WO2022116553A1 - 压力检测系统及压力检测方法 - Google Patents

压力检测系统及压力检测方法 Download PDF

Info

Publication number
WO2022116553A1
WO2022116553A1 PCT/CN2021/107263 CN2021107263W WO2022116553A1 WO 2022116553 A1 WO2022116553 A1 WO 2022116553A1 CN 2021107263 W CN2021107263 W CN 2021107263W WO 2022116553 A1 WO2022116553 A1 WO 2022116553A1
Authority
WO
WIPO (PCT)
Prior art keywords
force
pressure
grinding
bearing layer
pressure sensor
Prior art date
Application number
PCT/CN2021/107263
Other languages
English (en)
French (fr)
Inventor
张正先
裴威
Original Assignee
长鑫存储技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长鑫存储技术有限公司 filed Critical 长鑫存储技术有限公司
Priority to US17/611,803 priority Critical patent/US20230304877A1/en
Publication of WO2022116553A1 publication Critical patent/WO2022116553A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0061Force sensors associated with industrial machines or actuators
    • G01L5/0076Force sensors associated with manufacturing machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/34Accessories
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/26Auxiliary measures taken, or devices used, in connection with the measurement of force, e.g. for preventing influence of transverse components of force, for preventing overload
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring

Definitions

  • the embodiments of the present application relate to the field of semiconductors, and in particular, to a pressure detection system and a pressure detection method.
  • the chemical mechanical polishing process is grinding under chemical and mechanical action.
  • the grinding amount needs to be controlled, and the elements include controlling the down force of the grinding arm.
  • the size of the down force will directly affect the grinding rate and the degree of particle aggregation during the grinding process. Therefore, it is particularly important to precisely control the amount of downforce.
  • the embodiments of the present application provide a pressure detection system and a pressure detection method, which are beneficial to accurately obtain the pressure on the grinding object in the actual grinding process.
  • an embodiment of the present application provides a pressure detection system, including: a grinding arm and a force receiving device, the force receiving device is fixed on one side, and the force receiving device is used to bear the pressure of the grinding arm; pressure; a sensor, fixed on the force-receiving device, for detecting the pressure on the force-receiving device; a grinding disc, fixed on the grinding arm, and the grinding arm applying the force to the force-receiving device through the grinding disc pressure.
  • an embodiment of the present application further provides a pressure detection method, including: providing the pressure detection system described in any one of the above; setting the downward pressure of the grinding arm; controlling the grinding arm to drive the grinding disc to apply pressure to the force-receiving device pressure, so that the pressure sensor detects the sum of the downward force of the grinding arm and the self-weight of the grinding disc.
  • the pressure sensor is fixed on the force-bearing device, so that in the process of pressure measurement, the grinding disc can be installed on the grinding arm, so that the grinding arm can apply pressure to the force-bearing device through the grinding disc;
  • the grinding disc will also exert a pressure equal to its own weight on the grinding object. Therefore, only in the process of pressure detection, the measurement result of the pressure sensor is the sum of the pressure of the grinding arm and the self-weight of the grinding disc.
  • the detection result of the pressure sensor is equivalent to the actual pressure on the grinding object.
  • Fig. 1 is a structural schematic diagram of a pressure detection system
  • FIG. 2 is a schematic structural diagram of a pressure detection system provided by an embodiment of the present application.
  • FIG. 3 is a three-dimensional structural diagram of another pressure detection system provided by an embodiment of the present application.
  • FIG. 4 is a front view of the pressure detection system shown in FIG. 3;
  • Figure 5 is a left side view of the pressure detection system shown in Figure 3;
  • FIG. 6 is a top view of the pressure detection system shown in FIG. 3 .
  • FIG. 1 is a schematic structural diagram of a pressure detection system.
  • the pressure sensor 12 is installed on the grinding arm 11 . After the machine table sets the down pressure, the grinding arm 11 drives the pressure sensor 12 to act on the force receiving device 13 , and the force receiving device 13 feeds back the pressure sensor 12 through the reaction force. , so that the pressure sensor 12 obtains the current pressure of the grinding arm 11 .
  • the grinding disc installed on the grinding arm 11 to be used in the actual grinding process needs to be removed, and then the pressure sensor 12 is installed on the grinding arm 11 by magnetic attraction or the like.
  • the pressure acquired by the pressure sensor 12 only includes the compressive stress set by the machine and applied by the grinding arm 11, but does not include the self-weight of the grinding disc, which makes the pressure acquired by the pressure sensor 12 not in the actual grinding process.
  • the pressure on the object which makes it impossible to accurately monitor and adjust the pressure on the grinding object during the actual grinding process according to the value obtained by the pressure sensor 12 .
  • the signal line of the pressure sensor 12 needs to be connected to the analysis device, and since the pressure sensor 12 is fixed on the grinding arm 11, the grinding arm 11 needs to move up and down during the actual grinding step.
  • the signal line will move up and down with the grinding arm 11 , and the up and down movement may cause internal damage or poor contact of the signal line, and then the detection data will be deviated due to internal damage and poor contact.
  • the embodiment of the present application provides a pressure detection system, which fixes the pressure sensor on the force receiving device.
  • the grinding disc is installed on the grinding arm, so that the grinding arm passes the grinding process.
  • the disc applies pressure to the force-receiving device.
  • the pressure sensor can measure the sum of the pressure of the grinding arm and the self-weight of the grinding disc, that is, to accurately obtain the pressure that the force-receiving device bears during the actual grinding process.
  • FIG. 2 is a schematic structural diagram of a pressure detection system provided by an embodiment of the present application.
