WO2022111288A1 - 一种耐侯性三维网络结构的硅氮橡胶及其制备方法 - Google Patents

一种耐侯性三维网络结构的硅氮橡胶及其制备方法 Download PDF

Info

Publication number
WO2022111288A1
WO2022111288A1 PCT/CN2021/129956 CN2021129956W WO2022111288A1 WO 2022111288 A1 WO2022111288 A1 WO 2022111288A1 CN 2021129956 W CN2021129956 W CN 2021129956W WO 2022111288 A1 WO2022111288 A1 WO 2022111288A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
rubber
weather
resistant
dimensional network
Prior art date
Application number
PCT/CN2021/129956
Other languages
English (en)
French (fr)
Inventor
王国辉
张兵
付继伟
姜利
陈红波
徐西宝
王筱宇
潘旭
于霖
吕静
胡苏珍
林三春
高雅
孙逸轩
孟伟鹏
张玉玺
Original Assignee
北京宇航系统工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京宇航系统工程研究所 filed Critical 北京宇航系统工程研究所
Publication of WO2022111288A1 publication Critical patent/WO2022111288A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation

Definitions

  • the invention relates to a novel weather-resistant silicon-nitrogen rubber and a preparation method thereof, in particular to a weather-resistant three-dimensional network structure silicon-nitrogen rubber and a preparation method thereof, belonging to the field of special rubber materials and the field of high-temperature thermal protection materials.
  • Silicone rubber refers to the rubber whose main chain is composed of alternating silicon and oxygen atoms, and two organic groups are usually connected to the silicon atom.
  • Ordinary silicone rubber is mainly composed of silicone chain units containing methyl groups and a small amount of vinyl groups.
  • the introduction of phenyl can improve the high and low temperature resistance of silicone rubber, and the introduction of trifluoropropyl and cyano groups can improve the temperature and oil resistance of silicone rubber. Silicone rubber has good low temperature resistance and can generally still work at -55°C. After the introduction of phenyl, it can reach -73°C. The heat resistance of silicone rubber is also very outstanding.
  • Silicon-nitrogen rubber refers to a high molecular weight linear polydiorganosiloxane containing cyclodisilazane segments in the main chain. It has excellent heat resistance, no decomposition at 430-480 °C, no weight loss at 425 °C, and only 10% weight loss at 570 °C. N,N'-(diphenylhydroxysilyl)tetramethylcyclodisilazane with ⁇ , ⁇ -diaminohexamethyltrisiloxane and a small amount of ⁇ , ⁇ -diaminotrimethylvinyl disiloxane Silazane reaction to prepare.
  • the temperature resistance of commercial silicon-nitrogen rubber is 410 °C, and the temperature resistance is the highest temperature when the tensile strength begins to decrease. It is the upper limit of temperature use, the tensile strength at room temperature is 11MPa , and the weather resistance is better than that of traditional silicone rubber.
  • the mechanical properties of the rubber began to decrease after 400 hours of UV irradiation (100 ⁇ W/cm 2 ).
  • silicon-nitrogen rubber refers to the cyclodisilazane links contained in the main chain.
  • This four-membered ring itself has a large intramolecular tension and is relatively easy to be destroyed.
  • Silazane linkages have significantly less molecular tension than four-membered rings because they are six-membered rings.
  • cyclotrisilazane has better heat resistance than cyclodisilazane, but so far, there is no literature report on the synthesis of sila-nitride rubber with cyclotrisilazane.
  • the technical problem of the present invention is to overcome the deficiencies of the prior art, and propose a weather-resistant three-dimensional network structure silicon-nitrogen rubber and a preparation method thereof.
  • This compound is not only cyclotrisilazane, but also an aromatic amine hydrogen donor. , which has a unique effect in two aspects: cyclotrisilazane will perform better than current cyclodisilazane, and aromatic amine hydrogen can significantly improve the weather resistance of the material.
  • 3-butenylmethyldichlorosilane and high-purity ammonia are used to react in a specific reaction environment and under a specific catalyst to generate 3-butenylmethylcyclotrisilazane, and then, by adding Inorganic additives and catalysts are vulcanized into rubber materials to improve the temperature resistance, mechanical properties, aging resistance and high temperature resistance of rubber materials.
  • a weather-resistant three-dimensional network structure silicon-nitrogen rubber the raw material of which comprises 3-butenylmethyldichlorosilane, ammonia, boron oxide, fumed silica and dibutyltin dilaurate;
  • the mass percentage of 3-butenylmethyldichlorosilane is 70% to 85%;
  • the mass percentage of boron oxide is 5% to 10%
  • the mass percentage of fumed silica is 10% to 20%
  • the mass percentage content of dibutyltin dilaurate is 0.1% to 1%.
  • the molar ratio of 3-butenylmethyldichlorosilane and ammonia in the prepared silicon-nitrogen rubber is 1:1, and the ammonia is excessive in the preparation process.
  • a preparation method of a silicon-nitrogen rubber with a weather-resistant three-dimensional network structure the steps of which include:
  • 3-butenylmethylcyclotrisilazane, boron oxide and fumed silica are put together in a planetary mill to be mixed to obtain a mixture
  • the grinding medium is a zirconia grinding ball
  • the solvent is anhydrous ethanol
  • the third, the mixture is mixed with dibutyltin dilaurate and then put into an oven for vulcanization molding;
  • the first step put 0.1-0.3mol of 3-butenylmethyldichlorosilane into a 1000ml four-necked round-bottomed flask, the four-necked flask is equipped with a condensation reflux tube, and anhydrous copper sulfate powder is placed at the bottom of the flask - the function is
  • the water generated in the reaction system is removed, and ammonia gas is passed under the liquid surface of 3-butenylmethyldichlorosilane, and the passing speed of ammonia gas is 10-50 L/min.
  • the catalyst is ammonium chloride and metallic sodium, the heating temperature is 70-120 DEG C, and the reaction time is 300-600 minutes.
  • the sodium metal block is taken out and washed repeatedly with deionized water to remove ammonium chloride and copper sulfate in the system.
  • the viscous liquid that is finally insoluble in water is 3-butenylmethylcyclotrisilazane.
  • the obtained 3-butenylmethylcyclotrisilazane was weighed and compared with the theoretical value (1mol was 339 grams), and the yield was calculated;
  • the second step the proportions of this step are all mass ratios, and 70-85% of 3-butenylmethylcyclotrisilazane, 5-10% of boron oxide and 10-20% of fumed silica are put together to carry out
  • the mixture is obtained by mixing in a planetary mill, the ball milling speed is 200-300 rpm, and the ball-milling time is 300-400 minutes;
  • the third step add dibutyltin dilaurate with a weight of 0.1 to 1% of the mixture into the mixture, and mechanically stir it evenly, the stirring speed is 120-150 rpm, and the stirring time is 5-10 minutes to obtain a uniform rubber compound ; Put the rubber material into the mold and put it into the heating furnace to obtain a rubber sheet with a thickness of 2 mm after heating for 20 to 30 minutes at a temperature of 100 to 120 °C;
  • the fourth step testing the temperature resistance, mechanical properties, aging resistance and high temperature resistance of the silicon-nitrogen rubber of the present invention.
  • silicon-nitrogen rubber was also purchased for comparative analysis.
  • the temperature resistance is the maximum temperature when the tensile strength begins to decrease as the upper limit of temperature use.
  • the tensile strength adopts GB/T528-1998 Determination of the tensile stress-strain properties of vulcanized rubber or thermoplastic rubber.
  • the ozone aging resistance and air aging resistance are respectively used.
  • GB/T7762-2003 Vulcanized Rubber or Thermoplastic Rubber Ozone Cracking Resistance Static Tensile Test and GB/T3512-2001 Vulcanized Rubber or Thermoplastic Rubber Hot Air Accelerated Aging and Heat Resistance Test The high-temperature heat-proof performance is measured by irradiating a 2mm thick rubber sheet with a heat flow of 150kw/m 2 for 70s, and measuring the temperature rise of the back of the rubber sheet.
  • Fig. 1 is the infrared spectrum of 3-butenyl methyl cyclotrisilazane prepared in the embodiment of the present invention 1;
  • Fig. 2 is the CNMR spectrum of 3-butenylmethylcyclotrisilazane prepared in Example 1 of the present invention
