WO2022116380A1 - 一种利用激光辐照声悬浮液滴制备钌铱纳米合金的方法 - Google Patents

一种利用激光辐照声悬浮液滴制备钌铱纳米合金的方法 Download PDF

Info

Publication number
WO2022116380A1
WO2022116380A1 PCT/CN2021/073122 CN2021073122W WO2022116380A1 WO 2022116380 A1 WO2022116380 A1 WO 2022116380A1 CN 2021073122 W CN2021073122 W CN 2021073122W WO 2022116380 A1 WO2022116380 A1 WO 2022116380A1
Authority
WO
WIPO (PCT)
Prior art keywords
ruthenium
iridium
alloy
laser irradiation
droplets
Prior art date
Application number
PCT/CN2021/073122
Other languages
English (en)
French (fr)
Inventor
蒋妍彦
阮莹
李辉
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Priority to KR1020217040864A priority Critical patent/KR102615652B1/ko
Publication of WO2022116380A1 publication Critical patent/WO2022116380A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/22Remelting metals with heating by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/16Remelting metals
    • C22B9/22Remelting metals with heating by wave energy or particle radiation
    • C22B9/221Remelting metals with heating by wave energy or particle radiation by electromagnetic waves, e.g. by gas discharge lamps
    • C22B9/223Remelting metals with heating by wave energy or particle radiation by electromagnetic waves, e.g. by gas discharge lamps by laser beams
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to a method for preparing a ruthenium-iridium nano-alloy by irradiating acoustic suspension droplets with laser light, and belongs to the technical field of novel preparation of precious metal nano-materials.
  • Metal nanoparticles are widely used in the fields of catalysis (CN 111185220 A), sensing (CN 111398396 A), optics (CN 111253936 A), medicine and biological engineering (CN 111420057 A) due to their unique size effect, surface effect and electronic state. Broad application prospects. Since each metal element has its unique electronic arrangement, alloying can obtain electronic structures different from that of a single metal element, which in turn affects its performance in different applications.
  • Ruthenium is a polyvalent rare metal element. It has stable properties, strong corrosion resistance, high hardness, and excellent electrical and catalytic properties. It is often used in the manufacture of cemented carbide, electrical contact alloys, and as a catalyst for hydrogenation, oxidation, isomerization and reforming reactions ( CN 111500914 A). Iridium is a rare precious metal material and is considered to be the most corrosion-resistant metal element with excellent thermal stability. It is mostly used to make crucibles for high-temperature reactions, scientific instruments, thermocouples and resistance wires. Like other platinum group metal alloys, iridium alloys can strongly adsorb organic substances and can be used as catalyst materials (CN 111389395 A).
  • Ruthenium and iridium have great mutual solubility, and the composition of the ruthenium-iridium alloy can be continuously adjusted in a large range.
  • the alloy of ruthenium and iridium can realize the complementary advantages of the two properties.
  • ruthenium-iridium alloys have been used as high-temperature thermocouple materials, catalysts, anti-tumor materials and luminescent materials.
  • Ruthenium-iridium nanoalloys have unique properties that are different from bulk alloy materials, and the controllable preparation of ruthenium-iridium nanoalloys is an effective means to broaden their properties and applications.
  • the currently widely adopted nanoalloy preparation method involves the reaction on the container or matrix, which is prone to heterogeneous nucleation, resulting in uncontrollable composition segregation and size, and ultimately unstable physical and chemical properties of the nanoalloy. Therefore, it is urgent to develop a nano-alloy preparation method to achieve precise control of the size of the material, any combination of components, and controllable component distribution.
  • the purpose of the present invention is to provide a method for preparing a ruthenium-iridium nano-alloy by using a laser to irradiate acoustic suspension droplets.
