WO2022116870A1 - 一种两步酸浸梯次分离回收废铈基稀土抛光粉中稀土的方法 - Google Patents

一种两步酸浸梯次分离回收废铈基稀土抛光粉中稀土的方法 Download PDF

Info

Publication number
WO2022116870A1
WO2022116870A1 PCT/CN2021/132407 CN2021132407W WO2022116870A1 WO 2022116870 A1 WO2022116870 A1 WO 2022116870A1 CN 2021132407 W CN2021132407 W CN 2021132407W WO 2022116870 A1 WO2022116870 A1 WO 2022116870A1
Authority
WO
WIPO (PCT)
Prior art keywords
leaching
rare earth
acid solution
waste
polishing powder
Prior art date
Application number
PCT/CN2021/132407
Other languages
English (en)
French (fr)
Inventor
章启军
吴玉锋
宋岷洧
Original Assignee
北京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京工业大学 filed Critical 北京工业大学
Publication of WO2022116870A1 publication Critical patent/WO2022116870A1/zh
Priority to US18/132,979 priority Critical patent/US20230265541A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/229Lanthanum oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • C01F17/235Cerium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/065Nitric acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/10Hydrochloric acid, other halogenated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/005Separation by a physical processing technique only, e.g. by mechanical breaking
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to a method for recycling rare earths in waste cerium-based polishing powder, in particular to a method for separating and recycling rare earths in waste cerium-based rare earth polishing powder by two-step acid leaching.
  • Cerium-based rare earth polishing powder is known as the "king of polishing powder" due to its uniform particle size, moderate hardness, high polishing accuracy, high erosion amount, low scratch rate, long service life, and clean and environmentally friendly use process. It has become the most widely used polishing powder in the polishing field. The large-scale application of cerium-based rare earth polishing powder has led to a sharp increase in the production of waste cerium-based rare earth polishing powder in my country.
  • waste cerium-based rare earth polishing powder mainly contains the rare earth elements La and Ce, and its rare earth oxide content is 15-60%; in addition, it also contains the polished glass particles, the grinding skin (organic polymer) on the polishing machine and the precipitant Aluminum chloride and other impurities.
  • the traditional disposal method of waste cerium-based rare earth polishing powder is to stack or landfill, which not only occupies land, but also causes a great waste of rare earth strategic resources in my country. Therefore, the recycling of waste cerium-based rare earth polishing powder can not only bring certain economic benefits, but also save land resources and the mining of primary rare earth mineral resources, which has important economic and social environmental benefits.
  • Chinese patent CN 111471865 A discloses a recycling method of rare earth polishing powder waste.
  • the rare earth elements in the waste cerium-based rare earth polishing powder are firstly leached by multi-stage countercurrent leaching with strong acid, and then the rare earth leaching solution is extracted and stripped for many times to obtain a high-purity rare earth chloride solution, and then the obtained high-purity rare earth chloride solution is mixed with the surface.
  • the activator and ammonium bicarbonate are mixed to obtain rare earth carbonate, and finally the rare earth carbonate and fluoride are mixed and calcined to obtain high-performance rare earth polishing powder.
  • this method only uses strong acid leaching.
  • Chinese patent CN 103103361 A discloses a method for preparing rare earth oxides from rare earth polishing powder waste residue.
  • the waste cerium-based rare earth polishing powder is pretreated by alkali roasting, and then the rare earth oxide product is obtained by washing with water, acid leaching, washing, oxalic acid precipitation and high temperature calcination.
  • the advantage of this method is that high-temperature alkali roasting can be used to decompose and destroy the acid-insoluble structures such as LaF 3 , LaOF, LaF 2 or CeF 3 ⁇ La 2 O 3 in the waste cerium-based polishing powder, which greatly improves the leaching efficiency of rare earths in the subsequent acid leaching. , so that the recovery rate of rare earth is more than 90%.
  • this method uses a large amount of alkali, and the cost is high, and the recovery rate of rare earth needs to be further improved.
  • Chinese patent CN 03119524.5 and Japanese patent JP 11319F55 use water-soluble fluoride or hydrofluoric acid to pretreat waste cerium-based rare earth polishing powder, so as to achieve the purpose of removing impurities and recovering its rare earth elements, but these methods are not only complicated in process, but also inconvenient. A large amount of fluorine-containing waste liquid is generated, which leads to difficulties in subsequent fluoride treatment and environmental pollution problems.
  • the object of the present invention is to provide a kind of technology that does not require hydrofluoric acid or water-soluble fluoride for the recycling of rare earths in the existing waste cerium-based rare earth polishing powder, and uses a combination of acid leaching and alkali roasting-secondary acid leaching.
  • the method of the invention is a method for recovering rare earth elements from waste cerium-based rare earth polishing powder.
  • the method of the invention has the advantages of simple process, high rare earth recovery rate, wide process universality, and low environmental pollution.
  • the method for realizing a two-step acid leaching step separation and recovery of rare earths in waste cerium-based rare earth polishing powder described in the present invention comprises the following steps:
  • Ball milling pretreatment the waste cerium-based rare earth polishing powder is ball-milled to a particle size of less than 160 mesh to obtain ball-milling waste;
  • step (2) acid leaching: put the ball mill waste obtained in step (1) into a container, add acid solution, carry out an acid leaching reaction under heating and stirring, carry out solid-liquid separation after the acid leaching reaction finishes, filter to obtain leaching Slag and filtrate 1; the molar concentration of acid solution is 5 ⁇ 8mol/L, the solid-to-liquid ratio of ball milling waste and acid solution is 1:4 ⁇ 1:8 kilogram/liter, leaching temperature is 70 ⁇ 80 °C, and leaching time is 1 ⁇ 2 hours;
  • step (3) alkali roasting: mixing the obtained leaching residue and alkali in step (2) and roasting to obtain roasting material; the mass ratio of leaching residue and alkali is 1:1 ⁇ 1:3, and the roasting temperature is 450 ⁇ 650 °C , the roasting time is 0.5 to 1.5 hours;
  • step (3) the obtained roasting material of step (3) is carried out water immersion, and the solid-to-liquid ratio of roasting material and water is 1:4 ⁇ 1:9 kilogram/liter in the water immersion process, and the water immersion temperature is 80 ⁇ 1.
  • the water immersion time is 2 to 3 hours
  • the stirring rate is 300 to 500 rpm
  • the water immersion reaction is completed, solid-liquid separation is performed, and the water leaching slag is obtained by filtration;
  • secondary acid leaching carry out secondary acid leaching reaction with the obtained water leaching residue of step (4) and acid solution, carry out solid-liquid separation after secondary acid leaching reaction finishes, and filter to obtain CeO product and filtrate 2 ;
  • the molar concentration of the acid solution is 5 ⁇ 8mol/L
  • the solid-to-liquid ratio of the water leaching residue and the acid solution is 1:2.5 ⁇ 1:6 kg/L
  • the leaching temperature is 70 ⁇ 80 °C
  • the leaching time is 2 ⁇ 3 hours;
  • oxalic acid precipitation rare earth the filtrate 1 obtained in step (2) and the filtrate 2 obtained in step (5) are combined to obtain a combined solution, and the oxalic acid solution with a mass concentration of 100 g/liter is added to the combined solution to carry out rare earth precipitation , the volume ratio of the combined solution to the oxalic acid solution is 5:1 to 3:1, stir and add ammonia water with a mass percentage concentration of 25% until the pH of the solution is 1.8 to 2.0, and precipitate at 80 to 90 ° C for 2 to 3 hours , filtration to obtain rare earth oxalate;
  • step (6) the rare earth oxalate obtained in step (6) is calcined in a muffle furnace at 950° C. for 0.5 to 1 hour to obtain a rare earth oxide product.
  • the acid solution in the described step (2) is one of a hydrochloric acid solution or a nitric acid solution.
  • the stirring speed is 300-500 rpm.
  • the alkali used in the alkali roasting process in the step (3) is: one of Na 2 O 2 or K 2 O 2 .
  • the acid solution in the step (5) is one of a hydrochloric acid solution or a nitric acid solution.
  • the stirring speed is 300-500 rpm.
  • the CeO product obtained is washed 4-8 times with a hydrochloric acid solution with a concentration of 2-5 % by mass to remove impurities.
  • the filtrate 1 obtained in step (2) is concentrated by evaporation into the solution HCl or HNO After the molar concentration is 5 to 8 mol/L, it is incorporated into the secondary acid leaching reaction process of step (5) and partially or completely replaces hydrochloric acid solution or nitric acid solution.
