WO2022114073A1 - 一成分型硬化性樹脂組成物及び接着剤 - Google Patents

一成分型硬化性樹脂組成物及び接着剤 Download PDF

Info

Publication number
WO2022114073A1
WO2022114073A1 PCT/JP2021/043253 JP2021043253W WO2022114073A1 WO 2022114073 A1 WO2022114073 A1 WO 2022114073A1 JP 2021043253 W JP2021043253 W JP 2021043253W WO 2022114073 A1 WO2022114073 A1 WO 2022114073A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
weight
curable resin
resin composition
Prior art date
Application number
PCT/JP2021/043253
Other languages
English (en)
French (fr)
Inventor
敏彦 岡本
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to CN202180079701.7A priority Critical patent/CN116490361A/zh
Priority to JP2022565415A priority patent/JPWO2022114073A1/ja
Publication of WO2022114073A1 publication Critical patent/WO2022114073A1/ja
Priority to US18/202,649 priority patent/US20230295416A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • C08K5/31Guanidine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/53Core-shell polymer

Definitions

  • the present invention relates to a one-component curable resin composition containing an epoxy resin and an adhesive containing the same.
  • Epoxy resin is a civil engineering building material, electrical and electronic material, and adhesive because its cured product is excellent in many points such as dimensional stability, mechanical strength, electrical insulation characteristics, heat resistance, water resistance, and chemical resistance. Widely used as an agent.
  • the cured product of the epoxy resin has a problem that it has a low fracture toughness and exhibits a very brittle property.
  • dicyandiamide can function as a latent curing agent that produces cyanamide by heating, thereby exhibiting activity as a curing agent. Therefore, it is known that a one-component curable composition can be formed by blending dicyandiamide with an epoxy resin.
  • Patent Document 1 describes an adhesive composition that exhibits high peeling adhesive strength by containing an epoxy resin, dicyandiamide as a curing agent, and fine particles having a specific particle size made of a specific thermoplastic resin.
  • core-shell particles are used in comparative examples.
  • Patent Document 2 describes a one-component epoxy adhesive in which a filler, a core-shell toughening agent, and a latent curing agent such as dicyandiamide are mixed with an epoxy compound containing a trifunctional or higher-functional liquid epoxy.
  • Patent Document 3 an epoxy resin composition containing an epoxy resin, an amino-based curing agent such as dicyandiamide, and a phenol-based curing agent having a specific structure, and the ratio of the amino-based curing agent to the phenol-based curing agent is within a specific range. , And the prepregs formed using them are described.
  • the one-component curable composition in which dicyandiamide is blended with an epoxy resin as described in Patent Documents 1 to 3 has insufficient impact resistance and peeling adhesiveness, and there is room for improvement.
  • the present inventors have added polymer particles having a core-shell structure and / or blocked urethane (B) to the epoxy resin (A), and a specific phenol compound (C). And, it has been found that by blending dicyandiamide (D) in a specific ratio, a one-component curable resin composition that gives a cured product exhibiting excellent impact-resistant peeling adhesiveness can be obtained.
  • the compound (C) has one or two phenolic hydroxyl groups in one molecule.
  • the compound (C) contains 1 to 4 substituents selected from the group consisting of a methyl group, a primary alkyl group, a secondary alkyl group, a tertiary alkyl group and a halogen. Have on top.
  • the compound (C) is selected from the group consisting of a methyl group, a primary alkyl group, a secondary alkyl group, a tertiary alkyl group and a halogen at the ortho position of at least one phenolic hydroxyl group.
  • the component (B) contains polymer particles having the core-shell structure.
  • the molecular weight of the compound (C) is 90 or more and 500 or less.
  • one molecule further contains the compound (E) having four or more phenolic hydroxyl groups, and the ratio of the total weight of the compound (E) to the total weight of the compound (C) is less than 1.
  • the ratio of the molar amount of the dicyandiamide (D) to the molar amount of the epoxy group contained in the epoxy resin (A) is 0.10 or more and 0.30 or less.
  • the one-component curable resin composition further contains 0.1 to 10 parts by weight of the curing accelerator (F) with respect to 100 parts by weight of the epoxy resin (A).
  • the polymer particles having the core-shell structure have one or more core layers selected from the group consisting of a diene-based rubber, a (meth) acrylate-based rubber, and an organosiloxane-based rubber.
  • the diene-based rubber is a butadiene rubber and / or a butadiene-styrene rubber.
  • the polymer particles having the core-shell structure are obtained by graft-polymerizing one or more monomer components selected from the group consisting of aromatic vinyl monomers, vinyl cyan monomers, and (meth) acrylate monomers onto the core layer. It has a shell layer.
  • the polymer particles having the core-shell structure have an epoxy group in the shell layer.
  • the polymer particles having a core-shell structure have a shell layer formed by graft-polymerizing a monomer component having an epoxy group onto the core layer.
  • the polymer particles having the core-shell structure have an epoxy group in the shell layer, and the content of the epoxy group in the shell layer is 0.1 to 2.0 mmol / g with respect to the total amount of the shell layer.
  • the present invention also relates to a cured product obtained by curing the one-component curable resin composition.
  • the present invention also relates to an adhesive containing the one-component curable resin composition.
  • the adhesive is a structural adhesive.
  • the present invention also relates to a laminate comprising two substrates and an adhesive layer in which the adhesive is cured, which joins the two substrates.
  • the present invention is a method for producing the cured product, wherein the epoxy resin (A), polymer particles having a core-shell structure and / or blocked urethane (B), the compound (C), and the dicyandiamide ( It also relates to a method for producing a cured product, which comprises a step of mixing D) to obtain a mixture and a step of heating the mixture to obtain the cured product.
  • (D) is a one-component curable resin composition containing.
  • the one-component curable resin composition of the present embodiment contains an epoxy resin (A) as a curable resin.
  • the epoxy resin various epoxy resins can be used.
  • polyalkylene glycol diglycidyl ether examples include polyethylene glycol diglycidyl ether and polypropylene glycol diglycidyl ether. More specific examples of the glycol diglycidyl ether include neopentyl glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, cyclohexanedimethanol diglycidyl ether and the like. Will be.
  • aliphatic polybasic acid diglycidyl ester examples include dimer acid diglycidyl ester, adipate diglycidyl ester, sebacic acid diglycidyl ester, and maleic acid diglycidyl ester.
  • Specific examples of the glycidyl ether of the dihydric or higher polyhydric alcohol include trimethylolpropane triglycidyl ether, trimethylolethane triglycidyl ether, castor oil modified polyglycidyl ether, propoxylated glycerin triglycidyl ether, and sorbitol. Examples include polyglycidyl ether.
  • Examples of the epoxy compound obtained by adding a polybasic acid or the like to an epoxy resin include a dimer of tall oil fatty acid (dimeric acid) and bisphenol A as described in International Publication No. 2010-098950. Examples thereof include an addition reaction product with a type epoxy resin.
  • the polyalkylene glycol diglycidyl ether, the glycol diglycidyl ether, the diglycidyl ester of the aliphatic polybasic acid, and the glycidyl ether of the divalent or higher polyvalent aliphatic alcohol are epoxy resins having a relatively low viscosity.
  • epoxy resins such as bisphenol A type epoxy resin and bisphenol F type epoxy resin
  • the content of the epoxy resin that functions as the reactive diluent is preferably 0.5 to 20% by weight, more preferably 1 to 10% by weight, still more preferably 2 to 5% by weight in the component (A).
  • the chelate-modified epoxy resin is a reaction product of an epoxy resin and a compound (chelate ligand) containing a chelate functional group, and a one-component curable resin composition containing the reaction product is used as an adhesive for vehicles. If so, the adhesiveness to the surface of the metal substrate contaminated with the oily substance can be improved.
  • the chelate functional group is a functional group of a compound having a plurality of coordination positions capable of coordinating to a metal ion in the molecule, and is, for example, a phosphorus-containing acid group (for example, -PO (OH) 2 ) or a carboxylic acid group (-).
  • the amount of the chelate-modified epoxy resin used in the component (A) is preferably 0.1 to 10% by weight, more preferably 0.5 to 3% by weight.
  • the rubber-modified epoxy resin is a reaction product obtained by reacting rubber with an epoxy group-containing compound and having 1.1 or more, preferably two or more epoxy groups on average per molecule.
  • rubber examples include acrylonitrile butadiene rubber (NBR), styrene butadiene rubber (SBR), hydrogenated nitrile rubber (HNBR), ethylene propylene rubber (EPDM), acrylic rubber (ACM), butyl rubber (IIR), butadiene rubber, and polypropylene oxide.
  • NBR acrylonitrile butadiene rubber
  • SBR styrene butadiene rubber
  • HNBR hydrogenated nitrile rubber
  • EPDM ethylene propylene rubber
  • ACM acrylic rubber
  • IIR butadiene rubber
  • polypropylene oxide examples thereof include rubber-based polymers such as polyoxyalkylenes such as polyethylene oxide and polytetramethylene oxide.
  • the rubber-based polymer preferably has a reactive group such as an amino group, a
  • a rubber-modified epoxy resin is a product obtained by reacting these rubber-based polymers with an epoxy resin in an appropriate compounding ratio by a known method.
  • acrylonitrile-butadiene rubber-modified epoxy resin and polyoxyalkylene-modified epoxy resin are preferable from the viewpoint of adhesiveness and impact-resistant peeling adhesiveness of the obtained one-component curable resin composition, and acrylonitrile-butadiene rubber-modified.
  • Epoxy resin is more preferred.
  • the acrylonitrile-butadiene rubber-modified epoxy resin can be obtained, for example, by reacting a carboxyl group-terminated NBR (CTBN) with a bisphenol A type epoxy resin.
  • CBN carboxyl group-terminated NBR
  • the content of the acrylonitrile monomer component in the acrylonitrile-butadiene rubber is preferably 5 to 40% by weight, preferably 10 to 40% by weight, from the viewpoint of the adhesiveness and the impact-resistant peeling adhesiveness of the obtained one-component curable resin composition. 35% by weight is more preferable, and 15 to 30% by weight is further preferable. From the viewpoint of workability of the obtained one-component curable resin composition, 20 to 30% by weight is particularly preferable.
  • an addition reaction product of an amino group-terminated polyoxyalkylene and an epoxy resin (hereinafter, also referred to as an “adduct”) is also included in the rubber-modified epoxy resin.
  • the adduct can be easily produced by a known method, for example, as described in US Pat. No. 5,84,532, US Pat. No. 6,015865, and the like.
  • the epoxy resin used in producing the adduct include specific examples of the component (A) described above, but bisphenol A type epoxy resin and bisphenol F type epoxy resin are preferable, and bisphenol A type epoxy resin is preferable. Is more preferable.
  • the commercially available amino group-terminated polyoxyalkylene used in producing an adduct is, for example, Jeffamine D-230, Jeffamine D-400, Jeffamine D-2000, Jeffamine D-4000, manufactured by Huntsman.
  • Examples include Jeffamine T-5000.
  • the average number of epoxide-reactive end groups per molecule in the rubber is preferably 1.5 to 2.5, more preferably 1.8 to 2.2.
  • the number average molecular weight of the rubber is preferably 1000 to 10000, more preferably 2000 to 8000, and particularly preferably 3000 to 6000 in terms of polystyrene-equivalent molecular weight measured by GPC.
  • the method for producing the rubber-modified epoxy resin can be produced by reacting rubber with an epoxy group-containing compound in a large amount of epoxy group-containing compound. Specifically, it is preferably produced by reacting 2 equivalents or more of an epoxy group-containing compound with 1 equivalent of an epoxy-reactive terminal group in rubber. It is more preferable that the obtained product reacts with an epoxy group-containing compound in an amount sufficient to form a mixture of the adduct of the rubber and the epoxy group-containing compound with the free epoxy group-containing compound.
  • a rubber-modified epoxy resin is produced by heating to a temperature of 100 to 250 ° C.
  • the epoxy group-containing compound used in producing the rubber-modified epoxy resin is not particularly limited, but bisphenol A type epoxy resin and bisphenol F type epoxy resin are preferable, and bisphenol A type epoxy resin is more preferable.
  • the epoxy resin can be modified by pre-reacting with the bisphenol component.
  • the bisphenol component used for the modification is preferably 3 to 35 parts by weight, more preferably 5 to 25 parts by weight, based on 100 parts by weight of the rubber component in the rubber-modified epoxy resin.
  • a cured product obtained by curing a one-component curable resin composition containing a modified rubber-modified epoxy resin has excellent adhesive durability after high-temperature exposure and also has excellent impact resistance at low temperatures.
  • the glass transition temperature (Tg) of the rubber-modified epoxy resin is not particularly limited, but is preferably ⁇ 25 ° C. or lower, more preferably ⁇ 35 ° C. or lower, further preferably ⁇ 40 ° C. or lower, and particularly preferably ⁇ 50 ° C. or lower.
  • the number average molecular weight of the rubber-modified epoxy resin is preferably 1500 to 40,000, more preferably 3000 to 30000, and particularly preferably 4000 to 20000 in terms of polystyrene-equivalent molecular weight measured by GPC.
  • the molecular weight distribution (ratio of weight average molecular weight to number average molecular weight) is preferably 1 to 4, more preferably 1.2 to 3, and particularly preferably 1.5 to 2.5.
  • the rubber-modified epoxy resin can be used alone or in combination of two or more.
  • the amount of the rubber-modified epoxy resin used in the component (A) is preferably 1 to 50% by weight, more preferably 2 to 40% by weight, still more preferably 5 to 30% by weight, and particularly preferably 10 to 20% by weight.
  • the urethane-modified epoxy resin is obtained by reacting a compound containing a group having a reactivity with an isocyanate group and an epoxy group with a urethane prepolymer containing an isocyanate group, and the epoxy group is averaged per molecule. It is a reaction product having 1.1 or more, preferably 2 or more.
  • a urethane-modified epoxy resin can be obtained by reacting a hydroxy group-containing epoxy compound with a urethane prepolymer.
  • the number average molecular weight of the urethane-modified epoxy resin is preferably 1500 to 40,000, more preferably 3000 to 30000, and particularly preferably 4000 to 20000 in terms of polystyrene-equivalent molecular weight measured by GPC.
  • the molecular weight distribution (ratio of weight average molecular weight to number average molecular weight) is preferably 1 to 4, more preferably 1.2 to 3, and particularly preferably 1.5 to 2.5.
  • the urethane-modified epoxy resin can be used alone or in combination of two or more.
  • the amount of the urethane-modified epoxy resin used in the component (A) is preferably 1 to 50% by weight, more preferably 2 to 40% by weight, still more preferably 5 to 30% by weight, and particularly preferably 10 to 20% by weight.
  • those having at least two epoxy groups in one molecule have high curability, high flexibility after curing, and have an effect of improving impact peeling resistance by blending core-shell polymer particles (B). It is preferable because it is excellent. In particular, a compound having two epoxy groups in one molecule is preferable.
  • bisphenol A type epoxy resin and bisphenol F type epoxy resin are preferable because they have high elasticity of the obtained cured product, excellent heat resistance and adhesiveness, and are relatively inexpensive. Resin is particularly preferred.
  • an epoxy resin having an epoxy equivalent of less than 220 is preferable because of its high elastic modulus and heat resistance of the obtained cured product, and an epoxy equivalent of 90 or more and less than 210 is more preferable, and 150 or more and less than 200 is preferable. More preferred.
  • bisphenol A type epoxy resin and bisphenol F type epoxy resin having an epoxy equivalent of less than 220 are preferable because they are liquid at room temperature and the obtained one-component curable resin composition is easy to handle.
  • a bisphenol A type epoxy resin or a bisphenol F type epoxy resin having an epoxy equivalent of 220 or more and less than 5000 is added to the component (A) in a range of preferably 40% by weight or less, more preferably 20% by weight or less.
  • the cured product is preferable because it has excellent impact resistance.
  • the one-component curable resin composition of the present embodiment contains polymer particles having a core-shell structure and / or blocked urethane as the component (B). Due to the toughness improving effect of the component (B), the obtained cured product has excellent impact resistance and peeling adhesiveness.
  • a one-component curable resin composition can be obtained by a synergistic effect. The impact-resistant peeling adhesiveness of the cured product can be greatly improved.
  • the component (B) only polymer particles having a core-shell structure may be contained, or only blocked urethane may be contained. Moreover, both may be contained.
  • the component (B) it is preferable to contain at least polymer particles having a core-shell structure.
  • the polymer particles having a core-shell structure are also referred to as core-shell polymer particles.
  • the core-shell polymer particles (B) may not have an epoxy group in the shell layer, but those having an epoxy group in the shell layer are preferable.
  • the content of the epoxy group contained in the shell layer with respect to the total amount of the shell layer of the core-shell polymer particles (B) is 0.1 mmol / g or more from the viewpoint of impact resistance peeling adhesiveness of the obtained cured product. It is preferably 0 mmol / g or less, and more preferably 0.3 mmol / g or more and 1.5 mmol / g or less.
  • the core-shell polymer particles (B) can be dispersed in the cured product in the form of primary particles, and as a result, the impact-resistant peeling adhesiveness of the cured product is improved. It is speculated that it can be done.
  • the particle size of the core-shell polymer particles (B) is not particularly limited, but in consideration of industrial productivity, the volume average particle size (Mv) is preferably 10 to 2000 nm, more preferably 30 to 600 nm, still more preferably 50 to 400 nm. , 100-300 nm is particularly preferable.
  • the volume average particle diameter (Mv) of the polymer particles can be measured with respect to the latex of the polymer particles using Microtrac UPA150 (manufactured by Nikkiso Co., Ltd.).
  • the core-shell polymer particles (B) have a half-price width of 0.5 times or more and 1 times or less of the volume average particle diameter in the number distribution of the particle diameters in the one-component curable resin composition.
  • the obtained one-component curable resin composition is preferable because it has a low viscosity and is easy to handle.
  • the core-shell polymer particles (B) there are two or more maximum values in the number distribution of the particle size of the core-shell polymer particles (B), and from the viewpoint of labor and cost during manufacturing. , It is more preferable that there are 2 to 3 maximum values, and it is further preferable that there are 2 maximum values. In particular, it is preferable to contain 10 to 90% by weight of core-shell polymer particles having a volume average particle diameter of 10 nm or more and less than 150 nm, and 90 to 10% by weight of core-shell polymer particles having a volume average particle diameter of 150 nm or more and 2000 nm or less.
  • the core-shell polymer particles (B) are dispersed in the state of primary particles in the one-component curable resin composition.
  • core-shell polymer particles are dispersed in the state of primary particles means that the core-shell polymer particles are dispersed substantially independently (without contact).
  • a part of the one-component curable resin composition is dissolved in a solvent such as methyl ethyl ketone, and the particle size is measured by a particle size measuring device or the like by laser light scattering. Can be confirmed by measuring.
  • the value of the volume average particle diameter (Mv) / number average particle diameter (Mn) measured by the particle diameter measurement is not particularly limited, but is preferably 3 or less, more preferably 2.5 or less, still more preferably 2 or less. , 1.5 or less is particularly preferable.
  • the volume average particle diameter (Mv) / number average particle diameter (Mn) is 3 or less, it is considered that the core-shell polymer particles (B) are well dispersed, and the impact resistance and adhesiveness of the obtained cured product are considered to be good. Physical characteristics such as become good.
  • the volume average particle diameter (Mv) / number average particle diameter (Mn) can be determined by measuring using Microtrac UPA (manufactured by Nikkiso Co., Ltd.) and dividing Mv by Mn.
  • stable dispersion of the core-shell polymer particles means that the core-shell polymer particles do not aggregate, separate, or precipitate in the continuous layer, and are constantly under normal conditions for a long period of time. It means a state of being dispersed over.
  • the distribution of the core-shell polymer particles in the continuous layer does not change substantially, and even if these compositions are heated within a non-hazardous range to reduce the viscosity and stir, they are “stable”. It is preferable to be able to maintain "dispersion”.
  • the core-shell polymer particles (B) may be used alone or in combination of two or more.
  • the structure of the core-shell polymer particles (B) is not particularly limited, but it is preferable to have two or more layers. It is also possible to have a structure of three or more layers composed of an intermediate layer covering the core layer and a shell layer further covering the intermediate layer.
  • the core layer is preferably an elastic core layer having rubber properties in order to increase the toughness of the cured product of the one-component curable resin composition.
  • the elastic core layer preferably has a gel content of 60% by weight or more, more preferably 80% by weight or more, still more preferably 90% by weight or more. It is particularly preferable that it is 95% by weight or more.
  • the gel content referred to in the present specification is when 0.5 g of crumb obtained by coagulation and drying is immersed in 100 g of toluene, allowed to stand at 23 ° C. for 24 hours, and then the insoluble and soluble components are separated. , Means the ratio of insoluble matter to the total amount of insoluble matter and soluble matter.
  • the core layer preferably contains at least one selected from the group consisting of diene-based rubber, (meth) acrylate-based rubber, and organosiloxane-based rubber.
  • the effect of improving the impact-resistant peeling adhesiveness of the obtained cured product is high, and the affinity with the epoxy resin (A) is low, so that the viscosity increases over time due to the swelling of the core layer due to the component (A).
  • the core layer preferably contains a diene-based rubber because it is unlikely to occur.
  • Examples of the conjugated diene-based monomer constituting the diene-based rubber include 1,3-butadiene, isoprene, 2-chloro-1,3-butadiene, 2-methyl-1,3-butadiene and the like. These conjugated diene-based monomers may be used alone or in combination of two or more.
  • the content of the conjugated diene-based monomer is preferably in the range of 50 to 100% by weight, more preferably in the range of 70 to 100% by weight, and in the range of 90 to 100% by weight. It is more preferable to have.
  • the content of the conjugated diene-based monomer is 50% by weight or more, the impact-resistant peeling adhesiveness of the obtained cured product can be improved.
  • vinyl-based monomer copolymerizable with the conjugated diene-based monomer examples include vinyl allenes such as styrene, ⁇ -methylstyrene, monochlorostyrene and dichlorostyrene; vinylcarboxylic acids such as acrylic acid and methacrylic acid; Vinyl cyanes such as acrylonitrile and methacrylonitrile; vinyl halides such as vinyl chloride, vinyl bromide and chloroprene; vinyl acetate; alkenes such as ethylene, propylene, butylene and isobutylene; diallyl phthalate, triallyl cyanurate, tri Examples thereof include polyfunctional monomers such as allyl isocyanurate and divinylbenzene. These vinyl-based monomers may be used alone or in combination of two or more. Styrene is particularly preferable.
  • the content of the vinyl-based monomer copolymerizable with the conjugated diene-based monomer is preferably in the range of 0 to 50% by weight, more preferably in the range of 0 to 30% by weight. It is preferably in the range of 0 to 10% by weight, more preferably.
  • the content of the vinyl-based monomer copolymerizable with the conjugated diene-based monomer is 50% by weight or less, the impact-resistant peeling adhesiveness of the obtained cured product can be improved.
  • Diene rubber has a high effect of improving impact resistance and peeling adhesiveness, and because it has a low affinity with the epoxy resin (A), it is unlikely that the viscosity will increase over time due to swelling of the core layer.
  • Butadiene rubber using 1,3-butadiene and / or butadiene-styrene rubber which is a copolymer of 1,3-butadiene and styrene is preferable, and butadiene rubber is more preferable. Further, butadiene-styrene rubber is preferable in that the transparency of the cured product obtained by adjusting the refractive index can be enhanced.
  • the (meth) acrylate-based rubber contains 50 to 100% by weight of at least one monomer selected from the group consisting of (meth) acrylate-based monomers, and other vinyl-based rubbers capable of copolymerizing with the (meth) acrylate-based monomer. It is preferably a rubber elastic body obtained by polymerizing a monomer mixture containing 0 to 50% by weight of a monomer.
  • Examples of the (meth) acrylate-based monomer include (i) methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, and dodecyl (meth).
  • Alkyl (meth) acrylates such as acrylates, stearyl (meth) acrylates and behenyl (meth) acrylates;
  • Aromatic ring-containing (meth) acrylates such as phenoxyethyl (meth) acrylates and benzyl (meth) acrylates;
  • Hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate and 4-hydroxybutyl (meth) acrylate;
  • glycidyl (meth) such as (iv) glycidyl (meth) acrylate and glycidylalkyl (meth) acrylate.
  • Examples of other vinyl-based monomers copolymerizable with the (meth) acrylate-based monomer include vinyl allenes such as (i) styrene, ⁇ -methylstyrene, monochlorostyrene, and dichlorostyrene; (ii) acrylic acid and methacrylic acid.
  • Vinyl carboxylic acids such as (iii) acrylonitrile, vinyl cyanides such as methacrylonitrile;
  • vinyl halides such as vinyl chloride, vinyl bromide, chloroprene;
  • vinyl acetate ethylene, styrene.
  • Alkenes such as butylene, isobutylene;
  • Polyfunctional monomers such as diallyl phthalate, triallyl cyanurate, triallyl isocyanurate, divinylbenzene and the like can be mentioned. These vinyl-based monomers may be used alone or in combination of two or more. Styrene is particularly preferable because the refractive index can be easily increased.
  • organosiloxane rubber The organosiloxane-based rubber is composed of, for example, (i) an alkyl or aryl 2-substituted silyloxy unit such as (i) dimethylsilyloxy, diethylsilyloxy, methylphenylsilyloxy, diphenylsilyloxy, dimethylsilyloxy-diphenylsilyloxy.
  • Polysiloxane-based polymers (ii) Polysiloxane-based polymers composed of alkyl or aryl 1-substituted silyloxy units, such as organohydrogensilyloxy in which a part of the alkyl in the side chain is substituted with a hydrogen atom, and the like can be mentioned. .. These polysiloxane-based polymers may be used alone or in combination of two or more. Of these, dimethylsilyloxy, methylphenylsilyloxy, and dimethylsilyloxy-diphenylsilyloxy are preferable because they can impart heat resistance to the cured product, and dimethylsilyloxy is most preferable because they can be easily obtained.
  • the polysiloxane-based polymer moiety is 80% by weight or more (more preferably) with the entire organosiloxane-based rubber as 100% by weight so as not to impair the heat resistance of the cured product. 90% by weight or more) is preferably contained.
  • the glass transition temperature of the core layer (hereinafter, may be simply referred to as “Tg”) is preferably 0 ° C. or lower, more preferably ⁇ 20 ° C. or lower, and more preferably ⁇ 20 ° C. or lower in order to increase the toughness of the obtained cured product. It is more preferably 40 ° C. or lower, and particularly preferably ⁇ 60 ° C. or lower.
  • the volume average particle size of the core layer is preferably 0.03 to 2 ⁇ m, more preferably 0.05 to 1 ⁇ m. Within this range, stable production can be achieved, and the heat resistance and impact resistance of the cured product can be good.
  • the volume average particle size can be measured using Microtrac UPA150 (manufactured by Nikkiso Co., Ltd.).
  • the proportion of the core layer is preferably 40 to 97% by weight, more preferably 60 to 95% by weight, further preferably 70 to 93% by weight, and particularly preferably 80 to 90% by weight, with the entire core-shell polymer particles as 100% by weight.
  • the ratio of the core layer is 40% by weight or more, the impact-resistant peeling adhesiveness of the obtained cured product can be improved.
  • the ratio of the core layer is 97% by weight or less, the core-shell polymer particles are less likely to aggregate, the one-component curable resin composition has a lower viscosity, and the workability can be improved.
  • the core layer often has a single-layer structure, but it may have a multi-layer structure composed of a layer having rubber elasticity. Further, when the core layer has a multi-layer structure, the polymer composition of each layer may be different within the scope of the above disclosure.
  • an intermediate layer may be formed between the core layer and the shell layer.
  • the following rubber surface crosslinked layer may be formed as the intermediate layer. From the viewpoint of improving the toughness of the obtained cured product and improving the impact resistance and peeling adhesiveness, it is preferable that the intermediate layer is not contained, and in particular, the following rubber surface crosslinked layer is not contained.
  • the ratio of the intermediate layer to 100 parts by weight of the core layer is preferably 0.1 to 30 parts by weight, more preferably 0.2 to 20 parts by weight, still more preferably 0.5 to 10 parts by weight. 1 to 5 parts by weight is particularly preferable.
  • the rubber surface crosslinked layer comprises a rubber surface crosslinked layer component composed of 30 to 100% by weight of a polyfunctional monomer having two or more radically polymerizable double bonds in one molecule and 0 to 70% by weight of another vinyl monomer. It is composed of a polymerized intermediate layer polymer and has an effect of lowering the viscosity of the one-component curable resin composition and an effect of improving the dispersibility of the core-shell polymer particles (B) in the component (A). It also has the effect of increasing the crosslink density of the core layer and increasing the graft efficiency of the shell layer.
  • polyfunctional monomer do not include conjugated diene-based monomers such as butadiene, and allylalkyl (meth) acrylates such as allyl (meth) acrylate and allylalkyl (meth) acrylate; allyloxyalkyl (meth).
  • (meth) acrylate means acrylate and / or methacrylate.
  • the shell layer existing on the outermost side of the core-shell polymer particles is obtained by polymerizing a monomer for forming a shell layer, but it improves the compatibility between the core-shell polymer particles (B) and the components (A) and has one-component curability. It consists of a shell polymer that is responsible for allowing the core-shell polymer particles (B) to be dispersed in the state of primary particles in the resin composition or a cured product thereof.
  • Such a shell polymer is preferably grafted on the core layer and / or the intermediate layer.
  • the monomer component used for forming the shell layer is a core polymer forming a core layer (in the case where an intermediate layer is formed, the core polymer also includes an intermediate layer polymer forming an intermediate layer. , The same), it is preferable that the shell polymer and the core polymer are substantially chemically bonded (when the intermediate layer is formed, the shell polymer and the intermediate layer polymer are chemically bonded). It is also preferable).
  • the shell polymer is formed by graft-polymerizing the shell layer forming monomer in the presence of the core polymer, and by doing so, the shell polymer is graft-polymerized to the core polymer, and is one of the core polymers. It covers a part or the whole.
  • This polymerization operation can be carried out by adding a monomer for forming a shell polymer layer to the latex of the core polymer prepared in the state of an aqueous polymer latex and polymerizing the latex.
  • the shell layer forming monomer is, for example, an aromatic vinyl monomer, a vinyl cyan monomer, or (meth) from the viewpoint of compatibility and dispersibility in the one-component curable resin composition of the core-shell polymer particles (B).
  • Acrylate monomers are preferred, and (meth) acrylate monomers are more preferred.
  • the shell layer forming monomer preferably contains methylmethacrylite.
  • the total amount of the aromatic vinyl monomer, the vinyl cyan monomer, and the (meth) acrylate monomer is preferably 10 to 99.5% by weight, preferably 50 to 99% by weight, based on 100% by weight of the monomer for forming the shell layer. More preferably, 65 to 98% by weight is further preferable, 67 to 90% by weight is particularly preferable, and 67 to 85% by weight is most preferable.
  • the content of methyl metaclerite is preferably 5 to 100% by weight, more preferably 20 to 99% by weight, further preferably 30 to 97% by weight, and even more preferably 70 in 100% by weight of the monomer for forming the shell layer. ⁇ 95% by weight is particularly preferable.
  • a monomer for forming a shell layer from the viewpoint of chemically bonding with the component (A) in order to maintain a good dispersed state without agglomeration of the core-shell polymer particles (B) in the cured product or the one-component curable resin composition.
  • the monomer having an epoxy group is preferably contained in an amount of 0 to 90% by weight, preferably 1 to 50% by weight, in 100% by weight of the monomer for forming a shell layer from the viewpoint of impact resistance peeling adhesiveness and storage stability. More preferably, 2 to 35% by weight is further preferable, and 3 to 20% by weight is particularly preferable.
  • the monomer having an epoxy group is preferably used for forming the shell layer, and more preferably used only for the shell layer.
  • the swelling of the core-shell polymer particles is prevented in the one-component curable resin composition, and the core-shell polymer particles are prevented from swelling.
  • the component-type curable resin composition is preferable because it has a low viscosity and tends to be easy to handle.
