JP2020053220A - 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池 - Google Patents

硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池 Download PDF

Info

Publication number
JP2020053220A
JP2020053220A JP2018180407A JP2018180407A JP2020053220A JP 2020053220 A JP2020053220 A JP 2020053220A JP 2018180407 A JP2018180407 A JP 2018180407A JP 2018180407 A JP2018180407 A JP 2018180407A JP 2020053220 A JP2020053220 A JP 2020053220A
Authority
JP
Japan
Prior art keywords
solid electrolyte
sulfide
based inorganic
inorganic solid
electrolyte material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018180407A
Other languages
English (en)
Other versions
JP7199893B2 (ja
Inventor
哲也 松原
Tetsuya Matsubara
哲也 松原
素志 田村
Motoshi Tamura
素志 田村
砂川 晴夫
Haruo Sunakawa
晴夫 砂川
山本 一富
Kazutomi Yamamoto
一富 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Co Ltd
Original Assignee
Furukawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Co Ltd filed Critical Furukawa Co Ltd
Priority to JP2018180407A priority Critical patent/JP7199893B2/ja
Publication of JP2020053220A publication Critical patent/JP2020053220A/ja
Priority to JP2022204042A priority patent/JP2023029406A/ja
Application granted granted Critical
Publication of JP7199893B2 publication Critical patent/JP7199893B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】リチウムイオン伝導性が良好であるとともにクラックの発生が抑制された固体電解質膜を安定的に得ることができる硫化物系無機固体電解質材料を提供する。【解決手段】リチウムイオン伝導性を有し、かつ、構成元素としてLi、PおよびSを含む硫化物系無機固体電解質材料であって、線源としてCuKα線を用いたX線回折により得られるスペクトルにおいて回折角2θ=17.2±0.5°の位置、回折角2θ=25.6±0.5°の位置および回折角2θ=29.2±0.8°の位置にそれぞれ回折ピークを有し、かつ、当該硫化物系無機固体電解質材料を270MPaで10分間プレス成型することにより得られる加圧成形体の密度が1.55g/cm3以上である硫化物系無機固体電解質材料。【選択図】なし