  • the invention provides a silicon-nitrogen rubber with a weather-resistant three-dimensional network structure.
  • the raw materials of the silicon-nitrogen rubber include 3-butenylmethyldichlorosilane, ammonia, boron oxide, fumed silica and dibutyltin dilaurate;
  • the mass percentage of 3-butenylmethyldichlorosilane is 70% to 85%;
  • the mass percentage of boron oxide is 5% to 10%
  • the mass percentage of fumed silica is 10% to 20%
  • the mass percentage content of dibutyltin dilaurate is 0.1% to 1%.
  • the molar ratio of 3-butenylmethyldichlorosilane and ammonia in the prepared silicon-nitrogen rubber is 1:1, and the ammonia is excessive in the preparation process.
  • the preparation method of the silicon-nitrogen rubber of the weather-resistant three-dimensional network structure of the present invention specifically comprises the following steps:
  • the first step is to put 3-butenylmethyldichlorosilane into the flask, and put anhydrous copper sulfate powder at the bottom of the bottle—the function is to remove the water generated in the reaction system, and ammonia gas is introduced into the 3-butenyl group Under the liquid level of methyldichlorosilane, the ammonia gas passing speed is 10-50 L/min.
  • a catalyst is added to carry out the reaction, and the catalyst is ammonium chloride and metallic sodium, the heating temperature is 70-120°C, and the reaction time is 300-600 minutes. After the reaction, the sodium metal block was taken out and washed repeatedly with deionized water.
  • the viscous liquid insoluble in water was 1,3,5-trimethyl-1,3,5-tri(3butene)cyclotri Silazane (referred to as 3-butenylmethylcyclotrisilazane).
  • the added amount of the catalyst is 2 ⁇ 10 ⁇ of the mass of 3-butenylmethyldichlorosilane.
  • the mass ratio of ammonium chloride and metallic sodium is 1:0.05-1.
  • the addition amount of the anhydrous copper sulfate powder is 8% to 12% of the mass of 3-butenylmethyldichlorosilane.
  • the 3-butenylmethylcyclotrisilazane obtained in the first step is placed in a planetary mill together with boron oxide and fumed silica for mixing to obtain a mixture;
  • the ball milling speed is 200 to 300 rpm , the ball milling time is 300 minutes to 400 minutes; the addition amount is: 70 to 85% of 3-butenylmethylcyclotrisilazane, 5 to 10% of boron oxide and 10 to 20% of fumed silica .
  • the stirring speed is 120-150 rpm, and the stirring time is 5-10 minutes to obtain a uniform Rubber material; put the rubber material into a mold and put it into a heating furnace, and heat it at a temperature of 100 to 120° C. for 20 to 30 minutes to obtain silicon-nitrogen rubber.
  • the temperature resistance, mechanical properties, aging resistance and high temperature resistance of the silicon-nitrogen rubber of the present invention were tested.
  • silicon-nitrogen rubber was also purchased for comparative analysis.
  • the temperature resistance is the maximum temperature when the tensile strength begins to decrease as the upper limit of temperature use.
  • the tensile strength adopts GB/T528-1998 Determination of the tensile stress-strain properties of vulcanized rubber or thermoplastic rubber.
  • the ozone aging resistance and air aging resistance are respectively used.
  • GB/T7762-2003 Vulcanized Rubber or Thermoplastic Rubber Ozone Cracking Resistance Static Tensile Test and GB/T3512-2001 Vulcanized Rubber or Thermoplastic Rubber Hot Air Accelerated Aging and Heat Resistance Test The high-temperature heat-proof performance is measured by irradiating a 2mm thick rubber sheet with a heat flow of 150kw/m 2 for 70s, and measuring the temperature rise of the back of the rubber sheet.
  • the first step put 0.1mol of 3-butenylmethyldichlorosilane into a 1000ml four-necked round-bottomed flask, the four-necked flask is equipped with a condensing reflux tube, and anhydrous copper sulfate powder is placed at the bottom of the flask - the function is to remove the reaction
  • ammonia gas was passed under the liquid surface of 3-butenylmethyldichlorosilane, and the passing speed of ammonia gas was 10 L/min.
  • the catalyst was ammonium chloride (10 g powder) and metal sodium (0.5 g) block, the heating temperature was 70° C., and the reaction time was 300 minutes.
  • the sodium metal block is taken out and washed repeatedly with deionized water to remove ammonium chloride and copper sulfate in the system.
  • the viscous liquid that is finally insoluble in water is 3-butenylmethylcyclotrisilazane. , 29.15 grams of 3-butenylmethylcyclotrisilazane were weighed and compared with the theoretical value of 33.9 grams, the calculated yield was 86.0%;
  • the second step the proportions of this step are all mass ratios, 85% of 3-butenylmethylcyclotrisilazane, 5% of boron oxide and 10% of fumed silica are put together in a planetary mill and mixed to obtain a mixture , the ball milling speed is 200 rpm, and the ball milling time is 300 minutes;
  • the third step weighing 0.1% of the mixture, dibutyltin dilaurate is added to the mixture, and mechanically stirs it evenly, the stirring speed is 120 rpm, and the stirring time is 5 minutes to obtain a uniform rubber compound; put the rubber compound in Put it in the mold and put it into the heating furnace at a temperature of 100°C for 20 minutes to obtain a rubber sheet with a thickness of 2mm;
  • the fourth step testing the temperature resistance, mechanical properties, aging resistance and high temperature resistance of the silicon-nitrogen rubber of the present invention.
  • silicon-nitrogen rubber was also purchased for comparative analysis.
  • the test results show that the temperature resistance is 465 °C, which is significantly higher than that of conventional silicon-nitrogen rubber (410 °C), and the room temperature tensile strength is 15.3 MPa, which is also higher than the conventional silicon-nitrogen rubber's 11.2 MPa.
  • the temperature resistance and strength are improved. This is because the silicon-nitrogen rubber in the current invention has three functionalities and can form a three-dimensional network structure, while ordinary silicon-nitrogen rubber can only form a linear molecular structure.
  • the anti-aging performance is improved by 60%, which is mainly because there are many aromatic amine hydrogens in the present invention, which can significantly improve the weather resistance of the material.
  • the test method for high temperature heat resistance performance is: 150kw/m 2 heat flow irradiates a 2mm thick rubber sheet for 70s, the results show that the temperature rise of the back of the ordinary silicon-nitrogen rubber is 189°C, while the temperature of the back of the silicon-nitrogen rubber of the present invention rises by 35°C. This shows that the silicon-nitrogen rubber of the present invention has very good comprehensive properties.
  • FIG. 1 is the infrared spectrum of the 3-butenylmethylcyclotrisilazane prepared in Example 1 of the present invention, as can be seen from the figure, 3392cm -1 is attributed to the stretching vibration peak of NH, and the double bond of butene The stretching vibration peaks are around 3180cm -1 and 1593cm -1 , and the out-of-plane vibration peaks of butene double bond are around 1010cm -1 . Strong stretching vibration peaks of methyl and methylene can be observed in the range of 2890-3050 cm -1 . The bending vibration peaks of methylene CH2 and methyl CH3 can be observed at 1365 cm -1 and 1337 cm -1 , respectively.
  • Figure 2 shows the CNMR spectrum of 3-butenylmethylcyclotrisilazane prepared in Example 1 of the present invention; it can be seen from the figure that the nuclear magnetic resonance was measured in deuterated benzene C 6 D 6 . Except for the solvent peak at 128 ppm, a total of 5 obvious carbon resonance signals can be observed, and there are almost no impurity peaks, which is in good agreement with the symmetry characteristics of the theoretical structural formula of the product, indicating that the structure of the product is as expected and the purity is very high.
  • Figure 3 shows the SiNMR spectrum of 3-butenylmethylcyclotrisilazane prepared in Example 1 of the present invention.
  • the NMR silicon spectrum only showed a strong resonance signal at -6.8ppm, which confirmed the CNMR result again, that is, the purity of the product is very good, and the silicon atom in the product molecule only exists in one chemical environment.