  • the process of the invention firstly adopts one-step acid leaching to treat waste cerium-based rare earth polishing powder, which can firstly leaching La 2 O 3 components efficiently; and then adopts alkali roasting to treat leaching residue , so that the LaOF 2 , LaF 3 , LaF 2 or CeF 3 ⁇ La 2 O 3 components in the leaching residue that are insoluble in acid undergo mineral phase structure transformation, and the Al and Si components are transformed into water-soluble substances, Then through water leaching and secondary acid leaching, CeO 2 products can be selectively separated and recovered; finally, rare earth elements in the rare earth filtrate obtained in the first acid leaching and secondary acid leaching steps can be separated and recovered by oxalic acid precipitation, and the polishing of waste cerium-based rare earths is realized.
  • the total recovery rate of rare earth elements in the waste cerium-based rare earth polishing powder of the invention is as high as more than 97%, the rare earth recovery efficiency is high, the process universality is wide, and the environmental pollution is small.
  • Fig. 1 shows a flow chart of a method for separating and recovering rare earths in waste cerium-based rare earth polishing powder by two-step acid leaching.
  • Ball milling pretreatment The waste cerium-based rare earth polishing powder with a total mass fraction of rare earth oxides of 15% was ball-milled to 160 mesh to obtain ball milling waste; X-ray diffractometer (XRD) was used to analyze the waste cerium-based rare earth phosphors. According to the phase structure analysis, the rare earth components in the waste cerium-based rare earth polishing powder are mainly LaOF, La 2 O 3 and CeO 2 ;
  • step (3) alkali roasting: the leaching residue obtained in step (2) is mixed with Na 2 O 2 and roasting, and the alkali roasting reaction conditions are that the mass ratio of leaching residue and Na 2 O 2 is 1:1, and the roasting temperature is 650° C. , the roasting time is 1.5 hours to obtain the roasting material;
  • step (3) the roasting material of step (3) gained is carried out water immersion, and the solid-liquid ratio of roasting material and water is 1:9 kilogram/liter in the water immersion process, and the water immersion temperature is 80 °C, and the water immersion time is For 2 hours, the stirring speed was 400 rev/min, and the solid-liquid separation was carried out after the water immersion reaction finished, and the water leaching slag was obtained by filtration;
  • secondary acid leaching carry out secondary acid leaching reaction with the water leaching residue of step (4) gained and nitric acid solution, the molar concentration of nitric acid solution in the secondary acid leaching reaction process is 8mol/L, and the water leaching residue and nitric acid solution
  • the solid-liquid ratio of the solution is 1:6, the leaching temperature is 70°C, the stirring rate is 300 rpm, and the leaching time is 3 hours.
  • % hydrochloric acid solution was washed 8 times to obtain CeO 2 product and filtrate 2;
  • oxalic acid precipitation rare earth the filtrate 1 obtained in step (2) and the filtrate 2 obtained in step (5) are combined to obtain a combined solution, and the oxalic acid solution with a mass concentration of 100 g/liter is added to the combined solution to carry out rare earth precipitation, and combined
  • the volume ratio of the liquid to the oxalic acid solution is 5:1, stir and add ammonia water with a concentration of 25% by mass until the pH of the solution is 1.8, precipitate at 90 ° C for 3 hours, and filter to obtain rare earth oxalate;
  • step (6) The rare earth oxalate obtained in step (6) was calcined in a muffle furnace at 950°C for 0.5 hours to obtain a mixed rare earth oxide product.
  • the total recovery rate of rare earth La and Ce in waste cerium-based rare earth polishing powder was 97.5%.
  • (1) Ball milling pretreatment The waste cerium-based rare earth polishing powder with a total mass fraction of rare earth oxides of 30% was ball-milled to 200 mesh to obtain ball milling waste; X-ray diffractometer (XRD) was used to analyze the waste cerium-based rare earth phosphors. According to the phase structure analysis, the rare earth components in the waste cerium-based rare earth polishing powder are mainly LaOF, LaF 3 , LaF 2 , La 2 O 3 and CeO 2 ;
  • step (3) alkali roasting: the leaching residue obtained in step (2) is mixed with K 2 O 2 and roasting, and the reaction conditions of alkali roasting are that the mass ratio of leaching residue and K 2 O 2 is 1:1.8, and the roasting temperature is 650° C. , the roasting time is 1 hour to obtain the roasting material;
  • step (3) the roasting material of step (3) gained is carried out water immersion, and the solid-liquid ratio of roasting material and water is 1:4 kilogram/liter in the water immersion process, and the water immersion temperature is 90 °C, and the water immersion time is For 3 hours, the stirring speed was 500 rev/min, and after the water immersion reaction finished, solid-liquid separation was performed, and the water leaching slag was obtained by filtration;
  • step (4) secondary acid leaching: the water leaching residue and hydrochloric acid solution obtained in step (4) are carried out secondary acid leaching reaction, and the molar concentration of hydrochloric acid solution in the secondary acid leaching reaction process is 7mol/L, and the water leaching residue and hydrochloric acid are The solid-liquid ratio of the solution is 1:4.5, the leaching temperature is 75°C, the stirring rate is 400 rpm, and the leaching time is 2.5 hours. % hydrochloric acid solution was washed 4 times to obtain CeO 2 product and filtrate 2;
  • oxalic acid precipitation rare earth the filtrate 1 obtained in step (2) and the filtrate 2 obtained in step (5) are combined to obtain a combined solution, and the oxalic acid solution with a mass concentration of 100 g/liter is added to the combined solution to carry out rare earth precipitation, and combined
  • the volume ratio of the liquid to the oxalic acid solution is 3:1, stir and add ammonia water with a concentration of 25% by mass until the pH of the solution is 2.0, precipitate at 90 ° C for 2.5 hours, and filter to obtain rare earth oxalate;
  • step (6) the rare earth oxalate obtained in step (6) is calcined in a muffle furnace at 950° C. for 1 hour to obtain a mixed rare earth oxide product.
  • the total recovery rate of rare earth La and Ce in waste cerium-based rare earth polishing powder was 98.6%.
  • Ball milling pretreatment The waste cerium-based rare earth polishing powder with a total mass fraction of rare earth oxides of 30% was ball-milled to 400 mesh to obtain ball milling waste; X-ray diffractometer (XRD) was used to analyze the waste cerium-based rare earth phosphors. The phase structure was analyzed, and its rare earth components were mainly LaOF, LaF 3 , LaF 2 , La 2 O 3 and CeO 2 ;
  • step (2) one acid leaching: put the ball milling waste of step (1) gained into the container, add hydrochloric acid solution, carry out one acid leaching reaction under heating and stirring, and the molar concentration of hydrochloric acid solution is 6mol/L in the one acid leaching reaction process , the solid-liquid ratio of the ball mill waste and the hydrochloric acid solution is 1:6.5 kg/liter, the leaching temperature is 80 ° C, the leaching time is 1.5 hours, and the stirring speed is 400 rev/min. Obtain leaching residue and filtrate 1;
  • step (3) alkali roasting: the leaching residue obtained in step (2) is mixed with Na 2 O 2 and roasting, and the reaction conditions of alkali roasting are that the mass ratio of leaching residue and Na 2 O 2 is 1:2.5, and the roasting temperature is 550° C. , the roasting time is 1 hour to obtain the roasting material;
  • step (3) the roasting material of step (3) gained is carried out water immersion, the solid-liquid ratio of roasting material and water is 1:8 kilogram/liter in the water immersion process, and the water immersion temperature is 90 °C, and the water immersion time is 2.5 hours, the stirring speed is 400 rev/min, solid-liquid separation is carried out after the water immersion reaction is finished, and the water leaching slag is obtained by filtration;
  • step (4) secondary acid leaching: the water leaching residue and hydrochloric acid solution obtained in step (4) are carried out secondary acid leaching reaction, and the molar concentration of hydrochloric acid solution in the secondary acid leaching reaction process is 7mol/L, and the water leaching residue and hydrochloric acid are The solid-liquid ratio of the solution is 1:5, the leaching temperature is 75°C, the stirring rate is 500 rpm, and the leaching time is 2.5 hours. % hydrochloric acid solution was washed 6 times to obtain CeO product and filtrate 2 ;
  • oxalic acid precipitation rare earth the filtrate 1 obtained in step (2) and the filtrate 2 obtained in step (5) are combined to obtain a combined solution, and the oxalic acid solution with a mass concentration of 100 g/liter is added to the combined solution to carry out rare earth precipitation, and combined
  • the volume ratio of the liquid to the oxalic acid solution is 4:1, stir and add ammonia water with a concentration of 25% by mass until the pH of the solution is 1.9, precipitate at 90 ° C for 3 hours, and filter to obtain rare earth oxalate;
  • step (6) the rare earth oxalate obtained in step (6) is calcined in a muffle furnace at 950° C. for 45 minutes to obtain a mixed rare earth oxide product.