  • the polyfunctional monomer may be contained in 100% by weight of the shell layer forming monomer, for example, 0 to 20% by weight, preferably 1 to 20% by weight, and more preferably 5 to 20% by weight. It is 15% by weight.
  • aromatic vinyl monomer examples include vinylbenzenes such as styrene, ⁇ -methylstyrene, p-methylstyrene, and divinylbenzene.
  • vinyl cyanomer examples include acrylonitrile, methacrylonitrile, and the like.
  • the (meth) acrylate monomer examples include (meth) acrylic acid alkyl esters such as methyl (meth) acrylate, ethyl (meth) acrylate, and butyl (meth) acrylate; and (meth) acrylic acid hydroxyalkyl esters. Be done.
  • (meth) acrylic acid hydroxyalkyl ester examples include hydroxy linear alkyl (meth) such as 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, and 4-hydroxybutyl (meth) acrylate.
  • Acrylate particularly hydroxy straight chain C1-6 alkyl (meth) acrylate); caprolactone-modified hydroxy (meth) acrylate; hydroxy-branched alkyl such as ⁇ - (hydroxymethyl) methyl acrylate, ⁇ - (hydroxymethyl) ethyl acrylate ( Hydroxyl group-containing (meth) acrylates such as mono (meth) acrylates of polyester diols (particularly saturated polyester diols) obtained from meta) acrylates, dihydric carboxylic acids (phthalic acids, etc.) and dihydric alcohols (propylene glycol, etc.). And so on.
  • the monomer having an epoxy group examples include glycidyl group-containing vinyl monomers such as glycidyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether, and allyl glycidyl ether.
  • polyfunctional monomer having two or more radically polymerizable double bonds As a specific example of the polyfunctional monomer having two or more radically polymerizable double bonds, the same monomer as the above-mentioned polyfunctional monomer is exemplified, but allyl methacrylate and triallyl isocyanurate are preferable.
  • aromatic vinyl monomer particularly styrene
  • vinyl cyan monomer particularly acrylonitrile
  • % Preferably 0 to 30% by weight, more preferably 10 to 25% by weight
  • (meth) acrylate monomer particularly methyl methacrylate 0 to 100% by weight (preferably 5 to 100% by weight, more preferably 70 to 95% by weight).
  • the shell layer may be formed by containing other monomer components in addition to the above-mentioned monomer components.
  • the graft ratio of the shell layer is preferably 70% or more (more preferably 80% or more, still more preferably 90% or more).
  • the one-component curable resin composition may have a lower viscosity.
  • the calculation method of the graft ratio is as described below. First, the aqueous latex containing the core-shell polymer particles is coagulated and dehydrated, and finally dried to obtain a powder of the core-shell polymer particles. Next, 2 g of the powder of the core-shell polymer particles is immersed in 100 g of methyl ethyl ketone (MEK) at 23 ° C. for 24 hours, then the MEK-soluble component is separated from the MEK-soluble component, and the methanol-insoluble component is further separated from the MEK-soluble component. Then, the graft ratio is calculated by obtaining the ratio of the MEK insoluble matter to the total amount of the MEK insoluble matter and the methanol insoluble matter.
  • MEK methyl ethyl ketone
  • ⁇ Manufacturing method of core-shell polymer particles ⁇ Manufacturing method of core layer
  • the formation of the core layer constituting the core-shell polymer particles (B) can be produced by, for example, emulsion polymerization, suspension polymerization, microsuspension polymerization or the like, and for example, the method described in International Publication No. 2005/0284546 is used. Can be done.
  • the intermediate layer can be formed by polymerizing a monomer for forming an intermediate layer by a known radical polymerization.
  • a monomer for forming an intermediate layer by a known radical polymerization.
  • the shell layer can be formed by polymerizing a monomer for forming a shell layer by a known radical polymerization.
  • a core layer or a polymer particle precursor composed by coating the core layer with an intermediate layer is obtained as an emulsion
  • the polymerization of the shell layer forming monomer is preferably carried out by an emulsion polymerization method, for example, internationally. It can be manufactured according to the method described in Publication No. 2005/08546.
  • Examples of the emulsifier (dispersant) that can be used in emulsifying polymerization include alkyl or aryl sulfonic acid represented by dioctyl sulfosuccinic acid and dodecylbenzene sulfonic acid, alkyl or aryl ether sulfonic acid, and alkyl or aryl represented by dodecyl sulfate.
  • Dispersants such as polyvinyl alcohol, alkyl-substituted cellulose, polyvinylpyrrolidone, and polyacrylic acid derivatives can be mentioned. These emulsifiers (dispersants) may be used alone or in combination of two or more.
  • emulsifier dispersant
  • a small amount of emulsifier (dispersant) as long as it does not interfere with the dispersion stability of the aqueous latex of the polymer particles.
  • the emulsifier (dispersant) can be easily removed by washing with water, and adverse effects on the finally obtained cured product can be easily prevented.
  • a known initiator that is, 2,2'-azobisisobutyronitrile, hydrogen peroxide, potassium persulfate, ammonium persulfate and the like can be used as the thermally decomposable initiator. ..
  • organic peroxides such as t-butylperoxyisopropyl carbonate, paramentanhydroperoxide, cumenehydroperoxide, dicumyl peroxide, t-butylhydroperoxide, di-t-butyl peroxide, and t-hexyl peroxide.
  • Oxides; peroxides such as inorganic peroxides such as hydrogen peroxide, potassium persulfate, ammonium persulfate, and optionally sodium formaldehyde sulfoxylate, reducing agents such as glucose, and optionally iron sulfate (II).
  • a chelating agent such as disodium ethylenediamine tetraacetate
  • a phosphorus-containing compound such as sodium pyrophosphate can be used in combination with a redox-type initiator.
  • a redox-type initiator system When a redox-type initiator system is used, polymerization can be carried out even at a low temperature at which the peroxide does not substantially undergo thermal decomposition, and the polymerization temperature can be set in a wide range, which is preferable. Of these, it is preferable to use organic peroxides such as cumene hydroperoxide, dicumyl peroxide, and t-butyl hydroperoxide as the redox-type initiator.
  • the amount of the initiator used, and when the redox-type initiator is used, the amount of the reducing agent, transition metal salt, chelating agent, etc. used can be used within a known range. Further, when polymerizing a monomer having two or more radically polymerizable double bonds, a known chain transfer agent can be used in a known range. Additional surfactants can be used, but this is also in the known range.
  • Conditions such as polymerization temperature, pressure, and deoxidation at the time of polymerization can be applied within a known range.
  • the polymerization of the monomer for forming the intermediate layer may be carried out in one stage or in two or more stages.
  • a method of adding a monomer for forming an intermediate layer to an emulsion of a rubber elastic body constituting an elastic core layer at a time a method of continuously adding a monomer, or a method of adding an elastic core layer to a reactor in which a monomer for forming an intermediate layer is preliminarily charged. It is possible to adopt a method of performing polymerization after adding an emulsion of a constituent rubber elastic body.
  • the content of the core-shell polymer particles is determined from the balance between the ease of handling of the obtained one-component curable resin composition and the effect of improving the toughness of the obtained cured product.
  • A) With respect to 100 parts by weight it is preferably 1 to 100 parts by weight, more preferably 2 to 80 parts by weight, further preferably 3 to 60 parts by weight, still more preferably 4 to 50 parts by weight, and 5 to 5 to 50 parts by weight. 40 parts by weight is particularly preferable.
  • the blocked urethane which is one aspect of the component (B), is an elastomer type, and is a compound containing a urethane group and / or a urea group and having an isocyanate group at the terminal, and all or a part of the terminal isocyanate group.
  • a compound capped with various blocking agents having an active hydrogen group In particular, a compound in which all of the terminal isocyanate groups are capped with a blocking agent is preferable.
  • an organic polymer having an active hydrogen-containing group at the terminal is reacted with an excess polyisocyanate compound to have a urethane group and / or a urea group in the main chain and an isocyanate group at the terminal. It is obtained by capping all or a part of the isocyanate group with a blocking agent having an active hydrogen group after making the polymer (urethane prepolymer) having the polymer (urethane prepolymer) or at the same time.
  • a R 2 is an independently hydrocarbon group having 1 to 20 carbon atoms.
  • A represents the average number of capped isocyanate groups per molecule, and 1.1 or more. Is preferable, 1.5 to 8 is more preferable, 1.7 to 6 is even more preferable, and 2 to 4 is particularly preferable.
  • X is a residue obtained by removing the active hydrogen atom from the blocking agent. Is a residue obtained by removing the terminal isocyanate group from the urethane prepolymer).
  • the number average molecular weight of the blocked urethane is preferably 2000 to 40,000, more preferably 3000 to 30000, and particularly preferably 4000 to 20000 in terms of polystyrene-equivalent molecular weight measured by GPC.
  • the molecular weight distribution (ratio of weight average molecular weight to number average molecular weight) is preferably 1 to 4, more preferably 1.2 to 3, and particularly preferably 1.5 to 2.5.
  • the main chain skeleton constituting the organic polymer having an active hydrogen-containing group at the terminal includes a polyether polymer, a polyacrylic polymer, a polyester polymer, a polydiene polymer, and a saturated hydrocarbon polymer (polyolefin). ), Polythioether-based polymers and the like.
  • active hydrogen-containing group examples include a hydroxyl group, an amino group, an imino group, and a thiol group.
  • a hydroxyl group, an amino group, and an imino group are preferable from the viewpoint of availability, and a hydroxyl group is more preferable from the viewpoint of ease of handling (viscosity) of the obtained blocked urethane.
  • organic polymer having an active hydrogen-containing group at the terminal examples include a polyether polymer having a hydroxyl group at the terminal (polyether polyol) and a polyether polymer having an amino group and / or an imino group at the terminal (polyether amine). ), Polyacrylic polyol, polyester polyol, diene polymer having a hydroxyl group at the terminal (polydiene polyol), saturated hydrocarbon polymer having a hydroxyl group at the terminal (polyolefin polyol), polythiol compound, polyamine compound and the like.
  • the polyether polyol, the polyether amine, and the polyacrylic polyol have excellent compatibility with the component (A), the glass transition temperature of the organic polymer is relatively low, and the obtained cured product is at a low temperature. It is preferable because it has excellent impact resistance.
  • the polyether polyol and the polyether amine are more preferable because the viscosity of the obtained organic polymer is low and the workability is good, and the polyether polyol is particularly preferable.
  • the organic polymer having an active hydrogen-containing group at the terminal used when preparing the urethane prepolymer which is a precursor of blocked urethane may be used alone or in combination of two or more.
  • the number average molecular weight of the organic polymer having an active hydrogen-containing group at the terminal is preferably 800 to 7000, more preferably 1500 to 5000, and particularly preferably 2000 to 4000 in terms of polystyrene-equivalent molecular weight measured by GPC.
  • the polyether polymer is essentially a general formula (2): -R 1 -O- (2) (In the formula, R 1 is a linear or branched alkylene group having 1 to 14 carbon atoms), and R 1 in the general formula (2) is a carbon atom. Linear or branched alkylene groups of numbers 1 to 14, more preferably 2 to 4, are preferred.
  • R 1 is a linear or branched alkylene group having 1 to 14 carbon atoms
  • R 1 in the general formula (2) is a carbon atom.
  • Linear or branched alkylene groups of numbers 1 to 14, more preferably 2 to 4, are preferred.
  • the repeating unit represented by the general formula (2) -CH 2 O-, -CH 2 CH 2 O-, -CH 2 CH (CH 3 ) O-, -CH 2 CH (C 2 H 5 ) O-, -CH 2 C (CH 3 ) 2 O-, -CH 2 CH 2 CH 2 CH 2 O- And so on.
  • the main chain skeleton of the polyether polymer may consist of only one type of repeating unit or may consist of two or more types of repeating units.
  • a polymer containing polypropylene glycol as a main component having a repeating unit of propylene oxide of 50% by weight or more is preferable from the viewpoint of T-shaped peeling adhesive strength.
  • polytetramethylene glycol (PTMG) obtained by ring-opening polymerization of tetrahydrofuran is preferable from the viewpoint of dynamic split resistance.
  • the polyether polyol is a polyether-based polymer having a hydroxyl group at the terminal
  • the polyether amine is a polyether-based polymer having an amino group or an imino group at the terminal.
  • polyacrylic polyol examples include a polyol having a (meth) acrylic acid alkyl ester (co) polymer as a skeleton and having a hydroxyl group in the molecule.
  • a polyacrylic polyol obtained by copolymerizing a hydroxyl group-containing (meth) acrylic acid alkyl ester monomer such as 2-hydroxyethyl methacrylate is preferable.
  • polyester polyol examples include polybasic acids such as maleic acid, fumaric acid, adipic acid, and phthalic acid and their acid anhydrides, ethylene glycol, propylene glycol, 1,4-butanediol, and 1,6-hexanediol.
  • examples thereof include polymers obtained by polycondensing polyhydric alcohols such as diethylene glycol, dipropylene glycol, and neopentyl glycol in the presence of an esterification catalyst in a temperature range of 150 to 270 ° C.
  • ring-opening polymers such as ⁇ -caprolactone and valerolactone
  • active hydrogen compounds having two or more active hydrogens such as polycarbonate diol and castor oil can be mentioned.
  • polydiene polyol examples include a polybutadiene polyol, a polyisoprene polyol, a polychloroprene polyol, and the like, and a polybutadiene polyol is particularly preferable.
  • Polyolefin polyol examples include polyisobutylene polyol and hydrogenated polybutadiene polyol.
  • polyisocyanate compound Specific examples of the polyisocyanate compound include aromatic polyisocyanates such as toluene (toluene) diisocyanate, diphenylmethane diisocyanate, and xylylene diisocyanate; and fats such as isophorone diisocyanate, hexamethylene diisocyanate, hydrided toluene diisocyanate, and hydride diphenylmethane diisocyanate.
  • aromatic polyisocyanates such as toluene (toluene) diisocyanate, diphenylmethane diisocyanate, and xylylene diisocyanate
  • fats such as isophorone diisocyanate, hexamethylene diisocyanate, hydrided toluene diisocyanate, and hydride diphenylmethane diisocyanate.
  • Group polyisocyanates and the like can be mentioned. Among
  • the blocking agent is, for example, a primary amine-based blocking agent, a secondary amine-based blocking agent, an oxime-based blocking agent, a lactam-based blocking agent, an active methylene-based blocking agent, an alcohol-based blocking agent, a mercaptan-based blocking agent, or an amide.
  • a system-based blocking agent an imide-based blocking agent, a heterocyclic aromatic compound-based blocking agent, a hydroxy-functional (meth) acrylate-based blocking agent, and a phenol-based blocking agent.
  • oxime-based blocking agents lactam-based blocking agents, hydroxy-functional (meth) acrylate-based blocking agents, and phenol-based blocking agents are preferable, and hydroxy-functional (meth) acrylate-based blocking agents and phenol-based blocking agents are more preferable.
  • Phenolic blocking agents are more preferred.
  • Primary amine-based blocking agent examples include butylamine, isopropylamine, dodecylamine, cyclohexylamine, aniline, and benzylamine.
  • secondary amine-based blocking agent examples include dibutylamine, diisopropylamine, dicyclohexylamine, diphenylamine, dibenzylamine, morpholine, piperidine, and the like.
  • oxime-based blocking agent include formaldoxime, acetaldoxime, acetaldoxime, methylethylketooxime, diacetylmonooxime, cyclohexanone oxime and the like.
  • lactam-based blocking agent examples include ⁇ -caprolactam, ⁇ -valerolactam, ⁇ -butyrolactam, ⁇ -butyrolactam and the like.
  • active methylene-based blocking agent examples include ethyl acetoacetate, acetylacetone and the like.
  • alcohol-based blocking agent examples include methanol, ethanol, propanol, isopropanol, butanol, amyl alcohol, cyclohexanol, 1-methoxy-2-propanol, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, and benzyl alcohol.
  • mercaptan-based blocking agent examples include butyl mercaptan, hexyl mercaptan, decyl mercaptan, t-butyl mercaptan, thiophenol, methyl thiophenol, ethyl thiophenol and the like.
  • Examples of the amide-based blocking agent include acetic acid amide and benzamide.
  • Examples of the imide-based blocking agent include succinimide and maleic acid imide.
  • heterocyclic aromatic compound-based blocking agent examples include imidazoles such as imidazole and 2-ethylimidazole, pyrroles such as pyrrole, 2-methylpyrrole and 3-methylpyrrole, pyridine, 2-methylpyridine and 4-methyl.
  • pyridines such as pyridine and diazabicycloalkenes such as diazabicycloundecene and diazabicyclononen.
  • the hydroxy functional (meth) acrylate-based blocking agent is a (meth) acrylate having one or more hydroxyl groups.
  • Specific examples of the hydroxyfunctional (meth) acrylate-based blocking agent include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and 2-hydroxybutyl (meth). Examples thereof include acrylate.
  • the phenolic blocking agent contains at least one phenolic hydroxyl group, that is, a hydroxyl group directly bonded to the carbon atom of the aromatic ring.
  • the phenolic compound may have two or more phenolic hydroxyl groups, but preferably contains only one phenolic hydroxyl group.
  • the phenolic compound may contain other substituents, but these substituents are preferably those that do not react with the isocyanate group under the conditions of the capping reaction, and alkenyl groups and allyl groups are preferable.
  • substituents include alkyl groups such as linear, branched or cycloalkyl; aromatic groups (eg, phenyl, alkyl substituted phenyl, alkenyl substituted phenyl, etc.); aryl substituted alkyl groups; phenol substituted alkyl groups.
  • phenolic blocking agent include phenol, cresol, xylenol, chlorophenol, ethylphenol, allylphenol (particularly o-allylphenol), resorcinol, catechol, hydroquinone, bisphenol, bisphenol A, and bisphenol AP (1,1-).
  • Bis (4-hydroxylphenyl) -1-phenylethane) bisphenol F, bisphenol K, bisphenol M, tetramethylbiphenol and 2,2'-diallyl-bisphenol A, and the like can be mentioned.
  • the blocking agent is preferably attached to the end of the polymer chain of the urethane prepolymer in such a manner that the end to which it is attached no longer has a reactive group.
  • the blocking agent may be used alone or in combination of two or more.
  • the blocked urethane may contain a residue of a cross-linking agent, a residue of a chain extender, or both.
  • the cross-linking agent preferably has a molecular weight of 750 or less, more preferably 50 to 500, and is a polyol or polyamine compound having at least 3 hydroxyl groups, amino groups and / or imino groups per molecule.
  • the cross-linking agent is useful for imparting branching to the blocked urethane and increasing the functional value of the blocked urethane (ie, the number of capped isocyanate groups per molecule).
  • Chain extender The molecular weight of the chain extender is preferably 750 or less, more preferably 50 to 500, and is a polyol or polyamine compound having two hydroxyl groups, amino groups and / or imino groups per molecule. Chain extenders are useful for increasing the molecular weight of blocked urethane without increasing the functional value.
  • cross-linking agent and chain extender include trimethylolpropane, glycerin, trimethylolethane, ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, sucrose, sorbitol, pentaerythritol, ethylenediamine, triethanolamine, and monoethanol.
  • examples include amines, diethanolamines, piperazines and aminoethylpiperazines.
  • resorcinol catechol, hydroquinone, bisphenol, bisphenol A, bisphenol AP (1,1-bis (4-hydroxylphenyl) -1-phenylethane), bisphenol F, bisphenol K, bisphenol M, tetramethylbiphenol, 2,2
  • compounds having two or more phenolic hydroxyl groups such as'-diallyl-bisphenol A.
  • the content of blocked urethane is 100 parts by weight of the epoxy resin (A) from the balance between the heat resistance of the obtained cured product and the effect of improving the toughness of the obtained cured product.
  • 1 to 100 parts by weight is preferable, 2 to 80 parts by weight is more preferable, 3 to 60 parts by weight is further preferable, 4 to 50 parts by weight is more preferable, and 5 to 40 parts by weight is particularly preferable.
  • core-shell polymer particles and blocked urethane may be used in combination.
  • the total of core-shell polymer particles and blocked urethane is considered from the balance between the ease of handling of the obtained one-component curable resin composition, the heat resistance of the obtained cured product, and the effect of improving the toughness of the obtained cured product.
  • the content is preferably 1 to 100 parts by weight, more preferably 2 to 80 parts by weight, still more preferably 3 to 60 parts by weight, still more preferably 4 to 55 parts by weight, based on 100 parts by weight of the epoxy resin (A). It is preferable, and 5 to 50 parts by weight is particularly preferable.
  • the ratio of core-shell polymer particles / blocked urethane (based on weight) is preferably 0.1 to 10, more preferably 0.2 to 5, and 0.3 to 3. Is particularly preferable.
  • the compound (C) having 1 to 3 phenolic hydroxyl groups in one molecule is a component that improves the impact resistance peeling adhesiveness of the cured product by controlling the crosslink density of the epoxy resin (A).
  • the compound is also referred to as a phenol compound (C).
  • the curing process of the epoxy resin using dicyandiamide as a curing agent is estimated as follows (see Takashi Kamon et al., Polymer Papers, Vol. 34, No. 7, 537-543).
  • cyanamide produced from dicyandiamide (D) reacts with the epoxy resin (A) to form a linear weight having a hydroxyl group and a cyano group.
  • a coalescence is formed.
  • the hydroxyl group and the cyano group react between the linear polymers to form a three-dimensional crosslinked structure, whereby the composition is cured.
  • the phenolic hydroxyl group of the phenol compound (C) reacts with a part of the cyano groups, so that a part of the reaction between the hydroxyl group of the linear polymer and the cyano group is carried out. It inhibits and reduces the cross-linking density of the three-dimensional cross-linking structure. As a result, the molecular weight between the cross-linking points in the cured product increases, so that the cured product is likely to be plastically deformed, and it is presumed that the impact-resistant peeling adhesiveness is improved.
  • the phenol compound (C) may be a compound having 1 to 3 phenolic hydroxyl groups in one molecule, and may or may have a substituent other than the phenolic hydroxyl group on the aromatic ring. It does not have to be.
  • the substituent other than the phenolic hydroxyl group is not particularly limited, and examples thereof include a hydrocarbon group such as an alkyl group, an alkenyl group, an aryl group and an aralkyl group, and a halogen such as chlorine, bromine and iodine.
  • the number of carbon atoms of the hydrocarbon group is not particularly limited, and is, for example, 1 to 20, preferably 1 to 10, more preferably 1 to 6, and even more preferably 1 to 4. Among them, an alkyl group is preferable, a t-butyl group or a methyl group is more preferable, and a methyl group is particularly preferable, because it gives a cured product having good properties.
  • examples of the compound having one phenolic hydroxyl group include phenol, 2-methylphenol, 3-methylphenol, 4-methylphenol, 2-methoxyphenol, 3-methoxyphenol, 4 - 4-propylphenol, 4-isopropylphenol, 2,3,4-trimethylphenol, 2,3,5-trimethylphenol, 2,3,6-trimethylphenol, 2,4,6-trimethylphenol, 2-tert- Butylphenol, 3-tert-butylphenol, 4-tert-butylphenol, 2-methyl-6-tert-butylphenol, 3-methyl-6-tert-butylphenol, 6-tert-butyl-2,4-xylenol, 4-methyl- 2-tert-butylphenol, 4-cyclohexylphenol, 2-cyclohexyl-5-methylphenol, 4-iodophenol, 2,6-di-tert-butylphenol, 2,6-di-tert-butyl-p-cresol, 2 , 6-di-tert-butyl-4-
  • Examples of the compound having two phenolic hydroxyl groups include resorcinol, catechol, 4-tert-butylcatechol, bisphenol A, tetrabromobisphenol A, bisphenol AP, bisphenol B, bisphenol E, bisphenol F, bisphenol G, and bisphenol M.
  • Bisphenol S Bisphenol Z, Hydroquinone, 2,5-Dichlorohydroquinone, Methylhydroquinone, tert-butylhydroquinone, 2,5-di-tert-butylhydroquinone, 2,2'-diallyl bisphenol A, 2,2'-methylene Bisphenol, 2,2'-methylenebis (4-methylphenol), 4,4'-methylenebis (2-methylphenol), 4,4'-methylenebis (2,5-dimethylphenol), 4,4'-methylenebis ( 2,6-dimethylphenol), 4,4'-isopropyridenebis (2-methylphenol), 4,4'-isopropyridenbis (2,6-dimethylphenol), 4,4'-biphenol, 2,2 '-Biphenol, bis [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionic acid)] [ethylene bis (oxyethylene)], 2,2', 6,6'-tetra-tert -Butyl-4
  • phenolic hydroxyl groups include, for example, pyrogallol, hydroxyquinol, phloroglucinol, 4,4', 4''-ethidrintrisphenol, 1,3,5-tris (3,5-di).
  • -Tart-butyl-4-hydroxybenzyl) isocyanuric acid, 2,4,6-tris (3', 5'-di-tert-butyl-4'-hydroxybenzyl) mesitylen and the like can be mentioned.
  • One type of phenol compound (C) may be used alone, or two or more types may be used in combination.
  • the phenol compound (C) is a compound having one or two phenolic hydroxyl groups in one molecule from the viewpoint of achieving both improvement in impact resistance and peeling adhesion and storage stability of the one-component curable resin composition. Is preferable.
  • the phenol compound (C) is more preferably a compound having two phenolic hydroxyl groups in one molecule from the viewpoint of improving both impact resistance and peeling adhesiveness and heat resistance of the cured product.
  • the compound having two phenolic hydroxyl groups is used, the decrease in the glass transition point of the cured product is suppressed and the impact resistance peeling adhesiveness is improved as compared with the case where the compound having one phenolic hydroxyl group is used. Can be better.
  • the phenol compound (C) is preferably a compound having one phenolic hydroxyl group in one molecule from the viewpoint of storage stability of the one-component curable resin composition and moisture and heat resistance of the cured product.
  • the phenol compound (C) may be an unsubstituted phenol compound, but is preferably a phenol compound having a substituent. This is because the steric hindrance of the substituent can improve the storage stability of the one-component curable resin composition and the moisture and heat resistance of the cured product.
  • the presence of a substituent on the aromatic ring of the phenol compound (C) suppresses the reactivity of the phenolic hydroxyl group due to its steric hindrance, and improves the storage stability of the one-component curable resin composition. be able to.
  • the presence of the substituent on the aromatic ring of the phenol compound (C) can suppress hydrolysis by water molecules due to its steric hindrance, and as a result, the moisture and heat resistance of the cured product can be improved.
  • the phenol compound (C) has a substituent selected from the group consisting of a methyl group, a primary alkyl group, a secondary alkyl group, a tertiary alkyl group and a halogen on the aromatic ring. Is preferable.
  • the substituent is more preferably a primary alkyl group, a secondary alkyl group, a tertiary alkyl group or a halogen, and a tertiary alkyl group is particularly preferable. ..
  • the number of the substituents is preferably 1 to 4 per molecule of the phenol compound (C), and more preferably 1 or 2.
  • the substituent is bonded to the ortho position of at least one phenolic hydroxyl group.
  • the presence of a substituent at the ortho position of the phenolic hydroxyl group suppresses the reactivity of the phenolic hydroxyl group more effectively due to its steric hindrance, and improves the storage stability of the one-component curable resin composition. Can be. Further, due to the presence of the substituent at the ortho position of the phenolic hydroxyl group, hydrolysis by water molecules can be more effectively suppressed due to the steric hindrance, and as a result, the moisture and heat resistance of the cured product can be further improved.
  • the phenol compound (C) has one or two substituents at the ortho position of each phenolic hydroxyl group. Is more preferable, and it is further preferable to have two substituents at the ortho position of each phenolic hydroxyl group.
  • a group selected from the group consisting of a methyl group, a primary alkyl group, a secondary alkyl group and a halogen, and a tertiary alkyl group are used.
  • a methyl group and a tert-butyl group is particularly preferable.
  • a phenol compound (C) include 2-methyl-6-tert-butylphenol, 6-tert-butyl-2,4-xylenol, and bis [3- (3-tert-butyl-4-hydroxy). -5-Methylphenyl) propionic acid)] [ethylenebis (oxyethylene)] and the like.
  • the phenol compound (C) is a compound having a tertiary alkyl group at all ortho positions of each phenolic hydroxyl group, so-called hindered phenol. There may be. Since such a phenol compound has a bulky tertiary alkyl group on both sides of the phenol hydroxyl group, the steric hindrance can further improve the storage stability of the one-component curable resin composition. can.
  • Examples of the compound having a tertiary alkyl group at all ortho positions of each phenolic hydroxyl group include 2,6-di-tert-butylphenol, 2,6-di-tert-butyl-p-cresol, and 2, 6-di-tert-butyl-4-methoxyphenol, 2,2', 6,6'-tetra-tert-butyl-4,4'-dihydroxybiphenyl, 3- (3,5-di-tert-butyl- Octadecyl 4-hydroxyphenyl) propionate, octadecyl 3- (3,5-di-tert-butyl-4-hydroxyphenyl) octadecyl propionate, bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) ) Propionic acid] Thiobisethylene, bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionic acid] 1,6
  • the compound having an amino group in addition to the phenolic hydroxyl group has the storage stability required as a one-component curable resin composition. Since it inhibits, it does not correspond to the phenol compound (C) in the present application.
  • the compound having an amino group in addition to the phenolic hydroxyl group include 2,4,6-tris (dimethylaminomethyl) phenol, 2- (dimethylaminomethyl) phenol and the like.
  • the one-component curable resin composition according to the present embodiment is a compound having a phenolic hydroxyl group and an amino group in an amount that does not impair the storage stability of the composition in addition to the phenol compound (C). May be further contained.
  • the amount of the composition that does not impair the storage stability is, for example, 0.1 part by weight or less, preferably 0.05 part by weight or less, preferably 0.01 with respect to 100 parts by weight of the epoxy resin (A). More preferably, it is by weight or less.
  • the one-component curable resin composition according to the present embodiment does not contain a compound having a phenolic hydroxyl group and an amino group.
  • the phenol compound (C) is preferably a small molecule phenol compound rather than a phenol resin.
  • the molecular weight of the small molecule phenol compound is preferably 90 or more and 500 or less.
  • the blending amount of the phenol compound (C) satisfies the following conditions in order to obtain the effect of improving the impact resistance peeling adhesiveness by blending the compound.
  • the phenol compound (C) is a compound having one phenolic hydroxyl group in one molecule
  • the ratio is 0.01 or more and 0.39 or less. If it is less than 0.01, the effect of improving the impact resistance peeling adhesiveness due to the decrease in the crosslink density may not be sufficient, and if it is more than 0.39, the crosslink density is too low and the strength of the obtained cured product is lowered to withstand. The effect of improving the impact peeling adhesiveness may not be sufficient.
  • 0.05 or more and 0.35 or less is preferable, 0.08 or more and 0.30 or less is more preferable, and 0.10 or more and 0.25 or less is further preferable.
  • the phenol compound (C) is a compound having two or three phenolic hydroxyl groups in one molecule
  • the ratio of the number of moles of the group is 0.01 or more and 1.5 or less. If it is less than 0.01, the effect of improving the impact resistance peeling adhesiveness due to the decrease in the crosslink density may not be sufficient, and if it is more than 1.5, the crosslink density is too low and the strength of the obtained cured product is lowered to withstand it. The effect of improving the impact peeling adhesiveness may not be sufficient.
  • the dicyandiamide is decomposed by heating, and two molecules of cyanamide (a compound having a CN group) are produced from one molecule of dicyandiamide.
  • the "number of moles of CN groups produced from dicyanamide (D)" is the theoretical number of moles of CN groups contained in the cyanamide, which is calculated on the assumption that the total amount of dicyanamide is converted to cyanamide.
  • dicyandiamide (D) can function as a potential curing agent that develops its activity by heating because it produces cyanamide by heating, which allows the epoxy resin (A) to be crosslinked.
  • dicyandiamide (D) By blending dicyandiamide (D), it becomes possible to form a one-component curable resin composition.
  • the blending amount of dicyandiamide (D) can be appropriately set according to the desired physical properties, but from the viewpoint of improving the impact resistance peeling adhesiveness, 2 to 20 weight by weight with respect to 100 parts by weight of the epoxy resin (A). 3 to 18 parts by weight is more preferable, 4 to 16 parts by weight is further preferable, 5 to 14 parts by weight is more preferable, and 6 to 12 parts by weight is particularly preferable.
  • the ratio of the molar amount of the dicyandiamide (D) to the molar amount of the epoxy group of the epoxy resin (A) is determined. It is preferably 0.10 or more and 0.30 or less, more preferably 0.12 or more and 0.28 or less, and further preferably 0.15 or more and 0.26 or less.
  • the compound (E) having 4 or more phenolic hydroxyl groups in one molecule may be further blended.
  • the compound include a novolak type phenol resin, pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] and the like.
  • the blending amount of the compound (E) can be appropriately set by those skilled in the art, but the ratio of the total weight of the compound (E) to the total weight of the phenol compound (C) is less than 1 from the viewpoint of impact resistance and peeling adhesion. It is preferably less than 0.5, more preferably less than 0.1, and even more preferably less than 0.1. Compound (E) does not have to be blended.
  • the one-component curable resin composition of the present embodiment can contain a curing accelerator (F).
  • the component (F) can accelerate the curing reaction between the epoxy resin (A) and the dicyandiamide (D).
  • Examples of the component (F) include p-chlorophenyl-N, N-dimethylurea (trade name: Moonuron), 3-phenyl-1,1-dimethylurea (trade name: Phenuron), and 3,4-dichlorophenyl-N. , N-dimethylurea (trade name: Diuron), N- (3-chloro-4-methylphenyl) -N', N'-dimethylurea (trade name: Chlortroluron), 1,1-dimethylphenylurea (trade name) : Dyhard) and other ureas; 6-caprolactum and the like.
