WO2022113782A1 - 無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池 - Google Patents

無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池 Download PDF

Info

Publication number
WO2022113782A1
WO2022113782A1 PCT/JP2021/041739 JP2021041739W WO2022113782A1 WO 2022113782 A1 WO2022113782 A1 WO 2022113782A1 JP 2021041739 W JP2021041739 W JP 2021041739W WO 2022113782 A1 WO2022113782 A1 WO 2022113782A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
inorganic solid
electrolyte material
particles
inorganic
Prior art date
Application number
PCT/JP2021/041739
Other languages
English (en)
French (fr)
Inventor
樹史 吉田
Original Assignee
古河機械金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河機械金属株式会社 filed Critical 古河機械金属株式会社
Priority to KR1020237020709A priority Critical patent/KR20230109720A/ko
Priority to JP2022565225A priority patent/JPWO2022113782A1/ja
Priority to US18/038,861 priority patent/US20240097183A1/en
Priority to EP21897756.9A priority patent/EP4254563A4/en
Priority to CN202180080025.5A priority patent/CN116636046A/zh
Publication of WO2022113782A1 publication Critical patent/WO2022113782A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/08Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an inorganic solid electrolyte material, a solid electrolyte, a solid electrolyte membrane, and a lithium ion battery.
  • Lithium-ion batteries are generally used as a power source for small portable devices such as mobile phones and laptop computers. Recently, in addition to small portable devices, lithium-ion batteries have begun to be used as power sources for electric vehicles and power storage.
  • a lithium ion battery currently on the market uses an electrolytic solution containing a flammable organic solvent.
  • lithium-ion batteries hereinafter, also referred to as all-solid-state lithium-ion batteries
  • the electrolyte is changed to a solid electrolyte and the battery is completely solidified. Since the all-solid-state lithium-ion battery does not contain a flammable organic solvent in the battery, it is considered that the safety device can be simplified and the manufacturing cost and productivity are excellent.
  • the solid electrolyte material used for the solid electrolyte for example, an inorganic solid electrolyte material is known.
  • Patent Document 1 describes sulfide-based inorganic solid electrolyte particles that satisfy all of the following specifications A. ⁇ Specifications A> -Let the perimeter of the projected particles of the inorganic solid electrolyte particles be L. -Let A be the cross-sectional area of the projected particles of the inorganic solid electrolyte particles.
  • the present invention was made in view of such circumstances.
  • One of the objects of the present invention is to provide sulfide-based inorganic solid electrolyte particles having high ionic conductivity.
  • an inorganic solid electrolyte material containing sulfide-based inorganic solid electrolyte particles In the frequency distribution of the circularity of the particles, in which the circularity of the particles in the material is plotted on the horizontal axis and the frequency based on the number is plotted on the vertical axis, the 10% integrated value D 10 is 0.54 to 0.80. And Provided is an inorganic solid electrolyte material having a median diameter d 50 of 0.1 to 10 ⁇ m based on the number of the particles in the material.
  • a solid electrolyte containing the above-mentioned inorganic solid electrolyte material is provided.
  • a solid electrolyte membrane containing the above solid electrolyte as a main component is provided.
  • a lithium ion battery including a positive electrode including a positive electrode active material layer, an electrolyte layer, and a negative electrode including a negative electrode active material layer.
  • a lithium ion battery in which at least one of the positive electrode active material layer, the electrolyte layer, and the negative electrode active material layer contains the above-mentioned inorganic solid electrolyte material is provided.
  • sulfide-based inorganic solid electrolyte particles having high ionic conductivity are provided. It was
  • XY in the description of the numerical range indicates X or more and Y or less unless otherwise specified.
  • “1 to 5% by mass” means “1% by mass or more and 5% by mass or less”.
  • (meth) acrylic in this specification represents a concept that includes both acrylic and methacrylic acid. The same applies to similar notations such as "(meth) acrylate”.
  • sulfide-based inorganic solid electrolyte particles may be simply referred to as "particles".
  • the inorganic solid electrolyte material of the present embodiment contains sulfide-based inorganic solid electrolyte particles.
  • the 10% integrated value D 10 is 0. It is .54 to 0.80.
  • the median diameter d 50 of the sulfide-based inorganic solid electrolyte particles in this material is 0.1 to 10 ⁇ m based on the number of particles.
  • FIG. 1 is a supplementary diagram for intuitively understanding the concept of circularity.
  • the circularity of the figure in FIG. 1 (A) is approximately 1.
  • the circularity of the figure of FIG. 1B is approximately 0.7.
  • the circularity of the figure in FIG. 1C is approximately 0.25. From these, it can be understood that the closer the circularity of the figure is to 1, the closer the figure has a contour closer to a perfect circle, and the smaller the circularity of the figure, the more the figure has a distorted contour from the perfect circle. Will be done.
  • the present inventor has studied the improvement of the inorganic solid electrolyte material from various viewpoints. Through the study, the present inventor considered that some index regarding the shape of the sulfide-based inorganic solid electrolyte particles might be related to the ionic conductivity. Based on this finding, the present inventor further studied. Specifically, as "some index regarding the shape of the sulfide-based inorganic solid electrolyte particles", it was decided to examine the circularity, which is an index indicating the strain / distortion from a perfect circle.
  • the inorganic solid electrolyte material is an "aggregate" of a plurality of sulfide-based inorganic solid electrolyte particles, it may be possible to improve the ionic conductivity by appropriately designing the "distribution" of the circularity of the particles. I answered if there was one.
  • the present inventor further studied. Then, in the inorganic solid electrolyte material containing the sulfide-based inorganic solid electrolyte particles, the frequency of the circularity of the particles is plotted on the horizontal axis with the circularity of the sulfide-based inorganic solid electrolyte particles on the horizontal axis and the frequency based on the number on the vertical axis.
  • the present inventor has found that the ionic conductivity can be increased by designing the material so that the 10% integrated value D 10 is 0.54 to 0.80 in the distribution.
  • D 10 The fact that the ionic conductivity is increased when D 10 is 0.54 to 0.80 can be explained as follows.
  • a D 10 of 0.54 or higher means that there are few extremely distorted particles in the particle population. It is thought that by reducing the number of extremely distorted particles, the "gap" between the particles is reduced and the ionic conductivity is improved.
  • the fact that D 10 is 0.80 or less means that there are not too many particles that are close to a perfect circle, and that the group of particles contains "somewhat distorted" particles in a certain proportion. If the shape of the particles is too close to a perfect circle, the contact between the particles may become "points" and the ionic conductivity may decrease. Therefore, it is preferable that D 10 is 0.80 or less. Be done.
  • the median diameter d 50 of the particles based on the number is 0.1 to 10 ⁇ m. This means that the particles are "not too big and not too small”. It is presumed that the fact that the particles are not too large reduces the "gap" between the particles, leading to an improvement in ionic conductivity. In addition, it is presumed that the particles are not too small, so that the contact surfaces between the particles are reduced, leading to an improvement in ionic conductivity.
  • Patent Document 1 the "concavo-convex coefficient" described in Patent Document 1 can be considered to be equivalent to the circularity.
  • Patent Document 1 does not mention the “distribution" of the circularity of the electrolyte particles, much less D10. Focusing on the frequency distribution of the circularity of the electrolyte particles, the idea of designing the electrolyte particles so that D 10 is 0.54 to 0.80, and further optimizing the diameter of the electrolyte particles together with the circularity. The idea is unique to the present inventor.
  • the inorganic solid electrolyte material of the present embodiment (D 10 is 0.54 to 0.80), it is preferable to use an appropriate material and select an appropriate production condition.
  • an appropriate material and select an appropriate production condition for example, (i) a ball mill treatment is performed under appropriate conditions to change the shape of the particles of the inorganic solid electrolyte material in a glass state, and / or. (Ii) It is preferable to perform an appropriate sieving operation. If an appropriate manufacturing method and manufacturing conditions are not selected, the inorganic solid electrolyte material of the present embodiment may not be obtained. A more specific method for producing the inorganic solid electrolyte material of the present embodiment will be described later.
  • D 10 may be 0.54 to 0.80, but D 10 is more preferably 0.60 to 0.75 from the viewpoint of increasing the ionic conductivity.
  • the ionic conductivity may be further increased by setting the 50% integrated value D 50 in the frequency distribution of the circularity of the particles as an appropriate value.
  • D 50 is preferably less than 0.85, more preferably 0.70 to 0.84, and even more preferably 0.75 to 0.82.
  • a D 50 of less than 0.85 can be considered to indicate that the population of particles contains some distorted particles, similar to a D 10 of 0.80 or less. That is, it is considered that when D 50 is less than 0.85, the particles are likely to come into contact with each other in a larger area, and the ionic conductivity is further improved.
  • D 50 is 0.70 or more, it is considered that the gap between the particles becomes smaller and the ionic conductivity can be made larger.
  • the ionic conductivity may be further increased by setting the 90% integrated value D 90 in the frequency distribution of the circularity of the particles to an appropriate value.
  • D 90 is preferably 0.95 or less, more preferably 0.85 to 0.95, and even more preferably 0.87 to 0.92.
  • the fact that D 90 is 0.95 or less is also considered to indicate that the group of particles contains some distorted particles. That is, it is considered that when D 90 is 0.95 or less, the particles are likely to come into contact with each other in a larger area, and the ionic conductivity is further improved.
  • D 90 is 0.85 or more, it is considered that the gap between the particles becomes smaller and the ionic conductivity can be made larger.
  • the ionic conductivity may be further increased by appropriately designing the value of (D 90 ⁇ D 10 ) / D 50 .
  • (D 90 -D 10 ) / D 50 is preferably 0.10 to 0.45, more preferably 0.20 to 0.45.
  • the index (D 90 -D 10 ) / D 50 represents the broadness / sharpness of the frequency distribution. The smaller this value, the sharper the frequency distribution, which means that the particles are relatively homogeneous on the scale of circularity, and that there are relatively few particles whose circularity is extremely large or small.
  • Means. (D 90 -D 10 ) / D 50 is 0.10 or more, that is, the frequency distribution is moderately broad, and the population of particles contains a certain percentage of particles that deviate from the average circularity.
  • (D 90 -D 10 ) / D 50 is 0.45 or less, that is, the frequency distribution is moderately sharp, and the number of particles having extremely large or small circularity is relatively small. It is considered that the gaps between particles that may lower the conductivity are less likely to be created, and the ionic conductivity is further increased.
  • the frequency distribution of the circularity of the particles is, for example, (1) the particles are photographed with an electron microscope, (2) the circularity of each particle is obtained from the area and the peripheral length of each particle in the photographed image, (3). It can be obtained by plotting the circularity of each particle on the horizontal axis and the frequency based on the number on the vertical axis. For an example of a specific method, refer to the description of Examples.
  • the inorganic solid electrolyte material of the present embodiment preferably contains Li, P and S as constituent elements from the viewpoints of electrochemical stability, stability in water and air, and handleability.
  • the inorganic solid electrolyte material of the present embodiment is described above in the inorganic solid electrolyte material from the viewpoint of further improving lithium ion conductivity, electrochemical stability, stability in water and air, handleability, and the like.
  • the molar ratio Li / P of the Li content to the P content is preferably 1.0 or more and 5.0 or less, more preferably 2.0 or more and 4.0 or less, and further preferably 2. It is 5 or more and 3.8 or less, more preferably 2.8 or more and 3.6 or less, still more preferably 3.0 or more and 3.5 or less, and even more preferably 3.1 or more and 3.4.
  • it is particularly preferably 3.1 or more and 3.3 or less.
  • the molar ratio S / P of the content of S to the content of P is preferably 2.0 or more and 6.0 or less, more preferably 3.0 or more and 5.0 or less, and further preferably. Is 3.5 or more and 4.5 or less, more preferably 3.8 or more and 4.2 or less, still more preferably 3.9 or more and 4.1 or less, and particularly preferably 4.0.
  • the contents of Li, P and S in the inorganic solid electrolyte material can be determined by, for example, ICP emission spectroscopic analysis or X-ray analysis.
  • the ionic conductivity can be further enhanced by appropriately designing the particle size distribution in addition to the circularity distribution of the particles.
  • the median diameter d 50 based on the number is 0.1 to 10 ⁇ m, preferably 0.1 to 6.0 ⁇ m. It is considered that when d 50 is moderately large, the contact surface (interface) between the particles is reduced, and even better ionic conductivity can be obtained. Further, it is considered that if d 50 is not too large, it becomes difficult to form a gap between the particles, and even better ionic conductivity can be obtained.
  • d 10 is preferably 0.05 to 5.0 ⁇ m, more preferably 0.5 to 3.0 ⁇ m.
  • a reasonably large d 10 means that there are few particles that are too fine. It is considered that when the number of particles that are too fine is small, the number of contact surfaces (interfaces) between the particles is reduced, and even better ionic conductivity can be obtained. Further, it is considered that if d 10 is not too large, it becomes difficult to form a gap between the particles, and even better ionic conductivity can be obtained.
  • the ionic conductivity may be further improved by appropriately designing the 90% integrated value d 90 based on the number of particles.
  • d 90 is preferably 2.0 to 20.0 ⁇ m, more preferably 2.0 to 10.0 ⁇ m. It is considered that if d 90 is not too large, it becomes difficult to form a gap between the particles, and even better ionic conductivity can be obtained. Further, it is considered that when d 90 is moderately large, the contact surface (interface) between the particles is reduced, and even better ionic conductivity can be obtained. From the viewpoint other than the ionic conductivity, since d 90 is not too large, it is possible to obtain the merit that the thickness of the solid electrolyte membrane can be easily reduced.
  • the particle size distribution (data on which the calculation of d 10 , d 50 and d 90 is based) in the number standard is, for example, (1) the particles are photographed with an electron microscope, and (2) each particle in the photographed image. It can be obtained by measuring the directional tangent diameter (ferred diameter) and plotting (3) the directional tangent diameter (ferred diameter) of each particle on the horizontal axis and the frequency based on the number on the vertical axis. ..
  • a specific method refer to the description of Examples.
  • the inorganic solid electrolyte material of the present embodiment is usually excellent in electrochemical stability.
  • Electrochemical stability refers to, for example, the property of being difficult to be redoxed over a wide voltage range. More specifically, in the inorganic solid electrolyte material of the present embodiment, the maximum value of the oxidative decomposition current of the inorganic solid electrolyte material measured under the conditions of a temperature of 25 ° C., a sweep voltage range of 0 to 5 V, and a voltage sweep speed of 5 mV / sec. Is preferably 0.50 ⁇ A or less, more preferably 0.20 ⁇ A or less, further preferably 0.10 ⁇ A or less, still more preferably 0.05 ⁇ A or less, and 0.03 ⁇ A or less. Is particularly preferable.
  • the maximum value of the oxidative decomposition current of the inorganic solid electrolyte material is not more than the above upper limit value, the oxidative decomposition of the inorganic solid electrolyte material in the lithium ion battery can be suppressed, which is preferable.
  • the lower limit of the maximum value of the oxidative decomposition current of the inorganic solid electrolyte material is not particularly limited, but is, for example, 0.0001 ⁇ A or more.
  • the inorganic solid electrolyte material of the present embodiment can be used for any application requiring lithium ion conductivity.
  • the inorganic solid electrolyte material according to the present embodiment is preferably used for a lithium ion battery. More specifically, it is used for a positive electrode active material layer, a negative electrode active material layer, an electrolyte layer and the like in a lithium ion battery. Further, the inorganic solid electrolyte material according to the present embodiment is suitably used for the positive electrode active material layer, the negative electrode active material layer, the solid electrolyte layer and the like constituting the all-solid type lithium ion battery, and constitutes the all-solid type lithium ion battery. It is particularly preferably used for a solid electrolyte layer. As an example of the all-solid-state lithium ion battery to which the inorganic solid electrolyte material according to the present embodiment is applied, a positive electrode, a solid electrolyte layer, and a negative electrode are laminated in this order.
  • the inorganic solid electrolyte material of the present embodiment can be preferably obtained by a production method including the following steps (A), (B1), (B2) and (C). Further, it is preferable that the method for producing the inorganic solid electrolyte material of the present embodiment further includes the following step (D), if necessary. In that case, the step (C) may be performed before the step (D), may be performed after the step (D), or may be performed in both.
  • a step of vitrifying a certain lithium sulfide and phosphorus sulfide while chemically reacting to obtain an inorganic solid electrolyte material in a glass state (B2): A step of crushing and refining the obtained inorganic solid electrolyte material in a glass state (B2) C): Step of classifying the obtained inorganic solid electrolyte material Step (D): Step of heating (annealing) the obtained glass-state inorganic solid electrolyte material to crystallize at least a part thereof.
  • an inorganic solid electrolyte material having a D 10 of 0.54 to 0.80 and a d 50 of 0.1 to 10 ⁇ m by appropriately performing the steps (B2) and / or (C). Easy to manufacture. In particular, in this embodiment, it is preferable to perform both steps (B2) and (C).
  • a raw material composition of an inorganic solid electrolyte material containing lithium sulfide and phosphorus sulfide as raw materials in a specific ratio is prepared.
  • the mixing ratio of each raw material in the raw material composition is adjusted so that the obtained inorganic solid electrolyte material has a desired composition ratio.
  • the raw material composition of the inorganic solid electrolyte material may further contain lithium nitride.
  • the method of mixing each raw material is not particularly limited as long as it is a mixing method capable of uniformly mixing each raw material. For example, mixing using a ball mill, bead mill, vibration mill, striking crusher, mixer (pug mixer, ribbon mixer, tumbler mixer, drum mixer, V-type mixer, etc.), kneader, twin-screw kneader, airflow crusher, etc. Can be done. If it is at the laboratory level, it may be mixed using a mortar such as agate or alumina. Mixing conditions such as stirring speed, processing time, temperature, reaction pressure, and gravitational acceleration applied to the mixture when mixing each raw material can be appropriately determined depending on the processing amount of the mixture.