  • the total recovery rate of rare earth La and Ce in waste cerium-based rare earth polishing powder was 98.2%.
  • (1) Ball milling pretreatment The waste cerium-based rare earth polishing powder with a total mass fraction of rare earth oxides of 40% was ball-milled to 400 mesh to obtain ball milling waste; X-ray diffractometer (XRD) was used to analyze the waste cerium-based rare earth phosphors. According to the phase structure analysis, the rare earth components in the waste cerium-based rare earth polishing powder are mainly LaOF, La 2 O 3 , CeF 3 ⁇ La 2 O 3 and CeO 2 ;
  • step (3) alkali roasting: the leaching residue obtained in step (2) is mixed with K 2 O 2 and roasting, and the reaction conditions of alkali roasting are that the mass ratio of leaching residue and K 2 O 2 is 1:5, and the roasting temperature is 650° C. , the roasting time is 0.5 hour to obtain roasting material;
  • step (3) the roasting material of step (3) gained is carried out water immersion, the solid-liquid ratio of roasting material and water is 1:6 kilogram/liter in the water immersion process, and the water immersion temperature is 85 °C, and the water immersion time is For 3 hours, the stirring speed was 500 rev/min, and after the water immersion reaction finished, solid-liquid separation was performed, and the water leaching slag was obtained by filtration;
  • secondary acid leaching carry out secondary acid leaching reaction with the water leaching residue of step (4) gained and nitric acid solution, the molar concentration of nitric acid solution in the secondary acid leaching reaction process is 6mol/L, and the water leaching residue and nitric acid solution
  • the solid-liquid ratio of the solution is 1:6, the leaching temperature is 80°C, the stirring rate is 400 rpm, and the leaching time is 2.5 hours.
  • % hydrochloric acid solution was washed 6 times to obtain CeO product and filtrate 2 ;
  • oxalic acid precipitation rare earth the filtrate 1 obtained in step (2) and the filtrate 2 obtained in step (5) are combined to obtain a combined solution, and the oxalic acid solution with a mass concentration of 100 g/liter is added to the combined solution to carry out rare earth precipitation, and combined
  • the volume ratio of the liquid to the oxalic acid solution is 5:1, stir and add ammonia water with a concentration of 25% by mass until the pH of the solution is 1.8, precipitate at 85 ° C for 3 hours, and filter to obtain rare earth oxalate;
  • step (6) the rare earth oxalate obtained in step (6) is calcined in a muffle furnace at 950° C. for 1 hour to obtain a mixed rare earth oxide product.
  • the total recovery rate of rare earth La and Ce in waste cerium-based rare earth polishing powder was 98.3%.
  • Ball milling pretreatment The waste cerium-based rare earth polishing powder with a total mass fraction of rare earth oxides of 45% was ball-milled to 200 mesh to obtain ball milling waste; X-ray diffractometer (XRD) was used to analyze the waste cerium-based rare earth phosphors. The phase structure of the waste cerium-based rare earth polishing powder was analyzed, and the rare earth components in the waste cerium-based rare earth polishing powder were mainly LaOF, La 2 O 3 , LaF 3 , CeF 3 ⁇ La 2 O 3 and CeO 2 ;
  • step (2) one acid leaching: put the ball milling waste of step (1) gained into the container, add hydrochloric acid solution, carry out one acid leaching reaction under heating and stirring, and the molar concentration of hydrochloric acid solution is 7mol/L in the one acid leaching reaction process , the solid-liquid ratio of the ball mill waste and the hydrochloric acid solution is 1:6 kg/liter, the leaching temperature is 80 ° C, the leaching time is 1.5 hours, and the stirring rate is 400 rev/min. Obtain leaching residue and filtrate 1;
  • step (3) alkali roasting: the leaching residue obtained in step (2) is mixed with Na 2 O 2 and roasting, and the reaction conditions of alkali roasting are that the mass ratio of leaching residue and Na 2 O 2 is 1:2.1, and the roasting temperature is 550° C. , the roasting time is 1.5 hours to obtain the roasting material;
  • step (3) the roasting material of step (3) gained is carried out water immersion, and the solid-liquid ratio of roasting material and water is 1:8 kilogram/liter in the water immersion process, and the water immersion temperature is 85 °C, and the water immersion time is For 2 hours, the stirring speed was 300 rev/min, and after the water immersion reaction finished, solid-liquid separation was carried out, and the water leaching residue was obtained by filtration;
  • step (4) secondary acid leaching: the water leaching residue and hydrochloric acid solution obtained in step (4) are carried out secondary acid leaching reaction, the molar concentration of hydrochloric acid solution in the secondary acid leaching reaction process is 5mol/L, and the water leaching residue and hydrochloric acid are The solid-liquid ratio of the solution is 1:5, the leaching temperature is 80°C, the stirring rate is 400 rpm, and the leaching time is 3 hours. % hydrochloric acid solution was washed 5 times to obtain CeO product and filtrate 2 ;
  • oxalic acid precipitation rare earth the filtrate 1 obtained in step (2) and the filtrate 2 obtained in step (5) are combined to obtain a combined solution, and the oxalic acid solution with a mass concentration of 100 g/liter is added to the combined solution to carry out rare earth precipitation, and combined
  • the volume ratio of the liquid to the oxalic acid solution is 5:1, stir and add ammonia water with a concentration of 25% by mass until the pH of the solution is 1.9, precipitate at 90 ° C for 2.5 hours, and filter to obtain rare earth oxalate;
  • step (6) the rare earth oxalate obtained in step (6) is calcined in a muffle furnace at 950° C. for 45 minutes to obtain a mixed rare earth oxide product.
  • the recovery rate of rare earth La and Ce in waste cerium-based rare earth polishing powder was 97.1%.
  • Ball milling pretreatment The waste cerium-based rare earth polishing powder with a total mass fraction of rare earth oxides of 60% was ball-milled to 200 mesh to obtain ball milling waste; X-ray diffractometer (XRD) was used to analyze the waste cerium-based rare earth phosphors.
  • the phase structure of the waste cerium-based rare earth polishing powder is mainly composed of LaOF and CeO 2 ;
  • step (2) one acid leaching: put the ball milling waste of step (1) gained into the container, add hydrochloric acid solution, carry out one acid leaching reaction under heating and stirring, and the molar concentration of hydrochloric acid solution is 6mol/L in the one acid leaching reaction process , the solid-liquid ratio of the ball mill waste and the hydrochloric acid solution is 1:8 kg/liter, the leaching temperature is 75 ° C, the leaching time is 1.5 hours, and the stirring rate is 450 rev/min. Obtain leaching residue and filtrate 1;
  • step (3) alkali roasting: the leaching residue obtained in step (2) is mixed with K 2 O 2 and roasting, and the reaction conditions of alkali roasting are that the mass ratio of leaching residue and K 2 O 2 is 1:1, and the roasting temperature is 450° C. , the roasting time is 0.5 hour to obtain roasting material;
  • step (3) the roasting material of step (3) gained is carried out water immersion, and the solid-liquid ratio of roasting material and water is 1:9 kilogram/liter in the water immersion process, and the water immersion temperature is 80 °C, and the water immersion time is For 2 hours, the stirring speed was 500 rev/min, and after the water immersion reaction finished, solid-liquid separation was performed, and the water leaching slag was obtained by filtration;
  • secondary acid leaching carry out secondary acid leaching reaction with the water leaching slag obtained in step (4) and nitric acid solution, the molar concentration of nitric acid solution in the secondary acid leaching reaction process is 6.5mol/L, and the water leaching slag and nitric acid solution are 6.5 mol/L.
  • the solid-liquid ratio of the nitric acid solution is 1:4, the leaching temperature is 75°C, the stirring rate is 400 rpm, and the leaching time is 2.5 hours.
  • 5% hydrochloric acid solution was washed 5 times to obtain CeO 2 product and filtrate 2;
  • oxalic acid precipitation rare earth the filtrate 1 obtained in step (2) and the filtrate 2 obtained in step (5) are combined to obtain a combined solution, and the oxalic acid solution with a mass concentration of 100 g/liter is added to the combined solution to carry out rare earth precipitation, and combined
  • the volume ratio of the liquid to the oxalic acid solution is 4:1, stir and add ammonia water with a concentration of 25% by mass until the pH value of the solution is 1.9, precipitate at 85 ° C for 2.5 hours, and filter to obtain rare earth oxalate;
  • step (6) the rare earth oxalate obtained in step (6) is calcined in a muffle furnace at 950° C. for 1 hour to obtain a mixed rare earth oxide product.
  • the recovery rate of rare earth La and Ce in waste cerium-based rare earth polishing powder was 97.4%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明涉及一种两步酸浸梯次分离回收废铈基稀土抛光粉中稀土的方法,其特征是:先采用一步酸浸处理废铈基稀土抛光粉,得到富含稀土La浸出液;浸出渣再经碱活化转化、水洗除杂、二次酸浸后,过滤回收得到高纯CeO 2产品;一次酸浸和二次酸浸所获的酸浸液最后经草酸沉淀、过滤和高温煅烧,得到混合稀土氧化物产品,实现了废铈基稀土抛光粉中稀土元素的梯次分离回收。本发明的稀土元素总回收率高达97%以上,稀土回收效率高,且工艺普适性广、环境污染小。