  • the first step put 0.3mol of 3-butenylmethyldichlorosilane into a 1000ml four-necked round-bottomed flask, the four-necked flask is equipped with a condensing reflux tube, and anhydrous copper sulfate powder is placed at the bottom of the flask - the function is to remove the reaction
  • ammonia gas was passed under the liquid level of 3-butenylmethyldichlorosilane, and the passing speed of ammonia gas was 50 L/min.
  • the catalysts were ammonium chloride (10 g) and metallic sodium (0.8 g), the heating temperature was 120° C., and the reaction time was 600 minutes.
  • the sodium metal block is taken out and washed repeatedly with deionized water to remove ammonium chloride and copper sulfate in the system.
  • the viscous liquid that is finally insoluble in water is 3-butenylmethylcyclotrisilazane.
  • the obtained 3-butenylmethylcyclotrisilazane is weighed and compared with the theoretical value (1mol is 339 grams), the calculated yield is 87.1%;
  • the second step the proportions of this step are all mass ratios, 70% of 3-butenylmethylcyclotrisilazane, 10% of boron oxide and 20% of fumed silica are placed in a planetary mill and mixed to obtain a mixture , the ball milling speed is 300 rpm, and the ball milling time is 400 minutes;
  • the third step weighing 1% of the mixture, dibutyltin dilaurate is added to the mixture, and mechanically stirs it evenly, the stirring speed is 150 rpm, and the stirring time is 10 minutes to obtain a uniform rubber compound; put the rubber compound in Put it in the mold and put it into the heating furnace at a temperature of 120 °C and heat it for 30 minutes to obtain a rubber sheet with a thickness of 2 mm;
  • the fourth step testing the temperature resistance, mechanical properties, aging resistance and high temperature resistance of the silicon-nitrogen rubber of the present invention.
  • silicon-nitrogen rubber was also purchased for comparative analysis.
  • the test results show that the temperature resistance is 467 °C, which is significantly higher than that of conventional silicon-nitrogen rubber at 410 °C, and the room temperature tensile strength is 15.2 MPa, which is also higher than that of conventional silicon-nitrogen rubber, which is 11.2 MPa.
  • the temperature resistance and strength are improved. This is because the silicon-nitrogen rubber in the current invention has three functionalities and can form a three-dimensional network structure, while ordinary silicon-nitrogen rubber can only form a linear molecular structure. Compared with the commercially available silicon-nitrogen rubber, the anti-aging performance is improved by 62%, which is mainly due to the fact that there are many aromatic amine hydrogens in the present invention, which can significantly improve the weather resistance of the material.
  • the test method of high temperature heat resistance performance is as follows: 150kw/m 2 heat flow irradiates a 2mm thick rubber sheet for 70s.
  • the results show that the temperature rise of the backside of ordinary silicon-nitrogen rubber is 189°C, while the temperature rise of the backside of the silicon-nitrogen rubber of the present invention is 14°C. This shows that the silicon-nitrogen rubber of the present invention has very good comprehensive properties.
  • the first step put 0.2mol of 3-butenylmethyldichlorosilane into a 1000ml four-necked round-bottomed flask, the four-necked flask is equipped with a condensing reflux tube, and anhydrous copper sulfate powder is placed at the bottom of the flask - the function is to remove the reaction
  • ammonia gas was passed under the liquid surface of 3-butenylmethyldichlorosilane, and the passing speed of ammonia gas was 20 L/min.
  • the catalysts were ammonium chloride (10 g) and metallic sodium (1 g), the heating temperature was 80°C, and the reaction time was 350 minutes.
  • the sodium metal block is taken out and washed repeatedly with deionized water to remove ammonium chloride and copper sulfate in the system.
  • the viscous liquid that is finally insoluble in water is 3-butenylmethylcyclotrisilazane.
  • the obtained 3-butenylmethylcyclotrisilazane is weighed and compared with the theoretical value (1mol is 339 grams), the calculated yield is 91%;
  • the second step the proportions of this step are all mass ratios, 75% of 3-butenylmethylcyclotrisilazane, 7% of boron oxide and 18% of fumed silica are put together in a planetary mill and mixed to obtain a mixture , the ball milling speed is 220 rpm, and the ball milling time is 320 minutes;
  • the third step weighing 0.2% of the mixture, dibutyltin dilaurate is added to the mixture, and mechanically stirs it evenly, the stirring speed is 130 rpm, and the stirring time is 6 minutes to obtain a uniform rubber compound; put the rubber compound in Put it in the mold and put it in a heating furnace at a temperature of 110 °C for 30 minutes to obtain a rubber sheet with a thickness of 2 mm;
  • the fourth step testing the temperature resistance, mechanical properties, aging resistance and high temperature resistance of the silicon-nitrogen rubber of the present invention.
  • silicon-nitrogen rubber was also purchased for comparative analysis.
  • the test results show that the temperature resistance is 478 °C, which is significantly higher than that of conventional silicon-nitrogen rubber (410 °C), and the room temperature tensile strength is 16.7 MPa, which is also higher than that of conventional silicon-nitrogen rubber of 11.2 MPa.
  • the temperature resistance and strength are improved. This is because the silicon-nitrogen rubber in the current invention has trifunctionality and can form a three-dimensional network structure, while ordinary silicon-nitrogen rubber can only form a linear molecular structure. Compared with the commercially available silicon-nitrogen rubber, the anti-aging performance is improved by 87%, which is mainly because there are many aromatic amine hydrogens in the present invention, which can significantly improve the weather resistance of the material.
  • the test method of high temperature heat resistance performance is: 150kw/m 2 heat flow irradiates a 2mm thick rubber sheet for 70s.
  • the results show that the temperature rise of the back of ordinary silicon-nitrogen rubber is 189°C, while the temperature of the backside of the silicon-nitrogen rubber of the present invention rises by 17°C. This shows that the silicon-nitrogen rubber of the present invention has very good comprehensive properties.
  • the first step put 0.15mol of 3-butenylmethyldichlorosilane into a 1000ml four-necked round-bottomed flask, the four-necked flask is equipped with a condensation reflux tube, and anhydrous copper sulfate powder is placed at the bottom of the flask - the function is to remove the reaction
  • ammonia gas was passed under the liquid surface of 3-butenylmethyldichlorosilane, and the passing speed of ammonia gas was 30 L/min.
  • the catalysts were ammonium chloride (10 g) and metallic sodium (3 g), the heating temperature was 90°C, and the reaction time was 400 minutes.
  • the sodium metal block is taken out and washed repeatedly with deionized water to remove ammonium chloride and copper sulfate in the system.
  • the viscous liquid that is finally insoluble in water is 3-butenylmethylcyclotrisilazane.
  • the obtained 3-butenylmethylcyclotrisilazane is weighed and compared with the theoretical value (1mol is 339 grams), the calculated yield is 93.7%;
  • the second step the proportions of this step are all mass ratios, 80% of 3-butenylmethylcyclotrisilazane, 10% of boron oxide and 10% of fumed silica are put together in a planetary mill to be mixed to obtain a mixture , the ball milling speed is 240 rpm, and the ball milling time is 350 minutes;
  • the third step weighing 0.4% of the mixture, dibutyltin dilaurate is added to the mixture, and mechanically stirs it evenly, the stirring speed is 130 rpm, and the stirring time is 9 minutes to obtain a uniform rubber compound; put the rubber compound in Put it in the mold and put it in a heating furnace at a temperature of 118°C and heat it for 26 minutes to obtain a rubber sheet with a thickness of 2mm;
  • the fourth step testing the temperature resistance, mechanical properties, aging resistance and high temperature resistance of the silicon-nitrogen rubber of the present invention.
  • silicon-nitrogen rubber was also purchased for comparative analysis.