  • Agglomeration and particle growth caused by nucleation avoid component segregation during the reaction process and form a homogeneous alloy; instantly reach the metal reduction temperature, realize the simultaneous reduction of different types of metal ions, and form a solid solution structure; realize small local oscillations and trace reactions, Overcome the waste of raw materials and energy caused by the reaction in the traditional container; break through the limitation of formation entropy, and obtain a multi-component metastable alloy; the alloy composition and composition distribution are continuously adjustable.
  • a method for preparing ruthenium-iridium nano-alloys by irradiating acoustic suspension droplets with laser light, dissolving ruthenium salt, iridium salt and polyvinylpyrrolidone in ethylene glycol, and then performing acoustic suspension treatment to obtain suspension droplets, and the suspension The droplets were irradiated by laser to prepare ruthenium-iridium nano-alloys.
  • the invention utilizes acoustic suspension to enable the reaction process to be carried out under container-free conditions, and simultaneously cooperates with laser irradiation to realize rapid synchronous reduction of ruthenium and iridium metal ions by ethylene glycol, thereby avoiding heterogeneous nucleation.
  • a ruthenium-iridium nano-alloy is prepared by the above method.
  • the invention prepares ruthenium-iridium nano-alloy by irradiating acoustic suspension droplets with laser light, the method can realize the reduction of ruthenium and iridium metal ions by ethylene glycol within 60s, and generate ruthenium with uniform particle size, adjustable composition and particle size, and good dispersibility
  • the particle size of the prepared ruthenium-iridium nano-alloy is continuously adjustable in the range of 2-100 nm
  • the molar ratio of ruthenium and iridium is continuously adjustable in the range of 20:1-1:20
  • the component distribution is uniform and controllable.
  • the invention can open up a new way for the simple, rapid, low-energy-consumption and controllable preparation of nano-alloys, and effectively promote the development of high-performance nano-alloy related fields.
  • Fig. 1 is the ruthenium iridium nano-alloy transmission electron microscope figure prepared by embodiment 1;
  • Fig. 2 is the ruthenium iridium nano-alloy transmission electron microscope figure prepared by embodiment 2;
  • Fig. 3 is the ruthenium-iridium nano-alloy transmission electron microscope image prepared by embodiment 3;
  • Fig. 4 is the ruthenium iridium nano-alloy transmission electron microscope image prepared by embodiment 4;
  • Example 5 is a transmission electron microscope image of the ruthenium iridium nanoalloy prepared in Example 5.
  • a typical embodiment of the present invention provides a method for preparing ruthenium-iridium nano-alloys by irradiating acoustic suspension droplets with laser light, dissolving ruthenium salt, iridium salt and polyvinylpyrrolidone in ethylene glycol, and then performing acoustic suspension
  • the suspension droplets are obtained by the treatment, and the ruthenium-iridium nano-alloy is prepared by laser irradiation treatment on the suspension droplets.
  • the invention utilizes the acoustic suspension to enable the reaction process to be carried out under the condition of no container, and at the same time cooperates with laser irradiation, can realize the rapid synchronous reduction of ruthenium and iridium metal ions by ethylene glycol, and avoid heterogeneous nucleation.
  • the ruthenium salt in the present invention refers to a compound whose cation is a ruthenium ion, such as ruthenium acetate.
  • the iridium salt in the present invention refers to a compound whose cation is iridium ion, such as iridium acetate and the like.
  • the molar ratio of the ruthenium salt and the iridium salt is 0.05-20:1.
  • the concentration of the ruthenium salt is 5-100 mmol/L
  • the concentration of the iridium salt is 5-100 mmol/L
  • the concentration of polyvinylpyrrolidone is 0.1-50 g/L.
  • the volume of the suspended droplets is 1-200 ⁇ L.
  • the output power of the laser is 10-80W.
  • the laser irradiation treatment time is 5-60 s.
  • the pure method provided in some examples of this embodiment is to carry out centrifugal purification treatment on the suspension liquid after the laser irradiation treatment.
  • the centrifugal rotation speed is 10000-13000 rpm, and the centrifugal time is 20-60 min.
  • the number of centrifugal purification treatments is 3-6 times.