  • the pressure detection system includes: a grinding arm 21 and a force receiving device 23 , the force receiving device 23 is fixed on one side, and the force receiving device 23 is used to bear the pressure of the grinding arm 21 ; a pressure sensor 22 is fixed on the force receiving device 23 , is used to detect the pressure on the force-receiving device 23 ; the grinding disc 20 is fixed on the grinding arm 21 , and the grinding arm 21 applies pressure to the force-receiving device 23 through the grinding disc 20 .
  • the signal line of the pressure sensor 22 is fixed by the base of the force receiving device 23 . Since the base of the force-receiving device 23 does not move during the grinding process, fixing the signal line through the base is beneficial to ensure that the signal line has good stability and better performance, thereby ensuring that the pressure sensor 22 can accurately obtain the pressure of the grinding arm 21 and the sum of the self-weights of the grinding disc 20 , that is, to accurately obtain the pressure on the force-receiving device 23 during the actual grinding process.
  • the actual designation of the force receiving device 23 varies according to application scenarios.
  • the force-receiving device 23 is generally a grinding table, and the grinding arm 21 presses the grinding object on the grinding table for chemical mechanical grinding, and the grinding object is generally a wafer; in the testing process of the pressure detection system,
  • the force receiving device 23 can also be a test structure, that is, a grinding table is simulated by the test structure, so as to ensure the accuracy of the parameter setting of the grinding device and ensure that the actual grinding has a good grinding effect.
  • the force-bearing device 23 generally includes a force-bearing layer 30 and a base 31 .
  • the force-bearing layer 30 is used to bear the pressure of the grinding arm 21 and the self-weight of the grinding disc 20 .
  • the force-bearing layer 30 may occur when it is under pressure. Bending deformation; at the same time, since the force-bearing layer 30 is fixed on one side, the force-bearing layer 30 may be bent asymmetrically.
  • the substrate 31 generally does not change during compression.
  • the force-bearing device is a polishing table
  • the force-bearing layer is usually a polishing pad.
  • the pressure sensor 22 is disposed between the force-bearing layer and the substrate.
  • the pressure sensor 22 applies pressure to the force-receiving device 23
  • the pressure of the grinding device 21 and the self-weight of the grinding disc 20 are transmitted to the pressure sensor 22 through the force-receiving layer 30.
  • the pressure sensor 22 contacts the substrate 31, the substrate 31 reacts according to the reaction force.
  • the pressure is fed back to the pressure sensor 22 , and the pressure sensor 22 obtains the sum of the pressure of the grinding arm 21 and the self-weight of the grinding disc 20 .
  • Disposing the pressure sensor 22 between the force-bearing layer 30 and the substrate 31 is beneficial to prevent the pressure sensor 22 from interfering with the application of the force-bearing layer 30 , such as wafer grinding, and can continuously and accurately monitor the force-bearing layer.
  • the force condition of 30 is beneficial to obtain the force condition of the force-bearing device accurately and continuously.
  • the pressure sensor may also be disposed on the side of the force-bearing layer away from the substrate, that is, between the force-bearing device and the grinding disc.
  • the force receiving device 23 further includes a bump 301, the bump 301 is disposed on the surface of the force receiving layer 30 facing the base 31, and the pressure sensor 22 is disposed between the bump 301 and the base 31.
  • the arrangement of the bumps 301 is conducive to concentrating the pressure on the surface of the force bearing layer 30 , avoiding pressure dispersion and causing the pressure detected by the pressure sensor 22 to be small, thereby ensuring the accuracy of the value detected by the pressure sensor 22 .
  • the pressure sensor 22 is fixed on the base 31 . Since the force-bearing layer 30 may be bent and deformed, fixing the pressure sensor 22 on the substrate 31 is beneficial to ensure that the pressure sensor 22 has high accuracy;
  • the sensor 22 is disposed on the surface of the substrate 31 , which is beneficial to further improve the stability and safety of the signal line of the pressure sensor 22 and ensure the accuracy of the data detected by the pressure sensor 22 .
  • the pressure sensor may also be fixed to the surface of the bump facing the substrate.
  • the bumps 301 are in contact with the pressure sensor 22, and the pressure sensor 22 does not need to be bent and deformed for stress transmission, so as to avoid failure of the force-bearing layer 30 fixed on one side.
  • Symmetrical deformation that is, to prevent the bump 301 from transmitting only part of the pressure to the pressure sensor 22, or to prevent the bump 301 from transmitting the pressure concentratedly to a small area of the pressure sensor 22 to cause damage to it, so as to ensure that the pressure sensor 22 detects data accuracy.
  • the grinding arm when the grinding arm applies pressure to the force-bearing device, there is a gap between the bump and the pressure sensor, and the force-bearing layer transmits the stress to the pressure sensor through bending deformation.
  • the above-mentioned bending deformation is preferably elastic deformation, so as to ensure that the test structure can be reused and reduce the test cost.
  • the material of the bump 301 is different from the material of the stress-bearing layer 30, and the bump 301 is an independent block disposed on the surface of the stress-bearing layer 30 facing the substrate 31; in other embodiments, the material of the bump is different from the material of the stress-bearing layer 30.
  • the material of the force layer is the same, and the bump and the force layer can be formed at one time through an integral molding process.
  • the hardness of the material of the bump 301 is lower than the hardness of the material of the stressed layer 30 .
  • the hardness of the force-bearing layer 30 is relatively large, which is beneficial to avoid the bending deformation of the force-bearing layer 30 under the force-bearing state, and ensures that the force-bearing layer 30 can better transmit the bending stress to the pressure sensor 22 through the bump 301;