  • Lithium sulfide used as a raw material is not particularly limited. Commercially available lithium sulfide may be used, or for example, lithium sulfide obtained by reacting lithium hydroxide with hydrogen sulfide may be used. From the viewpoint of obtaining a high-purity inorganic solid electrolyte material and suppressing side reactions, it is preferable to use lithium sulfide with few impurities. In this embodiment, lithium sulfide also includes lithium polysulfide. Li 2S is preferable as the lithium sulfide.
  • Phosphorus sulfide used as a raw material is not particularly limited.
  • Commercially available phosphorus sulfide eg, P2 S 5 , P 4 S 3 , P 4 S 7 , P 4 S 5 , etc.
  • P2 S 5 is preferable as the phosphorus sulfide.
  • elemental phosphorus (P) and elemental sulfur (S) having corresponding molar ratios can also be used. Elemental phosphorus (P) and elemental sulfur (S) can be used without particular limitation as long as they are industrially produced and sold.
  • Lithium nitride may be used as a raw material.
  • nitrogen in lithium nitride is discharged into the system as N 2 , by using lithium nitride as the raw material inorganic compound, it can be used as an inorganic solid electrolyte material containing Li, P, and S as constituent elements.
  • the lithium nitride that can be used is not particularly limited. Commercially available lithium nitride (for example, Li 3N or the like) may be used, or for example, lithium nitride obtained by reacting metallic lithium (for example , Li foil) with nitrogen gas may be used. From the viewpoint of obtaining a high-purity solid electrolyte material and suppressing side reactions, it is preferable to use lithium nitride having a small amount of impurities.
  • the mechanical treatment can be vitrified while chemically reacting by mechanically colliding two or more kinds of inorganic compounds.
  • the mechanical treatment include mechanochemical treatment and the like.
  • Mechanochemical treatment is a method of vitrifying a target composition while applying mechanical energy such as shear force or collision force.
  • the mechanochemical treatment is preferably a dry mechanochemical treatment from the viewpoint of easily realizing an environment in which water and oxygen are removed at a high level.
  • Mechanochemical treatment is a method of vitrifying while applying mechanical energy such as shear force, collision force or centrifugal force to the mixing target.
  • Equipment for vitrification by mechanochemical treatment includes crushing and dispersing machines such as ball mills, bead mills, vibration mills, turbo mills, mechanofusions, disc mills, and roll mills; rock drills, vibration drills, impact drivers, etc.
  • a rotary / impact crusher having a mechanism combining rotation (shear stress) and impact (compressive stress) represented by the above; high-pressure gliding roll; and the like can be mentioned.
  • ball mills and bead mills are preferable, and ball mills are particularly preferable, from the viewpoint of being able to efficiently generate extremely high impact energy.
  • a roll mill a rotary / impact crusher having a mechanism that combines rotation (shear stress) and impact (compressive stress) represented by a rock drill, a vibration drill, an impact driver, etc.
  • High-pressure gliding rolls vertical mills such as roller-type vertical mills and ball-type vertical mills are preferable.
  • the step (B1) is preferably performed using a ball mill.
  • the balls used are preferably made of zirconia.
  • the diameter of the balls used is, for example, 10 to 50 mm, preferably 10 to 30 mm from the viewpoint of the efficiency of the chemical reaction (mechanochemical reaction) and the adjustment of the particle size.
  • the material of the ball used is preferably zirconia.
  • the time is usually 10 hours or more, preferably 200 hours or more, and efficiency / productivity, from the viewpoint of sufficiently advancing the chemical reaction (mechanochemical reaction). From the viewpoint of the above, it is usually 1500 hours or less, preferably 800 hours or less.
  • the lithium ion conductivity of the inorganic solid electrolyte material by the AC impedance method under the measurement conditions of 27.0 ° C., an applied voltage of 10 mV, and a measurement frequency range of 0.1 Hz to 7 MHz is preferably 1.0 ⁇ 10 ⁇ . 4 S ⁇ cm -1 or more, more preferably 2.0 ⁇ 10 -4 S ⁇ cm -1 or more, further preferably 3.0 ⁇ 10 -4 S ⁇ cm -1 or more, particularly preferably 4.0 ⁇ 10 It is preferable to carry out the vitrification treatment until it becomes -4 S ⁇ cm -1 or more. This makes it possible to obtain an inorganic solid electrolyte material having even better lithium ion conductivity.
  • the step (B2) itself can be performed using the same apparatus as the step (B1).
  • the step (B2) is preferably performed using a ball mill.
  • a ball mill By appropriately selecting conditions such as the material and diameter of the ball and the processing time when processing with a ball mill, it is particularly easy to adjust D 10 to 0.54 to 0.80.
  • the step (B2) is performed using a ball mill, it is preferable to use a ball whose diameter is sufficiently smaller than that of the ball when the step (B1) is performed using a ball mill.
  • at least a part of the balls used in the step (B2) using the ball mill preferably has a diameter of 0.5 mm or more and 5 mm or less, and more preferably 1 mm or more and 2 mm or less in diameter.
  • the balls used are preferably made of zirconia.
  • the glassy inorganic solid electrolyte material is struck with "moderate strength" to make it moderately finer, and the particles are "corned off". It is presumed that particles with an appropriate circularity can be obtained.
  • D 10 to 0.54 to 0.80 it may be difficult to adjust D 10 to 0.54 to 0.80 when the ball milling process is performed using a ball having a diameter too small (for example, a ball having a diameter of 0.1 mm or less). Details are unknown, but if you use a ball that is too small in diameter, the particles may be hit with a weak force, the particles may become too round, and it may be difficult to adjust D 10 to 0.54 to 0.80. ..
  • the time of the ball mill processing in the step (B2) is not particularly limited.
  • the time is typically 0.1-500 hours. By the way, if the ball milling time is too long, the particles will be too fine and many distorted particles will be easily formed, and it may be difficult to adjust D 10 to 0.54 to 0.80. do.
  • the ball milling process using balls having different diameters may be sequentially performed. By doing so, for example, particles having a relatively small d 50 can be efficiently obtained.
  • at least a part of the balls used in the ball mill processing is preferably 0.5 to 10 mm in diameter, and 1 to 5 mm in diameter. Is more preferable.
  • the ball milling time is preferably 1 to 100 hours, more preferably 10 to 70 hours.
  • the ball mill processing may be temporarily suspended, the powder attached to the inner wall of the device or the ball may be scraped off, and the powder may be put into the ball again in the device.
  • the amount of balls used in the ball mill processing is not particularly limited as long as sufficient processing is performed. Typically, 500 to 10000 parts by mass of balls can be used with respect to 100 parts by mass of the raw material composition.
  • the step (B1) and the step (B2) are performed in an atmosphere in which the abundance and inflow of water and oxygen are suppressed to a higher level than before.
  • an atmosphere in which the abundance and inflow of water and oxygen are suppressed at higher levels than before can be created, for example, by the following method. First, a mixing container and a closed container for the vitrification device are placed in the glove box, and then the high-purity dry argon gas, dry nitrogen gas, etc. obtained through the gas purification device are inert to the inside of the glove box. Inject gas and degas in vacuum multiple times (preferably 3 times or more).
  • an inert gas such as high-purity dry argon gas or dry nitrogen gas is circulated through the gas purification device to adjust the oxygen concentration and the water concentration to preferably 1.0 ppm or less.
  • the concentration is preferably adjusted to 0.8 ppm or less, more preferably 0.6 ppm or less.
  • lithium sulfide and phosphorus sulfide are put into a mixing container in the glove box, and then mixed to prepare a raw material composition (meaning step (A)).
  • a raw material composition meaning step (A)
  • lithium sulfide and phosphorus sulfide are charged into the mixing container in the glove box according to the following procedure.
  • the side box is injected with an inert gas such as high-purity dry argon gas or dry nitrogen gas derived from the glove box, and vacuum degassing is performed a plurality of times (preferably three times or more).
  • an inert gas such as high-purity dry argon gas or dry nitrogen gas derived from the glove box, and vacuum degassing is performed a plurality of times (preferably three times or more).
  • the door inside the main body of the glove box is opened, lithium sulfide and phosphorus sulfide are put into the mixing container inside the main body of the glove box, and the mixing container is sealed.
  • the obtained raw material composition is taken out from the mixing container, transferred to a container for a vitrification device, and sealed.
  • the abundance of water and oxygen in the closed container containing the raw material composition can be suppressed at a higher level than before, and as a result, in the step (B1) and the step (B2), It is possible to create an atmosphere in which the abundance of water and oxygen is suppressed to a higher level than before.
  • the closed container containing the raw material inorganic composition is taken out from the glove box.
  • a vitrification device arranged in an atmosphere filled with dry gas such as dry argon gas, dry nitrogen gas, and dry air (for example, in a box filled with dry argon gas, dry nitrogen gas, dry air, etc.).
  • dry gas such as dry argon gas, dry nitrogen gas, and dry air
  • the inorganic solid electrolyte material may be further pulverized to adjust the particle size and the like.
  • a specific method of the crushing treatment a known crushing method such as air flow crushing, a mortar, a rotary mill, and a coffee mill can be used.
  • the step (C) is preferably performed in an inert gas atmosphere or a vacuum atmosphere from the viewpoint of preventing contact with moisture in the air.
  • a step of crystallizing at least a part of the inorganic solid electrolyte material may be performed.
  • at least a part of the inorganic solid electrolyte material is crystallized by heating (annealing) the obtained glass-state inorganic solid electrolyte material, and the glass-ceramic state (also called crystallized glass) inorganic material is crystallized.
  • the glass-ceramic state also called crystallized glass
  • the inorganic solid electrolyte material of the present embodiment is preferably in a glass-ceramic state (crystallized glass state) from the viewpoint of excellent lithium ion conductivity.
  • the temperature at which the glassy inorganic solid electrolyte material is heated (annealed) is preferably in the range of 220 ° C. or higher and 500 ° C. or lower, and more preferably in the range of 250 ° C. or higher and 350 ° C. or lower.
  • the time for heating (annealing) the glass-state inorganic solid electrolyte material is not particularly limited as long as the desired glass-ceramic state inorganic solid electrolyte material can be obtained, and is, for example, 0.5 hours or more and 24 hours or less, preferably. It is 1 hour or more and 3 hours or less.
  • the heating method is not particularly limited, and examples thereof include a method using a firing furnace. Conditions such as heating temperature and time can be appropriately adjusted for optimizing the characteristics of the inorganic solid electrolyte material.
  • the heating (annealing) of the glassy inorganic solid electrolyte material is preferably performed in an inert gas atmosphere.
  • the inert gas include argon gas, helium gas, nitrogen gas and the like. The higher the purity of these inert gases is, the more preferable it is to prevent impurities from being mixed into the product, and the dew point is preferably ⁇ 70 ° C. or lower, preferably ⁇ 80 ° C., in order to avoid contact with moisture. It is particularly preferable that the temperature is below ° C.
  • the method for introducing the inert gas is not particularly limited as long as the system is filled with the atmosphere of the inert gas.
  • a method of purging the inert gas, a method of continuously introducing a certain amount of the inert gas, and the like can be mentioned.
  • the inorganic solid electrolyte material of the present embodiment it is preferable to appropriately adjust the conditions in each of the above steps.
  • the method for producing the inorganic solid electrolyte material according to the present embodiment is not limited to the above method, and the inorganic solid electrolyte material according to the present embodiment can be obtained by appropriately adjusting various conditions. Can be done.
  • the solid electrolyte of the present embodiment includes the above-mentioned inorganic solid electrolyte material of the present embodiment.
  • the solid electrolyte of the present embodiment is a solid different from the above-mentioned inorganic solid electrolyte material of the present embodiment as a component other than the inorganic solid electrolyte material of the present embodiment, for example, as long as the object of the present invention is not impaired. It may or may not contain an electrolyte material.
  • the solid electrolyte of the present embodiment may or may not contain a different type of solid electrolyte material from the above-mentioned inorganic solid electrolyte material according to the present embodiment.
  • the type of solid electrolyte material different from the inorganic solid electrolyte material of the present embodiment is not particularly limited as long as it has ionic conductivity and insulating properties, and those generally used for lithium ion batteries may be used. can.
  • an inorganic solid electrolyte material such as an inorganic solid electrolyte material different from the inorganic solid electrolyte material of the present embodiment, an oxide-based inorganic solid electrolyte material, or another lithium-based inorganic solid electrolyte material; an organic solid electrolyte such as a polymer electrolyte. Materials can be mentioned.
  • Examples of the inorganic solid electrolyte material different from the above-mentioned inorganic solid electrolyte material of the present embodiment include Li 2 SP 2 S 5 material, Li 2 S-Si S 2 material, Li 2 S-GeS 2 material, and Li 2 .
  • Li 2 S-Al 2 S 3 material Li 2 S-SiS 2 -Li 3 PO 4 material, Li 2 SP 2 S 5 -GeS 2 material, Li 2 S-Li 2 O-P 2 S 5 -SiS 2 material , Li 2 S-GeS 2 -P 2 S 5 -SiS 2 material, Li 2 S-SnS 2 -P 2 S 5 -SiS 2 material, Li 2 SP 2 S 5 -Li 3 N material, Li 2 S Examples thereof include 2 + X -P 4 S 3 materials, Li 2 SP 2 S 5 -P 4 S 3 materials and the like. These may be used individually by 1 type, or may be used in combination of 2 or more types.
  • the Li 2 SP 2 S 5 material is preferable because it has excellent lithium ion conductivity and stability that does not cause decomposition in a wide voltage range.
  • the Li 2 SP 2 S 5 material is an inorganic obtained by chemically reacting an inorganic composition containing at least Li 2 S (lithium sulfide) and P 2 S 5 with each other by mechanical treatment. Means material.
  • lithium sulfide also includes lithium polysulfide.
  • oxide-based inorganic solid electrolyte material examples include NASICON type such as LiTi 2 (PO 4 ) 3 , LiZr 2 (PO 4 ) 3 , LiGe 2 (PO 4 ) 3 , and (La 0.5 + x Li 0.5 ).
  • Perovskite type such as TiO 3 , Li 2 O-P 2 O 5 material, Li 2 O-P 2 O 5 -Li 3 N material and the like can be mentioned.
  • examples of other lithium-based inorganic solid electrolyte materials include LiPON, LiNbO 3 , LiTaO 3 , Li 3 PO 4 , LiPO 4-x N x (x is 0 ⁇ x ⁇ 1), LiN, LiI, and LISION. Be done. Further, glass ceramics obtained by precipitating crystals of these inorganic solid electrolytes can also be used as the inorganic solid electrolyte material.
  • organic solid electrolyte material for example, a polymer electrolyte such as a dry polymer electrolyte or a gel electrolyte can be used.
  • polymer electrolyte those generally used for lithium ion batteries can be used.
  • the solid electrolyte membrane of the present embodiment contains, as a main component, a solid electrolyte containing the above-mentioned inorganic solid electrolyte material of the present embodiment.
  • the solid electrolyte membrane of the present embodiment is used, for example, for the solid electrolyte layer constituting the all-solid-state lithium-ion battery.
  • a positive electrode, a solid electrolyte layer, and a negative electrode are laminated in this order.
  • the solid electrolyte layer is composed of the solid electrolyte membrane.
  • the average thickness of the solid electrolyte membrane of the present embodiment is preferably 5 ⁇ m or more and 500 ⁇ m or less, more preferably 10 ⁇ m or more and 200 ⁇ m or less, and further preferably 20 ⁇ m or more and 100 ⁇ m or less.
  • the average thickness of the solid electrolyte membrane is at least the above lower limit value, the lack of the solid electrolyte and the occurrence of cracks on the surface of the solid electrolyte membrane can be further suppressed.
  • the average thickness of the solid electrolyte membrane is not more than the upper limit value, the impedance of the solid electrolyte membrane can be further lowered. As a result, the battery characteristics of the obtained all-solid-state lithium-ion battery can be further improved.
  • the solid electrolyte membrane of the present embodiment is preferably a pressure-molded body of a particulate solid electrolyte containing the inorganic solid electrolyte material according to the above-mentioned embodiment. That is, it is preferable to pressurize the particulate solid electrolyte to form a solid electrolyte film having a certain strength due to the anchor effect between the solid electrolyte materials.
  • the pressure-molded body By forming the pressure-molded body, the solid electrolytes are bonded to each other, and the strength of the obtained solid electrolyte membrane is further increased. As a result, it is possible to further suppress the loss of the solid electrolyte and the generation of cracks on the surface of the solid electrolyte membrane.
  • the content of the above-mentioned inorganic solid electrolyte material of the present embodiment in the solid electrolyte membrane of the present embodiment is preferably 50% by mass or more, more preferably 60% by mass, when the whole solid electrolyte membrane is 100% by mass. % Or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, and particularly preferably 90% by mass or more.
  • the contact property between the solid electrolytes is improved, and the interfacial contact resistance of the solid electrolyte membrane can be reduced.
  • the lithium ion conductivity of the solid electrolyte membrane can be further improved.
  • the upper limit of the content of the inorganic solid electrolyte material of the present embodiment described above in the solid electrolyte membrane of the present embodiment is not particularly limited, but is, for example, 100% by mass or less.
  • the planar shape of the solid electrolyte membrane is not particularly limited, and can be appropriately selected according to the shape of the electrode or the current collector.
  • the planar shape can be, for example, a rectangle.
  • the solid electrolyte membrane of the present embodiment may contain a binder resin.
  • the content thereof is preferably less than 0.5% by mass, more preferably 0.1% by mass or less, still more preferably 0.05 when the whole solid electrolyte membrane is 100% by mass. It is mass% or less, and even more preferably 0.01 mass% or less.
  • the solid electrolyte membrane according to the present embodiment preferably contains substantially no binder resin, and more preferably does not contain a binder resin. As a result, the contact property between the solid electrolytes is improved, and the interfacial contact resistance of the solid electrolyte membrane can be reduced. As a result, the lithium ion conductivity of the solid electrolyte membrane can be further improved.
  • the battery characteristics of the obtained all-solid-state lithium-ion battery can be improved.
  • substantially free of the binder resin means that the binder resin may be contained to the extent that the effect of the present embodiment is not impaired.
  • the binder resin is a binder generally used for lithium-ion batteries in order to bind inorganic solid electrolyte materials to each other.
  • polyvinyl alcohol, poly (meth) acrylic acid, carboxymethyl cellulose, polytetrafluoroethylene, polyvinylidene fluoride, styrene-butadiene rubber, polyimide and the like can be mentioned.
  • the particulate solid electrolyte is deposited in the form of a film on the cavity surface of the mold or on the surface of the substrate, and (ii) is then deposited in the form of a film. It can be obtained by pressurizing the solid electrolyte.
  • the method of pressurizing the solid electrolyte is not particularly limited. For example, when the particulate solid electrolyte is deposited on the surface of the cavity of the die, it is pressed by the die and the stamp, and when the particulate solid electrolyte is deposited on the surface of the base material, it depends on the die and the stamp. Methods such as press, roll press, and flat plate press can be mentioned.
  • the pressure for pressurizing the solid electrolyte is, for example, 10 MPa or more and 500 MPa or less.
  • the inorganic solid electrolyte deposited in the form of a film may be pressurized and heated. When heat and pressure are applied, the solid electrolytes are fused and bonded to each other, and the strength of the obtained solid electrolyte membrane is further increased. As a result, it is possible to further suppress the loss of the solid electrolyte and the generation of cracks on the surface of the solid electrolyte membrane.
  • the temperature for heating the solid electrolyte is, for example, 40 ° C. or higher and 500 ° C. or lower.
  • FIG. 2 is a cross-sectional view showing an example of the structure of the lithium ion battery of the present embodiment (lithium ion battery 10).
  • the lithium ion battery 100 includes, for example, a positive electrode 110 including a positive electrode active material layer 101, an electrolyte layer 120, and a negative electrode 130 including a negative electrode active material layer 103. Then, at least one of the positive electrode active material layer 101, the negative electrode active material layer 103, and the electrolyte layer 120 contains the inorganic solid electrolyte material of the present embodiment.
  • the positive electrode active material layer 101, the negative electrode active material layer 103 and the electrolyte layer 120 contain the inorganic solid electrolyte material of the present embodiment.
  • the layer containing the positive electrode active material is referred to as the positive electrode active material layer 101.
  • the positive electrode 110 may or may not contain the current collector 105 in addition to the positive electrode active material layer 101, if necessary.
  • the layer containing the negative electrode active material is referred to as the negative electrode active material layer 103.
  • the negative electrode 130 may or may not include the current collector 105 in addition to the negative electrode active material layer 103, if necessary.
  • the shape of the lithium ion battery 100 is not particularly limited. Cylindrical type, coin type, square type, film type and any other shape can be mentioned.
  • the lithium ion battery 100 is manufactured according to a generally known method.
  • a positive electrode 110, an electrolyte layer 120, and a negative electrode 130 are stacked to form a cylindrical shape, a coin shape, a square shape, a film shape, or any other shape, and if necessary, a non-aqueous electrolyte solution is sealed therein. It is made.
  • the material constituting the positive electrode 110 is not particularly limited, and those generally used for lithium ion batteries can be used.
  • the manufacturing method of the positive electrode 110 is not particularly limited, and the positive electrode 110 can be manufactured according to a generally known method. For example, it can be obtained by forming a positive electrode active material layer 101 containing a positive electrode active material on the surface of a current collector 105 such as an aluminum foil.
  • the thickness and density of the positive electrode active material layer 101 are appropriately determined according to the intended use of the battery and the like, and are not particularly limited, and can be set according to generally known information.
  • the positive electrode active material layer 101 contains a positive electrode active material.
  • Lithium-manganese-nickel oxide LiNi 1/3 Mn 1/3 Co 1/3 O 2
  • olivine type lithium phosphorus oxide LiFePO 4
  • other composite oxides Li 2S, CuS, Li-Cu-S compound, TiS 2 , FeS, MoS 2 , Li - Mo-S compound, Li-Ti-S compound, Li-VS compound, Li-Fe-S compound
  • Sulfur-based positive electrode active material such as; sulfur-impregnated acetylene black, sulfur-impregnated porous carbon, sulfur-based material such as a mixed powder of sulfur and carbon; and the like can be used.
  • These positive electrode active materials may be used alone or in combination of two or more.
  • a sulfide-based positive electrode active material is preferable from the viewpoint of having a higher discharge capacity density and being superior in cycle characteristics, and Li-Mo-S compounds, Li-Ti-S compounds, and Li-VS.
  • Li-Mo-S compounds, Li-Ti-S compounds, and Li-VS Li-Mo-S compounds, Li-Ti-S compounds, and Li-VS.
  • One or more selected from the compounds is more preferred.
  • the Li-Mo-S compound contains Li, Mo, and S as constituent elements, and the inorganic compositions containing molybdenum sulfide and lithium sulfide, which are usually raw materials, are chemically treated with each other by mechanical treatment. It can be obtained by reacting.
  • the Li—Ti—S compound contains Li, Ti, and S as constituent elements, and an inorganic composition containing titanium sulfide and lithium sulfide, which are usually raw materials, is chemically reacted with each other by mechanical treatment. It can be obtained by letting it.
  • the Li-VS compound contains Li, V, and S as constituent elements, and an inorganic composition containing vanadium sulfide and lithium sulfide, which are usually raw materials, is chemically reacted with each other by mechanical treatment. Can be obtained by
  • the positive electrode active material layer 101 may or may not contain one or more materials selected from, for example, a binder resin, a thickener, a conductive auxiliary agent, a solid electrolyte material, and the like as components other than the positive electrode active material. You may. Hereinafter, each material such as a binder resin, a thickener, a conductive auxiliary agent, and a solid electrolyte material will be described.
  • the positive electrode active material layer 101 may contain a binder resin having a role of binding the positive electrode active materials to each other and the positive electrode active material to the current collector 105.
  • the binder resin is not particularly limited as long as it is a normal binder resin that can be used for a lithium ion battery.
  • polyvinyl alcohol, poly (meth) acrylic acid, carboxymethyl cellulose, polytetrafluoroethylene, polyvinylidene fluoride, styrene-butadiene rubber, polyimide and the like can be mentioned.
  • the binder may be used alone or in combination of two or more.
  • the positive electrode active material layer 101 may contain a thickener from the viewpoint of ensuring the fluidity of the slurry suitable for coating.
  • the thickener is not particularly limited as long as it is a normal thickener that can be used in a lithium ion battery.
  • cellulosic polymers such as carboxymethyl cellulose, methyl cellulose, hydroxypropyl cellulose and water-soluble polymers such as ammonium salts and alkali metal salts, polycarboxylic acids, polyethylene oxides, polyvinylpyrrolidones, poly (meth) acrylates and polyvinyl alcohols. And so on.
  • the thickener may be used alone or in combination of two or more.
  • the positive electrode active material layer 101 may contain a conductive auxiliary agent from the viewpoint of improving the conductivity of the positive electrode 110.
  • the conductive auxiliary agent is not particularly limited as long as it is a normal conductive auxiliary agent that can be used in a lithium ion battery.
  • carbon black such as acetylene black and kechen black
  • carbon materials such as vapor phase carbon fiber can be mentioned.
  • a conductive auxiliary agent it may be used alone or in combination of two or more.
  • the positive electrode 110 may contain a solid electrolyte containing the above-mentioned inorganic solid electrolyte material of the present embodiment, or may contain a solid electrolyte containing a different type of solid electrolyte material from the inorganic solid electrolyte material of the present embodiment. May be good.
  • the type of solid electrolyte material different from the inorganic solid electrolyte material of the present embodiment is not particularly limited as long as it has ionic conductivity and insulating properties, and those generally used for lithium ion batteries may be used. can.
  • an inorganic solid electrolyte material such as an inorganic solid electrolyte material, an oxide-based inorganic solid electrolyte material, and other lithium-based inorganic solid electrolyte materials; and an organic solid electrolyte material such as a polymer electrolyte can be mentioned. More specifically, the inorganic solid electrolyte material mentioned in the description of the solid electrolyte of the present embodiment can be used.
  • the blending ratio of various materials in the positive electrode active material layer 101 is appropriately determined according to the intended use of the battery and is not particularly limited, and can be set according to generally known information.
  • the material constituting the negative electrode 130 is not particularly limited, and those generally used for lithium ion batteries can be used.
  • the method for manufacturing the negative electrode 130 is not particularly limited, and the negative electrode 130 can be manufactured according to a generally known method. For example, it can be obtained by forming a negative electrode active material layer 103 containing a negative electrode active material on the surface of a current collector 105 such as copper.
  • the thickness and density of the negative electrode active material layer 103 are appropriately determined according to the intended use of the battery and the like, and are not particularly limited, and can be set according to generally known information.
  • the negative electrode active material layer 103 contains a negative electrode active material.
  • the negative electrode active material is not particularly limited as long as it is a normal negative electrode active material that can be used for the negative electrode of a lithium ion battery.
  • carbonaceous materials such as natural graphite, artificial graphite, resin charcoal, carbon fiber, activated charcoal, hard carbon, soft carbon; lithium, lithium alloy, tin, tin alloy, silicon, silicon alloy, gallium, gallium alloy, indium, indium.
  • Metallic materials mainly composed of alloys, aluminum, aluminum alloys and the like; conductive polymers such as polyacene, polyacetylene and polypyrrole; lithium titanium composite oxides (for example, Li 4 Ti 5 O 12 ) and the like can be mentioned.
  • These negative electrode active materials may be used alone or in combination of two or more.
  • the negative electrode active material layer 103 is not particularly limited, but may contain one or more materials selected from, for example, a binder resin, a thickener, a conductive auxiliary agent, a solid electrolyte material, and the like as components other than the negative electrode active material. .. These materials are not particularly limited, and examples thereof include the same materials as those used for the positive electrode 110 described above.
  • the blending ratio of various materials in the negative electrode active material layer 103 is appropriately determined according to the intended use of the battery and the like, and is not particularly limited, and can be set according to generally known information.
  • the electrolyte layer 120 is a layer formed between the positive electrode active material layer 101 and the negative electrode active material layer 103.
  • Examples of the electrolyte layer 120 include a separator impregnated with a non-aqueous electrolyte solution and a solid electrolyte layer containing a solid electrolyte.
  • the separator is not particularly limited as long as it has a function of electrically insulating the positive electrode 110 and the negative electrode 130 and transmitting lithium ions, and for example, a porous membrane can be used.
  • a microporous polymer film is preferably used, and examples of the material include polyolefin, polyimide, polyvinylidene fluoride, polyester and the like.
  • a porous polyolefin film is preferable, and specific examples thereof include a porous polyethylene film and a porous polypropylene film.
  • the non-aqueous electrolytic solution impregnated in the separator is a solution in which an electrolyte is dissolved in a solvent.
  • Any known lithium salt can be used as the electrolyte, and it may be selected according to the type of the active material.
  • the solvent that dissolves the electrolyte is not particularly limited as long as it is usually used as a liquid that dissolves the electrolyte.
  • carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), vinylene carbonate (VC); ⁇ -Lactones such as butyrolactone and ⁇ -valerolactone; ethers such as trimethoxymethane, 1,2-dimethoxyethane, diethyl ether, 2-ethoxyethane, tetrahydrofuran and 2-methyltetraoxide; sulfoxides such as dimethyl sulfoxide; 1 , 3-Dioxolan, 4-Methyl-1,3-Doxolan and other oxoranes; Nitrogen-containing substances such as acetonitrile, nitromethane, formamide and di
  • the solid electrolyte layer is a layer formed between the positive electrode active material layer 101 and the negative electrode active material layer 103, and is a layer formed by a solid electrolyte containing a solid electrolyte material.
  • the solid electrolyte contained in the solid electrolyte layer is not particularly limited as long as it has lithium ion conductivity. However, in the present embodiment, it is preferable that the solid electrolyte contains the inorganic solid electrolyte material of the present embodiment.
  • the content of the solid electrolyte in the solid electrolyte layer of the present embodiment is not particularly limited as long as the desired performance can be obtained, and is, for example, 10% by volume or more and 100% by volume or less, preferably 50% by volume or more and 100% by volume or less. Is. In particular, in the present embodiment, it is preferable that the solid electrolyte layer is composed only of the solid electrolyte containing the inorganic solid electrolyte material of the present embodiment.
  • the solid electrolyte layer of the present embodiment may contain a binder resin.
  • a binder resin By containing the binder resin, a flexible solid electrolyte layer can be obtained.
  • the binder resin include fluorine-containing binders such as polytetrafluoroethylene and polyvinylidene fluoride.
  • the thickness of the solid electrolyte layer is, for example, 0.1 ⁇ m or more and 1000 ⁇ m or less, preferably 0.1 ⁇ m or more and 300 ⁇ m or less.
  • Li 2 S manufactured by Furukawa Co., Ltd., purity 99.9%
  • P 2 S 5 manufactured by Kanto Chemical Co., Ltd.
  • Li 3 N manufactured by Furukawa Co., Ltd.
  • Example 2 The glass-ceramic state inorganic solid electrolyte material obtained in (3) above was classified in the same manner as in Example 1 except that the glass-state inorganic solid electrolyte material was classified by a sieve having an opening of 20 ⁇ m even before the annealing treatment. Got (That is, in Example 2, the sieving was performed twice, before the annealing treatment and after the annealing treatment.)
  • Example 3 the above-mentioned step (B2) was performed. That is, the glass-state inorganic solid electrolyte material obtained in (3) of Example 1 was further pulverized under appropriate conditions to make it finer. Specifically, it is as follows. Weighing 300 g of the glass-like inorganic solid electrolyte material obtained by crushing and mixing with (3) ball mill of Example 1, alumina together with 1200 g of ⁇ 5 mm zirconia balls, 6200 g of ⁇ 2 mm zirconia balls, and 1200 g of ⁇ 1 mm zirconia balls.
  • Comparative Example 1 is an example in which the above-mentioned step (B2) was performed, but the particles having a D 10 of 0.54 to 0.80 could not be obtained because the conditions were not appropriate. Specifically, it is as follows. 400 g of the glass-like inorganic solid electrolyte material obtained by crushing and mixing with the (3) ball mill of Example 1 is weighed and placed in an alumina pot (internal volume 5 L) together with 6200 g of zirconia balls having a diameter of 2 mm, and the ball mill (rotational speed). It was crushed for 120 hours while shaking at 100 rpm) to obtain an inorganic solid electrolyte material in a glass state.
  • This glass-state inorganic solid electrolyte material was annealed in argon at 300 ° C. for 7 hours to obtain a glass-ceramic state inorganic solid electrolyte material (Li 10 P 3 S 12 ). Then, the obtained inorganic solid electrolyte material in the state of glass ceramics was classified by a sieve having an opening of 20 ⁇ m. As described above, an inorganic solid electrolyte material in the state of glass ceramics was obtained.
  • the obtained inorganic solid electrolyte material in the state of glass ceramics was classified by a sieve having an opening of 20 ⁇ m. Then, what remained on the "sieve" was used as the final inorganic solid electrolyte material.
  • Comparative Example 3 is an example in which an inorganic solid electrolyte material was produced according to paragraph 0126 of Patent Document 1 and Example 106 of Table 1 described above.
  • As raw materials Li 2 S (manufactured by Furukawa Co., Ltd., purity 99.9%) and P 2 S 5 (manufactured by Kanto Chemical Co., Inc.) were used.
  • a carbon tape was attached on the sample table of the SEM, and a small amount of the particles of the inorganic solid electrolyte material were attached to the carbon tape so as to be in a thin and widely dispersed state.
  • an SEM image of the inorganic solid electrolyte material was taken (resolution: horizontal 1280 x vertical 960 pixels, magnification adjusted appropriately at 250 to 1000 times).
  • the obtained SEM image was read into ImageJ.
  • Calibration was performed from the scale displayed in the SEM image.
  • the image was converted into a black-and-white binarized image. At that time, the threshold value was set so that the outline of the particles became clear.
  • the lithium ion conductivity of the inorganic solid electrolyte materials obtained in each Example and Comparative Example was measured by the AC impedance method.
  • Potentiostat / Galvanostat SP-300 manufactured by Biologic Co., Ltd. was used for the measurement of lithium ion conductivity.
  • the size of the sample was 9.5 mm in diameter and 1.2 to 2.0 mm in thickness, and the measurement conditions were an applied voltage of 10 mV, a measurement temperature of 27.0 ° C., a measurement frequency range of 0.1 Hz to 7 MHz, and an electrode of Li foil. ..
  • Table 1 summarizes various types of information.
  • an inorganic solid electrolyte material containing sulfide-based inorganic solid electrolyte particles having a D 10 of 0.54 to 0.80 and a d 50 of 0.1 to 10 ⁇ m (Examples 1 to 3). Lithium ion conductivity was relatively high. On the other hand, the lithium ion conductivity of the inorganic solid electrolyte material (Comparative Examples 1 to 3) containing the sulfide-based inorganic solid electrolyte particles having a D 10 of less than 0.54 and / or a d 50 of more than 10 ⁇ m is determined. It was inferior to Examples 1 to 3.
  • Example 3 d 50 is the smallest among Examples 1 to 3, and the number of particle interfaces is large, so that it is considered that the lithium ion conductivity is relatively small. However, it showed the largest lithium ion conductivity in Examples 1 to 3. It is considered that this is because D 10 of Example 3 was larger than Examples 1 and 2. That is, from the comparison between Example 3 and Examples 1 and 2, it is considered that the index D 10 strongly correlates with the lithium ion conductivity.
  • Example 3 a pulverization treatment is similarly added to Example 1, and although d50 is smaller than that in Comparative Example 1, the ionic conductivity is improved. From these facts, it is understood that the index of "10% integrated value D 10 in the frequency distribution of circularity" is closely related to the improvement of ionic conductivity.
  • Lithium-ion battery 101 Positive electrode active material layer 103 Negative electrode active material layer 105 Collector 110 Positive electrode 120 Electrode layer 130 Negative electrode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)