  • the solvent used in the centrifugal purification treatment is methanol, ethanol, propanol, isopropanol or water.
  • the centrifugal purification process is followed by drying.
  • the drying conditions are: vacuum drying at 55 ⁇ 65°C for 1 ⁇ 3h.
  • Another embodiment of the present invention provides a ruthenium-iridium nano-alloy prepared by the above method.
  • the force is 2-100 nm.
  • ethylene glycol undergoes a reduction reaction to ruthenium ions and iridium ions, and the laser output power is 50W; the reacted suspension droplets are collected into a centrifuge tube with a volume of 1.5mL, and methanol is added to the total liquid volume of 50W. 1mL, centrifuge and purify 6 times at 13000rmp in a centrifuge to obtain a solid product, each centrifugation time is 60min; transfer the centrifuged and purified solid product to a vacuum drying box and dry at 60°C for 2h to obtain a black ruthenium-iridium nanoalloy .
  • the particle size distribution of the ruthenium-iridium nano-alloy prepared in this example is uniform, about 2 nm, and the particle dispersibility is good without obvious agglomeration.
  • ethylene glycol undergoes a reduction reaction to ruthenium ions and iridium ions, and the laser output power is 40W; the reacted suspension droplets are collected into a centrifuge tube with a volume of 1.5mL, and ethanol is added to the total liquid volume of 1mL, centrifuge and purify 5 times at 12000rmp in a centrifuge to obtain a solid product, each centrifugation time is 40min; transfer the centrifuged and purified solid product to a vacuum drying box and dry at 60 °C for 2h to obtain a black ruthenium-iridium nanoalloy .
  • the TEM image of FIG. 2 shows that the particle size distribution of the ruthenium-iridium nano-alloy prepared in this example is uniform, about 3-5 nm, and the particle dispersibility is good without agglomeration.
  • ethylene glycol undergoes a reduction reaction to ruthenium ions and iridium ions, and the laser output power is 25W; the suspension droplets after the reaction are collected into a centrifuge tube with a volume of 1.5mL, and propanol is added to the total liquid volume. 1mL, centrifuge and purify 4 times at 11000rmp in a centrifuge to obtain a solid product, each centrifugation time is 50min; the solid product after centrifugation and purification is transferred to a vacuum drying box and dried at 60 °C for 2h to obtain black ruthenium iridium nanoparticles alloy.
  • the TEM image of FIG. 3 shows that the particle size distribution of the ruthenium-iridium nano-alloy prepared in this example is uniform, about 8-10 nm, and the particle dispersibility is good without agglomeration.
  • ethylene glycol undergoes a reduction reaction to ruthenium ions and iridium ions, and the laser output power is 35W; the reacted suspension droplets are collected into a centrifuge tube with a volume of 1.5mL, and methanol is added to the total liquid volume of 35W. 1mL, centrifuge and purify 5 times at 11500rmp in a centrifuge to obtain a solid product, each centrifugation time is 25min; the solid product after centrifugation and purification is transferred to a vacuum drying box and dried at 60°C for 2h to obtain a black ruthenium-iridium nanoalloy .
  • the TEM image of FIG. 4 shows that the particle size distribution of the ruthenium-iridium nano-alloy prepared in this example is uniform, about 12-15 nm, and the particle dispersibility is good without agglomeration.
  • ethylene glycol undergoes a reduction reaction to ruthenium ions and iridium ions, and the output power of the laser is 20W; the suspension droplets after the reaction are collected into a centrifuge tube with a volume of 1.5mL, and water is added to the total liquid volume of 20W. 1mL, centrifuge and purify 3 times at 10000rmp in a centrifuge to obtain a solid product, each centrifugation time is 20min; the solid product after centrifugation and purification is transferred to a vacuum drying box and dried at 60°C for 2h to obtain a black ruthenium-iridium nanoalloy .
  • the TEM image of FIG. 5 shows that the particle size distribution of the ruthenium-iridium nano-alloy prepared in this example is uniform, about 100 nm, and the particle dispersibility is good without agglomeration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Catalysts (AREA)