Description

一种两步酸浸梯次分离回收废铈基稀土抛光粉中稀土的方法 技术领域
本发明涉及废铈基抛光粉中稀土回收利用方法,特别是涉及一种两步酸浸梯次分离回收废铈基稀土抛光粉中稀土的方法。
背景技术
近年来,随着光学和电子信息技术的快速发展,特别是液晶显示、触屏等产业的兴起,对材料表面质量和加工精度的要求越来越高,从而促使了高性能的抛光粉需求量越来越大。而铈基稀土抛光粉,因具有粒度均匀、硬度适中、抛光精度高、抛蚀量高、划伤率低、使用寿命长、使用过程清洁环保等优点,被誉为“抛光粉之王”,已成为抛光领域中应用最为广泛的抛光粉。铈基稀土抛光粉的大量应用,导致了我国废铈基稀土抛光粉的产生量也逐年剧增。据数据统计,我国废铈基稀土抛光粉的年产生量超过10万吨。废铈基稀土抛光粉主要含有稀土元素La和Ce,其稀土氧化物含量为15~60%;另外,还含有被抛磨下来的玻璃颗粒、抛光机上的磨皮(有机聚合物)及沉淀剂氯化铝等杂质。废铈基稀土抛光粉传统处置方式是以堆放或填埋进行处置,不仅占用土地,同时也造成我国稀土战略资源的极大浪费。因此,开展废铈基稀土抛光粉的回收利用,不仅可以带来一定的经济利益,而且能节约土地资源和原生稀土矿产资源的开采,具有重要的经济和社会环境效益。
中国专利CN 111471865 A公开了一种稀土抛光粉废料的回收方法。该方法先采用强酸多级逆流浸出废铈基稀土抛光粉中稀土元素,再将稀土浸出液采用多次萃取、反萃获得高纯氯化稀土溶液,然后将获得的高纯氯化稀土溶液与表面活性剂、碳酸氢铵混合,制得碳酸稀土,最后将碳酸稀土与氟化物混合后焙烧,得到高性能稀土抛光粉。但该方法只采用强酸浸出,对废铈基抛光粉中CeO 2含量高或同时含有LaF 3、LaOF、LaF 2或CeF 3·La 2O 3等难溶于酸的结构时,会存在稀土回收效率低、工艺普适性差等缺点。
中国专利CN 103103361 A公开了一种从稀土抛光粉废渣中制取氧化稀土的方法。该方法先采用碱焙烧预处理废铈基稀土抛光粉,再经水洗、酸浸、洗涤、草酸沉淀和高温煅 烧得到稀土氧化物产品。该方法的优点是能采用高温碱焙烧分解破坏废铈基抛光粉中LaF 3、LaOF、LaF 2或CeF 3·La 2O 3等不溶于酸的结构,极大提高后续酸浸中稀土浸出效率,使稀土回收率达90%以上。但该方法用碱量大,成本高,稀土回收率有待进一步提高。
中国专利CN 03119524.5和日本专利JP 11319F55采用水溶性氟化物或氢氟酸对废铈基稀土抛光粉进行预处理,从而达到除杂和回收其稀土元素的目的,但这些方法不仅工艺复杂,而且会产生大量的含氟废液,从而导致后续氟化物处理困难及环境污染问题。
因此,发明一种工艺简单、工艺普适性高、稀土回收效率高、环境污染小的废铈基稀土抛光粉中稀土的回收利用方法,对我国稀土二次资源回收利用具有非常重要的意义。
发明内容
本发明的目的是针对现有废铈基稀土抛光粉中稀土的回收利用存在技术的不足,提供一种不需要氢氟酸或水溶性氟化物,用一次酸浸联合碱焙烧—二次酸浸的方法,从废铈基稀土抛光粉中回收稀土元素的方法,本发明的方法具有工艺简单、稀土回收率高、工艺普适性广、环境污染小等优势。
实现本发明所叙述的一种两步酸浸梯次分离回收废铈基稀土抛光粉中稀土的方法,包括如下步骤:
(1)球磨预处理:将废铈基稀土抛光粉球磨至粒度为160目以下,得到球磨废料;
(2)一次酸浸:将步骤(1)所得到的球磨废料放入容器中,加入酸溶液,在加热搅拌下进行一次酸浸反应,一次酸浸反应结束后进行固液分离,过滤得到浸出渣和滤液1;酸溶液的摩尔浓度为5~8mol/L,球磨废料与酸溶液的固液比为1:4~1:8公斤/升,浸出温度为70~80℃,浸出时间为1~2小时;
(3)碱焙烧:将步骤(2)所得到的浸出渣与碱混合并进行焙烧,得到焙烧料;浸出渣与碱的质量比为1:1~1:3,焙烧温度为450~650℃,焙烧时间为0.5~1.5小时;
(4)水浸:将步骤(3)所得到的焙烧料进行水浸,水浸过程中焙烧料与水的固液比为1:4~1:9公斤/升,水浸温度为80~90℃,水浸时间为2~3小时,搅拌速率为300~500转/分钟,水浸反应结束后进行固液分离,过滤得到水浸渣;
(5)二次酸浸:将步骤(4)所得到的水浸渣与酸溶液进行二次酸浸反应,二次酸浸 反应结束后进行固液分离,过滤得到CeO 2产品和滤液2;酸溶液的摩尔浓度为5~8mol/L,水浸渣与酸溶液的固液比为1:2.5~1:6公斤/升,浸出温度为70~80℃,浸出时间为2~3小时;
(6)草酸沉淀稀土:将步骤(2)所得到的滤液1与步骤(5)所得到的滤液2合并得到合并液,向合并液中加入质量浓度为100克/升的草酸溶液进行稀土沉淀,合并液与草酸溶液的体积比为5:1~3:1,搅拌并加入质量百分比浓度为25%的氨水,直到溶液pH值为1.8~2.0,在80~90℃下沉淀2~3小时,过滤获得稀土草酸盐;
(7)煅烧:将步骤(6)所得到的稀土草酸盐在950℃马弗炉中煅烧0.5~1小时,获得稀土氧化物产品。
所述的步骤(2)中酸溶液为:盐酸溶液或硝酸溶液中的一种。
所述的步骤(2)中搅拌速率为300~500转/分钟。
所述的步骤(3)中碱焙烧过程中采用的碱为:Na 2O 2或K 2O 2中的一种。
所述的步骤(5)中酸溶液为:盐酸溶液或硝酸溶液中的一种。
所述的步骤(5)中搅拌速率为300~500转/分钟。
所述的步骤(5)中二次酸浸反应结束后进行固液分离时,采用质量百分比浓度为2~5%的盐酸溶液洗涤4~8次得到的CeO 2产品,以除去杂质。
步骤(2)所得到的滤液1经过蒸发浓缩到溶液中HCl或HNO 3的摩尔浓度为5~8mol/L后,并入到步骤(5)的二次酸浸反应工序中部分或者全部替代盐酸溶液或硝酸溶液。
与现有废铈基稀土抛光粉中稀土回收工艺相比,本发明工艺先采用一步酸浸处理废铈基稀土抛光粉,能先高效浸出La 2O 3组份;然后采用碱焙烧处理浸出渣,使浸出渣中难溶于酸的LaOF 2、LaF 3、LaF 2或CeF 3·La 2O 3组份发生矿相结构转化,并使Al和Si组份转化为能溶于水的物质,再通过水浸和二次酸浸,能选择性分离回收CeO 2产品;最后通过草酸沉淀分离回收一次酸浸和二次酸浸步骤中所得的稀土滤液中稀土元素,实现了废铈基稀土抛光粉中稀土元素的梯次分离回收。本发明的废铈基稀土抛光粉中稀土元素的总回收率高达97%以上,稀土回收效率高,且工艺普适性广,环境污染小。
