができる。これにより、積層ホース1は、耐圧性能と揺動耐久性能とを両立させることが可能である。また、ワイヤー密度ρを低くすると、製造時において、補強ワイヤー13が均一に並び難くなる傾向があった。これに対し、積層ホース1は、補強層12のそれぞれのワイヤー密度ρが一定の密度に高められていることから、製造時において補強ワイヤー13が均一に並び易くなる。このため、積層ホース1は品質の均一な積層ホースとなる。
 また、積層ホース1において、複数の補強層12の全ての、当該補強層12のワイヤー密度ρを、90%以上かつ95%未満とすれば、耐圧性能を確保するためのワイヤー密度ρを維持しつつ、揺動耐久性能を向上させることができる。したがって、積層ホース1によれば、耐圧性能を確保しながら揺動耐久性能を向上させることができる。これにより、積層ホース1は、耐圧性能と揺動耐久性能とを両立させることが可能である。また、上記ワイヤー密度ρの積層ホース1も、製造時において補強ワイヤー13が均一に並び易くなる。このため、積層ホース1は品質の均一な積層ホースとなる。
 ところで、補強層12のワイヤー密度ρは、補強層12の単位面積S12あたりに、補強ワイヤー13の面積Swが占める割合(%)をいう。ここで、補強層12の単位面積S12は、積層ホース1を平面で視たときの、補強層12の任意の面積で表すことができる。或いは、補強層12の単位面積S12は、補強層12を展開したときの、当該補強層12の任意の面積で表すこともできる。
 図2には、積層ホース1の補強層12の一部を概略的に示す。図2は、補強層12の平面図であるが、補強層12の展開図も同様の構図である。単位面積S12の具体例としては、積層ホース1を直線状に延ばしたときの、当該積層ホース1の延在方向d1に沿った、或る一定の長さLsと、補強層12の直径D12とを基にした、これらの積(Ls×D12)によって求めることができる。
 ただし、補強層12の単位面積S12を算出する方法は、この具体例に限定されるものではない。例えば、補強層12のワイヤー密度ρは、(1)補強ワイヤー13の巻き付け直径Dw、(2)補強ワイヤー13の線径(直径)D13、(3)補強ワイヤー13の本数N13、(4)補強ワイヤー13の巻き付け角度A13の、4つのパラメータを使用して算出することができる。
 例示的な、補強層12のワイヤー密度ρの算出式は、次のとおりである。
 [数1]
 ρ=dK/{π・(WOD-d)・cosθ}×100  (%)
ρ:ワイヤー密度、d:ワイヤー線形(mm)、K:打込み数(本)、WOD:編上げ外径(mm)、
θ:編上角度
 また、積層ホース1において、複数の補強層12のそれぞれの、当該補強層12のワイヤー密度13は、ホース本体11に最も近い最内側補強層(12a)から、ホース本体11から最も遠い最外側補強層(12d)に向かうに従って小さくなっていることが好ましい。この場合、圧力の加わり易い積層ホース1の内側のワイヤー密度ρが高まることにより、耐圧性能を効果的に高めることができる。その一方、積層ホース1の内側のワイヤー密度ρの上昇が抑えられることにより、柔軟性を効果的に高めることができる。したがって、積層ホース1によれば、耐圧性能と揺動耐久性能とを効果的に両立させることができる。
 積層ホース1では、4つの補強層12のそれぞれの、各補強層12のワイヤー密度ρは、第1補強層12aから第4補強層12dに向かうに従って小さくなるように設定されている。積層ホース1では、第1補強層12aのワイヤー密度ρ1は、4つの補強層12のうちで最もワイヤー密度が高い。第2補強層12bのワイヤー密度ρ2は、第1補強層12aのワイヤー密度ρ1よりもワイヤー密度が低い。第3補強層12cのワイヤー密度ρ3は、第2補強層12bのワイヤー密度ρ2よりもワイヤー密度が低い。第4補強層12dのワイヤー密度ρ4は、第3補強層12cのワイヤー密度ρ3よりもワイヤー密度が低い。したがって、本実施形態では、第4補強層12dのワイヤー密度ρ4は、4つの補強層12のうちで最もワイヤー密度が低い。
 また、積層ホース1において、複数の補強層12のそれぞれの、補強ワイヤー13の巻き付け角度Aは、40°以上かつ70°以下であることが好ましい。この場合、特に、50~60°が好適である。
 図3には、図2の補強層12に含まれる補強ワイヤー13の一部を例にとり、当該補強ワイヤー13の巻き付け状態を概略的に示す。積層ホース1では、第1補強層12aから第4補強層12dまでの全ての補強層12は、補強ワイヤー13の巻き付け角度A13が50°以上かつ60°以下となるように設定されている。補強ワイヤー13の巻き付け角度A13の具体例としては、図3に示すように、補強ワイヤー13の中心線L13が積層ホース1の延在方向d1に対してなす鋭角側角度が挙げられる。ただし、補強ワイヤー13の巻き付け角度A13は、この例に限定されるものではない。補強ワイヤー13の巻き付け角度A13は、例えば、積層ホース1の延在方向d1に対してなす鈍角側角度とすることができる。また、補強ワイヤー13の巻き付け角度A13は、積層ホース1を平面で視たときの、積層ホース1の延在方向d1に対して直交する方向(積層ホース1の径方向)d2に対してなす鈍角側角度または鈍角側角度とすることもできる。
 また、積層ホース1では、積層ホース1を当該積層ホース1の仕様で決定された曲げ半径Rbで曲げたときの、複数の補強層12のそれぞれの、当該補強層12のワイヤー密度ρは、100%を超えないワイヤー密度であることが好ましい。この場合、補強層12に含まれる補強ワイヤー13は、積層ホース1を曲げたときに互いに干渉し難くなる。したがって、積層ホース1によれば、揺動耐久性能をより向上させることができる。