Abstract

一种利用激光辐照声悬浮液滴制备钌铱纳米合金的方法,该方法包括以下步骤:将钌盐、铱盐与聚乙烯吡咯烷酮溶解于乙二醇中,然后进行声悬浮处理获得悬浮液滴,对悬浮液滴进行激光辐照处理制备钌铱纳米合金。操作简便,为钌铱纳米合金的微量、快速、可控、低能耗制备开辟新途径。

Description

一种利用激光辐照声悬浮液滴制备钌铱纳米合金的方法 技术领域
本发明涉及一种利用激光辐照声悬浮液滴制备钌铱纳米合金的方法,属于贵金属纳米材料新型制备技术领域。
背景技术
公开该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不必然被视为承认或以任何形式暗示该信息构成已经成为本领域一般技术人员所公知的现有技术。
金属纳米粒子因其独特的尺寸效应、表面效应与电子状态在催化(CN 111185220 A)、传感(CN 111398396 A)、光学(CN 111253936 A)、医学与生物工程(CN 111420057 A)等领域具有广阔的应用前景。由于每种金属元素都有其独特的电子排布状态,因此合金化能够获得不同于单一金属元素的电子结构,进而影响其在不同应用中的性能。大量研究表明影响纳米合金性能的主要因素是合金的尺寸(J Am ChemSoc,2014,136(19):6978)、元素组成比例(J Am ChemSoc,2017,139(13):4643)与内部组分分布(Nat Chem,2014,6(4):320)。因此,开发一种新的制备技术以实现纳米合金的尺寸精准控制、成分任意组合以及组分分布可控具有显著的科学意义和工程价值。
钌是一种多价稀有金属元素。它性质稳定、耐腐蚀性强,具有硬度高、电学与催化性能优异的特点,常被用于制造硬质合金、电接触合金以及用作氢化、氧化、异构化和重整反应的催化剂(CN 111500914 A)。铱是一种稀有的贵金属材料,被认为是最耐腐蚀的金属元素,具有优异的热稳定性,多用于制作高温反应用坩埚、科学仪器、热电偶和电阻线等。像其它铂族金属合金一样,铱 合金能牢固吸附有机物,可用作催化剂材料(CN 111389395 A)。钌和铱有很大的互溶度,钌铱合金的成分在较大范围内连续可调,将钌和铱制成合金能够实现两者性能的优势互补。目前钌铱合金已被用作高温热电偶材料、催化剂、抗肿瘤材料以及发光材料。
钌铱纳米合金具有区别于块体合金材料的独特性能,实现钌铱纳米合金的可控制备是拓宽其性能与应用的有效手段。据发明人研究发现,当前广泛采取的纳米合金制备方法涉及在容器或基体上发生反应,极易发生异质形核,导致成分偏析和尺寸不可控,最终纳米合金的理化性质不稳定。因此,迫切需要开发一种纳米合金制备方法实现材料的尺寸精准控制、成分任意组合以及组分分布可控。
发明内容
为了解决现有技术的不足,本发明的目的是提供一种利用激光辐照声悬浮液滴制备钌铱纳米合金的方法,本发明能够实现无容器反应形成超小颗粒及元素互溶,克服异质形核导致的团聚和颗粒长大;避免反应过程中发生的成分偏析,形成均质合金;瞬间达到金属还原温度,实现不同种类金属离子同步还原,形成固溶体结构;实现微小局部震荡和微量反应,克服传统容器中反应造成的原材料与能源的浪费;突破形成熵局限,得到多组分亚稳态合金;合金成分和组分分布连续可调。
为了实现上述目的,本发明的技术方案为:
一方面,一种利用激光辐照声悬浮液滴制备钌铱纳米合金的方法,将钌盐、铱盐与聚乙烯吡咯烷酮溶解于乙二醇中,然后进行声悬浮处理获得悬浮液滴,对悬浮液滴进行激光辐照处理制备钌铱纳米合金。
本发明利用声悬浮能够使反应过程在无容器条件下进行,同时协同激光辐 照,能够实现乙二醇对钌、铱金属离子的快速同步还原,避免发生异质形核。
另一方面,一种钌铱纳米合金,由上述方法制备获得。
本发明的有益效果为:
本发明通过激光辐照声悬浮液滴制备钌铱纳米合金,该方法能够在60s以内实现乙二醇对钌、铱金属离子的还原,生成粒度均匀、成分和粒度可调、分散性好的钌铱纳米合金,所制备钌铱纳米合金粒度在2~100nm范围内连续可调、钌和铱的摩尔比在20:1~1:20范围内连续可调、组分分布均匀可控。本发明可为纳米合金的简便、快速、低能耗、可控制备开辟新途径,有力推动高性能纳米合金相关领域的发展。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为实施例1制备的钌铱纳米合金透射电镜图;
图2为实施例2制备的钌铱纳米合金透射电镜图;
图3为实施例3制备的钌铱纳米合金透射电镜图;
图4为实施例4制备的钌铱纳米合金透射电镜图;
