JP2019186084A - 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池 - Google Patents
硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池 Download PDFInfo
- Publication number
- JP2019186084A JP2019186084A JP2018076964A JP2018076964A JP2019186084A JP 2019186084 A JP2019186084 A JP 2019186084A JP 2018076964 A JP2018076964 A JP 2018076964A JP 2018076964 A JP2018076964 A JP 2018076964A JP 2019186084 A JP2019186084 A JP 2019186084A
- Authority
- JP
- Japan
- Prior art keywords
- solid electrolyte
- sulfide
- inorganic solid
- diffraction
- based inorganic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Conductive Materials (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
すなわち、従来の硫化物系無機固体電解質材料には、大気中に曝した際のリチウムイオン伝導性の低下を抑制するという観点において改善の余地があった。
リチウムイオン伝導性を有する硫化物系無機固体電解質材料であって、
線源としてCuKα線を用いたX線回折により得られるスペクトルにおいて回折角2θ=17.2±0.5°の位置および回折角2θ=18.8±0.4°の位置にそれぞれ回折ピークを有し、
回折角2θ=17.2±0.5°の位置に存在する回折ピークの最大回折強度をIBとし、
回折角2θ=18.8±0.4°の位置に存在する回折ピークの最大回折強度をICとしたとき、IC/IBの値が0.27以上である硫化物系無機固体電解質材料が提供される。
リチウムイオン伝導性を有する硫化物系無機固体電解質材料であって、
270℃で2時間熱処理をした後に、線源としてCuKα線を用いたX線回折により得られるスペクトルにおいて、回折角2θ=17.2±0.5°の位置および回折角2θ=18.8±0.4°の位置にそれぞれ回折ピークを有し、
回折角2θ=17.2±0.5°の位置に存在する回折ピークの最大回折強度をIBとし、
回折角2θ=18.8±0.4°の位置に存在する回折ピークの最大回折強度をICとしたとき、IC/IBの値が0.27以上である硫化物系無機固体電解質材料が提供される。
上記硫化物系無機固体電解質材料を含む固体電解質が提供される。
上記固体電解質を主成分として含む固体電解質膜が提供される。
正極活物質層を含む正極と、電解質層と、負極活物質層を含む負極とを備えたリチウムイオン電池であって、
上記正極活物質層、上記電解質層および上記負極活物質層のうち少なくとも一つが、上記硫化物系無機固体電解質材料を含むリチウムイオン電池が提供される。
はじめに、本実施形態に係る硫化物系無機固体電解質材料について説明する。
本実施形態に係る硫化物系無機固体電解質材料は、リチウムイオン伝導性を有する硫化物系無機固体電解質材料であって、線源としてCuKα線を用いたX線回折により得られるスペクトルにおいて回折角2θ=17.2±0.5°の位置および回折角2θ=18.8±0.4°の位置にそれぞれ回折ピークを有し、回折角2θ=17.2±0.5°の位置に存在する回折ピークの最大回折強度をIBとし、回折角2θ=18.8±0.4°の位置に存在する回折ピークの最大回折強度をICとしたとき、IC/IBの値が0.27以上、好ましくは0.35以上、より好ましくは0.40以上、さらに好ましくは0.45以上、さらにより好ましくは0.50以上、特に好ましくは0.60以上である。
IC/IBの値の上限値は特に限定されないが、例えば2.0以下、好ましくは1.5以下、より好ましくは1.2以下、さらに好ましくは1.0以下である。
また、本実施形態に係る硫化物系無機固体電解質材料は、270℃で2時間熱処理をした後に、上記IC/IBの値が上記下限値以上となる構成であってもよい。この場合は、上記IC/IBの値が上記下限値以上となるように、硫化物系無機固体電解質材料を加熱処理してから硫化物系無機固体電解質材料を使用することが好ましい。
この理由については必ずしも明らかではないが、以下の理由が推察される。
まず、本実施形態に係る硫化物系無機固体電解質材料を大気中に暴露すると、回折角2θ=18.8±0.4°の位置に存在する回折ピークが徐々に消失していく。そのため、本実施形態に係る硫化物系無機固体電解質材料は、回折角2θ=18.8±0.4°の位置に存在する回折ピークに起因する構造が大気中の酸素や水分等と反応することによって、大気中でのリチウムイオン伝導性の低下を抑制していると考えられる。そのため、本実施形態に係る硫化物系無機固体電解質材料は、大気中に曝した際のリチウムイオン伝導性の低下を抑制することができると考えられる。
したがって、線源としてCuKα線を用いたX線回折により得られるスペクトルにおいて回折角2θ=17.2±0.5°の位置および回折角2θ=18.8±0.4°の位置にそれぞれ回折ピークを有し、かつ、上記IC/IBの値が上記下限値以上であることは、従来の代表的な硫化物系無機固体電解質材料とは異なる新規な構造が形成されていることを表していると考えられる。
本実施形態において、線源としてCuKα線を用いたX線回折により得られるスペクトルにおいて回折角2θ=17.2±0.5°の位置および回折角2θ=18.8±0.4°の位置にそれぞれ回折ピークを有し、かつ、上記IC/IBの値が上記下限値以上である硫化物系無機固体電解質材料は、硫化物系無機固体電解質材料の組成比率や、原料である無機組成物をガラス化する工程において、水分や酸素と無機組成物との接触を従来よりも高いレベルで防ぐこと、220℃以上の高温で加熱処理すること等により実現することが可能である。
IB/IAの値を上記下限値以上とすることにより、リチウムイオン伝導性をより一層向上させることができる。
また、本実施形態に係る硫化物系無機固体電解質材料において、IB/IAの値の上限値は特に限定されないが、例えば30.0以下、好ましくは20.0以下、より好ましくは15.0以下、さらに好ましくは12.0以下、特に好ましくは9.0以下である。
また、本実施形態に係る硫化物系無機固体電解質材料は、270℃で2時間熱処理をした後に、上記IB/IAの値が上記範囲内となる構成であってもよい。
本実施形態に係る硫化物系無機固体電解質材料の上記IB/IAの値は、硫化物系無機固体電解質材料の組成比率や、原料である無機組成物をガラス化する工程において、水分や酸素と無機組成物との接触を従来よりも高いレベルで防ぐこと、220℃以上の高温で加熱処理すること等により実現することが可能である。