 図4には、積層ホース1を曲げ半径Rbで曲げたときの当該積層ホース1の曲げ状態を概略的に示す。ワイヤー曲げ密度ρbは、積層ホース1の仕様で決定された曲げ半径Rbで当該積層ホース1を曲げたときの当該補強層12のワイヤー密度ρである。具体的には、補強層12のワイヤー密度ρは、積層ホース1を曲げたときの、曲げ半径方向内周側から外周側で視たときの、補強層12のワイヤー密度ρである。曲げ半径Rbは、許容曲げ半径ともいい、積層ホースとしての使用に耐え得る限界の曲げ半径をいう。曲げ半径Rbは、積層ホース1を曲げたときの当該積層ホース1の曲げ半径方向最内周側に生じる曲率半径である。積層ホース1の仕様としては、例えば、積層ホースの使用状況に応じてその都度個別に求められる規格、ホースメーカーごとに予め設定された規格等が挙げられる。
 積層ホース1では、積層ホース1の仕様で決定された曲げ半径Rbで当該積層ホース1を曲げたときの、4つの補強層12のそれぞれの、各補強層12のワイヤー曲げ密度ρbが100%を超えないように設定されている。積層ホース1では、4つの補強層12のワイヤー曲げ密度ρbの全てが実質的に100%となるように各補強層12が構成されている。
 ここで、「実質的に100%」とは、100%に対して「-0.5」の誤差を含む意味である。好適には、100%に対して「-0.3」の誤差、より好適には、100%に対して「-0.2」の誤差である。即ち、積層ホース1では、当該積層ホース1を曲げ半径Rbで曲げたときの、4つの補強層12の全てのワイヤー曲げ密度ρbは、99.5~100の間、好適には、99.7~100の間、より好適には、99.8~100の間にある。
 また、積層ホース1において、積層ホース1は、補強ワイヤー13をスパイラル状に巻き付けたワイヤースパイラルホースであることが好ましい。この場合、補強層12の補強ワイヤー13はスパイラル状に巻き付けることにより配置することができる。したがって、積層ホース1は、簡易に製造可能な積層ホースとなる。
 積層ホース1は、ワイヤースパイラルホースである。積層ホース1において、補強層12は、補強ワイヤー13をスパイラル状に巻き付けたスパイラルワイヤー層である。本実施形態では、補強層12の補強ワイヤー13は、隣り合う補強層12の補強ワイヤー13の巻き付け方向に対して逆方向に巻き付けられている。
 以下の表1には、本発明の実施例1と、比較例1とを示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1は、補強層12が四層の積層ホースである。比較例1は、補強層12が四層の積層ホースである。
 表1中、ホース口径は、ホース本体11の内径(内側直径)である。単位は、mmである。
 また、表1中、ワイヤー密度ρ1~ρ4はそれぞれ、第1補強層12aのワイヤー密度ρ、第2補強層12bのワイヤー密度ρ、第3補強層12cのワイヤー密度ρ、第4補強層12dのワイヤー密度ρである。
 また、ワイヤー曲げ密度ρb1~ρb4はそれぞれ、第1補強層12aのワイヤー曲げ密度ρb、第2補強層12bのワイヤー曲げ密度ρb、第3補強層12cのワイヤー曲げ密度ρb、第4補強層12dのワイヤー曲げ密度ρbである。ワイヤー密度ρ、ワイヤー曲げ密度ρbは、割合(%)である。
 さらに、表1中、計算破壊圧力は、積層ホース1に高圧の液体を圧送したときに、当該積層ホース1が破壊される限界の圧力である。単位は、MPaである。計算破壊圧力は、積層ホース1の耐圧性能評価の指標である。計算破壊圧力が高いほど、耐圧性能は良好である。実施例1の計算破壊圧力はいずれも、80MPa以上である。
また、揺動インパルス回数は、積層ホース1を曲げ半径Rbで曲げたときの曲げ回数である。単位は、万回である。揺動インパルス回数は、積層ホース1の揺動耐久性能評価の指標である。揺動インパルス回数が多いほど、揺動耐久性能は良好である。実施例1の曲げ半径Rbは、140mmである。比較例1の曲げ半径Rbは、620mmである。実施例1の揺動インパルス回数は、60万回以上である。
 実施例1において、4つの補強層12の全ての、当該補強層12のワイヤー密度ρは、90%以上かつ96%未満である。同様に、実施例1において、4つの補強層12の全ての、当該補強層12のワイヤー密度ρは、90%以上かつ95%未満である。
 表1を参照すれば、実施例1は、耐圧性能を確保しながら揺動耐久性能が向上していると評価できる。したがって、表1を参照すれば、実施例1は、耐圧性能と揺動耐久性能とを両立させることが可能であることが明らかである。
 また、実施例1を参照すれば、4つの補強層12は、補強層12のワイヤー密度ρが第1補強層12aから第4補強層12dに向かうに従って小さくなるように、構成されている。
 また、実施例1を参照すれば、積層ホース1は、第1補強層12aのワイヤー曲げ密度ρb1から第4補強層12dのワイヤー曲げ密度ρb4までの全てが実質的に100%となるように、各補強層12が構成されている。
 また、表1を参照すれば、実施例1において、第4補強層12dのワイヤー曲げ密度ρが実質的に100%となるように、構成されている。
 上述したところは、本発明の例示的な実施形態を説明したものであり、特許請求の範囲を逸脱しない範囲で様々な変更を行うことができる。また、上述した各実施形態に採用された様々な構成は、相互に適宜、置き換えることができる。
 1:積層ホース, 10:外被層, 11:ホース本体, 12:補強層, 12a:第1補強層(最内側補強層), 12b:第2補強層, 12c:第3補強層, 12d:第4補強層(最外側補強層), 12e:第5補強層, 12f:第6補強層(最外側補強層), S12:補強層12の単位面積, 13:補強ワイヤー, A13:補強ワイヤーの巻き付け角度, 14:中間ゴム層, Rb:曲げ半径, ρ:ワイヤー密度, ρb:ワイヤー曲げ密度