附图说明
图1表示一种两步酸浸梯次分离回收废铈基稀土抛光粉中稀土的方法流程图。
具体实施方式
实例1
按照如下步骤进行处理:
(1)球磨预处理:将稀土氧化物的总质量分数为15%的废铈基稀土抛光粉球磨至160目,得到球磨废料;采用X-射线衍射仪(XRD)对废铈基稀土荧光粉的物相结构进行分析,废铈基稀土抛光粉中稀土组份主要为LaOF、La 2O 3和CeO 2
(2)一次酸浸:将步骤(1)所得的球磨废料放入容器中,加入盐酸溶液,在加热搅拌下进行一次酸浸反应,一次酸浸反应过程中盐酸溶液的摩尔浓度为5mol/L,球磨废料与盐酸溶液的固液比为1:8公斤/升,浸出温度为80℃,浸出时间为2小时,搅拌速率为500转/分钟,一次酸浸反应结束后进行固液分离,过滤得到浸出渣和滤液1;
(3)碱焙烧:将步骤(2)所得的浸出渣与Na 2O 2混合并进行焙烧,碱焙烧反应条件为浸出渣与Na 2O 2的质量比为1:1,焙烧温度为650℃,焙烧时间为1.5小时,得到焙烧料;
(4)水浸:将步骤(3)所得的焙烧料进行水浸,水浸过程中焙烧料与水的固液比为1:9公斤/升,水浸温度为80℃,水浸时间为2小时,搅拌速率为400转/分钟,水浸反应结束后进行固液分离,过滤得到水浸渣;
(5)二次酸浸:将步骤(4)所得的水浸渣与硝酸溶液进行二次酸浸反应,二次酸浸反应过程中硝酸溶液的摩尔浓度为8mol/L,水浸渣与硝酸溶液的固液比为1:6,浸出温度为70℃,搅拌速率为300转/分钟,浸出时间为3小时,二次酸浸反应结束后进行固液分离,过滤并采用质量百分比浓度为2%的盐酸溶液洗涤8次,得到的CeO 2产品和滤液2;
(6)草酸沉淀稀土:将步骤(2)所得的滤液1与步骤(5)所得的滤液2合并得到合并液,向合并液中加入质量浓度为100克/升的草酸溶液进行稀土沉淀,合并液与草酸溶液的体积比为5:1,搅拌并加入质量百分比浓度为25%的氨水,直到溶液pH值为1.8,在90℃下沉淀3小时,过滤获得稀土草酸盐;
(7)煅烧:将步骤(6)所得的稀土草酸盐在950℃马弗炉中煅烧0.5小时,获得混 合稀土氧化物产品。
废铈基稀土抛光粉中稀土La和Ce的总回收率为97.5%。
实例2
按照如下步骤进行处理:
(1)球磨预处理:将稀土氧化物的总质量分数为30%的废铈基稀土抛光粉球磨至200目,得到球磨废料;采用X-射线衍射仪(XRD)对废铈基稀土荧光粉的物相结构进行分析,废铈基稀土抛光粉中稀土组份主要为LaOF、LaF 3、LaF 2、La 2O 3和CeO 2
(2)一次酸浸:将步骤(1)所得的球磨废料放入容器中,加入硝酸溶液,在加热搅拌下进行一次酸浸反应,一次酸浸反应过程中硝酸溶液的摩尔浓度为8mol/L,球磨废料与硝酸溶液的固液比为1:4公斤/升,浸出温度为75℃,浸出时间为2小时,搅拌速率为300转/分钟,一次酸浸反应结束后进行固液分离,过滤得到浸出渣和滤液1;
(3)碱焙烧:将步骤(2)所得的浸出渣与K 2O 2混合并进行焙烧,碱焙烧反应条件为浸出渣与K 2O 2的质量比为1:1.8,焙烧温度为650℃,焙烧时间为1小时,得到焙烧料;
(4)水浸:将步骤(3)所得的焙烧料进行水浸,水浸过程中焙烧料与水的固液比为1:4公斤/升,水浸温度为90℃,水浸时间为3小时,搅拌速率为500转/分钟,水浸反应结束后进行固液分离,过滤得到水浸渣;
(5)二次酸浸:将步骤(4)所得的水浸渣与盐酸溶液进行二次酸浸反应,二次酸浸反应过程中盐酸溶液的摩尔浓度为7mol/L,水浸渣与盐酸溶液的固液比为1:4.5,浸出温度为75℃,搅拌速率为400转/分钟,浸出时间为2.5小时,二次酸浸反应结束后进行固液分离,过滤并采用质量百分比浓度为5%的盐酸溶液洗涤4次,得到的CeO 2产品和滤液2;
(6)草酸沉淀稀土:将步骤(2)所得的滤液1与步骤(5)所得的滤液2合并得到合并液,向合并液中加入质量浓度为100克/升的草酸溶液进行稀土沉淀,合并液与草酸溶液的体积比为3:1,搅拌并加入质量百分比浓度为25%的氨水,直到溶液pH值为2.0,在90℃下沉淀2.5小时,过滤获得稀土草酸盐;
(7)煅烧:将步骤(6)所得的稀土草酸盐在950℃马弗炉中煅烧1小时,获得混合稀土氧化物产品。
废铈基稀土抛光粉中稀土La和Ce的总回收率为98.6%。
实例3
按照如下步骤进行处理:
(1)球磨预处理:将稀土氧化物的总质量分数为30%的废铈基稀土抛光粉球磨至400目,得到球磨废料;采用X-射线衍射仪(XRD)对废铈基稀土荧光粉的物相结构进行分析,其稀土组份主要为LaOF、LaF 3、LaF 2、La 2O 3和CeO 2
(2)一次酸浸:将步骤(1)所得的球磨废料放入容器中,加入盐酸溶液,在加热搅拌下进行一次酸浸反应,一次酸浸反应过程中盐酸溶液的摩尔浓度为6mol/L,球磨废料与盐酸溶液的固液比为1:6.5公斤/升,浸出温度为80℃,浸出时间为1.5小时,搅拌速率为400转/分钟,一次酸浸反应结束后进行固液分离,过滤得到浸出渣和滤液1;
(3)碱焙烧:将步骤(2)所得的浸出渣与Na 2O 2混合并进行焙烧,碱焙烧反应条件为浸出渣与Na 2O 2的质量比为1:2.5,焙烧温度为550℃,焙烧时间为1小时,得到焙烧料;
(4)水浸:将步骤(3)所得的焙烧料进行水浸,水浸过程中焙烧料与水的固液比为1:8公斤/升,水浸温度为90℃,水浸时间为2.5小时,搅拌速率为400转/分钟,水浸反应结束后进行固液分离,过滤得到水浸渣;
(5)二次酸浸:将步骤(4)所得的水浸渣与盐酸溶液进行二次酸浸反应,二次酸浸反应过程中盐酸溶液的摩尔浓度为7mol/L,水浸渣与盐酸溶液的固液比为1:5,浸出温度为75℃,搅拌速率为500转/分钟,浸出时间为2.5小时,二次酸浸反应结束后进行固液分离,过滤并采用质量百分比浓度为4%的盐酸溶液洗涤6次,得到的CeO 2产品和滤液2;
(6)草酸沉淀稀土:将步骤(2)所得的滤液1与步骤(5)所得的滤液2合并得到合并液,向合并液中加入质量浓度为100克/升的草酸溶液进行稀土沉淀,合并液与草酸溶液的体积比为4:1,搅拌并加入质量百分比浓度为25%的氨水,直到溶液pH值为1.9,在90℃下沉淀3小时,过滤获得稀土草酸盐;
(7)煅烧:将步骤(6)所得的稀土草酸盐在950℃马弗炉中煅烧45分钟,获得混合稀土氧化物产品。