IC/IAの値を上記下限値以上とすることにより、大気中に曝した際のリチウムイオン伝導性の低下をより一層抑制できる。
また、本実施形態に係る硫化物系無機固体電解質材料において、IC/IAの値の上限値は特に限定されないが、例えば30.0以下、好ましくは20.0以下、より好ましくは15.0以下、さらに好ましくは10.0以下、特に好ましくは8.0以下である。
また、本実施形態に係る硫化物系無機固体電解質材料は、270℃で2時間熱処理をした後に、上記IC/IAの値が上記範囲内となる構成であってもよい。
本実施形態に係る硫化物系無機固体電解質材料の上記IC/IAの値は、硫化物系無機固体電解質材料の組成比率や、原料である無機組成物をガラス化する工程において、水分や酸素と無機組成物との接触を従来よりも高いレベルで防ぐこと、220℃以上の高温で加熱処理すること等により実現することが可能である。
また、本実施形態に係る硫化物系無機固体電解質材料は、270℃で2時間熱処理をした後に、線源としてCuKα線を用いたX線回折により得られるスペクトルにおいて回折角2θ=25.6±0.5°の位置、回折角2θ=26.6±0.4°および回折角2θ=29.2±0.8°の位置にそれぞれ回折ピークをさらに有する構成であってもよい。
また、本実施形態に係る硫化物系無機固体電解質材料は、リチウムイオン伝導性、電気化学的安定性、水分や空気中での安定性および取り扱い性等をより一層向上させる観点から、当該硫化物系無機固体電解質材料中の上記Pの含有量に対する上記Liの含有量のモル比Li/Pが好ましくは1.0以上5.0以下であり、より好ましくは2.0以上4.5以下であり、さらに好ましくは3.0以上4.2以下であり、さらにより好ましくは3.3以上4.0以下であり、特に好ましくは3.3以上3.8以下であり、そして上記Pの含有量に対する上記Sの含有量のモル比S/Pが、好ましくは2.0以上6.0以下であり、より好ましくは3.0以上5.0以下であり、さらに好ましくは3.5以上4.5以下であり、特に好ましくは3.8以上4.2以下である。
ここで、本実施形態に係る硫化物系無機固体電解質材料中のLi、PおよびSの含有量は、例えば、ICP発光分光分析やX線分析により求めることができる。
本実施形態に係る硫化物系無機固体電解質材料のリチウムイオン伝導度が上記下限値以上であると、電池特性により一層優れたリチウムイオン電池を得ることができる。さらに、このような硫化物系無機固体電解質材料を用いると、入出力特性により一層優れたリチウムイオン電池を得ることができる。
本実施形態に係る粒子状の硫化物系無機固体電解質材料は特に限定されないが、レーザー回折散乱式粒度分布測定法による重量基準粒度分布における平均粒子径d50が、好ましくは1μm以上100μm以下であり、より好ましくは3μm以上80μm以下、さらに好ましくは5μm以上60μm以下である。
硫化物系無機固体電解質材料の平均粒子径d50を上記範囲内とすることにより、良好なハンドリング性を維持すると共にリチウムイオン伝導性をより一層向上させることができる。
硫化物系無機固体電解質材料の酸化分解電流の最大値が上記上限値以下であると、リチウムイオン電池内での硫化物系無機固体電解質材料の酸化分解を抑制することができるため好ましい。
硫化物系無機固体電解質材料の酸化分解電流の最大値の下限値は特に限定されないが、例えば、0.0001μA以上である。
本実施形態に係る硫化物系無機固体電解質材料を適用した全固体型リチウムイオン電池の例としては、正極と、固体電解質層と、負極とがこの順番に積層されたものが挙げられる。
次に、本実施形態に係る硫化物系無機固体電解質材料の製造方法について説明する。
本実施形態に係る硫化物系無機固体電解質材料の製造方法は、従来の硫化物系無機固体電解質材料の製造方法とは異なるものである。すなわち、上述した線源としてCuKα線を用いたX線回折により得られるスペクトルにおいて回折角2θ=17.2±0.5°の位置および回折角2θ=18.8±0.4°の位置にそれぞれ回折ピークを有し、かつ、上記IC/IBの値が上記下限値以上である硫化物系無機固体電解質材料は、(1)硫化物系無機固体電解質材料の組成比率を高度に制御することや、(2)原料である無機組成物をガラス化する工程において、水分や酸素と無機組成物との接触を従来よりも高いレベルで防ぐこと、(3)220℃以上の高温で加熱処理すること、等の製法上の工夫点を採用することによって初めて得ることができる。
ここで、上記(3)の工程をおこなうと、硫化物系無機固体電解質材料の成膜性が低下する場合があるため、上記(3)の工程は、固体電解質膜を形成してからおこなってもよい。すなわち、本実施形態に係る硫化物系無機固体電解質材料には、上記(3)の工程を行う前の状態の硫化物系無機固体電解質材料も含まれる。
ただし、本実施形態に係る硫化物系無機固体電解質材料は、上記3つの製法上の工夫点を採用することを前提に、例えば、各種原料の混合条件等の具体的な製造条件は種々のものを採用することができる。
以下、本実施形態に係る硫化物系無機固体電解質材料の製造方法をより具体的に説明する。
工程(A):原料である2種以上の無機化合物を含む原料無機組成物を準備する工程
工程(B):水分および酸素の存在量および流入を従来よりも高いレベルで抑制した雰囲気下で、原料無機組成物を機械的処理することにより、原料である無機化合物同士を化学反応させながらガラス化して、ガラス状態の硫化物系無機固体電解質材料を得る工程
工程(C)得られたガラス状態の硫化物系無機固体電解質材料を加熱し、少なくとも一部を結晶化する工程
工程(D):得られた硫化物系無機固体電解質材料を粉砕、分級、または造粒する工程
はじめに、原料である硫化リチウム、硫化リン、窒化リチウム等の2種以上の無機化合物を特定の割合で含む原料無機組成物を準備する。ここで、原料無機組成物中の各原料の混合比は、得られる硫化物系無機固体電解質材料が所望の組成比になるように調整する。
各原料を混合する方法としては各原料を均一に混合できる混合方法であれば特に限定されないが、例えば、ボールミル、ビーズミル、振動ミル、打撃粉砕装置、ミキサー(パグミキサー、リボンミキサー、タンブラーミキサー、ドラムミキサー、V型混合器等)、ニーダー、2軸ニーダー、気流粉砕機等を用いて混合することができる。
各原料を混合するときの攪拌速度や処理時間、温度、反応圧力、混合物に加えられる重力加速度等の混合条件は、混合物の処理量によって適宜決定することができる。
ここで、本実施形態において、硫化リチウムには多硫化リチウムも含まれる。
本実施形態に係る窒化リチウムとしては特に限定されず、市販されている窒化リチウム(例えば、Li3N等)を使用してもよいし、例えば、金属リチウム(例えば、Li箔)と窒素ガスとの反応により得られる窒化リチウムを使用してもよい。高純度な固体電解質材料を得る観点および副反応を抑制する観点から、不純物の少ない窒化リチウムを使用することが好ましい。
