WO2022121141A1 - 一种硬碳基负极材料的制备方法 - Google Patents

一种硬碳基负极材料的制备方法 Download PDF

Info

Publication number
WO2022121141A1
WO2022121141A1 PCT/CN2021/080406 CN2021080406W WO2022121141A1 WO 2022121141 A1 WO2022121141 A1 WO 2022121141A1 CN 2021080406 W CN2021080406 W CN 2021080406W WO 2022121141 A1 WO2022121141 A1 WO 2022121141A1
Authority
WO
WIPO (PCT)
Prior art keywords
glycerin
hard carbon
sintering
negative electrode
slag
Prior art date
Application number
PCT/CN2021/080406
Other languages
English (en)
French (fr)
Inventor
葛传长
仰永军
Original Assignee
广东凯金新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东凯金新能源科技股份有限公司 filed Critical 广东凯金新能源科技股份有限公司
Publication of WO2022121141A1 publication Critical patent/WO2022121141A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of battery materials, in particular to a preparation method of a hard carbon-based negative electrode material.
  • Electrochemical energy storage has high operating energy efficiency, controllable replay time and good cycle performance, and has become a hot spot in current new energy research.
  • Lithium-ion batteries have the advantages of high operating voltage, high energy density, and good safety, and can be widely used in power supply in many fields.
  • the development of lithium-ion batteries depends to a large extent on the development and application of high-performance positive and negative electrode materials.
  • the preparation cost of the currently practical mesocarbon microsphere materials is relatively high.
  • pitch-based aromatic compounds for surface modification.
  • ester compounds such as monoglyceride and glyceride often produces many by-products, which are solid products formed by carbonization and pyrolysis. Because of its wide source and low cost, it is an ideal raw material for the production of carbon materials.
  • glycerol distillation and molecular distillation ester emulsifier production a large amount of glycerol residues are often produced, especially the bottom glycerol residues obtained under repeated high temperature distillation process conditions; these bottom glycerol residues are the residues after the glycerol residue reaction extraction
  • the product is an asphalt-like semi-solid with complex components, most of which are polyglycerol esters with different degrees of polymerization.
  • a method for preparing a hard carbon-based negative electrode material which uses bottom glycerin residue as a raw material, and through the coordination of various processes, enables it to prepare a material with good electrochemical performance, low cost, and environmental protection. hard carbon-based anode material.
  • a method for preparing a hard carbon-based negative electrode material comprising the following steps: S1: adding bottom glycerin residue into a high-speed mixer, then adding an alcohol solvent, stirring and heating to boiling until it dissolves into a liquid to obtain a glycerol residue solution; the The step is to remove the insoluble substances in the bottom glycerin residue through alcohol solvent and heating; S2: pass the glycerol residue solution through a primary filter to remove insoluble impurities, then add dimethylamine, heat up, and then pass through a secondary filter to remove insoluble impurities to obtain the aminated glycerol residue solution; in this step, by introducing dimethylamine, under the action of dimethylamine, the ester groups in the glycerol residue solution are partially hydrolyzed, and then reacted with dimethylamine to form nitrogen-containing compounds , to enhance the bond between carbon and carbon; S3: place the aminated glycerol residue solution in a high-temperature heating furnace, and under the protection of in
  • the alcohol solvent is a mixture of water and alcohol substances, and the mass ratio of the water to alcohol substances is 10-15:1.
  • the alcohol substance is one or more combinations of butanediol, isobutanol or n-amyl alcohol.
  • step S1 the heating temperature is 110°C-150°C; the mass ratio of the bottom glycerin residue to the alcohol solvent is 1:1-3.
  • step S2 the precision of the primary filter is 15 ⁇ m-30 ⁇ m; the precision of the secondary filter is 15 ⁇ m-30 ⁇ m; the heating temperature is 80°C-120°C; the amount of dimethylamine added is 0.01-0.1 times the mass concentration of the glycerol residue solution.
  • step S3 the inert gas is nitrogen or argon; the temperature of one carbonization treatment is 400°C-600°C, and the time is 3h-5h.
  • the vacuum degree is -0.1Pa-0.1Pa, and the pressure is 30MPa-50MPa; sintering is divided into three stages of sintering: the sintering temperature in the first stage is 600 °C-800 °C, The time is 1h-1.5h, the pressure is 30MPa-35MPa; the sintering temperature in the second stage is 800°C-950°C, the time is 0.8h-1.2h, and the pressure is 35MPa-40MPa; the sintering temperature in the third stage is 950°C- 1200°C, the time is 0.2h-0.5h, and the pressure is 40MPa-50MPa.
  • the inert gas is nitrogen; the sintering temperature is 1300°C-1500°C, the time is 0.1h-0.3h, and the pressure is 10MPa-20MPa.
  • step S6 the mass ratio of the hard carbon-based material, conductive agent, absolute ethanol and binder is 1:0.3-0.5:1-3:0.01-0.05.
  • the conductive agent is one of acetylene black, carbon nanotubes, carbon nanofibers or expanded graphite;
  • the binder is polyvinylidene fluoride, polyvinyl chloride polyvinyl alcohol or methylol One of the sodium cellulose bases.
  • the bottom glycerin residue used in this application is rich in carbon resources, has a wide range of sources and is cheap, can be utilized as a resource, has high social and environmental benefits, and is of great significance for achieving green and sustainable development.
  • the ester group is hydrolyzed by adding dimethylamine, and the dimethylamine reacts with the hydroxyl group to form a nitrogen-containing compound to enhance the bond between carbon and carbon, which is beneficial to improve the negative electrode material of carbon-based lithium ion battery.
  • the reversible capacity and cycle performance make the surface solid electrolyte interfacial film better modified, which is beneficial to the diffusion of lithium.