废铈基稀土抛光粉中稀土La和Ce的总回收率为98.2%。
实例4
按照如下步骤进行处理:
(1)球磨预处理:将稀土氧化物的总质量分数为40%的废铈基稀土抛光粉球磨至400目,得到球磨废料;采用X-射线衍射仪(XRD)对废铈基稀土荧光粉的物相结构进行分析,废铈基稀土抛光粉中稀土组份主要为LaOF、La 2O 3、CeF 3·La 2O 3和CeO 2
(2)一次酸浸:将步骤(1)所得的球磨废料放入容器中,加入硝酸溶液,在加热搅拌下进行一次酸浸反应,一次酸浸反应过程中硝酸溶液的摩尔浓度为8mol/L,球磨废料与硝酸溶液的固液比为1:8公斤/升,浸出温度为80℃,浸出时间为2小时,搅拌速率为300转/分钟,一次酸浸反应结束后进行固液分离,过滤得到浸出渣和滤液1;
(3)碱焙烧:将步骤(2)所得的浸出渣与K 2O 2混合并进行焙烧,碱焙烧反应条件为浸出渣与K 2O 2的质量比为1:5,焙烧温度为650℃,焙烧时间为0.5小时,得到焙烧料;
(4)水浸:将步骤(3)所得的焙烧料进行水浸,水浸过程中焙烧料与水的固液比为1:6公斤/升,水浸温度为85℃,水浸时间为3小时,搅拌速率为500转/分钟,水浸反应结束后进行固液分离,过滤得到水浸渣;
(5)二次酸浸:将步骤(4)所得的水浸渣与硝酸溶液进行二次酸浸反应,二次酸浸反应过程中硝酸溶液的摩尔浓度为6mol/L,水浸渣与硝酸溶液的固液比为1:6,浸出温度为80℃,搅拌速率为400转/分钟,浸出时间为2.5小时,二次酸浸反应结束后进行固液分离,过滤并采用质量百分比浓度为2.5%的盐酸溶液洗涤6次,得到的CeO 2产品和滤液2;
(6)草酸沉淀稀土:将步骤(2)所得的滤液1与步骤(5)所得的滤液2合并得到合并液,向合并液中加入质量浓度为100克/升的草酸溶液进行稀土沉淀,合并液与草酸溶液的体积比为5:1,搅拌并加入质量百分比浓度为25%的氨水,直到溶液pH值为1.8,在85℃下沉淀3小时,过滤获得稀土草酸盐;
(7)煅烧:将步骤(6)所得的稀土草酸盐在950℃马弗炉中煅烧1小时,获得混合稀土氧化物产品。
废铈基稀土抛光粉中稀土La和Ce的总回收率为98.3%。
实例5
按照如下步骤进行处理:
(1)球磨预处理:将稀土氧化物的总质量分数为45%的废铈基稀土抛光粉球磨至200目,得到球磨废料;采用X-射线衍射仪(XRD)对废铈基稀土荧光粉的物相结构进行分析,废铈基稀土抛光粉中稀土组份主要为LaOF、La 2O 3、LaF 3、CeF 3·La 2O 3和CeO 2
(2)一次酸浸:将步骤(1)所得的球磨废料放入容器中,加入盐酸溶液,在加热搅拌下进行一次酸浸反应,一次酸浸反应过程中盐酸溶液的摩尔浓度为7mol/L,球磨废料与盐酸溶液的固液比为1:6公斤/升,浸出温度为80℃,浸出时间为1.5小时,搅拌速率为400转/分钟,一次酸浸反应结束后进行固液分离,过滤得到浸出渣和滤液1;
(3)碱焙烧:将步骤(2)所得的浸出渣与Na 2O 2混合并进行焙烧,碱焙烧反应条件为浸出渣与Na 2O 2的质量比为1:2.1,焙烧温度为550℃,焙烧时间为1.5小时,得到焙烧料;
(4)水浸:将步骤(3)所得的焙烧料进行水浸,水浸过程中焙烧料与水的固液比为1:8公斤/升,水浸温度为85℃,水浸时间为2小时,搅拌速率为300转/分钟,水浸反应结束后进行固液分离,过滤得到水浸渣;
(5)二次酸浸:将步骤(4)所得的水浸渣与盐酸溶液进行二次酸浸反应,二次酸浸反应过程中盐酸溶液的摩尔浓度为5mol/L,水浸渣与盐酸溶液的固液比为1:5,浸出温度为80℃,搅拌速率为400转/分钟,浸出时间为3小时,二次酸浸反应结束后进行固液分离,过滤并采用质量百分比浓度为4%的盐酸溶液洗涤5次,得到的CeO 2产品和滤液2;
(6)草酸沉淀稀土:将步骤(2)所得的滤液1与步骤(5)所得的滤液2合并得到合并液,向合并液中加入质量浓度为100克/升的草酸溶液进行稀土沉淀,合并液与草酸溶液的体积比为5:1,搅拌并加入质量百分比浓度为25%的氨水,直到溶液pH值为1.9,在90℃下沉淀2.5小时,过滤获得稀土草酸盐;
(7)煅烧:将步骤(6)所到的稀土草酸盐在950℃马弗炉中煅烧45分钟,获得混合稀土氧化物产品。
废铈基稀土抛光粉中稀土La和Ce的回收率为97.1%。
实例6
按照如下步骤进行处理:
(1)球磨预处理:将稀土氧化物的总质量分数为60%的废铈基稀土抛光粉球磨至200目,得到球磨废料;采用X-射线衍射仪(XRD)对废铈基稀土荧光粉的物相结构进行分析,废铈基稀土抛光粉中稀土组份主要为LaOF和CeO 2
(2)一次酸浸:将步骤(1)所得的球磨废料放入容器中,加入盐酸溶液,在加热搅拌下进行一次酸浸反应,一次酸浸反应过程中盐酸溶液的摩尔浓度为6mol/L,球磨废料与盐酸溶液的固液比为1:8公斤/升,浸出温度为75℃,浸出时间为1.5小时,搅拌速率为450转/分钟,一次酸浸反应结束后进行固液分离,过滤得到浸出渣和滤液1;
(3)碱焙烧:将步骤(2)所得的浸出渣与K 2O 2混合并进行焙烧,碱焙烧反应条件为浸出渣与K 2O 2的质量比为1:1,焙烧温度为450℃,焙烧时间为0.5小时,得到焙烧料;
(4)水浸:将步骤(3)所得的焙烧料进行水浸,水浸过程中焙烧料与水的固液比为1:9公斤/升,水浸温度为80℃,水浸时间为2小时,搅拌速率为500转/分钟,水浸反应结束后进行固液分离,过滤得到水浸渣;
(5)二次酸浸:将步骤(4)所得的水浸渣与硝酸溶液进行二次酸浸反应,二次酸浸反应过程中硝酸溶液的摩尔浓度为6.5mol/L,水浸渣与硝酸溶液的固液比为1:4,浸出温度为75℃,搅拌速率为400转/分钟,浸出时间为2.5小时,二次酸浸反应结束后进行固液分离,过滤并采用质量百分比浓度为5%的盐酸溶液洗涤5次,得到的CeO 2产品和滤液2;
(6)草酸沉淀稀土:将步骤(2)所得的滤液1与步骤(5)所得的滤液2合并得到合并液,向合并液中加入质量浓度为100克/升的草酸溶液进行稀土沉淀,合并液与草酸溶液的体积比为4:1,搅拌并加入质量百分比浓度为25%的氨水,直到溶液pH值为1.9,在85℃下沉淀2.5小时,过滤获得稀土草酸盐;
(7)煅烧:将步骤(6)所得的稀土草酸盐在950℃马弗炉中煅烧1小时,获得混合稀土氧化物产品。
废铈基稀土抛光粉中稀土La和Ce的回收率为97.4%。