  • the test results show that the temperature resistance is 475 °C, which is significantly higher than that of conventional silicon-nitrogen rubber (410 °C), and the room temperature tensile strength is 16.9 MPa, which is also higher than the conventional silicon-nitrogen rubber's 11.2 MPa.
  • the temperature resistance and strength are improved. This is because the silicon-nitrogen rubber in the current invention has three functionalities and can form a three-dimensional network structure, while ordinary silicon-nitrogen rubber can only form a linear molecular structure. Compared with the commercially available silicon-nitrogen rubber, the anti-aging performance is improved by 88%, which is mainly due to the fact that the present invention has a lot of aromatic amine hydrogen, which can significantly improve the weather resistance of the material.
  • the test method for high temperature heat resistance is: 150kw/m 2 heat flow irradiates a 2mm thick rubber sheet for 70s, the results show that the temperature rise of the back of ordinary silicon-nitrogen rubber is 189°C, while the temperature of the back of the silicon-nitrogen rubber of the present invention rises 29°C. This shows that the silicon-nitrogen rubber of the present invention has very good comprehensive properties.
  • the first step put 0.25mol of 3-butenylmethyldichlorosilane into a 1000ml four-necked round-bottomed flask, the four-necked flask is equipped with a condensing reflux tube, and anhydrous copper sulfate powder is placed at the bottom of the flask - the function is to remove the reaction
  • ammonia gas is passed under the liquid level of 3-butenylmethyldichlorosilane, and the passing speed of ammonia gas is 10-50 L/min.
  • the catalysts are ammonium chloride (10 g) and metallic sodium (5 g), the heating temperature is 100° C., and the reaction time is 300-600 minutes.
  • the sodium metal block was taken out and washed repeatedly with deionized water to remove ammonium chloride and copper sulfate in the system.
  • the viscous liquid that was finally insoluble in water was 3-butenylmethylcyclotrisilazane.
  • the obtained 3-butenylmethylcyclotrisilazane is weighed and compared with the theoretical value (1mol is 339 grams), the calculated yield is 93.9%;
  • the second step the ratios in this step are all mass ratios, 72% of 3-butenylmethylcyclotrisilazane, 9% of boron oxide and 19% of fumed silica are put together in a planetary mill and mixed to obtain a mixture , the ball milling speed is 280 rpm, and the ball milling time is 390 minutes;
  • the third step weighing 0.5% of the mixture, dibutyltin dilaurate is added to the mixture, and mechanically stirs it evenly, the stirring speed is 140 rpm, and the stirring time is 8 minutes to obtain a uniform rubber compound; put the rubber compound in Put it in the mold and put it in a heating furnace at a temperature of 105 °C for 24 minutes to obtain a rubber sheet with a thickness of 2 mm;
  • the fourth step testing the temperature resistance, mechanical properties, aging resistance and high temperature resistance of the silicon-nitrogen rubber of the present invention.
  • silicon-nitrogen rubber was also purchased for comparative analysis.
  • the test results show that the temperature resistance is 477 °C, which is significantly higher than that of conventional silicon-nitrogen rubber at 410 °C, and the room temperature tensile strength is 17.2 MPa, which is also higher than that of conventional silicon-nitrogen rubber, which is 11.2 MPa.
  • the temperature resistance and strength are improved. This is because the silicon-nitrogen rubber in the current invention has three functionalities and can form a three-dimensional network structure, while ordinary silicon-nitrogen rubber can only form a linear molecular structure. Compared with the commercially available silicon-nitrogen rubber, the anti-aging performance is improved by 86%, which is mainly due to the fact that there are many aromatic amine hydrogens in the present invention, which can significantly improve the weather resistance of the material.
  • the test method of high temperature heat resistance performance is as follows: 150kw/m 2 heat flow irradiates a 2mm thick rubber sheet for 70s.
  • the results show that the temperature rise of the backside of ordinary silicon-nitrogen rubber is 189°C, while the temperature rise of the backside of the silicon-nitrogen rubber of the present invention is 21°C. This shows that the silicon-nitrogen rubber of the present invention has very good comprehensive properties.
  • the first step put 0.27mol of 3-butenylmethyldichlorosilane into a 1000ml four-necked round-bottomed flask, the four-necked flask is equipped with a condensing reflux tube, and anhydrous copper sulfate powder is placed at the bottom of the flask - the function is to remove the reaction
  • ammonia gas was passed under the liquid surface of 3-butenylmethyldichlorosilane, and the passing speed of ammonia gas was 45 L/min.
  • the catalysts were ammonium chloride (10 g) and metallic sodium (10 g), the heating temperature was 115°C, and the reaction time was 550 minutes.
  • the sodium metal block is taken out and washed repeatedly with deionized water to remove ammonium chloride and copper sulfate in the system.
  • the viscous liquid that is finally insoluble in water is 3-butenylmethylcyclotrisilazane.
  • the obtained 3-butenylmethylcyclotrisilazane was weighed and compared with the theoretical value (1mol was 339 grams), the calculated yield was 94.1%;
  • the second step the proportions of this step are all mass ratios, 82% of 3-butenylmethylcyclotrisilazane, 6% of boron oxide and 12% of fumed silica are mixed in a planetary mill to obtain a mixture , the ball milling speed is 270 rpm, and the ball milling time is 310 minutes;
  • the third step weighing 0.05% of the mixture, dibutyltin dilaurate is added to the mixture, and mechanically stirs it evenly, the stirring speed is 125 rpm, and the stirring time is 7 minutes to obtain a uniform rubber compound; put the rubber compound in Put it in the mold and put it in a heating furnace at a temperature of 118°C and heat it for 21 minutes to obtain a rubber sheet with a thickness of 2mm;
  • the fourth step testing the temperature resistance, mechanical properties, aging resistance and high temperature resistance of the silicon-nitrogen rubber of the present invention.
  • silicon-nitrogen rubber was also purchased for comparative analysis.
  • the test results show that the temperature resistance is 471 °C, which is significantly higher than the 410 °C of the conventional silicon-nitrogen rubber, and the room temperature tensile strength is 16.7MPa, which is also higher than the conventional silicon-nitrogen rubber's 11.2MPa, and the temperature resistance and strength are improved.
  • the silicon-nitrogen rubber in the current invention has three functionalities and can form a three-dimensional network structure, while ordinary silicon-nitrogen rubber can only form a linear molecular structure.
  • the anti-aging performance is improved by 83%, which is mainly due to the fact that the present invention has a lot of aromatic amine hydrogen, which can significantly improve the weather resistance of the material.
  • the test method of high temperature heat resistance performance is as follows: 150kw/m2 heat flow irradiates a 2mm thick rubber sheet for 70s.
  • the results show that the temperature rise of the back of the ordinary silicon-nitrogen rubber is 189°C, while the temperature of the backside of the silicon-nitrogen rubber of the present invention rises by 30°C. This shows that the silicon-nitrogen rubber of the present invention has very good comprehensive properties.
  • the first step the passing speed of ammonia gas is 10-50L/min.
  • the catalyst is ammonium chloride and metallic sodium, the heating temperature is 70-120 DEG C, and the reaction time is 300-600 minutes.
  • the reaction conditions are not within this range, the yield is low, and when the reaction conditions are close to the boundary of this parameter range, the reaction yield is already below 90%.
  • the second step the proportions of this step are all mass ratios, and 70-85% of 3-butenylmethylcyclotrisilazane, 5-10% of boron oxide and 10-20% of fumed silica are put together to carry out
  • the mixture is obtained by mixing in the planetary mill, and the increase of the inorganic filler content can improve the high temperature resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Silicon Polymers (AREA)
  • Ceramic Products (AREA)