つづいて、水分および酸素の存在量および流入を従来よりも高いレベルで抑制した雰囲気下で、原料無機組成物を機械的処理することにより、原料である無機化合物同士を化学反応させながらガラス化して、ガラス状態の硫化物系無機固体電解質材料を得る。
また、工程(B)において、メカノケミカル処理は、水分や酸素を高いレベルで除去した環境下を実現しやすい観点から、乾式メカノケミカル処理であることが好ましい。
メカノケミカル処理を用いると、各原料を微粒子状に粉砕しながら混合することができるため、各原料の接触面積を大きくすることができる。それにより、各原料の反応を促進することができるため、本実施形態に係る硫化物系無機固体電解質材料をより一層効率良く得ることができる。
ここで、水分および酸素の存在量および流入を従来よりも高いレベルで抑制した雰囲気は、例えば、以下の方法により作り出すことができる。
まず、グローブボックス内に混合容器およびガラス化装置用の密閉容器を配置し、次いで、グローブボックス内に対して、ガス精製装置を通じて得られた高純度のドライアルゴンガスやドライ窒素ガス等の不活性ガスの注入および真空脱気を複数回(3回以上が好ましい)おこなう。ここで、上記操作後のグローブボックス内は、高純度のドライアルゴンガスやドライ窒素ガス等の不活性ガスをガス精製装置を通じて循環させて、酸素濃度および水分濃度を好ましくは1.0ppm以下、より好ましくは0.8ppm以下、さらに好ましくは0.6ppm以下にそれぞれ調整する。
次いで、グローブボックス内の混合容器内に2種以上の無機化合物を投入し、次いで、混合することによって原料無機組成物を調製する(工程(A)を意味する)。ここで、グローブボックス内の混合容器内への2種以上の無機化合物の投入は、以下の手順でおこなう。はじめにグローブボックスの本体内部のドアを閉じた状態で、グローブボックスのサイドボックス内に2種以上の無機化合物を入れる。次いで、サイドボックス内に対して、グローブボックス内から導引した高純度のドライアルゴンガスやドライ窒素ガス等の不活性ガスの注入および真空脱気を複数回(3回以上が好ましい)おこない、その後、グローブボックスの本体内部のドアを開けて、グローブボックスの本体内部の混合容器に2種以上の無機化合物を入れ、混合容器を密閉する。
次いで、2種以上の無機化合物を混合後、得られた原料無機組成物を混合容器から取り出し、ガラス化装置用の容器に移し、密閉する。
こうした操作をおこなうことによって、原料無機組成物が入った密閉容器内の水分および酸素の存在量を従来よりも高いレベルで抑制することができ、その結果、工程(B)において、水分および酸素の存在量が従来よりも高いレベルで抑制された雰囲気を作り出すことができる。
つづいて、原料無機組成物が入った密閉容器をグローブボックス内から取り出す。次いで、ドライアルゴンガスやドライ窒素ガス、ドライエアー等のドライガスが充満した雰囲気中(例えば、ドライアルゴンガスやドライ窒素ガス、ドライエアー等を充満させた箱の中)に配置されたガラス化装置に密閉容器をセットし、ガラス化をおこなう。ここで、ガラス化をおこなっている間は、ドライガスを充満させた雰囲気中にドライガスを一定量導入し続けることが好ましい。こうした工夫をおこなうことによって、工程(B)において、水分および酸素の流入を従来よりも高いレベルで抑制した雰囲気を作り出すことができる。
また、密閉容器内に水分および酸素の流入を高いレベルで抑制する観点から、密閉容器の蓋部には、より高い気密性を実現できる観点から、Oリング、フェルールパッキン等の密封性に優れるパッキンを用いることが好ましい。
通常は、線源としてCuKα線を用いたX線回折分析をしたとき、原料由来の回折ピークが消失または低下していたら、原料無機組成物はガラス化され、所望の硫化物系無機固体電解質材料が得られていると判断することができる。
つづいて、得られたガラス状態の硫化物系無機固体電解質材料を加熱することにより、硫化物系無機固体電解質材料の少なくとも一部を結晶化して、ガラスセラミックス状態(結晶化ガラスとも呼ばれる。)の硫化物系無機固体電解質材料を生成する。こうすることにより、より一層リチウムイオン伝導性に優れた硫化物系無機固体電解質材料を得ることができる。
すなわち、本実施形態に係る硫化物系無機固体電解質材料は、リチウムイオン伝導性に優れる点から、ガラスセラミックス状態(結晶化ガラス状態)が好ましい。
ガラス状態の硫化物系無機固体電解質材料を加熱する時間は、所望のガラスセラミックス状態の硫化物系無機固体電解質材料が得られる時間であれば特に限定されるものではないが、例えば、0.5時間以上24時間以下の範囲内であり、好ましくは1時間以上3時間以下である。加熱の方法は特に限定されるものではないが、例えば、焼成炉を用いる方法を挙げることができる。なお、このような加熱する際の温度、時間等の条件は、本実施形態に係る硫化物系無機固体電解質材料の特性を最適なものにするため適宜調整することができる。
ガラス状態の硫化物系無機固体電解質材料を加熱するときの不活性ガスとしては、例えば、アルゴンガス、ヘリウムガス、窒素ガス等が挙げられる。これらの不活性ガスは、製品への不純物の混入を防止するために、高純度である程好ましく、また、水分の接触を避けるために、露点が−70℃以下であることが好ましく、−80℃以下であることが特に好ましい。混合系への不活性ガスの導入方法としては、混合系内が不活性ガス雰囲気で満たされる方法であれば特に限定されないが、不活性ガスをパージする方法、不活性ガスを一定量導入し続ける方法等が挙げられる。
本実施形態に係る硫化物系無機固体電解質材料の製造方法では、必要に応じて、得られた硫化物系無機固体電解質材料を粉砕、分級、または造粒する工程をさらにおこなってもよい。例えば、粉砕により微粒子化し、その後、分級操作や造粒操作によって粒子径を調整することにより、所望の粒子径を有する硫化物系無機固体電解質材料を得ることができる。上記粉砕方法としては特に限定されず、ミキサー、気流粉砕、乳鉢、回転ミル、コーヒーミル等公知の粉砕方法を用いることができる。また、上記分級方法としては特に限定されず、篩等公知の方法を用いることができる。
これらの粉砕または分級は、空気中の水分との接触を防ぐことができる点から、不活性ガス雰囲気下または真空雰囲気下で行うことが好ましい。
つぎに、本実施形態に係る固体電解質について説明する。本実施形態に係る固体電解質は、本実施形態に係る硫化物系無機固体電解質材料を含む。
そして、本実施形態に係る固体電解質は特に限定されないが、本実施形態に係る硫化物系無機固体電解質材料以外の成分として、例えば、本発明の目的を損なわない範囲内で、上述した本実施形態に係る硫化物系無機固体電解質材料とは異なる種類の固体電解質材料を含んでもよい。
これらの中でも、リチウムイオン伝導性に優れ、かつ広い電圧範囲で分解等を起こさない安定性を有する点から、Li2S−P2S5材料が好ましい。ここで、例えば、Li2S−P2S5材料とは、少なくともLi2S(硫化リチウム)とP2S5とを含む無機組成物を機械的処理により互いに化学反応させることにより得られる無機材料を意味する。