Abstract

硫化物系無機固体電解質粒子を含む無機固体電解質材料。この材料中の粒子の円形度を横軸に、個数基準での頻度を縦軸にプロットした、粒子の円形度の頻度分布において、10%積算値D10は0.54~0.80である。また、この材料中の粒子の個数基準におけるメジアン径d50は0.1~10μmである。

Description

無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池
 本発明は、無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池に関する。
 リチウムイオン電池は、一般的に、携帯電話やノートパソコン等の小型携帯機器の電源として使用されている。また、最近では小型携帯機器以外に、電気自動車や電力貯蔵等の電源としてもリチウムイオン電池は使用され始めている。
 現在市販されているリチウムイオン電池には、可燃性の有機溶媒を含む電解液が使用されている。
 一方、電解液を固体電解質に変えて、電池を全固体化したリチウムイオン電池(以下、全固体型リチウムイオン電池とも記載する)の検討が進められている。全固体型リチウムイオン電池は、電池内に可燃性の有機溶媒を含まないので、安全装置の簡素化が図れ、製造コストや生産性に優れると考えられる。
 固体電解質に用いられる固体電解質材料としては、例えば、無機固体電解質材料が知られている。
 固体電解質材料の先行技術の例として、特許文献1に記載の技術を挙げることができる。特許文献1には、以下の諸元Aを全て満たす硫化物系無機固体電解質粒子が記載されている。
<諸元A>
・無機固体電解質粒子の投影粒子の周囲長をLとする。
・無機固体電解質粒子の投影粒子の断面積をAとする。
・以下の式(1)で表される凹凸係数FUが0.85以上1以下の範囲にある。
 FU=4πA/L・・・(1)
特許第6691481号公報
 固体電解質材料に求められる性能の1つに、高いイオン伝導度がある。
 本発明者の知見によれば、特許文献1に記載のような硫化物系無機固体電解質粒子については、イオン伝導度に改善の余地があった。
 本発明はこのような事情に鑑みてなされたものである。本発明の目的の1つは、高いイオン伝導度を有する硫化物系無機固体電解質粒子を提供することである。
 本発明者らは、以下に提供される発明を完成させ、上記課題を解決した。
 本発明によれば、
 硫化物系無機固体電解質粒子を含む無機固体電解質材料であって、
 前記材料中の前記粒子の円形度を横軸に、個数基準での頻度を縦軸にプロットした、前記粒子の円形度の頻度分布において、10%積算値D10が0.54~0.80であり、
 前記材料中の前記粒子の個数基準におけるメジアン径d50が0.1~10μmである無機固体電解質材料
が提供される。
 また、本発明によれば、
 上記の無機固体電解質材料を含む固体電解質
が提供される。
 また、本発明によれば、
 上記の固体電解質を主成分として含む固体電解質膜
が提供される。
 また、本発明によれば、
 正極活物質層を含む正極と、電解質層と、負極活物質層を含む負極とを備えたリチウムイオン電池であって、
 前記正極活物質層、前記電解質層および前記負極活物質層のうち少なくとも一つが、上記の無機固体電解質材料を含むリチウムイオン電池
が提供される。
 本発明によれば、高いイオン伝導度を有する硫化物系無機固体電解質粒子が提供される。 
「円形度」の概念を直観的に理解するための補足図である。 リチウムイオン電池の構造の一例を示す断面図である。
 以下、本発明の実施形態について、図面を参照しつつ、詳細に説明する。
 すべての図面はあくまで説明用のものである。図面に示されている形状や寸法比などは、必ずしも現実の物品と対応しない。
 本明細書中、数値範囲の説明における「X~Y」との表記は、特に断らない限り、X以上Y以下のことを表す。例えば、「1~5質量%」とは「1質量%以上5質量%以下」を意味する。
 本明細書における「(メタ)アクリル」との表記は、アクリルとメタクリルの両方を包含する概念を表す。「(メタ)アクリレート」等の類似の表記についても同様である。
 以下では、硫化物系無機固体電解質粒子のことを、単に「粒子」と記載することがある。
<無機固体電解質材料>
 本実施形態の無機固体電解質材料は、硫化物系無機固体電解質粒子を含む。
 この材料中の硫化物系無機固体電解質粒子の、円形度を横軸に、個数基準での頻度を縦軸にプロットした、粒子の円形度の頻度分布において、10%積算値D10は、0.54~0.80である。
 また、この材料中の硫化物系無機固体電解質粒子の、個数基準におけるメジアン径d50は、0.1~10μmである。
 「円形度」は、ある図形の真円からの歪み/いびつさを表す指標である。
 図形の面積をS、周囲長をL、円周率をπとしたときに、円形度は、4πS/L2 で表される。
 図形が真円に近い形状である場合に円形度は1に近づき、図形の形状が複雑である場合に円形度は1から離れて小さい値となる。
 図1は、円形度の概念を直観的に理解するための補足図である。図1(A)の図形の円形度はほぼ1である。図1(B)の図形の円形度はおおよそ0.7である。図1(C)の図形の円形度はおおよそ0.25である。これらから、図形の円形度が1に近い値であるほど、その図形が真円に近い輪郭を有し、図形の円形度が小さくなるほど、その図形は真円からゆがんだ輪郭を有することが理解される。
 本発明者は、様々な観点から、無機固体電解質材料の改良を検討した。検討を通じ、硫化物系無機固体電解質粒子の形状に関する何らかの指標が、イオン伝導度に関係するのではないかと、本発明者は考えた。
 この知見に基づき本発明者はさらに検討を進めた。具体的には、「硫化物系無機固体電解質粒子の形状に関する何らかの指標」として、真円からの歪み/いびつさを表す指標である円形度を検討することとした。また、無機固体電解質材料は、複数の硫化物系無機固体電解質粒子の「集合体」であるため、粒子の円形度の「分布」を適切に設計することで、イオン伝導度を高められるのではないかと考えた。
 上記考えに基づき本発明者はさらに検討を進めた。そして、硫化物系無機固体電解質粒子を含む無機固体電解質材料において、硫化物系無機固体電解質粒子の円形度を横軸に、個数基準での頻度を縦軸にプロットした、粒子の円形度の頻度分布において、10%積算値D10が0.54~0.80となるように材料を設計することで、イオン伝導度を高められることを、本発明者は見出した。
 D10が0.54~0.80であることによりイオン伝導度が高まることについては、以下のように説明可能である。
 D10が0.54以上であることは、粒子の集団中に極端にいびつな粒子が少ないことを意味する。極端にいびつな粒子が少ないことで、粒子間の「すき間」が少なくなり、イオン伝導度が向上すると考えられる。
 また、D10が0.80以下であることは、真円に近い粒子が多すぎず、粒子の集団中に「まあまあいびつ」な粒子がある程度の割合で含まれることを意味する。粒子の形状が真円に近すぎると、粒子同士の接触が「点」になってしまってイオン伝導度が低下する可能性があるため、D10が0.80以下であることが好ましいと考えられる。
 加えて、本実施形態においては、個数基準における粒子のメジアン径d50が0.1~10μmである。これは、粒子が「大きすぎず小さすぎない」ことを意味する。粒子が大きすぎないことにより、粒子間の「すき間」が少なくなり、イオン伝導度の向上につながっていると推測される。また、粒子が小さすぎないことにより、粒子同士の接触面が少なくなり、イオン伝導度の向上につながっていると推測される。
 ちなみに、特許文献1に記載されている「凹凸係数」は、円形度と等価であると考えらえる。しかし、特許文献1においては、電解質粒子の円形度の「分布」については言及されておらず、まして、D10についても言及されていない。電解質粒子の円形度の頻度分布に着目し、D10が0.54~0.80となるように電解質粒子を設計するという思想、さらには、円形度とあわせて電解質粒子の径を最適化するという思想は、本発明者独自のものである。
 本実施形態の無機固体電解質材料(D10が0.54~0.80である)を製造するためには、適切な材料を用い、適切な製造条件を選択することが好ましい。本実施形態の無機固体電解質材料を製造するためには、例えば、(i)適切な条件でボールミル処理を行って、ガラス状態の無機固体電解質材料の粒子の形状を変化させること、および/または、(ii)適切なふるい分け操作を行うこと、が好ましい。適切な製法方法・製造条件を選択しない場合、本実施形態の無機固体電解質材料を得られないことがある。
 本実施形態の無機固体電解質材料のより具体的な製造方法については追って説明する。
 本実施形態の無機固体電解質材料に関する説明を続ける。
(硫化物系無機固体電解質粒子の頻度分布について)
 前述のように、D10は、0.54~0.80であればよいが、イオン伝導度をより大きくする観点から、D10は、0.60~0.75であることがより好ましい。
 本実施形態においては、D10に加え、粒子の円形度の頻度分布における50%積算値D50を適切な値とすることで、イオン伝導度をより大きくすることができる場合がある。具体的には、D50は、好ましくは0.85未満、より好ましくは0.70~0.84、さらに好ましくは0.75~0.82である。
 D50が0.85未満であることは、D10が0.80以下であることと類似して、粒子の集団中にいびつな粒子がある程度含まれることを表すと考えらえる。すなわち、D50が0.85未満であることにより、粒子同士がより一層大きな面積で接触しやすくなり、イオン伝導度が一層向上すると考えらえる。
 一方、D50が0.70以上であることにより、粒子間のすき間がより少なくなり、イオン伝導度をより大きくしうると考えらえる。
 また、本実施形態においては、粒子の円形度の頻度分布における90%積算値D90を適切な値とすることによっても、イオン伝導度をより大きくすることができる場合がある。具体的には、D90は、好ましくは0.95以下、より好ましくは0.85~0.95、さらに好ましくは0.87~0.92である。
 D90が0.95以下であることも、粒子の集団中にいびつな粒子がある程度含まれることを表すと考えらえる。すなわち、D90が0.95以下であることにより、粒子同士がより一層大きな面積で接触しやすくなり、イオン伝導度が一層向上すると考えらえる。
 一方、D90が0.85以上であることにより、粒子間のすき間がより少なくなり、イオン伝導度をより大きくしうると考えらえる。
 本実施形態においては、(D90-D10)/D50の値を適切に設計することで、イオン伝導度をより大きくすることができる場合がある。具体的には、(D90-D10)/D50は、好ましくは0.10~0.45、より好ましくは0.20~0.45である。
 (D90-D10)/D50という指標は、頻度分布のブロード/シャープさを表す。この値が小さいほど頻度分布はシャープであり、円形度という尺度において粒子は比較的均質であり、円形度が極端に大きかったり小さかったりする粒子が比較的少ないことを意味する。また、この値が大きいほど頻度分布はブロードであり、粒子の集団中の、平均的な円形度から外れた粒子(円形度が比較的大きな粒子や比較的小さな粒子)の割合が比較的大きいことを意味する。
 (D90-D10)/D50が0.10以上である、すなわち、頻度分布が適度にブロードであり、粒子の集団中に、平均的な円形度から外れた粒子がある程度の割合含まれることにより、粒子の集団全体としては粒子間のすき間がより少なくなったり、接触面積がより大きくなったりして、イオン伝導度がより高まると考えられる。
 また、(D90-D10)/D50が0.45以下である、すなわち、頻度分布が適度にシャープであり、円形度が極端に大きかったり小さかったりする粒子が比較的少ないことにより、イオン伝導度を下げかねない粒子間のすき間ができにくくなり、イオン伝導度がより高まると考えられる。
 粒子の円形度の頻度分布は、例えば、(1)粒子を電子顕微鏡で撮影する、(2)撮影された画像中の各粒子の面積および周囲長から各粒子の円形度を求める、(3)各粒子の円形度を横軸に、個数基準での頻度を縦軸にプロットする、といった手順で得ることができる。具体的な求め方の例は実施例の記載を参照されたい。
(構成元素およびその組成について)
 本実施形態の無機固体電解質材料は、電気化学的安定性、水分や空気中での安定性、取り扱い性などの観点から、構成元素としてLi、PおよびSを含むことが好ましい。
 また、本実施形態の無機固体電解質材料は、リチウムイオン伝導性、電気化学的安定性、水分や空気中での安定性および取り扱い性等をより一層向上させる観点から、無機固体電解質材料中の上記Pの含有量に対する上記Liの含有量のモル比Li/Pが、好ましくは1.0以上5.0以下であり、より好ましくは2.0以上4.0以下であり、さらに好ましくは2.5以上3.8以下であり、さらにより好ましくは2.8以上3.6以下であり、さらにより好ましくは3.0以上3.5以下であり、さらにより好ましくは3.1以上3.4以下、特に好ましくは3.1以上3.3以下である。
 また、上記Pの含有量に対する上記Sの含有量のモル比S/Pは、好ましくは2.0以上6.0以下であり、より好ましくは3.0以上5.0以下であり、さらに好ましくは3.5以上4.5以下であり、さらにより好ましくは3.8以上4.2以下、さらにより好ましくは3.9以上4.1以下、特に好ましくは4.0である。
 無機固体電解質材料中のLi、PおよびSの含有量は、例えば、ICP発光分光分析やX線分析により求めることができる。
(粒子径分布について)
 本実施形態においては、粒子の円形度の分布に加え、粒子径分布を適切に設計することで、イオン伝導度を一層高めることができる。
 前述のように、本実施形態において、個数基準におけるメジアン径d50は、0.1~10μm、好ましくは0.1~6.0μmである。d50が適度に大きいことにより、粒子間の接触面(界面)が少なくなり、一層良好なイオン伝導度が得られると考えられる。また、d50が大きすぎないことにより、粒子間にすき間ができにくくなり、一層良好なイオン伝導度が得られると考えられる。
 また、粒子の個数基準における10%積算値d10を適切に設計することで、イオン伝導度を一層高めることができる場合がある。d10は、好ましくは0.05~5.0μm、より好ましくは0.5~3.0μmである。d10が適度に大きいことは、細かすぎる粒子が少ないことを意味する。細かすぎる粒子が少ないことにより、粒子間の接触面(界面)が少なくなり、一層良好なイオン伝導度が得られると考えられる。また、d10が大きすぎないことにより、粒子間にすき間ができにくくなり、一層良好なイオン伝導度が得られると考えられる。
 さらに、粒子の個数基準における90%積算値d90を適切に設計することでも、イオン伝導度を一層高めることができる場合がある。d90は、好ましくは2.0~20.0μm、より好ましくは2.0~10.0μmである。d90が大きすぎないことにより、粒子間にすき間ができにくくなり、一層良好なイオン伝導度が得られると考えられる。また、d90が適度に大きいことにより、粒子間の接触面(界面)が少なくなり、一層良好なイオン伝導度が得られると考えられる。
 イオン伝導度以外の観点として、d90が大きすぎないことにより、固体電解質膜の厚みを薄くしやすいというメリットを得ることもできる。
 個数基準における粒子径分布(d10、d50およびd90の算出の基となるデータ)は、例えば、(1)粒子を電子顕微鏡で撮影し、(2)撮影された画像中の各粒子の定方向接線径(フェレ径)を測定し、(3)各粒子の定方向接線径(フェレ径)を横軸に、個数基準での頻度を縦軸にプロットする、といった手順で得ることができる。具体的な求め方の例は実施例の記載を参照されたい。
(その他事項)
 本実施形態の無機固体電解質材料は、通常、電気化学的安定性に優れている。電気化学的安定性とは、例えば、広い電圧範囲で酸化還元されにくい性質をいう。より具体的には、本実施形態の無機固体電解質材料において、温度25℃、掃引電圧範囲0~5V、電圧掃引速度5mV/秒の条件で測定される無機固体電解質材料の酸化分解電流の最大値は、0.50μA以下であることが好ましく、0.20μA以下であることがより好ましく、0.10μA以下であることがさらに好ましく、0.05μA以下であることがさらにより好ましく、0.03μA以下であることが特に好ましい。
 無機固体電解質材料の酸化分解電流の最大値が上記上限値以下であると、リチウムイオン電池内での無機固体電解質材料の酸化分解を抑制することができるため好ましい。
 無機固体電解質材料の酸化分解電流の最大値の下限値は特に限定されないが、例えば0.0001μA以上である。
 本実施形態の無機固体電解質材料は、リチウムイオン伝導性を必要とする任意の用途に用いることができる。中でも、本実施形態に係る無機固体電解質材料は、リチウムイオン電池に用いられることが好ましい。より具体的には、リチウムイオン電池における正極活物質層、負極活物質層、電解質層等に使用される。さらに、本実施形態に係る無機固体電解質材料は、全固体型リチウムイオン電池を構成する正極活物質層、負極活物質層、固体電解質層等に好適に用いられ、全固体型リチウムイオン電池を構成する固体電解質層に特に好適に用いられる。
 本実施形態に係る無機固体電解質材料を適用した全固体型リチウムイオン電池の例としては、正極と、固体電解質層と、負極とがこの順番に積層されたものが挙げられる。
(無機固体電解質材料の製造方法)
 本実施形態の無機固体電解質材料は、好ましくは、以下の工程(A)、(B1)、(B2)および(C)を含む製造方法により得ることができる。
 また、本実施形態の無機固体電解質材料の製造方法は、必要に応じて、以下の工程(D)をさらに含むことが好ましい。その場合、工程(C)は工程(D)の前に行われてもよいし、工程(D)の後に行われてもよいし、その両方で行われてもよい。
 工程(A):硫化リチウムと、硫化リンと、を含む無機固体電解質材料の原料組成物を準備する工程
 工程(B1):無機固体電解質材料の原料組成物を機械的処理することにより、原料である硫化リチウムおよび硫化リンを化学反応させながらガラス化して、ガラス状態の無機固体電解質材料を得る工程
 工程(B2):得られたガラス状態の無機固体電解質材料を粉砕し、微細化する工程
 工程(C):得られた無機固体電解質材料を分級処理する工程
 工程(D):得られたガラス状態の無機固体電解質材料を加熱(アニール)し、少なくとも一部を結晶化する工程
 本実施形態においては、工程(B2)および/または(C)を適切に行うことで、D10が0.54~0.80であり、d50が0.1~10μmである無機固体電解質材料を製造しやすい。特に本実施形態においては、工程(B2)と(C)を両方行うことが好ましい。
 以下、各工程について具体的に説明する。
・原料組成物を準備する工程(A)
 はじめに、原料である硫化リチウムおよび硫化リンを特定の割合で含む無機固体電解質材料の原料組成物を準備する。ここで、原料組成物中の各原料の混合比は、得られる無機固体電解質材料が所望の組成比になるように調整する。
 無機固体電解質材料の原料組成物は、窒化リチウムをさらに含んでもよい。
 各原料を混合する方法は、各原料を均一に混合できる混合方法であれば特に限定されない。例えば、ボールミル、ビーズミル、振動ミル、打撃粉砕装置、ミキサー(パグミキサー、リボンミキサー、タンブラーミキサー、ドラムミキサー、V型混合器等)、ニーダー、2軸ニーダー、気流粉砕機等を用いて混合することができる。実験室レベルであればメノウやアルミナなどの乳鉢を用いた混合であってもよい。
 各原料を混合するときの攪拌速度や処理時間、温度、反応圧力、混合物に加えられる重力加速度等の混合条件は、混合物の処理量によって適宜決定することができる。
 原料として用いる硫化リチウムは特に限定されない。市販されている硫化リチウムを使用してもよいし、例えば、水酸化リチウムと硫化水素との反応により得られる硫化リチウムを使用してもよい。高純度な無機固体電解質材料を得る観点および副反応を抑制する観点から、不純物の少ない硫化リチウムを使用することが好ましい。
 本実施形態において、硫化リチウムには多硫化リチウムも含まれる。硫化リチウムとしてはLiSが好ましい。
 原料として用いる硫化リンは特に限定されない。市販されている硫化リン(例えば、P、P、P、P等)を使用することができる。高純度な無機固体電解質材料を得る観点および副反応を抑制する観点から、不純物の少ない硫化リンを使用することが好ましい。硫化リンとしてはPが好ましい。また、硫化リンに代えて、相当するモル比の単体リン(P)および単体硫黄(S)を用いることもできる。単体リン(P)および単体硫黄(S)は、工業的に生産され、販売されているものであれば、特に限定なく使用することができる。
 原料としては窒化リチウムを用いてもよい。ここで、窒化リチウム中の窒素はNとして系内に排出されるため、原料である無機化合物として窒化リチウムを利用することで、構成元素としてLi、P、およびSを含む無機固体電解質材料に対し、Li組成のみを増加させることが可能となる。
 使用可能な窒化リチウムは特に限定されない。市販されている窒化リチウム(例えば、LiN等)を使用してもよいし、例えば、金属リチウム(例えば、Li箔)と窒素ガスとの反応により得られる窒化リチウムを使用してもよい。高純度な固体電解質材料を得る観点および副反応を抑制する観点から、不純物の少ない窒化リチウムを使用することが好ましい。
・ガラス状態の無機固体電解質材料を得る工程(B1)
 つづいて、無機固体電解質材料の原料組成物を機械的処理することにより、原料である硫化リチウムと、硫化リンと、必要に応じて窒化リチウムとを化学反応させながらガラス化して、ガラス状態の無機固体電解質材料を得る。
 機械的処理は、2種以上の無機化合物を機械的に衝突させることにより、化学反応させながらガラス化させることができるものである。機械的処理としては、例えば、メカノケミカル処理等が挙げられる。メカノケミカル処理とは、対象の組成物にせん断力や衝突力のような機械的エネルギーを加えつつガラス化する方法である。
 工程(B1)において、メカノケミカル処理は、水分や酸素を高いレベルで除去した環境下を実現しやすい観点から、乾式メカノケミカル処理であることが好ましい。
 メカノケミカル処理を適用することで、各原料を微粒子状に粉砕しながら混合することができる。よって、各原料の接触面積を大きくすることができる。それにより、各原料の反応を促進することができる。このため、本実施形態の無機固体電解質材料をより一層効率良く得ることができる。
 メカノケミカル処理とは、混合対象に、せん断力、衝突力または遠心力のような機械的エネルギーを加えつつガラス化する方法である。メカノケミカル処理によるガラス化を行う装置(ガラス化装置)としては、ボールミル、ビーズミル、振動ミル、ターボミル、メカノフュージョン、ディスクミル、ロールミル等の粉砕・分散機;削岩機や振動ドリル、インパクトドライバ等で代表される回転(せん断応力)および打撃(圧縮応力)を組み合わせた機構からなる回転・打撃粉砕装置;高圧型グライディングロール;等が挙げられる。これらの中でも、非常に高い衝撃エネルギーを効率良く発生させることができる観点から、ボールミルおよびビーズミルが好ましく、ボールミルが特に好ましい。また、連続生産性に優れている観点から、ロールミル;削岩機や振動ドリル、インパクトドライバ等で代表される回転(せん断応力)および打撃(圧縮応力)を組み合わせた機構からなる回転・打撃粉砕装置;高圧型グライディングロール;ローラ式竪型ミルやボール式竪型ミル等の竪型ミル等が好ましい。
 工程(B1)は、好ましくは、ボールミルを用いて行われる。ボールミルを用いて工程(B1)を行う場合、用いられるボールは、ジルコニア製であることが好ましい。
 ボールミルを用いて工程(B1)を行う場合、化学反応(メカノケミカル反応)の効率性や粒径の調整などの観点から、用いられるボールの直径は、例えば10~50mm、好ましくは10~30mmであり、用いられるボールの材質は好ましくはジルコニアである。
 ボールミルを用いて工程(B1)を行う場合、その時間は、十分に化学反応(メカノケミカル反応)を進行させる観点から、通常10時間以上、好ましくは200時間以上あり、また、効率性・生産性の観点から、通常1500時間以下、好ましくは800時間以下である。
 ガラス化の程度について補足しておく。通常は、線源としてCuKα線を用いたX線回折分析をしたとき、原料由来の回折ピークが消失または低下していたら、原料無機組成物はガラス化され、所望の無機固体電解質材料が得られていると判断することができる。
 工程(B1)では、27.0℃、印加電圧10mV、測定周波数域0.1Hz~7MHzの測定条件における交流インピーダンス法による無機固体電解質材料のリチウムイオン伝導度が、好ましくは1.0×10-4S・cm-1以上、より好ましくは2.0×10-4S・cm-1以上、さらに好ましくは3.0×10-4S・cm-1以上、特に好ましくは4.0×10-4S・cm-1以上となるまでガラス化処理を行うことが好ましい。これにより、リチウムイオン伝導性により一層優れた無機固体電解質材料を得ることができる。
・得られたガラス状態の無機固体電解質材料を粉砕し、微細化する工程(B2)
 上記工程(B1)で十分にガラス化された無機固体電解質材料を、適切に粉砕、微細化する工程を行うことが好ましい。これにより、D10を0.54~0.80に調整しやすい。
 工程(B2)自体は、工程(B1)と同様の装置を用いて行うことができる。工程(B2)は、好ましくはボールミルを用いて行われる。ボールミルで処理を行う際のボールの材質や径、処理時間などの条件を適切に選択することで、特に、D10を0.54~0.80に調整しやすい。ボールミルを用いて工程(B2)を行う場合、用いるボールの径は、ボールミルを用いて工程(B1)を行う場合のボールよりも十分に小さいボールを用いることが好ましい。具体的には、ボールミルを用いて工程(B2)用いられるボールのうち少なくとも一部は、直径0.5mm以上5mm以下であることが好ましく、直径1mm以上2mm以下であることがより好ましい。また、ボールミルを用いて工程(B2)を行う際、用いられるボールは、ジルコニア製であることが好ましい。適度な大きさおよび材質(硬さ)のボールを用いることで、ガラス状態の無機固体電解質材料が「適度な強さ」で叩かれて、適度に微細化し、また、粒子の「角が取れて」、適度な円形度の粒子が得られると推測される。
 ボールミル処理の時間にもよるが、直径が小さすぎるボール(例えば直径0.1mm以下のボール)を用いてボールミル処理した場合、D10を0.54~0.80に調整しにくい場合がある。詳細は不明であるが、直径が小さすぎるボールを用いた場合、粒子が弱い力で叩かれ、粒子が丸くなりすぎ、D10を0.54~0.80に調整しにくくなる可能性がある。
 工程(B2)におけるボールミル処理の時間は特に限定されない。時間は、典型的には0.1~500時間である。ちなみに、ボールミル処理の時間が長すぎると、粒子が微細化されすぎて、いびつな粒子が多く形成されやすくなり、D10を0.54~0.80に調整しにくくなる場合があるため、留意する。
 工程(B2)においてボールミル処理をする場合、異なる直径のボールを用いたボールミル処理を逐次的に行ってもよい。このようにすることで、例えば、d50が比較的小さい粒子を効率的に得ることができる。
 ただし、D10を0.54~0.80に調整する観点から、ボールミル処理において、用いられるボールのうち少なくとも一部は、直径0.5~10mmであることが好ましく、直径1~5mmであることがより好ましい。また、ボールミル処理の時間は、1~100時間であることが好ましく、10~70時間であることがより好ましい。ボールミル処理に用いられるボールの径が小さすぎない、かつ/または、ボールミル処理の時間が長すぎないことにより、本実施形態の無機固体電解質材料を製造しやすい。
 ボールミル処理を行う場合、処理の効率化のため、ボールミル処理を一時中断して、装置の内壁やボールについた粉末を掻き取り、装置内に再度粉末をボールに投入してもよい。
 ボールミル処理におけるボールの使用量は、十分な処理が行われる限り特に限定されない。典型的には、原料組成物100質量部に対して500~10000質量部のボールを用いることができる。
 本実施形態において、工程(B1)と工程(B2)は、水分および酸素の存在量および流入を従来よりも高いレベルで抑制した雰囲気下でおこなうことが好ましい。これにより、原料組成物と、水分および酸素との接触を従来よりも高いレベルで抑制することができる。
 水分および酸素の存在量および流入を従来よりも高いレベルで抑制した雰囲気は、例えば、以下の方法により作り出すことができる。
 まず、グローブボックス内に混合容器およびガラス化装置用の密閉容器を配置し、次いで、グローブボックス内に対して、ガス精製装置を通じて得られた高純度のドライアルゴンガスやドライ窒素ガス等の不活性ガスの注入および真空脱気を複数回(3回以上が好ましい)おこなう。ここで、上記操作後のグローブボックス内は、高純度のドライアルゴンガスやドライ窒素ガス等の不活性ガスをガス精製装置を通じて循環させて、酸素濃度および水分濃度を好ましくは1.0ppm以下、より好ましくは0.8ppm以下、さらに好ましくは0.6ppm以下にそれぞれ調整する。
 次いで、グローブボックス内の混合容器内に硫化リチウムおよび硫化リンを投入し、次いで、混合することによって原料組成物を調製する(工程(A)を意味する)。ここで、グローブボックス内の混合容器内への硫化リチウムおよび硫化リンの投入は、以下の手順でおこなう。はじめに、グローブボックスの本体内部のドアを閉じた状態で、グローブボックスのサイドボックス内に硫化リチウムおよび硫化リンを入れる。次いで、サイドボックス内に対して、グローブボックス内から導引した高純度のドライアルゴンガスやドライ窒素ガス等の不活性ガスの注入および真空脱気を複数回(3回以上が好ましい)おこなう。その後、グローブボックスの本体内部のドアを開けて、グローブボックスの本体内部の混合容器に硫化リチウムおよび硫化リンを入れ、混合容器を密閉する。
 次いで、硫化リチウムおよび硫化リンを混合後、得られた原料組成物を混合容器から取り出し、ガラス化装置用の容器に移し、密閉する。
 こうした操作をおこなうことによって、原料組成物が入った密閉容器内の水分および酸素の存在量を従来よりも高いレベルで抑制することができ、その結果、工程(B1)と工程(B2)において、水分および酸素の存在量が従来よりも高いレベルで抑制された雰囲気を作り出すことができる。
 つづいて、原料無機組成物が入った密閉容器をグローブボックス内から取り出す。次いで、ドライアルゴンガスやドライ窒素ガス、ドライエアー等のドライガスが充満した雰囲気中(例えば、ドライアルゴンガスやドライ窒素ガス、ドライエアー等を充満させた箱の中)に配置されたガラス化装置に密閉容器をセットし、ガラス化をおこなう。ここで、ガラス化をおこなっている間は、ドライガスを充満させた雰囲気中にドライガスを一定量導入し続けることが好ましい。こうした工夫をおこなうことによって、工程(B1)と工程(B2)において、水分および酸素の流入を従来よりも高いレベルで抑制した雰囲気を作り出すことができる。
 密閉容器内に水分および酸素の流入を高いレベルで抑制する観点から、密閉容器の蓋部には、より高い気密性を実現できる観点から、Oリング、フェルールパッキン等の密封性に優れるパッキンを用いることが好ましい。
・分級処理(ふるい分け)工程(C)
 つづいて、得られた無機固体電解質材料を分級処理(ふるい分け)することが好ましい。この処理を行うことにより、d50が10μm以下であり、また、D10が0.54~0.80である粒子を得やすい。詳細は不明であるが、分級処理(ふるい分け)により、粒径が比較的大きい粒子の一部または全部が除去されるだけでなく、円形度が極端に小さい粒子の一部または全部も除去されると推測される。
 D10やd50の最適化の観点から、分級処理(ふるい分け)は、目開き20μm程度のふるいを用いて行われることが好ましい。
 無機固体電解質材料をさらに粉砕処理して粒径などを調整してもよい。粉砕処理の具体的方法としては、気流粉砕、乳鉢、回転ミル、コーヒーミル等公知の粉砕方法を用いることができる。
 工程(C)は、空気中の水分との接触を防ぐことができる点から、不活性ガス雰囲気下または真空雰囲気下で行うことが好ましい。
・無機固体電解質材料の少なくとも一部を結晶化する工程(D)
 本実施形態では、無機固体電解質材料の少なくとも一部を結晶化する工程を行ってもよい。工程(D)では、得られたガラス状態の無機固体電解質材料を加熱(アニール)することにより、無機固体電解質材料の少なくとも一部を結晶化して、ガラスセラミックス状態(結晶化ガラスとも呼ばれる)の無機固体電解質材料を生成する。こうすることにより、より一層リチウムイオン伝導性に優れた無機固体電解質材料を得ることができる。
 すなわち、本実施形態の無機固体電解質材料は、リチウムイオン伝導性に優れる点から、ガラスセラミックス状態(結晶化ガラス状態)であることが好ましい。
 ガラス状態の無機固体電解質材料を加熱(アニール)する際の温度は、220℃以上500℃以下の範囲内であることが好ましく、250℃以上350℃以下の範囲内であることがより好ましい。
 ガラス状態の無機固体電解質材料を加熱(アニール)する時間は、所望のガラスセラミックス状態の無機固体電解質材料が得られる時間であれば特に限定されず、例えば0.5時間以上24時間以下、好ましくは1時間以上3時間以下である。加熱の方法は特に限定されず、例えば、焼成炉を用いる方法を挙げることができる。加熱の温度、時間等の条件は、無機固体電解質材料の特性の最適化のため適宜調整することができる。
 ガラス状態の無機固体電解質材料の加熱(アニール)は、不活性ガス雰囲気下で行われることが好ましい。これにより、無機固体電解質材料の劣化(例えば、酸化)を防止することができる。不活性ガスとしては、例えば、アルゴンガス、ヘリウムガス、窒素ガス等が挙げられる。これらの不活性ガスは、製品への不純物の混入を防止するために、高純度である程好ましく、また、水分の接触を避けるために、露点が-70℃以下であることが好ましく、-80℃以下であることが特に好ましい。
 不活性ガスの導入方法は、系内が不活性ガス雰囲気で満たされる方法であれば特に限定されない。例えば、不活性ガスをパージする方法、不活性ガスを一定量導入し続ける方法等が挙げられる。
 本実施形態の無機固体電解質材料を得るためには、上記の各工程における諸条件を適切に調整することが好ましい。ただし、本実施形態に係る無機固体電解質材料の製造方法は、上記のような方法には限定されず、種々の条件を適切に調整することにより、本実施形態に係る無機固体電解質材料を得ることができる。
<固体電解質>
 本実施形態の固体電解質は、上述の、本実施形態の無機固体電解質材料を含む。
 本実施形態の固体電解質は、本実施形態の無機固体電解質材料以外の成分として、例えば、本発明の目的を損なわない範囲内で、上述した本実施形態の無機固体電解質材料とは異なる種類の固体電解質材料を含んでもよいし、含まなくてもよい。
 本実施形態の固体電解質は、上述した本実施形態に係る無機固体電解質材料とは異なる種類の固体電解質材料を含んでいてもよいし、含まなくてもよい。本実施形態の無機固体電解質材料とは異なる種類の固体電解質材料としては、イオン伝導性および絶縁性を有するものであれば特に限定されず、一般的にリチウムイオン電池に用いられるものを用いることができる。例えば、本実施形態の無機固体電解質材料とは異なる種類の無機固体電解質材料、酸化物系無機固体電解質材料、その他のリチウム系無機固体電解質材料等の無機固体電解質材料;ポリマー電解質等の有機固体電解質材料を挙げることができる。
 前述した本実施形態の無機固体電解質材料とは異なる無機固体電解質材料としては、例えば、LiS-P材料、LiS-SiS材料、LiS-GeS材料、LiS-Al材料、LiS-SiS-LiPO材料、LiS-P-GeS材料、LiS-LiO-P-SiS材料、LiS-GeS-P-SiS材料、LiS-SnS-P-SiS材料、LiS-P-LiN材料、Li2+X-P材料、LiS-P-P材料等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 これらの中でも、リチウムイオン伝導性に優れ、かつ広い電圧範囲で分解等を起こさない安定性を有する点から、LiS-P材料が好ましい。ここで、例えば、LiS-P材料とは、少なくともLiS(硫化リチウム)とPとを含む無機組成物を機械的処理により互いに化学反応させることにより得られる無機材料を意味する。
 ここで、本実施形態において、硫化リチウムには多硫化リチウムも含まれる。
 上記酸化物系無機固体電解質材料としては、例えば、LiTi(PO、LiZr(PO、LiGe(PO等のNASICON型、(La0.5+xLi0.5-3x)TiO等のペロブスカイト型、LiO-P材料、LiO-P-LiN材料等が挙げられる。
 その他のリチウム系無機固体電解質材料としては、例えば、LiPON、LiNbO、LiTaO、LiPO、LiPO4-x(xは0<x≦1)、LiN、LiI、LISICON等が挙げられる。
 さらに、これらの無機固体電解質の結晶を析出させて得られるガラスセラミックスも無機固体電解質材料として用いることができる。
 上記有機固体電解質材料としては、例えば、ドライポリマー電解質、ゲル電解質等のポリマー電解質を用いることができる。
 ポリマー電解質としては、一般的にリチウムイオン電池に用いられるものを用いることができる。
<固体電解質膜>
 本実施形態の固体電解質膜は、前述した本実施形態の無機固体電解質材料を含む固体電解質を主成分として含む。
 本実施形態の固体電解質膜は、例えば、全固体型リチウムイオン電池を構成する固体電解質層に用いられる。
 本実施形態の固体電解質膜を適用した全固体型リチウムイオン電池の例としては、正極と、固体電解質層と、負極とがこの順番に積層されたものが挙げられる。この場合、固体電解質層が固体電解質膜により構成されたものである。
 本実施形態の固体電解質膜の平均厚みは、好ましくは5μm以上500μm以下であり、より好ましくは10μm以上200μm以下であり、さらに好ましくは20μm以上100μm以下である。上記固体電解質膜の平均厚みが上記下限値以上であると、固体電解質の欠落や、固体電解質膜表面のクラックの発生をより一層抑制できる。また、上記固体電解質膜の平均厚みが上記上限値以下であると、固体電解質膜のインピーダンスをより一層低下させることができる。その結果、得られる全固体型リチウムイオン電池の電池特性をより一層向上できる。
 本実施形態の固体電解質膜は、前述した本実施形態に係る無機固体電解質材料を含む粒子状の固体電解質の加圧成形体であることが好ましい。すなわち、粒子状の固体電解質を加圧し、固体電解質材料同士のアンカー効果で一定の強度を有する固体電解質膜とすることが好ましい。
 加圧成形体とすることにより、固体電解質同士の結合が起こり、得られる固体電解質膜の強度はより一層高くなる。その結果、固体電解質の欠落や、固体電解質膜表面のクラックの発生をより一層抑制できる。
 本実施形態の固体電解質膜中の、上記した本実施形態の無機固体電解質材料の含有量は、固体電解質膜の全体を100質量%としたとき、好ましくは50質量%以上、より好ましくは60質量%以上、さらに好ましくは70質量%以上、さらにより好ましくは80質量%以上、特に好ましくは90質量%以上である。これにより、固体電解質間の接触性が改善され、固体電解質膜の界面接触抵抗を低下させることができる。その結果、固体電解質膜のリチウムイオン伝導性をより一層向上させることができる。そして、このようなリチウムイオン伝導性に優れた固体電解質膜を用いることにより、得られる全固体型リチウムイオン電池の電池特性をより一層向上できる。
 本実施形態の固体電解質膜中の、上記した本実施形態の無機固体電解質材料の含有量の上限は特に限定されないが、例えば、100質量%以下である。
 固体電解質膜の平面形状は、特に限定されず、電極や集電体の形状に合わせて適宜選択することが可能である。平面形状は、例えば、矩形であることができる。
 本実施形態の固体電解質膜にはバインダー樹脂が含まれてもよい。バインダー樹脂が含まれる場合、その含有量は、固体電解質膜の全体を100質量%としたとき、好ましくは0.5質量%未満、より好ましくは0.1質量%以下、さらに好ましくは0.05質量%以下、さらにより好ましくは0.01質量%以下である。本実施形態に係る固体電解質膜は、バインダー樹脂を実質的に含まないことが好ましく、バインダー樹脂を含まないことがより好ましい。
 これにより、固体電解質間の接触性が改善され、固体電解質膜の界面接触抵抗を低下させることができる。その結果、固体電解質膜のリチウムイオン伝導性をより一層向上させることができる。そして、このようなリチウムイオン伝導性に優れた固体電解質膜を用いることにより、得られる全固体型リチウムイオン電池の電池特性を向上できる。
 念のため述べておくと、「バインダー樹脂を実質的に含まない」とは、本実施形態の効果が損なわれない程度にはバインダー樹脂が含まれてもよいことを意味する。また、固体電解質層と正極または負極との間に粘着性樹脂層を設ける場合、固体電解質層と粘着性樹脂層との界面近傍に存在する粘着性樹脂層由来の粘着性樹脂は、「固体電解質膜中のバインダー樹脂」から除かれる。
 上記バインダー樹脂は、無機固体電解質材料間を結着させるために、リチウムイオン電池に一般的に使用される結着剤のことをいう。例えば、ポリビニルアルコール、ポリ(メタ)アクリル酸、カルボキシメチルセルロース、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、スチレン・ブタジエン系ゴム、ポリイミド等が挙げられる。
 本実施形態の固体電解質膜は、例えば、(i)まず、粒子状の固体電解質を金型のキャビティ表面上または基材表面上に膜状に堆積させ、(ii)次いで、膜状に堆積した固体電解質を加圧することにより得ることができる。
 上記(ii)において固体電解質を加圧する方法は特に限定されない。例えば、金型のキャビティ表面上に粒子状の固体電解質を堆積させた場合は金型と押し型によるプレス、粒子状の固体電解質を基材表面上に堆積させた場合は金型と押し型によるプレスやロールプレス、平板プレス等の方法を挙げることができる。固体電解質を加圧する圧力は、例えば10MPa以上500MPa以下である。
 必要に応じて、膜状に堆積した無機固体電解質を加圧するとともに加熱してもよい。加熱加圧を行えば固体電解質同士の融着・結合が起こり、得られる固体電解質膜の強度はより一層高くなる。その結果、固体電解質の欠落や、固体電解質膜表面のクラックの発生をより一層抑制できる。固体電解質を加熱する温度は、例えば、40℃以上500℃以下である。
<リチウムイオン電池>
 図2は、本実施形態のリチウムイオン電池の構造の一例(リチウムイオン電池10)を示す断面図である。
 リチウムイオン電池100は、例えば、正極活物質層101を含む正極110と、電解質層120と、負極活物質層103を含む負極130とを備えている。そして、正極活物質層101、負極活物質層103および電解質層120の少なくとも一つが、本実施形態の無機固体電解質材料を含有する。また、正極活物質層101、負極活物質層103および電解質層120のすべてが、本実施形態の無機固体電解質材料を含有していることが好ましい。
 本実施形態では、特に断りがなければ、正極活物質を含む層を正極活物質層101と呼ぶ。
 正極110は、必要に応じて、正極活物質層101に加えて集電体105をさらに含んでもよいし、集電体105を含まなくてもよい。また、本実施形態では特に断りがなければ、負極活物質を含む層を負極活物質層103と呼ぶ。負極130は、必要に応じて、負極活物質層103に加えて集電体105をさらに含んでもよいし、集電体105を含まなくてもよい。
 リチウムイオン電池100の形状は特に限定されない。円筒型、コイン型、角型、フィルム型その他任意の形状が挙げられる。
 リチウムイオン電池100は、一般的に公知の方法に準じて製造される。例えば、正極110、電解質層120および負極130を重ねたものを、円筒型、コイン型、角型、フィルム型その他任意の形状に形成し、必要に応じて、非水電解液を封入することにより作製される。
(正極)
 正極110を構成する材料は特に限定されず、リチウムイオン電池に一般的に用いられているものを使用することができる。正極110の製造居方法は特に限定されず、一般的に公知の方法に準じて製造することができる。例えば、正極活物質を含む正極活物質層101をアルミ箔等の集電体105の表面に形成することにより得ることができる。
 正極活物質層101の厚みや密度は、電池の使用用途等に応じて適宜決定されるため特に限定されず、一般的に公知の情報に準じて設定することができる。
 正極活物質層101は正極活物質を含む。
 正極活物質は特に限定されず一般的に公知のものを使用することができる。例えば、リチウムコバルト酸化物(LiCoO)、リチウムニッケル酸化物(LiNiO)、リチウムマンガン酸化物(LiMn)、固溶体酸化物(LiMnO-LiMO(M=Co、Ni等))、リチウム-マンガン-ニッケル酸化物(LiNi1/3Mn1/3Co1/3)、オリビン型リチウムリン酸化物(LiFePO)等の複合酸化物;ポリアニリン、ポリピロール等の導電性高分子;LiS、CuS、Li-Cu-S化合物、TiS、FeS、MoS、Li-Mo-S化合物、Li-Ti-S化合物、Li-V-S化合物、Li-Fe-S化合物等の硫化物系正極活物質;硫黄を含浸したアセチレンブラック、硫黄を含浸した多孔質炭素、硫黄と炭素の混合粉等の硫黄を活物質とした材料;等を用いることができる。これらの正極活物質は1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 これらの中でも、より高い放電容量密度を有し、かつ、サイクル特性により優れる観点から、硫化物系正極活物質が好ましく、Li-Mo-S化合物、Li-Ti-S化合物、Li-V-S化合物から選択される一種または二種以上がより好ましい。
 ここで、Li-Mo-S化合物は構成元素としてLi、Mo、およびSを含んでいるものであり、通常は原料であるモリブデン硫化物および硫化リチウムを含む無機組成物を機械的処理により互いに化学反応させることにより得ることができる。
 また、Li-Ti-S化合物は構成元素としてLi、Ti、およびSを含んでいるものであり、通常は原料であるチタン硫化物および硫化リチウムを含む無機組成物を機械的処理により互いに化学反応させることにより得ることができる。
 Li-V-S化合物は構成元素としてLi、V、およびSを含んでいるものであり、通常は原料であるバナジウム硫化物および硫化リチウムを含む無機組成物を機械的処理により互いに化学反応させることにより得ることができる。
 正極活物質層101は、上記正極活物質以外の成分として、例えば、バインダー樹脂、増粘剤、導電助剤、固体電解質材料等から選択される1種以上の材料を含んでもよいし、含まなくてもよい。以下、バインダー樹脂、増粘剤、導電助剤、固体電解質材料等の各材料について説明する。
 正極活物質層101は、正極活物質同士および正極活物質と集電体105とを結着させる役割をもつバインダー樹脂を含んでもよい。
 バインダー樹脂はリチウムイオン電池に使用可能な通常のバインダー樹脂であれば特に限定されない。例えば、ポリビニルアルコール、ポリ(メタ)アクリル酸、カルボキシメチルセルロース、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、スチレン・ブタジエン系ゴム、ポリイミド等が挙げられる。バインダーは一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 正極活物質層101は、塗布に適したスラリーの流動性を確保する点から、増粘剤を含んでもよい。増粘剤としてはリチウムイオン電池に使用可能な通常の増粘剤であれば特に限定されない。例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース等のセルロース系ポリマーおよびこれらのアンモニウム塩並びにアルカリ金属塩、ポリカルボン酸、ポリエチレンオキシド、ポリビニルピロリドン、ポリ(メタ)アクリル酸塩、ポリビニルアルコール等の水溶性ポリマー等が挙げられる。増粘剤は一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 正極活物質層101は、正極110の導電性を向上させる観点から、導電助剤を含んでもよい。導電助剤としてはリチウムイオン電池に使用可能な通常の導電助剤であれば特に限定されない。例えば、アセチレンブラック、ケチェンブラック等のカーボンブラック、気相法炭素繊維等の炭素材料が挙げられる。導電助剤を用いる場合は一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 正極110は、上述した本実施形態の無機固体電解質材料を含む固体電解質を含んでいてもよいし、本実施形態の無機固体電解質材料とは異なる種類の固体電解質材料を含む固体電解質を含んでいてもよい。本実施形態の無機固体電解質材料とは異なる種類の固体電解質材料としては、イオン伝導性および絶縁性を有するものであれば特に限定されず、一般的にリチウムイオン電池に用いられるものを用いることができる。例えば、無機固体電解質材料、酸化物系無機固体電解質材料、その他のリチウム系無機固体電解質材料等の無機固体電解質材料;ポリマー電解質等の有機固体電解質材料を挙げることができる。より具体的には、本実施形態の固体電解質の説明で挙げた無機固体電解質材料を用いることができる。
 正極活物質層101中の各種材料の配合割合は、電池の使用用途等に応じて、適宜決定されるため特に限定されず、一般的に公知の情報に準じて設定することができる。
(負極)
 負極130を構成する材料は特に限定されず、リチウムイオン電池に一般的に用いられているものを使用することができる。負極130の製造方法は特に限定されず、一般的に公知の方法に準じて製造することができる。例えば、負極活物質を含む負極活物質層103を銅等の集電体105の表面に形成することにより得ることができる。
 負極活物質層103の厚みや密度は、電池の使用用途等に応じて適宜決定されるため特に限定されず、一般的に公知の情報に準じて設定することができる。
 負極活物質層103は負極活物質を含む。
 負極活物質としては、リチウムイオン電池の負極に使用可能な通常の負極活物質であれば特に限定されない。例えば、天然黒鉛、人造黒鉛、樹脂炭、炭素繊維、活性炭、ハードカーボン、ソフトカーボン等の炭素質材料;リチウム、リチウム合金、スズ、スズ合金、シリコン、シリコン合金、ガリウム、ガリウム合金、インジウム、インジウム合金、アルミニウム、アルミニウム合金等を主体とした金属系材料;ポリアセン、ポリアセチレン、ポリピロール等の導電性ポリマー;リチウムチタン複合酸化物(例えばLiTi12)等が挙げられる。これらの負極活物質は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 負極活物質層103は特に限定されないが、上記負極活物質以外の成分として、例えば、バインダー樹脂、増粘剤、導電助剤、固体電解質材料等から選択される1種以上の材料を含んでもよい。これらの材料としては、特に限定はされないが、例えば、上述した正極110に用いる材料と同様のものを挙げることができる。
 負極活物質層103中の各種材料の配合割合は、電池の使用用途等に応じて、適宜決定されるため特に限定されず、一般的に公知の情報に準じて設定することができる。
(電解質層)
 電解質層120は、正極活物質層101と負極活物質層103の間に形成される層である。
 電解質層120としては、セパレーターに非水電解液を含浸させたものや、固体電解質を含む固体電解質層が挙げられる。
 セパレーターとしては、正極110と負極130を電気的に絶縁させ、リチウムイオンを透過する機能を有するものであれば特に限定されず、例えば、多孔性膜を用いることができる。
 多孔性膜としては微多孔性高分子フィルムが好適に使用され、材質としてポリオレフィン、ポリイミド、ポリフッ化ビニリデン、ポリエステル等が挙げられる。特に、多孔性ポリオレフィンフィルムが好ましく、具体的には多孔性ポリエチレンフィルム、多孔性ポリプロピレンフィルム等が挙げられる。
 セパレーターに含浸させる非水電解液とは、電解質を溶媒に溶解させたものである。電解質としては、公知のリチウム塩がいずれも使用でき、活物質の種類に応じて選択すればよい。例えば、LiClO、LiBF、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiB10Cl10、LiAlCl、LiCl、LiBr、LiB(C、CFSOLi、CHSOLi、LiCFSO、LiCSO、Li(CFSON、低級脂肪酸カルボン酸リチウム等が挙げられる。
 電解質を溶解する溶媒は、電解質を溶解させる液体として通常用いられるものであれば特に限定されない。例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、ビニレンカーボネート(VC)等のカーボネート類;γ-ブチロラクトン、γ-バレロラクトン等のラクトン類;トリメトキシメタン、1,2-ジメトキシエタン、ジエチルエーテル、2-エトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン等のエーテル類;ジメチルスルホキシド等のスルホキシド類;1,3-ジオキソラン、4-メチル-1,3-ジオキソラン等のオキソラン類;アセトニトリル、ニトロメタン、ホルムアミド、ジメチルホルムアミド等の含窒素類;ギ酸メチル、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル等の有機酸エステル類;リン酸トリエステルやジグライム類;トリグライム類;スルホラン、メチルスルホラン等のスルホラン類;3-メチル-2-オキサゾリジノン等のオキサゾリジノン類;1,3-プロパンスルトン、1,4-ブタンスルトン、ナフタスルトン等のスルトン類;等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 固体電解質層は、正極活物質層101および負極活物質層103の間に形成される層であり、固体電解質材料を含む固体電解質により形成される層である。固体電解質層に含まれる固体電解質は、リチウムイオン伝導性を有するものであれば特に限定されるものではない。ただし、本実施形態においては、本実施形態の無機固体電解質材料を含む固体電解質であることが好ましい。
 本実施形態の固体電解質層における固体電解質の含有量は、所望の性能が得られる割合であれば特に限定されず、例えば10体積%以上100体積%以下、好ましくは50体積%以上100体積%以下である。特に、本実施形態においては、固体電解質層が本実施形態の無機固体電解質材料を含む固体電解質のみから構成されていることが好ましい。
 本実施形態の固体電解質層は、バインダー樹脂を含有していてもよい。バインダー樹脂を含有することにより、可撓性を有する固体電解質層を得ることができる。バインダー樹脂としては、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等のフッ素含有結着材を挙げることができる。固体電解質層の厚さは、例えば0.1μm以上1000μm以下、好ましくは0.1μm以上300μm以下である。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。また、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
 本発明の実施態様を、実施例および比較例に基づき詳細に説明する。念のため述べておくと、本発明は実施例のみに限定されない。
<実施例1>
 無機固体電解質材料を以下の手順で作製した。
(1)原料の準備
 LiS(古河機械金属社製、純度99.9%)、P(関東化学社製)およびLiN(古河機械金属社製)をそれぞれ準備した。
(2)秤量および乳鉢での混合
 次いで、アルゴングローブボックス内で、LiS粉末とP粉末とLiN粉末(LiS:P:LiN=27:9:2(モル比))を精秤し、これら粉末を10分間メノウ乳鉢で混合した。これにより混合粉末を得た
(3)ガラス化:ボールミルによるメカノケミカル処理(粉砕混合)
 次いで、上記(2)で得られた混合粉末500gを秤量し、φ25mmのジルコニア製ボール7500gとφ10mmのジルコニア製ボール700gとともに、アルミナ製ポット(内容積5.0L)に入れた。そして、ボールミル(回転数100rpm)で48時間メカノケミカル処理(粉砕混合)した。
 次いで、ポット内壁やボールについた粉砕混合後の粉末を掻き取った。その後、再度同じポットに粉末をボールと共に入れ、ボールミル(回転数100rpm)で先と同じ時間メカノケミカル処理(粉砕混合)した。この掻き取りからメカノケミカル処理(粉砕混合)までの作業を累計700時間になるまで繰り返した。このようにして、ガラス状態の無機固体電解質材料(Li1012)を得た。
 メカノケミカル処理(粉砕混合)は、水分および酸素の存在量および流入が高いレベルで抑制された雰囲気下で行った。
(4)アニール処理
 得られたガラス状態の無機固体電解質材料300gを、アルゴン中、300℃で7時間アニール処理した。これにより、ガラスセラミックス状態の無機固体電解質材料(Li1012)を得た。
(5)ふるい分け
 次いで、アルゴン中にて、得られたガラスセラミックス状態の無機固体電解質材料を目開き20μmのふるいにて分級した(ふるいを通過できなかった成分を除去した)。
 以上により、無機固体電解質材料を得た。
<実施例2>
 上記(3)で得られたガラス状態の無機固体電解質材料を、アニール処理前にも目開き20μmのふるいにて分級した以外は、実施例1と同様にして、ガラスセラミックス状態の無機固体電解質材料を得た。
(すなわち、実施例2では、アニール処理前と、アニール処理後の、計2回、ふるい分けをした。)
<実施例3>
 実施例3においては、前述の工程(B2)を行った。つまり、実施例1の(3)で得られたガラス状態の無機固体電解質材料を、適切な条件でさらに粉砕し、微細化した。具体的には以下の通りである。
 実施例1の(3)ボールミルによる粉砕混合で得られたガラス状態の無機固体電解質材料を300g秤量し、φ5mmのジルコニア製ボール1200g、φ2mmのジルコニア製ボール6200g、φ1mmのジルコニア製ボール1200gとともに、アルミナ製ポット(内容積5L)に入れ、ボールミル(回転数100rpm)で揺動もかけながら50時間粉砕し、ガラス状態の無機固体電解質材料を得た。このガラス状態の無機固体電解質材料を、アルゴン中、300℃で7時間アニールすることで、ガラスセラミックス状態の無機固体電解質材料(Li1012)を得た。
 次いで、得られたガラスセラミックス状態の無機固体電解質材料を目開き20μmのふるいにて分級した。
 以上のようにして、ガラスセラミックス状態の無機固体電解質材料を得た。
<比較例1>
 比較例1は、前述の工程(B2)を行ったものの、その条件が適切でなかったために、D10が0.54~0.80である粒子が得られなかった例である。具体的には以下の通りである。
 実施例1の(3)ボールミルによる粉砕混合で得られたガラス状態の無機固体電解質材料を400g秤量し、φ2mmのジルコニア製ボール6200gとともに、アルミナ製ポット(内容積5L)に入れ、ボールミル(回転数100rpm)で揺動もかけながら120時間粉砕し、ガラス状態の無機固体電解質材料を得た。このガラス状態の無機固体電解質材料を、アルゴン中、300℃で7時間アニールすることで、ガラスセラミックス状態の無機固体電解質材料(Li1012)を得た。
 次いで、得られたガラスセラミックス状態の無機固体電解質材料を目開き20μmのふるいにて分級した。
 以上のようにして、ガラスセラミックス状態の無機固体電解質材料を得た。
<比較例2>
 実施例1の(3)ボールミルによる粉砕混合で得られたガラス状態の無機固体電解質材料を400g秤量し、φ2mmのジルコニア製ボール6200gとともに、アルミナ製ポット(内容積5L)に入れ、ボールミル(回転数100rpm)で揺動もかけながら120時間粉砕し、ガラス状態の無機固体電解質材料を得た。このガラス状態の無機固体電解質材料をアルゴン中300℃で7時間アニールすることで、ガラスセラミックス状態の無機固体電解質材料(Li1012)を得た。
 次いで、得られたガラスセラミックス状態の無機固体電解質材料を目開き20μmのふるいにて分級した。そして、その「ふるい上」に残ったものを、最終的な無機固体電解質材料とした。
<比較例3>
 比較例3の無機固体電解質材料を以下の手順で作製した。比較例3は、前掲の特許文献1の段落0126、表1の実施例106に準じて無機固体電解質材料を作製した例である。
 原料としては、LiS(古河機械金属社製、純度99.9%)、P(関東化学社製)をそれぞれ使用した。
 まず、アルゴングローブボックス内で、LiS粉末とP粉末(LiS:P=75:25(モル比))を精秤し、これら粉末を10分間メノウ乳鉢で混合した。
 次いで、混合粉末2gを秤量し、φ10mmのジルコニア製ボール18個とともに、ジルコニア製ポット(内容積45mL)に入れ、遊星ボールミル(自転800rpm、公転400rpm)で30時間粉砕混合(メカノケミカル処理)した。
 以上により、ガラス状態の無機固体電解質材料(Li12)を得た。
<粒子の円形度の測定/円形度の頻度分布の算出、粒子の粒径の測定/粒度分布の算出>
 National Institutes of Health公開の画像処理ソフト(公開フリーウェア、ImageJ、v1.52a)を用いて、得られた無機固体電解質材料のSEM画像を解析した。そして、この解析に基づき、粒子の円形度の頻度分布および粒度分布を求めた。
 得られた頻度分布から、D10、D50、D90および(D90-D10)/D50を求めた。また、得られた粒度分布から、d10、d50およびd90を求めた。
 手順としては、まず、SEMの試料台上にカーボンテープを張り付け、そのカーボンテープ上に無機固体電解質材料の粒子が薄く広くばらけた状態になるように微量付着させた。
 次に、無機固体電解質材料のSEM画像を撮影した(解像度:横1280×縦960ピクセル、倍率は250~1000倍で適宜調整)。得られたSEM画像をImageJに読み込ませた。SEM画像内に表示されたスケールからキャリブレーションを実施した。次に画像を白黒の2値化画像に変換した。その際に、粒子の輪郭が明確になるように閾値を設定した。得られた白黒画像で重なった粒子がある場合は、ImageJによる画像処理としてウォーターシェッド法による粒子同士の重なりの分離を実行した。そして、ImageJによる画像解析として粒子解析を実行し、円形度"Circ."の計測結果およびフェレ径による粒子径の計測結果を得た。
 得られた円形度の計測結果をMicrosoft社の表計算ソフトのEXCEL(登録商標)で読み込み、円形度を小さい方から順に並べ、その個数を数えることで頻度分布を得た。同様に、得られた粒子径の計測結果から、粒度分布を得た。
 各実施例および比較例においては、複数枚のSEM画像を撮影し、合計3000個以上の粒子の円形度および粒子径をそれぞれ測定することで、円形度の頻度分布および粒度分布を得た。
<評価:リチウムイオン伝導度の測定>
 各実施例および比較例で得られた無機固体電解質材料について、交流インピーダンス法により、リチウムイオン伝導度を測定した。
 リチウムイオン伝導度の測定には、バイオロジック社製、ポテンショスタット/ガルバノスタットSP-300を用いた。試料の大きさは直径9.5mm、厚さ1.2~2.0mm、測定条件は、印加電圧10mV、測定温度27.0℃、測定周波数域0.1Hz~7MHz、電極はLi箔とした。
 リチウムイオン伝導度測定用の試料としては、プレス装置を用いて、各実施例および比較例で得られた粉末状の無機固体電解質材料150mgを、270MPaで10分間プレスして得られる、直径9.5mm、厚さ1.2~2.0mmの板状の無機固体電解質材料を用いた。 
各種情報をまとめて表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるとおり、D10が0.54~0.80であり、d50が0.1~10μmである硫化物系無機固体電解質粒子を含む無機固体電解質材料(実施例1~3)のリチウムイオン伝導度は、比較的大きかった。
 一方、D10が0.54未満である、かつ/または、d50が10μm超である硫化物系無機固体電解質粒子を含む無機固体電解質材料(比較例1~3)のリチウムイオン伝導度は、実施例1~3に比べて劣っていた。
 実施例および比較例について考察を加える。
 実施例3は、実施例1~3の中ではd50が一番小さく、粒子界面が多くなるため、リチウムイオン伝導度は比較的小さくなるとも考えられる。しかし、実施例1~3の中では最も大きなリチウムイオン伝導度を示した。これは、実施例3のD10が実施例1および2よりも大きかったためと考えられる。つまり、実施例3と実施例1,2との対比より、D10という指標がリチウムイオン伝導度と強く相関していると考えられる。
 比較例1~3については、粉砕の工程におけるボールミル処理の条件が適切でなかったり、適切なふるい分け操作を行わなかったりしたため、D10が0.54~0.80であり、d50が0.1~10μmである硫化物系無機固体電解質粒子を製造することができなかったと考えられる。そして、その結果として、実施例1~3に比較してリチウムイオン伝導度が劣ったと考えられる。
 特に、実施例1と比較例1との対比から、ガラス状態の無機固体電解質材料を「単に細かく粉砕する」だけでは、粒子は小さくなるがイオン伝導度は悪化してしまっている。一方、実施例3は同じく実施例1に粉砕処理を追加したものであり、比較例1よりもd50は小さいが、イオン伝導度は向上している。これらのことからも、「円形度の頻度分布における10%積算値D10」という指標がイオン伝導性向上と密接に関係していることが理解される。
 この出願は、2020年11月30日に出願された日本出願特願2020-197942号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
100  リチウムイオン電池
101  正極活物質層
103  負極活物質層
105  集電体
110  正極
120  電解質層
130  負極

Claims (13)

  1.  硫化物系無機固体電解質粒子を含む無機固体電解質材料であって、
     前記材料中の前記粒子の円形度を横軸に、個数基準での頻度を縦軸にプロットした、前記粒子の円形度の頻度分布において、10%積算値D10が0.54~0.80であり、
     前記材料中の前記粒子の個数基準におけるメジアン径d50が0.1~10μmである無機固体電解質材料。
  2.  請求項1に記載の無機固体電解質材料であって、
     前記頻度分布における50%積算値D50が0.85未満である無機固体電解質材料。
  3.  請求項1または2に記載の無機固体電解質材料であって、
     前記頻度分布における90%積算値D90が0.95以下である無機固体電解質材料。
  4.  請求項1~3のいずれか1項に記載の無機固体電解質材料であって、
     前記頻度分布における50%積算値をD50とし、前記頻度分布における90%積算値をD90としたとき、(D90-D10)/D50の値が0.10~0.45である無機固体電解質材料。
  5.  請求項1~4のいずれか1項に記載の無機固体電解質材料であって、
     構成元素としてLi、PおよびSを含む無機固体電解質材料。
  6.  請求項5に記載の無機固体電解質材料であって、
     当該無機固体電解質材料中の前記Pの含有量に対する前記Liの含有量のモル比Li/Pが1.0以上5.0以下であり、前記Pの含有量に対する前記Sの含有量のモル比S/Pが2.0以上6.0以下である無機固体電解質材料。
  7.  請求項1~6のいずれか一項に記載の無機固体電解質材料であって、
     リチウムイオン電池に用いられる無機固体電解質材料。
  8.  請求項1~7のいずれか1項に記載の無機固体電解質材料を含む固体電解質。
  9.  請求項8に記載の固体電解質を主成分として含む固体電解質膜。
  10.  請求項9に記載の固体電解質膜であって、
     粒子状の前記固体電解質の加圧成形体である固体電解質膜。
  11.  請求項9または10に記載の固体電解質膜であって、
     当該固体電解質膜中のバインダー樹脂の含有量が、前記固体電解質膜の全体を100質量%としたとき、0.5質量%未満である固体電解質膜。
  12.  請求項9~11のいずれか1項に記載の固体電解質膜であって、
     当該固体電解質膜中の前記無機固体電解質材料の含有量が、前記固体電解質膜の全体を100質量%としたとき、50質量%以上である固体電解質膜。
  13.  正極活物質層を含む正極と、電解質層と、負極活物質層を含む負極とを備えたリチウムイオン電池であって、
     前記正極活物質層、前記電解質層および前記負極活物質層のうち少なくとも一つが、請求項1~7のいずれか1項に記載の無機固体電解質材料を含むリチウムイオン電池。
PCT/JP2021/041739 2020-11-30 2021-11-12 無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池 WO2022113782A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020237020709A KR20230109720A (ko) 2020-11-30 2021-11-12 무기 고체 전해질 재료, 고체 전해질, 고체 전해질막 및 리튬 이온 전지
JP2022565225A JPWO2022113782A1 (ja) 2020-11-30 2021-11-12
US18/038,861 US20240097183A1 (en) 2020-11-30 2021-11-12 Inorganic solid electrolyte material, solid electrolyte, solid electrolyte membrane, and lithium ion battery
EP21897756.9A EP4254563A4 (en) 2020-11-30 2021-11-12 INORGANIC SOLID ELECTROLYTE MATERIAL, SOLID ELECTROLYTE, SOLID ELECTROLYTE FILM AND LITHIUM-ION BATTERY
CN202180080025.5A CN116636046A (zh) 2020-11-30 2021-11-12 无机固体电解质材料、固体电解质、固体电解质膜和锂离子电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-197942 2020-11-30
JP2020197942 2020-11-30

Publications (1)

Publication Number Publication Date
WO2022113782A1 true WO2022113782A1 (ja) 2022-06-02

Family

ID=81755943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041739 WO2022113782A1 (ja) 2020-11-30 2021-11-12 無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池

Country Status (6)

Country Link
US (1) US20240097183A1 (ja)
EP (1) EP4254563A4 (ja)
JP (1) JPWO2022113782A1 (ja)
KR (1) KR20230109720A (ja)
CN (1) CN116636046A (ja)
WO (1) WO2022113782A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012129150A (ja) * 2010-12-17 2012-07-05 Toyota Motor Corp 硫化物固体電解質材料、全固体電池、硫化物固体電解質材料の製造方法、固体電解質層の製造方法
JP2015153466A (ja) * 2014-02-10 2015-08-24 古河機械金属株式会社 固体電解質シートおよび全固体型リチウムイオン電池
WO2016017714A1 (ja) * 2014-07-31 2016-02-04 富士フイルム株式会社 全固体二次電池、ならびに、無機固体電解質粒子、固体電解質組成物、電池用電極シートおよび全固体二次電池の製造方法
JP2020197942A (ja) 2019-06-03 2020-12-10 株式会社デンソー 入力装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5912550B2 (ja) * 2012-01-11 2016-04-27 出光興産株式会社 電極材料、電極及びそれを用いた電池
WO2018164224A1 (ja) * 2017-03-08 2018-09-13 出光興産株式会社 硫化物固体電解質粒子
KR20210091046A (ko) * 2018-11-22 2021-07-21 이데미쓰 고산 가부시키가이샤 황화물 고체 전해질 및 그 처리 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012129150A (ja) * 2010-12-17 2012-07-05 Toyota Motor Corp 硫化物固体電解質材料、全固体電池、硫化物固体電解質材料の製造方法、固体電解質層の製造方法
JP2015153466A (ja) * 2014-02-10 2015-08-24 古河機械金属株式会社 固体電解質シートおよび全固体型リチウムイオン電池
WO2016017714A1 (ja) * 2014-07-31 2016-02-04 富士フイルム株式会社 全固体二次電池、ならびに、無機固体電解質粒子、固体電解質組成物、電池用電極シートおよび全固体二次電池の製造方法
JP6691481B2 (ja) 2014-07-31 2020-04-28 富士フイルム株式会社 全固体二次電池、ならびに、無機固体電解質粒子、固体電解質組成物、電池用電極シートおよび全固体二次電池の製造方法
JP2020197942A (ja) 2019-06-03 2020-12-10 株式会社デンソー 入力装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4254563A4

Also Published As

Publication number Publication date
KR20230109720A (ko) 2023-07-20
US20240097183A1 (en) 2024-03-21
EP4254563A4 (en) 2024-05-22
CN116636046A (zh) 2023-08-22
JPWO2022113782A1 (ja) 2022-06-02
EP4254563A1 (en) 2023-10-04

Similar Documents

Publication Publication Date Title
WO2020203046A1 (ja) 硫化物系無機固体電解質材料用の窒化リチウム組成物
JP2023029406A (ja) 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池
JP2023063326A (ja) 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池
JP2022132312A (ja) 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池
JP2021108296A (ja) Li−P−O−N系無機固体電解質材料、Li−P−O−N系無機固体電解質材料の使用方法、固体電解質、固体電解質膜、リチウムイオン電池およびLi−P−O−N系無機固体電解質材料の製造方法
JP2019186084A (ja) 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池
JP7188957B2 (ja) 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池
WO2022113782A1 (ja) 無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池
JP6994894B2 (ja) 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池
WO2022113783A1 (ja) 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池
WO2021210315A1 (ja) 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池
JP2020164367A (ja) 硫化物系無機固体電解質材料用の五硫化二リン組成物
JP2020061302A (ja) 硫化物系無機固体電解質材料用の五硫化二リン組成物
WO2020203045A1 (ja) 硫化物系無機固体電解質材料用の五硫化二リン組成物
JP7086686B2 (ja) 硫化物系無機固体電解質材料の製造方法
JP7315757B2 (ja) 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池
JP7341699B2 (ja) 硫化物系無機固体電解質材料の製造方法
JP7502524B2 (ja) 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池
JP2020061305A (ja) 硫化物系無機固体電解質材料用の五硫化二リン組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897756

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022565225

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18038861

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180080025.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237020709

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021897756

Country of ref document: EP

Effective date: 20230630