  • the component (F) may be used alone or in combination of two or more.
  • the component (F) may be encapsulated or may be a latent component that becomes active only when heated.
  • the blending amount of the component (F) is 0.1 to 10 parts by weight with respect to 100 parts by weight of the epoxy resin (A) from the viewpoint of improving curability and storage stability. Is preferable, 0.2 to 5 parts by weight is more preferable, 0.5 to 3 parts by weight is further preferable, and 0.8 to 2 parts by weight is particularly preferable.
  • the one-component curable resin composition of the present embodiment is an epoxy unmodified rubber-based polymer as a reinforcing agent for the purpose of further improving performance such as toughness, impact resistance, shear adhesiveness, and peeling adhesiveness. May be contained as needed.
  • the fortifier may be used alone or in combination of two or more.
  • the rubber-based polymer may be contained in the one-component curable resin composition of the present embodiment without being modified so as not to react with the epoxy resin.
  • the rubber polymer include acrylonitrile butadiene rubber (NBR), styrene butadiene rubber (SBR), hydrogenated nitrile rubber (HNBR), ethylene propylene rubber (EPDM), acrylic rubber (ACM), butyl rubber (IIR), and butadiene rubber.
  • NBR acrylonitrile butadiene rubber
  • SBR styrene butadiene rubber
  • HNBR hydrogenated nitrile rubber
  • EPDM ethylene propylene rubber
  • ACM acrylic rubber
  • IIR butyl rubber
  • butadiene rubber Polyoxyalkylenes such as polypropylene oxide, polyethylene oxide and polytetramethylene oxide, and rubber-based polymers can be mentioned.
  • the rubber-based polymer preferably has a reactive group such as an amino group, a hydroxy group, or a carboxyl group at the end.
  • a reactive group such as an amino group, a hydroxy group, or a carboxyl group at the end.
  • NBR and polyoxyalkylene are preferable from the viewpoint of adhesiveness and impact-resistant peeling adhesiveness of the obtained one-component curable resin composition, NBR is more preferable, and carboxyl group-terminated NBR (CTBN) is particularly preferable. preferable.
  • the glass transition temperature (Tg) of the rubber-based polymer is not particularly limited, but is preferably ⁇ 25 ° C. or lower, more preferably ⁇ 35 ° C. or lower, further preferably ⁇ 40 ° C. or lower, and particularly preferably ⁇ 50 ° C. or lower. ..
  • the number average molecular weight of the rubber-based polymer is preferably 1500 to 40,000, more preferably 3000 to 30000, and particularly preferably 4000 to 20000 in terms of polystyrene-equivalent molecular weight measured by GPC.
  • the molecular weight distribution (ratio of weight average molecular weight to number average molecular weight) is preferably 1 to 4, more preferably 1.2 to 3, and particularly preferably 1.5 to 2.5.
  • the rubber-based polymer can be used alone or in combination of two or more.
  • the amount of the rubber-based polymer is preferably 1 to 30 parts by weight, more preferably 2 to 20 parts by weight, and particularly preferably 5 to 10 parts by weight with respect to 100 parts by weight of the epoxy resin (A).
  • the effect of improving toughness, impact resistance, adhesiveness and the like is good, and when it is 50 parts by weight or less, the elastic modulus of the obtained cured product is high.
  • the one-component curable resin composition of the present embodiment can contain an inorganic filler.
  • an inorganic filler for example, silicic acid and / or silicate can be used, and specific examples thereof include dry silica, wet silica, aluminum silicate, magnesium silicate, calcium silicate, and wollastonite. Talc, etc. can be mentioned.
  • the dry silica is also called fumed silica, and is produced by chemically treating the surface-untreated hydrophilic fumed silica and the silanol base portion of the hydrophilic fumed silica with silane or siloxane.
  • hydrophobic fumed silica is preferable from the viewpoint of dispersibility in the component (A).
  • inorganic fillers include reinforcing fillers such as dolomite and carbon black; heavy calcium carbonate, glazed calcium carbonate, magnesium carbonate, titanium oxide, ferric oxide, fine aluminum powder, zinc oxide, active zinc oxide, etc. Can be mentioned.
  • the inorganic filler is surface-treated with a surface treatment agent.
  • the surface treatment improves the dispersibility of the inorganic filler in the composition, and as a result, the various physical properties of the obtained cured product are improved.
  • the inorganic filler may be used alone or in combination of two or more.
  • the amount of the inorganic filler used is preferably 1 to 100 parts by weight, more preferably 2 to 70 parts by weight, still more preferably 5 to 40 parts by weight, and 7 to 20 parts by weight with respect to 100 parts by weight of the component (A). Is particularly preferable.
  • the one-component curable resin composition of the present embodiment can contain calcium oxide.
  • Calcium oxide removes water by reacting with water in the one-component curable resin composition, and solves various physical problems caused by the presence of water. For example, it functions as an antifoaming agent by removing water and suppresses a decrease in adhesive strength.
  • Calcium oxide can be surface treated with a surface treatment agent.
  • the surface treatment improves the dispersibility of calcium oxide in the composition.
  • the physical characteristics such as the adhesive strength of the obtained cured product are improved as compared with the case where calcium oxide without surface treatment is used.
  • the T-shaped peeling adhesiveness and the impact-resistant peeling adhesiveness are remarkably improved.
  • the surface treatment agent is not particularly limited, but fatty acids are preferable.
  • the amount of calcium oxide used is preferably 0.1 to 10 parts by weight, more preferably 0.2 to 5 parts by weight, still more preferably 0.5 to 3 parts by weight, based on 100 parts by weight of the component (A). 1 to 2 parts by weight is particularly preferable. When it is 0.1 part by weight or more, the water removing effect is good, and when it is 10 parts by weight or less, the strength of the obtained cured product is high. Calcium oxide may be used alone or in combination of two or more.
  • the one-component curable resin composition of the present embodiment can contain a radical curable resin having two or more double bonds in the molecule, if necessary. Further, if necessary, a small molecule compound having at least one double bond in the molecule and having a molecular weight of less than 300 can be added. The low molecular weight compound has a function of adjusting the viscosity, the physical properties of the cured product, and the curing rate when used in combination with the radical curable resin, and functions as a so-called reactive diluent for the radical curable resin. Further, a radical polymerization initiator can be added to the one-component curable resin composition of the present embodiment.
  • the radical polymerization initiator is preferably a potential type that is activated when the temperature is raised (preferably about 50 ° C to about 150 ° C).
  • radical curable resin examples include unsaturated polyester resin, polyester (meth) acrylate, epoxy (meth) acrylate, urethane (meth) acrylate, polyether (meth) acrylate, and acrylicized (meth) acrylate. These may be used alone or in combination.
  • Specific examples of the radical curable resin include the compounds described in International Publication No. 2014-115778.
  • Specific examples of the small molecule compound and the radical polymerization initiator include the compounds described in International Publication No. 2014-115778.
  • the radical polymerization initiator is activated at a temperature different from the curing temperature of the epoxy resin, the one-component curable resin composition is obtained by the selective polymerization of the radical curable resin. It enables partial curing of objects. By this partial curing, the viscosity of the composition can be increased after application, and the wash-off resistance can be improved. In the water-washing shower process on a production line such as a vehicle, the uncured adhesive composition is partially dissolved, scattered, or deformed by the shower water pressure during the water-washing shower process.
  • the corrosion resistance of the steel sheet in the coated portion may be adversely affected or the rigidity of the steel sheet may be lowered, and the above-mentioned "difficulty of being washed off" means resistance to this problem.
  • the free radical initiator is preferably activated by heating to 80 ° C to 130 ° C, more preferably 100 ° C to 120 ° C.
  • the one-component curable resin composition of the present embodiment may contain a monoepoxide, if necessary.
  • the monoepoxide can function as a reactive diluent.
  • Specific examples of the monoepoxide include an aliphatic glycidyl ether such as butyl glycidyl ether, an aromatic glycidyl ether such as phenyl glycidyl ether and cresyl glycidyl ether, and an aromatic glycidyl ether such as 2-ethylhexyl glycidyl ether having 8 to 10 carbon atoms.
  • An ether consisting of an alkyl group and a glycidyl group for example, an ether composed of a phenyl group having 6 to 12 carbon atoms and a glycidyl group which can be replaced with an alkyl group having 2 to 8 carbon atoms such as p-tert butylphenyl glycidyl ether, for example, dodecyl.
  • Ether consisting of an alkyl group having 12 to 14 carbon atoms such as glycidyl ether and a glycidyl group; for example, an aliphatic glycidyl ester such as glycidyl (meth) acrylate and glycidyl maleate; versatic acid glycidyl ester, neodecanoic acid glycidyl ester, glycidyl laurate.
  • examples thereof include glycidyl esters of aliphatic carboxylic acids having 8 to 12 carbon atoms such as esters; and pt-butyl benzoic acid glycidyl esters.
  • the amount used is preferably 0.1 to 20 parts by weight, more preferably 0.5 to 10 parts by weight, and 1 to 5 parts by weight with respect to 100 parts by weight of the component (A). Especially preferable. When it is 0.1 part by weight or more, the effect of reducing the viscosity is good, and when it is 20 parts by weight or less, the physical properties such as adhesiveness are good.
  • photopolymerization initiator when the one-component curable resin composition of the present embodiment is photocured, a photopolymerization initiator may be added.
  • the photopolymerization initiator include onium salts such as aromatic sulfonium salts and aromatic iodonium salts with anions such as hexafluoroantimonate, hexafluorophosphate and tetraphenylborate, and light such as aromatic diazonium salts and metallocene salts.
  • examples thereof include a cationic polymerization initiator (photoacid generator). These photopolymerization initiators may be used alone or in combination of two or more.
  • ⁇ Other ingredients> other compounding ingredients can be used, if necessary.
  • Other compounding ingredients include azotype chemical foaming agents, swelling agents such as thermoplastic microballoons, fiber pulps such as aramid-based pulp, colorants such as pigments and dyes, extender pigments, ultraviolet absorbers, antioxidants, etc.
  • the one-component curable resin composition of the present embodiment contains the epoxy resin (A) which is a curable resin and the core-shell polymer as the component (B), the composition is the core-shell polymer particles (B). ) Is preferably a composition dispersed in the state of primary particles.
  • the core-shell polymer particles (B) are dispersed in the state of primary particles.
  • the core-shell polymer particles obtained in the state of an aqueous latex are obtained in the state of (A).
  • Examples include a method of removing unnecessary components such as water after contacting with the components, and a method of extracting the core-shell polymer particles into an organic solvent, mixing the particles with the component (A), and then removing the organic solvent. It is preferable to use the method described in Publication No. 2005/08546.
  • the specific production method is as follows, in order, an aqueous latex containing the core-shell polymer particles (B) (specifically, a reaction mixture after producing the core-shell polymer particles by emulsification polymerization) having a solubility in water at 20 ° C. of 5.
  • an organic solvent of% by weight or more and 40% by weight or less
  • the first step of aggregating the polymer particles by further mixing with excess water, and the agglomerated core-shell polymer particles (B) were separated and recovered from the liquid phase.
  • the second step of mixing with the organic solvent again to obtain the organic solvent solution of the core-shell polymer particles (B), and the third step of further mixing the organic solvent solution with the component (A) and then distilling off the organic solvent. It is preferably prepared by including the steps.
  • the component (A) is liquid at 23 ° C. because the third step is facilitated.
  • “Liquid at 23 ° C” means that the softening point is 23 ° C or lower, and shows fluidity at 23 ° C.
  • Additional components (A), (C), and (D) are added to the composition obtained through the above steps, in which the core-shell polymer particles (B) are dispersed in the component (A) in the form of primary particles. Further, by mixing other components as necessary, it is possible to obtain a one-component curable resin composition according to this embodiment in which the core-shell polymer particles (B) are dispersed in the state of primary particles.
  • the powdery core-shell polymer particles (B) obtained by solidifying by a method such as salting out and then drying can be used as a disperser having a high mechanical shearing force such as a three-paint roll, a roll mill, or a kneader. It can be used to redisperse in component (A).
  • the component (A) and the component (B) can efficiently disperse the component (B) by applying a mechanical shearing force at a high temperature.
  • the temperature at the time of dispersion is preferably 50 to 200 ° C, more preferably 70 to 170 ° C, further preferably 80 to 150 ° C, and particularly preferably 90 to 120 ° C.
  • the one-component curable resin composition of the present embodiment has good storage stability, it is a one-component composition in which all the compounding components are premixed, then sealed and stored, and then cured by heating or light irradiation after coating. Used as a thing.
  • a cured product can be obtained by curing the one-component curable resin composition of the present embodiment.
  • the one-component curable resin composition contains core-shell polymer particles as the component (B)
  • the core-shell polymer particles (B) are uniformly dispersed in the cured product.
  • the one-component curable resin composition has a low viscosity, and a cured product can be obtained with good workability.
  • the cured product can be produced by mixing the components (A) to (D) and, if necessary, other components, and heating the obtained mixture at the curing temperature described later.
  • Mixing the components (A) to (D) and, if necessary, other components means that the core-shell polymer particles (B) are dispersed in the component (A) in advance in the form of primary particles as described above. It also includes an embodiment in which a substance is prepared and an additional component (A), a component (C), a component (D), and, if necessary, other components are mixed with the composition.
  • the one-component curable resin composition of the present embodiment can be applied to a substrate by any method. According to a preferred embodiment, it can be applied at a low temperature of about room temperature, and it can also be heated and applied if necessary.
  • the one-component curable resin composition of the present embodiment is particularly useful in a method of applying by heating because it has excellent storage stability.
  • the one-component curable resin composition of the present embodiment can be extruded onto a substrate in a bead-like, monofilament-like or swirl-like shape using a coating robot, or can be mechanically coated by a caulking gun or the like. Manual application means can also be used.
  • the composition can also be applied to the substrate using a jet spray method or a streaming method.
  • the one-component curable resin composition of the present embodiment is applied to one or both substrates, and the substrates are brought into contact with each other so that the composition is arranged between the two substrates to be bonded. By curing the composition in this state, the two substrates are joined.
  • the viscosity of the one-component curable resin composition is not particularly limited, and is preferably about 150 to 600 Pa ⁇ s at 45 ° C. in the extruded bead method, and 100 Pa ⁇ s at 45 ° C. in the swirl coating method.
  • the degree is preferable, and in the high volume coating method using a high-speed flow device, about 20 to 400 Pa ⁇ s at 45 ° C. is preferable.
  • the one-component curable resin composition of the present embodiment When used as an adhesive for vehicles, it is effective to increase the tickiness of the composition in order to improve the "difficulty of being washed off".
  • the thixo property is improved by a thixo property-imparting agent such as fumed silica or amide wax, but the lower the viscosity of the thermosetting resin component as the main component, the higher the improvement effect and the better the workability. Tend to be.
  • the one-component curable resin composition of the present embodiment is preferable because it tends to have a low viscosity and thus easily enhances the thixo property.
  • the highly ticking composition can be adjusted to a viscosity that can be applied by heating.
  • a polymer compound having a crystal melting point near the coating temperature of the composition is one-component curable. It is preferable to add it to the resin composition.
  • the composition has a low viscosity (easy to apply) at the coating temperature and a high viscosity at the temperature in the water-washing shower step, improving "difficulty of being washed off".
  • the polymer compound having a crystal melting point near the coating temperature include various polyester resins such as crystalline or semi-crystalline polyester polyols.
  • base materials such as wood, metal, plastic, and glass can be bonded. It is preferable to join the automobile parts, and it is more preferable to join the automobile frames to each other or to join the automobile frame to other automobile parts.
  • the base material include various plastic substrates such as steel materials such as cold rolled steel and hot-dip zinc-plated steel, aluminum materials such as aluminum and coated aluminum, general-purpose plastics, engineering plastics, and composite materials such as CFRP and GFRP. Be done.
  • the one-component curable resin composition of the present embodiment has excellent adhesiveness. Therefore, the one-component curable resin composition obtained by sandwiching and adhering the one-component curable resin composition of the present embodiment between a plurality of members including an aluminum base material and then curing the one-component curable resin composition. A laminated body formed by joining members is preferable because it exhibits high adhesive strength.
  • the one-component curable resin composition of the present embodiment has excellent toughness, it is suitable for joining between dissimilar substrates having different linear expansion coefficients.
  • the one-component curable resin composition of the present embodiment can also be used for joining components for aerospace, particularly exterior metal components.
  • the curing temperature of the one-component curable resin composition of the present embodiment is not particularly limited, but is preferably 50 ° C to 250 ° C, more preferably 80 ° C to 220 ° C, further preferably 100 ° C to 200 ° C, and 130 ° C. ° C to 180 ° C is particularly preferable.
  • the adhesive is applied to an automobile member, then a coating is applied, and the coating is baked and cured at the same time. It is preferable to cure the agent from the viewpoint of shortening the process and simplifying the process.
  • the one-component curable resin composition of the present embodiment is used for structural adhesives for vehicles and aircraft, adhesives such as structural adhesives for wind power generation, paints, materials for laminating with glass fibers, and printed wiring substrates. Materials, solder resists, interlayer insulating films, build-up materials, adhesives for FPCs, electrical insulating materials such as encapsulants for electronic parts such as semiconductors and LEDs, die bond materials, underfills, semiconductors such as ACF, ACP, NCF, and NCP. It is preferably used as a mounting material, a liquid crystal panel, an OLED lighting, a sealing material for a display device / lighting device such as an OLED display, and the like. In particular, it is useful as a structural adhesive for vehicles.
  • the average particle diameters of the polybutadiene rubber particles in the polybutadiene rubber latex described in the production example and the core shell polymer particles in the core shell polymer latex were measured by the following methods.
  • the volume average particle diameter (Mv) of the particles dispersed in the aqueous latex was measured using Microtrac UPA150 (manufactured by Nikkiso Co., Ltd.).
  • a sample diluted with deionized water was used as a measurement sample. The measurement was performed by inputting the refractive index of water and the refractive index of each polymer particle, and adjusting the sample concentration so that the measurement time was 600 seconds and the Signal Level was within the range of 0.6 to 0.8. ..
  • shell monomers (12 parts by weight of methyl methacrylate (MMA), 1 part by weight of glycidyl methacrylate (GMA)) and cumene hydroper.
  • a mixture of 0.04 parts by weight of oxide (CHP) was added continuously over 120 minutes.
  • 0.04 part by weight of CHP was added, and stirring was further continued for 2 hours to complete the polymerization to obtain an aqueous latex (L-1) containing core-shell polymer particles.
  • the polymerization conversion rate of the monomer component was 99% or more.
  • the volume average particle diameter of the core-shell polymer particles contained in the aqueous latex (L-1) was 0.21 ⁇ m.
  • the content of the epoxy group with respect to the total amount of the shell layer of the core-shell polymer particles is 0.5 mmol / g.
  • Production Example 2-2 Preparation of Core-Shell Polymer Latex (L-2) Production Example 2 except that the shell monomer was changed to 1 part by weight of MMA, 6 parts by weight of styrene (ST), 2 parts by weight of acrylonitrile (AN), and 4 parts by weight of GMA.
  • Aqueous latex (L-2) containing core-shell polymer particles was obtained in the same manner as in -1.
  • the conversion rate of the monomer component was 99% or more.
  • the volume average particle diameter of the core-shell polymer particles contained in the aqueous latex (L-2) was 0.21 ⁇ m.
  • the content of the epoxy group with respect to the total amount of the shell layer of the core-shell polymer particles is 2.2 mmol / g.
  • Production Example 2-3 Preparation of Core-Shell Polymer Latex (L-3) The same as in Production Example 2-1 except that the shell monomer was changed to 3 parts by weight of MMA, 6 parts by weight of ST, 2 parts by weight of AN, and 2 parts by weight of GMA, and the core-shell polymer.
  • An aqueous latex (L-3) containing particles was obtained.
  • the conversion rate of the monomer component was 99% or more.
  • the volume average particle diameter of the core-shell polymer particles contained in the aqueous latex (L-3) was 0.21 ⁇ m.
  • the content of the epoxy group with respect to the total amount of the shell layer of the core-shell polymer particles is 1.1 mmol / g.
  • Production Example 2-4 Preparation of Core-Shell Polymer Latex (L-4) The same as in Production Example 2-1 except that the shell monomer was changed to 4 parts by weight of MMA, 6 parts by weight of ST, 2 parts by weight of AN, and 1 part by weight of GMA, and the core-shell polymer. An aqueous latex (L-4) containing particles was obtained. The conversion rate of the monomer component was 99% or more. The volume average particle diameter of the core-shell polymer particles contained in the aqueous latex (L-4) was 0.21 ⁇ m. The content of the epoxy group with respect to the total amount of the shell layer of the core-shell polymer particles is 0.5 mmol / g.
  • Production Example 2-5 Preparation of Core-Shell Polymer Latex (L-5) The same as Production Example 2-1 except that the shell monomer was changed to 5 parts by weight of MMA, 6 parts by weight of ST, and 2 parts by weight of AN, and an aqueous solution containing core-shell polymer particles. Latex (L-5) was obtained. The conversion rate of the monomer component was 99% or more. The volume average particle diameter of the core-shell polymer particles contained in the aqueous latex (L-5) was 0.21 ⁇ m. The content of the epoxy group with respect to the total amount of the shell layer of the core-shell polymer particles is 0 mmol / g.
  • a slurry liquid consisting of a floating aggregate and an aqueous phase partially containing an organic solvent was obtained.
  • 360 g of the aqueous phase was discharged from the discharge port at the bottom of the tank, leaving an agglomerate containing a part of the aqueous phase.
  • 90 g of MEK was added to the obtained aggregate and mixed uniformly to obtain a dispersion in which the core-shell polymer particles (B) were uniformly dispersed.
  • 60 g of an epoxy resin (manufactured by Mitsubishi Chemical Corporation, JER828: liquid bisphenol A type epoxy resin) as a component (A) was mixed with this dispersion.
  • MEK was removed from this mixture with a rotary evaporator. In this way, a dispersion (M-1) in which the core-shell polymer particles (B) were dispersed in the epoxy resin (A) was obtained.
  • Production Example 3-2 Preparation of Dispersion (M-2) In Production Example 3-1 the core-shell polymer latex obtained in Production Example 2-2 (L-2) was used instead of (L-1). A dispersion (M-2) in which the core-shell polymer particles (B) were dispersed in the epoxy resin (A) was obtained in the same manner as in Production Example 3-1.
  • Production Example 3-3 Preparation of Dispersion (M-3) In Production Example 3-1 the core-shell polymer latex obtained in Production Example 2-3 was used instead of (L-1). A dispersion (M-3) in which the core-shell polymer particles (B) were dispersed in the epoxy resin (A) was obtained in the same manner as in Production Example 3-1.
  • Production Example 3-4 Preparation of Dispersion (M-4) In Production Example 3-1 the core-shell polymer latex obtained in Production Example 2-4 was used instead of (L-1). A dispersion (M-4) in which the core-shell polymer particles (B) were dispersed in the epoxy resin (A) was obtained in the same manner as in Production Example 3-1.
  • Production Example 3-5 Preparation of Dispersion (M-5) In Production Example 3-1 the core-shell polymer latex obtained in Production Example 2-5 (L-5) was used instead of (L-1). A dispersion (M-5) in which the core-shell polymer particles (B) were dispersed in the epoxy resin (A) was obtained in the same manner as in Production Example 3-1.
  • Examples 1 to 60, Comparative Examples 1 to 24 Each component was weighed according to the formulations shown in Tables 1 to 9 and mixed well to obtain a one-component curable resin composition.
  • the dynamic split resistance (impact peeling adhesiveness) and its retention rate after moist heat test, water absorption rate, T-shaped peeling adhesive strength and its holding after moist heat test are carried out by the following methods.
  • Each evaluation of rate and viscosity increase rate (storage stability) was performed.
  • compositions of Table 2, Table 4 to Table 6, Table 8 and Table 9 are applied to two SPCC steel plates having a width of 25 mm, a length of 200 mm and a thickness of 0.5 mm so that the adhesive layer thickness is 0.25 mm.
  • the compositions of Table 2 and Tables 4 to 5 were cured under the condition of 170 ° C. ⁇ 30 minutes, and the compositions of Table 6 and Tables 8 to 9 were cured under the condition of 150 ° C. ⁇ 30 minutes.
  • the T-shaped peeling adhesive strength was measured with the unit being N / 25 mm under the measurement conditions where the measurement temperature was 23 ° C.
  • the one-component curable resin compositions of Examples 1 to 9 containing the components (A) to (D) have good impact-resistant peeling adhesiveness of the obtained cured product.
  • the compositions of Comparative Examples 1 and 6 to 7 do not contain the phenol compound (C) and have the same composition other than the component (C), as compared with Examples 1, 8 or 9. Impact resistance Peeling adhesion is low.
  • the compositions of Comparative Examples 2 to 4 have a large ratio of the number of moles of the phenolic hydroxyl group of the compound (C) to the number of moles of the CN group produced from the dicyandiamide (D), that is, the blending amount of the compound (C) is large.
  • Comparative Example 5 contains anisole, which is an aromatic compound having no phenolic hydroxyl group, in place of the phenol compound (C), and has impact-resistant peeling adhesion as compared with Examples 1 to 9. Low sex.
  • the one-component curable resin compositions of Examples 10 to 22 containing the phenol compound (C) have impact resistance peeling adhesiveness as compared with Comparative Example 8 not containing the component (C). It can be seen that the T-shaped peeling adhesive strength is also high.
  • Comparative Examples 9 to 10 containing a phenol compound that does not meet the definition of the component (C) Comparative Example 10 has a value of Comparative Example 8 or less in terms of impact resistance peeling adhesiveness, and has a T-shaped peeling adhesive strength. The value was the same as that of Comparative Example 8. Further, in Comparative Example 9, an evaluation sample could not be prepared because gelation occurred within only 1 hour after preparing the one-component curable resin composition.
  • the phenol compound having an amino group lowers the stability of the composition and impairs the storage stability that should be shown as the one-component curable resin composition.
  • Examples 17 to 21, Examples 19 to 21, especially Example 21 have a low value of the viscosity increase rate by storage at 40 ° C. for 14 days, and the storage stability of the one-component curable resin composition is low. It can be seen that the sex is relatively good. It is presumed that this is due to the fact that the phenol compound (C) has a substituent on the aromatic ring, and further, the number of the substituents.
  • the one-component curable resin compositions of Examples 23 to 28 containing the phenol compound (C) have impact resistance peeling adhesiveness as compared with Comparative Example 12 not containing the component (C). It turns out that is good.
  • Comparative Example 11 which does not contain the component (B) has extremely low impact-resistant peeling adhesiveness. From the above, it can be seen that the effect of improving the impact resistance peeling adhesiveness is a synergistic action achieved by the combined use of the component (B) and the component (C).
  • Example 29 containing the phenol compound (C) does not contain the phenol compound (C) and has the same composition other than the component (C). It can be seen that the adhesiveness is good and the T-shaped peeling adhesive strength is also high.
  • Example 30 is compared with Comparative Example 14, Example 31 is compared with Comparative Example 15, Example 33 is compared with Comparative Example 16, and Example 34 is compared with Comparative Example 17. It can be seen that the impact resistance peeling adhesiveness is good and the T-shaped peeling adhesive strength is also high. Further, it can be seen that in Example 32, the T-shaped peel-off adhesive strength is improved as compared with Example 29 in which the composition other than the rubber-based polymer is the same by blending the rubber-based polymer.
  • the one-component curable resin compositions of Examples 35 to 39 containing the phenol compound (C) have impact resistance peeling adhesiveness as compared with Comparative Example 18 not containing the component (C). It can be seen that the T-shaped peeling adhesive strength is also high.
  • the one-component curable resin compositions of Examples 40 to 49 containing the phenol compound (C) have impact resistance peeling adhesiveness as compared with Comparative Example 19 not containing the component (C). It can be seen that the T-shaped peeling adhesive strength is also high. Further, among Examples 40 to 49, Examples 41, 46, 47, and 49 have a large retention rate after the moist heat test of the T-shaped peeling adhesive strength, and the obtained cured product has excellent moist heat resistance. I understand. From this, it can be seen that it is preferable that the phenol compound (C) has a substituent at the ortho position of the phenolic hydroxyl group from the viewpoint of improving the moisture resistance and heat resistance.
  • the one-component curable resin compositions of Examples 50 to 53 containing the phenol compound (C) have impact resistance peeling adhesiveness as compared with Comparative Example 20 not containing the component (C). It turns out that is high. Further, it can be seen that the one-component curable resin compositions of Examples 50 to 53 have a low value of the viscosity increase rate after storage at 40 ° C. for 14 days, and the storage stability is relatively good. It is presumed that this is because the phenol compound (C) used has one tertiary alkyl group at the ortho position of each phenolic hydroxyl group.
  • the one-component curable resin compositions of Examples 51 and 53 have a particularly low value of viscosity increase rate and are excellent in storage stability. It is presumed that this is due to the fact that the phenolic compound (C) used has a methyl group and a tertiary alkyl group at the ortho position of each phenolic hydroxyl group.
  • the one-component curable resin compositions of Examples 54 to 56 containing the phenol compound (C) are impact-resistant and exfoliated as compared with Comparative Examples 21 to 23 not containing the component (C). It can be seen that the adhesiveness is good and the T-shaped peeling adhesive strength is also high. Further, it can be seen that Examples 54 to 56 have a higher retention rate after the moist heat test of impact-resistant peeling adhesiveness as compared with Comparative Examples 21 to 23, and the obtained cured product has excellent moist heat resistance. It is presumed that this is due to the fact that the phenolic compound (C) used has a methyl group and a tertiary alkyl group at the ortho position of each phenolic hydroxyl group.
  • the one-component curable resin compositions of Examples 57 to 60 containing the phenol compound (C) have impact resistance peeling adhesiveness as compared with Comparative Example 24 not containing the component (C). It can be seen that the T-shaped peeling adhesive strength is also high. Further, in Examples 57 to 60, the retention rate of the T-shaped peeling adhesive strength after the moist heat test is larger than that in Comparative Example 24, and in particular, Example 59 is good, and the obtained cured product is excellent in moist heat resistance. You can see that there is.
  • the phenol compound (C) has a substituent at the ortho position of the phenolic hydroxyl group from the viewpoint of improving the moist heat resistance, and the phenol compound (C) has a methyl group and a tertiary alkyl group at the ortho position of the phenolic hydroxyl group. It turns out that is particularly preferable.
  • the one-component curable resin compositions of Examples 57 to 60 have a low value of viscosity increase rate after storage at 40 ° C. for 14 days, and have relatively good storage stability. It is good, and it can be seen that Example 60 is particularly excellent. It is presumed that this is due to the number of substituents at the ortho position of each phenolic hydroxyl group and the bulkiness of the substituents.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Epoxy Resins (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