ここで、本実施形態において、硫化リチウムには多硫化リチウムも含まれる。
その他のリチウム系無機固体電解質材料としては、例えば、LiPON、LiNbO3、LiTaO3、Li3PO4、LiPO4−xNx(xは0<x≦1)、LiN、LiI、LISICON等が挙げられる。
さらに、これらの無機固体電解質の結晶を析出させて得られるガラスセラミックスも無機固体電解質材料として用いることができる。
ポリマー電解質としては、一般的にリチウムイオン電池に用いられるものを用いることができる。
次に、本実施形態に係る固体電解質膜について説明する。
本実施形態に係る固体電解質膜は、前述した本実施形態に係る硫化物系無機固体電解質材料を含む固体電解質を主成分として含む。
本実施形態に係る固体電解質膜を適用した全固体型リチウムイオン電池の例としては、正極と、固体電解質層と、負極とがこの順番に積層されたものが挙げられる。この場合、固体電解質層が固体電解質膜により構成されたものである。
加圧成形体とすることにより、固体電解質同士の結合が起こり、得られる固体電解質膜の強度はより一層高くなる。その結果、固体電解質の欠落や、固体電解質膜表面のクラックの発生をより一層抑制できる。
本実施形態に係る固体電解質膜中の上記した本実施形態に係る硫化物系無機固体電解質材料の含有量の上限は特に限定されないが、例えば、100質量%以下である。
これにより、固体電解質間の接触性が改善され、固体電解質膜の界面接触抵抗を低下させることができる。その結果、固体電解質膜のリチウムイオン伝導性をより一層向上させることができる。そして、このようなリチウムイオン伝導性に優れた固体電解質膜を用いることにより、得られる全固体型リチウムイオン電池の電池特性を向上できる。
なお、「バインダー樹脂を実質的に含まない」とは、本実施形態の効果が損なわれない程度には含有してもよいことを意味する。また、固体電解質層と正極または負極との間に粘着性樹脂層を設ける場合、固体電解質層と粘着性樹脂層との界面近傍に存在する粘着性樹脂層由来の粘着性樹脂は、「固体電解質膜中のバインダー樹脂」から除かれる。
上記固体電解質を加圧する方法は特に限定されず、例えば、金型のキャビティ表面上に粒子状の固体電解質を堆積させた場合は金型と押し型によるプレス、粒子状の固体電解質を基材表面上に堆積させた場合は金型と押し型によるプレスやロールプレス、平板プレス等を用いることができる。
固体電解質を加圧する圧力は、例えば、10MPa以上500MPa以下である。
固体電解質を加熱する温度は、例えば、40℃以上500℃以下である。
図1は、本発明に係る実施形態のリチウムイオン電池100の構造の一例を示す断面図である。
本実施形態に係るリチウムイオン電池100は、例えば、正極活物質層101を含む正極110と、電解質層120と、負極活物質層103を含む負極130とを備えている。そして、正極活物質層101、負極活物質層103および電解質層120の少なくとも一つが、本実施形態に係る硫化物系無機固体電解質材料を含有する。また、正極活物質層101、負極活物質層103および電解質層120のすべてが、本実施形態に係る硫化物系無機固体電解質材料を含有していることが好ましい。なお、本実施形態では特に断りがなければ、正極活物質を含む層を正極活物質層101と呼ぶ。正極110は、必要に応じて、正極活物質層101に加えて集電体105をさらに含んでもよいし、集電体105を含まなくてもよい。また、本実施形態では特に断りがなければ、負極活物質を含む層を負極活物質層103と呼ぶ。負極130は、必要に応じて、負極活物質層103に加えて集電体105をさらに含んでもよいし、集電体105を含まなくてもよい。
本実施形態に係るリチウムイオン電池100の形状は特に限定されず、円筒型、コイン型、角型、フィルム型その他任意の形状が挙げられる。
正極110は特に限定されず、リチウムイオン電池に一般的に用いられているものを使用することができる。正極110は特に限定されないが、一般的に公知の方法に準じて製造することができる。例えば、正極活物質を含む正極活物質層101をアルミ箔等の集電体105の表面に形成することにより得ることができる。
正極活物質層101の厚みや密度は、電池の使用用途等に応じて適宜決定されるため特に限定されず、一般的に公知の情報に準じて設定することができる。
正極活物質としては特に限定されず一般的に公知のものを使用することができる。例えば、リチウムコバルト酸化物(LiCoO2)、リチウムニッケル酸化物(LiNiO2)、リチウムマンガン酸化物(LiMn2O4)、固溶体酸化物(Li2MnO3−LiMO2(M=Co、Ni等))、リチウム−マンガン−ニッケル酸化物(LiNi1/3Mn1/3Co1/3O2)、オリビン型リチウムリン酸化物(LiFePO4)等の複合酸化物;ポリアニリン、ポリピロール等の導電性高分子;Li2S、CuS、Li−Cu−S化合物、TiS2、FeS、MoS2、Li−Mo−S化合物、Li−Ti−S化合物、Li−V−S化合物、Li−Fe−S化合物等の硫化物系正極活物質;硫黄を含浸したアセチレンブラック、硫黄を含浸した多孔質炭素、硫黄と炭素の混合粉等の硫黄を活物質とした材料;等を用いることができる。これらの正極活物質は1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
これらの中でも、より高い放電容量密度を有し、かつ、サイクル特性により優れる観点から、硫化物系正極活物質が好ましく、Li−Mo−S化合物、Li−Ti−S化合物、Li−V−S化合物から選択される一種または二種以上がより好ましい。
また、Li−Ti−S化合物は構成元素としてLi、Ti、およびSを含んでいるものであり、通常は原料であるチタン硫化物および硫化リチウムを含む無機組成物を機械的処理により互いに化学反応させることにより得ることができる。
Li−V−S化合物は構成元素としてLi、V、およびSを含んでいるものであり、通常は原料であるバナジウム硫化物および硫化リチウムを含む無機組成物を機械的処理により互いに化学反応させることにより得ることができる。
本実施形態に係るバインダー樹脂はリチウムイオン電池に使用可能な通常のバインダー樹脂であれば特に限定されないが、例えば、ポリビニルアルコール、ポリアクリル酸、カルボキシメチルセルロース、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、スチレン・ブタジエン系ゴム、ポリイミド等が挙げられる。これらのバインダーは一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。
負極130は特に限定されず、リチウムイオン電池に一般的に用いられているものを使用することができる。負極130は特に限定されないが、一般的に公知の方法に準じて製造することができる。例えば、負極活物質を含む負極活物質層103を銅等の集電体105の表面に形成することにより得ることができる。