图5为实施例5制备的钌铱纳米合金透射电镜图。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确 指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
鉴于现有制备钌铱纳米合金的方法存在易发生异质形核、成分偏析、尺寸不可控、制备时间较长等缺陷,本发明提出了一种利用激光辐照声悬浮液滴制备钌铱纳米合金的方法。
本发明的一种典型实施方式,提供了一种利用激光辐照声悬浮液滴制备钌铱纳米合金的方法,将钌盐、铱盐与聚乙烯吡咯烷酮溶解于乙二醇中,然后进行声悬浮处理获得悬浮液滴,对悬浮液滴进行激光辐照处理制备钌铱纳米合金。
本发明利用声悬浮能够使反应过程在无容器条件下进行,同时协同激光辐照,能够实现乙二醇对钌、铱金属离子的快速同步还原,避免发生异质形核。
本发明所述的钌盐是指阳离子为钌离子的化合物,例如醋酸钌等。
本发明所述的铱盐是指阳离子为铱离子的化合物,例如醋酸铱等。
该实施方式的一些实施例中,钌盐、铱盐的摩尔比为0.05~20:1。
该实施方式的一些实施例中,反应体系中,钌盐的浓度为5~100mmol/L,铱盐的浓度为5~100mmol/L。
该实施方式的一些实施例中,反应体系中,聚乙烯吡咯烷酮的浓度为0.1~50g/L。
该实施方式的一些实施例中,悬浮液滴的体积为1~200μL。
该实施方式的一些实施例中,激光辐照处理时,激光器的输出功率为10~80W。
该实施方式的一些实施例中,激光辐照处理的时间为5~60s。
为了获得更为纯净的钌铱纳米合金,该实施方式的一些实施例中提供的纯 方法为,将激光辐照处理后的悬浮液体进行离心纯化处理。
在一种或多种实施例中,离心纯化处理中,离心转速为10000~13000rpm,离心时间为20~60min。
在一种或多种实施例中,离心纯化处理的次数为3~6次。
在一种或多种实施例中,离心纯化处理采用的溶剂为甲醇、乙醇、丙醇、异丙醇或水。
在一种或多种实施例中,离心纯化处理后进行干燥。干燥条件为:55~65℃真空干燥1~3h。
本发明的另一种实施方式,提供了一种钌铱纳米合金,由上述方法制备获得。
该实施方式的一种或多种实施例中,力度为2~100nm。
为了使得本领域技术人员能够更加清楚地了解本发明的技术方案,以下将结合具体的实施例详细说明本发明的技术方案。
实施例1:
将25μmol醋酸钌、25μmol醋酸铱与0.5mg聚乙烯吡咯烷酮超声溶解于5mL乙二醇中得到溶液;用注射器抽取35μL上述溶液转移至单轴式声悬浮自动调谐装置中获得悬浮液滴;用激光器辐照该悬浮液滴10s,乙二醇对钌离子和铱离子发生还原反应,激光器输出功率为50W;将反应后的悬浮液滴收集至容积为1.5mL的离心管中加入甲醇至液体总体积为1mL,于离心机中在转速13000rmp下离心纯化6次得到固体产物,每次离心时间为60min;将离心纯化后的固体产物转移至真空干燥箱中于60℃干燥2h得到黑色的钌铱纳米合金。
由图1的透射电镜图可知,该实施例制备的钌铱纳米合金的粒度分布均匀, 约为2nm,颗粒分散性好无明显团聚现象。
实施例2:
将25μmol醋酸钌、500μmol醋酸铱与0.1g聚乙烯吡咯烷酮超声溶解于5mL乙二醇中得到溶液;用注射器抽取35μL上述溶液转移至单轴式声悬浮自动调谐装置中获得悬浮液滴;用激光器辐照该悬浮液滴10s,乙二醇对钌离子和铱离子发生还原反应,激光器输出功率为40W;将反应后的悬浮液滴收集至容积为1.5mL的离心管中加入乙醇至液体总体积为1mL,于离心机中在转速12000rmp下离心纯化5次得到固体产物,每次离心时间为40min;将离心纯化后的固体产物转移至真空干燥箱中于60℃干燥2h得到黑色的钌铱纳米合金。
图2的透射电镜图显示,该实施例制备的钌铱纳米合金的粒度分布均匀,约为3~5nm,颗粒分散性好无团聚现象。
实施例3:
将500μmol醋酸钌、25μmol醋酸铱与0.2g聚乙烯吡咯烷酮超声溶解于5mL乙二醇中得到溶液;用注射器抽取20μL上述溶液转移至单轴式声悬浮自动调谐装置中获得悬浮液滴;用激光器辐照该悬浮液滴30s,乙二醇对钌离子和铱离子发生还原反应,激光器输出功率为25W;将反应后的悬浮液滴收集至容积为1.5mL的离心管中加入丙醇至液体总体积为1mL,于离心机中在转速11000rmp下离心纯化4次得到固体产物,每次离心时间为50min;将离心纯化后的固体产物转移至真空干燥箱中于60℃干燥2h得到黑色的钌铱纳米合金。