エポキシ樹脂(A)100重量部、コアシェル構造を有するポリマー粒子および/またはブロックドウレタン(B)1~100重量部、1分子中に1~3個のフェノール性水酸基を有する化合物(C)[但し、アミノ基を有する化合物は、化合物(C)に該当しない]、及びジシアンジアミド(D)、を含有する一成分型硬化性樹脂組成物。化合物(C)のフェノール性水酸基のモル数/ジシアンジアミド(D)から生成するCN基のモル数の比は、化合物(C)が1個のフェノール性水酸基を有する時には0.01以上0.39以下、2個または3個のフェノール性水酸基を有する時には0.01以上1.5以下である。

Description

一成分型硬化性樹脂組成物及び接着剤
 本発明は、エポキシ樹脂を含む一成分型硬化性樹脂組成物、及び、それを含む接着剤に関する。
 エポキシ樹脂は、その硬化物が寸法安定性、機械的強度、電気的絶縁特性、耐熱性、耐水性、耐薬品性等の多くの点で優れているため、土木建築材料、電気電子材料、接着剤等に幅広く使用されている。しかし、エポキシ樹脂の硬化物は破壊靭性が小さく、非常に脆性的な性質を示すという問題がある。
 一方、ジシアンジアミドは、加熱することによりシアナミドを生成し、これによって硬化剤としての活性を発現する潜在性硬化剤として機能し得る。そのため、エポキシ樹脂にジシアンジアミドを配合することで一成分型の硬化性組成物を構成できることが知られている。
 特許文献1では、エポキシ樹脂、硬化剤としてジシアンジアミド、及び、特定の熱可塑性樹脂からなる特定粒子径の微粒子を含有することにより、高い剥離接着力を発現する接着剤組成物が記載されている。この文献では、比較例でコアシェル粒子が使用されている。
 特許文献2では、3官能以上の液状エポキシを含むエポキシ化合物に対して、フィラーと、コアシェル強靭化剤と、ジシアンジアミド等の潜在性硬化剤を配合した一液型エポキシ接着剤が記載されている。
 特許文献3では、エポキシ樹脂と、ジシアンジアミド等のアミノ系硬化剤と、特定構造のフェノール系硬化剤とを含有し、アミノ系硬化剤とフェノール系硬化剤の比率を特定範囲としたエポキシ樹脂組成物、及び、これを用いて形成されるプリプレグが記載されている。
特開2005-36095号公報 特開2019-11445号公報 特開2001-40069号公報
 特許文献1~3に記載されているようなエポキシ樹脂にジシアンジアミドを配合した一成分型の硬化性組成物は、耐衝撃剥離接着性が十分ではなく改善の余地があった。
 本発明は、上記現状に鑑み、エポキシ樹脂とジシアンジアミドを配合し、かつ、優れた耐衝撃剥離接着性を示す硬化物を与える一成分型硬化性樹脂組成物を提供することを目的とする。
 本発明者らは上記課題を解決するために鋭意研究を重ねた結果、エポキシ樹脂(A)に、コアシェル構造を有するポリマー粒子および/またはブロックドウレタン(B)と、特定のフェノール化合物(C)と、ジシアンジアミド(D)を、特定の比率で配合することで、優れた耐衝撃剥離接着性を示す硬化物を与える一成分型硬化性樹脂組成物が得られることを見出した。
 すなわち、本発明は、エポキシ樹脂(A)100重量部、
 コアシェル構造を有するポリマー粒子および/またはブロックドウレタン(B)1~100重量部、
 1分子中に1~3個のフェノール性水酸基を有する化合物(C)[但し、1分子中に1~3個のフェノール性水酸基を有する化合物が、さらにアミノ基を有する化合物である場合は、前記化合物(C)に該当しない]、及び
 ジシアンジアミド(D)、を含有し、
 前記化合物(C)が有するフェノール性水酸基のモル数/ジシアンジアミド(D)から生成するCN基のモル数の比は、前記化合物(C)が1分子中に1個のフェノール性水酸基を有する時には0.01以上0.39以下であり、前記化合物(C)が1分子中に2個または3個のフェノール性水酸基を有する時には0.01以上1.5以下である、一成分型硬化性樹脂組成物に関する。
 好ましくは、前記化合物(C)は、1分子中に1個又は2個のフェノール性水酸基を有する。
 好ましくは、前記化合物(C)は、メチル基、第一級アルキル基、第二級アルキル基、第三級アルキル基およびハロゲンからなる群より選択される1個~4個の置換基を芳香環上に有する。
 好ましくは、前記化合物(C)は、少なくとも1個のフェノール性水酸基のオルト位に、メチル基、第一級アルキル基、第二級アルキル基、第三級アルキル基およびハロゲンからなる群より選択される1個又は2個の置換基を有する。
 好ましくは、前記(B)成分として、前記コアシェル構造を有するポリマー粒子を含有する。
 好ましくは、前記化合物(C)の分子量が90以上500以下である。
 好ましくは、1分子中に4個以上のフェノール性水酸基を有する化合物(E)をさらに含有し、前記化合物(E)の総重量/前記化合物(C)の総重量の比が1未満である。
 好ましくは、前記ジシアンジアミド(D)のモル量/前記エポキシ樹脂(A)が有するエポキシ基のモル量の比が、0.10以上0.30以下である。
 好ましくは、前記一成分型硬化性樹脂組成物が、前記エポキシ樹脂(A)100重量部に対して、硬化促進剤(F)0.1~10重量部をさらに含有する。
 好ましくは、前記コアシェル構造を有するポリマー粒子が、ジエン系ゴム、(メタ)アクリレート系ゴム、及びオルガノシロキサン系ゴムからなる群より選択される1種以上のコア層を有する。
 好ましくは、前記ジエン系ゴムが、ブタジエンゴム、および/または、ブタジエン-スチレンゴムである。
 好ましくは、前記コアシェル構造を有するポリマー粒子が、芳香族ビニルモノマー、ビニルシアンモノマー、及び(メタ)アクリレートモノマーからなる群より選択される1種以上のモノマー成分を、コア層にグラフト重合してなるシェル層を有する。
 好ましくは、前記コアシェル構造を有するポリマー粒子が、シェル層にエポキシ基を有する。
 好ましくは、前記コアシェル構造を有するポリマー粒子が、エポキシ基を有するモノマー成分を、コア層にグラフト重合してなるシェル層を有する。
 好ましくは、前記コアシェル構造を有するポリマー粒子が、シェル層にエポキシ基を有し、前記シェル層の総量に対する、前記シェル層が有する前記エポキシ基の含有量が0.1~2.0mmol/gである。
 また本発明は、前記一成分型硬化性樹脂組成物が硬化した硬化物にも関する。
 さらに本発明は、前記一成分型硬化性樹脂組成物を含む接着剤にも関する。好ましくは、前記接着剤が構造用接着剤である。
 更にまた本発明は、2枚の基材と、該2枚の基材を接合する、前記接着剤が硬化した接着層とを含む、積層体にも関する。
 また、本発明は、前記硬化物の製造方法であって、前記エポキシ樹脂(A)、前記コアシェル構造を有するポリマー粒子および/またはブロックドウレタン(B)、前記化合物(C)、及び前記ジシアンジアミド(D)を混合して混合物を得る工程、並びに前記混合物を加熱して前記硬化物を得る工程、を含む、硬化物の製造方法にも関する。
 本発明によれば、エポキシ樹脂とジシアンジアミドを配合し、かつ、優れた耐衝撃剥離接着性を示す硬化物を与える一成分型硬化性樹脂組成物を提供することを目的とする。
 以下に、本発明の実施形態について説明するが、本発明は以下の実施形態に限定されるものではない。
 本実施形態は、少なくとも、エポキシ樹脂(A)、コアシェル構造を有するポリマー粒子および/またはブロックドウレタン(B)、1分子中に1~3個のフェノール性水酸基を有する化合物(C)、及びジシアンジアミド(D)、を含有する一成分型硬化性樹脂組成物である。
 <エポキシ樹脂(A)>
 本実施形態の一成分型硬化性樹脂組成物は、硬化性樹脂として、エポキシ樹脂(A)を含有する。エポキシ樹脂としては、各種のエポキシ樹脂を使用することができる。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ノボラック型エポキシ樹脂、ビスフェノールAプロピレンオキシド付加物のグリシジルエーテル型エポキシ樹脂、水添ビスフェノールA(又はF)型エポキシ樹脂、フッ素化エポキシ樹脂、テトラブロモビスフェノールAのグリシジルエーテルなどの難燃型エポキシ樹脂、p-オキシ安息香酸グリシジルエーテルエステル型エポキシ樹脂、m-アミノフェノール型エポキシ樹脂、ジアミノジフェニルメタン系エポキシ樹脂、各種脂環式エポキシ樹脂、N,N-ジグリシジルアニリン、N,N-ジグリシジル-o-トルイジン、トリグリシジルイソシアヌレート、ジビニルベンゼンジオキシド、レゾルシノールジグリシジルエーテル、ポリアルキレングリコールジグリシジルエーテル、グリコールジグリシジルエーテル、脂肪族多塩基酸のジグリシジルエステル、グリセリンのような二価以上の多価脂肪族アルコールのグリシジルエーテル、キレート変性エポキシ樹脂、ゴム変性エポキシ樹脂、ウレタン変性エポキシ樹脂、ヒダントイン型エポキシ樹脂、石油樹脂などのような不飽和重合体のエポキシ化物、含アミノグリシジルエーテル樹脂や、上記のエポキシ樹脂にビスフェノールA(又はF)類または多塩基酸類等を付加反応させて得られるエポキシ化合物などが例示されるが、これらに限定されるものではなく、一般に使用されているエポキシ樹脂が使用され得る。これらエポキシ樹脂は単独で用いても良く、2種以上を併用しても良い。
 前記ポリアルキレングリコールジグリシジルエーテルとしては、より具体的には、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテルなどが挙げられる。前記グリコールジグリシジルエーテルとしては、より具体的には、ネオペンチルグリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、シクロヘキサンジメタノールジグリシジルエーテルなどが挙げられる。前記脂肪族多塩基酸のジグリシジルエステルとしては、より具体的には、ダイマー酸ジグリシジルエステル、アジピン酸ジグリシジルエステル、セバシン酸ジグリシジルエステル、マレイン酸ジグリシジルエステルなどが挙げられる。前記二価以上の多価脂肪族アルコールのグリシジルエーテルとしては、より具体的には、トリメチロールプロパントリグリシジルエーテル、トリメチロールエタントリグリシジルエーテル、ひまし油変性ポリグリシジルエーテル、プロポキシ化グリセリントリグリシジルエーテル、ソルビトールポリグリシジルエーテルなどが挙げられる。エポキシ樹脂に多塩基酸類等を付加反応させて得られるエポキシ化合物としては、例えば、国際公開第2010-098950号に記載されているような、トール油脂肪酸の二量体(ダイマー酸)とビスフェノールA型エポキシ樹脂との付加反応物が挙げられる。
 前記ポリアルキレングリコールジグリシジルエーテル、前記グリコールジグリシジルエーテル、前記脂肪族多塩基酸のジグリシジルエステル、前記二価以上の多価脂肪族アルコールのグリシジルエーテルは、比較的低い粘度を有するエポキシ樹脂であり、ビスフェノールA型エポキシ樹脂やビスフェノールF型エポキシ樹脂等の他のエポキシ樹脂と併用すると、反応性希釈剤として機能し、組成物の粘度と硬化物物性のバランスを改良することができる。これら反応性希釈剤として機能するエポキシ樹脂の含有量は、(A)成分中の0.5~20重量%が好ましく、1~10重量%がより好ましく、2~5重量%が更に好ましい。
 前記キレート変性エポキシ樹脂は、エポキシ樹脂とキレート官能基を含有する化合物(キレート配位子)との反応生成物であり、これを添加した一成分型硬化性樹脂組成物を車両用接着剤として用いた場合、油状物質で汚染された金属基材表面への接着性を改善できる。キレート官能基は、金属イオンへ配位可能な配位座を分子内に複数有する化合物の官能基であり、例えば、リン含有酸基(例えば、-PO(OH))、カルボン酸基(-COH)、硫黄含有酸基(例えば、-SOH)、アミノ基及び水酸基(特に、芳香環において互いに隣接した水酸基)などが挙げられる。キレート配位子としては、エチレンジアミン、ビピリジン、エチレンジアミン四酢酸、フェナントロリン、ポルフィリン、クラウンエーテル、などが挙げられる。市販されているキレート変性エポキシ樹脂としては、ADEKA製アデカレジンEP-49-10Nなどが挙げられる。(A)成分中のキレート変性エポキシ樹脂の使用量は、好ましくは0.1~10重量%、より好ましくは0.5~3重量%である。
 前記ゴム変性エポキシ樹脂は、ゴムとエポキシ基含有化合物とを反応させて得た、1分子当り平均して、エポキシ基を1.1個以上、好ましくは2個以上有する反応生成物である。ゴムとしては、アクリロニトリルブタジエンゴム(NBR)、スチレンブタジエンゴム(SBR)、水素添加ニトリルゴム(HNBR)、エチレンプロピレンゴム(EPDM)、アクリルゴム(ACM)、ブチルゴム(IIR)、ブタジエンゴム、ポリプロピレンオキシドやポリエチレンオキシドやポリテトラメチレンオキシド等のポリオキシアルキレン、などのゴム系重合体を挙げることができる。該ゴム系重合体は、アミノ基、ヒドロキシ基、またはカルボキシル基等の反応性基を末端に有するものが好ましい。これらのゴム系重合体とエポキシ樹脂とを公知の方法により適宜の配合比にて反応させた生成物がゴム変性エポキシ樹脂である。これらの中でも、アクリロニトリル-ブタジエンゴム変性エポキシ樹脂や、ポリオキシアルキレン変性エポキシ樹脂が、得られる一成分型硬化性樹脂組成物の接着性や耐衝撃剥離接着性の観点から好ましく、アクリロニトリル-ブタジエンゴム変性エポキシ樹脂がより好ましい。なお、アクリロニトリル-ブタジエンゴム変性エポキシ樹脂は、例えば、カルボキシル基末端NBR(CTBN)とビスフェノールA型エポキシ樹脂との反応により得られる。
 前記アクリロニトリル-ブタジエンゴム中のアクリロニトリル単量体成分の含有量は、得られる一成分型硬化性樹脂組成物の接着性や耐衝撃剥離接着性の観点から、5~40重量%が好ましく、10~35重量%がより好ましく、15~30重量%が更に好ましい。得られる一成分型硬化性樹脂組成物の作業性の観点から、20~30重量%が特に好ましい。
 また、例えば、アミノ基末端ポリオキシアルキレンとエポキシ樹脂との付加反応生成物(以下、「付加物」とも呼ぶ。)もまた、ゴム変性エポキシ樹脂に含まれる。前記付加物の製造は、例えば、米国特許第5084532号や米国特許第6015865号等に記載されているように、公知の方法で簡易に製造することができる。付加物を製造する際に使用される前記エポキシ樹脂は、例えば、前述した(A)成分の具体例が挙げられるが、ビスフェノールA型エポキシ樹脂やビスフェノールF型エポキシ樹脂が好ましく、ビスフェノールA型エポキシ樹脂がより好ましい。付加物を製造する際に使用される、市販されている前記アミノ基末端ポリオキシアルキレンは、例えば、Huntsman社製のJeffamine D-230、Jeffamine D-400、Jeffamine D-2000、Jeffamine D-4000、Jeffamine T-5000などが挙げられる。
 前記ゴム中の1分子当たりの平均のエポキシド反応性末端基の数は、1.5~2.5個が好ましく、1.8~2.2個がより好ましい。ゴムの数平均分子量は、GPCで測定したポリスチレン換算分子量にて、1000~10000が好ましく、2000~8000がより好ましく、3000~6000が特に好ましい。
 ゴム変性エポキシ樹脂の製法について特に制限は無く、例えば、多量のエポキシ基含有化合物中でゴムとエポキシ基含有化合物とを反応させて製造することができる。具体的には、ゴム中の1当量のエポキシ反応性末端基当たり、2当量以上のエポキシ基含有化合物を反応させて製造することが好ましい。得られる生成物が、ゴムとエポキシ基含有化合物との付加体と、遊離のエポキシ基含有化合物との混合物となるのに十分な量のエポキシ基含有化合物を反応させることがより好ましい。例えば、フェニルジメチル尿素やトリフェニルホスフィンなどの触媒の存在下で、100~250℃の温度に加熱することにより、ゴム変性エポキシ樹脂は製造される。ゴム変性エポキシ樹脂を製造する際に使用されるエポキシ基含有化合物は特に制限は無いが、ビスフェノールA型エポキシ樹脂やビスフェノールF型エポキシ樹脂が好ましく、ビスフェノールA型エポキシ樹脂がより好ましい。なお、ゴム変性エポキシ樹脂の製造時に過剰量のエポキシ基含有化合物が使用された場合には、反応後に残存する未反応のエポキシ基含有化合物は、本願明細書でいうゴム変性エポキシ樹脂には含まれないものとする。
 ゴム変性エポキシ樹脂では、ビスフェノール成分と予備反応させることでエポキシ樹脂を改質することができる。改質に使用するビスフェノール成分は、ゴム変性エポキシ樹脂中のゴム成分100重量部に対し、3~35重量部が好ましく、5~25重量部がより好ましい。改質されたゴム変性エポキシ樹脂を含有する一成分型硬化性樹脂組成物を硬化してなる硬化物は、高温曝露後の接着耐久性に優れ、また、低温時の耐衝撃性にも優れる。
 ゴム変性エポキシ樹脂のガラス転移温度(Tg)は、特に制限は無いが、-25℃以下が好ましく、-35℃以下がより好ましく、-40℃以下が更に好ましく、-50℃以下が特に好ましい。
 ゴム変性エポキシ樹脂の数平均分子量は、GPCで測定したポリスチレン換算分子量にて、1500~40000が好ましく、3000~30000がより好ましく、4000~20000が特に好ましい。分子量分布(重量平均分子量と数平均分子量との比)は、1~4が好ましく、1.2~3がより好ましく、1.5~2.5が特に好ましい。
 ゴム変性エポキシ樹脂は、単独でまたは2種以上を組み合わせて使用することができる。
 (A)成分中のゴム変性エポキシ樹脂の使用量は、1~50重量%が好ましく、2~40重量%がより好ましく、5~30重量%が更に好ましく、10~20重量%が特に好ましい。
 前記ウレタン変性エポキシ樹脂は、イソシアネート基との反応性を有する基とエポキシ基とを含有する化合物と、イソシアネート基を含有するウレタンプレポリマーを反応させて得た、1分子当り平均して、エポキシ基を1.1個以上、好ましくは2個以上有する反応生成物である。例えば、ヒドロキシ基含有エポキシ化合物とウレタンプレポリマーを反応させることにより、ウレタン変性エポキシ樹脂が得られる。
 ウレタン変性エポキシ樹脂の数平均分子量は、GPCで測定したポリスチレン換算分子量にて、1500~40000が好ましく、3000~30000がより好ましく、4000~20000が特に好ましい。分子量分布(重量平均分子量と数平均分子量との比)は、1~4が好ましく、1.2~3がより好ましく、1.5~2.5が特に好ましい。
 ウレタン変性エポキシ樹脂は、単独でまたは2種以上を組み合わせて使用することができる。
 (A)成分中のウレタン変性エポキシ樹脂の使用量は、1~50重量%が好ましく、2~40重量%がより好ましく、5~30重量%が更に好ましく、10~20重量%が特に好ましい。
 これらのエポキシ樹脂の中でもエポキシ基を一分子中に少なくとも2個有するものが、硬化性が高く、硬化後の可撓性に富み、コアシェルポリマー粒子(B)の配合による耐衝撃剥離性向上効果に優れるなどの点から好ましい。特に、エポキシ基を一分子中に2個有する化合物が好ましい。
 前記のエポキシ樹脂の中でも、ビスフェノールA型エポキシ樹脂やビスフェノールF型エポキシ樹脂は、得られる硬化物の弾性率が高く、耐熱性および接着性に優れ、比較的安価であるため好ましく、ビスフェノールA型エポキシ樹脂が特に好ましい。
 また、各種のエポキシ樹脂の中でも、エポキシ当量が220未満のエポキシ樹脂は、得られる硬化物の弾性率および耐熱性が高いため好ましく、エポキシ当量は90以上210未満がより好ましく、150以上200未満が更に好ましい。
 特に、エポキシ当量が220未満のビスフェノールA型エポキシ樹脂やビスフェノールF型エポキシ樹脂は、常温で液体であり、得られる一成分型硬化性樹脂組成物の取扱い性が良いため好ましい。
 エポキシ当量が220以上5000未満のビスフェノールA型エポキシ樹脂やビスフェノールF型エポキシ樹脂を、(A)成分中に、好ましくは40重量%以下、より好ましくは20重量%以下の範囲で添加すると、得られる硬化物が耐衝撃性に優れるため好ましい。
 <コアシェルポリマー粒子および/またはブロックドウレタン(B)>
 本実施形態の一成分型硬化性樹脂組成物は、(B)成分として、コアシェル構造を有するポリマー粒子、および/または、ブロックドウレタンを含有する。(B)成分による靱性改良効果によって、得られる硬化物は耐衝撃剥離接着性に優れる。(A)成分及び(D)成分に対して、(B)成分と、次に説明する(C)成分とを併用することにより、相乗的な効果によって、一成分型硬化性樹脂組成物から得られる硬化物の耐衝撃剥離接着性を大きく改善することができる。(B)成分としては、コアシェル構造を有するポリマー粒子のみを含有してもよいし、ブロックドウレタンのみを含有してもよい。また、双方を含有してもよい。(B)成分として、少なくとも、コアシェル構造を有するポリマー粒子を含有することが好ましい。以下では、コアシェル構造を有するポリマー粒子を、コアシェルポリマー粒子ともいう。
 <コアシェルポリマー粒子>
 コアシェルポリマー粒子(B)は、シェル層にエポキシ基を有しないものであってもよいが、シェル層にエポキシ基を有するものが好ましい。この時、コアシェルポリマー粒子(B)のシェル層の総量に対する、前記シェル層が有するエポキシ基の含有量は、得られる硬化物の耐衝撃剥離接着性の観点から、0.1mmol/g以上2.0mmol/g以下であることが好ましく、0.3mmol/g以上1.5mmol/g以下であることがより好ましい。これにより、コアシェルポリマー粒子(B)の凝集が抑制され、コアシェルポリマー粒子(B)が硬化物中に一次粒子の状態で分散することができ、その結果、硬化物の耐衝撃剥離接着性が改善され得ると推測される。
 コアシェルポリマー粒子(B)の粒子径は特に限定されないが、工業的生産性を考慮すると、体積平均粒子径(Mv)は10~2000nmが好ましく、30~600nmがより好ましく、50~400nmが更に好ましく、100~300nmが特に好ましい。なお、ポリマー粒子の体積平均粒子径(Mv)は、ポリマー粒子のラテックスについて、マイクロトラックUPA150(日機装株式会社製)を用いて測定することができる。
 コアシェルポリマー粒子(B)は、一成分型硬化性樹脂組成物中において、その粒子径の個数分布において、前記体積平均粒子径の0.5倍以上、1倍以下の半値幅を有することが、得られる一成分型硬化性樹脂組成物が低粘度で取扱い易いため好ましい。
 上述の特定の粒子径分布を容易に実現する観点から、コアシェルポリマー粒子(B)の粒子径の個数分布において、極大値が2個以上存在することが好ましく、製造時の手間やコストの観点から、極大値が2~3個存在することがより好ましく、極大値が2個存在することが更に好ましい。特に、体積平均粒子径が10nm以上150nm未満のコアシェルポリマー粒子10~90重量%と、体積平均粒子径が150nm以上2000nm以下のコアシェルポリマー粒子90~10重量%を含むことが好ましい。
 コアシェルポリマー粒子(B)は一成分型硬化性樹脂組成物中で1次粒子の状態で分散していることが好ましい。本願明細書における「コアシェルポリマー粒子が1次粒子の状態で分散している」(以下、一次分散とも呼ぶ。)とは、コアシェルポリマー粒子同士が実質的に独立して(接触なく)分散していることを意味し、その分散状態は、例えば、一成分型硬化性樹脂組成物の一部をメチルエチルケトンのような溶剤に溶解し、これをレーザー光散乱による粒子径測定装置等により、その粒子径を測定することにより確認できる。
 前記粒子径測定による体積平均粒子径(Mv)/個数平均粒子径(Mn)の値は、特に制限されないが、3以下であることが好ましく、2.5以下がより好ましく、2以下が更に好ましく、1.5以下が特に好ましい。体積平均粒子径(Mv)/個数平均粒子径(Mn)が3以下であれば、コアシェルポリマー粒子(B)が良好に分散していると考えられ、得られる硬化物の耐衝撃性や接着性などの物性が良好になる。
 なお、体積平均粒子径(Mv)/個数平均粒子径(Mn)は、マイクロトラックUPA(日機装株式会社製)を用いて測定し、MvをMnで除することによって求めることができる。
 また、コアシェルポリマー粒子の「安定な分散」とは、コアシェルポリマー粒子が、連続層中で凝集したり、分離したり、沈殿したりすることなく、定常的に通常の条件下にて、長期間に渡って、分散している状態を意味する。また、コアシェルポリマー粒子の連続層中での分布も実質的に変化せず、また、これらの組成物を危険がない範囲で加熱することで粘度を下げて攪拌したりしても、「安定な分散」を保持できることが好ましい。
 コアシェルポリマー粒子(B)は単独で用いても良く、2種以上を併用しても良い。
 コアシェルポリマー粒子(B)の構造は特に限定されないが、2層以上を有することが好ましい。また、コア層を被覆する中間層と、この中間層をさらに被覆するシェル層とから構成される3層以上の構造を有することも可能である。
 以下、コアシェルポリマー粒子(B)の各層について具体的に説明する。
 ≪コア層≫
 コア層は、一成分型硬化性樹脂組成物の硬化物の靱性を高めるために、ゴムとしての性質を有する弾性コア層であることが好ましい。ゴムとしての性質を有するためには、弾性コア層は、ゲル含量が60重量%以上であることが好ましく、80重量%以上であることがより好ましく、90重量%以上であることがさらに好ましく、95重量%以上であることが特に好ましい。なお、本明細書でいうゲル含量とは、凝固、乾燥により得られたクラム0.5gをトルエン100gに浸漬し、23℃で24時間静置した後に不溶分と可溶分を分別したときの、不溶分と可溶分の合計量に対する不溶分の比率を意味する。
 コア層は、ジエン系ゴム、(メタ)アクリレート系ゴム、及びオルガノシロキサン系ゴムからなる群より選択される1種以上を含むことが好ましい。得られる硬化物の耐衝撃剥離接着性の改善効果が高い点、及び、エポキシ樹脂(A)との親和性が低いために(A)成分によるコア層の膨潤に起因する経時での粘度上昇が起こりにくい点から、コア層は、ジエン系ゴムを含むことが好ましい。
 (ジエン系ゴム)
 前記ジエン系ゴムを構成する共役ジエン系単量体としては、例えば、1,3-ブタジエン、イソプレン、2-クロロ-1,3-ブタジエン、2-メチル-1,3-ブタジエンなどが挙げられる。これらの共役ジエン系単量体は、単独で用いても、2種以上を組み合わせて用いてもよい。
 前記共役ジエン系単量体の含有量は、コア層の50~100重量%の範囲であることが好ましく、70~100重量%の範囲であることがより好ましく、90~100重量%の範囲であることが更に好ましい。共役ジエン系単量体の含有量が50重量%以上であると、得られる硬化物の耐衝撃剥離接着性がより良好になり得る。
 共役ジエン系単量体と共重合可能なビニル系単量体としては、例えば、スチレン、α-メチルスチレン、モノクロロスチレン、ジクロロスチレンなどのビニルアレーン類;アクリル酸、メタクリル酸などのビニルカルボン酸類;アクリロニトリル、メタクリロニトリルなどのビニルシアン類;塩化ビニル、臭化ビニル、クロロプレンなどのハロゲン化ビニル類;酢酸ビニル;エチレン、プロピレン、ブチレン、イソブチレンなどのアルケン類;ジアリルフタレート、トリアリルシアヌレート、トリアリルイソシアヌレート、ジビニルベンゼンなどの多官能性モノマーなどが挙げられる。これらのビニル系単量体は、単独で用いても、2種以上を組み合わせて用いてもよい。特に好ましくはスチレンである。
 前記共役ジエン系単量体と共重合可能なビニル系単量体の含有量は、コア層の0~50重量%の範囲であることが好ましく、0~30重量%の範囲であることがより好ましく、0~10重量%の範囲であることが更に好ましい。共役ジエン系単量体と共重合可能なビニル系単量体の含有量が50重量%以下であると、得られる硬化物の耐衝撃剥離接着性がより良好になり得る。
 耐衝撃剥離接着性の改良効果が高い点、および、エポキシ樹脂(A)との親和性が低いためにコア層の膨潤に起因する経時での粘度上昇が起こり難い点から、ジエン系ゴムは、1,3-ブタジエンを用いるブタジエンゴム、および/または、1,3-ブタジエンとスチレンの共重合体であるブタジエン-スチレンゴムであることが好ましく、ブタジエンゴムがより好ましい。また、ブタジエン-スチレンゴムは、屈折率の調整により得られる硬化物の透明性を高めることができる点で好ましい。
 ((メタ)アクリレート系ゴム)
 前記(メタ)アクリレート系ゴムは、(メタ)アクリレート系モノマーからなる群より選ばれる少なくとも1種のモノマーを50~100重量%、及び、(メタ)アクリレート系モノマーと共重合可能な他のビニル系モノマーを0~50重量%含有するモノマー混合物を重合して得られるゴム弾性体であることが好ましい。
 前記(メタ)アクリレート系モノマーとしては、例えば、(i)メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ドデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレートなどのアルキル(メタ)アクリレート類;(ii)フェノキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレートなどの芳香環含有(メタ)アクリレート類;(iii)2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレート類;(iv)グリシジル(メタ)アクリレート、グリシジルアルキル(メタ)アクリレートなどのグリシジル(メタ)アクリレート類;(v)アルコキシアルキル(メタ)アクリレート類;(vi)アリル(メタ)アクリレート、およびアリルアルキル(メタ)アクリレートなどのアリルアルキル(メタ)アクリレート類;(vii)モノエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレートなどの多官能性(メタ)アクリレート類などが挙げられる。これらの(メタ)アクリレート系モノマーは、1種類を単独で用いても、2種以上を組み合わせて用いてもよい。(メタ)アクリレート系モノマーとしては、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、及び2-エチルヘキシル(メタ)アクリレートが好ましい。
 (メタ)アクリレート系モノマーと共重合可能な他のビニル系モノマーとしては、例えば、(i)スチレン、α-メチルスチレン、モノクロロスチレン、ジクロロスチレンなどのビニルアレーン類;(ii)アクリル酸、メタクリル酸などのビニルカルボン酸類;(iii)アクリロニトリル、メタクリロニトリルなどのビニルシアン類;(iv)塩化ビニル、臭化ビニル、クロロプレンなどのハロゲン化ビニル類;(v)酢酸ビニル;(vi)エチレン、プロピレン、ブチレン、イソブチレンなどのアルケン類;(vii)ジアリルフタレート、トリアリルシアヌレート、トリアリルイソシアヌレート、ジビニルベンゼンなどの多官能性モノマーなどが挙げられる。これらのビニル系モノマーは、1種類を単独で用いても、2種以上を組み合わせて用いてもよい。屈折率を容易に大きくすることができる点から、特に好ましくはスチレンである。
 (オルガノシロキサン系ゴム)
 前記オルガノシロキサン系ゴムとしては、例えば、(i)ジメチルシリルオキシ、ジエチルシリルオキシ、メチルフェニルシリルオキシ、ジフェニルシリルオキシ、ジメチルシリルオキシ-ジフェニルシリルオキシなどの、アルキル又はアリール2置換シリルオキシ単位から構成されるポリシロキサン系ポリマー;(ii)側鎖のアルキルの一部が水素原子に置換されたオルガノハイドロジェンシリルオキシなどの、アルキル又はアリール1置換シリルオキシ単位から構成されるポリシロキサン系ポリマーなどが挙げられる。これらのポリシロキサン系ポリマーは、1種類を単独で用いても、2種以上を組み合わせて用いてもよい。中でも、ジメチルシリルオキシ、メチルフェニルシリルオキシ、及びジメチルシリルオキシ-ジフェニルシリルオキシが硬化物に耐熱性を付与することができることから好ましく、ジメチルシリルオキシが容易に入手できることから最も好ましい。コア層がオルガノシロキサン系ゴムから形成される態様において、ポリシロキサン系ポリマー部位は、硬化物の耐熱性を損なわないために、オルガノシロキサン系ゴム全体を100重量%として80重量%以上(より好ましくは90重量%以上)含有していることが好ましい。
 コア層のガラス転移温度(以下、単に「Tg」と称する場合がある)は、得られる硬化物の靱性を高めるために、0℃以下であることが好ましく、-20℃以下がより好ましく、-40℃以下が更に好ましく、-60℃以下であることが特に好ましい。
 また、コア層の体積平均粒子径は0.03~2μmが好ましいが、0.05~1μmがさらに好ましい。この範囲内であると、安定的に製造することができ、また、硬化物の耐熱性や耐衝撃性が良好なものとなり得る。なお体積平均粒子径は、マイクロトラックUPA150(日機装株式会社製)を用いて測定することができる。
 コア層の割合は、コアシェルポリマー粒子全体を100重量%として40~97重量%が好ましく、60~95重量%がより好ましく、70~93重量%が更に好ましく、80~90重量%が特に好ましい。コア層の割合が40重量%以上であると、得られる硬化物の耐衝撃剥離接着性がより良好になり得る。コア層の割合が97重量%以下であると、コアシェルポリマー粒子が凝集し難く、一成分型硬化性樹脂組成物がより低粘度となり、作業性がより良好になり得る。
 コア層は単層構造であることが多いが、ゴム弾性を有する層からなる多層構造であってもよい。また、コア層が多層構造の場合は、各層のポリマー組成は、前記開示の範囲内で各々相違していてもよい。
 ≪中間層≫
 コア層とシェル層の間に、必要により、中間層を形成させてもよい。特に、中間層として、以下のゴム表面架橋層を形成させてもよい。得られる硬化物の靱性改良効果および耐衝撃剥離接着性改良効果の点からは、中間層を含有しないこと、特に、以下のゴム表面架橋層を含有しないことが好ましい。
 中間層が存在する場合、コア層100重量部に対する中間層の割合は、0.1~30重量部が好ましく、0.2~20重量部がより好ましく、0.5~10重量部がさらに好ましく、1~5重量部が特に好ましい。
 前記ゴム表面架橋層は、一分子内にラジカル重合性二重結合を2個以上有する多官能性モノマー30~100重量%、及びその他のビニルモノマー0~70重量%からなるゴム表面架橋層成分を重合してなる中間層ポリマーからなり、一成分型硬化性樹脂組成物の粘度を低下させる効果、コアシェルポリマー粒子(B)の(A)成分への分散性を向上させる効果を有する。また、コア層の架橋密度を上げたりシェル層のグラフト効率を高める効果も有する。
 前記多官能性モノマーの具体例としては、ブタジエンなどの共役ジエン系モノマーは含まれず、アリル(メタ)アクリレート、アリルアルキル(メタ)アクリレート等のアリルアルキル(メタ)アクリレート類;アリルオキシアルキル(メタ)アクリレート類;(ポリ)エチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート等の(メタ)アクリル基を2個以上有する多官能(メタ)アクリレート類;ジアリルフタレート、トリアリルシアヌレート、トリアリルイソシアヌレート、ジビニルベンゼン等が例示されるが、好ましくはアリルメタクリレート、トリアリルイソシアヌレートである。本願明細書において(メタ)アクリレートとは、アクリレートおよび/またはメタクリレートを意味する。
 ≪シェル層≫
 コアシェルポリマー粒子の最も外側に存在するシェル層は、シェル層形成用モノマーを重合したものであるが、コアシェルポリマー粒子(B)と(A)成分との相溶性を向上させ、一成分型硬化性樹脂組成物、又はその硬化物中においてコアシェルポリマー粒子(B)が一次粒子の状態で分散することを可能にする役割を担うシェルポリマーからなる。
 このようなシェルポリマーは、好ましくは前記コア層及び/又は中間層にグラフトしている。なお、以下、「コア層にグラフトしている」という場合、このコア層に中間層が形成されている時には、中間層にグラフトしている態様も含むものとする。より正確には、シェル層の形成に用いるモノマー成分が、コア層を形成するコアポリマー(中間層を形成した場合には、コアポリマーには、中間層を形成する中間層ポリマーも含まれる。以下、同じ)にグラフト重合して、実質的にシェルポリマーとコアポリマーとが化学結合していることが好ましい(中間層を形成した場合には、シェルポリマーと中間層ポリマーとが化学結合していることも好ましい)。即ち、好ましくは、シェルポリマーは、コアポリマーの存在下に前記シェル層形成用モノマーをグラフト重合させることで形成され、このようにすることで、コアポリマーにグラフト重合されており、コアポリマーの一部又は全体を覆っている。この重合操作は、水性のポリマーラテックス状態で調製されたコアポリマーのラテックスに対して、シェルポリマー層形成用モノマーを加えて重合させることで実施できる。
 シェル層形成用モノマーとしては、コアシェルポリマー粒子(B)の一成分型硬化性樹脂組成物中での相溶性及び分散性の点から、例えば、芳香族ビニルモノマー、ビニルシアンモノマー、又は(メタ)アクリレートモノマーが好ましく、(メタ)アクリレートモノマーがより好ましい。特に、シェル層形成用モノマーは、メチルメタクレリートを含むことが好ましい。これらシェル層形成用モノマーは、単独で用いてもよく、適宜組み合わせて用いてもよい。
 芳香族ビニルモノマー、ビニルシアンモノマー、及び(メタ)アクリレートモノマーの合計量は、シェル層形成用モノマー100重量%中に、10~99.5重量%であることが好ましく、50~99重量%がより好ましく、65~98重量%が更に好ましく、67~90重量%が特に好ましく、67~85重量%が最も好ましい。
 メチルメタクレリートの含有量は、シェル層形成用モノマー100重量%中に、5~100重量%であることが好ましく、20~99重量%がより好ましく、30~97重量%が更に好ましく、70~95重量%が特に好ましい。