Claims (8)

  1. 一种两步酸浸梯次分离回收废铈基稀土抛光粉中稀土的方法,其特征在于,具体步骤如下:
    (1)球磨预处理:将废铈基稀土抛光粉球磨至粒度为160目以下,得到球磨废料;
    (2)一次酸浸:将步骤(1)所得到的球磨废料放入容器中,加入酸溶液,在加热搅拌下进行一次酸浸反应,一次酸浸反应结束后进行固液分离,过滤得到浸出渣和滤液1;酸溶液的摩尔浓度为5~8mol/L,球磨废料与酸溶液的固液比为1:4~1:8公斤/升,浸出温度为70~80℃,浸出时间为1~2小时;
    (3)碱焙烧:将步骤(2)所得到的浸出渣与碱混合并进行焙烧,得到焙烧料;浸出渣与碱的质量比为1:1~1:3,焙烧温度为450~650℃,焙烧时间为0.5~1.5小时;
    (4)水浸:将步骤(3)所得到的焙烧料进行水浸,水浸过程中焙烧料与水的固液比为1:4~1:9公斤/升,水浸温度为80~90℃,水浸时间为2~3小时,搅拌速率为300~500转/分钟,水浸反应结束后进行固液分离,过滤得到水浸渣;
    (5)二次酸浸:将步骤(4)所得到的水浸渣与酸溶液进行二次酸浸反应,二次酸浸反应结束后进行固液分离,过滤得到CeO 2产品和滤液2;酸溶液的摩尔浓度为5~8mol/L,水浸渣与酸溶液的固液比为1:2.5~1:6公斤/升,浸出温度为70~80℃,浸出时间为2~3小时;
    (6)草酸沉淀稀土:将步骤(2)所得到的滤液1与步骤(5)所得到的滤液2合并得到合并液,向合并液中加入质量浓度为100克/升的草酸溶液进行稀土沉淀,合并液与草酸溶液的体积比为5:1~3:1,搅拌并加入质量百分比浓度为25%的氨水,直到溶液pH值为1.8~2.0,在80~90℃下沉淀2~3小时,过滤获得稀土草酸盐;
    (7)煅烧:将步骤(6)所得到的稀土草酸盐在950℃马弗炉中煅烧0.5~1小时,获得稀土氧化物产品。
  2. 如权利要求1所述的一种两步酸浸梯次分离回收废铈基稀土抛光粉中稀土的方法,其特征在于,步骤(2)中酸溶液为:盐酸溶液或硝酸溶液中的一种。
  3. 如权利要求1所述的一种两步酸浸梯次分离回收废铈基稀土抛光粉中稀土的方法,其特征在于,步骤(2)中搅拌速率为300~500转/分钟。
  4. 如权利要求1所述的一种两步酸浸梯次分离回收废铈基稀土抛光粉中稀土的方法,其特征在于,步骤(3)中碱焙烧过程中采用的碱为:Na 2O 2或K 2O 2中的一种。
  5. 如权利要求1所述的一种两步酸浸梯次分离回收废铈基稀土抛光粉中稀土的方法,其特征在于,步骤(5)中酸溶液为:盐酸溶液或硝酸溶液中的一种。
  6. 如权利要求1所述的一种两步酸浸梯次分离回收废铈基稀土抛光粉中稀土的方法,其特征在于,步骤(5)中搅拌速率为300~500转/分钟。
  7. 如权利要求1所述的一种两步酸浸梯次分离回收废铈基稀土抛光粉中稀土的方法,其特征在于:步骤(5)中二次酸浸反应结束后进行固液分离时,采用质量百分比浓度为2~5%的盐酸溶液洗涤4~8次得到的CeO 2产品,以除去杂质。
  8. 如权利要求1所述的一种两步酸浸梯次分离回收废铈基稀土抛光粉中稀土的方法,其特征在于,还包括以下步骤:步骤(2)所得到的滤液1经过蒸发浓缩到溶液中HCl或HNO 3的摩尔浓度为5~8mol/L后,并入到步骤(5)的二次酸浸反应工序中部分或者全部替代盐酸溶液或硝酸溶液。
PCT/CN2021/132407 2020-12-02 2021-11-23 一种两步酸浸梯次分离回收废铈基稀土抛光粉中稀土的方法 WO2022116870A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/132,979 US20230265541A1 (en) 2020-12-02 2023-04-11 method for recovering rare-earth in cerium-based rare-earth polishing powder waste by two-step acid leaching gradient separation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011395568.X 2020-12-02
CN202011395568.XA CN112725622B (zh) 2020-12-02 2020-12-02 一种两步酸浸梯次分离回收废铈基稀土抛光粉中稀土的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/132,979 Continuation US20230265541A1 (en) 2020-12-02 2023-04-11 method for recovering rare-earth in cerium-based rare-earth polishing powder waste by two-step acid leaching gradient separation

Publications (1)

Publication Number Publication Date
WO2022116870A1 true WO2022116870A1 (zh) 2022-06-09

Family

ID=75598404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132407 WO2022116870A1 (zh) 2020-12-02 2021-11-23 一种两步酸浸梯次分离回收废铈基稀土抛光粉中稀土的方法

Country Status (3)

Country Link
US (1) US20230265541A1 (zh)
CN (1) CN112725622B (zh)
WO (1) WO2022116870A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112725622B (zh) * 2020-12-02 2022-09-09 北京工业大学 一种两步酸浸梯次分离回收废铈基稀土抛光粉中稀土的方法
CN113667823A (zh) * 2021-07-15 2021-11-19 江西理工大学 一种钕铁硼废料综合回收稀土和铁的方法
CN114107668B (zh) * 2021-11-10 2023-11-17 北京工业大学 一种机械活化强化浸出废弃抛光液中稀土的方法
CN114213976A (zh) * 2021-12-14 2022-03-22 甘肃金阳高科技材料有限公司 一种用玻璃抛光废渣颗粒再生技术制备盖板玻璃用稀土抛光粉的方法
CN114381206B (zh) * 2022-01-07 2023-04-14 甘肃金阳高科技材料有限公司 一种用玻璃抛光废渣再生制备稀土抛光粉的方法
CN115418168A (zh) * 2022-08-25 2022-12-02 萍乡泽昊新材料有限责任公司 一种从废稀土抛光粉中分离提取稀土的方法
CN117186777B (zh) * 2023-11-07 2024-01-26 琥崧科技集团股份有限公司 一种应用于半导体行业的抛光液及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040055219A (ko) * 2002-12-20 2004-06-26 한국지질자원연구원 세륨연마재 폐 슬러리로부터 희토류성분과 알루미늄을분리회수하는방법
CA2631190A1 (en) * 2008-05-02 2009-11-02 Arafura Resources Limited Recovery of rare earth elements
CN103103361A (zh) * 2013-02-28 2013-05-15 包头稀土研究院 一种从稀土抛光粉废渣中制取氧化稀土的方法
CN104232947A (zh) * 2014-09-18 2014-12-24 龙南县中利再生资源开发有限公司 一种从废荧光粉中提取回收稀土元素的方法
CN104946895A (zh) * 2015-06-29 2015-09-30 包头市新世纪稀土有限责任公司 利用废稀土抛光粉循环再生稀土化合物方法
CN105039698A (zh) * 2015-04-21 2015-11-11 南京林业大学 一种高效回收废crt荧光粉中稀土的方法
CN109207737A (zh) * 2018-11-23 2019-01-15 湖南景翌湘台环保高新技术开发有限公司 一种从废稀土抛光粉中提取铝、氧化硅和稀土的方法
CN112725622A (zh) * 2020-12-02 2021-04-30 北京工业大学 一种两步酸浸梯次分离回收废铈基稀土抛光粉中稀土的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1131326C (zh) * 1999-02-12 2003-12-17 通用电气公司 直接生产混合稀土氧化物的加工工艺
CN105985735B (zh) * 2015-02-05 2018-05-29 成都理工大学 高铈稀土抛光粉的制备方法
GB2560871B (en) * 2016-12-16 2020-06-03 Univ Belfast Separation of rare earth matals
CN106967891B (zh) * 2017-03-29 2018-10-09 江西理工大学 一种从稀土荧光粉混合废料中梯度回收稀土的方法
CN108929957B (zh) * 2018-08-15 2020-07-17 湖南稀土金属材料研究院 含稀土氧化物废料中高纯稀土氧化物的回收方法
CN109055783B (zh) * 2018-08-15 2021-06-04 湖南稀土金属材料研究院 含稀土氧化物废料中稀土氧化物的回收方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040055219A (ko) * 2002-12-20 2004-06-26 한국지질자원연구원 세륨연마재 폐 슬러리로부터 희토류성분과 알루미늄을분리회수하는방법
CA2631190A1 (en) * 2008-05-02 2009-11-02 Arafura Resources Limited Recovery of rare earth elements
CN103103361A (zh) * 2013-02-28 2013-05-15 包头稀土研究院 一种从稀土抛光粉废渣中制取氧化稀土的方法
CN104232947A (zh) * 2014-09-18 2014-12-24 龙南县中利再生资源开发有限公司 一种从废荧光粉中提取回收稀土元素的方法
CN105039698A (zh) * 2015-04-21 2015-11-11 南京林业大学 一种高效回收废crt荧光粉中稀土的方法
CN104946895A (zh) * 2015-06-29 2015-09-30 包头市新世纪稀土有限责任公司 利用废稀土抛光粉循环再生稀土化合物方法
CN109207737A (zh) * 2018-11-23 2019-01-15 湖南景翌湘台环保高新技术开发有限公司 一种从废稀土抛光粉中提取铝、氧化硅和稀土的方法
CN112725622A (zh) * 2020-12-02 2021-04-30 北京工业大学 一种两步酸浸梯次分离回收废铈基稀土抛光粉中稀土的方法

Also Published As

Publication number Publication date
CN112725622A (zh) 2021-04-30
US20230265541A1 (en) 2023-08-24
CN112725622B (zh) 2022-09-09

Similar Documents

Publication Publication Date Title
WO2022116870A1 (zh) 一种两步酸浸梯次分离回收废铈基稀土抛光粉中稀土的方法
CN103374652B (zh) 一种氟碳铈矿处理过程中综合回收稀土和氟的方法
WO2022116859A1 (zh) 一种从废稀土抛光粉中分离提取稀土与再生稀土抛光粉的方法
CN106319218A (zh) 从含稀土的铝硅废料中回收稀土、铝和硅的方法
CN104928475B (zh) 一种含稀土的铝硅废料的回收方法
CN103215463B (zh) 一种钙化转型-浸出分解氟碳铈矿的方法
CN1605638A (zh) 从钕铁硼废料中回收稀土的新工艺
CN110205503B (zh) 一种分解氟碳铈矿的方法
CN114107668B (zh) 一种机械活化强化浸出废弃抛光液中稀土的方法
CN102965506B (zh) 苯甲酸盐沉淀法从稀土溶液中除铝方法
CN104120268A (zh) 一种常压低温下从钛白废酸和拜尔法赤泥中提取钪的方法
CN1384214A (zh) 一种混合稀土精矿碳还原焙烧生产氯化稀土的方法
CN113772696A (zh) 一种采用硝酸加压法处理锂云母生产多种锂产品的方法
CN111842411A (zh) 一种赤泥全资源化利用的方法
CN102659559B (zh) 一种从稀土抛光粉废渣中制取草酸镧铈的方法
CN112760500B (zh) 一种从离子吸附型钼铼矿中制备铼酸铵的方法
CN111333108B (zh) 一种利用含钛高炉渣制备二氧化钛的方法
CN103215439A (zh) 一种从钪富集物中提取钪的方法
CN109022796A (zh) 一种从抛光废料回收稀土的低温环保方法
CN109266838A (zh) 氟碳铈矿及含氟碳铈矿的混合矿的处理方法
CN107083496A (zh) 一种从稀土废渣中提取氧化稀土的方法
CN106757156A (zh) 一种从含Re高温合金废料中回收Re的方法
CN105039729A (zh) 一种从稀土光学玻璃废渣中回收稀土氧化物的方法
CN114380320A (zh) 一种氟化转化-真空蒸馏回收稀土熔盐电解渣中有价资源的方法
CN108531735B (zh) 从抛光粉废料中提取稀土氧化物的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21899903

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21899903

Country of ref document: EP

Kind code of ref document: A1