Description

本発明は、硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池に関する。
リチウムイオン電池は、一般的に、携帯電話やノートパソコン等の小型携帯機器の電源として使用されている。また、最近では小型携帯機器以外に、電気自動車や電力貯蔵等の電源としてもリチウムイオン電池は使用され始めている。
現在市販されているリチウムイオン電池には、可燃性の有機溶媒を含む電解液が使用されている。一方、電解液を固体電解質に変えて、電池を全固体化したリチウムイオン電池(以下、全固体型リチウムイオン電池とも呼ぶ。)は、電池内に可燃性の有機溶媒を用いないので、安全装置の簡素化が図れ、製造コストや生産性に優れると考えられている。
このような固体電解質に用いられる固体電解質材料としては、例えば、硫化物系無機固体電解質材料が知られている。
特許文献1(特開2016−27545号公報)には、CuKα線を用いたX線回折測定における2θ=29.86°±1.00°の位置にピークを有し、Li2y+3PS(0.1≦y≦0.175)の組成を有することを特徴とする硫化物系固体電解質材料が記載されている。
特開2016−27545号公報
本発明者らの検討によれば、ガラス状態の硫化物系無機固体電解質材料をアニール処理して得られるガラスセラミックス状態の硫化物系無機固体電解質材料はリチウムイオン伝導性が良好であるものの、粉末同士の結着性が不十分であり、得られる固体電解質膜にクラックが入ってしまう場合があることが明らかになった。
本発明は上記事情に鑑みてなされたものであり、リチウムイオン伝導性が良好であるとともにクラックの発生が抑制された固体電解質膜を安定的に得ることができる硫化物系無機固体電解質材料を提供するものである。
本発明者らは、上記課題を解決できる硫化物系無機固体電解質材料を提供するために鋭意検討した。その結果、特定のX線回折プロファイルを有するとともに、特定の条件でプレス成型したときの密度が特定の範囲にある硫化物系無機固体電解質材料が、リチウムイオン伝導性が良好であるとともにクラックの発生が抑制された固体電解質膜を安定的に得ることができることを見出し、本発明に至った。
すなわち、本発明によれば、
リチウムイオン伝導性を有し、かつ、構成元素としてLi、PおよびSを含む硫化物系無機固体電解質材料であって、
線源としてCuKα線を用いたX線回折により得られるスペクトルにおいて回折角2θ=17.2±0.5°の位置、回折角2θ=25.6±0.5°の位置および回折角2θ=29.2±0.8°の位置にそれぞれ回折ピークを有し、かつ、
当該硫化物系無機固体電解質材料を270MPaで10分間プレス成型することにより得られる加圧成形体の密度が1.55g/cm以上である硫化物系無機固体電解質材料が提供される。
また、本発明によれば、
上記硫化物系無機固体電解質材料を含む固体電解質が提供される。
さらに、本発明によれば、
上記固体電解質を主成分として含む固体電解質膜が提供される。
さらに、本発明によれば、
正極活物質層を含む正極と、電解質層と、負極活物質層を含む負極とを備えたリチウムイオン電池であって、
上記正極活物質層、上記電解質層および上記負極活物質層のうち少なくとも一つが、上記硫化物系無機固体電解質材料を含むリチウムイオン電池が提供される。
本発明によれば、リチウムイオン伝導性が良好であるとともにクラックの発生が抑制された固体電解質膜を安定的に得ることができる硫化物系無機固体電解質材料を提供することができる。
本発明に係る実施形態のリチウムイオン電池の構造の一例を示す断面図である。 実施例で得られた硫化物系無機固体電解質材料のX線回折スペクトルを示す図である。 比較例で得られた硫化物系無機固体電解質材料のX線回折スペクトルを示す図である。
以下に、本発明の実施形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には共通の符号を付し、適宜説明を省略する。また、図は概略図であり、実際の寸法比率とは一致していない。数値範囲の「A〜B」は特に断りがなければ、A以上B以下を表す。
[硫化物系無機固体電解質材料]
はじめに、本実施形態に係る硫化物系無機固体電解質材料について説明する。
本実施形態に係る硫化物系無機固体電解質材料は、リチウムイオン伝導性を有し、かつ、構成元素としてLi、PおよびSを含む硫化物系無機固体電解質材料であって、線源としてCuKα線を用いたX線回折により得られるスペクトルにおいて回折角2θ=17.2±0.5°の位置、回折角2θ=25.6±0.5°の位置および回折角2θ=29.2±0.8°の位置にそれぞれ回折ピークを有し、かつ、当該硫化物系無機固体電解質材料を270MPaで10分間プレス成型することにより得られる加圧成形体の密度が1.55g/cm以上である。
本実施形態に係る硫化物系無機固体電解質材料は、X線回折スペクトルにおいて回折角2θ=17.2±0.5°の位置、回折角2θ=25.6±0.5°の位置および回折角2θ=29.2±0.8°の位置にそれぞれ回折ピークを有するとともに、上記条件でプレス成型したときの加圧成形体の密度が上記下限値以上であることにより、リチウムイオン伝導性が良好であるとともにクラックの発生が抑制された固体電解質膜を安定的に得ることができる。
この理由については必ずしも明らかではないが、以下の理由が推察される。
本実施形態に係る硫化物系無機固体電解質材料において、上記条件でプレス成型したときの加圧成形体の密度が上記下限値以上であることにより、硫化物系無機固体電解質材料の粉末同士の結着性が良好となり、固体電解質膜をより薄く、より広く、かつより緻密に形成することができ、クラックの発生が抑制された固体電解質膜を安定的に得ることが可能となると考えられる。
また、上記X線プロファイルを有することによって、リチウムイオンがより容易にホッピングするような構造になり、その結果、本実施形態に係る硫化物系無機固体電解質材料は、リチウムイオンの拡散性に優れるため、リチウムイオン電導性を良好にすることができると考えられる。
本実施形態において、X線回折スペクトルにおいて回折角2θ=17.2±0.5°の位置、回折角2θ=25.6±0.5°の位置および回折角2θ=29.2±0.8°の位置にそれぞれ回折ピークを有するとともに、上記条件でプレス成型したときの加圧成形体の密度が上記下限値以上である硫化物系無機固体電解質材料は、硫化物系無機固体電解質材料の組成比率を高度に制御するとともに、せん断応力および圧縮応力を組み合わせた粉砕装置を用いて、原料である無機組成物をガラス化する工程およびアニール処理する工程を連続的におこない、従来よりも強力なせん断力および圧縮力をかけて硫化物系無機固体電解質材料を製造すること等により実現することが可能である。
本実施形態に係る硫化物系無機固体電解質材料は、線源としてCuKα線を用いたX線回折により得られるスペクトルにおいて回折角2θ=17.2±0.5°の位置、回折角2θ=25.6±0.5°の位置および回折角2θ=29.2±0.8°の位置にそれぞれ回折ピークを有する。
これにより、電気化学安定性を良好に維持しつつ、リチウムイオン伝導性を向上させることができる。
本実施形態に係る硫化物系無機固体電解質材料は、線源としてCuKα線を用いたX線回折により得られるスペクトルにおいて回折角2θ=35.0±0.1°の位置における最大回折強度をバックグラウンド強度Iとし、回折角2θ=17.2±0.5°の位置に存在する回折ピークの最大回折強度をIとしたとき、I/Iの値が好ましくは2.0以上、より好ましくは3.5以上、さらに好ましくは5.0以上、特に好ましくは6.0以上である。
/Iの値を上記下限値以上とすることにより、リチウムイオン伝導性をより一層向上させることができる。
また、本実施形態に係る硫化物系無機固体電解質材料において、I/Iの値の上限値は特に限定されないが、例えば30.0以下、好ましくは20.0以下、さらに好ましくは15.0以下、特に好ましくは13.0以下である。
本実施形態に係る硫化物系無機固体電解質材料の上記I/Iの値は、硫化物系無機固体電解質材料の組成比率を調整することや、原料である無機組成物をガラス化する工程やアニール処理する工程を、せん断応力および圧縮応力を組み合わせた粉砕装置を用いて連続的におこなうこと等により実現することが可能である。
本実施形態に係る硫化物系無機固体電解質材料は、線源としてCuKα線を用いたX線回折により得られるスペクトルにおいて回折角2θ=35.0±0.1°の位置における最大回折強度をバックグラウンド強度Iとし、回折角2θ=25.6±0.5°の位置に存在する回折ピークの最大回折強度をIとしたとき、I/Iの値が好ましくは2.0以上、より好ましくは2.5以上、さらに好ましくは3.0以上である。
また、本実施形態に係る硫化物系無機固体電解質材料において、I/Iの値の上限値は特に限定されないが、例えば20.0以下、好ましくは15.0以下、さらに好ましくは10.0以下、特に好ましくは8.0以下である。
本実施形態に係る硫化物系無機固体電解質材料の上記I/Iの値は、硫化物系無機固体電解質材料の組成比率を調整すること等により実現することが可能である。
本実施形態に係る硫化物系無機固体電解質材料は、線源としてCuKα線を用いたX線回折により得られるスペクトルにおいて回折角2θ=35.0±0.1°の位置における最大回折強度をバックグラウンド強度Iとし、回折角2θ=29.2±0.8°の位置に存在する回折ピークの最大回折強度をIとしたとき、I/Iの値が好ましくは2.0以上、より好ましくは3.0以上、さらに好ましくは4.0以上、特に好ましくは5.0以上である。
また、本実施形態に係る硫化物系無機固体電解質材料において、I/Iの値の上限値は特に限定されないが、例えば30.0以下、好ましくは15.0以下、さらに好ましくは13.0以下、特に好ましくは10.5以下である。
本実施形態に係る硫化物系無機固体電解質材料の上記I/Iの値は、硫化物系無機固体電解質材料の組成比率を調整すること等により実現することが可能である。
また、本実施形態に係る硫化物系無機固体電解質材料は、線源としてCuKα線を用いたX線回折により得られるスペクトルにおいて回折角2θ=26.6±0.4°の位置にさらに回折ピークを有することが好ましい。
これにより、電気化学安定性を良好に維持しつつ、リチウムイオン伝導性をより一層向上させることができる。
この理由については必ずしも明らかではないが、以下の理由が推察される。
回折角2θ=26.6±0.4°の位置にさらに回折ピークを有する硫化物系無機固体電解質材料は、LiPS等の従来の代表的な硫化物系無機固体電解質材料とは大きく異なるX線回折プロファイルを示している(LiPSのXRDデーターベースであるJCPDS(Joint Committee on Powder Diffraction Standards)カードのNO.01-076-0973参照)。
そのため、回折角2θ=26.6±0.4°の位置にさらに回折ピークを有する硫化物系無機固体電解質材料は、従来の硫化物系無機固体電解質材料とは異なる新規な構造を有していると考えられる。このような新規な構造はリチウムイオンがより容易にホッピングするような構造であると考えられる。そのため、本実施形態に係る硫化物系無機固体電解質材料は、リチウムイオンの拡散性に優れており、その結果、従来の代表的な硫化物系無機固体電解質材料よりも高いイオン伝導度を発現したと考えられる。
したがって、回折角2θ=17.2±0.5°の位置、回折角2θ=25.6±0.5°の位置、回折角2θ=26.6±0.4°および回折角2θ=29.2±0.8°の位置にそれぞれ回折ピークを有することは、従来の代表的な硫化物系無機固体電解質材料とは異なる新規な構造が形成されていることを表していると考えられる。
本実施形態に係る硫化物系無機固体電解質材料の上記X線回折プロファイルは、硫化物系無機固体電解質材料の組成比率を調整することや、原料である無機組成物をガラス化する工程やアニール処理する工程を、せん断応力および圧縮応力を組み合わせた粉砕装置を用いて連続的におこなうこと等により実現することが可能である。
本実施形態に係る硫化物系無機固体電解質材料は、線源としてCuKα線を用いたX線回折により得られるスペクトルにおいて回折角2θ=35.0±0.1°の位置における最大回折強度をバックグラウンド強度Iとし、回折角2θ=26.6±0.4°の位置に存在する回折ピークの最大回折強度をIとしたとき、I/Iの値が好ましくは2.2以上、より好ましくは2.5以上、さらに好ましくは3.0以上、特に好ましくは3.5以上である。
/Iの値を上記下限値以上とすることにより、リチウムイオン伝導性をより一層向上させることができる。
また、本実施形態に係る硫化物系無機固体電解質材料において、I/Iの値の上限値は特に限定されないが、例えば15.0以下、好ましくは10.0以下、さらに好ましくは8.0以下、さらにより好ましくは6.5以下、特に好ましくは5.0以下である。
本実施形態に係る硫化物系無機固体電解質材料の上記I/Iの値は、硫化物系無機固体電解質材料の組成比率を調整すること等により実現することが可能である。
本実施形態に係る硫化物系無機固体電解質材料は、リチウムイオン伝導性、電気化学的安定性、水分や空気中での安定性および取り扱い性等をより一層向上させる観点から、当該硫化物系無機固体電解質材料中の上記Pの含有量に対する上記Liの含有量のモル比Li/Pが好ましくは1.0以上5.0以下であり、より好ましくは2.0以上4.0以下であり、さらに好ましくは2.5以上3.8以下であり、さらにより好ましくは2.8以上3.6以下であり、さらにより好ましくは3.0以上3.5以下であり、さらにより好ましくは3.1以上3.4以下、特に好ましくは3.1以上3.3以下であり、そして上記Pの含有量に対する上記Sの含有量のモル比S/Pが、好ましくは2.0以上6.0以下であり、より好ましくは3.0以上5.0以下であり、さらに好ましくは3.5以上4.5以下であり、さらにより好ましくは3.8以上4.2以下、さらにより好ましくは3.9以上4.1以下、特に好ましくは4.0である。