  • the hardness of the bump 301 is lower, which is beneficial to make the bump 301 better fit on the surface of the pressure sensor 22, that is, the pressure is more uniformly transmitted to the surface of the pressure sensor 22, so as to prevent the pressure sensor 22 from being overburdened locally. If damage occurs, the accuracy of the pressure data detected by the pressure sensor 22 is guaranteed.
  • the force receiving device further includes a sliding guide rail 32 .
  • the sliding guide rail 32 fixes the force bearing layer 30 on one side.
  • the force-bearing layer 30 can be controlled to move away from the substrate 31, so as to fix, repair or replace the pressure sensor 22, or read the pressure sensor 22; when it is necessary to detect the sum of the pressure exerted by the grinding arm 21 and the self-weight of the grinding disc 20, the force-bearing layer 30 can be controlled to move toward the direction close to the substrate 31, so that the force-bearing layer 30 is in contact with the pressure sensor 22 to The pressure on the force-bearing layer 30 is transmitted, or the distance between the force-bearing layer 30 and the pressure sensor 22 is within a preset value, so that the force-bearing layer 30 can transmit the pressure it bears to the pressure sensor 22 through bending deformation.
  • the pressure transmitted by the force-bearing layer 30 that undergoes bending deformation is always less than the pressure it bears.
  • the pressure offset by the bending deformation of the stress layer 30 needs to be considered, that is, the pressure offset by the bending deformation needs to be controlled within the preset range, so as to ensure the relative accuracy of the pressure detected by the pressure sensor 22 sex.
  • control force-bearing layer 30 there is a certain distance between the control force-bearing layer 30 and the pressure sensor 22, which is beneficial to prevent the force-bearing layer 30 from applying compressive stress to the pressure sensor 22 during the movement process, that is, to ensure that the pressure sensor 22 detects the pressure of the grinding arm 21 and Before the sum of the self-weights of the grinding discs 20, its initial value is zero.
  • the force-bearing layer and the bump need to be placed on the pressure sensor, and the pressure sensor needs to be reset to zero, so as to eliminate the influence of the force-bearing layer's own weight and the bump's own weight on the measurement result.
  • the zeroing of the pressure sensor can be manually controlled, or it can have a special zeroing mode, such as automatic zeroing when subjected to a specific pressure greater than a preset time period.
  • the arrangement of the bumps 301 will limit the bending of the force-bearing layer 30, thereby reducing the degree of bending deformation and the rebound force of the force-bearing layer 30 during the force-bearing process, so that the pressure detected by the pressure sensor 22 is higher.
  • the corresponding adjustment according to the detection value of the pressure sensor 22 can achieve the preset purpose.
  • the base 31 further includes a side wall 311 for fixing the sliding guide rail 32 , and the side wall 311 is used for fixing the rail of the sliding guide rail 32 .
  • substrate 31 herein is: a part that does not undergo positional change and deformation during the actual grinding process or during the pressure detection process. In this way, the signal line of the pressure sensor 22 fixed by the base 31 of the force receiving device 23 has good stability and safety.
  • the side wall 311 has a wire hole 33 therein, and the wire hole 33 is used for fixing the signal wire of the pressure sensor 22 .
  • the orthographic projection of the center of the force-bearing layer 30 on the substrate 31 coincides with the orthographic projection of the center of the pressure sensor 22 on the substrate 31 .
  • the ratio of the orthographic projection area of the pressure sensor 22 to the orthographic projection area of the force bearing layer 30 is greater than or equal to 2%. Specifically, in the direction perpendicular to the surface of the force bearing layer 30 , the orthographic projection of the force bearing layer 30 on the substrate 31 is a square of 120mm*120mm, and the orthographic projection of the pressure sensor 22 on the substrate 31 is a square of 20mm*20mm.
  • the orthographic projection of the pressure sensor and the force-bearing layer may also be in a shape such as a circle, and the orthographic projection shape of the pressure sensor and the orthographic projection of the force-bearing layer may also be different.
  • the vertical distance between the surface of the force-bearing layer 30 facing the substrate 31 and the surface of the substrate 31 facing the force-bearing layer 30 is greater than or equal to 0.5 mm.
  • the pressure sensor 22 is located in the groove of the base 31 , the depth of the groove is 1.5 mm, and the thickness of the bump 301 is 2 mm.
  • the material of the base 31 and the force-bearing layer 30 can be aluminum alloy. In the direction perpendicular to the surface of the force-bearing layer 30 , the thickness of the force-bearing layer 30 is 2 mm, and the maximum thickness of the base 31 is 3 mm.
  • a standard weight can be carried on the force-receiving layer 30 to replace the self-weight of the grinding disc 20 .
  • the pressure sensor is fixed on the force-receiving device.
  • the grinding disc can be installed on the grinding arm, so that the grinding arm can apply pressure to the force-receiving device through the grinding disc;
  • the grinding disc will also exert a pressure equal to its own weight on the grinding object. Therefore, in the actual measurement process, control the pressure sensor to accurately measure the sum of the pressure of the grinding arm and the self-weight of the grinding disc to accurately obtain the actual grinding process.
  • the pressure on the medium force device is fixed on the force-receiving device.
  • an embodiment of the present application also provides a pressure detection method, including: providing the above-mentioned pressure detection system; setting the downward pressure of the grinding arm; controlling the grinding arm to drive the grinding disc to apply pressure to the force-receiving device, so that the pressure sensor detects the grinding The sum of the downforce of the arm and the self-weight of the grinding disc.
  • the grinding arm and the grinding disc act on the force-receiving device at the same time, and the pressure sensor can accurately measure the pressure of the grinding arm and the sum of the self-weight of the grinding disc.
  • the pressure sensor can accurately measure the pressure of the grinding arm and the sum of the self-weight of the grinding disc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