  • the prepared carbon-based lithium-ion battery anode material has a very high specific surface area and a porous channel structure, which can improve the lithium intercalation capacity and charge-discharge cycle performance.
  • the discharge specific capacity of the hard carbon-based lithium battery negative electrode material of the present application after the first charge-discharge cycle is up to 910mAh/g, and the first charge-discharge efficiency is up to 91.4%; after 100 cycles, the capacity retention rate is 80%. % or more, the cycle performance is good.
  • the present application provides a method for preparing a hard carbon-based negative electrode material, which includes the following steps: S1: adding bottom glycerin residue into a high-speed mixer, then adding an alcohol solvent, stirring and heating to boiling until it dissolves into a liquid to obtain glycerin residue solution; in this step, the insoluble substances in the bottom glycerol residue are removed by alcoholic solvent and heating; S2: the glycerol residue solution is passed through a primary filter to remove insoluble impurities, then dimethylamine is added, the temperature is raised, and then passed through a secondary filter, Insoluble impurities are removed to obtain an aminated glycerol residue solution; in this step, dimethylamine is introduced, and under the action of dimethylamine, the ester groups in the glycerol residue solution are partially hydrolyzed, and then reacted with dimethylamine to form Nitrogen-containing compounds to enhance the bond between carbon and carbon; S3: place the aminated glycerol residue solution in a high-temperature
  • Bottom glycerin residue is rich in carbon resources, has a wide range of sources and is cheap, and can be used as a resource. It has high social and environmental benefits, and is of great significance to the realization of green and sustainable development.
  • the ester group is hydrolyzed by adding dimethylamine, and the dimethylamine reacts with the hydroxyl group to form a nitrogen-containing compound to enhance the bond between carbon and carbon, which is beneficial to improve the negative electrode material of carbon-based lithium ion battery.
  • the reversible capacity and cycle performance make the surface solid electrolyte interfacial film better modified, which is beneficial to the diffusion of lithium.
  • the prepared carbon-based lithium-ion battery anode material has a very high specific surface area and a porous channel structure, which can improve the lithium intercalation capacity and charge-discharge cycle performance.
  • the discharge specific capacity of the hard carbon-based lithium battery negative electrode material of the present application after the first charge-discharge cycle is up to 910mAh/g, and the first charge-discharge efficiency is up to 91.4%; after 100 cycles, the capacity retention rate is 80%. % or more, the cycle performance is good.
  • the alcohol solvent is a mixture of water and alcohol substances, and the mass ratio of water to alcohol substances is 10-15:1.
  • the alcohol substance is one or more combinations of butanediol, isobutanol or n-amyl alcohol.
  • step S1 the heating temperature is 110°C-150°C; the mass ratio of the bottom glycerin residue to the alcohol solvent is 1:1-3.
  • the precision of the primary filter is 15 ⁇ m-30 ⁇ m; the precision of the secondary filter is 15 ⁇ m-30 ⁇ m; the heating temperature is 80°C-120°C; The added amount is 0.01-0.1 times the mass concentration of the glycerin residue solution.
  • the inert gas is nitrogen or argon; the temperature of one carbonization treatment is 400°C-600°C, and the time is 3h-5h.
  • step S4 the degree of vacuum is -0.1Pa-0.1Pa, and the pressure is 30MPa-50MPa; sintering is divided into three stages of sintering: the sintering temperature of the first stage is 600°C- 800°C, the time is 1h-1.5h, the pressure is 30MPa-35MPa; the sintering temperature in the second stage is 800°C-950°C, the time is 0.8h-1.2h, and the pressure is 35MPa-40MPa; the sintering temperature in the third stage is 950°C-1200°C, time is 0.2h-0.5h, pressure is 40MPa-50MPa.
  • the inert gas is nitrogen; the sintering temperature is 1300°C-1500°C, the time is 0.1h-0.3h, and the pressure is 10MPa-20MPa.
  • step S6 the mass ratio of the hard carbon-based material, the conductive agent, the absolute ethanol and the binder is 1:0.3-0.5:1-3:0.01-0.05.
  • the conductive agent is one of acetylene black, carbon nanotubes, carbon nanofibers or expanded graphite;
  • the binder is polyvinylidene fluoride, polyvinyl chloride polyvinyl alcohol or methylol A type of sodium cellulose.
  • Embodiment 1 The preparation method of the hard carbon-based negative electrode material of this embodiment includes the following steps: S1: Add the bottom glycerin residue into a high-speed mixer, then add an alcohol solvent, stir and heat to 120 ° C until it dissolves into a liquid , to obtain a glycerol residue solution; S2: pass the glycerol residue solution through a 15 ⁇ m primary filter to remove insoluble impurities, then add dimethylamine, heat up to 100 ° C, and then pass through a 20 ⁇ m secondary filter to remove insoluble impurities to obtain amine The aminated glycerol residue solution; S3: the aminated glycerol residue solution is placed in a high-temperature heating furnace, and under the protection of nitrogen, a carbonization treatment is performed, and the temperature of the first carbonization treatment is 400 ° C - 600 ° C, and the time is 4h , to obtain the primary carbonized glycerin slag; S4: place the primary carbonized g
  • the alcohol solvent is a mixture of water and butanediol with a mass ratio of 12:1; the mass ratio of the bottom glycerol residue and the alcohol solvent is 1:2; the addition of dimethylamine is 0.05 times the mass concentration of the glycerol residue solution ;
  • the mass ratio of hard carbon-based material, conductive agent, absolute ethanol and adhesive is 1:0.3:2:0.03; the conductive agent is acetylene black; the adhesive is polyvinylidene fluoride.
  • the obtained hard carbon-based material negative electrode material is used as a negative electrode material for lithium ion batteries.
  • the discharge specific capacity after the first charge-discharge cycle is 880mAh/g, and the first charge-discharge efficiency is 81.3%; 98.3%.
  • Embodiment 2 The preparation method of the hard carbon-based negative electrode material of this embodiment includes the following steps: S1: Add the bottom glycerin residue into a high-speed mixer, then add an alcohol solvent, stir and heat to 120 ° C until it dissolves into a liquid , to obtain a glycerol residue solution; S2: Pass the glycerol residue solution through a 15 ⁇ m primary filter to remove insoluble impurities, then add dimethylamine, heat up to 120 ° C, and then pass through a 20 ⁇ m secondary filter to remove insoluble impurities to obtain amine The aminated glycerol residue solution; S3: The aminated glycerol residue solution is placed in a high-temperature heating furnace, and under the protection of nitrogen, a carbonization treatment is performed, and the temperature of the first carbonization treatment is 400 °C-600 °C, and the time is 3h , to obtain the primary carbonized glycerin slag; S4: place the primary carbonized gly
  • the alcohol solvent is a mixture of water and butanediol with a mass ratio of 12:1; the mass ratio of the bottom glycerol residue and the alcohol solvent is 1:2; the addition of dimethylamine is 0.05 times the mass concentration of the glycerol residue solution ;
  • the mass ratio of hard carbon-based material, conductive agent, absolute ethanol and adhesive is 1:0.3:2:0.03; the conductive agent is acetylene black; the adhesive is polyvinylidene fluoride.
  • the obtained hard carbon-based material negative electrode material is used as the negative electrode material of lithium ion battery, the discharge specific capacity after the first charge-discharge cycle is 820mAh/g, and the first charge-discharge efficiency is 80.6%; is 95.5%.
  • Embodiment 3 The preparation method of the hard carbon-based negative electrode material of this embodiment includes the following steps: S1: Add the bottom glycerin residue into a high-speed mixer, then add an alcohol solvent, stir and heat to 120 ° C until it dissolves into a liquid , to obtain a glycerol residue solution; S2: Pass the glycerol residue solution through a 15 ⁇ m primary filter to remove insoluble impurities, then add dimethylamine, heat up to 120 ° C, and then pass through a 20 ⁇ m secondary filter to remove insoluble impurities to obtain amine The aminated glycerol residue solution; S3: The aminated glycerol residue solution is placed in a high-temperature heating furnace, and under the protection of nitrogen, a carbonization treatment is performed, and the temperature of the first carbonization treatment is 400 °C-600 °C, and the time is 3h , to obtain the primary carbonized glycerin slag; S4: place the primary carbonized gly
  • the alcohol solvent is a mixture of water and butanediol with a mass ratio of 15:1; the mass ratio of the bottom glycerol residue and the alcohol solvent is 1:3; the addition of dimethylamine is 0.1 times the mass concentration of the glycerol residue solution ;
  • the mass ratio of hard carbon-based material, conductive agent, absolute ethanol and adhesive is 1:0.3:2:0.03; the conductive agent is acetylene black; the adhesive is polyvinylidene fluoride.
  • the obtained hard carbon-based material negative electrode material is used as a negative electrode material for lithium ion batteries, the discharge specific capacity after the first charge-discharge cycle is 910mAh/g, and the first charge-discharge efficiency is 91.4%; was 97.5%.
  • Comparative Example 1 The preparation method of the hard carbon-based negative electrode material of this comparative example includes the following steps: S1: Add the bottom glycerin residue into a high-speed mixer, then add an alcohol solvent, stir and heat to 120 ° C until it dissolves into a liquid , to obtain a glycerin residue solution; S2: pass the glycerol residue solution through a 15 ⁇ m primary filter to remove insoluble impurities, heat up to 120° C., and then pass through a 20 ⁇ m secondary filter to remove insoluble impurities to obtain an aminated glycerol residue solution ; S3: place the aminated glycerol residue solution in a high-temperature heating furnace, and perform a carbonization treatment under the protection of nitrogen.
  • Slag; S4 The carbonized glycerin slag is placed in a graphite mold, and then placed in a plasma sintering furnace, evacuated to -0.1Pa, and then pressurized to 30 MPa and heated to sinter.
  • the sintering temperature in the first stage is 600 °C -800°C, the time is 1h, the pressure is 30MPa; the sintering temperature of the second stage is 800°C-950°C, the time is 0.8h, the pressure is 35MPa; the sintering temperature of the third stage is 950°C-1200°C, the time is 0.2 h, the pressure is 40Mpa; carry out secondary carbonization treatment to obtain secondary carbonized glycerin slag; S5: put the secondary carbonized glycerin slag into an electric arc furnace, under the protection of nitrogen, heat up and sinter, and the sintering temperature of sintering is 1300 °C-1500°C, the time is 0.2h, the pressure is 20MPa, and the carbonization treatment is carried out three times to obtain a hard carbon-based material based on glycerin residue; S6: After mixing the hard carbon-based material and the conductive agent, grind, and then disperse in anhydrous In
  • the alcohol solvent is a mixture of water and butanediol with a mass ratio of 12:1; the mass ratio of the bottom glycerin residue and the alcohol solvent is 1:2; The mass ratio is 1:0.3:2:0.03; the conductive agent is acetylene black; the binder is polyvinylidene fluoride.
  • the obtained hard carbon-based material negative electrode material is used as a negative electrode material for lithium ion batteries, the discharge specific capacity after the first charge-discharge cycle is 610mAh/g, and the first charge-discharge efficiency is 58.9%; 70.5%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

提供了一种硬碳基负极材料的制备方法,包括如下步骤:在底甘油渣中加入醇溶剂,搅拌并加热至沸腾,直至溶解成液体;将甘油渣溶液经过滤后再加入二甲胺;将胺化后的甘油渣溶液置于高温加热炉中,进行一次碳化处理;将一次碳化的甘油渣放置于等离子体烧结炉中,抽真空,然后加压并升温烧结;将二次碳化的甘油渣放入电弧炉中,在惰性气体的保护下,升温烧结,进行三次碳化处理;将硬碳基材料和导电剂混合后,进行研磨,再分散于无水乙醇中,加入粘合剂,搅拌均匀,干燥,压片,即得硬碳基材料负极材料。

Description

一种硬碳基负极材料的制备方法
相关申请的交叉引用:本申请要求于2020年12月11日提交中国专利局、申请号为“202011446743.3”、发明名称为“一种硬碳基负极材料的制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电池材料技术领域,特别是涉及一种硬碳基负极材料的制备方法。
背景技术
随着全球能源使用量的日益增长,化石燃料等不可再生的能源日益枯竭,并且会对环境造成严重的污染,因此迫切需要人们去开发氢能、风能、核能、地热能、太阳能等可再生新能源,但是这些新能源均存在供应间歇性,不易控制等问题,在使用这些新能源之前需要解决的问题是将其储存后再集中释放利用,因此需要建设大规模的储能系统。电化学储能运行能量效率高,并且重放时间可控制,循环性能好,已经成为目前新能源研究的热点。
锂离子电池具有高工作电压、高能量密度、安全性佳等优点,可广泛应用于许多领域的电源供应。锂离子电池的发展在很大的程度上取决于高性能正、负极材料的开发与应用。目前实用的中间相碳微球材料的制备成本偏高。而在天然石墨和人造石墨方面,为了降低初期不可逆电容量和提升循环寿命,需要以沥青类芳烃化合物材料进行表面改质。
单甘脂、甘油酯等酯类化合物的制备过程,常常会产生较多的副产品,该副产品通过碳化、热解而成的固态产物。由于其具有来源广泛,成本低廉等优点,是生产碳材料的理想原料。其中,在甘油蒸馏生产及分子蒸馏酯类乳化剂生产过程中往往会产生大量的甘油渣,尤其在反复高温蒸馏工艺条件下得到的底甘油渣;这些底甘油渣是甘油渣反应提取后的残留产品,为沥青状半固体,组分复杂,大多数是不同聚合度的聚甘油酯。
技术问题
由于制备过程中需要在1300℃以上的高温下实施碳化,其中,沥青类芳烃化合物的价格波动大,以及高温碳化下所产生的环境污染与能源大量消耗,皆不是长久永续经营的方向。因此,以底甘油渣为原料来制备电极材料成为亟待解决的问题。
技术解决方案
根据本申请的各种实施例,提供一种硬碳基负极材料的制备方法,其利用底甘油渣为原料,通过各工序的配合,使其能够制备出电化学性能好、成本低、绿色环保的硬碳基负极材料。
一种硬碳基负极材料的制备方法,包括如下步骤:S1:将底甘油渣加入到高速搅拌器中,再加入醇溶剂,搅拌并加热至沸腾,直至溶解成液体,得到甘油渣溶液;该步骤通过醇溶剂及加热,将底甘油渣中不溶物质除去;S2:将甘油渣溶液经过一级过滤器,除去不溶杂质,再加入二甲胺,升温,再经过二级过滤器,除去不溶杂质,得到胺化后的甘油渣溶液;该步骤通过通入二甲胺,在二甲胺的作用下,使得甘油渣溶液中的酯基进行部分水解,再与二甲胺反应,形成含氮化合物,以增强碳碳之间的结合;S3:将胺化后的甘油渣溶液置于高温加热炉中,在惰性气体的保护下,进行一次碳化处理,得到一次碳化的甘油渣;S4:将一次碳化的甘油渣置于石墨模具中,再放置于等离子体烧结炉中,抽真空,然后加压并升温烧结,进行二次碳化处理,得到二次碳化的甘油渣;S5:将二次碳化的甘油渣放入电弧炉中,在惰性气体的保护下,升温烧结,进行三次碳化处理,得到基于甘油渣的硬碳基材料;经过多次碳化的甘油渣,使其碳碳之间进行结构重塑,由于存在氮元素、氧元素等等,大大增加了热解所得碳材料的比表面积,使得以其为原材料制得的碳基锂离子电池负极材料的电容性能得到了大幅度改善;S6:将硬碳基材料和导电剂混合后,进行研磨,再分散于无水乙醇中,加入粘合剂,搅拌均匀,干燥,压片,即得硬碳基材料负极材料。
在其中一个实施例中,在步骤S1中,所述醇溶剂是水和醇类物质的混合物,所述水与醇类物质的质量比为10-15:1。
在其中一个实施例中,所述醇类物质为丁二醇、异丁醇或正戊醇中的一种或者多种组合。
在其中一个实施例中,在步骤S1中,加热温度为110℃-150℃;所述底甘油渣与醇溶剂的质量比为1:1-3。
在其中一个实施例中,在步骤S2中,一级过滤器的精度为15μm-30μm;二级过滤器的精度为15μm-30μm;加热温度为80℃-120℃;二甲胺的加入量为甘油渣溶液的质量浓度的0.01-0.1倍。
在其中一个实施例中,在步骤S3中,惰性气体为氮气或氩气;一次碳化处理的温度为400℃-600℃,时间为3h-5h。
在其中一个实施例中,在步骤S4中,真空度为-0.1Pa-0.1Pa,加压至30MPa-50MPa;烧结分为三个阶段烧结:第一阶段的烧结温度为600℃-800℃,时间为1h-1.5h,压力为30MPa-35MPa;第二阶段的烧结温度为800℃-950℃,时间为0.8h-1.2h,压力为35MPa-40MPa;第三阶段的烧结温度为950℃-1200℃,时间为0.2h-0.5h,压力为40MPa-50MPa。
在其中一个实施例中,在步骤S5中,惰性气体为氮气;烧结的烧结温度为1300℃-1500℃,时间为0.1h-0.3h,压力为10MPa-20MPa。
在其中一个实施例中,在步骤S6中,所述硬碳基材料、导电剂、无水乙醇及粘合剂的质量比为1:0.3-0.5:1-3:0.01-0.05。
在其中一个实施例中,所述导电剂为乙炔黑、碳纳米管、纳米碳纤维或膨胀石墨中的一种;所述粘合剂为聚偏二氟乙烯、聚氯乙烯聚乙烯醇或羟甲基纤维素钠中的一种。
有益效果
本申请所使用的底甘油渣含有丰富的碳资源,来源广泛,价格便宜,可将其资源化利用,具有很高社会和环境效益,对实现绿色可持续发展具有重大意义。在制备过程中,通过加入二甲胺,使得酯基水解,以及二甲胺与羟基进行反应,形成含氮化合物,以增强碳碳之间的结合,有利于提高碳基锂离子电池负极材料的可逆容量和循环性能,使表面固体电解质界面膜得到较好的修饰,从而有利于锂的扩散。同时,制备得到的碳基锂离子电池负极材料具有非常高的比表面积,并具有多孔通道结构,可以提高嵌锂容量和充放电循环性能。
进一步地,本申请的硬碳基锂电池负极材料在首次充放电循环后的放电比容量最高可达910mAh/g,首次充放电效率最高为91.4%;经过100次循环后,容量保持率为80%以上,循环性能好。
本发明的实施方式
为了便于理解本发明,下面将对本发明进行更全面的描述。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
本申请提供一种硬碳基负极材料的制备方法,包括如下步骤:S1:将底甘油渣加入到高速搅拌器中,再加入醇溶剂,搅拌并加热至沸腾,直至溶解成液体,得到甘油渣溶液;该步骤通过醇溶剂及加热,将底甘油渣中不溶物质除去;S2:将甘油渣溶液经过一级过滤器,除去不溶杂质,再加入二甲胺,升温,再经过二级过滤器,除去不溶杂质,得到胺化后的甘油渣溶液;该步骤通过通入二甲胺,在二甲胺的作用下,使得甘油渣溶液中的酯基进行部分水解,再与二甲胺反应,形成含氮化合物,以增强碳碳之间的结合;S3:将胺化后的甘油渣溶液置于高温加热炉中,在惰性气体的保护下,进行一次碳化处理,得到一次碳化的甘油渣;S4:将一次碳化的甘油渣置于石墨模具中,再放置于等离子体烧结炉中,抽真空,然后加压并升温烧结,进行二次碳化处理,得到二次碳化的甘油渣;S5:将二次碳化的甘油渣放入电弧炉中,在惰性气体的保护下,升温烧结,进行三次碳化处理,得到基于甘油渣的硬碳基材料;经过多次碳化的甘油渣,使其碳碳之间进行结构重塑,由于存在氮元素、氧元素等等,大大增加了热解所得碳材料的比表面积,使得以其为原材料制得的碳基锂离子电池负极材料的电容性能得到了大幅度改善;S6:将硬碳基材料和导电剂混合后,进行研磨,再分散于无水乙醇中,加入粘合剂,搅拌均匀,干燥,压片,即得硬碳基材料负极材料。
底甘油渣含有丰富的碳资源,来源广泛,价格便宜,可将其资源化利用,具有很高社会和环境效益,对实现绿色可持续发展具有重大意义。在制备过程中,通过加入二甲胺,使得酯基水解,以及二甲胺与羟基进行反应,形成含氮化合物,以增强碳碳之间的结合,有利于提高碳基锂离子电池负极材料的可逆容量和循环性能,使表面固体电解质界面膜得到较好的修饰,从而有利于锂的扩散。同时,制备得到的碳基锂离子电池负极材料具有非常高的比表面积,并具有多孔通道结构,可以提高嵌锂容量和充放电循环性能。
进一步地,本申请的硬碳基锂电池负极材料在首次充放电循环后的放电比容量最高可达910mAh/g,首次充放电效率最高为91.4%;经过100次循环后,容量保持率为80%以上,循环性能好。
在一个或多个实施例中,在步骤S1中,醇溶剂是水和醇类物质的混合物,水与醇类物质的质量比为10-15:1。
在其中一个或多个实施例中,醇类物质为丁二醇、异丁醇或正戊醇中的一种或者多种组合。
在其中一个或多个实施例中,在步骤S1中,加热温度为110℃-150℃;底甘油渣与醇溶剂的质量比为1:1-3。
在其中一个或多个实施例中,在步骤S2中,一级过滤器的精度为15μm-30μm;二级过滤器的精度为15μm-30μm;加热温度为80℃-120℃;二甲胺的加入量为甘油渣溶液的质量浓度的0.01-0.1倍。
在其中一个或多个实施例中,在步骤S3中,惰性气体为氮气或氩气;一次碳化处理的温度为400℃-600℃,时间为3h-5h。
在其中一个或多个实施例中,在步骤S4中,真空度为-0.1Pa-0.1Pa,加压至30MPa-50MPa;烧结分为三个阶段烧结:第一阶段的烧结温度为600℃-800℃,时间为1h-1.5h,压力为30MPa-35MPa;第二阶段的烧结温度为800℃-950℃,时间为0.8h-1.2h,压力为35MPa-40MPa;第三阶段的烧结温度为950℃-1200℃,时间为0.2h-0.5h,压力为40MPa-50MPa。
在其中一个或多个实施例中,在步骤S5中,惰性气体为氮气;烧结的烧结温度为1300℃-1500℃,时间为0.1h-0.3h,压力为10MPa-20MPa。
在其中一个或多个实施例中,在步骤S6中,硬碳基材料、导电剂、无水乙醇及粘合剂的质量比为1:0.3-0.5:1-3:0.01-0.05。
在其中一个或多个实施例中,导电剂为乙炔黑、碳纳米管、纳米碳纤维或膨胀石墨中的一种;粘合剂为聚偏二氟乙烯、聚氯乙烯聚乙烯醇或羟甲基纤维素钠中的一种。
以下为实施例说明。
实施例1:本实施例的硬碳基负极材料的制备方法,包括如下步骤:S1:将底甘油渣加入到高速搅拌器中,再加入醇溶剂,搅拌并加热至120℃,直至溶解成液体,得到甘油渣溶液;S2:将甘油渣溶液经过15μm的一级过滤器,除去不溶杂质,再加入二甲胺,升温至100℃,再经过20μm的二级过滤器,除去不溶杂质,得到胺化后的甘油渣溶液;S3:将胺化后的甘油渣溶液置于高温加热炉中,在氮气的保护下,进行一次碳化处理,一次碳化处理的温度为400℃-600℃,时间为4h,得到一次碳化的甘油渣;S4:将一次碳化的甘油渣置于石墨模具中,再放置于等离子体烧结炉中,抽真空至0Pa,然后加压30 MPa并升温烧结,第一阶段的烧结温度为600℃-800℃,时间为1h,压力为35MPa;第二阶段的烧结温度为800℃-950℃,时间为0.8h,压力为40MPa;第三阶段的烧结温度为950℃-1200℃,时间为0.2h,压力为50Mpa;进行二次碳化处理,得到二次碳化的甘油渣;S5:将二次碳化的甘油渣放入电弧炉中,在氮气的保护下,升温烧结,烧结的烧结温度为1300℃-1500℃,时间为0.2h,压力为15MPa,进行三次碳化处理,得到基于甘油渣的硬碳基材料;S6:将硬碳基材料和导电剂混合后,进行研磨,再分散于无水乙醇中,加入粘合剂,搅拌均匀,干燥,压片,即得硬碳基材料负极材料。
其中,醇溶剂是质量比为12:1的水与丁二醇的混合物;底甘油渣与醇溶剂的质量比为1:2;二甲胺的加入量为甘油渣溶液的质量浓度的0.05倍;硬碳基材料、导电剂、无水乙醇及粘合剂的质量比为1:0.3:2:0.03;导电剂为乙炔黑;粘合剂为聚偏二氟乙烯。
经测试,所得的硬碳基材料负极材料用作锂离子电池负极材料,在首次充放电循环后的放电比容量880mAh/g,首次充放电效率为81.3%;经过100次循环后,容量保持率为98.3%。
实施例2:本实施例的硬碳基负极材料的制备方法,包括如下步骤:S1:将底甘油渣加入到高速搅拌器中,再加入醇溶剂,搅拌并加热至120℃,直至溶解成液体,得到甘油渣溶液;S2:将甘油渣溶液经过15μm的一级过滤器,除去不溶杂质,再加入二甲胺,升温至120℃,再经过20μm的二级过滤器,除去不溶杂质,得到胺化后的甘油渣溶液;S3:将胺化后的甘油渣溶液置于高温加热炉中,在氮气的保护下,进行一次碳化处理,一次碳化处理的温度为400℃-600℃,时间为3h,得到一次碳化的甘油渣;S4:将一次碳化的甘油渣置于石墨模具中,再放置于等离子体烧结炉中,抽真空至-0.1Pa,然后加压30 MPa并升温烧结,第一阶段的烧结温度为600℃-800℃,时间为1h,压力为30MPa;第二阶段的烧结温度为800℃-950℃,时间为0.8h,压力为35MPa;第三阶段的烧结温度为950℃-1200℃,时间为0.2h,压力为40Mpa;进行二次碳化处理,得到二次碳化的甘油渣;S5:将二次碳化的甘油渣放入电弧炉中,在氮气的保护下,升温烧结,烧结的烧结温度为1300℃-1500℃,时间为0.2h,压力为20MPa,进行三次碳化处理,得到基于甘油渣的硬碳基材料;S6:将硬碳基材料和导电剂混合后,进行研磨,再分散于无水乙醇中,加入粘合剂,搅拌均匀,干燥,压片,即得硬碳基材料负极材料。
其中,醇溶剂是质量比为12:1的水与丁二醇的混合物;底甘油渣与醇溶剂的质量比为1:2;二甲胺的加入量为甘油渣溶液的质量浓度的0.05倍;硬碳基材料、导电剂、无水乙醇及粘合剂的质量比为1:0.3:2:0.03;导电剂为乙炔黑;粘合剂为聚偏二氟乙烯。
经测试,所得的硬碳基材料负极材料用作锂离子电池负极材料,在首次充放电循环后的放电比容量820mAh/g,首次充放电效率为80.6%;经过100次循环后,容量保持率为95.5%。
实施例3:本实施例的硬碳基负极材料的制备方法,包括如下步骤:S1:将底甘油渣加入到高速搅拌器中,再加入醇溶剂,搅拌并加热至120℃,直至溶解成液体,得到甘油渣溶液;S2:将甘油渣溶液经过15μm的一级过滤器,除去不溶杂质,再加入二甲胺,升温至120℃,再经过20μm的二级过滤器,除去不溶杂质,得到胺化后的甘油渣溶液;S3:将胺化后的甘油渣溶液置于高温加热炉中,在氮气的保护下,进行一次碳化处理,一次碳化处理的温度为400℃-600℃,时间为3h,得到一次碳化的甘油渣;S4:将一次碳化的甘油渣置于石墨模具中,再放置于等离子体烧结炉中,抽真空至-0.1Pa,然后加压30 MPa并升温烧结,第一阶段的烧结温度为600℃-800℃,时间为1h,压力为30MPa;第二阶段的烧结温度为800℃-950℃,时间为0.8h,压力为35MPa;第三阶段的烧结温度为950℃-1200℃,时间为0.2h,压力为40Mpa;进行二次碳化处理,得到二次碳化的甘油渣;S5:将二次碳化的甘油渣放入电弧炉中,在氮气的保护下,升温烧结,烧结的烧结温度为1300℃-1500℃,时间为0.2h,压力为20MPa,进行三次碳化处理,得到基于甘油渣的硬碳基材料;S6:将硬碳基材料和导电剂混合后,进行研磨,再分散于无水乙醇中,加入粘合剂,搅拌均匀,干燥,压片,即得硬碳基材料负极材料。
其中,醇溶剂是质量比为15:1的水与丁二醇的混合物;底甘油渣与醇溶剂的质量比为1:3;二甲胺的加入量为甘油渣溶液的质量浓度的0.1倍;硬碳基材料、导电剂、无水乙醇及粘合剂的质量比为1:0.3:2:0.03;导电剂为乙炔黑;粘合剂为聚偏二氟乙烯。
经测试,所得的硬碳基材料负极材料用作锂离子电池负极材料,在首次充放电循环后的放电比容量910mAh/g,首次充放电效率为91.4%;经过100次循环后,容量保持率为97.5%。
对比例1:本对比例的硬碳基负极材料的制备方法,包括如下步骤:S1:将底甘油渣加入到高速搅拌器中,再加入醇溶剂,搅拌并加热至120℃,直至溶解成液体,得到甘油渣溶液;S2:将甘油渣溶液经过15μm的一级过滤器,除去不溶杂质,升温至120℃,再经过20μm的二级过滤器,除去不溶杂质,得到胺化后的甘油渣溶液;S3:将胺化后的甘油渣溶液置于高温加热炉中,在氮气的保护下,进行一次碳化处理,一次碳化处理的温度为400℃-600℃,时间为3h,得到一次碳化的甘油渣;S4:将一次碳化的甘油渣置于石墨模具中,再放置于等离子体烧结炉中,抽真空至-0.1Pa,然后加压30 MPa并升温烧结,第一阶段的烧结温度为600℃-800℃,时间为1h,压力为30MPa;第二阶段的烧结温度为800℃-950℃,时间为0.8h,压力为35MPa;第三阶段的烧结温度为950℃-1200℃,时间为0.2h,压力为40Mpa;进行二次碳化处理,得到二次碳化的甘油渣;S5:将二次碳化的甘油渣放入电弧炉中,在氮气的保护下,升温烧结,烧结的烧结温度为1300℃-1500℃,时间为0.2h,压力为20MPa,进行三次碳化处理,得到基于甘油渣的硬碳基材料;S6:将硬碳基材料和导电剂混合后,进行研磨,再分散于无水乙醇中,加入粘合剂,搅拌均匀,干燥,压片,即得硬碳基材料负极材料。
其中,醇溶剂是质量比为12:1的水与丁二醇的混合物;底甘油渣与醇溶剂的质量比为1:2;硬碳基材料、导电剂、无水乙醇及粘合剂的质量比为1:0.3:2:0.03;导电剂为乙炔黑;粘合剂为聚偏二氟乙烯。
经测试,所得的硬碳基材料负极材料用作锂离子电池负极材料,在首次充放电循环后的放电比容量610mAh/g,首次充放电效率为58.9%;经过100次循环后,容量保持率为70.5%。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的一种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种硬碳基负极材料的制备方法,包括如下步骤:S1:将底甘油渣加入到高速搅拌器中,再加入醇溶剂,搅拌并加热至沸腾,直至溶解成液体,得到甘油渣溶液;S2:将甘油渣溶液经过一级过滤器,除去不溶杂质,再加入二甲胺,升温,再经过二级过滤器,除去不溶杂质,得到胺化后的甘油渣溶液;S3:将胺化后的甘油渣溶液置于高温加热炉中,在惰性气体的保护下,进行一次碳化处理,得到一次碳化的甘油渣;S4:将一次碳化的甘油渣置于石墨模具中,再放置于等离子体烧结炉中,抽真空,然后加压并升温烧结,进行二次碳化处理,得到二次碳化的甘油渣;S5:将二次碳化的甘油渣放入电弧炉中,在惰性气体的保护下,升温烧结,进行三次碳化处理,得到基于甘油渣的硬碳基材料;S6:将硬碳基材料和导电剂混合后,进行研磨,再分散于无水乙醇中,加入粘合剂,搅拌均匀,干燥,压片,即得硬碳基材料负极材料。
  2. 根据权利要求1所述的方法,在步骤S1中,所述醇溶剂是水和醇类物质的混合物,所述水与醇类物质的质量比为10-15:1。
  3. 根据权利要求2所述的方法,所述醇类物质为丁二醇、异丁醇或正戊醇中的一种或者多种组合。
  4. 根据权利要求1所述的方法,在步骤S1中,加热温度为110℃-150℃;所述底甘油渣与醇溶剂的质量比为1:1-3。
  5. 根据权利要求1所述的方法,在步骤S2中,一级过滤器的精度为15μm-30μm;二级过滤器的精度为15μm-30μm;加热温度为80℃-120℃;二甲胺的加入量是甘油渣溶液的质量浓度的0.01-0.1倍。
  6. 根据权利要求1所述的方法,在步骤S3中,惰性气体为氮气或氩气;一次碳化处理的温度为400℃-600℃,时间为3h-5h。
  7. 根据权利要求1所述的方法,在步骤S4中,真空度为-0.1Pa-0.1Pa,加压至30MPa-50MPa;烧结分为三个阶段烧结:第一阶段的烧结温度为600℃-800℃,时间为1h-1.5h,压力为30MPa-35MPa;第二阶段的烧结温度为800℃-950℃,时间为0.8h-1.2h,压力为35MPa-40MPa;第三阶段的烧结温度为950℃-1200℃,时间为0.2h-0.5h,压力为40MPa-50MPa。
  8. 根据权利要求1所述的方法,在步骤S5中,惰性气体为氮气;烧结的烧结温度为1300℃-1500℃,时间为0.1h-0.3h,压力为10MPa-20MPa。
  9. 根据权利要求1所述的方法,在步骤S6中,硬碳基材料、导电剂、无水乙醇及粘合剂的质量比为1:0.3-0.5:1-3:0.01-0.05。
  10. 根据权利要求9所述的方法,所述导电剂为乙炔黑、碳纳米管、纳米碳纤维或膨胀石墨中的一种;所述粘合剂为聚偏二氟乙烯、聚氯乙烯聚乙烯醇或羟甲基纤维素钠中的一种。
PCT/CN2021/080406 2020-12-11 2021-03-12 一种硬碳基负极材料的制备方法 WO2022121141A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011446743.3A CN112551505B (zh) 2020-12-11 2020-12-11 一种硬碳基负极材料的制备方法
CN202011446743.3 2020-12-11