負極活物質層103の厚みや密度は、電池の使用用途等に応じて適宜決定されるため特に限定されず、一般的に公知の情報に準じて設定することができる。
上記負極活物質としては、リチウムイオン電池の負極に使用可能な通常の負極活物質であれば特に限定されないが、例えば、天然黒鉛、人造黒鉛、樹脂炭、炭素繊維、活性炭、ハードカーボン、ソフトカーボン等の炭素質材料;リチウム、リチウム合金、スズ、スズ合金、シリコン、シリコン合金、ガリウム、ガリウム合金、インジウム、インジウム合金、アルミニウム、アルミニウム合金等を主体とした金属系材料;ポリアセン、ポリアセチレン、ポリピロール等の導電性ポリマー;リチウムチタン複合酸化物(例えばLi4Ti5O12)等が挙げられる。これらの負極活物質は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
負極活物質層103中の各種材料の配合割合は、電池の使用用途等に応じて、適宜決定されるため特に限定されず、一般的に公知の情報に準じて設定することができる。
次に、電解質層120について説明する。電解質層120は、正極活物質層101および負極活物質層103の間に形成される層である。
電解質層120とは、セパレーターに非水電解液を含浸させたものや、固体電解質を含む固体電解質層が挙げられる。
上記電解質としては、公知のリチウム塩がいずれも使用でき、活物質の種類に応じて選択すればよい。例えば、LiClO4、LiBF6、LiPF6、LiCF3SO3、LiCF3CO2、LiAsF6、LiSbF6、LiB10Cl10、LiAlCl4、LiCl、LiBr、LiB(C2H5)4、CF3SO3Li、CH3 SO3Li、LiCF3SO3、LiC4F9SO3、Li(CF3SO2)2N、低級脂肪酸カルボン酸リチウム等が挙げられる。
本実施形態に係る固体電解質層における固体電解質の含有量は、所望の絶縁性が得られる割合であれば特に限定されるものではないが、例えば、10体積%以上100体積%以下の範囲内、中でも、50体積%以上100体積%以下の範囲内であることが好ましい。特に、本実施形態においては、固体電解質層が本実施形態に係る硫化物系無機固体電解質材料を含む固体電解質のみから構成されていることが好ましい。
なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
はじめに、以下の実施例および比較例における測定方法を説明する。
レーザー回折散乱式粒度分布測定装置(マルバーン社製、マスターサイザー3000)を用いて、レーザー回折法により、実施例および比較例で得られた硫化物系無機固体電解質材料の粒度分布を測定した。測定結果から、硫化物系無機固体電解質材料について、重量基準の累積分布における50%累積時の粒径(D50、平均粒子径)を求めた。
ICP発光分光分析装置(セイコーインスツルメント社製、SPS3000)を用いて、ICP発光分光分析法により測定し、実施例および比較例で得られた硫化物系無機固体電解質材料中のLi、PおよびSの質量%をそれぞれ求め、それに基づいて、各元素のモル比をそれぞれ計算した。
X線回折装置(リガク社製、RINT2000)を用いて、X線回折分析法により、実施例および比較例で得られた硫化物系無機固体電解質材料の回折スペクトルをそれぞれ求めた。なお、線源としてCuKα線を用いた。ここで、回折角2θ=35.0±0.1°の位置における最大回折強度をバックグラウンド強度IAとし、回折角2θ=17.2±0.5°の位置に存在する回折ピークの最大回折強度をIBとし、回折角2θ=18.8±0.4°の位置に存在する回折ピークの最大回折強度をICとし、回折角2θ=25.6±0.5°の位置に存在する回折ピークの最大回折強度をIDとし、回折角2θ=26.6±0.4°の位置に存在する回折ピークの最大回折強度をIEとし、回折角2θ=29.2±0.8°の位置に存在する回折ピークの最大回折強度をIFとした。また、IB/IAおよびIC/IAをそれぞれ求めた。
実施例および比較例で得られた硫化物系無機固体電解質材料に対して、交流インピーダンス法によるリチウムイオン伝導度の測定をおこなった。また、実施例および比較例で得られた硫化物系無機固体電解質材料1.0gを25℃の大気中に10分間それぞれ暴露した後にも、硫化物系無機固体電解質材料のリチウムイオン伝導度の測定をそれぞれおこなった。
リチウムイオン伝導度の測定はバイオロジック社製、ポテンショスタット/ガルバノスタットSP−300を用いた。試料の大きさは直径9.5mm、厚さ1.2〜2.0mm、測定条件は、印加電圧10mV、測定温度27.0℃、測定周波数域0.1Hz〜7MHz、電極はLi箔とした。
ここで、リチウムイオン伝導度測定用の試料としては、プレス装置を用いて、実施例および比較例で得られた粉末状の硫化物系無機固体電解質材料150mgを270MPa、10分間プレスして得られる直径9.5mm、厚さ1.2〜2.0mmの板状の硫化物系無機固体電解質材料を用いた。
プレス装置を用いて、実施例および比較例で得られた粉末状の硫化物系無機固体電解質材料120〜150mgを270MPa、10分間プレスして直径9.5mm、厚さ1.3mmの板状の硫化物系無機固体電解質材料(ペレット)を得た。次いで、得られたペレットの一方の面に参照極・対極としてLi箔を、18MPa、10分間の条件でプレス圧着し、もう一方の面に作用極としてSUS314箔を密着した。
次いで、バイオロジック社製、ポテンショスタット/ガルバノスタットSP−300を用いて、温度25℃、掃引電圧範囲0〜5V、電圧掃引速度5mV/秒の条件で、硫化物系無機固体電解質材料の酸化分解電流の最大値を求め、以下の基準で評価した。
◎:0.03μA以下
〇:0.03μA超過0.50μA以下
×:0.50μA超過
<実施例1>
硫化物系無機固体電解質材料を以下の手順で作製した。
原料には、Li2S(古河機械金属社製、純度99.9%)、P2S5(関東化学社製)およびLi3N(古河機械金属社製)を使用した。
はじめに、グローブボックス内に回転刃式の粉砕機およびアルミナ製のポット(内容積400mL)を配置し、次いで、グローブボックス内に対して、ガス精製装置を通じて得られた高純度のドライアルゴンガス(H2O<1ppm、O2<1ppm)の注入および真空脱気を3回おこなった。
次いで、グローブボックス内で、回転刃式の粉砕機(回転数18000rpm)を用いて、Li2S粉末とP2S5粉末とLi3N粉末(Li2S:P2S5:Li3N=71.1:23.7:5.3(モル%))の合計5gの混合(混合10秒および静置10秒の操作を10回(累計混合時間:100秒))をおこなうことにより、原料無機組成物を調製した。
ここで、グローブボックス内の回転刃式の粉砕機内へのLi2S粉末、P2S5粉末およびLi3N粉末の投入は、以下の手順でおこなった。はじめにグローブボックスの本体内部のドアを閉じた状態で、グローブボックスのサイドボックス内にLi2S粉末、P2S5粉末およびLi3N粉末を入れた。次いで、サイドボックス内に対して、グローブボックス内から導引した高純度のドライアルゴンガスの注入および真空脱気を3回おこなった。次いで、グローブボックスの本体内部のドアを開けて、グローブボックスの本体内部の回転刃式の粉砕機内にLi2S粉末、P2S5粉末およびLi3N粉末を入れ、粉砕機を密閉した。