一种压力检测系统及压力检测方法,压力检测系统包括:研磨手臂(21)与受力装置(23),受力装置(23)单侧固定,受力装置(23)用于承受研磨手臂(21)的压力;压力传感器(22),固定于受力装置(23)上,用于检测受力装置(23)承受的压力;研磨盘(20),固定于研磨手臂(21)上,研磨手臂(21)通过研磨盘(20)向受力装置(23)施加压力。

Description

压力检测系统及压力检测方法
交叉引用
本申请基于申请号为202011410569.7、申请日为2020年12月03日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请实施例涉及半导体领域,特别涉及一种压力检测系统及压力检测方法。
背景技术
化学机械抛光工艺是在化学以及机械作用下进行研磨。在研磨过程中需要对研磨量进行控制,其中的要素包括控制研磨手臂的下压力,下压力的大小会直接影响研磨过程中的研磨速率以及颗粒的聚集程度。因此,精准控制下压力的大小尤为重要。
发明内容
本申请实施例提供一种压力检测系统及压力检测方法,有利于准确获取实际研磨过程中研磨对象所承受的压力。
为解决上述问题,本申请实施例提供一种压力检测系统,包括:研磨手臂与受力装置,所述受力装置单侧固定,所述受力装置用于承受所述研磨手臂的压力;压力传感器,固定于所述受力装置上,用于检测所述受力装置承受的压力;研磨盘,固定于所述研磨手臂上,所述研磨手臂通过所述研磨盘向所述受力装置施加压力。
相应地,本申请实施例还提供一种压力检测方法,包括:提供上述任一项所述的压力检测系统;设定研磨手臂的下压力;控制所述研磨手臂带动研磨盘向受力装置施加压力,以使压力传感器检测所述研磨手臂的下压力和所述研磨盘的自重之和。
上述技术方案中,将压力传感器固定在受力装置上,如此,在进行压力测量的过程中,可以将研磨盘安装在研磨手臂上,以使得研磨手臂通过研磨盘向受力装置施加压力;由于在实际研磨过程中,研磨盘也会对研磨对象施加等于自重的压力,因此,只有在压力检测过程中,压力传感器的测量结果为测量研磨手臂的压力以及研磨盘的自重之和,才能保证在实际研磨过程中,压力传感器的检测结果等同于研磨对象所承受的实际压力。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,除非有特别申明,附图中的图不构成比例限制。
图1为一种压力检测系统的结构示意图;
图2为本申请实施例提供的一种压力检测系统的结构示意图;
图3为本申请实施例提供的另一种压力检测系统的立体结构图;
图4为图3所示压力检测系统的主视图;
图5为图3所示压力检测系统的左视图;
图6为图3所示压力检测系统的俯视图。
具体实施方式
图1为一种压力检测系统的结构示意图。
参考图1,压力传感器12安装在研磨手臂11上,在机台设定下压力之后,研磨手臂11带动压力传感器12作用在受力装置13上,受力装置13通过反作用力反馈给压力传感器12,以使压力传感器12获取研磨手臂11的当前压力。
现有技术中,在安装压力传感器12之前,需要先拆除实际研磨过程中需要使用到的安装在研磨手臂11上的研磨盘,再通过磁吸等方式将压力传感器12安装在研磨手臂11上。此时,压力传感器12获取到的压力仅包括机台设定并通过研磨手臂11施加的压应力,而不包括研磨盘的自重,这就使得压力传感器12获取到的压力并非实际研磨过程中研磨对象受到的压力,进而导致无法根据压力传感器12获取的数值准确监控并调节研磨对象在实际研磨过程中受到的压力。
同时,为保证压力传感器12数据的有效传输,压力传感器12的信号线需要连接至解析装置上,而由于压力传感器12固定于研磨手臂11上,研磨手臂11在实际研磨步骤中需要上下运动,这就导致信号线会随着研磨手臂11上下运动,上下运动可能导致信号线出现内部损坏或接触不良等问题,进而使得检测数据因为内部损坏以及接触不良出现偏差。
为解决上述问题,本申请实施例提供一种压力检测系统,将压力传感器固定在受力装置上,如此,在进行压力测量的过程中,研磨盘 安装在研磨手臂上,以使得研磨手臂通过研磨盘向受力装置施加压力,在此过程中,压力传感器可测量研磨手臂的压力以及研磨盘的自重之和,即准确获取受力装置在实际研磨过程中所承受的压力。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施例进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。
图2为本申请实施例提供的一种压力检测系统的结构示意图。
参考图2,压力检测系统包括:研磨手臂21与受力装置23,受力装置23单侧固定,受力装置23用于承受研磨手臂21的压力;压力传感器22,固定于受力装置23上,用于检测受力装置23承受的压力;研磨盘20,固定于研磨手臂21上,研磨手臂21通过研磨盘20向受力装置23施加压力。