Claims (6)

  1.  ホース本体と、前記ホース本体の外周側に積層された複数の補強層とを有し、前記複数の補強層のそれぞれが補強ワイヤーを含む、積層ホースであって、
     前記複数の補強層の全ての、当該補強層のワイヤー密度は、90%以上かつ96%未満である、積層ホース。
  2.  ホース本体と、前記ホース本体の外周側に積層された複数の補強層とを有し、前記複数の補強層のそれぞれが補強ワイヤーを含む、積層ホースであって、
     前記複数の補強層の全ての、当該補強層のワイヤー密度は、90%以上かつ95%未満である、積層ホース。
  3.  前記複数の補強層のそれぞれの、当該補強層の前記ワイヤー密度は、前記ホース本体に最も近い最内側補強層から、前記ホース本体から最も遠い最外側補強層に向かうに従って小さくなっている、請求項1又は2に記載された積層ホース。
  4.  前記複数の補強層のそれぞれの、前記補強ワイヤーの巻き付け角度は、40°以上かつ70°以下である、請求項1~3のいずれか1項に記載された積層ホース。
  5.  前記積層ホースを当該積層ホースの仕様で決定された曲げ半径で曲げたときの、前記複数の補強層のそれぞれの、当該補強層の前記ワイヤー密度は、100%を超えないワイヤー密度である、請求項1~4のいずれか1項に記載された積層ホース。
  6.  前記積層ホースは、前記補強ワイヤーをスパイラル状に巻き付けたワイヤースパイラルホースである、請求項1~5のいずれか1項に記載された積層ホース。
     