ここで、本実施形態に係る硫化物系無機固体電解質材料中のLi、PおよびSの含有量は、例えば、ICP発光分光分析やX線分析により求めることができる。
本実施形態に係る硫化物系無機固体電解質材料において、27.0℃、印加電圧10mV、測定周波数域0.1Hz〜7MHzの測定条件における交流インピーダンス法による硫化物系無機固体電解質材料のリチウムイオン伝導度は、好ましくは2.2×10−4S・cm−1以上、より好ましくは3.0×10−4S・cm−1以上、さらに好ましくは4.0×10−4S・cm−1以上、特に好ましくは5.0×10−4S・cm−1以上である。
本実施形態に係る硫化物系無機固体電解質材料のリチウムイオン伝導度が上記下限値以上であると、電池特性により一層優れたリチウムイオン電池を得ることができる。さらに、このような硫化物系無機固体電解質材料を用いると、入出力特性により一層優れたリチウムイオン電池を得ることができる。
本実施形態に係る硫化物系無機固体電解質材料の形状としては、例えば粒子状を挙げることができる。
本実施形態に係る粒子状の硫化物系無機固体電解質材料は特に限定されないが、レーザー回折散乱式粒度分布測定法による重量基準粒度分布における平均粒子径d50が、好ましくは1μm以上100μm以下であり、より好ましくは3μm以上80μm以下、さらに好ましくは5μm以上60μm以下である。
硫化物系無機固体電解質材料の平均粒子径d50を上記範囲内とすることにより、良好なハンドリング性を維持すると共にリチウムイオン伝導性をより一層向上させることができる。
本実施形態に係る硫化物系無機固体電解質材料は電気化学的安定性に優れていることが好ましい。ここで、電気化学的安定性とは、例えば、広い電圧範囲で酸化還元されにくい性質をいう。より具体的には、本実施形態に係る硫化物系無機固体電解質材料において、温度25℃、掃引電圧範囲0〜5V、電圧掃引速度5mV/秒の条件で測定される硫化物系無機固体電解質材料の酸化分解電流の最大値が0.50μA以下であることが好ましく、0.20μA以下であることがより好ましく、0.10μA以下であることがさらに好ましく、0.05μA以下であることがさらにより好ましく、0.03μA以下であることが特に好ましい。
硫化物系無機固体電解質材料の酸化分解電流の最大値が上記上限値以下であると、リチウムイオン電池内での硫化物系無機固体電解質材料の酸化分解を抑制することができるため好ましい。
硫化物系無機固体電解質材料の酸化分解電流の最大値の下限値は特に限定されないが、例えば、0.0001μA以上である。
本実施形態に係る硫化物系無機固体電解質材料は、リチウムイオン伝導性を必要とする任意の用途に用いることができる。中でも、本実施形態に係る硫化物系無機固体電解質材料は、リチウムイオン電池に用いられることが好ましい。より具体的には、リチウムイオン電池における正極活物質層、負極活物質層、電解質層等に使用される。さらに、本実施形態に係る硫化物系無機固体電解質材料は、全固体型リチウムイオン電池を構成する正極活物質層、負極活物質層、固体電解質層等に好適に用いられ、全固体型リチウムイオン電池を構成する固体電解質層に特に好適に用いられる。
本実施形態に係る硫化物系無機固体電解質材料を適用した全固体型リチウムイオン電池の例としては、正極と、固体電解質層と、負極とがこの順番に積層されたものが挙げられる。
[硫化物系無機固体電解質材料の製造方法]
次に、本実施形態に係る硫化物系無機固体電解質材料の製造方法について説明する。
本実施形態に係る硫化物系無機固体電解質材料の製造方法は、従来の硫化物系無機固体電解質材料の製造方法とは異なるものである。すなわち、特定のX線回折プロファイルを有するとともに、特定の条件でプレス成型したときの密度が上記範囲にある硫化物系無機固体電解質材料は、(1)硫化物系無機固体電解質材料の組成比率を高度に制御すること、(2)原料である無機組成物をガラス化する工程およびアニール処理する工程を連続的におこない、従来よりも強力なせん断力および圧縮力をかけて硫化物系無機固体電解質材料を製造すること等の製法上の工夫点を採用することによって初めて得ることができる。
ただし、本実施形態に係る硫化物系無機固体電解質材料は、上記2つの製法上の工夫点を採用することを前提に、例えば、各種原料の混合条件等の具体的な製造条件は種々のものを採用することができる。
以下、本実施形態に係る硫化物系無機固体電解質材料の製造方法をより具体的に説明する。
本実施形態に係る硫化物系無機固体電解質材料は、例えば、以下の工程(A)、(B)および(C)を含む製造方法により得ることができる。また、本実施形態に係る硫化物系無機固体電解質材料の製造方法は、必要に応じて、以下の工程(D)および(E)をさらに含んでもよい。
工程(A):原料である2種以上の無機化合物を含む原料無機組成物を準備する工程
工程(B):せん断応力および圧縮応力を組み合わせた粉砕装置を用いて、原料無機組成物を機械的処理することにより、原料である無機化合物同士を化学反応させながらガラス化して、ガラス状態の硫化物系無機固体電解質材料を得る工程
工程(C)せん断応力および圧縮応力を組み合わせた上記粉砕装置を用いて、ガラス状態の硫化物系無機固体電解質材を機械的処理することによりアニール処理し、少なくとも一部を結晶化する工程
工程(D):準備工程(A)とガラス化工程(B)との間に、工程(A)で準備した上記原料無機組成物を加熱することにより原料無機組成物を結晶化する工程
工程(E):得られた硫化物系無機固体電解質材料を粉砕、分級、または造粒する工程
本実施形態に係る硫化物系無機固体電解質材料の製造方法によれば、せん断応力および圧縮応力を組み合わせた粉砕装置を用いて、ガラス化工程(B)およびアニール処理工程(C)を連続的におこなうため、従来の製造方法に比べて、無機組成物に強力なせん断応力および圧縮応力を与えることができるため、無機組成物を構成する粒子同士の摩擦熱をより効果的に発生させることができる。そのため、本実施形態に係る硫化物系無機固体電解質材料の製造方法によれば、ガラス状態の硫化物系無機固体電解質材料に対して、より効果的に熱を伝えることができ、その結果、従来とは異なる新規な構造を有する硫化物系無機固体電解質材料を実現できていると考えられる。
(原料無機組成物を準備する工程(A))
はじめに、原料である硫化リチウム、硫化リン、窒化リチウム等の2種以上の無機化合物を特定の割合で含む原料無機組成物を準備する。ここで、原料無機組成物中の各原料の混合比は、得られる硫化物系無機固体電解質材料が所望の組成比になるように調整する。
各原料を混合する方法としては各原料を均一に混合できる混合方法であれば特に限定されないが、例えば、クラッシャー、ボールミル、ビーズミル、振動ミル、打撃粉砕装置、ミキサー(パグミキサー、リボンミキサー、タンブラーミキサー、ドラムミキサー、V型混合器等)、ニーダー、2軸ニーダー、気流粉砕機等を用いて混合することができる。
各原料を混合するときの攪拌速度や処理時間、温度、反応圧力、混合物に加えられる重力加速度等の混合条件は、混合物の処理量によって適宜決定することができる。
原料として用いる硫化リチウムとしては特に限定されず、市販されている硫化リチウムを使用してもよいし、例えば、水酸化リチウムと硫化水素との反応により得られる硫化リチウムを使用してもよい。高純度な硫化物系無機固体電解質材料を得る観点および副反応を抑制する観点から、不純物の少ない硫化リチウムを使用することが好ましい。
ここで、本実施形態において、硫化リチウムには多硫化リチウムも含まれる。
原料として用いる硫化リンとしては特に限定されず、市販されている硫化リン(例えば、P、P、P、P等)を使用することができる。高純度な硫化物系無機固体電解質材料を得る観点および副反応を抑制する観点から、不純物の少ない硫化リンを使用することが好ましい。また、硫化リンに代えて、相当するモル比の単体リン(P)および単体硫黄(S)を用いることもできる。単体リン(P)および単体硫黄(S)は、工業的に生産され、販売されているものであれば、特に限定なく使用することができる。
原料としては窒化リチウムを用いてもよい。ここで、窒化リチウム中の窒素はNとして系内に排出されるため、原料である無機化合物として窒化リチウムを利用することで、構成元素としてLi、P、およびSを含む硫化物系無機固体電解質材料に対し、Li組成のみを増加させることが可能となる。
本実施形態に係る窒化リチウムとしては特に限定されず、市販されている窒化リチウム(例えば、LiN等)を使用してもよいし、例えば、金属リチウム(例えば、Li箔)と窒素ガスとの反応により得られる窒化リチウムを使用してもよい。高純度な固体電解質材料を得る観点および副反応を抑制する観点から、不純物の少ない窒化リチウムを使用することが好ましい。
(ガラス化工程(B)およびアニール処理工程(C))
つづいて、せん断応力および圧縮応力を組み合わせた粉砕装置を用いて、上記原料無機組成物を機械的処理することにより、2種以上の上記無機化合物を化学反応させながら上記無機組成物をガラス化するガラス化工程(B)をおこなう。次いで、このガラス化工程(B)に続いて、ガラス化工程(B)で用いた粉砕装置をそのまま用いて、ガラス状態の硫化物系無機固体電解質材料を機械的処理することによりアニール処理し、少なくとも一部を結晶化するアニール処理工程(C)をおこなう。
すなわち、本実施形態に係る硫化物系無機固体電解質材料の製造方法では、せん断応力および圧縮応力を組み合わせた粉砕装置を用いて、ガラス化工程(B)およびアニール処理工程(C)を連続的におこなう。ここで、ガラス化工程(B)およびアニール処理工程(C)とは、明確に区別される必要はなく、ガラス化工程(B)からアニール処理工程(C)に徐々に変化していく場合も含まれる。
本実施形態に係る硫化物系無機固体電解質材料の製造方法におけるガラス化工程(B)では、せん断応力および圧縮応力を組み合わせた粉砕装置を用いて、無機組成物を機械的処理することにより、2種以上の無機化合物を化学反応させながら硫化物系無機固体電解質材料をガラス化する。そして、無機組成物がガラス化した後も、この粉砕装置を用いた機械的処理を連続的におこない、ガラス化した硫化物系無機固体電解質材料のアニール処理をおこなう。ここで、せん断応力および圧縮応力を組み合わせた粉砕装置を用いて、ガラス化した硫化物系無機固体電解質材料に対してせん断応力および圧縮応力をかけ続けていると、硫化物系無機固体電解質材料を構成する粒子同士の摩擦熱によって、ガラス化した硫化物系無機固体電解質材料が加熱され、その結果、ガラス化した硫化物系無機固体電解質材料がアニール処理され、一部が結晶化する。すなわち、本実施形態に係る硫化物系無機固体電解質材料の製造方法におけるアニール処理工程(C)では、ガラス化した硫化物系無機固体電解質材料に対してせん断応力および圧縮応力をかけた際に生じる熱によって、ガラス化した硫化物系無機固体電解質材料をアニール処理することができる。
アニール処理工程(C)をおこなうことにより、ガラス化した硫化物系無機固体電解質材料の少なくとも一部が結晶化して、ガラスセラミックス状態の硫化物系無機固体電解質材料とすることができる。
アニール処理工程(C)におけるガラス化した硫化物系無機固体電解質材料の加熱温度としては、200℃以上500℃以下の範囲内であることが好ましく、220℃以上350℃以下の範囲内であることがより好ましい。
アニール処理工程(C)では、線源としてCuKα線を用いたX線回折により得られるスペクトルにおいて、回折角2θ=17.2±0.5°の位置、回折角2θ=25.6±0.5°の位置および回折角2θ=29.2±0.8°の位置にそれぞれ回折ピークが観察されるまで機械的処理をおこなうことが好ましい。ここで、回折角2θ=17.2±0.5°の位置、回折角2θ=25.6±0.5°の位置および回折角2θ=29.2±0.8°の位置にそれぞれ回折ピークが観察されることは、ガラス化した硫化物系無機固体電解質材料の少なくとも一部が結晶化して、ガラスセラミックス状態になっていることを意味すると考えられる。
ガラス化工程(B)およびアニール処理工程(C)における上記機械的処理は、2種以上の上記無機化合物を機械的に衝突させることにより、化学反応させながら上記無機組成物をガラス化させたり、ガラス化した無機組成物をアニール処理したりすることができるものであり、例えば、メカノケミカル処理等が挙げられる。ここで、メカノケミカル処理とは、対象の組成物にせん断力や衝突力のような機械的エネルギーを加える方法である。
ガラス化工程(B)およびアニール処理工程(C)において、上記機械的処理は乾式でおこなうことが好ましい。これにより、ガラス化した硫化物系無機固体電解質材料から有機溶媒等の液体成分を除去する操作が不要となり、硫化物系無機固体電解質材料の生産性をより向上させることができる。また、硫化物系無機固体電解質材料と有機溶媒との反応を防ぐことができる。さらに、有機溶媒等の液体成分を使用しないため、製造工程における安全性もより一層良好にすることができる。
本実施形態に係るせん断応力および圧縮応力を組み合わせた粉砕装置としては、例えば、ロールミル;削岩機や振動ドリル、インパクトドライバ等で代表される回転(せん断応力)および打撃(圧縮応力)を組み合わせた機構からなる回転・打撃粉砕装置;高圧型グライディングロール;ローラ式竪型ミルやボール式竪型ミル等の竪型ミル等が挙げられる。これらの中でも、連続生産性に優れている観点から、ロールミルおよび竪型ミルが好ましく、ロールミルがより好ましい。
また、本実施形態に係るロールミルは3本以上のロールにより構成されていることが好ましい。これによりガラス化処理およびアニール処理をより一層連続的におこなうことができるため、得られる硫化物系無機固体電解質材料の生産性をより一層向上させることができる。
また、本実施形態に係るロールミルを構成するロールの直径は、40mm以上であることが好ましく、50mm以上であることがより好ましく、60mm以上であることがさらに好ましい。これにより、ロール間に存在する原料無機組成物に対し、より一層強力なせん断応力および圧縮応力を与えることができるため、原料無機組成物のガラス化をより一層効率良く進めることができる。さらに、ロール間に存在するガラス化した硫化物系無機固体電解質材料に対しより一層強力なせん断応力および圧縮応力を与えることができるため、硫化物系無機固体電解質材料を構成する粒子同士の摩擦熱をより効果的に発生させることができ、その結果、ガラス化した硫化物系無機固体電解質材料のアニール処理をより効果的に進めることが可能となる。
また、本実施形態に係るロールミルは、隣接するロールの回転速度が異なることが好ましい。これにより、ロール間に存在する無機組成物に対し、圧縮応力を与えつつ、より効果的にせん断応力を与えることができるため、原料無機組成物のガラス化をより一層効率良く進めることができる。
また、本実施形態に係るロールミルは、隣接するロールの回転する向きが異なることが好ましい。これにより、ロール間に存在する無機組成物に対し、圧縮応力をより効果的に与えることができる。
本実施形態に係るロールミルを構成するロールの少なくとも表面は、セラミックス材料および金属材料から選択される少なくとも一種の材料により構成されていることが好ましい。
金属材料としては、例えば、遠心チルド鋼、SUS、CrメッキSUS、Crメッキ焼入れ鋼等が挙げられる。
また、本実施形態に係るロールミルを構成するロールの少なくとも表面がセラミックス材料により構成されると、得られる硫化物系無機固体電解質材料にロール由来の不要な金属成分が混入してしまうことを抑制することができ、純度がより一層高い硫化物系無機固体電解質材料を得ることが可能となる。
このようなセラミックス材料としては、例えば、安定化ジルコニア、アルミナ、シリコンカーバイド、シリコンナイトライド等が挙げられる。
これらの中でも比較的安価で高精度な大型部品を作製できるアルミナが好ましい。
以下、粉砕装置として3本のロールからなる3本ロールミルを用いて、本実施形態に係るガラス化工程(B)およびアニール処理工程(C)をおこなう場合について具体的に説明する。
3本ロールミルは、例えば、第一のロール、第二のロール、第三のロールおよびブレードにより構成される。
はじめに、2種以上の無機化合物を含む原料無機組成物を第一のロールおよび第二のロールとの隙間である第一のロール間に投入する。
第一のロール間に進入した原料無機組成物は、第一のロールおよび第二のロールにより圧縮される。ここで、第一のロールおよび第二のロールにおいて、異なる回転速度を採用することにより、第一のロール間に進入した原料無機組成物に対し、圧縮応力を与えつつ、より効果的にせん断応力を与えることができるため、無機組成物のガラス化およびアニール処理をより一層効率良く進めることができる。
ここで、ロールの回転速度は、第一のロールよりも第二のロールの方を速くし、第二のロールよりも第三のロールの方を速くすることが好ましい。すなわち、本実施形態に係るロールミルにおいて、複数のロールは無機組成物が投入される側のロールから無機組成物が排出される側のロールに向かって徐々に回転数が速くなるように設定されていることが好ましい。各ロールの回転速度はロールの本数や、無機組成物の種類、無機組成物の処理量等によって適宜決定されるため特に限定されないが、例えば、粉砕装置が3本のロールからなる3本ロールミルの場合、第一のロールの速度を1とすると、第二のロールの速度を2〜4、第三のロールの速度を5〜9のように排出される側のロールに向かって回転数を速くすることができる。こうすることにより、ロールに付着した無機組成物をより一層効率良く隣接するロールの表面に移送することができ、その結果、硫化物系無機固体電解質材料の生産性をより一層向上させることができる。
次いで、第一のロール間に無機組成物を通過させた後に、第一のロール間に隣接する第二のロール間に無機組成物を通過させる。この操作を繰り返しおこなうことにより、無機組成物のガラス化およびアニール処理を連続的に行うことができる。ここで、無機組成物は第一のロールおよび第二のロールによる圧縮応力により、第二のロールの表面に付着しているため、第二のロール間に連続的に移送することが可能である。
第二のロール間を通過して得られた硫化物系無機固体電解質材料は第三のロールの表面に付着しており、例えばブレードによりそぎ落されて得ることができる。
また、第二のロール間を通過して得られた硫化物系無機固体電解質材料について、ガラス化またはアニール処理が不十分の場合は、第一のロール間および第二のロール間を通過させる上記処理を繰り返し行うことが好ましい。あるいは、ロールミルにおけるロールの数を4本以上とし、せん断応力および圧縮応力を組み合わせた機械的処理をさらに行うことが好ましい。
ここで、本実施形態に係るロールミルにおいて、無機組成物に対してより効果的に圧縮応力を与える観点から、ロール間の距離は1μm以上100μm以下が好ましく、10μm以上50μm以下がより好ましい。
また、本実施形態に係るロールミルにおいて、無機組成物に対してより効果的にせん断応力を与える観点から、ロールの回転速度は20rpm以上1000rpm以下が好ましく、100rpm以上800rpm以下がより好ましい。
ただし、ロール間の距離およびロールの回転速度は無機組成物の種類や処理量、ロールの本数等によって適宜決定されるため、上記の範囲に限定されない。
また、ガラス化工程(B)およびアニール処理工程(C)における機械的処理は非活性雰囲気下でおこなうことが好ましい。これにより、無機組成物と、水蒸気や酸素等との反応を抑制することができる。
また、上記非活性雰囲気下とは、真空雰囲気下または不活性ガス雰囲気下のことである。上記非活性雰囲気下では、水分の接触を避けるために露点が−50℃以下であることが好ましく、−60℃以下であることがより好ましい。上記不活性ガス雰囲気下とは、アルゴンガス、ヘリウムガス、窒素ガス等の不活性ガスの雰囲気下のことである。これらの不活性ガスは、製品への不純物の混入を防止するために、高純度である程好ましい。混合系への不活性ガスの導入方法としては、混合系内が不活性ガス雰囲気で満たされる方法であれば特に限定されないが、不活性ガスをパージする方法、不活性ガスを一定量導入し続ける方法等が挙げられる。
上記原料無機組成物をガラス化するときや、ガラス化した硫化物系無機固体電解質材料をアニール処理するときの回転速度や処理時間、温度等の混合条件は、無機組成物の種類や処理量によって適宜決定することができる。一般的には、回転速度が速いほど、ガラスの生成速度は速くなるためガラス化工程(B)の時間は短くなり、さらに硫化物系無機固体電解質材料の温度は高くなるためアニール処理工程(C)の時間は短くなる。
通常は、線源としてCuKα線を用いたX線回折分析をしたとき、ガラス化工程(B)を行う前の無機組成物の回折ピークが消失または低下していたら、上記無機組成物はガラス化されていると判断することができる。また、通常は、線源としてCuKα線を用いたX線回折分析をしたとき、ガラス化工程(B)を行う前の無機組成物やアニール処理工程(C)を行う前の硫化物系無機固体電解質材料が有する回折ピークとは異なる新たな回折ピークが生成していたら、上記無機組成物はアニール処理されて、ガラスセラミックス状態になっていると判断することができる。
(結晶化工程(D))
本実施形態に係る硫化物系無機固体電解質材料の製造方法において、準備工程(A)とガラス化工程(B)との間に、工程(A)で準備した上記原料無機組成物を加熱することにより原料無機組成物を結晶化する工程をさらにおこなってもよい。
すなわち、結晶化した上記原料無機組成物に対し、上記ガラス化工程(B)をおこなってもよい。
上記ガラス化工程(B)の前に結晶化工程(D)をおこなうことにより、原料無機組成物をガラス化する工程(B)を大幅に短縮することができ、その結果、硫化物系無機固体電解質材料の製造時間をより一層短縮することが可能である。この理由については明らかではないが、以下の理由が推察される。
まず、ガラス状態の無機組成物は準安定状態である。一方、結晶状態の無機組成物は安定状態にある。また、2種以上の無機化合物を含む無機組成物を加熱すると活性化エネルギー以上のエネルギーを簡単に与えることができるので、エネルギーの放出とともに低いエネルギー状態である結晶状態の無機組成物が短時間で得られる。そして、安定状態の自由エネルギーと準安定状態の自由エネルギーは近いため、より小さなエネルギーで安定状態の結晶状態から準安定状態のガラス状態にすることができる。
以上の理由から、上記無機組成物をガラス化する工程(B)の前に、無機組成物を結晶化する工程(D)をおこない、あらかじめ無機組成物を安定状態である結晶状態とすることにより、より小さなエネルギーで準安定状態のガラス状態にすることができ、無機組成物をガラス化する工程を大幅に短縮することができると考えられる。
上記無機組成物を加熱する際の温度としては特に限定されないが、例えば、加熱温度は200℃以上400℃以下の範囲内であることが好ましく、220℃以上300℃以下の範囲内であることがより好ましい。
上記無機組成物を加熱する時間は、上記無機組成物を結晶化できる時間であれば特に限定されるものではないが、例えば、1分間以上24時間以下の範囲内であり、好ましくは0.1時間以上10時間以下である。加熱の方法は特に限定されるものではないが、例えば、焼成炉を用いる方法を挙げることができる。なお、このような加熱する際の温度、時間等の条件は、本実施形態の硫化物系無機固体電解質材料の特性を最適なものにするため適宜調整することができる。
また、上記無機組成物が結晶化したかどうかは、例えば、線源としてCuKα線を用いたX線回折により得られるスペクトルにおいて、新たな結晶ピークが生成したか否かで判断することができる。
(粉砕、分級、または造粒する工程(E))
本実施形態の硫化物系無機固体電解質材料の製造方法では、必要に応じて、得られた硫化物系無機固体電解質材料を粉砕、分級、または造粒する工程をさらにおこなってもよい。例えば、粉砕により微粒子化し、その後、分級操作や造粒操作によって粒子径を調整することにより、所望の粒子径を有する硫化物系無機固体電解質材料を得ることができる。上記粉砕方法としては特に限定されず、ミキサー、気流粉砕、乳鉢、回転ミル、コーヒーミル等公知の粉砕方法を用いることができる。また、上記分級方法としては特に限定されず、篩等公知の方法を用いることができる。
これらの粉砕または分級は、空気中の水分との接触を防ぐことができる点から、不活性ガス雰囲気下または真空雰囲気下で行うことが好ましい。
[固体電解質]
つぎに、本実施形態に係る固体電解質について説明する。本実施形態に係る固体電解質は、本実施形態に係る硫化物系無機固体電解質材料を含む。
そして、本実施形態に係る固体電解質は特に限定されないが、本実施形態に係る硫化物系無機固体電解質材料以外の成分として、例えば、本発明の目的を損なわない範囲内で、上述した本実施形態に係る硫化物系無機固体電解質材料とは異なる種類の固体電解質材料を含んでもよい。
本実施形態に係る固体電解質は上述した本実施形態に係る硫化物系無機固体電解質材料とは異なる種類の固体電解質材料を含んでいてもよい。本実施形態に係る硫化物系無機固体電解質材料とは異なる種類の固体電解質材料としては、イオン伝導性および絶縁性を有するものであれば特に限定されないが、一般的にリチウムイオン電池に用いられるものを用いることができる。例えば、本実施形態に係る硫化物系無機固体電解質材料とは異なる種類の硫化物系無機固体電解質材料、酸化物系無機固体電解質材料、その他のリチウム系無機固体電解質材料等の無機固体電解質材料;ポリマー電解質等の有機固体電解質材料を挙げることができる。
前述した本実施形態に係る硫化物系無機固体電解質材料とは異なる硫化物系無機固体電解質材料としては、例えば、LiS−P材料、LiS−SiS材料、LiS−GeS材料、LiS−Al材料、LiS−SiS−LiPO材料、LiS−P−GeS材料、LiS−LiO−P−SiS材料、LiS−GeS−P−SiS材料、LiS−SnS−P−SiS材料、LiS−P−LiN材料、Li2+X−P材料、LiS−P−P材料等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
これらの中でも、リチウムイオン伝導性に優れ、かつ広い電圧範囲で分解等を起こさない安定性を有する点から、LiS−P材料が好ましい。ここで、例えば、LiS−P材料とは、少なくともLiS(硫化リチウム)とPとを含む無機組成物を機械的処理により互いに化学反応させることにより得られる固体電解質材料を意味する。
ここで、本実施形態において、硫化リチウムには多硫化リチウムも含まれる。
上記酸化物系無機固体電解質材料としては、例えば、LiTi(PO、LiZr(PO、LiGe(PO等のNASICON型、(La0.5+xLi0.5−3x)TiO等のペロブスカイト型、LiO−P材料、LiO−P−LiN材料等が挙げられる。
その他のリチウム系無機固体電解質材料としては、例えば、LiPON、LiNbO、LiTaO、LiPO、LiPO4−x(xは0<x≦1)、LiN、LiI、LISICON等が挙げられる。
さらに、これらの無機固体電解質の結晶を析出させて得られるガラスセラミックスも無機固体電解質材料として用いることができる。
上記有機固体電解質材料としては、例えば、ドライポリマー電解質、ゲル電解質等のポリマー電解質を用いることができる。
ポリマー電解質としては、一般的にリチウムイオン電池に用いられるものを用いることができる。
[固体電解質膜]
次に、本実施形態に係る固体電解質膜について説明する。
本実施形態に係る固体電解質膜は、前述した本実施形態に係る硫化物系無機固体電解質材料を含む固体電解質を主成分として含む。
本実施形態に係る固体電解質膜は、例えば、全固体型リチウムイオン電池を構成する固体電解質層に用いられる。
本実施形態に係る固体電解質膜を適用した全固体型リチウムイオン電池の例としては、正極と、固体電解質層と、負極とがこの順番に積層されたものが挙げられる。この場合、固体電解質層が固体電解質膜により構成されたものである。
本実施形態に係る固体電解質膜の平均厚みは、好ましくは5μm以上500μm以下であり、より好ましくは10μm以上200μm以下であり、さらに好ましくは20μm以上100μm以下である。上記固体電解質膜の平均厚みが上記下限値以上であると、固体電解質の欠落や、固体電解質膜表面のクラックの発生をより一層抑制できる。また、上記固体電解質膜の平均厚みが上記上限値以下であると、固体電解質膜のインピーダンスをより一層低下させることができる。その結果、得られる全固体型リチウムイオン電池の電池特性をより一層向上できる。
本実施形態に係る固体電解質膜は、前述した本実施形態に係る硫化物系無機固体電解質材料を含む粒子状の固体電解質の加圧成形体であることが好ましい。すなわち、粒子状の固体電解質を加圧し、固体電解質材料同士のアンカー効果で一定の強度を有する固体電解質膜とすることが好ましい。
加圧成形体とすることにより、固体電解質同士の結合が起こり、得られる固体電解質膜の強度はより一層高くなる。その結果、固体電解質の欠落や、固体電解質膜表面のクラックの発生をより一層抑制できる。
本実施形態に係る固体電解質膜中の上記した本実施形態に係る硫化物系無機固体電解質材料の含有量は、固体電解質膜の全体を100質量%としたとき、好ましくは50質量%以上、より好ましくは60質量%以上、さらに好ましくは70質量%以上、さらにより好ましくは80質量%以上、特に好ましくは90質量%以上である。これにより、固体電解質間の接触性が改善され、固体電解質膜の界面接触抵抗を低下させることができる。その結果、固体電解質膜のリチウムイオン伝導性をより一層向上させることができる。そして、このようなリチウムイオン伝導性に優れた固体電解質膜を用いることにより、得られる全固体型リチウムイオン電池の電池特性をより一層向上できる。
本実施形態に係る固体電解質膜中の上記した本実施形態に係る硫化物系無機固体電解質材料の含有量の上限は特に限定されないが、例えば、100質量%以下である。
固体電解質膜の平面形状は、特に限定されず、電極や集電体の形状に合わせて適宜選択することが可能であるが、例えば、矩形とすることができる。
また、本実施形態に係る固体電解質膜にはバインダー樹脂が含まれてもよいが、バインダー樹脂の含有量は、固体電解質膜の全体を100質量%としたとき、好ましくは0.5質量%未満、より好ましくは0.1質量%以下、さらに好ましくは0.05質量%以下、さらにより好ましくは0.01質量%以下である。また、本実施形態に係る固体電解質膜は、バインダー樹脂を実質的に含まないことがさらにより好ましく、バインダー樹脂を含まないことが最も好ましい。
これにより、固体電解質間の接触性が改善され、固体電解質膜の界面接触抵抗を低下させることができる。その結果、固体電解質膜のリチウムイオン伝導性をより一層向上させることができる。そして、このようなリチウムイオン伝導性に優れた固体電解質膜を用いることにより、得られる全固体型リチウムイオン電池の電池特性を向上できる。
なお、「バインダー樹脂を実質的に含まない」とは、本実施形態の効果が損なわれない程度には含有してもよいことを意味する。また、固体電解質層と正極または負極との間に粘着性樹脂層を設ける場合、固体電解質層と粘着性樹脂層との界面近傍に存在する粘着性樹脂層由来の粘着性樹脂は、「固体電解質膜中のバインダー樹脂」から除かれる。
上記バインダー樹脂とは無機固体電解質材料間を結着させるために、リチウムイオン電池に一般的に使用される結着剤のことをいい、例えば、ポリビニルアルコール、ポリアクリル酸、カルボキシメチルセルロース、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、スチレン・ブタジエン系ゴム、ポリイミド等が挙げられる。
本実施形態に係る固体電解質膜は、例えば、粒子状の固体電解質を金型のキャビティ表面上または基材表面上に膜状に堆積させ、次いで、膜状に堆積した固体電解質を加圧することにより得ることができる。
上記固体電解質を加圧する方法は特に限定されず、例えば、金型のキャビティ表面上に粒子状の固体電解質を堆積させた場合は金型と押し型によるプレス、粒子状の固体電解質を基材表面上に堆積させた場合は金型と押し型によるプレスやロールプレス、平板プレス等を用いることができる。
固体電解質を加圧する圧力は、例えば、10MPa以上500MPa以下である。
また、必要に応じて、膜状に堆積した無機固体電解質を加圧するとともに加熱してもよい。加熱加圧を行えば固体電解質同士の融着・結合が起こり、得られる固体電解質膜の強度はより一層高くなる。その結果、固体電解質の欠落や、固体電解質膜表面のクラックの発生をより一層抑制できる。
固体電解質を加熱する温度は、例えば、40℃以上500℃以下である。
[リチウムイオン電池]
図1は、本発明に係る実施形態のリチウムイオン電池100の構造の一例を示す断面図である。
本実施形態に係るリチウムイオン電池100は、例えば、正極活物質層101を含む正極110と、電解質層120と、負極活物質層103を含む負極130とを備えている。そして、正極活物質層101、負極活物質層103および電解質層120の少なくとも一つが、本実施形態に係る硫化物系無機固体電解質材料を含有する。また、正極活物質層101、負極活物質層103および電解質層120のすべてが、本実施形態に係る硫化物系無機固体電解質材料を含有していることが好ましい。なお、本実施形態では特に断りがなければ、正極活物質を含む層を正極活物質層101と呼ぶ。正極110は、必要に応じて、正極活物質層101に加えて集電体105をさらに含んでもよいし、集電体105を含まなくてもよい。また、本実施形態では特に断りがなければ、負極活物質を含む層を負極活物質層103と呼ぶ。負極130は、必要に応じて、負極活物質層103に加えて集電体105をさらに含んでもよいし、集電体105を含まなくてもよい。
本実施形態に係るリチウムイオン電池100の形状は特に限定されず、円筒型、コイン型、角型、フィルム型その他任意の形状が挙げられる。
本実施形態に係るリチウムイオン電池100は、一般的に公知の方法に準じて製造される。例えば、正極110、電解質層120および負極130を重ねたものを、円筒型、コイン型、角型、フィルム型その他任意の形状に形成し、必要に応じて、非水電解液を封入することにより作製される。
(正極)
正極110は特に限定されず、リチウムイオン電池に一般的に用いられているものを使用することができる。正極110は特に限定されないが、一般的に公知の方法に準じて製造することができる。例えば、正極活物質を含む正極活物質層101をアルミ箔等の集電体105の表面に形成することにより得ることができる。
正極活物質層101の厚みや密度は、電池の使用用途等に応じて適宜決定されるため特に限定されず、一般的に公知の情報に準じて設定することができる。
正極活物質層101は正極活物質を含む。
正極活物質としては特に限定されず一般的に公知のものを使用することができる。例えば、リチウムコバルト酸化物(LiCoO)、リチウムニッケル酸化物(LiNiO)、リチウムマンガン酸化物(LiMn)、固溶体酸化物(LiMnO−LiMO(M=Co、Ni等))、リチウム−マンガン−ニッケル酸化物(LiNi1/3Mn1/3Co1/3)、オリビン型リチウムリン酸化物(LiFePO)等の複合酸化物;ポリアニリン、ポリピロール等の導電性高分子;LiS、CuS、Li−Cu−S化合物、TiS、FeS、MoS、Li−Mo−S化合物、Li−Ti−S化合物、Li−V−S化合物、Li−Fe−S化合物等の硫化物系正極活物質;硫黄を含浸したアセチレンブラック、硫黄を含浸した多孔質炭素、硫黄と炭素の混合粉等の硫黄を活物質とした材料;等を用いることができる。これらの正極活物質は1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
これらの中でも、より高い放電容量密度を有し、かつ、サイクル特性により優れる観点から、硫化物系正極活物質が好ましく、Li−Mo−S化合物、Li−Ti−S化合物、Li−V−S化合物から選択される一種または二種以上がより好ましい。
ここで、Li−Mo−S化合物は構成元素としてLi、Mo、およびSを含んでいるものであり、通常は原料であるモリブデン硫化物および硫化リチウムを含む無機組成物を機械的処理により互いに化学反応させることにより得ることができる。
また、Li−Ti−S化合物は構成元素としてLi、Ti、およびSを含んでいるものであり、通常は原料であるチタン硫化物および硫化リチウムを含む無機組成物を機械的処理により互いに化学反応させることにより得ることができる。
Li−V−S化合物は構成元素としてLi、V、およびSを含んでいるものであり、通常は原料であるバナジウム硫化物および硫化リチウムを含む無機組成物を機械的処理により互いに化学反応させることにより得ることができる。
正極活物質層101は特に限定されないが、上記正極活物質以外の成分として、例えば、バインダー樹脂、増粘剤、導電助剤、固体電解質材料等から選択される1種以上の材料を含んでもよい。以下、各材料について説明する。
正極活物質層101は、正極活物質同士および正極活物質と集電体105とを結着させる役割をもつバインダー樹脂を含んでもよい。
本実施形態に係るバインダー樹脂はリチウムイオン電池に使用可能な通常のバインダー樹脂であれば特に限定されないが、例えば、ポリビニルアルコール、ポリアクリル酸、カルボキシメチルセルロース、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、スチレン・ブタジエン系ゴム、ポリイミド等が挙げられる。これらのバインダーは一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。
正極活物質層101は、塗布に適したスラリーの流動性を確保する点から、増粘剤を含んでもよい。増粘剤としてはリチウムイオン電池に使用可能な通常の増粘剤であれば特に限定されないが、例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース等のセルロース系ポリマーおよびこれらのアンモニウム塩並びにアルカリ金属塩、ポリカルボン酸、ポリエチレンオキシド、ポリビニルピロリドン、ポリアクリル酸塩、ポリビニルアルコール等の水溶性ポリマー等が挙げられる。これらの増粘剤は一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。
正極活物質層101は、正極110の導電性を向上させる観点から、導電助剤を含んでもよい。導電助剤としてはリチウムイオン電池に使用可能な通常の導電助剤であれば特に限定されないが、例えば、アセチレンブラック、ケチェンブラック等のカーボンブラック、気相法炭素繊維等の炭素材料が挙げられる。
本実施形態に係る正極は上述した本実施形態に係る硫化物系無機固体電解質材料を含む固体電解質を含んでいてもよいし、本実施形態に係る硫化物系無機固体電解質材料とは異なる種類の固体電解質材料を含む固体電解質を含んでいてもよい。本実施形態に係る硫化物系無機固体電解質材料とは異なる種類の固体電解質材料としては、イオン伝導性および絶縁性を有するものであれば特に限定されないが、一般的にリチウムイオン電池に用いられるものを用いることができる。例えば、硫化物系無機固体電解質材料、酸化物系無機固体電解質材料、その他のリチウム系無機固体電解質材料等の無機固体電解質材料;ポリマー電解質等の有機固体電解質材料を挙げることができる。より具体的には、本実施形態に係る固体電解質の説明で挙げた無機固体電解質材料を用いることができる。
正極活物質層101中の各種材料の配合割合は、電池の使用用途等に応じて、適宜決定されるため特に限定されず、一般的に公知の情報に準じて設定することができる。
(負極)
負極130は特に限定されず、リチウムイオン電池に一般的に用いられているものを使用することができる。負極130は特に限定されないが、一般的に公知の方法に準じて製造することができる。例えば、負極活物質を含む負極活物質層103を銅等の集電体105の表面に形成することにより得ることができる。
負極活物質層103の厚みや密度は、電池の使用用途等に応じて適宜決定されるため特に限定されず、一般的に公知の情報に準じて設定することができる。
負極活物質層103は負極活物質を含む。
上記負極活物質としては、リチウムイオン電池の負極に使用可能な通常の負極活物質であれば特に限定されないが、例えば、天然黒鉛、人造黒鉛、樹脂炭、炭素繊維、活性炭、ハードカーボン、ソフトカーボン等の炭素質材料;リチウム、リチウム合金、スズ、スズ合金、シリコン、シリコン合金、ガリウム、ガリウム合金、インジウム、インジウム合金、アルミニウム、アルミニウム合金等を主体とした金属系材料;ポリアセン、ポリアセチレン、ポリピロール等の導電性ポリマー;リチウムチタン複合酸化物(例えばLiTi12)等が挙げられる。これらの負極活物質は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
負極活物質層103は特に限定されないが、上記負極活物質以外の成分として、例えば、バインダー樹脂、増粘剤、導電助剤、固体電解質材料等から選択される1種以上の材料を含んでもよい。これらの材料としては、特に限定はされないが、例えば、上述した正極110に用いる材料と同様のものを挙げることができる。
負極活物質層103中の各種材料の配合割合は、電池の使用用途等に応じて、適宜決定されるため特に限定されず、一般的に公知の情報に準じて設定することができる。
(電解質層)
次に、電解質層120について説明する。電解質層120は、正極活物質層101および負極活物質層103の間に形成される層である。
電解質層120とは、セパレーターに非水電解液を含浸させたものや、固体電解質を含む固体電解質層が挙げられる。
本実施形態に係るセパレーターとしては正極110と負極130を電気的に絶縁させ、リチウムイオンを透過する機能を有するものであれば特に限定されないが、例えば、多孔性膜を用いることができる。
多孔性膜としては微多孔性高分子フィルムが好適に使用され、材質としてポリオレフィン、ポリイミド、ポリフッ化ビニリデン、ポリエステル等が挙げられる。特に、多孔性ポリオレフィンフィルムが好ましく、具体的には多孔性ポリエチレンフィルム、多孔性ポリプロピレンフィルム等が挙げられる。
上記非水電解液とは、電解質を溶媒に溶解させたものである。
上記電解質としては、公知のリチウム塩がいずれも使用でき、活物質の種類に応じて選択すればよい。例えば、LiClO、LiBF、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiB10Cl10、LiAlCl、LiCl、LiBr、LiB(C、CFSOLi、CHSOLi、LiCFSO、LiCSO、Li(CFSON、低級脂肪酸カルボン酸リチウム等が挙げられる。
上記電解質を溶解する溶媒としては、電解質を溶解させる液体として通常用いられるものであれば特に限定されず、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、ビニレンカーボネート(VC)等のカーボネート類;γ−ブチロラクトン、γ−バレロラクトン等のラクトン類;トリメトキシメタン、1,2−ジメトキシエタン、ジエチルエーテル、2−エトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン等のエーテル類;ジメチルスルホキシド等のスルホキシド類;1,3−ジオキソラン、4−メチル−1,3−ジオキソラン等のオキソラン類;アセトニトリル、ニトロメタン、ホルムアミド、ジメチルホルムアミド等の含窒素類;ギ酸メチル、酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル等の有機酸エステル類;リン酸トリエステルやジグライム類;トリグライム類;スルホラン、メチルスルホラン等のスルホラン類;3−メチル−2−オキサゾリジノン等のオキサゾリジノン類;1,3−プロパンスルトン、1,4−ブタンスルトン、ナフタスルトン等のスルトン類;等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
本実施形態に係る固体電解質層は、正極活物質層101および負極活物質層103の間に形成される層であり、固体電解質材料を含む固体電解質により形成される層である。固体電解質層に含まれる固体電解質は、リチウムイオン伝導性を有するものであれば特に限定されるものではないが、本実施形態においては、本実施形態に係る硫化物系無機固体電解質材料を含む固体電解質であることが好ましい。
本実施形態に係る固体電解質層における固体電解質の含有量は、所望の絶縁性が得られる割合であれば特に限定されるものではないが、例えば、10体積%以上100体積%以下の範囲内、中でも、50体積%以上100体積%以下の範囲内であることが好ましい。特に、本実施形態においては、固体電解質層が本実施形態に係る硫化物系無機固体電解質材料を含む固体電解質のみから構成されていることが好ましい。
また、本実施形態に係る固体電解質層は、バインダー樹脂を含有していてもよい。バインダー樹脂を含有することにより、可撓性を有する固体電解質層を得ることができる。バインダー樹脂としては、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等のフッ素含有結着材を挙げることができる。固体電解質層の厚さは、例えば、0.1μm以上1000μm以下の範囲内、中でも、0.1μm以上300μm以下の範囲内であることが好ましい。
以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
以下、本発明を実施例および比較例により説明するが、本発明はこれらに限定されるものではない。
[1]測定方法
はじめに、以下の実施例および比較例における測定方法を説明する。
(1)粒度分布
レーザー回折散乱式粒度分布測定装置(マルバーン社製、マスターサイザー3000)を用いて、レーザー回折法により、実施例および比較例で得られた硫化物系無機固体電解質材料の粒度分布を測定した。測定結果から、硫化物系無機固体電解質材料について、重量基準の累積分布における50%累積時の粒径(D50、平均粒子径)を求めた。
(2)組成比率の測定
ICP発光分光分析装置(セイコーインスツルメント社製、SPS3000)を用いて、ICP発光分光分析法により測定し、実施例および比較例で得られた硫化物系無機固体電解質材料中のLi、PおよびSの質量%をそれぞれ求め、それに基づいて、各元素のモル比をそれぞれ計算した。
(3)X線回折分析
X線回折装置(リガク社製、RINT2000)を用いて、X線回折分析法により、実施例および比較例で得られた硫化物系無機固体電解質材料の回折スペクトルをそれぞれ求めた。なお、線源としてCuKα線を用いた。ここで、回折角2θ=35.0±0.1°の位置における最大回折強度をバックグラウンド強度Iとし、回折角2θ=17.2±0.5°の位置に存在する回折ピークの最大回折強度をIとし、回折角2θ=25.6±0.5°の位置に存在する回折ピークの最大回折強度をIとし、回折角2θ=29.2±0.8°の位置に存在する回折ピークの最大回折強度をIとし、回折角2θ=26.6±0.4°の位置に存在する回折ピークの最大回折強度をIとした。また、I/I、およびI/I、I/IおよびI/Iをそれぞれ求めた。
(4)リチウムイオン伝導度の測定
実施例および比較例で得られた硫化物系無機固体電解質材料に対して、交流インピーダンス法によるリチウムイオン伝導度の測定をおこなった。
リチウムイオン伝導度の測定はバイオロジック社製、ポテンショスタット/ガルバノスタットSP−300を用いた。試料の大きさは直径9.5mm、厚さ1.2〜2.0mm、測定条件は、印加電圧10mV、測定温度27.0℃、測定周波数域0.1Hz〜7MHz、電極はLi箔とした。
ここで、リチウムイオン伝導度測定用の試料としては、プレス装置を用いて、実施例および比較例で得られた粉末状の硫化物系無機固体電解質材料150mgを270MPa、10分間プレスして得られる直径9.5mm、厚さ1.2〜2.0mmの板状の硫化物系無機固体電解質材料を用いた。
(5)酸化分解電流の最大値の測定
プレス装置を用いて、実施例および比較例で得られた粉末状の硫化物系無機固体電解質材料120〜150mgを270MPa、10分間プレスして直径9.5mm、厚さ1.3mmの板状の硫化物系無機固体電解質材料(ペレット)を得た。次いで、得られたペレットの一方の面に参照極・対極としてLi箔を、18MPa、10分間の条件でプレス圧着し、もう一方の面に作用極としてSUS314箔を密着した。
次いで、バイオロジック社製、ポテンショスタット/ガルバノスタットSP−300を用いて、温度25℃、掃引電圧範囲0〜5V、電圧掃引速度5mV/秒の条件で、硫化物系無機固体電解質材料の酸化分解電流の最大値を求め、以下の基準で評価した。
◎:0.03μA以下
〇:0.03μA超過0.50μA以下
×:0.50μA超過
(6)固体電解質膜の密度の測定
実施例および比較例で得られた粉末状の硫化物系無機固体電解質材料(約90mg)を、270MPaで10分間プレス成型して、直径9.5mmの円盤ペレット状の固体電解質膜(厚み0.78〜0.80mm)を作製した。次いで、得られた固体電解質膜の密度について、固体電解質膜の質量(g)を、固体電解質膜の外形寸法から求められる体積(cm)で割って求めた。
(7)製膜性の評価
実施例および比較例で得られた粉末状の硫化物系無機固体電解質材料(約90mg)を、270MPaで10分間プレス成型して、直径9.5mmの円盤ペレット状の固体電解質膜(厚み0.78〜0.80mm)を作製した。次いで、得られた固体電解質膜の表面を電子顕微鏡(SEM)で観察し、硫化物系無機固体電解質材料の製膜性を以下の基準で評価した。
〇:硫化物系無機固体電解質材料の粉末同士の結着性が良好で、かつ、硫化物系無機固体電解質材料の粉末同士が結着して硫化物系無機固体電解質材料が緻密化している
×:硫化物系無機固体電解質材料の粉末同士の結着性が不良で、かつ、固体電解質膜表面に細かいクラックが発生し、硫化物系無機固体電解質材料が緻密化していない
[2]固体電解質材料の製造
<実施例1>
硫化物系無機固体電解質材料を以下の手順で作製した。
原料には、LiS(古河機械金属社製、純度99.9%)、P(関東化学社製)およびLiN(古河機械金属社製)を使用した。
次いで、グローブボックス内で、クラッシャーを用いて、LiS粉末とP粉末とLiN粉末(LiS:P:LiN=71.1:23.7:5.3(モル%))合計80gを混合することにより、原料無機組成物を調製した。
次いで、原料無機組成物80gを3本ロールミル(アイメックス社製BR−100V)にてメカノケミカル処理し、硫化物系無機固体電解質材料を得た。ここで、第一のロール〜第三のロールの通過を1回とし、合計で70回通過させた。また、各ロールはジルコニア(ZrO)製で直径が63.5mmのものを用い、ロール間の距離は20μmとした。また、第一のロールの回転速度:第二のロールの回転速度:第三のロールの回転速度=1:2.5:6とし、第三のロールの回転速度を700rpmとした。
第一のロール〜第三のロールの通過を70回おこなった後に試料の一部をそれぞれサンプリングし、各物性をそれぞれ評価した。得られた結果を表1に示す。
<実施例2>
第一のロール〜第三のロールの通過の回数を40回に変更した以外は実施例1と同様の方法により硫化物系無機固体電解質材料を作製し、各評価をおこなった。得られた結果を表1に示す。
<実施例3>
第一のロール〜第三のロールの通過の回数を60回に変更した以外は実施例1と同様の方法により硫化物系無機固体電解質材料を作製し、各評価をおこなった。得られた結果を表1に示す。
<実施例4>
LiS粉末とP粉末とLiN粉末との混合比をLiS:P:LiN=72.6:24.2:3.2(モル%)に変更した以外は実施例1と同様の方法により硫化物系無機固体電解質材料を作製し、各評価をおこなった。得られた結果を表1に示す。
<実施例5>
LiS粉末とP粉末とLiN粉末との混合比をLiS:P:LiN=73.8:24.6:1.6(モル%)に変更した以外は実施例1と同様の方法により硫化物系無機固体電解質材料を作製し、各評価をおこなった。得られた結果を表1に示す。
<実施例6>
LiS粉末とP粉末とLiN粉末との混合比をLiS:P:LiN=75.0:25.0:0(モル%)に変更した以外は実施例1と同様の方法により硫化物系無機固体電解質材料を作製し、各評価をおこなった。得られた結果を表1に示す。
<比較例1>
第一のロール〜第三のロールの通過の回数を10回に変更した以外は実施例1と同様の方法により硫化物系無機固体電解質材料を作製した。次いで、得られたガラス状態の硫化物系無機固体電解質材料をカーボンるつぼに移し、グローブボックス内に設置したオーブンで270℃、2時間のアニール処理をおこない、硫化物系無機固体電解質材料を得た。各評価をおこなった。得られた結果を表1に示す。
<比較例2>
硫化物系無機固体電解質材料を以下の手順で作製した。
原料には、LiS(古河機械金属社製、純度99.9%)、P(関東化学社製)およびLiN(古河機械金属社製)を使用した。
次いで、グローブボックス内で、クラッシャーを用いて、LiS粉末とP粉末とLiN粉末(LiS:P:LiN=71.1:23.7:5.3(モル%))合計80gを混合することにより、原料無機組成物を調製した。
つづいて、グローブボックス内のアルミナ製のポット(内容積400mL)の内部に、原料無機組成物2gと直径10mmのZrOボール500gとを投入し、ポットを密閉した。
次いで、グローブボックス内から、アルミナ製のポットを取り出し、乾燥した大気雰囲気下に設置したボールミル機にアルミナ製のポットを取り付け、120rpmで300時間メカノケミカル処理し、原料無機組成物のガラス化をおこなった。24時間混合する毎にグローブボックス内でポットの内壁についた粉末を掻き落とし、密封後、乾燥した大気雰囲気下でミリングを継続した。
ここで、メカノケミカル処理を36時間行った後にポットを開けてみたところ、ポットの内壁には無機組成物の固まりが付着していた。そのため24時間ごとにポットの内壁に付着した無機組成物の固まりをそぎ落とす操作が必要であった。
次いで、グローブボックス内にアルミナ製のポットを入れ、得られた粉末をZrOボールと分離して、アルミナ製のポットからカーボンるつぼに移し、グローブボックス内に設置したオーブンで270℃、2時間のアニール処理をおこない、硫化物系無機固体電解質材料を得た。得られた硫化物系無機固体電解質材料について、各評価をおこなった。得られた結果を表1に示す。
Figure 2020053220
実施例の硫化物系無機固体電解質材料は、リチウムイオン伝導性および製膜性に優れていた。これに対し、比較例の硫化物系無機固体電解質材料はリチウムイオン伝導性に優れていたものの製膜性に劣っていた。
ここで、実施例および比較例で得られた硫化物系無機固体電解質材料のX線回折スペクトルを図2および図3にそれぞれ示す。
100 リチウムイオン電池
101 正極活物質層
103 負極活物質層
105 集電体
110 正極
120 電解質層
130 負極

Claims (16)

  1. リチウムイオン伝導性を有し、かつ、構成元素としてLi、PおよびSを含む硫化物系無機固体電解質材料であって、
    線源としてCuKα線を用いたX線回折により得られるスペクトルにおいて回折角2θ=17.2±0.5°の位置、回折角2θ=25.6±0.5°の位置および回折角2θ=29.2±0.8°の位置にそれぞれ回折ピークを有し、かつ、
    当該硫化物系無機固体電解質材料を270MPaで10分間プレス成型することにより得られる加圧成形体の密度が1.55g/cm以上である硫化物系無機固体電解質材料。
  2. 請求項1に記載の硫化物系無機固体電解質材料において、
    線源としてCuKα線を用いたX線回折により得られるスペクトルにおいて回折角2θ=35.0±0.1°の位置における最大回折強度をバックグラウンド強度Iとし、回折角2θ=17.2±0.5°の位置に存在する回折ピークの最大回折強度をIとしたとき、I/Iの値が2.0以上である硫化物系無機固体電解質材料。
  3. 請求項1または2に記載の硫化物系無機固体電解質材料において、
    線源としてCuKα線を用いたX線回折により得られるスペクトルにおいて回折角2θ=35.0±0.1°の位置における最大回折強度をバックグラウンド強度Iとし、回折角2θ=25.6±0.5°の位置に存在する回折ピークの最大回折強度をIとしたとき、I/Iの値が2.0以上である硫化物系無機固体電解質材料。
  4. 請求項1乃至3のいずれか一項に記載の硫化物系無機固体電解質材料において、
    線源としてCuKα線を用いたX線回折により得られるスペクトルにおいて回折角2θ=35.0±0.1°の位置における最大回折強度をバックグラウンド強度Iとし、回折角2θ=29.2±0.8°の位置に存在する回折ピークの最大回折強度をIとしたとき、I/Iの値が2.0以上である硫化物系無機固体電解質材料。
  5. 請求項1乃至4のいずれか一項に記載の硫化物系無機固体電解質材料において、
    線源としてCuKα線を用いたX線回折により得られるスペクトルにおいて回折角2θ=26.6±0.4°の位置にさらに回折ピークを有し、
    回折角2θ=35.0±0.1°の位置における最大回折強度をバックグラウンド強度Iとし、回折角2θ=26.6±0.4°の位置に存在する回折ピークの最大回折強度をIとしたとき、I/Iの値が2.2以上である硫化物系無機固体電解質材料。
  6. 請求項1乃至5のいずれか一項に記載の硫化物系無機固体電解質材料において、
    当該硫化物系無機固体電解質材料中の前記Pの含有量に対する前記Liの含有量のモル比Li/Pが1.0以上5.0以下であり、前記Pの含有量に対する前記Sの含有量のモル比S/Pが2.0以上6.0以下である硫化物系無機固体電解質材料。
  7. 請求項1乃至6のいずれか一項に記載の硫化物系無機固体電解質材料において、
    27.0℃、印加電圧10mV、測定周波数域0.1Hz〜7MHzの測定条件における交流インピーダンス法による前記硫化物系無機固体電解質材料のリチウムイオン伝導度が2.2×10−4S・cm−1以上である硫化物系無機固体電解質材料。
  8. 請求項1乃至7のいずれか一項に記載の硫化物系無機固体電解質材料において、
    温度25℃、掃引電圧範囲0〜5V、電圧掃引速度5mV/秒の条件で測定される、前記硫化物系無機固体電解質材料の酸化分解電流の最大値が0.50μA以下である硫化物系無機固体電解質材料。
  9. 請求項1乃至8のいずれか一項に記載の硫化物系無機固体電解質材料において、
    前記硫化物系無機固体電解質材料の形状は粒子状であり、
    レーザー回折散乱式粒度分布測定法による重量基準粒度分布における、粒子状の前記硫化物系無機固体電解質材料の平均粒子径d50が1μm以上100μm以下である硫化物系無機固体電解質材料。
  10. 請求項1乃至9のいずれか一項に記載の硫化物系無機固体電解質材料において、
    リチウムイオン電池に用いられる硫化物系無機固体電解質材料。
  11. 請求項1乃至10のいずれか一項に記載の硫化物系無機固体電解質材料を含む固体電解質。
  12. 請求項11に記載の固体電解質を主成分として含む固体電解質膜。
  13. 請求項12に記載の固体電解質膜において、
    粒子状の前記固体電解質の加圧成形体である固体電解質膜。
  14. 請求項12または13に記載の固体電解質膜において、
    当該固体電解質膜中のバインダー樹脂の含有量が、前記固体電解質膜の全体を100質量%としたとき、0.5質量%未満である固体電解質膜。
  15. 請求項12乃至14のいずれか一項に記載の固体電解質膜において、
    当該固体電解質膜中の前記硫化物系無機固体電解質材料の含有量が、前記固体電解質膜の全体を100質量%としたとき、50質量%以上である固体電解質膜。
  16. 正極活物質層を含む正極と、電解質層と、負極活物質層を含む負極とを備えたリチウムイオン電池であって、
    前記正極活物質層、前記電解質層および前記負極活物質層のうち少なくとも一つが、請求項1乃至10のいずれか一項に記載の硫化物系無機固体電解質材料を含むリチウムイオン電池。
JP2018180407A 2018-09-26 2018-09-26 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池 Active JP7199893B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018180407A JP7199893B2 (ja) 2018-09-26 2018-09-26 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池
JP2022204042A JP2023029406A (ja) 2018-09-26 2022-12-21 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018180407A JP7199893B2 (ja) 2018-09-26 2018-09-26 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022204042A Division JP2023029406A (ja) 2018-09-26 2022-12-21 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池

Publications (2)

Publication Number Publication Date
JP2020053220A true JP2020053220A (ja) 2020-04-02
JP7199893B2 JP7199893B2 (ja) 2023-01-06

Family

ID=69997528

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018180407A Active JP7199893B2 (ja) 2018-09-26 2018-09-26 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池
JP2022204042A Pending JP2023029406A (ja) 2018-09-26 2022-12-21 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022204042A Pending JP2023029406A (ja) 2018-09-26 2022-12-21 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池

Country Status (1)

Country Link
JP (2) JP7199893B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243370A1 (ja) * 2022-06-17 2023-12-21 Agc株式会社 硫化物系固体電解質粉末、硫化物系固体電解質粉末の製造方法、硫化物系固体電解質層及びリチウムイオン二次電池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288098A (ja) * 2007-05-18 2008-11-27 Idemitsu Kosan Co Ltd 硫化物系電解質粉体及びそれを用いた硫化物系電解質成形体
JP2015156297A (ja) * 2014-02-20 2015-08-27 トヨタ自動車株式会社 リチウム固体電池モジュールの製造方法
JP2016027545A (ja) * 2014-06-25 2016-02-18 国立大学法人東京工業大学 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
CN207409588U (zh) * 2017-08-11 2018-05-25 天津中能锂业有限公司 全固态电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288098A (ja) * 2007-05-18 2008-11-27 Idemitsu Kosan Co Ltd 硫化物系電解質粉体及びそれを用いた硫化物系電解質成形体
JP2015156297A (ja) * 2014-02-20 2015-08-27 トヨタ自動車株式会社 リチウム固体電池モジュールの製造方法
JP2016027545A (ja) * 2014-06-25 2016-02-18 国立大学法人東京工業大学 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
CN207409588U (zh) * 2017-08-11 2018-05-25 天津中能锂业有限公司 全固态电池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243370A1 (ja) * 2022-06-17 2023-12-21 Agc株式会社 硫化物系固体電解質粉末、硫化物系固体電解質粉末の製造方法、硫化物系固体電解質層及びリチウムイオン二次電池
JP7435927B1 (ja) 2022-06-17 2024-02-21 Agc株式会社 硫化物系固体電解質粉末、硫化物系固体電解質粉末の製造方法、硫化物系固体電解質層及びリチウムイオン二次電池

Also Published As

Publication number Publication date
JP2023029406A (ja) 2023-03-03
JP7199893B2 (ja) 2023-01-06

Similar Documents

Publication Publication Date Title
JP6310713B2 (ja) 固体電解質材料、リチウムイオン電池および固体電解質材料の製造方法
JP2018092954A (ja) 固体電解質材料、リチウムイオン電池および固体電解質材料の製造方法
JP7427821B2 (ja) 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池
JP7332761B2 (ja) 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池
JP7237148B2 (ja) 硫化物系無機固体電解質材料用の窒化リチウム組成物の製造方法および硫化物系無機固体電解質材料の製造方法
JP2023112139A (ja) 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池
JP2021108296A (ja) Li−P−O−N系無機固体電解質材料、Li−P−O−N系無機固体電解質材料の使用方法、固体電解質、固体電解質膜、リチウムイオン電池およびLi−P−O−N系無機固体電解質材料の製造方法
JP2023164486A (ja) 硫化物系無機固体電解質材料用の五硫化二リン組成物
JP7188957B2 (ja) 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池
JP2023126791A (ja) 硫化物系無機固体電解質材料用の硫化リン組成物
JP2023029406A (ja) 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池
JP6994894B2 (ja) 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池
JP2020061304A (ja) 硫化物系無機固体電解質材料用の五硫化二リン組成物
JP2020061302A (ja) 硫化物系無機固体電解質材料用の五硫化二リン組成物
JP7427743B2 (ja) 五硫化二リン組成物の製造方法
JP7315757B2 (ja) 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池
JP7086686B2 (ja) 硫化物系無機固体電解質材料の製造方法
JP7477602B2 (ja) 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池
JP6794518B2 (ja) 固体電解質材料の製造方法
JP7341699B2 (ja) 硫化物系無機固体電解質材料の製造方法
JP7313797B2 (ja) 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池
JP2023084317A (ja) 硫化物系無機固体電解質材料用の窒化リチウム組成物、窒化リチウム組成物の製造方法、硫化物系無機固体電解質材料の原料組成物、硫化物系無機固体電解質材料の製造方法、硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池
JP2020061305A (ja) 硫化物系無機固体電解質材料用の五硫化二リン組成物
JP2020061303A (ja) 硫化物系無機固体電解質材料用の五硫化二リン組成物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221221

R150 Certificate of patent or registration of utility model

Ref document number: 7199893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150