本实施例中,压力传感器22的信号线通过受力装置23的基底固定。由于受力装置23的基底在研磨过程中不发生移动,通过基底固定信号线,有利于保证信号线具有良好的稳定性以及较优的性能,进而保证压力传感器22能够准确获取研磨手臂21的压力以及研磨盘20的自重之和,即准确获取实际研磨过程中受力装置23所承受的压力。
本实施例中,受力装置23的实际指代根据应用场景有所不同。 具体地,在实际研磨过程中,受力装置23一般为研磨台,研磨手臂21将研磨对象按压在研磨台上进行化学机械研磨,研磨对象一般为晶圆;在压力检测系统的测试过程中,受力装置23还可以是测试结构,即通过测试结构来模拟研磨台,以确保研磨装置参数设置的准确性,保证实际研磨具有良好的研磨效果。
以下将以受力装置23为测试结构进行示例性说明。具体如下:
参考图2~图6,受力装置23通常包括受力层30和基底31,受力层30用于承受研磨手臂21的压力和研磨盘20的自重,受力层30在承受压力时可能发生弯曲变形;同时,由于受力层30为单侧固定,受力层30可能会出现不对称弯曲。相对地,基底31在受压过程中通常不发生变化。当受力装置为研磨台时,受力层通常为研磨垫。
本实施例中,压力传感器22设置于受力层与基底之间。当研磨手臂21向受力装置23施加压力时,研磨装置21的压力和研磨盘20的自重通过受力层30传递至压力传感器22,当压力传感器22与基底31接触时,基底31依据反作用力将压力反馈至压力传感器22,压力传感器22获取研磨手臂21的压力和研磨盘20的自重之和。
将压力传感器22设置于受力层30与基底31之间,有利于避免压力传感器22自身对受力层30的应用造成干扰,例如进行晶圆的研磨,同时可以持续且准确地监测受力层30的受力情况,有利于准确持续地获取受力装置的受力情况。在其他实施例中,压力传感器还可以设置于受力层远离基底的一侧,即位于受力装置与研磨盘之间。
本实施例中,受力装置23还包括凸块301,凸块301设置于受 力层30朝向基底31的表面,压力传感器22设置于凸块301与基底31之间。凸块301的设置有利于集中受力层30表面所承受的压力,避免压力分散而导致压力传感器22检测到的压力较小,进而保证压力传感器22检测到的数值的准确性。
本实施例中,压力传感器22固定于基底31上。由于受力层30可能发生弯曲和变形,将压力传感器22固定于基底31上,有利于保证压力传感器22具有较高的精度;同时,由于基底31相对于受力层30更为稳定,将压力传感器22设置于基底31表面,有利于进一步提高压力传感器22的信号线的稳定性和安全性,保证压力传感器22检测到的数据的准确性。
在其他实施例中,压力传感器还可以固定于凸块朝向基底的表面。
本实施例中,在研磨手臂21向受力装置23施加压力时,凸块301与压力传感器22接触,压力传感器22不需要弯曲变形以进行应力传递,避免单侧固定的受力层30发生不对称变形,即避免凸块301仅将部分压力传递至压力传感器22上,或者避免凸块301将压力集中传递至压力传感器22某一细小区域而导致其发生损坏,从而保证压力传感器22检测到的数据的准确性。
在其他实施例中,在研磨手臂向受力装置施加压力时,凸块与压力传感器之间具有间隙,受力层通过弯曲变形将应力传递至压力传感器。需要说明的是,上述弯曲变形最好是弹性变形,以保证测试结构可以重复利用,降低测试成本。
本实施例中,凸块301的材料与受力层30的材料不同,凸块301为设置于受力层30朝向基底31的表面的独立块;在其他实施例中,凸块的材料与受力层的材料相同,凸块与受力层可通过一体成型工艺一次形成。
具体地,本实施例中,凸块301的材料的硬度低于受力层30的材料的硬度。其中,受力层30的硬度较大,有利于避免受力层30在受力状态下发生弯曲变形,保证受力层30能够较好地将弯曲应力通过凸块301传递至压力传感器22;同时,凸块301的硬度较低,有利于使得凸块301更好地贴合于压力传感器22表面,即将压力更为均匀地传递至压力传感器22的表面,避免压力传感器22局部承压过大而发生损坏,保证压力传感器22检测到的压力数据的准确性。
本实施例中,受力装置还包括滑动导轨32,滑动导轨32单侧固定受力层30,滑动导轨32用于控制受力层30沿垂直于受力层30表面的方向上升或下降。具体地,当机台尚未控制研磨手臂21向受力装置23施加压力时,可控制受力层30朝远离基底31的方向移动,从而固定、检修或替换压力传感器22,或者,读取压力传感器22的检测结果;当需要检测研磨手臂21施加的压力以及研磨盘20的自重之和时,可控制受力层30朝靠近基底31的方向移动,以使受力层30与压力传感器22接触以传递受力层30承受的压力,或者使得受力层30与压力传感器22之间的间距处于一预设值内,保证受力层30可通过弯曲形变将自身承受的压力传递至压力传感器22。
需要说明是的是,由于受力层30的弯曲形变会形成反弹力,进 而抵消部分自身承受的压力,因此发生弯曲形变的受力层30所传递的压力总是小于自身承受的压力。在设置上述预设值时,需要考虑受力层30的弯曲形变所抵消的压力,即需要将弯曲形变所抵消的压力控制在预设范围内,从而保证压力传感器22检测到的压力的相对准确性。
相应地,控制受力层30与压力传感器22之间存在一定间距,有利于避免受力层30在移动过程中向压力传感器22施加压应力,即保证压力传感器22在检测研磨手臂21的压力以及研磨盘20的自重之和之前,其初始值为零。
在其他实施例中,在进行压力检测之前,还需要将受力层和凸块置于压力传感器上,并使压力传感器归零,以消除受力层自重和凸块自重对测量结果的影响。其中,压力传感器的归零可以是人工控制,也可以是自身存在特殊归零模式,例如在承受特定压力大于预设时长时自动归零。
还需要说明的是,凸块301的设置会限制受力层30的弯曲,从而减小受力层30在受力过程中的弯曲形变程度以及反弹力大小,使得压力传感器22检测到的压力更为接近研磨手臂21与研磨盘20的自重之和,进而保证根据压力传感器22的检测值进行的相应调整能够达到预设目的。
本实施例中,基底31还包括用于固定滑动导轨32的侧墙311,侧墙311用于固定滑动导轨32的轨道。需要说明的是,本文中对“基底31”的定义为:在实际研磨过程中或在压力检测过程中不发生位 置变化和形变的部件。如此,通过受力装置23的基底31固定的压力传感器22的信号线,才具有良好的稳定性和安全性。
具体地,侧墙311内具有过线孔33,过线孔33用于固定压力传感器22的信号线。
本实施例中,在垂直于受力层30表面的方向上,受力层30中心在基底31上的正投影与压力传感器22中心在基底31上的正投影重合。如此,有利于保证受力层30所承受的压力能够有效传递给压力传感器22,即保证压力传感器22可有效检测出受力层30所承受的压力。
进一步地,压力传感器22的正投影面积与受力层30的正投影面积的比例大于等于2%。具体地,在垂直于受力层30表面的方向上,受力层30在基底31上的正投影为120mm*120mm的正方形,压力传感器22在基底31上的正投影为20mm*20mm的正方形。
在其他实施例中,压力传感器和受力层的正投影还可以为圆形等形状,压力传感器的正投影形状和受力层的正投影形状还可以不同。
本实施例中,压力传感器22与受力层30和基底31接触时,受力层30朝向基底31的表面与基底31朝向受力层30的表面的垂直距离大于等于0.5mm。如此,有利于避免受力层30因弯曲形变而与基底31接触,避免受力层30所承受的压力直接传递至基底31的其他区域表面,导致反馈至压力传感器22的反作用力减小,即保证压力传感器22检测到的压力能够有效表征研磨手臂21的压力和研磨盘20的自重之和。
本实施例中,压力传感器22位于基底31的凹槽内,凹槽的深度为1.5mm,凸块301的厚度为2mm。基底31和受力层30的材料可以为铝合金,在垂直于受力层30表面的方向上,受力层30的厚度为2mm,基底31的最大厚度的3mm。此外,受力层30上可以承载标准砝码,以替代研磨盘20的自重。
本实施例中,将压力传感器固定在受力装置上,如此,在进行压力测量的过程中,可以将研磨盘安装在研磨手臂上,以使得研磨手臂通过研磨盘向受力装置施加压力;由于在实际研磨过程中,研磨盘也会对研磨对象施加等于自重的压力,因此,在实际测量过程中,控制压力传感器准确测量研磨手臂的压力以及研磨盘的自重之和,才能准确获取实际研磨过程中受力装置所承受的压力。
相应地,本申请实施例还提供一种压力检测方法,包括:提供上述压力检测系统;设定研磨手臂的下压力;控制研磨手臂带动研磨盘向受力装置施加压力,以使压力传感器检测研磨手臂的下压力和研磨盘的自重之和。
本实施例中,研磨手臂和研磨盘同时作用于受力装置上,压力传感器可准确测量研磨手臂的压力以及研磨盘的自重之和,如此,压力传感器的测量结果可与研磨手臂被设定的下压力一一对应,并有效地应用于实际研磨过程中;在实际研磨过程中,可根据测量结果和设定的下压力的对应关系设定相应地下压力,以使研磨对象承受对应的实际压力,保证研磨对象具有预设的研磨结果。
本领域的普通技术人员可以理解,上述各实施方式是实现本申请 的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。任何本领域技术人员,在不脱离本申请的精神和范围内,均可作各自更动与修改,因此本申请的保护范围应当以权利要求限定的范围为准。

Claims (11)

  1. 一种压力检测系统,包括:
    研磨手臂与受力装置,所述受力装置单侧固定,所述受力装置用于承受所述研磨手臂的压力;
    压力传感器,固定于所述受力装置上,用于检测所述受力装置承受的压力;
    研磨盘,固定于所述研磨手臂上,所述研磨手臂通过所述研磨盘向所述受力装置施加压力。
  2. 根据权利要求1所述的压力检测系统,其中,所述受力装置包括受力层和基底,所述受力层单侧固定,所述受力层用于承受所述研磨手臂的压力,所述压力传感器设置于所述受力层和所述基底之间。
  3. 根据权利要求2所述的压力检测系统,其中,所述压力传感器固定于所述基底上。
  4. 根据权利要求2所述的压力检测系统,其中,所述受力装置还包括凸块,所述凸块设置于所述受力层朝向所述基底的表面,所述压力传感器设置于所述凸块与所述基底之间。
  5. 根据权利要求4所述的压力检测系统,其中,所述凸块的材料的硬度低于所述受力层的材料的硬度。
  6. 根据权利要求2所述的压力检测系统,其中,受力装置还包括:滑动导轨,所述滑动导轨单侧固定所述受力层,所述滑动导轨用于控制所述受力层沿垂直于所述受力层表面的方向上升或下降。
  7. 根据权利要求2或6所述的压力检测系统,其中,所述压力传 感器与所述受力层和所述基底接触时,所述受力层朝向所述基底的表面与所述基底朝向所述受力层的表面的垂直距离大于等于0.5mm。
  8. 根据权利要求2所述的压力检测系统,其中,在垂直于所述受力层表面的方向上,所述受力层中心在所述基底上的正投影与所述压力传感器中心在所述基底上的正投影重合。
  9. 根据权利要求8所述的压力检测系统,其中,所述压力传感器的正投影面积与所述受力层的正投影面积的比例大于等于2%。
  10. 根据权利要求1所述的压力检测系统,其中,所述压力传感器的信号线通过所述受力装置的基底固定。
  11. 一种压力检测方法,包括:
    提供如权利要求1至10中任一项所述的压力检测系统;
    设定研磨手臂的下压力;
    控制所述研磨手臂带动研磨盘向受力装置施加压力,以使压力传感器检测所述研磨手臂的下压力和所述研磨盘的自重之和。
PCT/CN2021/107263 2020-12-03 2021-07-20 压力检测系统及压力检测方法 WO2022116553A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/611,803 US20230304877A1 (en) 2020-12-03 2021-07-20 Force measurement system and force measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011410569.7 2020-12-03
CN202011410569.7A CN114603482B (zh) 2020-12-03 2020-12-03 压力检测系统及压力检测方法

Publications (1)

Publication Number Publication Date
WO2022116553A1 true WO2022116553A1 (zh) 2022-06-09

Family

ID=81852964

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/107263 WO2022116553A1 (zh) 2020-12-03 2021-07-20 压力检测系统及压力检测方法

Country Status (3)

Country Link
US (1) US20230304877A1 (zh)
CN (1) CN114603482B (zh)
WO (1) WO2022116553A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220176515A1 (en) * 2020-12-03 2022-06-09 Changxin Memory Technologies, Inc. Force measurement system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0938856A (ja) * 1995-07-26 1997-02-10 Sumitomo Electric Ind Ltd 表面研磨装置および表面研磨方法
CN102729136A (zh) * 2011-04-01 2012-10-17 无锡华润上华半导体有限公司 研磨盘调节器的监控装置及监控方法
CN102802871A (zh) * 2010-03-19 2012-11-28 霓达哈斯股份有限公司 研磨装置、研磨垫及研磨信息管理系统
CN205271690U (zh) * 2015-12-30 2016-06-01 河南工业职业技术学院 一种自动化研磨装置
CN207696339U (zh) * 2017-12-14 2018-08-07 浙江工业大学 一种智能控力蓝宝石抛光装置
CN109202686A (zh) * 2017-07-03 2019-01-15 株式会社安川电机 机器人研磨系统及研磨控制方法
CN110024087A (zh) * 2016-12-02 2019-07-16 应用材料公司 Rfid零件认证及处理部件的追踪
CN211728760U (zh) * 2019-12-31 2020-10-23 深圳市中光工业技术研究院 一种晶圆抛光装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2977203B2 (ja) * 1989-04-19 1999-11-15 株式会社東芝 研磨装置
JPH10118917A (ja) * 1996-10-18 1998-05-12 Hitachi Ltd 研磨装置
JP2012068029A (ja) * 2010-09-21 2012-04-05 Seiko Epson Corp 検出装置、電子機器及びロボット
CN104354093B (zh) * 2014-10-21 2016-09-07 青岛橡胶谷知识产权有限公司 一种研磨机气压伺服系统
CN204546249U (zh) * 2015-03-25 2015-08-12 上海华力微电子有限公司 一种研磨手臂压力检测装置
CN109794855B (zh) * 2017-11-17 2020-09-11 长鑫存储技术有限公司 对作用于基底上的压力的测量方法
KR20200043209A (ko) * 2018-10-17 2020-04-27 주식회사 케이씨텍 화학 기계적 연마 장치의 컨디셔너
CN209774374U (zh) * 2019-03-05 2019-12-13 德淮半导体有限公司 研磨垫修整机系统
CN209868282U (zh) * 2019-04-30 2019-12-31 深圳市方达研磨技术有限公司 一种用于光纤插芯外圆研磨盘的压力自动平衡机构
US20220176515A1 (en) * 2020-12-03 2022-06-09 Changxin Memory Technologies, Inc. Force measurement system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0938856A (ja) * 1995-07-26 1997-02-10 Sumitomo Electric Ind Ltd 表面研磨装置および表面研磨方法
CN102802871A (zh) * 2010-03-19 2012-11-28 霓达哈斯股份有限公司 研磨装置、研磨垫及研磨信息管理系统
CN102729136A (zh) * 2011-04-01 2012-10-17 无锡华润上华半导体有限公司 研磨盘调节器的监控装置及监控方法
CN205271690U (zh) * 2015-12-30 2016-06-01 河南工业职业技术学院 一种自动化研磨装置
CN110024087A (zh) * 2016-12-02 2019-07-16 应用材料公司 Rfid零件认证及处理部件的追踪
CN109202686A (zh) * 2017-07-03 2019-01-15 株式会社安川电机 机器人研磨系统及研磨控制方法
CN207696339U (zh) * 2017-12-14 2018-08-07 浙江工业大学 一种智能控力蓝宝石抛光装置
CN211728760U (zh) * 2019-12-31 2020-10-23 深圳市中光工业技术研究院 一种晶圆抛光装置

Also Published As

Publication number Publication date
CN114603482A (zh) 2022-06-10
US20230304877A1 (en) 2023-09-28
CN114603482B (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
US9400238B2 (en) Shearing force test device
TW300954B (en) The probe card used in prober
WO2022116553A1 (zh) 压力检测系统及压力检测方法
US20080141783A1 (en) Micro-Impact Testing Apparatus
US10041976B2 (en) Gimbal assembly test system and method
JP2004320015A (ja) 薄い不透明なプレートを支持し運搬する装置と方法
KR101766167B1 (ko) 지문 센서 모듈 검사장치
KR20150087808A (ko) 프로버 및 프로브 카드의 니들 선단 연마 장치
US20220176515A1 (en) Force measurement system
CN112985990A (zh) 压力检测装置、压力检测方法、计算机设备和存储介质
WO2022116529A1 (zh) 压力检测系统
KR20090104149A (ko) 전기 검사 장치와 평탄도 조절 방법
CN216310082U (zh) 一种用于待测元器件的测试治具
EP0276900B1 (en) Apparatus and method for aligning two surfaces
TW486574B (en) Carrier module for μ-BGA type device
CN209673700U (zh) 基于利用压电检测法的正负x面检测装置
JP4633340B2 (ja) ばね荷重修正方法
KR100828950B1 (ko) 평판 디스플레이 패널을 평편하게 유지하기 위한 패널 푸셔및 이를 구비한 프로브 유닛
CN110608963B (zh) 可精确测量位移和摩擦力的自协调微动疲劳装置及试验方法
JP6786244B2 (ja) 定圧加工装置
KR102195814B1 (ko) 케리어의 패드스프링 체결 홈의 규격 측정장치
TW202007998A (zh) 檢測裝置
TW201116812A (en) Point-measuring apparatus containing strain gauge
JPS5821540A (ja) 試験片変形量測定装置
CN110082205B (zh) 一种电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21899592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21899592

Country of ref document: EP

Kind code of ref document: A1