PCT/JP2021/038142 2020-12-11 2021-10-14 積層ホース WO2022123906A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/255,174 US20230407997A1 (en) 2020-12-11 2021-10-14 Laminated hose
EP21903010.3A EP4261449A4 (en) 2020-12-11 2021-10-14 MULTILAYER HOSE
CN202180083081.4A CN116568954A (zh) 2020-12-11 2021-10-14 多层软管

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-206341 2020-12-11
JP2020206341A JP2022093185A (ja) 2020-12-11 2020-12-11 積層ホース

Publications (1)

Publication Number Publication Date
WO2022123906A1 true WO2022123906A1 (ja) 2022-06-16

Family

ID=81973526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038142 WO2022123906A1 (ja) 2020-12-11 2021-10-14 積層ホース

Country Status (5)

Country Link
US (1) US20230407997A1 (ja)
EP (1) EP4261449A4 (ja)
JP (1) JP2022093185A (ja)
CN (1) CN116568954A (ja)
WO (1) WO2022123906A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817283A (ja) * 1981-07-24 1983-02-01 横浜ゴム株式会社 金属線で補強した可撓性ホ−ス
JPS61192988A (ja) * 1985-02-20 1986-08-27 東海ゴム工業株式会社 高圧ホ−ス
JPH04288920A (ja) * 1991-03-18 1992-10-14 Yokohama Rubber Co Ltd:The 高圧ホース補強用金属線の製造方法及び高圧ホース
JPH0926062A (ja) * 1995-07-12 1997-01-28 Yokohama Rubber Co Ltd:The 高圧ホース
JPH11141751A (ja) * 1997-09-05 1999-05-28 Yokohama Rubber Co Ltd:The 高圧ゴムホース
JP2018025236A (ja) * 2016-08-10 2018-02-15 横浜ゴム株式会社 ホース
JP2018194068A (ja) * 2017-05-16 2018-12-06 横浜ゴム株式会社 高圧ホース

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5817283A (ja) * 1981-07-24 1983-02-01 横浜ゴム株式会社 金属線で補強した可撓性ホ−ス
JPS61192988A (ja) * 1985-02-20 1986-08-27 東海ゴム工業株式会社 高圧ホ−ス
JPH04288920A (ja) * 1991-03-18 1992-10-14 Yokohama Rubber Co Ltd:The 高圧ホース補強用金属線の製造方法及び高圧ホース
JPH0926062A (ja) * 1995-07-12 1997-01-28 Yokohama Rubber Co Ltd:The 高圧ホース
JPH11141751A (ja) * 1997-09-05 1999-05-28 Yokohama Rubber Co Ltd:The 高圧ゴムホース
JP2018025236A (ja) * 2016-08-10 2018-02-15 横浜ゴム株式会社 ホース
JP2018194068A (ja) * 2017-05-16 2018-12-06 横浜ゴム株式会社 高圧ホース

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4261449A4 *

Also Published As

Publication number Publication date
EP4261449A1 (en) 2023-10-18
US20230407997A1 (en) 2023-12-21
JP2022093185A (ja) 2022-06-23
CN116568954A (zh) 2023-08-08
EP4261449A4 (en) 2024-05-29

Similar Documents

Publication Publication Date Title
WO2010071130A1 (ja) 可撓性耐圧・耐油ホース
JP2003343773A (ja) 給水給湯用ホース
WO2022123906A1 (ja) 積層ホース
JP2012036927A (ja) ゴムホース
JP5843585B2 (ja) 釣り竿
JP6720826B2 (ja) 水素充填用ホース
JP2014206261A (ja) 高圧ホース
JP7401741B2 (ja) ホースの最小曲げ半径の設定方法およびホース
WO2019035341A1 (ja) 高圧ホース
JP5913660B1 (ja) 渦巻きコイル積層体及び渦巻きコイル積層体の積み重ね体
WO2021205691A1 (ja) ホース
JP5798809B2 (ja) 高圧ホース
JP2007044915A (ja) 給水給湯ホース
JP2019105354A (ja) ホース
JP7356009B2 (ja) 水素充填用ホース
WO2017073777A1 (ja) 高圧ホース
WO2021124956A1 (ja) 高圧ホース
JP5798805B2 (ja) 高圧ホース
JP2017193396A (ja) 渦巻きコイル積層体及び渦巻きコイル積層体の積み重ね体
JP4709537B2 (ja) 耐圧ホース
JP2005308114A (ja) 超高圧ホース
WO2019216354A1 (ja) 積層ホース及び積層ホースの製造方法
JP2004263818A (ja) コントロールケーブル
JP5627934B2 (ja) ホース
JP2017008991A (ja) 高圧ホース

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21903010

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180083081.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021903010

Country of ref document: EP

Effective date: 20230711