次いで、グローブボックス内から、アルミナ製のポットを取り出し、メンブレンエアドライヤーを通して導入した乾燥したドライエアーの雰囲気下に設置したボールミル機にアルミナ製のポットを取り付け、120rpmで500時間混合し、原料無機組成物のガラス化をおこなった。このとき、メンブレンエアドライヤーを通して得られたドライエアーの水分濃度は、600ppmであった。48時間混合する毎にグローブボックス内でポットの内壁についた粉末を掻き落とし、密封後、乾燥した大気雰囲気下でミリングを継続した。
次いで、グローブボックス内にアルミナ製のポットを入れ、得られた粉末をアルミナ製のポットからカーボンるつぼに移し、グローブボックス内に設置した加熱炉で270℃、2時間の加熱処理をおこなった。
得られた硫化物系無機固体電解質材料について各評価をおこなった。得られた結果を表1に示す。
Li2S粉末とP2S5粉末とLi3N粉末の混合割合をLi2S:P2S5:Li3N=67.5:22.5:10.0(モル%)に変更した以外は実施例1と同様にして硫化物系無機固体電解質材料を作製し、各評価をそれぞれおこなった。得られた結果を表1にそれぞれ示す。
Li2S粉末とP2S5粉末とLi3N粉末の混合割合をLi2S:P2S5:Li3N=65.9:22.0:12.2(モル%)に変更した以外は実施例1と同様にして硫化物系無機固体電解質材料を作製し、各評価をそれぞれおこなった。得られた結果を表1にそれぞれ示す。
原料には、Li2S(古河機械金属社製、純度99.9%)、P2S5(関東化学製試薬)を使用した。P4S3は、以下の手順で作製した。
まず、アルゴングローブボックス中で、化学量論量の硫黄(関東化学製試薬99.5%)と赤リン(和光純薬製試薬98%)を石英製蒸留装置に入れ、ゆっくりと180℃まで昇温した後、十分に撹拌しながら反応させた。320℃に1時間保持した後、420℃に昇温することで蒸留物としてP4S3を回収した。取り出したP4S3はメノウ乳鉢で粉砕後、ステンレス製篩で篩い分けし、75μm以下の粉末を回収し固体電解質材料の原料とした。
つづいて、Li2S粉末とP2S5粉末とP4S3粉末の混合割合をLi2S:P2S5:P4S3=77.8:21.1:1.1(モル%)に変更した以外は実施例1と同様にして硫化物固体電解質材料を作製し、各評価をそれぞれおこなった。得られた結果を表1にそれぞれ示す。
Li2S粉末とP2S5粉末とLi3N粉末の混合割合をLi2S:P2S5:Li3N=72.6:24.2:3.2(モル%)に変更した以外は実施例1と同様にして硫化物系無機固体電解質材料を作製し、各評価をそれぞれおこなった。得られた結果を表1にそれぞれ示す。
Li2S粉末とP2S5粉末とLi3N粉末の混合割合をLi2S:P2S5:Li3N=73.8:24.6:1.6(モル%)に変更した以外は実施例1と同様にして硫化物系無機固体電解質材料を作製し、各評価をそれぞれおこなった。得られた結果を表1にそれぞれ示す。
グローブボックス内の水分濃度を4000ppmに調整した以外は実施例1と同様にして硫化物系無機固体電解質材料を作製し、各評価をそれぞれおこなった。得られた結果を表1にそれぞれ示す。
グローブボックス内の水分濃度を4000ppmに調整した以外は実施例2と同様にして硫化物系無機固体電解質材料を作製し、各評価をそれぞれおこなった。得られた結果を表1にそれぞれ示す。
グローブボックス内の水分濃度を4000ppmに調整した以外は実施例3と同様にして硫化物系無機固体電解質材料を作製し、各評価をそれぞれおこなった。得られた結果を表1にそれぞれ示す。
グローブボックス内の水分濃度を4000ppmに調整した以外は実施例4と同様にして硫化物系無機固体電解質材料を作製し、各評価をそれぞれおこなった。得られた結果を表1にそれぞれ示す。
ここで、実施例および比較例で得られた硫化物系無機固体電解質材料のX線回折スペクトルを図2および図3にそれぞれ示す。
101 正極活物質層
103 負極活物質層
105 集電体
110 正極
120 電解質層
130 負極
Claims (18)
- リチウムイオン伝導性を有する硫化物系無機固体電解質材料であって、
線源としてCuKα線を用いたX線回折により得られるスペクトルにおいて回折角2θ=17.2±0.5°の位置および回折角2θ=18.8±0.4°の位置にそれぞれ回折ピークを有し、
回折角2θ=17.2±0.5°の位置に存在する回折ピークの最大回折強度をIBとし、
回折角2θ=18.8±0.4°の位置に存在する回折ピークの最大回折強度をICとしたとき、IC/IBの値が0.27以上である硫化物系無機固体電解質材料。 - 請求項1に記載の硫化物系無機固体電解質材料において、
線源としてCuKα線を用いたX線回折により得られるスペクトルにおいて回折角2θ=35.0±0.1°の位置における最大回折強度をバックグラウンド強度IAとし、回折角2θ=17.2±0.5°の位置に存在する回折ピークの最大回折強度をIBとしたとき、IB/IAの値が2.0以上である硫化物系無機固体電解質材料。 - 請求項1または2に記載の硫化物系無機固体電解質材料において、
線源としてCuKα線を用いたX線回折により得られるスペクトルにおいて回折角2θ=35.0±0.1°の位置における最大回折強度をバックグラウンド強度IAとし、回折角2θ=18.8±0.4°の位置に存在する回折ピークの最大回折強度をICとしたとき、IC/IAの値が2.0以上である硫化物系無機固体電解質材料。 - 請求項1乃至3のいずれか一項に記載の硫化物系無機固体電解質材料において、
線源としてCuKα線を用いたX線回折により得られるスペクトルにおいて回折角2θ=25.6±0.5°の位置、回折角2θ=26.6±0.4°および回折角2θ=29.2±0.8°の位置にそれぞれ回折ピークをさらに有する硫化物系無機固体電解質材料。 - リチウムイオン伝導性を有する硫化物系無機固体電解質材料であって、
270℃で2時間熱処理をした後に、線源としてCuKα線を用いたX線回折により得られるスペクトルにおいて、回折角2θ=17.2±0.5°の位置および回折角2θ=18.8±0.4°の位置にそれぞれ回折ピークを有し、
回折角2θ=17.2±0.5°の位置に存在する回折ピークの最大回折強度をIBとし、
回折角2θ=18.8±0.4°の位置に存在する回折ピークの最大回折強度をICとしたとき、IC/IBの値が0.27以上である硫化物系無機固体電解質材料。 - 請求項5に記載の硫化物系無機固体電解質材料において、
270℃で2時間熱処理をした後に、線源としてCuKα線を用いたX線回折により得られるスペクトルにおいて、回折角2θ=35.0±0.1°の位置における最大回折強度をバックグラウンド強度IAとし、回折角2θ=17.2±0.5°の位置に存在する回折ピークの最大回折強度をIBとしたとき、IB/IAの値が2.0以上である硫化物系無機固体電解質材料。 - 請求項5または6に記載の硫化物系無機固体電解質材料において、