 硬化物や一成分型硬化性樹脂組成物中でコアシェルポリマー粒子(B)が凝集せずに良好な分散状態を維持するために、(A)成分と化学結合させる観点から、シェル層形成用モノマーとして、エポキシ基、オキセタン基、水酸基、アミノ基、イミド基、カルボン酸基、カルボン酸無水物基、環状エステル、環状アミド、ベンズオキサジン基、及びシアン酸エステル基からなる群から選ばれる1種以上を含有する反応性基含有モノマーを含有することが好ましく、特に、エポキシ基を有するモノマーが好ましい。
 エポキシ基を有するモノマーは、耐衝撃剥離接着性や貯蔵安定性の観点から、シェル層形成用モノマー100重量%中に、0~90重量%含まれていることが好ましく、1~50重量%がより好ましく、2~35重量%が更に好ましく、3~20重量%が特に好ましい。
 エポキシ基を有するモノマーは、シェル層の形成に使用することが好ましく、シェル層のみに使用することがより好ましい。
 また、シェル層形成用モノマーとして、ラジカル重合性二重結合を2個以上有する多官能性モノマーを使用すると、一成分型硬化性樹脂組成物中においてコアシェルポリマー粒子の膨潤を防止し、また、一成分型硬化性樹脂組成物の粘度が低く取扱い性がよくなる傾向があるため好ましい。一方、得られる硬化物の靱性改良効果および耐衝撃剥離接着性改良効果の点からは、シェル層形成用モノマーとして、ラジカル重合性二重結合を2個以上有する多官能性モノマーを使用しないことが好ましい。
 多官能性モノマーは、シェル層形成用モノマー100重量%中に、例えば、0~20重量%含まれていてもよく、1~20重量%含まれていることが好ましく、より好ましくは、5~15重量%である。
 前記芳香族ビニルモノマーの具体例としては、スチレン、α-メチルスチレン、p-メチルスチレン、ジビニルベンゼン等のビニルベンゼン類が挙げられる。
 前記ビニルシアンモノマーの具体例としては、アクリロニトリル、又はメタクリロニトリル等が挙げられる。
 前記(メタ)アクリレートモノマーの具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレートなどの(メタ)アクリル酸アルキルエステル;(メタ)アクリル酸ヒドロキシアルキルエステル等が挙げられる。
 前記(メタ)アクリル酸ヒドロキシアルキルエステルの具体例としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等のヒドロキシ直鎖アルキル(メタ)アクリレート(特に、ヒドロキシ直鎖C1-6アルキル(メタ)アクリレート);カプロラクトン変性ヒドロキシ(メタ)アクリレート;α-(ヒドロキシメチル)アクリル酸メチル、α-(ヒドロキシメチル)アクリル酸エチル等のヒドロキシ分岐アルキル(メタ)アクリレート、二価カルボン酸(フタル酸等)と二価アルコール(プロピレングリコール等)とから得られるポリエステルジオール(特に飽和ポリエステルジオール)のモノ(メタ)アクリレート等のヒドロキシル基含有(メタ)アクリレート類等が挙げられる。
 前記エポキシ基を有するモノマーの具体例としては、グリシジル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、アリルグリシジルエーテル等のグリシジル基含有ビニルモノマーが挙げられる。
 前記ラジカル重合性二重結合を2個以上有する多官能性モノマーの具体例としては、上述の多官能性モノマーと同じモノマーが例示されるが、好ましくはアリルメタクリレート、トリアリルイソシアヌレートである。
 本実施形態では、例えば、芳香族ビニルモノマー(特にスチレン)0~50重量%(好ましくは1~50重量%、より好ましくは2~48重量%)、ビニルシアンモノマー(特にアクリロニトリル)0~50重量%(好ましくは0~30重量%、より好ましくは10~25重量%)、(メタ)アクリレートモノマー(特にメチルメタクリレート)0~100重量%(好ましくは5~100重量%、より好ましくは70~95重量%)、エポキシ基を有するモノマー(特にグリシジルメタクリレート)1~50重量%(好ましくは2~35重量%、より好ましくは3~20重量%)を組み合わせたシェル層形成用モノマー(合計100重量%)のポリマーであるシェル層とすることが好ましい。これにより、所望の靱性改良効果と機械特性をバランス良く実現することができる。
 これらのモノマー成分は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。シェル層は、上記モノマー成分の他に、他のモノマー成分を含んで形成されてもよい。
 シェル層のグラフト率は、70%以上(より好ましくは80%以上、さらに好ましくは90%以上)であることが好ましい。グラフト率が70%以上であると、一成分型硬化性樹脂組成物がより低粘度となり得る。
 前記グラフト率の算出方法は次に記載の通りである。先ず、コアシェルポリマー粒子を含有する水性ラテックスを凝固・脱水し、最後に乾燥してコアシェルポリマー粒子のパウダーを得る。次いで、コアシェルポリマー粒子のパウダー2gをメチルエチルケトン(MEK)100gに23℃で24時間浸漬した後にMEK可溶分をMEK不溶分と分離し、さらにMEK可溶分からメタノール不溶分を分離する。そして、MEK不溶分とメタノール不溶分との合計量に対するMEK不溶分の比率を求めることによってグラフト率を算出する。
 ≪コアシェルポリマー粒子の製造方法≫
 (コア層の製造方法)
 コアシェルポリマー粒子(B)を構成するコア層の形成は、例えば、乳化重合、懸濁重合、マイクロサスペンジョン重合などによって製造することができ、例えば国際公開第2005/028546号に記載の方法を用いることができる。
 (シェル層および中間層の形成方法)
 中間層は、中間層形成用モノマーを公知のラジカル重合により重合することによって形成することができる。コア層を構成するゴム弾性体をエマルジョンとして得た場合には、中間層形成用モノマーの重合は乳化重合法により行うことが好ましい。
 シェル層は、シェル層形成用モノマーを、公知のラジカル重合により重合することによって形成することができる。コア層、または、コア層を中間層で被覆して構成されるポリマー粒子前駆体をエマルジョンとして得た場合には、シェル層形成用モノマーの重合は乳化重合法により行うことが好ましく、例えば、国際公開第2005/028546号に記載の方法に従って製造することができる。
 乳化重合において用いることができる乳化剤(分散剤)としては、ジオクチルスルホコハク酸やドデシルベンゼンスルホン酸などに代表されるアルキルまたはアリールスルホン酸、アルキルまたはアリールエーテルスルホン酸、ドデシル硫酸に代表されるアルキルまたはアリール硫酸、アルキルまたはアリールエーテル硫酸、アルキルまたはアリール置換燐酸、アルキルまたはアリールエーテル置換燐酸、ドデシルザルコシン酸に代表されるN-アルキルまたはアリールザルコシン酸、オレイン酸やステアリン酸などに代表されるアルキルまたはアリールカルボン酸、アルキルまたはアリールエーテルカルボン酸などの各種の酸類、これら酸類のアルカリ金属塩またはアンモニウム塩などのアニオン性乳化剤(分散剤);アルキルまたはアリール置換ポリエチレングリコールなどの非イオン性乳化剤(分散剤);ポリビニルアルコール、アルキル置換セルロース、ポリビニルピロリドン、ポリアクリル酸誘導体などの分散剤が挙げられる。これらの乳化剤(分散剤)は、単独で用いても、2種以上を組み合わせて用いてもよい。
 ポリマー粒子の水性ラテックスの分散安定性に支障を来さない限り、乳化剤(分散剤)の使用量は少なくすることが好ましい。また、乳化剤(分散剤)は、その水溶性が高いほど好ましい。水溶性が高いと、乳化剤(分散剤)の水洗除去が容易になり、最終的に得られる硬化物への悪影響を容易に防止できる。
 乳化重合法を採用する場合には、公知の開始剤、すなわち2,2’-アゾビスイソブチロニトリル、過酸化水素、過硫酸カリウム、過硫酸アンモニウムなどを熱分解型開始剤として用いることができる。
 また、t-ブチルパーオキシイソプロピルカーボネート、パラメンタンハイドロパーオキサイド、クメンハイドロパーオキサイド、ジクミルパーオキサイド、t-ブチルハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、t-ヘキシルパーオキサイドなどの有機過酸化物;過酸化水素、過硫酸カリウム、過硫酸アンモニウムなどの無機過酸化物といった過酸化物と、必要に応じてナトリウムホルムアルデヒドスルホキシレート、グルコースなどの還元剤、および必要に応じて硫酸鉄(II)などの遷移金属塩、さらに必要に応じてエチレンジアミン四酢酸二ナトリウムなどのキレート剤、さらに必要に応じてピロリン酸ナトリウムなどのリン含有化合物などを併用したレドックス型開始剤を使用することもできる。
 レドックス型開始剤系を用いた場合には、前記過酸化物が実質的に熱分解しない低い温度でも重合を行うことができ、重合温度を広い範囲で設定できるようになり好ましい。中でもクメンハイドロパーオキサイド、ジクミルパーオキサイド、t-ブチルハイドロパーオキサイドなどの有機過酸化物をレドックス型開始剤として用いることが好ましい。前記開始剤の使用量、レドックス型開始剤を用いる場合には前記還元剤・遷移金属塩・キレート剤などの使用量は公知の範囲で用いることができる。またラジカル重合性二重結合を2個以上有するモノマーを重合するに際しては公知の連鎖移動剤を公知の範囲で用いることができる。追加的に界面活性剤を用いることができるが、これも公知の範囲である。
 重合に際しての重合温度、圧力、脱酸素などの条件は、公知の範囲のものが適用できる。また、中間層形成用モノマーの重合は1段で行なっても2段以上で行なっても良い。例えば、弾性コア層を構成するゴム弾性体のエマルジョンに中間層形成用モノマーを一度に添加する方法、連続追加する方法の他、あらかじめ中間層形成用モノマーが仕込まれた反応器に弾性コア層を構成するゴム弾性体のエマルジョンを加えてから重合を実施する方法などを採用することができる。
 (B)成分としてコアシェルポリマー粒子を用いる場合、得られる一成分型硬化性樹脂組成物の取扱いやすさと、得られる硬化物の靭性改良効果のバランスから、コアシェルポリマー粒子の含有量は、エポキシ樹脂(A)100重量部に対して、1~100重量部であることが好ましく、2~80重量部がより好ましく、3~60重量部がさらに好ましく、4~50重量部がより更に好ましく、5~40重量部が特に好ましい。
 <ブロックドウレタン>
 (B)成分の一態様であるブロックドウレタンは、エラストマー型であって、ウレタン基および/または尿素基を含有し、かつ、末端にイソシアネート基を有する化合物の当該末端イソシアネート基の全部または一部が活性水素基を有する種々のブロック剤でキャップされた化合物である。特に、当該末端イソシアネート基の全部がブロック剤でキャップされた化合物が好ましい。このような化合物は、例えば、末端に活性水素含有基を有する有機重合体に、過剰のポリイソシアネート化合物を反応させて、主鎖中にウレタン基および/または尿素基を有し末端にイソシアネート基を有する重合体(ウレタンプレポリマー)とした後、あるいは同時に、該イソシアネート基の全部または一部に、活性水素基を有するブロック剤でキャップすることにより得られる。
 前記ブロックドウレタンは、例えば、下記一般式(1):
A-(NR-C(=O)-X)   (1)
(式中、a個のRは、それぞれ独立に、炭素原子数1~20の炭化水素基である。aはキャップされたイソシアネート基の1分子当たりの平均数を表し、1.1個以上が好ましく、1.5~8個がより好ましく、1.7~6個が更に好ましく、2~4個が特に好ましい。Xは、前記ブロック剤から活性水素原子を除いた残基である。Aは、前記ウレタンプレポリマーから末端イソシアネート基を除いた残基である。)で表される。
 ブロックドウレタンの数平均分子量は、GPCで測定したポリスチレン換算分子量にて、2000~40000が好ましく、3000~30000がより好ましく、4000~20000が特に好ましい。分子量分布(重量平均分子量と数平均分子量との比)は、1~4が好ましく、1.2~3がより好ましく、1.5~2.5が特に好ましい。
 (末端に活性水素含有基を有する有機重合体)
 末端に活性水素含有基を有する有機重合体を構成する主鎖骨格としては、ポリエーテル系重合体、ポリアクリル系重合体、ポリエステル系重合体、ポリジエン系重合体、飽和炭化水素系重合体(ポリオレフィン)、ポリチオエーテル系重合体などが挙げられる。
 (活性水素含有基)
 末端に活性水素含有基を有する有機重合体を構成する活性水素含有基としては、水酸基、アミノ基、イミノ基、チオール基が挙げられる。これらの中でも、入手性の点から、水酸基、アミノ基、イミノ基が好ましく、更に得られるブロックドウレタンの取扱い易さ(粘度)の点から、水酸基がより好ましい。
 末端に活性水素含有基を有する有機重合体としては、末端に水酸基を有するポリエーテル系重合体(ポリエーテルポリオール)、末端にアミノ基および/またはイミノ基を有するポリエーテル系重合体(ポリエーテルアミン)、ポリアクリルポリオール、ポリエステルポリオール、末端に水酸基を有するジエン系重合体(ポリジエンポリオール)、末端に水酸基を有する飽和炭化水素系重合体(ポリオレフィンポリオール)、ポリチオール化合物、ポリアミン化合物などが挙げられる。これらの中でも、ポリエーテルポリオール、ポリエーテルアミン、および、ポリアクリルポリオールは、(A)成分との相溶性に優れ、有機重合体のガラス転移温度が比較的低く、得られる硬化物が低温での耐衝撃性に優れることから好ましい。特に、ポリエーテルポリオールおよびポリエーテルアミンは、得られる有機重合体の粘度が低く作業性が良好であるためにより好ましく、ポリエーテルポリオールは特に好ましい。
 ブロックドウレタンの前駆体である前記ウレタンプレポリマーを調製する際に使用する、末端に活性水素含有基を有する有機重合体は、単独で用いても良く、2種以上を併用しても良い。
 末端に活性水素含有基を有する有機重合体の数平均分子量は、GPCで測定したポリスチレン換算分子量にて、800~7000が好ましく、1500~5000がより好ましく、2000~4000が特に好ましい。
 (ポリエーテル系重合体)
 前記ポリエーテル系重合体は、本質的に一般式(2):
-R-O-  (2)
(式中、Rは、炭素原子数1から14の直鎖状もしくは分岐アルキレン基である。)で示される繰り返し単位を有する重合体であり、一般式(2)におけるRは、炭素原子数1から14の、さらには2から4の、直鎖状もしくは分岐状アルキレン基が好ましい。一般式(2)で示される繰り返し単位の具体例としては、
-CHO-、-CHCHO-、-CHCH(CH)O-、-CHCH(C)O-、-CHC(CHO-、-CHCHCHCHO-
等が挙げられる。ポリエーテル系重合体の主鎖骨格は、1種類だけの繰り返し単位からなってもよいし、2種類以上の繰り返し単位からなってもよい。特に、プロピレンオキシドの繰り返し単位を50重量%以上有するポリプロピレングリコールを主成分とする重合体から成るものは、T字剥離接着強さの観点で好ましい。また、テトラヒドロフランを開環重合して得られるポリテトラメチレングリコール(PTMG)は、動的割裂抵抗力の観点で、好ましい。
 (ポリエーテルポリオール、ポリエーテルアミン)
 前記ポリエーテルポリオールは、末端に水酸基を有するポリエーテル系重合体であり、前記ポリエーテルアミンは、末端にアミノ基またはイミノ基を有するポリエーテル系重合体である。
 (ポリアクリルポリオール)
 前記ポリアクリルポリオールとしては、(メタ)アクリル酸アルキルエステル(共)重合体を骨格とし、かつ、分子内に水酸基を有するポリオールを挙げることができる。特に、2-ヒドロキシエチルメタクリレート等の水酸基含有(メタ)アクリル酸アルキルエステルモノマーを共重合して得られるポリアクリルポリオールが好ましい。
 (ポリエステルポリオール)
 前記ポリエステルポリオールとしては、マレイン酸、フマル酸、アジピン酸、フタル酸等の多塩基酸およびその酸無水物と、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-へキサンジオール、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール等の多価アルコールとを、エステル化触媒の存在下、150~270℃の温度範囲で重縮合させて得られる重合体が挙げられる。また、ε-カプロラクトン、バレロラクトン等の開環重合物やポリカーボネートジオールやヒマシ油等の活性水素を2個以上有する活性水素化合物等も挙げられる。
 (ポリジエンポリオール)
 前記ポリジエンポリオールとしては、ポリブタジエンポリオール、ポリイソプレンポリオール、ポリクロロプレンポリオールなどを挙げることができ、特に、ポリブタジエンポリオールが好ましい。
 (ポリオレフィンポリオール)
 前記ポリオレフィンポリオールとしては、ポリイソブチレンポリオール、水添ポリブタジエンポリオールなどを挙げることができる。
 (ポリイソシアネート化合物)
 前記ポリイソシアネート化合物の具体例としては、トルエン(トリレン)ジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート等の芳香族系ポリイソシアネート;イソフォロンジイソシアネート、ヘキサメチレンジイソシアネート、水素化トルエンジイソシアネート、水素化ジフェニルメタンジイソシアネート等の脂肪族系ポリイソシアネートなどを挙げることができる。これらの中でも、耐熱性の点から、脂肪族系ポリイソシアネートが好ましく、更に入手性の点から、イソフォロンジイソシアネートやヘキサメチレンジイソシアネートがより好ましい。
 (ブロック剤)
 前記ブロック剤は、例えば、第一級アミン系ブロック剤、第二級アミン系ブロック剤、オキシム系ブロック剤、ラクタム系ブロック剤、活性メチレン系ブロック剤、アルコール系ブロック剤、メルカプタン系ブロック剤、アミド系ブロック剤、イミド系ブロック剤、複素環式芳香族化合物系ブロック剤、ヒドロキシ官能性(メタ)アクリレート系ブロック剤、フェノール系ブロック剤が挙げられる。これらの中でも、オキシム系ブロック剤、ラクタム系ブロック剤、ヒドロキシ官能性(メタ)アクリレート系ブロック剤、フェノール系ブロック剤が好ましく、ヒドロキシ官能性(メタ)アクリレート系ブロック剤、フェノール系ブロック剤がより好ましく、フェノール系ブロック剤が更に好ましい。
 (第一級アミン系ブロック剤)
 前記第一級アミン系ブロック剤としては、ブチルアミン、イソプロピルアミン、ドデシルアミン、シクロヘキシルアミン、アニリン、ベンジルアミン等が挙げられる。前記第二級アミン系ブロック剤としては、ジブチルアミン、ジイソプロピルアミン、ジシクロヘキシルアミン、ジフェニルアミン、ジベンジルアミン、モルホリン、ピペリジン、等が挙げられる。前記オキシム系ブロック剤としては、ホルムアルドキシム、アセトアルドキシム、アセトキシム、メチルエチルケトオキシム、ジアセチルモノオキシム、シクロヘキサンオキシム等が挙げられる。前記ラクタム系ブロック剤としては、ε-カプロラクタム、δ-バレロラクタム、γ-ブチロラクタム、β-ブチロラクタム等が挙げられる。前記活性メチレン系ブロック剤としては、アセト酢酸エチル、アセチルアセトン等が挙げられる。前記アルコール系ブロック剤としては、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、アミルアルコール、シクロヘキサノール、1-メトキシ-2-プロパノール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、ベンジルアルコール、グリコール酸メチル、グリコール酸ブチル、ジアセトンアルコール、乳酸メチル、乳酸エチル等が挙げられる。前記メルカプタン系ブロック剤としては、ブチルメルカプタン、ヘキシルメルカプタン、デシルメルカプタン、t-ブチルメルカプタン、チオフェノール、メチルチオフェノール、エチルチオフェノール等が挙げられる。前記アミド系ブロック剤としては、酢酸アミド、ベンズアミド等が挙げられる。前記イミド系ブロック剤としては、コハク酸イミド、マレイン酸イミド等が挙げられる。前記複素環式芳香族化合物系ブロック剤としては、イミダゾール、2-エチルイミダゾール等のイミダゾール類、ピロール、2-メチルピロール、3-メチルピロール等のピロール類、ピリジン、2-メチルピリジン、4-メチルピリジン等のピリジン類、ジアザビシクロウンデセン、ジアザビシクロノネン等のジアザビシクロアルケン類、が挙げられる。
 (ヒドロキシ官能性(メタ)アクリレート系ブロック剤)
 前記ヒドロキシ官能性(メタ)アクリレート系ブロック剤は、1個以上の水酸基を有する(メタ)アクリレートである。ヒドロキシ官能性(メタ)アクリレート系ブロック剤の具体例としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、等が挙げられる。
 (フェノール系ブロック剤)
 前記フェノール系ブロック剤は、少なくとも1個のフェノール性ヒドロキシル基、即ち、芳香環の炭素原子に直接結合したヒドロキシル基を含有する。フェノール性化合物は2個以上のフェノール性ヒドロキシル基を有していてもよいが、好ましくはフェノール性ヒドロキシル基を一つだけ含有する。フェノール性化合物は、他の置換基を含有していてもよいが、これら置換基は好ましくはキャッピング反応の条件下でイソシアネート基と反応しないものであり、アルケニル基、アリル基が好ましい。他の置換基としては、直鎖状、分岐鎖状またはシクロアルキル等のアルキル基;芳香族基(例えば、フェニル、アルキル置換フェニル、アルケニル置換フェニル等);アリール置換アルキル基;フェノール置換アルキル基が挙げられる。フェノール系ブロック剤の具体例としては、フェノール、クレゾール、キシレノール、クロロフェノール、エチルフェノール、アリルフェノール(特にo-アリルフェノール)、レゾルシノール、カテコール、ヒドロキノン、ビスフェノール、ビスフェノールA、ビスフェノールAP(1,1-ビス(4-ヒドロキシルフェニル)-1-フェニルエタン)、ビスフェノールF、ビスフェノールK、ビスフェノールM、テトラメチルビフェノールおよび2,2’-ジアリル-ビスフェノールA、等が挙げられる。
 前記ブロック剤は、それが結合する末端がもはや反応性基を有しないような態様で、ウレタンプレポリマーのポリマー鎖の末端に結合していることが好ましい。
 前記ブロック剤は、単独で用いても良く、2種以上を併用しても良い。
 前記ブロックドウレタンは、架橋剤の残基、鎖延長剤の残基、または、その両方を含有していてもよい。
 (架橋剤)
 前記架橋剤の分子量は750以下が好ましく、より好ましくは50~500であり、かつ、1分子当たり少なくとも3個のヒドロキシル基、アミノ基および/またはイミノ基を有するポリオールまたはポリアミン化合物である。架橋剤はブロックドウレタンに分岐を付与し、ブロックドウレタンの官能価(即ち、キャップされたイソシアネート基の1分子当たりの数)を増加させるのに有用である。
 (鎖延長剤)
 前記鎖延長剤の分子量は750以下が好ましく、より好ましくは50~500であり、かつ、1分子当たり2個のヒドロキシル基、アミノ基および/またはイミノ基を有するポリオールまたはポリアミン化合物である。鎖延長剤は、官能価を増加させずにブロックドウレタンの分子量を上げるのに有用である。
 前記架橋剤や鎖延長剤の具体例としては、トリメチロールプロパン、グリセリン、トリメチロールエタン、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、スクロース、ソルビトール、ペンタエリスリトール、エチレンジアミン、トリエタノールアミン、モノエタノールアミン、ジエタノールアミン、ピペラジン、アミノエチルピペラジンが挙げられる。また、レゾルシノール、カテコール、ヒドロキノン、ビスフェノール、ビスフェノールA、ビスフェノールAP(1,1-ビス(4-ヒドロキシルフェニル)-1-フェニルエタン)、ビスフェノールF、ビスフェノールK、ビスフェノールM、テトラメチルビフェノール、2,2’-ジアリル-ビスフェノールA等の、2個以上のフェノール性ヒドロキシル基を有する化合物も挙げられる。
 (B)成分としてブロックドウレタンを用いる場合、得られる硬化物の耐熱性と、得られる硬化物の靭性改良効果のバランスから、ブロックドウレタンの含有量は、エポキシ樹脂(A)100重量部に対して、1~100重量部が好ましく、2~80重量部がより好ましく、3~60重量部がさらに好ましく、4~50重量部がより更に好ましく、5~40重量部が特に好ましい。
 (B)成分としては、コアシェルポリマー粒子とブロックドウレタンを併用してもよい。その際には、得られる一成分型硬化性樹脂組成物の取扱いやすさと、得られる硬化物の耐熱性と、得られる硬化物の靭性改良効果のバランスから、コアシェルポリマー粒子とブロックドウレタンの合計含有量は、エポキシ樹脂(A)100重量部に対して、1~100重量部が好ましく、2~80重量部がより好ましく、3~60重量部がさらに好ましく、4~55重量部がより更に好ましく、5~50重量部が特に好ましい。また、併用する際には、コアシェルポリマー粒子/ブロックドウレタンの比率(重量基準)は0.1~10であることが好ましく、0.2~5であることがさらに好ましく、0.3~3であることが特に好ましい。
 <1分子中に1~3個のフェノール性水酸基を有する化合物(C)>
 1分子中に1~3個のフェノール性水酸基を有する化合物(C)は、エポキシ樹脂(A)の架橋密度を制御することにより、硬化物の耐衝撃剥離接着性を改善する成分である。当該化合物を、以下ではフェノール化合物(C)ともいう。
 ジシアンジアミドを硬化剤とするエポキシ樹脂の硬化過程は、以下の様に推定されている(加門隆ら、高分子論文集,Vol.34,No.7,537-543を参照)。エポキシ樹脂(A)とジシアンジアミド(D)を含む組成物を加熱すると、まず、ジシアンジアミド(D)から生成したシアナミドがエポキシ樹脂(A)と反応して、水酸基とシアノ基を有する直鎖状の重合体が形成される。次いで、該直鎖状重合体間で水酸基とシアノ基が反応することで三次元架橋構造を形成し、これによって組成物が硬化する。
 この時、フェノール化合物(C)が存在すると、フェノール化合物(C)のフェノール性水酸基が一部のシアノ基と反応することで、直鎖状重合体の水酸基とシアノ基間の反応の一部を阻害して三次元架橋構造の架橋密度を低下させる。これにより、硬化物中の架橋点間分子量が高まるため、硬化物は塑性変形がし易くなり、耐衝撃剥離接着性が改善するものと推測される。一方、1分子中に1~3個のフェノール性水酸基を有する化合物(C)を使用せずに、1分子中に4個以上のフェノール性水酸基を有する化合物を使用すると、逆に架橋密度が高まり、硬化物は脆くなり耐衝撃剥離接着性が低下してしまう。
 フェノール化合物(C)は、1分子中に1~3個のフェノール性水酸基を有する化合物であればよく、芳香環上にフェノール性水酸基以外の置換基を有していてもよいし、有していなくてもよい。フェノール性水酸基以外の置換基としては、特に限定されないが、アルキル基、アルケニル基、アリール基、アラルキル基等の炭化水素基や、塩素、臭素、ヨウ素等のハロゲン等が挙げられる。炭化水素基の炭素数は特に限定されず、例えば1~20であり、1~10が好ましく、1~6がより好ましく、1~4が更に好ましい。なかでも、良好な性状の硬化物を与えることから、アルキル基が好ましく、t-ブチル基又はメチル基がより好ましく、メチル基が特に好ましい。
 フェノール化合物(C)のうち、1個のフェノール性水酸基を有する化合物としては、例えば、フェノール、2-メチルフェノール、3-メチルフェノール、4-メチルフェノール、2-メトキシフェノール、3-メトキシフェノール、4-メトキシフェノール、2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノール、4-エチルフェノール、2-プロピルフェノール、4-プロピルフェノール、4-イソプロピルフェノール、2,3,4-トリメチルフェノール、2,3,5-トリメチルフェノール、2,3,6-トリメチルフェノール、2,4,6-トリメチルフェノール、2-tert-ブチルフェノール、3-tert-ブチルフェノール、4-tert-ブチルフェノール、2-メチル-6-tert-ブチルフェノール、3-メチル-6-tert-ブチルフェノール、6-tert-ブチル-2,4-キシレノール、4-メチル-2-tert-ブチルフェノール、4-シクロヘキシルフェノール、2-シクロヘキシル-5-メチルフェノール、4-ヨードフェノール、2,6-ジ-tert-ブチルフェノール、2,6-ジ-tert-ブチル-p-クレゾール、2,6-ジ-tert-ブチル-4-メトキシフェノール、3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸オクタデシル、3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸オクタデシル等が挙げられる。
 2個のフェノール性水酸基を有する化合物としては、例えば、レゾルシノール、カテコール、4-tert-ブチルカテコール、ビスフェノールA、テトラブロモビスフェノールA、ビスフェノールAP、ビスフェノールB、ビスフェノールE、ビスフェノールF、ビスフェノールG、ビスフェノールM、ビスフェノールS、ビスフェノールZ、ヒドロキノン、2,5-ジクロロヒドロキノン、メチルヒドロキノン、tert-ブチルヒドロキノン、2,5-ジ-tert-ブチルヒドロキノン、2,2’-ジアリルビスフェノールA、2,2’-メチレンビスフェノール、2,2’-メチレンビス(4-メチルフェノール)、4,4’-メチレンビス(2-メチルフェノール)、4,4’-メチレンビス(2,5-ジメチルフェノール)、4,4’-メチレンビス(2,6-ジメチルフェノール)、4,4’-イソプロピリデンビス(2-メチルフェノール)、4,4’-イソプロピリデンビス(2,6-ジメチルフェノール)、4,4’-ビフェノール、2,2’-ビフェノール、ビス[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオン酸)][エチレンビス(オキシエチレン)]、2,2’,6,6’-テトラ-tert-ブチル-4,4’-ジヒドロキシビフェニル、ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸]チオビスエチレン、ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸]1,6-ヘキサンジイル等が挙げられる。
 3個のフェノール性水酸基を有する化合物としては、例えば、ピロガロール、ヒドロキシキノール、フロログルシノール、4,4’,4’’-エチリジントリスフェノール、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌル酸、2,4,6-トリス(3’,5’-ジ-tert-ブチル-4’-ヒドロキシベンジル)メシチレン等が挙げられる。
 フェノール化合物(C)は1種を単独で使用してもよいし、2種以上を併用してもよい。
 フェノール化合物(C)は、耐衝撃剥離接着性の改善と、一成分型硬化性樹脂組成物の保存安定性を両立する観点から、1分子中に1個又は2個のフェノール性水酸基を有する化合物であることが好ましい。
 フェノール化合物(C)は、耐衝撃剥離接着性と、硬化物の耐熱性の双方を改善する観点から、1分子中に2個のフェノール性水酸基を有する化合物がより好ましい。当該2個のフェノール性水酸基を有する化合物を使用すると、1個のフェノール性水酸基を有する化合物を使用した場合と比較して、硬化物のガラス転移点の低下が抑制され、耐衝撃剥離接着性がより良好となり得る。
 フェノール化合物(C)は、一成分型硬化性樹脂組成物の保存安定性と硬化物の耐湿熱性の観点から、1分子中に1個のフェノール性水酸基を有する化合物であることが好ましい。
 フェノール化合物(C)は、無置換のフェノール化合物であってよいが、置換基を有するフェノール化合物であることが好ましい。置換基の立体障害によって一成分型硬化性樹脂組成物の保存安定性と硬化物の耐湿熱性が改善され得るためである。フェノール化合物(C)の芳香環上に置換基が存在することによって、その立体障害によってフェノール性水酸基の反応性が抑制され、一成分型硬化性樹脂組成物の保存安定性を良好なものとすることができる。また、フェノール化合物(C)の芳香環上に置換基が存在することによって、その立体障害によって、水分子による加水分解を抑制でき、結果、硬化物の耐湿熱性を改善することができる。具体的には、前記フェノール化合物(C)は、メチル基、第一級アルキル基、第二級アルキル基、第三級アルキル基およびハロゲンからなる群より選択される置換基を芳香環上に有することが好ましい。置換基の立体障害による保存安定性改善の観点から、該置換基は、第一級アルキル基、第二級アルキル基、第三級アルキル基またはハロゲンがより好ましく、第三級アルキル基が特に好ましい。該置換基の個数としては、フェノール化合物(C)1分子に対して、1個~4個であることが好ましく、1個又は2個であることがより好ましい。
 また、該置換基は、少なくとも1個のフェノール性水酸基のオルト位に結合していることがより好ましい。フェノール性水酸基のオルト位に置換基が存在することによって、その立体障害によってフェノール性水酸基の反応性がより効果的に抑制され、一成分型硬化性樹脂組成物の保存安定性をより良好なものとすることができる。また、フェノール性水酸基のオルト位に置換基が存在することによって、その立体障害によって、水分子による加水分解をより効果的に抑制でき、結果、硬化物の耐湿熱性をより改善することができる。
 上述した一成分型硬化性樹脂組成物の保存安定性と硬化物の耐湿熱性の観点から、フェノール化合物(C)は、各フェノール性水酸基のオルト位に1個又は2個の置換基を有することがより好ましく、各フェノール性水酸基のオルト位に2個の置換基を有することが更に好ましい。各フェノール性水酸基のオルト位に2個の置換基を有する場合、メチル基、第一級アルキル基、第二級アルキル基およびハロゲンからなる群より選択される基と、第三級アルキル基とを有することが好ましく、メチル基と、tert-ブチル基とを有することが特に好ましい。このようなフェノール化合物(C)の具体例としては、2-メチル-6-tert-ブチルフェノール、6-tert-ブチル-2,4-キシレノール、ビス[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオン酸)][エチレンビス(オキシエチレン)]等が挙げられる。
 また、各フェノール性水酸基のオルト位に2個の置換基を有する場合、フェノール化合物(C)は、各フェノール性水酸基の全てのオルト位に第三級アルキル基を有する化合物、所謂ヒンダードフェノールであってもよい。このようなフェノール化合物は、フェノール水酸基の両隣りに嵩高い第三級アルキル基が存在しているため、その立体障害によって、一成分型硬化性樹脂組成物の保存安定性を更に改善することができる。
 当該各フェノール性水酸基の全てのオルト位に第三級アルキル基を有する化合物としては、例えば、2,6-ジ-tert-ブチルフェノール、2,6-ジ-tert-ブチル-p-クレゾール、2,6-ジ-tert-ブチル-4-メトキシフェノール、2,2’,6,6’-テトラ-tert-ブチル-4,4‘-ジヒドロキシビフェニル、3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸オクタデシル、3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸オクタデシル、ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸]チオビスエチレン、ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸]1,6-ヘキサンジイル、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌル酸、2,4,6-トリス(3’,5’-ジ-tert-ブチル-4’-ヒドロキシベンジル)メシチレン等が挙げられる。但し、フェノール化合物(C)は、各フェノール性水酸基の全てのオルト位に第三級アルキル基を有する化合物に該当しないフェノール化合物であってもよい。
 しかし、1分子中に1~3個のフェノール性水酸基を有する化合物であっても、フェノール性水酸基に加えてアミノ基を有する化合物は、一成分型硬化性樹脂組成物として必要な保存安定性を阻害するため、本願におけるフェノール化合物(C)に該当しない。フェノール性水酸基に加えてアミノ基を有する化合物としては、例えば、2,4,6-トリス(ジメチルアミノメチル)フェノール、2-(ジメチルアミノメチル)フェノール等が挙げられる。
 但し、本実施形態に係る一成分型硬化性樹脂組成物は、フェノール化合物(C)に加えて、該組成物の保存安定性を阻害しない程度の量で、フェノール性水酸基とアミノ基を有する化合物をさらに含有するものであってもよい。前記組成物の保存安定性を阻害しない程度の量とは、例えば、エポキシ樹脂(A)100重量部に対して0.1重量部以下であり、0.05重量部以下が好ましく、0.01重量部以下がより好ましい。しかし、本実施形態に係る一成分型硬化性樹脂組成物は、フェノール性水酸基とアミノ基を有する化合物を含有しないことが好ましい。
 フェノール化合物(C)は、フェノール樹脂ではなく、低分子のフェノール化合物であることが好ましい。低分子のフェノール化合物の分子量は、90以上500以下であることが好ましい。
 フェノール化合物(C)の配合量は、該化合物の配合による耐衝撃剥離接着性の改善効果を得るために、以下の条件を満足するものである。フェノール化合物(C)が1分子中に1個のフェノール性水酸基を有する化合物である場合、フェノール化合物(C)が有するフェノール性水酸基のモル数/ジシアンジアミド(D)から生成するCN基のモル数の比が、0.01以上0.39以下である。0.01未満では架橋密度低下による耐衝撃剥離接着性の改善効果が十分ではない場合があり、0.39よりも大きいと架橋密度が低下し過ぎて得られる硬化物の強度が低下して耐衝撃剥離接着性の改善効果が十分ではない場合がある。この時、0.05以上0.35以下が好ましく、0.08以上0.30以下がより好ましく、0.10以上0.25以下がさらに好ましい。
 また、フェノール化合物(C)が1分子中に2個または3個のフェノール性水酸基を有する化合物である場合、フェノール化合物(C)が有するフェノール性水酸基のモル数/ジシアンジアミド(D)から生成するCN基のモル数の比が、0.01以上1.5以下である。0.01未満では架橋密度低下による耐衝撃剥離接着性の改善効果が十分ではない場合があり、1.5よりも大きいと架橋密度が低下し過ぎて得られる硬化物の強度が低下して耐衝撃剥離接着性の改善効果が十分ではない場合がある。この時、0.20以上1.4以下が好ましく、0.30以上1.3以下がより好ましく、0.60以上1.0以下がさらに好ましい。ジシアンジアミドは加熱によって分解され、ジシアンジアミド1分子からシアナミド(CN基を有する化合物)2分子が生成する。前記「ジシアンジアミド(D)から生成するCN基のモル数」とは、ジシアンジアミドの全量がシアナミドに変換されたと仮定して算出した、前記シアナミドが有するCN基の理論上のモル数である。
 <ジシアンジアミド(D)>
 ジシアンジアミド(D)は、加熱することによりシアナミドを生成し、これによってエポキシ樹脂(A)を架橋させることが可能になるため、加熱によって活性を発現する潜在性の硬化剤として機能し得る。ジシアンジアミド(D)を配合することで、一成分型の硬化性樹脂組成物を構成することが可能になる。
 ジシアンジアミド(D)の配合量は、所望の物性に応じて適宜設定することができるが、耐衝撃剥離接着性を改善する観点から、エポキシ樹脂(A)100重量部に対して、2~20重量部が好ましく、3~18重量部がより好ましく、4~16重量部がさらに好ましく、5~14重量部がより更に好ましく、6~12重量部が特に好ましい。
 更に、耐衝撃剥離接着性を改善する観点に加えて、硬化物の吸水性を抑制する観点から、ジシアンジアミド(D)のモル量/エポキシ樹脂(A)が有するエポキシ基のモル量の比が、0.10以上0.30以下であることが好ましく、0.12以上0.28以下がより好ましく、0.15以上0.26以下がさらに好ましい。
 <1分子中に4個以上のフェノール性水酸基を有する化合物(E)>
 本実施形態の一成分型硬化性樹脂組成物は、(A)~(D)成分に加えて、1分子中に4個以上のフェノール性水酸基を有する化合物(E)をさらに配合してもよい。該化合物としては、例えば、ノボラック型フェノール樹脂や、ペンタエリトリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート]等が挙げられる。
 化合物(E)の配合量は当業者が適宜設定することができるが、耐衝撃剥離接着性の観点から、化合物(E)の総重量/フェノール化合物(C)の総重量の比が1未満であることが好ましく、0.5未満がより好ましく、0.1未満がさらに好ましい。化合物(E)は配合しなくてもよい。
 <硬化促進剤(F)>
 本実施形態の一成分型硬化性樹脂組成物は、硬化促進剤(F)を含有することができる。(F)成分は、エポキシ樹脂(A)とジシアンジアミド(D)による硬化反応を加速することができる。
 (F)成分としては、例えば、p-クロロフェニル-N,N-ジメチル尿素(商品名:Monuron)、3-フェニル-1,1-ジメチル尿素(商品名:Phenuron)、3,4-ジクロロフェニル-N,N-ジメチル尿素(商品名:Diuron)、N-(3-クロロ-4-メチルフェニル)-N’,N’-ジメチル尿素(商品名:Chlortoluron)、1,1-ジメチルフェニルウレア(商品名:Dyhard)などの尿素類;6-カプロラクタム等が挙げられる。(F)成分は、単独で用いてもよく、2種以上を併用してもよい。(F)成分は封入されていてもよく、あるいは、加熱した場合にのみ活性となる潜在的なものでもよい。
 (F)成分を配合する場合、(F)成分の配合量は、硬化性の向上効果と保存安定性の観点から、エポキシ樹脂(A)100重量部に対して、0.1~10重量部が好ましく、0.2~5重量部がより好ましく、0.5~3重量部が更に好ましく、0.8~2重量部が特に好ましい。
 <強化剤>
 本実施形態の一成分型硬化性樹脂組成物は、靭性、耐衝撃性、せん断接着性、及び、剥離接着性などの性能を更に向上させる目的で、強化剤として、エポキシ未変性ゴム系重合体を、必要に応じて含有してもよい。強化剤は、単独で用いても良く、2種以上を併用しても良い。
 <エポキシ未変性ゴム系重合体>
 ゴム系重合体をエポキシ樹脂と反応させない未変性のまま、本実施形態の一成分型硬化性樹脂組成物中に、必要に応じて含有してもよい。
 前記ゴム系重合体としては、アクリロニトリルブタジエンゴム(NBR)、スチレンブタジエンゴム(SBR)、水素添加ニトリルゴム(HNBR)、エチレンプロピレンゴム(EPDM)、アクリルゴム(ACM)、ブチルゴム(IIR)、ブタジエンゴム、ポリプロピレンオキシドやポリエチレンオキシドやポリテトラメチレンオキシド等のポリオキシアルキレン、などのゴム系重合体を挙げることができる。該ゴム系重合体は、アミノ基、ヒドロキシ基、またはカルボキシル基等の反応性基を末端に有するものが好ましい。これらの中でも、NBRや、ポリオキシアルキレンが、得られる一成分型硬化性樹脂組成物の接着性や耐衝撃剥離接着性の観点から好ましく、NBRがより好ましく、カルボキシル基末端NBR(CTBN)が特に好ましい。
 前記ゴム系重合体のガラス転移温度(Tg)は、特に制限は無いが、-25℃以下が好ましく、-35℃以下がより好ましく、-40℃以下が更に好ましく、-50℃以下が特に好ましい。
 前記ゴム系重合体の数平均分子量は、GPCで測定したポリスチレン換算分子量にて、1500~40000が好ましく、3000~30000がより好ましく、4000~20000が特に好ましい。分子量分布(重量平均分子量と数平均分子量との比)は、1~4が好ましく、1.2~3がより好ましく、1.5~2.5が特に好ましい。
 ゴム系重合体は、単独でまたは2種以上を組み合わせて使用することができる。
 ゴム系重合体の量は、エポキシ樹脂(A)100重量部に対して、1~30重量部が好ましく、2~20重量部がより好ましく、5~10重量部が特に好ましい。1重量部以上で、靱性、耐衝撃性、接着性などの改善効果が良好であり、50重量部以下であると、得られる硬化物の弾性率が高くなる。
 <無機充填材>
 本実施形態の一成分型硬化性樹脂組成物は、無機充填材を含有することができる。無機充填材としては、例えばケイ酸および/またはケイ酸塩を使用することができ、その具体例としては、乾式シリカ、湿式シリカ、ケイ酸アルミニウム、ケイ酸マグネシウム、ケイ酸カルシウム、ウォラストナイト、タルク、などが挙げられる。
 前記乾式シリカはヒュームドシリカとも呼ばれ、表面無処理の親水性ヒュームドシリカと、親水性ヒュームドシリカのシラノール基部分にシランやシロキサンで化学的に処理することによって製造した疎水性ヒュームドシリカが挙げられるが、(A)成分への分散性の点から、疎水性ヒュームドシリカが好ましい。
 その他の無機充填材としては、ドロマイトおよびカーボンブラックの如き補強性充填材;重質炭酸カルシウム、膠質炭酸カルシウム、炭酸マグネシウム、酸化チタン、酸化第二鉄、アルミニウム微粉末、酸化亜鉛、活性亜鉛華等が挙げられる。
 無機充填材は、表面処理剤により表面処理していることが好ましい。表面処理により無機充填材の組成物への分散性が向上し、その結果、得られる硬化物の各種物性が向上する。
 無機充填材は単独で用いても良く、2種以上を併用しても良い。
 無機充填材の使用量は、(A)成分100重量部に対して、1~100重量部が好ましく、2~70重量部がより好ましく、5~40重量部が更に好ましく、7~20重量部が特に好ましい。
 <酸化カルシウム>
 本実施形態の一成分型硬化性樹脂組成物は、酸化カルシウムを含有することができる。
 酸化カルシウムは、一成分型硬化性樹脂組成物中の水分との反応により水分を除去し、水分の存在により引き起こされる種々の物性上の問題を解決する。例えば、水分除去による気泡防止剤として機能し、接着強度の低下を抑制する。
 酸化カルシウムは、表面処理剤により表面処理することが可能である。表面処理により酸化カルシウムの組成物への分散性が向上する。その結果、表面処理を施していない酸化カルシウムを使用した場合と比較して、得られる硬化物の接着強度などの物性が向上する。特に、T字剥離接着性、耐衝撃剥離接着性が顕著に改善される。前記表面処理剤は、特に制限はないが、脂肪酸が好ましい。
 酸化カルシウムの使用量は、(A)成分100重量部に対して、0.1~10重量部が好ましく、0.2~5重量部がより好ましく、0.5~3重量部が更に好ましく、1~2重量部が特に好ましい。0.1重量部以上で水分除去効果が良好であり、10重量部以下であると、得られる硬化物の強度が高くなる。
 酸化カルシウムは単独で用いても良く、2種以上を併用しても良い。
 <ラジカル硬化性樹脂>
 本実施形態の一成分型硬化性樹脂組成物は、分子内に2個以上の二重結合を有するラジカル硬化性樹脂を、必要に応じて含有することができる。また、必要により、分子内に少なくとも1個の二重結合を有する分子量300未満の低分子化合物を添加することができる。前記低分子化合物は、前記ラジカル硬化性樹脂との併用により、粘度や硬化物物性や硬化速度を調整する機能を有し、ラジカル硬化性樹脂の所謂反応性希釈剤として機能するものである。更に、本実施形態の一成分型硬化性樹脂組成物には、ラジカル重合開始剤を添加することができる。ここで、ラジカル重合開始剤は、温度を上げる(好ましくは、約50℃~約150℃)と活性化される潜在的なタイプであることが好ましい。
 前記ラジカル硬化性樹脂としては、不飽和ポリエステル樹脂やポリエステル(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエーテル(メタ)アクリレート、アクリル化(メタ)アクリレート等が挙げられる。これらは単独で用いてもよく併用してもよい。前記ラジカル硬化性樹脂の具体例としては、国際公開第2014-115778号に記載の化合物が挙げられる。また、前記低分子化合物や前記ラジカル重合開始剤の具体例としては、国際公開第2014-115778号に記載の化合物が挙げられる。
 国際公開第2010-019539号に記載のように、ラジカル重合開始剤がエポキシ樹脂の硬化温度と異なる温度で活性化すれば、前記ラジカル硬化性樹脂の選択的な重合によって一成分型硬化性樹脂組成物の部分硬化が可能となる。この部分硬化により、塗布後に組成物の粘度を上昇させ、洗い落とされにくさ(wash-off resistance)を向上させることができる。なお、車両などの製造ラインにおける水洗シャワー工程では、未硬化状態の接着剤組成物が、水洗シャワー工程中に、シャワー水圧により、組成物が一部溶解したり、飛散したり、変形して、塗布部の鋼板の耐食性に悪影響を与えたり、鋼板の剛性が低下する場合があり、前記「洗い落とされにくさ」とは、この課題に対する抵抗力を意味するものである。また、この部分硬化により、組成物の硬化完了までの間、基材同士を仮止め(仮接着)する機能を与えることができる。この場合、フリーラジカル開始剤は、80℃~130℃に加熱することで活性化されることが好ましく、100℃~120℃がより好ましい。
 <モノエポキシド>
 本実施形態の一成分型硬化性樹脂組成物は、必要に応じて、モノエポキシドを含有することができる。モノエポキシドは反応性希釈剤として機能しうる。モノエポキシドの具体例としては、例えばブチルグリシジルエーテルなどの脂肪族グリシジルエーテル、あるいは例えばフェニルグリシジルエーテル、クレジルグリシジルエーテルなどの芳香族グリシジルエーテル、例えば2-エチルヘキシルグリシジルエーテルなどの炭素数8~10のアルキル基とグリシジル基とからなるエーテル、例えばp-tertブチルフェニルグリシジルエーテルなどの炭素数2~8のアルキル基で置換され得る炭素数6~12のフェニル基とグリシジル基とからなるエーテル、例えばドデシルグリシジルエーテルなどの炭素数12~14のアルキル基とグリシジル基とからなるエーテル;例えばグリシジル(メタ)アクリレート、グリシジルマレエートなどの脂肪族グリシジルエステル;バーサチック酸グリシジルエステル、ネオデカン酸グリシジルエステル、ラウリン酸グリシジルエステルなどの炭素数8~12の脂肪族カルボン酸のグリシジルエステル;p-t-ブチル安息香酸グリシジルエステルなどが挙げられる。
 モノエポキシドを使用する場合、その使用量は、(A)成分100重量部に対して、0.1~20重量部が好ましく、0.5~10重量部がより好ましく、1~5重量部が特に好ましい。0.1重量部以上で低粘度化効果が良好であり、20重量部以下であると、接着性等の物性が良好となる。
 <光重合開始剤>
 また、本実施形態の一成分型硬化性樹脂組成物を光硬化する場合には、光重合開始剤を添加してもよい。かかる光重合開始剤としては、ヘキサフルオロアンチモネート、ヘキサフルオロホスフェート、テトラフェニルボレートなどのアニオンとの芳香族スルホニウム塩や芳香族ヨードニウム塩などのオニウム塩や、芳香族ジアゾニウム塩、メタロセン塩などの光カチオン重合開始剤(光酸発生剤)などが挙げられる。これらの光重合開始剤は単独で用いても、2種以上を組み合わせて用いてもよい。
 <その他の配合成分>
 本実施形態では、必要に応じて、その他の配合成分を使用することができる。その他の配合成分としては、アゾタイプ化学的発泡剤や熱膨張性マイクロバルーンなどの膨張剤、アラミド系パルプなどの繊維パルプ、顔料や染料等の着色剤、体質顔料、紫外線吸収剤、酸化防止剤、安定化剤(ゲル化防止剤)、可塑剤、レベリング剤、消泡剤、シランカップリング剤、帯電防止剤、難燃剤、滑剤、減粘剤、低収縮剤、有機質充填剤、熱可塑性樹脂、乾燥剤、分散剤等が挙げられる。
 <一成分型硬化性樹脂組成物の製法>
 本実施形態の一成分型硬化性樹脂組成物が、硬化性樹脂であるエポキシ樹脂(A)と、(B)成分としてコアシェルポリマーを含有する態様の場合、該組成物は、コアシェルポリマー粒子(B)が1次粒子の状態で分散した組成物であることが好ましい。
 このような、コアシェルポリマー粒子(B)を1次粒子の状態で分散させた組成物を得る方法は、種々の方法が利用できるが、例えば水性ラテックス状態で得られたコアシェルポリマー粒子を(A)成分と接触させた後、水等の不要な成分を除去する方法、コアシェルポリマー粒子を一旦有機溶剤に抽出後に(A)成分と混合してから有機溶剤を除去する方法等が挙げられるが、国際公開第2005/028546号に記載の方法を利用することが好ましい。その具体的な製造方法は、順に、コアシェルポリマー粒子(B)を含有する水性ラテックス(詳細には、乳化重合によってコアシェルポリマー粒子を製造した後の反応混合物)を、20℃における水に対する溶解度が5重量%以上40重量%以下の有機溶媒と混合した後、さらに過剰の水と混合して、ポリマー粒子を凝集させる第1工程と、凝集したコアシェルポリマー粒子(B)を液相から分離・回収した後、再度有機溶媒と混合して、コアシェルポリマー粒子(B)の有機溶媒溶液を得る第2工程と、有機溶媒溶液をさらに(A)成分と混合した後、前記有機溶媒を留去する第3工程とを含んで調製されることが好ましい。
 (A)成分は、23℃で液状であると、前記第3工程が容易となるため好ましい。「23℃で液状」とは、軟化点が23℃以下であることを意味し、23℃で流動性を示すものである。
 上記の工程を経て得た、(A)成分にコアシェルポリマー粒子(B)が1次粒子の状態で分散した組成物に対し、追加の(A)成分、(C)成分、(D)成分、及び、必要に応じてその他の成分を混合することにより、コアシェルポリマー粒子(B)が1次粒子の状態で分散した本態様に係る一成分型硬化性樹脂組成物を得ることができる。
 一方、塩析等の方法により凝固させた後に乾燥させて得た、粉体状のコアシェルポリマー粒子(B)は、3本ペイントロールやロールミル、ニーダー等の高い機械的せん断力を有する分散機を用いて、(A)成分中に再分散することが可能である。この際、(A)成分と(B)成分は、高温で機械的せん断力を与えることで、効率良く、(B)成分の分散を可能にする。分散させる際の温度は、50~200℃が好ましく、70~170℃がより好ましく、80~150℃が更に好ましく、90~120℃が特に好ましい。
 本実施形態の一成分型硬化性樹脂組成物は、貯蔵安定性が良好であるため、すべての配合成分を予め配合した後密封保存し、塗布後加熱や光照射により硬化する一液型の組成物として使用される。
 <硬化物>
 本実施形態の一成分型硬化性樹脂組成物を硬化させることで硬化物を得ることができる。一成分型硬化性樹脂組成物が(B)成分としてコアシェルポリマー粒子を含む場合、当該硬化物中には、コアシェルポリマー粒子(B)が均一に分散している。好適な態様によれば、一成分型硬化性樹脂組成物は、粘度が低く、硬化物を作業性よく得ることができる。
 前記硬化物は、(A)成分~(D)成分、及び、必要に応じて他の成分を混合し、得られた混合物を、後述する硬化温度で加熱することによって製造できる。(A)成分~(D)成分、及び、必要に応じて他の成分を混合するとは、上記のように予め(A)成分にコアシェルポリマー粒子(B)が1次粒子の状態で分散した組成物を作製し、当該組成物に対し、追加の(A)成分、(C)成分、(D)成分、及び、必要に応じてその他の成分を混合する態様も含む。各成分を混合して前記硬化物を製造するにあたっては、エポキシ樹脂(A)とフェノール化合物(C)を予備的に反応させてエポキシ樹脂(A)を高分子量化する工程を実施する必要はない。
 <塗布方法>
 本実施形態の一成分型硬化性樹脂組成物は、任意の方法によって基材に塗布可能である。好適な実施形態によると、室温程度の低温で塗布可能であり、必要に応じて加温して塗布することも可能である。本実施形態の一成分型硬化性樹脂組成物は、貯蔵安定性に優れるために、加温して塗布する工法に特に有用である。
 本実施形態の一成分型硬化性樹脂組成物は、塗布ロボットを使用してビード状またはモノフィラメント状またはスワール(swirl)状に基材上へ押出したり、コーキングガン等の機械的な塗布方法や他の手動塗布手段を用いることもできる。また、ジェットスプレー法またはストリーミング法を用いて組成物を基材へ塗布することもできる。本実施形態の一成分型硬化性樹脂組成物を、一方または両方の基材へ塗布し、接合しようとする2枚の基材間に組成物が配置されるよう基材同士を接触させ、その状態で組成物を硬化させることにより、2枚の基材を接合する。なお、一成分型硬化性樹脂組成物の粘度は、特に限定は無く、押出しビード法では、45℃で150~600Pa・s程度が好ましく、渦巻き(swirl)塗布法では、45℃で100Pa・s程度が好ましく、高速度流動装置を用いた高体積塗布法では、45℃で20~400Pa・s程度が好ましい。
 本実施形態の一成分型硬化性樹脂組成物を車両用接着剤として使用する場合、前記「洗い落とされにくさ」を向上させるには、組成物のチクソ性を高くすることが有効である。一般に、チクソ性は、ヒュームドシリカやアミドワックス等のチクソ性付与剤により向上させるが、主成分である熱硬化性樹脂成分の粘度が低いほど、この改善効果が高く作業性の良い組成物となる傾向がある。本実施形態の一成分型硬化性樹脂組成物は、低粘度になり易いためにチクソ性を高め易く好ましい。高チクソ性な組成物は、加温により塗布可能な粘度に調整可能である。
 また、前記「洗い落とされにくさ」を向上させるためには、国際公開第2005-118734号に記載のように、組成物の塗布温度付近に結晶融点を有する高分子化合物を一成分型硬化性樹脂組成物に配合することが好ましい。該組成物は、塗布温度では粘度は低く(塗布し易く)、水洗シャワー工程での温度では高粘度となって「洗い落とされにくさ」が向上する。塗布温度付近に結晶融点を有する前記高分子化合物としては、結晶性または半結晶性ポリエステルポリオールなどの各種のポリエステル樹脂が挙げられる。
 <接着剤>
 本実施形態の一成分型硬化性樹脂組成物を接着剤として使用して、様々な基材同士を接着させる場合、例えば、木材、金属、プラスチック、ガラス等の基材を接合することができる。自動車部品を接合することが好ましく、自動車フレーム同士の接合または自動車フレームと他の自動車部品との接合がより好ましい。基材としては、冷間圧延鋼や溶融亜鉛メッキ鋼などの鋼材、アルミニウムや被覆アルミニウムなどのアルミニウム材、汎用プラスチック、エンジニアリングプラスチック、CFRPやGFRP等の複合材料、等の各種のプラスチック系基板が挙げられる。
 本実施形態の一成分型硬化性樹脂組成物は、接着性に優れる。そのため、アルミニウム基材を含む複数の部材の間に、本実施形態の一成分型硬化性樹脂組成物を挟んで張り合わせた後に、前記一成分型硬化性樹脂組成物を硬化することにより得られる前記部材を接合させてなる積層体は、高い接着強度を示すため好ましい。
 本実施形態の一成分型硬化性樹脂組成物は、靭性に優れるため、線膨張係数の異なる異種基材間の接合に適している。
 また、本実施形態の一成分型硬化性樹脂組成物は、航空宇宙用の構成材、特に、外装金属構成材の接合にも使用できる。
 <硬化温度>
 本実施形態の一成分型硬化性樹脂組成物の硬化温度は、特に限定はないが、50℃~250℃が好ましく、80℃~220℃がより好ましく、100℃~200℃が更に好ましく、130℃~180℃が特に好ましい。
 本実施形態の一成分型硬化性樹脂組成物を自動車用接着剤として使用する場合、該接着剤を自動車部材へ施工した後、次いでコーティングを塗布し、該コーティングを焼付け・硬化するのと同時に接着剤を硬化させるのが工程短縮・簡便化の観点から好ましい。
 <用途>
 本実施形態の一成分型硬化性樹脂組成物は、車両や航空機向けの構造用接着剤、風力発電用構造接着剤などの接着剤、塗料、ガラス繊維との積層用材料、およびプリント配線基板用材料、ソルダーレジスト、層間絶縁膜、ビルドアップ材料、FPC用接着剤、半導体・LED等電子部品用封止材等の電気絶縁材料、ダイボンド材料、アンダーフィル、ACF、ACP、NCF、NCP等の半導体実装材料、液晶パネル、OLED照明、OLEDディスプレイ等の表示機器・照明機器用封止材の用途に好ましく用いられる。特に、車両用構造接着剤として有用である。
 以下に実施例を掲げて本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。
 (体積平均粒子径の測定)
 製造例に記載されたポリブタジエンゴムラテックス中のポリブタジエンゴム粒子、及び、コアシェルポリマーラテックス中のコアシェルポリマー粒子について、以下の方法により、それぞれの平均粒子径を測定した。水性ラテックスに分散している粒子の体積平均粒子径(Mv)は、マイクロトラックUPA150(日機装株式会社製)を用いて測定した。脱イオン水で希釈したものを測定試料として用いた。測定は、水の屈折率、およびそれぞれのポリマー粒子の屈折率を入力し、計測時間600秒、Signal Levelが0.6~0.8の範囲内になるように試料濃度を調整して行った。
 1.コア層の形成
 製造例1;ポリブタジエンゴムラテックス(R-2)の調製
 耐圧重合機中に、水200重量部、リン酸三カリウム0.03重量部、エチレンジアミン四酢酸二ナトリウム(EDTA)0.002重量部、硫酸第一鉄・7水和塩(FE)0.001重量部、及び、ドデシルベンゼンスルホン酸ナトリウム(SDBS)1.55重量部を投入し、撹拌しつつ十分に窒素置換を行なって酸素を除いた後、ブタジエン(Bd)100重量部を系中に投入し、45℃に昇温した。パラメンタンハイドロパーオキサイド(PHP)0.03重量部、続いてナトリウムホルムアルデヒドスルホキシレート(SFS)0.10重量部を投入し重合を開始した。重合開始から3、5、7時間目それぞれに、PHP0.025重量部を投入した。また、重合開始4、6、8時間目それぞれに、EDTA0.0006重量部、及びFE0.003重量部を投入した。重合15時間目に減圧下残存モノマーを脱揮除去して重合を終了し、ポリブタジエンゴムを主成分とするポリブタジエンゴムラテックス(R-1)を得た。得られたラテックスに含まれるポリブタジエンゴム粒子の体積平均粒子径は0.08μmであった。
 耐圧重合機中に、ポリブタジエンゴムラテックス(R-1)を21重量部(ポリブタジエンゴム7重量部を含む)、脱イオン水185重量部、リン酸三カリウム0.03重量部、EDTA0.002重量部、及びFE0.001重量部を投入し、撹拌しつつ十分に窒素置換を行なって酸素を除いた後、Bd93重量部を系中に投入し、45℃に昇温した。PHP0.02重量部、続いてSFS0.10重量部を投入し重合を開始した。重合開始から24時間目まで3時間おきに、それぞれ、PHP0.025重量部、及びEDTA0.0006重量部、及びFE0.003重量部を投入した。重合30時間目に減圧下残存モノマーを脱揮除去して重合を終了し、ポリブタジエンゴムを主成分とするポリブタジエンゴムラテックス(R-2)を得た。得られたラテックスに含まれるポリブタジエンゴム粒子の体積平均粒子径は0.20μmであった。
 2.コアシェルポリマーラテックスの調製(シェル層の形成)
 製造例2-1;コアシェルポリマーラテックス(L-1)の調製
 温度計、撹拌機、還流冷却器、窒素流入口、及びモノマーの添加装置を有するガラス反応器に、製造例1で調製したポリブタジエンゴムラテックス(R-2)262重量部(ポリブタジエンゴム粒子87重量部を含む)、及び、脱イオン水57重量部を仕込み、窒素置換を行いながら60℃で撹拌した。EDTA0.004重量部、FE0.001重量部、及びSFS0.2重量部を加えた後、シェルモノマー(メチルメタクリレート(MMA)12重量部、グリシジルメタクリレート(GMA)1重量部)、及び、クメンヒドロパーオキサイド(CHP)0.04重量部の混合物を120分間かけて連続的に添加した。添加終了後、CHP0.04重量部を添加し、さらに2時間撹拌を続けて重合を完結させ、コアシェルポリマー粒子を含む水性ラテックス(L-1)を得た。モノマー成分の重合転化率は99%以上であった。水性ラテックス(L-1)に含まれるコアシェルポリマー粒子の体積平均粒子径は0.21μmであった。該コアシェルポリマー粒子のシェル層の総量に対するエポキシ基の含有量は0.5mmol/gである。
 製造例2-2;コアシェルポリマーラテックス(L-2)の調製
 シェルモノマーをMMA1重量部、スチレン(ST)6重量部、アクリロニトリル(AN)2重量部、GMA4重量部に変えた以外は製造例2-1と同様にし、コアシェルポリマー粒子を含む水性ラテックス(L-2)を得た。モノマー成分の転化率は99%以上であった。水性ラテックス(L-2)に含まれるコアシェルポリマー粒子の体積平均粒子径は0.21μmであった。該コアシェルポリマー粒子のシェル層の総量に対するエポキシ基の含有量は2.2mmol/gである。
 製造例2-3;コアシェルポリマーラテックス(L-3)の調製
 シェルモノマーをMMA3重量部、ST6重量部、AN2重量部、GMA2重量部に変えた以外は製造例2-1と同様にし、コアシェルポリマー粒子を含む水性ラテックス(L-3)を得た。モノマー成分の転化率は99%以上であった。水性ラテックス(L-3)に含まれるコアシェルポリマー粒子の体積平均粒子径は0.21μmであった。該コアシェルポリマー粒子のシェル層の総量に対するエポキシ基の含有量は1.1mmol/gである。
 製造例2-4;コアシェルポリマーラテックス(L-4)の調製
 シェルモノマーをMMA4重量部、ST6重量部、AN2重量部、GMA1重量部に変えた以外は製造例2-1と同様にし、コアシェルポリマー粒子を含む水性ラテックス(L-4)を得た。モノマー成分の転化率は99%以上であった。水性ラテックス(L-4)に含まれるコアシェルポリマー粒子の体積平均粒子径は0.21μmであった。該コアシェルポリマー粒子のシェル層の総量に対するエポキシ基の含有量は0.5mmol/gである。
 製造例2-5;コアシェルポリマーラテックス(L-5)の調製
 シェルモノマーをMMA5重量部、ST6重量部、AN2重量部に変えた以外は製造例2-1と同様にし、コアシェルポリマー粒子を含む水性ラテックス(L-5)を得た。モノマー成分の転化率は99%以上であった。水性ラテックス(L-5)に含まれるコアシェルポリマー粒子の体積平均粒子径は0.21μmであった。該コアシェルポリマー粒子のシェル層の総量に対するエポキシ基の含有量は0mmol/gである。
 3.硬化性樹脂中にコアシェルポリマー粒子(B)が分散した分散物(M)の調製
 製造例3-1;分散物(M-1)の調製
 25℃の1L混合槽にメチルエチルケトン(MEK)132gを導入し、撹拌しながら、製造例2-1で得たコアシェルポリマーラテックス(L-1)を132g(コアシェルポリマー粒子40g相当)投入した。均一に混合後、水200gを80g/分の供給速度で投入した。供給終了後、速やかに撹拌を停止したところ、浮上性の凝集体および有機溶媒を一部含む水相からなるスラリー液を得た。次に、一部の水相を含む凝集体を残し、水相360gを槽下部の払い出し口より排出させた。得られた凝集体にMEK90gを追加して均一に混合し、コアシェルポリマー粒子(B)を均一に分散した分散体を得た。この分散体に、(A)成分であるエポキシ樹脂(三菱化学社製、JER828:液状ビスフェノールA型エポキシ樹脂)60gを混合した。この混合物から、回転式の蒸発装置で、MEKを除去した。このようにして、エポキシ樹脂(A)にコアシェルポリマー粒子(B)が分散した分散物(M-1)を得た。
 製造例3-2;分散物(M-2)の調製
 製造例3-1において、コアシェルポリマーラテックスとして(L-1)の代わりに、製造例2-2で得た(L-2)を用いたこと以外は製造例3-1と同様にして、エポキシ樹脂(A)にコアシェルポリマー粒子(B)が分散した分散物(M-2)を得た。
 製造例3-3;分散物(M-3)の調製
 製造例3-1において、コアシェルポリマーラテックスとして(L-1)の代わりに、製造例2-3で得た(L-3)を用いたこと以外は製造例3-1と同様にして、エポキシ樹脂(A)にコアシェルポリマー粒子(B)が分散した分散物(M-3)を得た。
 製造例3-4;分散物(M-4)の調製
 製造例3-1において、コアシェルポリマーラテックスとして(L-1)の代わりに、製造例2-4で得た(L-4)を用いたこと以外は製造例3-1と同様にして、エポキシ樹脂(A)にコアシェルポリマー粒子(B)が分散した分散物(M-4)を得た。
 製造例3-5;分散物(M-5)の調製
 製造例3-1において、コアシェルポリマーラテックスとして(L-1)の代わりに、製造例2-5で得た(L-5)を用いたこと以外は製造例3-1と同様にして、エポキシ樹脂(A)にコアシェルポリマー粒子(B)が分散した分散物(M-5)を得た。
 (実施例1~60、比較例1~24)
 表1~表9に示す処方にしたがって各成分をそれぞれ計量し、よく混合して一成分型硬化性樹脂組成物を得た。
 表1~表9の各組成物について、以下の方法で、動的割裂抵抗力(耐衝撃剥離接着性)とその湿熱試験後保持率、吸水率、T字剥離接着強さとその湿熱試験後保持率、及び、粘度上昇率(貯蔵安定性)、の各評価を行った。
 <動的割裂抵抗力(耐衝撃剥離接着性)とその湿熱試験後保持率>
 各組成物を2枚のSPCC鋼板に塗布し、接着層厚み0.25mmとなるように重ね合せ、表1~表5の各組成物では170℃×30分の条件で硬化させ、表6~表9の各組成物では150℃×30分の条件で硬化させて積層体を得た。この積層体を用いて、ISO 11343に従って、23℃で動的割裂抵抗力(耐衝撃剥離接着性)を測定した。結果を表1~表9に示す。
 表8の各組成物については、動的割裂抵抗力を、70℃/95%RHの環境下に前記積層体を21日間放置する湿熱試験の後においても測定し、保持率(=湿熱試験後の強度/湿熱試験前の強度)を計算した。結果を表8に示す。
 <吸水率>
 表1の各組成物を、脱泡して、厚み3mmのスペーサーを挟んだ2枚のガラス板の間に注ぎ込み、熱風オーブン中170℃で1時間硬化させ、厚み3mmの硬化板を得た。この硬化板を、3mm×5mm×50mmの寸法に切削して直方体の硬化物を得た。この直方体の硬化物の重量を、70℃/95%RHの環境下に前記硬化物を7日間放置する湿熱試験の前後で測定し、下記式で吸水率(%)を計算した。結果を表1に示す。
  吸水率(%)=(湿熱試験後の重量/湿熱試験前の重量-1)×100
 <T字剥離接着強さとその湿熱試験後保持率>
 表2、表4~表6、表8、表9の各組成物を、幅25mm×長さ200mm×厚み0.5mmの2枚のSPCC鋼板に塗布し、接着層厚み0.25mmとなるように重ね合せ、表2と表4~表5の各組成物では170℃×30分の条件で硬化させ、表6と表8~表9の各組成物では150℃×30分の条件で硬化させて積層体を得た。
 測定温度を23℃、テストスピードを254mm/minとした測定条件で、単位をN/25mmとしたT字剥離接着強さを測定した。結果を表2、表4~表6、表8、表9に示す。
 表6と表9の各組成物については、T字剥離接着強さを、70℃/95%RHの環境下に前記積層体を21日間放置する湿熱試験の後においても測定し、保持率(=湿熱試験後の強度/湿熱試験前の強度)を計算した。結果を表6と表9に示す。
 <粘度上昇率(貯蔵安定性)>
 表2の実施例17~21と比較例8の各組成物、表7の実施例50~53と比較例20の各組成物、及び、表9の実施例57~60と比較例24の各組成物の50℃での粘度を、レオメーターを使用して、せん断速度5s-1で測定した。この各組成物を40℃で14日間貯蔵し、貯蔵後の粘度を貯蔵前と同様に、50℃、せん断速度5s-1で測定した。粘度上昇率(=貯蔵後の粘度/貯蔵前の粘度)を算出した結果を表2と表7と表9に示す。
 なお、表1~表9中の各種配合剤は、以下に示すものを使用した。また、表10では、各化合物(C)、及び、比較用化合物の構造式、分子量、及び融点を示した。
<エポキシ樹脂(A)>
A-1:JER828(三菱化学製、常温で液状のビスフェノールA型エポキシ樹脂、エポキシ当量:184~194)
A-2:HyPox RA 1340(CVC Thermoset Specialties製、ゴム変性エポキシ樹脂、エポキシ当量:350)
A-3:EPU-73B(ADEKA製、ウレタン変性エポキシ樹脂、エポキシ当量:245)
<エポキシ樹脂(A)中にポリマー粒子(B)が分散した分散物(M)>
M-1~5:前記製造例3-1~5で得られた分散物
<ブロックドウレタン(B)>
B-1:アデカレジンQR-9466(ADEKA製、ブロックドウレタン、ブロックNCO当量1400g/eq)
<ゴム系重合体>
カルボキシル基末端アクリロニトリルブタジエン共重合体:CTBN 1300x8(CVC Thermoset Specialties製)
カルボキシル基末端アクリロニトリルブタジエン共重合体:CTBN 1300x13(CVC Thermoset Specialties製)
<1分子中に1~3個のフェノール性水酸基を有する化合物(C)>
4-tert-ブチルフェノール(東京化成製)
ビスフェノールA(東京化成製)
ビスフェノールM(東京化成製)
フェノール(富士フィルム和光純薬工業製)
4-メトキシフェノール(富士フィルム和光純薬工業製)
2,6-キシレノール(富士フィルム和光純薬工業製)
レゾルシノール(富士フィルム和光純薬工業製)
カテコール(富士フィルム和光純薬工業製)
4-tert-ブチルカテコール(富士フィルム和光純薬工業製)
ヒドロキノン(東京化成製)
メチルヒドロキノン(富士フィルム和光純薬工業製)
tert-ブチルヒドロキノン(東京化成製)
2,5-ジ-tert-ブチルヒドロキノン(東京化成製)
2,2’-ジアリルビスフェノールA(小西化学工業製)
ピロガロール(関東化学製)
3-メチル-6-tert-ブチルフェノール(東京化成製)
2-メチル-6-tert-ブチルフェノール(東京化成製)
ビス[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオン酸)][エチレンビス(オキシエチレン)](BASFジャパン製、製品名:Irganox 245)
6-tert-ブチル-2,4-キシレノール(東京化成製)
2,3,6-トリメチルフェノール(東京化成製)
2,6-ジ-tert-ブチルフェノール(東京化成製)
<(C)成分に該当しないフェノール化合物>
2,4,6-トリス(ジメチルアミノメチル)フェノール(東京化成製)
PHENOLITE TD-2090(DIC製、ノボラック型フェノール樹脂)
<非フェノール化合物>
アニソール(関東化学製)
<ジシアンジアミド(D)>
Dyhard 100S(AlzChem製)
<硬化促進剤(F)>
Dyhard UR200(AlzChem製、1,1-ジメチル-3-(3,4-ジクロロフェニル)ウレア)
Dyhard UR300(AlzChem製、1,1-ジメチル-3-フェニルウレア)
<ヒュームドシリカ>
CAB-O-SIL TS-720(CABOT製、ポリジメチルシロキサンで表面処理されたヒュームドシリカ)
<炭酸カルシウム>
無処理重質炭酸カルシウム:ホワイトンSB(白石カルシウム製、平均粒子径:1.8μm)
膠質炭酸カルシウム:Vigot-10(白石工業製、平均粒子径:0.17μm)
<カーボンブラック>
MONARCH 280(Cabot製)
<酸化カルシウム>
CML#31(近江化学工業製)
Figure JPOXMLDOC01-appb-T000001
 
 表1から、(A)成分~(D)成分を含有する実施例1~9の一成分型硬化性樹脂組成物は、得られる硬化物の耐衝撃剥離接着性が良好であることが分かる。
 一方、比較例1、6~7の組成物は、フェノール化合物(C)を含有しておらず、(C)成分以外の組成が同一である実施例1、8、又は9と比較して、耐衝撃剥離接着性が低い。
 比較例2~4の組成物は、化合物(C)が有するフェノール性水酸基のモル数/ジシアンジアミド(D)から生成するCN基のモル数の比が大きいもの、即ち化合物(C)の配合量が相対的に大きいものであり、耐衝撃剥離接着性が極めて低い。
 比較例5の組成物は、フェノール化合物(C)の代わりに、フェノール性水酸基を有しない芳香族化合物であるアニソールを配合したものであり、実施例1~9と比較して、耐衝撃剥離接着性が低い。
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
 表2から、フェノール化合物(C)を含有する実施例10~22の一成分型硬化性樹脂組成物は、(C)成分を含有していない比較例8と比較して、耐衝撃剥離接着性が良好で、また、T字剥離接着強さも高いことが分かる。
 一方、(C)成分の定義に合致しないフェノール化合物を含有する比較例9~10のうち、比較例10は、耐衝撃剥離接着性に関しては比較例8以下の値であり、T字剥離接着強さに関しては比較例8と同等の値であった。また、比較例9は、一成分型硬化性樹脂組成物を調製した後、わずか1時間以内にゲル化したため、評価サンプルを作製することができなかった。これより、アミノ基を有するフェノール化合物は、組成物の安定性を低下させ、一成分型硬化性樹脂組成物として示すべき保存安定性を害することが分かる。
 更には、実施例17~21のうち、実施例19~21、特に実施例21は、40℃で14日間の貯蔵による粘度上昇率の値が低く、一成分型硬化性樹脂組成物の貯蔵安定性が比較的良好であることが分かる。これは、フェノール化合物(C)が芳香環上に置換基を有すること、更には、該置換基の個数に起因すると推測される。
Figure JPOXMLDOC01-appb-T000004
 
 表3から、フェノール化合物(C)を含有する実施例23~28の一成分型硬化性樹脂組成物は、(C)成分を含有していない比較例12と比較して、耐衝撃剥離接着性が良好であることが分かる。一方、(B)成分を含有していない比較例11は、耐衝撃剥離接着性が極めて低い。以上より、耐衝撃剥離接着性の改善効果は、(B)成分と(C)成分の併用によって達成される相乗的な作用であることが分かる。
Figure JPOXMLDOC01-appb-T000005
 
 表4から、フェノール化合物(C)を含有する実施例29は、フェノール化合物(C)を含有しておらず(C)成分以外の組成が同一である比較例13と比較して、耐衝撃剥離接着性が良好で、また、T字剥離接着強さも高いことが分かる。同様に、実施例30は比較例14と比較して、実施例31は比較例15と比較して、実施例33は比較例16と比較して、実施例34は比較例17と比較して、耐衝撃剥離接着性が良好で、また、T字剥離接着強さも高いことが分かる。
 また、実施例32は、ゴム系重合体を配合することにより、ゴム系重合体以外の組成が同一である実施例29と比較してT字剥離接着強さが向上していることが分かる。
Figure JPOXMLDOC01-appb-T000006
 
 表5から、フェノール化合物(C)を含有する実施例35~39の一成分型硬化性樹脂組成物は、(C)成分を含有していない比較例18と比較して、耐衝撃剥離接着性が良好で、また、T字剥離接着強さも高いことが分かる。
Figure JPOXMLDOC01-appb-T000007
 
 表6から、フェノール化合物(C)を含有する実施例40~49の一成分型硬化性樹脂組成物は、(C)成分を含有していない比較例19と比較して、耐衝撃剥離接着性が良好で、また、T字剥離接着強さも高いことが分かる。
 更には、実施例40~49のうち、実施例41、46、47、及び49は、T字剥離接着強さの湿熱試験後保持率が大きく、得られる硬化物が耐湿熱性に優れていることが分かる。このことより、フェノール化合物(C)は、フェノール性水酸基のオルト位に置換基を有することが耐湿熱性改善の観点から好ましいことが分かる。
Figure JPOXMLDOC01-appb-T000008
 
 表7から、フェノール化合物(C)を含有する実施例50~53の一成分型硬化性樹脂組成物は、(C)成分を含有していない比較例20と比較して、耐衝撃剥離接着性が高いことが分かる。
 更に、実施例50~53の一成分型硬化性樹脂組成物は、40℃で14日間の貯蔵による粘度上昇率の値が低く、貯蔵安定性が比較的良好であることが分かる。これは、使用したフェノール化合物(C)が各フェノール性水酸基のオルト位に、第三級アルキル基を1個有することに起因すると推測される。
 実施例50~53の中でも、実施例51と53の一成分型硬化性樹脂組成物は粘度上昇率の値が特に低く、貯蔵安定性に優れていることが分かる。これは、使用したフェノール化合物(C)の各フェノール性水酸基のオルト位に、メチル基と第三級アルキル基とを有することに起因すると推測される。
Figure JPOXMLDOC01-appb-T000009
 
 表8から、フェノール化合物(C)を含有する実施例54~56の一成分型硬化性樹脂組成物は、(C)成分を含有していない比較例21~23と比較して、耐衝撃剥離接着性が良好で、また、T字剥離接着強さも高いことが分かる。
 更には、実施例54~56は、比較例21~23と比較して、耐衝撃剥離接着性の湿熱試験後保持率が大きく、得られる硬化物が耐湿熱性に優れていることが分かる。これは、使用したフェノール化合物(C)の各フェノール性水酸基のオルト位に、メチル基と第三級アルキル基とを有することに起因すると推測される。
Figure JPOXMLDOC01-appb-T000010
 
 表9から、フェノール化合物(C)を含有する実施例57~60の一成分型硬化性樹脂組成物は、(C)成分を含有していない比較例24と比較して、耐衝撃剥離接着性が良好で、また、T字剥離接着強さも高いことが分かる。
 更には、実施例57~60は、比較例24と比較してT字剥離接着強さの湿熱試験後保持率が大きく、特に実施例59は良好で、得られる硬化物が耐湿熱性に優れていることが分かる。このことより、フェノール化合物(C)は、フェノール性水酸基のオルト位に置換基を有することが耐湿熱性改善の観点から好ましく、フェノール性水酸基のオルト位にメチル基と第三級アルキル基とを有することが特に好ましいことが分かる。
 一方、実施例57~60の一成分型硬化性樹脂組成物は、40℃で14日間の貯蔵による粘度上昇率の値が低く、貯蔵安定性が比較的良好で、実施例59~60はより良好で、実施例60は特に優れることが分かる。これは、各フェノール性水酸基のオルト位の置換基の個数およびその置換基の嵩高さに起因すると推測される。
Figure JPOXMLDOC01-appb-T000011
 
Figure JPOXMLDOC01-appb-T000012
 

Claims (22)

  1.  エポキシ樹脂(A)100重量部、
     コアシェル構造を有するポリマー粒子および/またはブロックドウレタン(B)1~100重量部、
     1分子中に1~3個のフェノール性水酸基を有する化合物(C)[但し、1分子中に1~3個のフェノール性水酸基を有する化合物が、さらにアミノ基を有する化合物である場合は、前記化合物(C)に該当しない]、及び
     ジシアンジアミド(D)、を含有し、
     前記化合物(C)が有するフェノール性水酸基のモル数/ジシアンジアミド(D)から生成するCN基のモル数の比は、前記化合物(C)が1分子中に1個のフェノール性水酸基を有する時には0.01以上0.39以下であり、前記化合物(C)が1分子中に2個または3個のフェノール性水酸基を有する時には0.01以上1.5以下である、一成分型硬化性樹脂組成物。
  2.  前記化合物(C)は、1分子中に1個又は2個のフェノール性水酸基を有する、請求項1に記載の一成分型硬化性樹脂組成物。
  3.  前記化合物(C)は、1分子中に2個のフェノール性水酸基を有する、請求項1または2に記載の一成分型硬化性樹脂組成物。
  4.  前記化合物(C)は、1分子中に1個のフェノール性水酸基を有する、請求項1~3のいずれか1項に記載の一成分型硬化性樹脂組成物。
  5.  前記化合物(C)は、メチル基、第一級アルキル基、第二級アルキル基、第三級アルキル基およびハロゲンからなる群より選択される1個~4個の置換基を芳香環上に有する、請求項1~4のいずれか1項に記載の一成分型硬化性樹脂組成物。
  6.  前記化合物(C)は、少なくとも1個のフェノール性水酸基のオルト位に、メチル基、第一級アルキル基、第二級アルキル基、第三級アルキル基およびハロゲンからなる群より選択される1個又は2個の置換基を有する、請求項1~5のいずれか1項に記載の一成分型硬化性樹脂組成物。
  7.  前記(B)成分として、前記コアシェル構造を有するポリマー粒子を含有する、請求項1~6のいずれか1項に記載の一成分型硬化性樹脂組成物。
  8.  前記化合物(C)の分子量が90以上500以下である、請求項1~7のいずれか1項に記載の一成分型硬化性樹脂組成物。
  9.  1分子中に4個以上のフェノール性水酸基を有する化合物(E)をさらに含有し、
     前記化合物(E)の総重量/前記化合物(C)の総重量の比が1未満である、請求項1~8のいずれか1項に記載の一成分型硬化性樹脂組成物。
  10.  前記ジシアンジアミド(D)のモル量/前記エポキシ樹脂(A)が有するエポキシ基のモル量の比が、0.10以上0.30以下である、請求項1~9のいずれか1項に記載の一成分型硬化性樹脂組成物。
  11.  前記エポキシ樹脂(A)100重量部に対して、硬化促進剤(F)0.1~10重量部をさらに含有する、請求項1~10のいずれか1項に記載の一成分型硬化性樹脂組成物。
  12.  前記コアシェル構造を有するポリマー粒子が、ジエン系ゴム、(メタ)アクリレート系ゴム、及びオルガノシロキサン系ゴムからなる群より選択される1種以上のコア層を有する、請求項1~11のいずれか1項に記載の一成分型硬化性樹脂組成物。
  13.  前記ジエン系ゴムが、ブタジエンゴム、および/または、ブタジエン-スチレンゴムである、請求項12に記載の一成分型硬化性樹脂組成物。
  14.  前記コアシェル構造を有するポリマー粒子が、芳香族ビニルモノマー、ビニルシアンモノマー、及び(メタ)アクリレートモノマーからなる群より選択される1種以上のモノマー成分を、コア層にグラフト重合してなるシェル層を有する、請求項1~13のいずれか1項に記載の一成分型硬化性樹脂組成物。
  15.  前記コアシェル構造を有するポリマー粒子が、シェル層にエポキシ基を有する、請求項1~14のいずれか1項に記載の一成分型硬化性樹脂組成物。
  16.  前記コアシェル構造を有するポリマー粒子が、エポキシ基を有するモノマー成分を、コア層にグラフト重合してなるシェル層を有する、請求項1~15のいずれか1項に記載の一成分型硬化性樹脂組成物。
  17.  前記コアシェル構造を有するポリマー粒子が、シェル層にエポキシ基を有し、前記シェル層の総量に対する、前記シェル層が有する前記エポキシ基の含有量が0.1~2.0mmol/gである、請求項1~16のいずれか1項に記載の一成分型硬化性樹脂組成物。
  18.  請求項1~17のいずれか1項に記載の一成分型硬化性樹脂組成物が硬化した硬化物。
  19.  請求項1~17のいずれか1項に記載の一成分型硬化性樹脂組成物を含む接着剤。
  20.  前記接着剤が構造用接着剤である、請求項19に記載の接着剤。
  21.  2枚の基材と、該2枚の基材を接合する、請求項19又は20に記載の接着剤が硬化した接着層とを含む、積層体。
  22.  請求項18に記載の硬化物の製造方法であって、
     前記エポキシ樹脂(A)、前記コアシェル構造を有するポリマー粒子および/またはブロックドウレタン(B)、前記化合物(C)、及び前記ジシアンジアミド(D)を混合して混合物を得る工程、並びに
     前記混合物を加熱して前記硬化物を得る工程、を含む、硬化物の製造方法。
PCT/JP2021/043253 2020-11-27 2021-11-25 一成分型硬化性樹脂組成物及び接着剤 WO2022114073A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180079701.7A CN116490361A (zh) 2020-11-27 2021-11-25 单组分型固化性树脂组合物及粘接剂
JP2022565415A JPWO2022114073A1 (ja) 2020-11-27 2021-11-25
US18/202,649 US20230295416A1 (en) 2020-11-27 2023-05-26 One-part curable resin composition and adhesive

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-197247 2020-11-27
JP2020197247 2020-11-27
JP2021-109918 2021-07-01
JP2021109918 2021-07-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/202,649 Continuation US20230295416A1 (en) 2020-11-27 2023-05-26 One-part curable resin composition and adhesive

Publications (1)

Publication Number Publication Date
WO2022114073A1 true WO2022114073A1 (ja) 2022-06-02

Family

ID=81754421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043253 WO2022114073A1 (ja) 2020-11-27 2021-11-25 一成分型硬化性樹脂組成物及び接着剤

Country Status (3)

Country Link
US (1) US20230295416A1 (ja)
JP (1) JPWO2022114073A1 (ja)
WO (1) WO2022114073A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023249099A1 (ja) * 2022-06-24 2023-12-28 株式会社カネカ 硬化性樹脂組成物、硬化物、接着剤および積層体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001040069A (ja) * 1999-07-27 2001-02-13 Matsushita Electric Works Ltd エポキシ樹脂組成物、プリプレグ、樹脂付き金属箔、接着シート、積層板及び多層板
JP2001214040A (ja) * 1999-11-24 2001-08-07 Shin Etsu Chem Co Ltd 半導体封止用エポキシ樹脂組成物及び半導体装置
JP2005036095A (ja) * 2003-06-23 2005-02-10 Nagase Chemtex Corp 接着剤組成物
JP2005344046A (ja) * 2004-06-04 2005-12-15 Asahi Kasei Chemicals Corp 潜在性硬化剤および組成物
JP2016199673A (ja) * 2015-04-09 2016-12-01 株式会社カネカ 接着性の改善されたポリマー微粒子含有硬化性樹脂組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001040069A (ja) * 1999-07-27 2001-02-13 Matsushita Electric Works Ltd エポキシ樹脂組成物、プリプレグ、樹脂付き金属箔、接着シート、積層板及び多層板
JP2001214040A (ja) * 1999-11-24 2001-08-07 Shin Etsu Chem Co Ltd 半導体封止用エポキシ樹脂組成物及び半導体装置
JP2005036095A (ja) * 2003-06-23 2005-02-10 Nagase Chemtex Corp 接着剤組成物
JP2005344046A (ja) * 2004-06-04 2005-12-15 Asahi Kasei Chemicals Corp 潜在性硬化剤および組成物
JP2016199673A (ja) * 2015-04-09 2016-12-01 株式会社カネカ 接着性の改善されたポリマー微粒子含有硬化性樹脂組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023249099A1 (ja) * 2022-06-24 2023-12-28 株式会社カネカ 硬化性樹脂組成物、硬化物、接着剤および積層体

Also Published As

Publication number Publication date
US20230295416A1 (en) 2023-09-21
JPWO2022114073A1 (ja) 2022-06-02

Similar Documents

Publication Publication Date Title
JP6924135B2 (ja) 耐衝撃剥離接着性の改善されたポリマー微粒子含有硬化性樹脂組成物
JP6560617B2 (ja) 貯蔵安定性の改善されたポリマー微粒子含有硬化性樹脂組成物
WO2016159224A1 (ja) 貯蔵安定性に優れる硬化性エポキシ樹脂組成物
JP6476045B2 (ja) 接着性の改善されたポリマー微粒子含有硬化性樹脂組成物
JP6767758B2 (ja) 貯蔵安定性および接着性の改善されたポリマー微粒子含有硬化性樹脂組成物
JP6694425B2 (ja) チキソトロピー性に優れる硬化性エポキシ樹脂組成物
JP7187347B2 (ja) 硬化性エポキシ樹脂組成物、及びそれを用いた積層体
JP6966154B2 (ja) 硬化性組成物及び接着剤
JPWO2019208569A1 (ja) 作業性に優れるポリマー微粒子含有硬化性樹脂組成物を用いる接着方法、及び、該接着方法を用いて得られる積層体
JP7403463B2 (ja) 硬化性エポキシ樹脂組成物、及びそれを用いた積層体
WO2022138807A1 (ja) 硬化性樹脂組成物及び接着剤
US20230295416A1 (en) One-part curable resin composition and adhesive
JP6722477B2 (ja) 剥離接着性および耐衝撃剥離接着性の改善されたポリマー微粒子含有硬化性樹脂組成物
JP6523611B2 (ja) 異種部材を硬化性樹脂組成物で接合した積層体、および車両用構造パネル
JP2020152775A (ja) エポキシ樹脂組成物及び接着剤
JP7290446B2 (ja) 硬化性樹脂組成物およびその利用
JP2022050820A (ja) エポキシ樹脂組成物及び接着剤
CN116490361A (zh) 单组分型固化性树脂组合物及粘接剂
WO2020218552A1 (ja) 構造物の製造方法
JP2021020346A (ja) 積層体および積層体の製造方法
WO2023249099A1 (ja) 硬化性樹脂組成物、硬化物、接着剤および積層体
JP7277241B2 (ja) 作業性に優れるポリマー微粒子含有硬化性樹脂組成物を用いる接着方法、及び、該接着方法を用いて得られる積層体
WO2023054479A1 (ja) 硬化性樹脂組成物およびその利用
JP2023146870A (ja) 硬化性樹脂組成物、その硬化物、接着剤および積層体
WO2022186316A1 (ja) 硬化性樹脂組成物及び接着剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21898045

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022565415

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180079701.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21898045

Country of ref document: EP

Kind code of ref document: A1