Publications (1)

Publication Number Publication Date
WO2022121141A1 true WO2022121141A1 (zh) 2022-06-16

Family

ID=75061455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080406 WO2022121141A1 (zh) 2020-12-11 2021-03-12 一种硬碳基负极材料的制备方法

Country Status (2)

Country Link
CN (1) CN112551505B (zh)
WO (1) WO2022121141A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115259132A (zh) * 2022-07-29 2022-11-01 华南理工大学 一种超高首效硬炭负极材料的制备方法及应用
CN115986099A (zh) * 2022-12-15 2023-04-18 天津大学 一种用于无枝晶锌金属电池负极的三维碳骨架锌复合材料及制备方法
CN116462176A (zh) * 2023-03-25 2023-07-21 温州大学碳中和技术创新研究院 一种钠离子电池硬碳负极材料的超快速制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103443972A (zh) * 2011-01-17 2013-12-11 昭荣化学工业株式会社 锂离子二次电池用正极材料及其制造方法
CN106085653A (zh) * 2016-07-07 2016-11-09 鲍杰汉 底甘油渣回收制备油污清洗剂的方法
CN106486673A (zh) * 2015-08-25 2017-03-08 神华集团有限责任公司 用于锂离子电池负极的碳材料及其制备方法和锂离子电池负极及锂离子电池
CN106986322A (zh) * 2017-04-27 2017-07-28 中国烟草总公司郑州烟草研究院 一种含氮碳材料的制备方法及应用
CN107140612A (zh) * 2017-06-26 2017-09-08 北京石油化工学院 一种制备磷烯‑氮掺杂碳复合材料的方法
US20170338057A1 (en) * 2016-05-20 2017-11-23 Sogang University Research & Business Development Foundation N-doped three dimensional carbon nanostructure, method of preparing the same, and supercapacitor electrode including the same
CN108190859A (zh) * 2017-12-18 2018-06-22 复旦大学 一种金刚石型碳量子点和制备方法及其应用
CN109867282A (zh) * 2018-12-28 2019-06-11 贵州大学 制备氮掺杂多孔碳材料的方法及其应用
CN109911878A (zh) * 2017-12-13 2019-06-21 宁波杉杉新材料科技有限公司 高容量沥青/环氧树脂基改性硬碳负极材料及其制备方法
CN109921019A (zh) * 2019-02-01 2019-06-21 无锡凯帕德瑞科技有限公司 负极片的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103443972A (zh) * 2011-01-17 2013-12-11 昭荣化学工业株式会社 锂离子二次电池用正极材料及其制造方法
CN106486673A (zh) * 2015-08-25 2017-03-08 神华集团有限责任公司 用于锂离子电池负极的碳材料及其制备方法和锂离子电池负极及锂离子电池
US20170338057A1 (en) * 2016-05-20 2017-11-23 Sogang University Research & Business Development Foundation N-doped three dimensional carbon nanostructure, method of preparing the same, and supercapacitor electrode including the same
CN106085653A (zh) * 2016-07-07 2016-11-09 鲍杰汉 底甘油渣回收制备油污清洗剂的方法
CN106986322A (zh) * 2017-04-27 2017-07-28 中国烟草总公司郑州烟草研究院 一种含氮碳材料的制备方法及应用
CN107140612A (zh) * 2017-06-26 2017-09-08 北京石油化工学院 一种制备磷烯‑氮掺杂碳复合材料的方法
CN109911878A (zh) * 2017-12-13 2019-06-21 宁波杉杉新材料科技有限公司 高容量沥青/环氧树脂基改性硬碳负极材料及其制备方法
CN108190859A (zh) * 2017-12-18 2018-06-22 复旦大学 一种金刚石型碳量子点和制备方法及其应用
CN109867282A (zh) * 2018-12-28 2019-06-11 贵州大学 制备氮掺杂多孔碳材料的方法及其应用
CN109921019A (zh) * 2019-02-01 2019-06-21 无锡凯帕德瑞科技有限公司 负极片的制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115259132A (zh) * 2022-07-29 2022-11-01 华南理工大学 一种超高首效硬炭负极材料的制备方法及应用
CN115259132B (zh) * 2022-07-29 2023-08-29 广东容钠新能源科技有限公司 一种超高首效硬炭负极材料的制备方法及应用
CN115986099A (zh) * 2022-12-15 2023-04-18 天津大学 一种用于无枝晶锌金属电池负极的三维碳骨架锌复合材料及制备方法
CN115986099B (zh) * 2022-12-15 2024-05-14 天津大学 一种用于无枝晶锌金属电池负极的三维碳骨架锌复合材料及制备方法
CN116462176A (zh) * 2023-03-25 2023-07-21 温州大学碳中和技术创新研究院 一种钠离子电池硬碳负极材料的超快速制备方法

Also Published As

Publication number Publication date
CN112551505B (zh) 2022-04-05
CN112551505A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
WO2022121141A1 (zh) 一种硬碳基负极材料的制备方法
CN109873152B (zh) 一种锂离子电池用石墨烯-硅基复合负极材料及其制备方法
CN110649256B (zh) 单颗粒、二次颗粒混合的高能量密度石墨负极材料及制法
CN104638240A (zh) 一种锂离子电池硅碳复合负极材料的制备方法及其产品
CN109148883A (zh) 基于沥青的钠离子电池负极材料及其制备方法和应用
CN105591090B (zh) 一种可用于锂离子电池负极的氧化锌/氮掺杂碳复合材料的制备方法
WO2017107807A1 (zh) 一种锂离子电池负极材料的制备方法及应用
CN113948681B (zh) 一种生物质基硬碳化合物复合材料及其制备方法和用途
CN105810947A (zh) 一种铝离子电池正极材料、电极及铝离子电池
CN103545491A (zh) 一种锂离子电池负极材料用石墨烯/二氧化钛复合材料的制备方法
CN113880068A (zh) 一种硬碳复合材料及其制备方法和应用
CN105405681A (zh) 一种石墨烯-活性炭复合电极材料的制备方法
CN111320161A (zh) 一种沥青基碳纳米片的制备方法及其应用
WO2022127046A1 (zh) 一种改性石墨电极材料的制备方法
CN107154498B (zh) 植物材料制备微孔碳结构电极材料的制备方法及其应用
CN110589823A (zh) 一种柚子皮多孔碳材料及其制备方法与应用
CN101746744A (zh) 一种锂离子电池炭负极材料的制备方法
CN116724411A (zh) 一种利用纤维类生物质制备硬碳负极材料的方法及其产品和应用
CN109319774B (zh) 一种用中低温干馏煤焦油制备负极材料的方法
CN103647055A (zh) 环氧树脂改性石墨的负极材料及其制备方法
CN109256547A (zh) 一种多孔石墨烯-磷酸铁锂正极材料的制备方法
CN115215335A (zh) 改性石墨及其制备方法和应用
CN110902671B (zh) 一种低层数石墨烯的制备方法
CN107887612A (zh) 一种燃料电池石墨双极板的加工方法
CN103647083B (zh) 复合石墨炭负极材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21901858

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21901858

Country of ref document: EP

Kind code of ref document: A1