270℃で2時間熱処理をした後に、線源としてCuKα線を用いたX線回折により得られるスペクトルにおいて、回折角2θ=35.0±0.1°の位置における最大回折強度をバックグラウンド強度IAとし、回折角2θ=18.8±0.4°の位置に存在する回折ピークの最大回折強度をICとしたとき、IC/IAの値が2.0以上である硫化物系無機固体電解質材料。 - 請求項5乃至7のいずれか一項に記載の硫化物系無機固体電解質材料において、
270℃で2時間熱処理をした後に、線源としてCuKα線を用いたX線回折により得られるスペクトルにおいて、回折角2θ=25.6±0.5°の位置、回折角2θ=26.6±0.4°および回折角2θ=29.2±0.8°の位置にそれぞれ回折ピークをさらに有する硫化物系無機固体電解質材料。 - 請求項1乃至8のいずれか一項に記載の硫化物系無機固体電解質材料において、
構成元素としてLi、PおよびSを含む硫化物系無機固体電解質材料。 - 請求項9に記載の硫化物系無機固体電解質材料において、
当該硫化物系無機固体電解質材料中の前記Pの含有量に対する前記Liの含有量のモル比Li/Pが1.0以上5.0以下であり、前記Pの含有量に対する前記Sの含有量のモル比S/Pが2.0以上6.0以下である硫化物系無機固体電解質材料。 - 請求項1乃至10のいずれか一項に記載の硫化物系無機固体電解質材料において、
前記硫化物系無機固体電解質材料の形状は粒子状であり、
レーザー回折散乱式粒度分布測定法による重量基準粒度分布における、粒子状の記硫化物系無機固体電解質材料の平均粒子径d50が1μm以上100μm以下である硫化物系無機固体電解質材料。 - 請求項1乃至11のいずれか一項に記載の硫化物系無機固体電解質材料において、
リチウムイオン電池に用いられる硫化物系無機固体電解質材料。 - 請求項1乃至12のいずれか一項に記載の硫化物系無機固体電解質材料を含む固体電解質。
- 請求項13に記載の固体電解質を主成分として含む固体電解質膜。
- 請求項14に記載の固体電解質膜において、
粒子状の前記固体電解質の加圧成形体である固体電解質膜。 - 請求項14または15に記載の固体電解質膜において、
当該固体電解質膜中のバインダー樹脂の含有量が、前記固体電解質膜の全体を100質量%としたとき、0.5質量%未満である固体電解質膜。 - 請求項14乃至16のいずれか一項に記載の固体電解質膜において、
当該固体電解質膜中の前記硫化物系無機固体電解質材料の含有量が、前記固体電解質膜の全体を100質量%としたとき、50質量%以上である固体電解質膜。 - 正極活物質層を含む正極と、電解質層と、負極活物質層を含む負極とを備えたリチウムイオン電池であって、
前記正極活物質層、前記電解質層および前記負極活物質層のうち少なくとも一つが、請求項1乃至12のいずれか一項に記載の硫化物系無機固体電解質材料を含むリチウムイオン電池。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018076964A JP7336833B2 (ja) | 2018-04-12 | 2018-04-12 | 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池 |
JP2023103145A JP7546111B2 (ja) | 2018-04-12 | 2023-06-23 | 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018076964A JP7336833B2 (ja) | 2018-04-12 | 2018-04-12 | 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023103145A Division JP7546111B2 (ja) | 2018-04-12 | 2023-06-23 | 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019186084A true JP2019186084A (ja) | 2019-10-24 |
JP7336833B2 JP7336833B2 (ja) | 2023-09-01 |
Family
ID=68341768
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018076964A Active JP7336833B2 (ja) | 2018-04-12 | 2018-04-12 | 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池 |
JP2023103145A Active JP7546111B2 (ja) | 2018-04-12 | 2023-06-23 | 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2023103145A Active JP7546111B2 (ja) | 2018-04-12 | 2023-06-23 | 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池 |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP7336833B2 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022009679A1 (ja) * | 2020-07-10 | 2022-01-13 | 三菱マテリアル株式会社 | 固体電解質部材の製造方法 |
JP2022022955A (ja) * | 2020-07-10 | 2022-02-07 | 三菱マテリアル株式会社 | 固体電解質部材の製造方法 |
CN114945996A (zh) * | 2020-01-29 | 2022-08-26 | 松下知识产权经营株式会社 | 固体电解质材料及使用了它的电池 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015146239A (ja) * | 2014-02-03 | 2015-08-13 | 古河機械金属株式会社 | 固体電解質材料、リチウムイオン電池および固体電解質材料の製造方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3214054A4 (en) | 2014-10-31 | 2018-07-18 | Idemitsu Kosan Co., Ltd | Sulfide glass and crystalline solid electrolyte production method, crystalline solid electrolyte, sulfide glass and solid-state battery |