Abstract

一种耐侯性三维网络结构的硅氮橡胶及其制备方法,属于特种橡胶材料领域,也属于高温热防护材料领域。其制备方法步骤为:采用3-丁烯基甲基二氯硅烷和高纯氨气,在氯化铵和金属钠催化剂作用下,反应生成3-丁烯基甲基环三硅氮烷,然后,通过添加无机助剂和催化剂硫化成橡胶材料。所得橡胶材料的力学性能、抗老化性能以及耐高温性能优良。

Description

一种耐侯性三维网络结构的硅氮橡胶及其制备方法
本申请要求于2020年11月30日提交中国专利局、申请号为202011378732.6、发明名称为“一种耐侯性三维网络结构的硅氮橡胶及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种新型耐侯性硅氮橡胶及其制备方法,特别涉及一种耐侯性三维网络结构的硅氮橡胶及其制备方法,属于特种橡胶材料领域,也属于高温热防护材料领域。
背景技术
硅橡胶是指主链由硅和氧原子交替构成,硅原子上通常连有两个有机基团的橡胶。普通的硅橡胶主要由含甲基和少量乙烯基的硅氧链节组成。苯基的引入可提高硅橡胶的耐高、低温性能,三氟丙基及氰基的引入则可提高硅橡胶的耐温及耐油性能。硅橡胶耐低温性能良好,一般在-55℃下仍能工作。引入苯基后,可达-73℃。硅橡胶的耐热性能也很突出,在180℃下可长期工作,稍高于200℃也能承受数周或更长时间仍有弹性,瞬时可耐300℃以上的高温。为了进一步提高硅橡胶的耐温性能,目前大量的研究主要集中在硅氮橡胶上,
硅氮橡胶是指主链中含有环二硅氮烷链节的高分子量线形聚二有机基硅氧烷。具有优良的耐热性,430~480℃下不分解,425℃下不失重,570℃下失重仅10%。可由N,N′-(二苯基羟基硅基)四甲基环二硅氮烷与α,ω-二氨基六甲基三硅氧烷以及少量α,ω-二氨基三甲基乙烯基二硅氮烷反应来制取。用于耐400℃高温的橡胶密封材料,也可用作耐高温的弹性涂料,目前,商品化的硅氮橡胶的耐温性为410℃,耐温性能以拉伸强度开始降低时的最高温度为温度使用上限,室温下拉伸强度为11MPa,耐候性好于传统硅橡胶,硅橡胶在紫外灯下辐照(100μW/cm 2)300小时明显变色,特别是力学性能显著降低,而硅 氮橡胶在紫外线下辐照(100μW/cm 2)400小时后才开始力学性能降低。
但是,理论上可以判断硅氮橡胶是指主链中含有的环二硅氮烷链节,这种四元环本身具有很大的分子内张力,相对容易被破坏,而与之相似的环三硅氮烷链接因为是六元环的分子张力明显小于四元环。从理论上可以预测环三硅氮烷比环二硅氮烷的耐热性能更好,但是,目前为止没有文献报道合成出带有环三硅氮烷的硅氮橡胶。
发明内容
本发明的技术解决问题是:克服现有技术的不足,提出一种耐侯性三维网络结构的硅氮橡胶及其制备方法,这种化合物不但是环三硅氮烷,而且还是芳胺氢给予体,这在两个方面上具有独特作用:环三硅氮烷会比现在环二硅氮烷性能更好,并且芳胺氢能显著提高材料的耐候性。在本发明中,采用3-丁烯基甲基二氯硅烷和高纯氨气,在特定反应环境中,特定催化剂下反应生成3-丁烯基甲基环三硅氮烷,然后,通过添加无机助剂和催化剂硫化成橡胶材料,提高橡胶材料的耐温性能、力学性能和抗老化性能以及耐高温性能。
本发明的技术解决方案是:
一种耐侯性三维网络结构的硅氮橡胶,该硅氮橡胶的原料包括3-丁烯基甲基二氯硅烷、氨气、氧化硼、气相二氧化硅和二月桂酸二丁基锡;
以该硅氮橡胶的原料的总质量为100%计算,各组份的质量百分含量为:
3-丁烯基甲基二氯硅烷的质量百分含量为70%~85%;
氧化硼的质量百分含量为5%~10%;
气相二氧化硅的质量百分含量为10%~20%;
二月桂酸二丁基锡的质量百分含量为0.1%~1%。
制备得到的硅氮橡胶中3-丁烯基甲基二氯硅烷与氨气的摩尔比为1:1,制备过程中氨气过量。
一种耐侯性三维网络结构的硅氮橡胶的制备方法,该方法的步骤包括:
首先,采用3-丁烯基甲基二氯硅烷与氨气在特定反应条件下反应成3-丁烯 基甲基环三硅氮烷;
然后,将3-丁烯基甲基环三硅氮烷与氧化硼和气相二氧化硅一起放进行星球磨机中混合得到混合物,研磨介质为氧化锆磨球,溶剂为无水乙醇;
第三,将混合物与二月桂酸二丁基锡混合后放入烘箱中硫化成型;
第四,根据国家标准或行业标准测试3-丁烯基甲基环三硅氮橡胶样品的耐温性能、力学性能和抗老化性能和耐高温性能。
具体的工艺路线如下:
第一步:将3-丁烯基甲基二氯硅烷0.1~0.3mol放入1000ml四口圆底烧瓶中,四口烧瓶带有冷凝回流管,瓶底放无水硫酸铜粉末——作用是去除反应体系内生成的水,氨气通入到3-丁烯基甲基二氯硅烷液面下,氨气通过速度为10~50L/分钟。催化剂为氯化铵和金属钠,加热温度为70~120℃,反应时间300~600分钟。反应结束后,将金属钠块取出后用去离子水反复清洗,去除体系内的氯化铵和硫酸铜,最终不溶解于水的粘稠液体是3-丁烯基甲基环三硅氮烷,称量得到的3-丁烯基甲基环三硅氮烷并与理论值(1mol为339克)相比较,计算产率;
第二步:本步骤比例均为质量比,70~85%的3-丁烯基甲基环三硅氮烷与5~10%的氧化硼和10~20%的气相二氧化硅一起放进行星球磨机中混合得到混合物,球磨速度为200~300转/分钟,球磨时间为300分钟~400分钟;
第三步:称量质量为混合物0.1~1%的二月桂酸二丁基锡添加混合物中,并且机械搅拌均匀,搅拌速度为120~150转/分钟,搅拌时间为5~10分钟得到均匀的胶料;将胶料放进模具中并放入加热炉里温度为100~120℃加热20~30分钟后制得厚度2mm的橡胶片;
第四步:测试本发明硅氮橡胶的耐温性能、力学性能和抗老化性能和耐高温性能,为了对比分析,也购买了硅氮橡胶进行对比分析。耐温性能以拉伸强度开始降低时的最高温度为温度使用上限,拉伸强度采用GB/T528-1998硫化橡胶或热塑性橡胶拉伸应力应变性能的测定,耐臭氧老化性能和耐空气老化性 能分别采用GB/T7762-2003硫化橡胶或热塑性橡胶耐臭氧龟裂静态拉伸试验和GB/T3512-2001硫化橡胶或热塑性橡胶热空气加速老化和耐热试验。高温防热性能是采用150kw/m 2的热流辐照2mm厚橡胶片70s,测量橡胶片背面温升。
附图说明
图1为本发明实施例1制备得到的3-丁烯基甲基环三硅氮烷的红外图谱;
图2为本发明实施例1制备得到的3-丁烯基甲基环三硅氮烷的CNMR图谱;
图3为本发明实施例1制备得到的3-丁烯基甲基环三硅氮烷的SiNMR图谱。
具体实施方式
下面通过实施例对本发明做进一步说明,本发明的应用不局限于所举的实施例。
本发明提供一种耐侯性三维网络结构的硅氮橡胶,该硅氮橡胶的原料包括3-丁烯基甲基二氯硅烷、氨气、氧化硼、气相二氧化硅和二月桂酸二丁基锡;
以该硅氮橡胶的原料的总质量为100%计算,各组份的质量百分含量为:
3-丁烯基甲基二氯硅烷的质量百分含量为70%~85%;
氧化硼的质量百分含量为5%~10%;
气相二氧化硅的质量百分含量为10%~20%;
二月桂酸二丁基锡的质量百分含量为0.1%~1%。
制备得到的硅氮橡胶中3-丁烯基甲基二氯硅烷与氨气的摩尔比为1:1,制备过程中氨气过量。
本发明耐侯性三维网络结构的硅氮橡胶的制备方法,具体包括如下步骤:
第一步,将3-丁烯基甲基二氯硅烷放入烧瓶中,瓶底放无水硫酸铜粉末——作用是去除反应体系内生成的水,氨气通入到3-丁烯基甲基二氯硅烷液面下,氨气通过速度为10~50L/分钟。加入催化剂进行反应,催化剂为氯化铵和金属 钠,加热温度为70~120℃,反应时间300~600分钟。反应结束后,将金属钠块取出后用去离子水反复清洗,不溶解于水的粘稠液体是1,3,5-三甲基-1,3,5-三(3丁烯)环三硅氮烷(简称3-丁烯基甲基环三硅氮烷)。
其中,氨气通入过量,制备得到的3-丁烯基甲基环三硅氮烷中3-丁烯基甲基二氯硅烷与氨气的摩尔比为1:1。
催化剂的加入量为3-丁烯基甲基二氯硅烷质量的2‰~10‰。催化剂中,氯化铵和金属钠的质量比为1:0.05~1。
无水硫酸铜粉末的加入量为3-丁烯基甲基二氯硅烷质量的8%~12%。
反应化学方程式如下:
Figure PCTCN2021129956-appb-000001
第二步,将第一步得到的3-丁烯基甲基环三硅氮烷与氧化硼、气相二氧化硅一起放进行星球磨机中进行混合得到混合物;球磨速度为200~300转/分钟,球磨时间为300分钟~400分钟;其中加入量为:70~85%的3-丁烯基甲基环三硅氮烷、5~10%的氧化硼和10~20%的气相二氧化硅。
第三步,将0.1~1%的二月桂酸二丁基锡添加到第二步得到的混合物中,并且机械搅拌均匀,搅拌速度为120~150转/分钟,搅拌时间为5~10分钟得到均匀的胶料;将胶料放进模具中并放入加热炉里,温度为100~120℃加热20~30分钟后得到硅氮橡胶。
测试本发明硅氮橡胶的耐温性能、力学性能和抗老化性能和耐高温性能, 为了对比分析,也购买了硅氮橡胶进行对比分析。耐温性能以拉伸强度开始降低时的最高温度为温度使用上限,拉伸强度采用GB/T528-1998硫化橡胶或热塑性橡胶拉伸应力应变性能的测定,耐臭氧老化性能和耐空气老化性能分别采用GB/T7762-2003硫化橡胶或热塑性橡胶耐臭氧龟裂静态拉伸试验和GB/T3512-2001硫化橡胶或热塑性橡胶热空气加速老化和耐热试验。高温防热性能是采用150kw/m 2的热流辐照2mm厚橡胶片70s,测量橡胶片背面温升。
实施例1:
第一步:将3-丁烯基甲基二氯硅烷0.1mol放入1000ml四口圆底烧瓶中,四口烧瓶带有冷凝回流管,瓶底放无水硫酸铜粉末——作用是去除反应体系内生成的水,氨气通入到3-丁烯基甲基二氯硅烷液面下,氨气通过速度为10L/分钟。催化剂为氯化铵(10克粉体)和金属钠(0.5克)块,加热温度为70℃,反应时间300分钟。反应结束后,将金属钠块取出后用去离子水反复清洗,去除体系内的氯化铵和硫酸铜,最终不溶解于水的粘稠液体是3-丁烯基甲基环三硅氮烷,称量得到29.15克3-丁烯基甲基环三硅氮烷并与理论值33.9克相比较,计算产率为86.0%;
第二步:本步骤比例均为质量比,85%的3-丁烯基甲基环三硅氮烷与5%的氧化硼和10%的气相二氧化硅一起放进行星球磨机中混合得到混合物,球磨速度为200转/分钟,球磨时间为300分钟;
第三步:称量质量为混合物0.1%的二月桂酸二丁基锡添加混合物中,并且机械搅拌均匀,搅拌速度为120转/分钟,搅拌时间为5分钟得到均匀的胶料;将胶料放进模具中并放入加热炉里温度为100℃加热20分钟后制得厚度2mm的橡胶片;
第四步:测试本发明硅氮橡胶的耐温性能、力学性能和抗老化性能和耐高温性能,为了对比分析,也购买了硅氮橡胶进行对比分析。
测试结果表明:耐温性为465℃,显著高于常规的硅氮橡胶的410℃,室 温拉伸强度为15.3MPa,也高于常规的硅氮橡胶的11.2MPa,耐温性和强度的提高是因为当前发明中的硅氮橡胶具有三官能度,能形成三维网络结构,而普通硅氮橡胶只能形成线性分子结构。抗老化性能相对于市售的硅氮橡胶,提高了60%,这主要是因为本发明中的具有很多芳胺氢能显著提高材料的耐候性。高温防热性能测试方法为:150kw/m 2的热流辐照2mm厚橡胶片70s,结果表明:普通硅氮橡胶背面温升189℃,而本发明的硅氮橡胶的背面温升35℃。这说明本发明的硅氮橡胶具有非常好的综合性能。
如图1所示为本发明实施例1制备得到的3-丁烯基甲基环三硅氮烷的红外图谱,由图可知,3392cm -1归属于N-H的伸缩振动峰,丁烯双键的伸缩振动峰在3180cm -1和1593cm -1附近,1010cm -1附近是丁烯双键的面外振动峰。2890~3050cm -1范围内可以观察到甲基和亚甲基的强烈的伸缩振动峰。1365cm -1和1337cm -1可以分别观察到亚甲基CH 2和甲基CH 3的弯曲振动峰。
如图2所示为本发明实施例1制备得到的3-丁烯基甲基环三硅氮烷的CNMR图谱;由图可知核磁共振在氘代苯C 6D 6中测得。除了128ppm处的溶剂峰外,共可以观察到5个明显的碳共振信号,几乎没有杂峰存在,这与产物理论结构式的对称性特征非常吻合,说明产物的结构如预期,且纯度非常高。
如图3所示为本发明实施例1制备得到的3-丁烯基甲基环三硅氮烷的SiNMR图谱。核磁的硅谱只在-6.8ppm出现了一个强烈的共振信号,这再次印证了CNMR的结果,即产物的纯度非常好,产物分子中的硅原子只存在一种化学环境。
实施例2
第一步:将3-丁烯基甲基二氯硅烷0.3mol放入1000ml四口圆底烧瓶中,四口烧瓶带有冷凝回流管,瓶底放无水硫酸铜粉末——作用是去除反应体系内生成的水,氨气通入到3-丁烯基甲基二氯硅烷液面下,氨气通过速度为50L/分钟。催化剂为氯化铵(10克)和金属钠(0.8克),加热温度为120℃,反应时间600分钟。反应结束后,将金属钠块取出后用去离子水反复清洗,去除 体系内的氯化铵和硫酸铜,最终不溶解于水的粘稠液体是3-丁烯基甲基环三硅氮烷,称量得到的3-丁烯基甲基环三硅氮烷并与理论值(1mol为339克)相比较,计算产率87.1%;
第二步:本步骤比例均为质量比,70%的3-丁烯基甲基环三硅氮烷与10%的氧化硼和20%的气相二氧化硅一起放进行星球磨机中混合得到混合物,球磨速度为300转/分钟,球磨时间为400分钟;
第三步:称量质量为混合物1%的二月桂酸二丁基锡添加混合物中,并且机械搅拌均匀,搅拌速度为150转/分钟,搅拌时间为10分钟得到均匀的胶料;将胶料放进模具中并放入加热炉里温度为120℃加热30分钟后制得厚度2mm的橡胶片;
第四步:测试本发明硅氮橡胶的耐温性能、力学性能和抗老化性能和耐高温性能,为了对比分析,也购买了硅氮橡胶进行对比分析。
测试结果表明:耐温性为467℃,显著高于常规的硅氮橡胶的410℃,室温拉伸强度为15.2MPa,也高于常规的硅氮橡胶的11.2MPa,耐温性和强度的提高是因为当前发明中的硅氮橡胶具有三官能度,能形成三维网络结构,而普通硅氮橡胶只能形成线性分子结构。抗老化性能相对于市售的硅氮橡胶,提高了62%,这主要是因为本发明中的具有很多芳胺氢能显著提高材料的耐候性。高温防热性能测试方法为:150kw/m 2的热流辐照2mm厚橡胶片70s,结果表明:普通硅氮橡胶背面温升189℃,而本发明的硅氮橡胶的背面温升14℃。这说明本发明的硅氮橡胶具有非常好的综合性能。
实施例3
第一步:将3-丁烯基甲基二氯硅烷0.2mol放入1000ml四口圆底烧瓶中,四口烧瓶带有冷凝回流管,瓶底放无水硫酸铜粉末——作用是去除反应体系内生成的水,氨气通入到3-丁烯基甲基二氯硅烷液面下,氨气通过速度为20L/分钟。催化剂为氯化铵(10克)和金属钠(1克),加热温度为80℃,反应时间350分钟。反应结束后,将金属钠块取出后用去离子水反复清洗,去除体系 内的氯化铵和硫酸铜,最终不溶解于水的粘稠液体是3-丁烯基甲基环三硅氮烷,称量得到的3-丁烯基甲基环三硅氮烷并与理论值(1mol为339克)相比较,计算产率为91%;
第二步:本步骤比例均为质量比,75%的3-丁烯基甲基环三硅氮烷与7%的氧化硼和18%的气相二氧化硅一起放进行星球磨机中混合得到混合物,球磨速度为220转/分钟,球磨时间为320分钟;
第三步:称量质量为混合物0.2%的二月桂酸二丁基锡添加混合物中,并且机械搅拌均匀,搅拌速度为130转/分钟,搅拌时间为6分钟得到均匀的胶料;将胶料放进模具中并放入加热炉里温度为110℃加热30分钟后制得厚度2mm的橡胶片;
第四步:测试本发明硅氮橡胶的耐温性能、力学性能和抗老化性能和耐高温性能,为了对比分析,也购买了硅氮橡胶进行对比分析。
测试结果表明:耐温性为478℃,显著高于常规的硅氮橡胶的410℃,室温拉伸强度为16.7MPa,也高于常规的硅氮橡胶的11.2MPa,耐温性和强度的提高是因为当前发明中的硅氮橡胶具有三官能度,能形成三维网络结构,而普通硅氮橡胶只能形成线性分子结构。抗老化性能相对于市售的硅氮橡胶,提高了87%,这主要是因为本发明中的具有很多芳胺氢能显著提高材料的耐候性。高温防热性能测试方法为:150kw/m 2的热流辐照2mm厚橡胶片70s,结果表明:普通硅氮橡胶背面温升189℃,而本发明的硅氮橡胶的背面温升17℃。这说明本发明的硅氮橡胶具有非常好的综合性能。
实施例4
第一步:将3-丁烯基甲基二氯硅烷0.15mol放入1000ml四口圆底烧瓶中,四口烧瓶带有冷凝回流管,瓶底放无水硫酸铜粉末——作用是去除反应体系内生成的水,氨气通入到3-丁烯基甲基二氯硅烷液面下,氨气通过速度为30L/分钟。催化剂为氯化铵(10克)和金属钠(3克),加热温度为90℃,反应时间400分钟。反应结束后,将金属钠块取出后用去离子水反复清洗,去除体系 内的氯化铵和硫酸铜,最终不溶解于水的粘稠液体是3-丁烯基甲基环三硅氮烷,称量得到的3-丁烯基甲基环三硅氮烷并与理论值(1mol为339克)相比较,计算产率93.7%;
第二步:本步骤比例均为质量比,80%的3-丁烯基甲基环三硅氮烷与10%的氧化硼和10%的气相二氧化硅一起放进行星球磨机中混合得到混合物,球磨速度为240转/分钟,球磨时间为350分钟;
第三步:称量质量为混合物0.4%的二月桂酸二丁基锡添加混合物中,并且机械搅拌均匀,搅拌速度为130转/分钟,搅拌时间为9分钟得到均匀的胶料;将胶料放进模具中并放入加热炉里温度为118℃加热26分钟后制得厚度2mm的橡胶片;
第四步:测试本发明硅氮橡胶的耐温性能、力学性能和抗老化性能和耐高温性能,为了对比分析,也购买了硅氮橡胶进行对比分析。
测试结果表明:耐温性为475℃,显著高于常规的硅氮橡胶的410℃,室温拉伸强度为16.9MPa,也高于常规的硅氮橡胶的11.2MPa,耐温性和强度的提高是因为当前发明中的硅氮橡胶具有三官能度,能形成三维网络结构,而普通硅氮橡胶只能形成线性分子结构。抗老化性能相对于市售的硅氮橡胶,提高了88%,这主要是因为本发明中的具有很多芳胺氢能显著提高材料的耐候性。高温防热性能测试方法为:150kw/m 2的热流辐照2mm厚橡胶片70s,结果表明:普通硅氮橡胶背面温升189℃,而本发明的硅氮橡胶的背面温升29℃。这说明本发明的硅氮橡胶具有非常好的综合性能。
实施例5
第一步:将3-丁烯基甲基二氯硅烷0.25mol放入1000ml四口圆底烧瓶中,四口烧瓶带有冷凝回流管,瓶底放无水硫酸铜粉末——作用是去除反应体系内生成的水,氨气通入到3-丁烯基甲基二氯硅烷液面下,氨气通过速度为10~50L/分钟。催化剂为氯化铵(10克)和金属钠(5克),加热温度为100℃,反应时间300~600分钟。反应结束后,将金属钠块取出后用去离子水反复清洗, 去除体系内的氯化铵和硫酸铜,最终不溶解于水的粘稠液体是3-丁烯基甲基环三硅氮烷,称量得到的3-丁烯基甲基环三硅氮烷并与理论值(1mol为339克)相比较,计算产率93.9%;
第二步:本步骤比例均为质量比,72%的3-丁烯基甲基环三硅氮烷与9%的氧化硼和19%的气相二氧化硅一起放进行星球磨机中混合得到混合物,球磨速度为280转/分钟,球磨时间为390分钟;
第三步:称量质量为混合物0.5%的二月桂酸二丁基锡添加混合物中,并且机械搅拌均匀,搅拌速度为140转/分钟,搅拌时间为8分钟得到均匀的胶料;将胶料放进模具中并放入加热炉里温度为105℃加热24分钟后制得厚度2mm的橡胶片;
第四步:测试本发明硅氮橡胶的耐温性能、力学性能和抗老化性能和耐高温性能,为了对比分析,也购买了硅氮橡胶进行对比分析。
测试结果表明:耐温性为477℃,显著高于常规的硅氮橡胶的410℃,室温拉伸强度为17.2MPa,也高于常规的硅氮橡胶的11.2MPa,耐温性和强度的提高是因为当前发明中的硅氮橡胶具有三官能度,能形成三维网络结构,而普通硅氮橡胶只能形成线性分子结构。抗老化性能相对于市售的硅氮橡胶,提高了86%,这主要是因为本发明中的具有很多芳胺氢能显著提高材料的耐候性。高温防热性能测试方法为:150kw/m 2的热流辐照2mm厚橡胶片70s,结果表明:普通硅氮橡胶背面温升189℃,而本发明的硅氮橡胶的背面温升21℃。这说明本发明的硅氮橡胶具有非常好的综合性能。
实施例6
第一步:将3-丁烯基甲基二氯硅烷0.27mol放入1000ml四口圆底烧瓶中,四口烧瓶带有冷凝回流管,瓶底放无水硫酸铜粉末——作用是去除反应体系内生成的水,氨气通入到3-丁烯基甲基二氯硅烷液面下,氨气通过速度为45L/分钟。催化剂为氯化铵(10克)和金属钠(10克),加热温度为115℃,反应时间550分钟。反应结束后,将金属钠块取出后用去离子水反复清洗,去除体 系内的氯化铵和硫酸铜,最终不溶解于水的粘稠液体是3-丁烯基甲基环三硅氮烷,称量得到的3-丁烯基甲基环三硅氮烷并与理论值(1mol为339克)相比较,计算产率94.1%;
第二步:本步骤比例均为质量比,82%的3-丁烯基甲基环三硅氮烷与6%的氧化硼和12%的气相二氧化硅一起放进行星球磨机中混合得到混合物,球磨速度为270转/分钟,球磨时间为310分钟;
第三步:称量质量为混合物0.05%的二月桂酸二丁基锡添加混合物中,并且机械搅拌均匀,搅拌速度为125转/分钟,搅拌时间为7分钟得到均匀的胶料;将胶料放进模具中并放入加热炉里温度为118℃加热21分钟后制得厚度2mm的橡胶片;
第四步:测试本发明硅氮橡胶的耐温性能、力学性能和抗老化性能和耐高温性能,为了对比分析,也购买了硅氮橡胶进行对比分析。
测试结果表明:耐温性为471℃,显著高于常规的硅氮橡胶的410℃,室温拉伸强度为16.7MPa,也高于常规的硅氮橡胶的11.2MPa,耐温性和强度的提高是因为当前发明中的硅氮橡胶具有三官能度,能形成三维网络结构,而普通硅氮橡胶只能形成线性分子结构。抗老化性能相对于市售的硅氮橡胶,提高了83%,这主要是因为本发明中的具有很多芳胺氢能显著提高材料的耐候性。高温防热性能测试方法为:150kw/m 2的热流辐照2mm厚橡胶片70s,结果表明:普通硅氮橡胶背面温升189℃,而本发明的硅氮橡胶的背面温升30℃。这说明本发明的硅氮橡胶具有非常好的综合性能。
综上所述:
第一步:氨气通过速度为10~50L/分钟。催化剂为氯化铵和金属钠,加热温度为70~120℃,反应时间300~600分钟。当反应条件不在这个范围内,产率较低,并且,反应条件接近这个参数范围边界时反应产率就已经低于90%了。
第二步:本步骤比例均为质量比,70~85%的3-丁烯基甲基环三硅氮烷与5~10%的氧化硼和10~20%的气相二氧化硅一起放进行星球磨机中混合得到 混合物,无机填料含量的增加能使得耐高温性能提高。
在上述6个实施例参数范围内,越靠近参数边界力学性能越差,特别是在参数范围外,力学性能较低。
这些实施例说明,上述实施例中的参数范围是最佳范围。

Claims (13)

  1. 一种耐侯性三维网络结构的硅氮橡胶,其特征在于:该硅氮橡胶的原料包括3-丁烯基甲基二氯硅烷、氨气、氧化硼、气相二氧化硅和二月桂酸二丁基锡;
    以该硅氮橡胶的原料的总质量为100%计算,各组份的质量百分含量为:
    3-丁烯基甲基二氯硅烷的质量百分含量为70%~85%;
    氧化硼的质量百分含量为5%~10%;
    气相二氧化硅的质量百分含量为10%~20%;
    二月桂酸二丁基锡的质量百分含量为0.1%~1%。
  2. 根据权利要求1所述的耐侯性三维网络结构的硅氮橡胶,其特征在于:制备得到的硅氮橡胶中3-丁烯基甲基二氯硅烷与氨气的摩尔比为1:1,制备过程中氨气过量。
  3. 一种耐侯性三维网络结构的硅氮橡胶的制备方法,其特征在于步骤包括:
    第一步,将3-丁烯基甲基二氯硅烷放入烧瓶中,氨气通入到3-丁烯基甲基二氯硅烷液面下,加入催化剂进行反应,催化剂为氯化铵和金属钠,反应结束后,将金属钠块取出后用去离子水反复清洗,不溶解于水的粘稠液体是3-丁烯基甲基环三硅氮烷;
    第二步,将第一步得到的3-丁烯基甲基环三硅氮烷与氧化硼、气相二氧化硅一起放进行星球磨机中进行混合得到混合物;
    第三步,将二月桂酸二丁基锡添加到第二步得到的混合物中,搅拌得到均匀的胶料,对胶料进行热处理,得到硅氮橡胶。
  4. 根据权利要求3所述的一种耐侯性三维网络结构的硅氮橡胶的制备方法,其特征在于:第一步中,反应温度为70~120℃,反应时间300~600分钟。
  5. 根据权利要求3所述的一种耐侯性三维网络结构的硅氮橡胶的制备方法,其特征在于:第一步中,氨气通入速度为10~50L/分钟。
  6. 根据权利要求3或5所述的一种耐侯性三维网络结构的硅氮橡胶的制 备方法,其特征在于:第一步中,氨气通入过量,制备得到的3-丁烯基甲基环三硅氮烷中3-丁烯基甲基二氯硅烷与氨气的摩尔比为1:1。
  7. 根据权利要求3所述的一种耐侯性三维网络结构的硅氮橡胶的制备方法,其特征在于:第二步中,球磨速度为200~300转/分钟,球磨时间为300~400分钟。
  8. 根据权利要求3所述的一种耐侯性三维网络结构的硅氮橡胶的制备方法,其特征在于:第三步中,搅拌速度为120~150转/分钟,搅拌时间为5~10分钟。
  9. 根据权利要求3所述的一种耐侯性三维网络结构的硅氮橡胶的制备方法,其特征在于:第三步中,热处理温度为100~120℃,时间为20~30分钟。
  10. 根据权利要求3所述的一种耐侯性三维网络结构的硅氮橡胶的制备方法,其特征在于:第一步中,催化剂的加入量为3-丁烯基甲基二氯硅烷质量的2‰~10‰。
  11. 根据权利要求10所述的一种耐侯性三维网络结构的硅氮橡胶的制备方法,其特征在于:所述催化剂中,氯化铵和金属钠的质量比为1:0.05~1。
  12. 根据权利要求3所述的一种耐侯性三维网络结构的硅氮橡胶的制备方法,其特征在于:第一步中,烧瓶中加入无水硫酸铜粉末,用于去除反应体系内生成的水;所述无水硫酸铜粉末的加入量为3-丁烯基甲基二氯硅烷质量的8%~12%。
  13. 一种耐侯性三维网络结构的硅氮橡胶,其特征在于:采用权利要求3~12之一所述的制备方法得到。
PCT/CN2021/129956 2020-11-30 2021-11-11 一种耐侯性三维网络结构的硅氮橡胶及其制备方法 WO2022111288A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011378732.6 2020-11-30
CN202011378732.6A CN112409800A (zh) 2020-11-30 2020-11-30 一种耐侯性三维网络结构的硅氮橡胶及其制备方法

Publications (1)

Publication Number Publication Date
WO2022111288A1 true WO2022111288A1 (zh) 2022-06-02

Family

ID=74830585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129956 WO2022111288A1 (zh) 2020-11-30 2021-11-11 一种耐侯性三维网络结构的硅氮橡胶及其制备方法

Country Status (2)

Country Link
CN (1) CN112409800A (zh)
WO (1) WO2022111288A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112409800A (zh) * 2020-11-30 2021-02-26 北京宇航系统工程研究所 一种耐侯性三维网络结构的硅氮橡胶及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB997494A (en) * 1962-04-02 1965-07-07 Gen Electric Organopolysiloxane compositions
CN1101055A (zh) * 1993-09-30 1995-04-05 中国科学院化学研究所 硅氮聚合物及其合成方法和用途
CN101376711A (zh) * 2007-08-28 2009-03-04 中国科学院化学研究所 一种耐高温有机硅粘结剂及其专用硅氮聚合物与制备方法
CN107903284A (zh) * 2017-12-26 2018-04-13 四川银邦新材料有限公司 六苯基环三硅氮烷的制备方法
CN109593465A (zh) * 2018-11-09 2019-04-09 中国科学院化学研究所 一种室温固化耐高温的有机硅橡胶材料及其制备方法和应用
CN112409800A (zh) * 2020-11-30 2021-02-26 北京宇航系统工程研究所 一种耐侯性三维网络结构的硅氮橡胶及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103435810B (zh) * 2013-07-15 2016-01-20 江苏大学 一种耐高温热塑性有机聚硅氮烷的制备方法
CN109553777B (zh) * 2018-11-09 2020-07-14 中国科学院化学研究所 一种耐高温的有机硅材料的室温固化剂、制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB997494A (en) * 1962-04-02 1965-07-07 Gen Electric Organopolysiloxane compositions
CN1101055A (zh) * 1993-09-30 1995-04-05 中国科学院化学研究所 硅氮聚合物及其合成方法和用途
CN101376711A (zh) * 2007-08-28 2009-03-04 中国科学院化学研究所 一种耐高温有机硅粘结剂及其专用硅氮聚合物与制备方法
CN107903284A (zh) * 2017-12-26 2018-04-13 四川银邦新材料有限公司 六苯基环三硅氮烷的制备方法
CN109593465A (zh) * 2018-11-09 2019-04-09 中国科学院化学研究所 一种室温固化耐高温的有机硅橡胶材料及其制备方法和应用
CN112409800A (zh) * 2020-11-30 2021-02-26 北京宇航系统工程研究所 一种耐侯性三维网络结构的硅氮橡胶及其制备方法

Also Published As

Publication number Publication date
CN112409800A (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
CN108003348B (zh) 硅氧烷桥基梯形聚硅氧烷,其制备方法及应用
WO2022111288A1 (zh) 一种耐侯性三维网络结构的硅氮橡胶及其制备方法
CN101787133B (zh) 一种无溶剂型液体硅树脂及其制备方法
CN106432728B (zh) 一种苯基二甲基硅氧基笼型倍半硅氧烷硅橡胶交联剂及其制备方法
Jiang et al. Characterization of a modified silicon-containing arylacetylene resin with POSS functionality
CN111499877A (zh) 一种有机硅改性的环氧树脂的制备方法
CN104045834A (zh) 一种马来海松酸改性聚硅氧烷树脂及其制备方法
CN110423352B (zh) 一种含碳硼烷结构耐高温有机硅材料的制备方法
CN101062970A (zh) 聚硅氧烷增韧的烯丙基线性酚醛/双马来酰亚胺树脂
CN105622943A (zh) 一种同时含腈基和乙烯基的高分子量聚硅氧烷的合成及加成型热硫化腈硅橡胶的制备方法
CN106883415A (zh) 一种聚硅氧烷改性含硅芳炔树脂的制备方法
Shi et al. Synthesis and thermal properties of novel room temperature vulcanized (RTV) silicone rubber containing POSS units in polysioxane main chains
Rajesh et al. Liquid silicone rubber Vulcanizates: network structure-property relationship and cure kinetics
CN112126194B (zh) 一种增韧改性环氧树脂复合材料的制备方法
KR20170061131A (ko) 실리콘 다공질체 및 실리콘 다공질체의 제조 방법
CN108559060A (zh) 一种有机硅改性环氧树脂的制备方法
CN108707232B (zh) 一种室温缩合型腈硅橡胶的制备方法
CN111732730A (zh) 一种耐高温硼硅橡胶生胶及其合成方法
Huang et al. Organic/inorganic hybrid bismaleimide resin with octa (aminophenyl) silsesquioxane
CN110964202A (zh) 一种聚硅氧烷/二酚型苯并噁嗪的制备方法
Zhang et al. Synthesis of aromatic diamine-based benzoxazines and effect of their backbone structure on thermal and flammability properties of polymers
CN111548443B (zh) 一种聚乙烯基硅硼氮烷及其制备方法
CN114835901A (zh) 一种环氧改性乙烯基硅橡胶及其制备方法和用途
CN110746449B (zh) 一种含柔性硅氧链节的芳香胺官能化碳硼烷化合物及其制备方法与应用
CN115449080B (zh) 一种碳硅烷高分子及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896789

Country of ref document: EP

Kind code of ref document: A1