图3的透射电镜图显示,该实施例制备的钌铱纳米合金的粒度分布均匀,约为8~10nm,颗粒分散性好无团聚现象。
实施例4:
将150μmol醋酸钌、40μmol醋酸铱与0.125g聚乙烯吡咯烷酮超声溶解于5mL乙二醇中得到溶液;用注射器抽取25μL上述溶液转移至单轴式声悬浮自动调谐装置中获得悬浮液滴;用激光器辐照该悬浮液滴15s,乙二醇对钌离子和铱离子发生还原反应,激光器输出功率为35W;将反应后的悬浮液滴收集至容积为1.5mL的离心管中加入甲醇至液体总体积为1mL,于离心机中在转速11500rmp下离心纯化5次得到固体产物,每次离心时间为25min;将离心纯化后的固体产物转移至真空干燥箱中于60℃干燥2h得到黑色的钌铱纳米合金。
图4的透射电镜图显示,该实施例制备的钌铱纳米合金的粒度分布均匀,约为12~15nm,颗粒分散性好无团聚现象。
实施例5:
将500μmol醋酸钌、500μmol醋酸铱与0.25g聚乙烯吡咯烷酮超声溶解于5mL乙二醇中得到溶液;用注射器抽取200μL上述溶液转移至单轴式声悬浮自动调谐装置中获得悬浮液滴;用激光器辐照该悬浮液滴60s,乙二醇对钌离子和铱离子发生还原反应,激光器输出功率为20W;将反应后的悬浮液滴收集至容积为1.5mL的离心管中加入水至液体总体积为1mL,于离心机中在转速10000rmp下离心纯化3次得到固体产物,每次离心时间为20min;将离心纯化后的固体产物转移至真空干燥箱中于60℃干燥2h得到黑色的钌铱纳米合金。
图5的透射电镜图显示,该实施例制备的钌铱纳米合金的粒度分布均匀,约为100nm,颗粒分散性好无团聚现象。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领 域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种利用激光辐照声悬浮液滴制备钌铱纳米合金的方法,其特征是,将钌盐、铱盐与聚乙烯吡咯烷酮溶解于乙二醇中,然后进行声悬浮处理获得悬浮液滴,对悬浮液滴进行激光辐照处理制备钌铱纳米合金。
  2. 如权利要求1所述的利用激光辐照声悬浮液滴制备钌铱纳米合金的方法,其特征是,钌盐、铱盐的摩尔比为0.05~20:1。
  3. 如权利要求1所述的利用激光辐照声悬浮液滴制备钌铱纳米合金的方法,其特征是,反应体系中,钌盐的浓度为5~100mmol/L,铱盐的浓度为5~100mmol/L。
  4. 如权利要求1所述的利用激光辐照声悬浮液滴制备钌铱纳米合金的方法,其特征是,反应体系中,聚乙烯吡咯烷酮的浓度为0.1~50g/L。
  5. 如权利要求1所述的利用激光辐照声悬浮液滴制备钌铱纳米合金的方法,其特征是,悬浮液滴的体积为1~200μL。
  6. 如权利要求1所述的利用激光辐照声悬浮液滴制备钌铱纳米合金的方法,其特征是,激光辐照处理时,激光器的输出功率为10~80W。
  7. 如权利要求1所述的利用激光辐照声悬浮液滴制备钌铱纳米合金的方法,其特征是,激光辐照处理的时间为5~60s。
  8. 如权利要求1所述的利用激光辐照声悬浮液滴制备钌铱纳米合金的方法,其特征是,将激光辐照处理后的悬浮液体进行离心纯化处理。
  9. 如权利要求8所述的利用激光辐照声悬浮液滴制备钌铱纳米合金的方法,其特征是,离心纯化处理中,离心转速为10000~13000rpm,离心时间为20~60min;
    或,离心纯化处理的次数为3~6次;
    或,离心纯化处理采用的溶剂为甲醇、乙醇、丙醇、异丙醇或水;
    或,离心纯化处理后进行干燥。
  10. 一种钌铱纳米合金,其特征是,由权利要求1~9任一所述的方法制备获得。
PCT/CN2021/073122 2020-12-02 2021-01-21 一种利用激光辐照声悬浮液滴制备钌铱纳米合金的方法 WO2022116380A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020217040864A KR102615652B1 (ko) 2020-12-02 2021-01-21 레이저 조사 음향 현탁 액적을 이용한 루테늄 이리듐 나노합금의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011390775.6 2020-12-02
CN202011390775.6A CN112658275B (zh) 2020-12-02 2020-12-02 一种利用激光辐照声悬浮液滴制备钌铱纳米合金的方法

Publications (1)

Publication Number Publication Date
WO2022116380A1 true WO2022116380A1 (zh) 2022-06-09

Family

ID=75401481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073122 WO2022116380A1 (zh) 2020-12-02 2021-01-21 一种利用激光辐照声悬浮液滴制备钌铱纳米合金的方法

Country Status (3)

Country Link
KR (1) KR102615652B1 (zh)
CN (1) CN112658275B (zh)
WO (1) WO2022116380A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117564289A (zh) * 2024-01-12 2024-02-20 中国科学技术大学 一种铱钌金核壳结构纳米材料及其制备方法和应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114734051B (zh) * 2022-04-21 2024-04-26 中国科学院合肥物质科学研究院 一种碳载体上原位制备超小尺寸贵金属非贵金属合金的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5147841A (en) * 1990-11-23 1992-09-15 The United States Of America As Represented By The United States Department Of Energy Method for the preparation of metal colloids in inverse micelles and product preferred by the method
CN102921961A (zh) * 2012-11-30 2013-02-13 南京大学 一种飞秒激光制备金属纳米材料的方法
CN104690284A (zh) * 2013-12-09 2015-06-10 青岛平度市旧店金矿 一种辐射化学法金属粉末加工工艺
CN105149609A (zh) * 2015-09-07 2015-12-16 昆明仁旺科技有限公司 一种制备贵金属粉体的方法
CN111299602A (zh) * 2020-02-25 2020-06-19 西北工业大学 一种无容器制备钌纳米颗粒的方法
CN111299603A (zh) * 2020-02-25 2020-06-19 西北工业大学 金纳米颗粒以及利用声悬浮制备金纳米颗粒的方法
CN111570811A (zh) * 2020-05-22 2020-08-25 西北工业大学 一种激光辐照制备纳米合金液滴的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002102679A (ja) * 2000-09-29 2002-04-09 Toyota Motor Corp 複合金属コロイド及びその製造方法
CN103586484B (zh) * 2013-11-25 2017-10-24 中国科学院福建物质结构研究所 钯钌合金纳米颗粒及其制备和用途
CN109382097B (zh) * 2018-09-29 2021-09-17 陕西科技大学 一种微乳液法制备铂铱钌复合纳米颗粒的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5147841A (en) * 1990-11-23 1992-09-15 The United States Of America As Represented By The United States Department Of Energy Method for the preparation of metal colloids in inverse micelles and product preferred by the method
CN102921961A (zh) * 2012-11-30 2013-02-13 南京大学 一种飞秒激光制备金属纳米材料的方法
CN104690284A (zh) * 2013-12-09 2015-06-10 青岛平度市旧店金矿 一种辐射化学法金属粉末加工工艺
CN105149609A (zh) * 2015-09-07 2015-12-16 昆明仁旺科技有限公司 一种制备贵金属粉体的方法
CN111299602A (zh) * 2020-02-25 2020-06-19 西北工业大学 一种无容器制备钌纳米颗粒的方法
CN111299603A (zh) * 2020-02-25 2020-06-19 西北工业大学 金纳米颗粒以及利用声悬浮制备金纳米颗粒的方法
CN111570811A (zh) * 2020-05-22 2020-08-25 西北工业大学 一种激光辐照制备纳米合金液滴的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117564289A (zh) * 2024-01-12 2024-02-20 中国科学技术大学 一种铱钌金核壳结构纳米材料及其制备方法和应用
CN117564289B (zh) * 2024-01-12 2024-05-17 中国科学技术大学 一种铱钌金核壳结构纳米材料及其制备方法和应用

Also Published As

Publication number Publication date
CN112658275A (zh) 2021-04-16
KR20220079796A (ko) 2022-06-14
CN112658275B (zh) 2022-03-29
KR102615652B1 (ko) 2023-12-20

Similar Documents

Publication Publication Date Title
WO2022116380A1 (zh) 一种利用激光辐照声悬浮液滴制备钌铱纳米合金的方法
Gao et al. Porous corundum-type In 2 O 3 nanoflowers: controllable synthesis, enhanced ethanol-sensing properties and response mechanism
Chen et al. Template-free synthesis of single-crystalline-like CeO2 hollow nanocubes
Huang et al. Laser ablation synthesis of spindle-like gallium oxide hydroxide nanoparticles with the presence of cationic cetyltrimethylammonium bromide
CN104831104B (zh) 一种三维纳米多孔钛及其合金的制备方法
WO2018064960A1 (zh) 一种微波辅助碳模板法制备负载型纳米金属材料的方法
Wei et al. Template-free synthesis of flower-like SnO2 hierarchical nanostructures with improved gas sensing performance
Liu et al. Fabrication and photoluminescence properties of hollow Gd 2 O 3: Ln (Ln= Eu3+, Sm3+) spheres via a sacrificial template method
CN107731546B (zh) 一种活性炭电极及其制备方法
Xiao et al. Carbon/ZnO nanorods composites templated by TEMPO-oxidized cellulose and photocatalytic activity for dye degradation
CN107572498A (zh) 一种碳化物掺杂多孔炭及其制备方法
CN103147074B (zh) 一种碳纳米管表面化学镀银的方法
CN103949192A (zh) 一种微波辅助气溶胶制备空心球的方法
Jiang et al. Microemulsion template synthesis of copper sulfide hollow spheres at room temperature
CN109650454A (zh) 一种微波辅助合成w18o49纳米材料的方法
Ke et al. Template-assisted synthesis of 3D ordered macroporous structured CuO as catalyst for ammonium perchlorate
Li et al. Fast preparation of Bi2GeO5 nanoflakes via a microwave-hydrothermal process and enhanced photocatalytic activity after loading with Ag nanoparticles
WO2024087551A1 (zh) 一种软模板法制备银纳米线的方法
Feng et al. Hierarchical flower-like γ-AlOOH and γ-Al2O3 microspheres: Synthesis and adsorption properties
CN107442132A (zh) 一种Ag@Cu2O核壳纳米粒子及其制备方法
CN110078465B (zh) 一种碳-二氧化硅-金复合气凝胶及其应用
Lu et al. Carbon nanofibres from fructose using a light-driven high-temperature spinning disc processor
CN108091838B (zh) 一步制备核-壳结构纳米α-Fe2O3@C复合材料的方法
Wang et al. Controllable synthesis of nearly monodisperse spherical aggregates of CeO2 nanocrystals and their catalytic activity for HCHO oxidation
CN103011134B (zh) 一种碳纳米管的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21899424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21899424

Country of ref document: EP

Kind code of ref document: A1