CN113571676A (zh) | 2015-04-02 | 2021-10-29 | 松下知识产权经营株式会社 | 电池 |
JP6783736B2 (ja) | 2017-09-29 | 2020-11-11 | トヨタ自動車株式会社 | 硫化物固体電解質 |
-
2018
- 2018-04-12 JP JP2018076964A patent/JP7336833B2/ja active Active
-
2023
- 2023-06-23 JP JP2023103145A patent/JP7546111B2/ja active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015146239A (ja) * | 2014-02-03 | 2015-08-13 | 古河機械金属株式会社 | 固体電解質材料、リチウムイオン電池および固体電解質材料の製造方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114945996A (zh) * | 2020-01-29 | 2022-08-26 | 松下知识产权经营株式会社 | 固体电解质材料及使用了它的电池 |
WO2022009679A1 (ja) * | 2020-07-10 | 2022-01-13 | 三菱マテリアル株式会社 | 固体電解質部材の製造方法 |
JP2022022955A (ja) * | 2020-07-10 | 2022-02-07 | 三菱マテリアル株式会社 | 固体電解質部材の製造方法 |
JP7251562B2 (ja) | 2020-07-10 | 2023-04-04 | 三菱マテリアル株式会社 | 固体電解質部材の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP7336833B2 (ja) | 2023-09-01 |
JP7546111B2 (ja) | 2024-09-05 |
JP2023112139A (ja) | 2023-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102660490B1 (ko) | 황화물계 무기 고체 전해질 재료용 질화리튬 조성물 | |
JP7546111B2 (ja) | 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池 | |
JP7332761B2 (ja) | 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池 | |
JP7427821B2 (ja) | 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池 | |
JP2023164486A (ja) | 硫化物系無機固体電解質材料用の五硫化二リン組成物 | |
JP7502524B2 (ja) | 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池 | |
JP2021108296A (ja) | Li−P−O−N系無機固体電解質材料、Li−P−O−N系無機固体電解質材料の使用方法、固体電解質、固体電解質膜、リチウムイオン電池およびLi−P−O−N系無機固体電解質材料の製造方法 | |
JP2023126791A (ja) | 硫化物系無機固体電解質材料用の硫化リン組成物 | |
JP7188957B2 (ja) | 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池 | |
JP2020053220A (ja) | 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池 | |
JP6994894B2 (ja) | 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池 | |
JP2020061304A (ja) | 硫化物系無機固体電解質材料用の五硫化二リン組成物 | |
JP7315757B2 (ja) | 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池 | |
JP2020061302A (ja) | 硫化物系無機固体電解質材料用の五硫化二リン組成物 | |
JP7086686B2 (ja) | 硫化物系無機固体電解質材料の製造方法 | |
JP7477602B2 (ja) | 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池 | |
WO2020203045A1 (ja) | 硫化物系無機固体電解質材料用の五硫化二リン組成物 | |
JP2020061305A (ja) | 硫化物系無機固体電解質材料用の五硫化二リン組成物 | |
JP2020061303A (ja) | 硫化物系無機固体電解質材料用の五硫化二リン組成物 | |
JP2020061306A (ja) | 五硫化二リン組成物の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210303 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220114 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220301 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220428 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20220517 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20220803 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20230207 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20230314 |
|
C13 | Notice of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: C13 Effective date: 20230425 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230623 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230822 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7336833 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |