WO2022111096A1 - 一种钙钛矿层、钙钛矿层的制作方法、钙钛矿层太阳能电池及钙钛矿层太阳能电池组件 - Google Patents

一种钙钛矿层、钙钛矿层的制作方法、钙钛矿层太阳能电池及钙钛矿层太阳能电池组件 Download PDF

Info

Publication number
WO2022111096A1
WO2022111096A1 PCT/CN2021/123523 CN2021123523W WO2022111096A1 WO 2022111096 A1 WO2022111096 A1 WO 2022111096A1 CN 2021123523 W CN2021123523 W CN 2021123523W WO 2022111096 A1 WO2022111096 A1 WO 2022111096A1
Authority
WO
WIPO (PCT)
Prior art keywords
perovskite
seed crystal
layer
solution
precursor
Prior art date
Application number
PCT/CN2021/123523
Other languages
English (en)
French (fr)
Inventor
解俊杰
徐琛
李子峰
吴兆
靳金玲
Original Assignee
隆基绿能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 隆基绿能科技股份有限公司 filed Critical 隆基绿能科技股份有限公司
Priority to AU2021387072A priority Critical patent/AU2021387072A1/en
Priority to JP2023520492A priority patent/JP2023549305A/ja
Priority to US18/029,058 priority patent/US20230380197A1/en
Priority to EP21896598.6A priority patent/EP4254530A1/en
Publication of WO2022111096A1 publication Critical patent/WO2022111096A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/40Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the perovskite layer is usually fabricated by a wet chemical method.
  • a perovskite precursor solution is generally coated on the substrate, and then the solute is crystallized by drying and other means to form a perovskite layer.
  • the present application provides a method for fabricating a perovskite layer.
  • the preparation method of the perovskite layer includes: providing a substrate; forming a perovskite seed crystal on the substrate; immersing the perovskite seed crystal in a perovskite solution to grow into a perovskite film; The ore thin film is annealed to form a perovskite layer.
  • the perovskite solute can be quickly diffused and transported to the periphery of the perovskite seed crystal, and the perovskite solute consumed by the crystal precipitation around the perovskite seed crystal can be replenished in time. Based on this, on the one hand, due to the timely replenishment of perovskite solutes, the generation of defects such as grain boundaries and pores can be reduced and the density of perovskite films can be improved during the process of growing perovskite films.
  • the concentration of the aforementioned perovskite precursor solution is less than or equal to 0.1 mol/L.
  • more solvent in the perovskite precursor solution can separate the crystallized perovskite seed crystals to form discretely distributed perovskite seed crystals, so that a discretely distributed perovskite with the above coverage can be formed Mineral Seeds.
  • the dispersion degree and coverage of perovskite seed crystals can be adjusted by adjusting the concentration of the perovskite precursor solution.
  • the perovskite seed crystal is an organic-inorganic hybrid material
  • the annealing temperature for forming the perovskite seed crystal is 60°C to 130°C.
  • the high temperature of the annealing treatment can simultaneously volatilize the organic halide. It can be seen that when AX is an organic halide, the excess AX precursor can be easily removed after forming the perovskite seed crystal.
  • the defect concentration also changes from the initial concentration to greater than the initial concentration in the direction away from the perovskite seed crystal.
  • the second concentration of the concentration changes into a sequential change of the initial concentration, which makes the perovskite seed crystal change more slowly in the process of forming the perovskite film, so that the defects of the first interface formed are reduced, and the direct change is avoided. Mutations that form perovskite films.
  • the thickness of the above-mentioned structural transition layer is greater than or equal to 0.5 nm and less than or equal to 5 nm, so that the perovskite seed crystal and the perovskite film form a "slow transition" effect.
  • 4 to 11 are schematic diagrams of states of each stage of the method for fabricating the perovskite layer provided by the embodiments of the present application;
  • FIG. 12 is a schematic structural diagram of a perovskite layer provided in an embodiment of the application.
  • FIG. 13 is a schematic structural diagram of another perovskite layer provided in the embodiment of the present application.
  • words such as “first” and “second” are used to distinguish the same or similar items with basically the same function and effect.
  • words “first”, “second” and the like do not limit the quantity and execution order, and the words “first”, “second” and the like are not necessarily different.
  • the perovskite layer of perovskite battery is mainly fabricated by wet chemical method.
  • the main fabrication process of the perovskite layer includes: as shown in Figure 1, whether it is a one-step method or a two-step method, the perovskite precursor solution is pre-coated on the substrate 11 with the electron transport layer 12 to form the perovskite Mine precursor solution layer 13 .
  • the solvent in the perovskite precursor solution layer 13 is volatilized, and the solute (perovskite material) is crystallized and precipitated to form a perovskite film .
  • the perovskite layer 142 can be formed.
  • the concentration of the perovskite solute around it decreases, forming a layer of low-concentration region 131 .
  • the perovskite solute concentration is lower than the perovskite solute concentration in the perovskite precursor solution layer 13 .
  • the perovskite solute in the perovskite precursor solution layer 13 diffuses and transports to the low-concentration region 131 .
  • the solvent in the perovskite precursor solution layer 13 is continuously volatilized.
  • the volatilization of the solvent in the perovskite precursor solution layer 13 will increase the concentration difference between the perovskite precursor solution layer 13 and the low concentration region 131 , thereby accelerating the growth of the perovskite seed crystal 141 .
  • the solute in the perovskite precursor solution layer 13 is continuously transported to the surface of the perovskite seed crystal 141 , the perovskite seed crystal 141 gradually grows, and finally a layer of perovskite is formed on the electron transport layer 12 Mineral film.
  • the embodiment of the present application provides a perovskite layer.
  • the perovskite layer can not only completely cover the substrate 21, but also has a high film quality and has fewer defects.
  • the fabrication time of the perovskite layer 24 is short, the growth rate is fast, and the work efficiency is high.
  • the perovskite layer may be an organic-inorganic hybrid perovskite layer, an inorganic perovskite layer, or an organic perovskite layer.
  • the perovskite layer may also be a lead-free perovskite layer or a double perovskite layer.
  • the electron transport layer 22 is formed on the substrate 21 .
  • the material of the electron transport layer 22 can be any one of SnO 2 , TiO 2 , and [6,6]-phenyl-C61-isomethyl butyrate (PCBM), and is not limited thereto.
  • the thickness of the electron transport layer 22 may be 50 nm to 100 nm.
  • the preparation process of the electron transport layer 22 may be spin coating, evaporation, etc., and is not limited thereto.
  • a perovskite precursor solution is coated on the substrate 21 , and the solvent of the perovskite precursor solution is volatilized to form a perovskite seed crystal intermediate 231 .
  • the perovskite seed crystal intermediate 231 is annealed to form the perovskite seed crystal 23 .
  • the above-mentioned perovskite seed crystals 23 are distributed on the substrate 21 in a discrete manner. Particles of a plurality of perovskite seed crystals 23 are distributed on the entire substrate 21 , and there is a certain interval between the perovskite seed crystals 23 without overlapping coverage. At this time, the multiple perovskite seed crystals 23 discretely distributed on the substrate 21 serve as multiple growth bases for the growth of the perovskite thin film, and they grow continuously to form a continuous perovskite thin film.
  • the discretely distributed perovskite seed crystals 23 can avoid the problem that the perovskite film grains are too small due to the overlapping coverage of the perovskite seed crystals 23, so that a more uniform perovskite can be formed. ore thin film and completely cover the substrate 21 .
  • the coverage ratio of the perovskite seed crystal 23 on the substrate 21 may be 10% ⁇ 50%, and the particle size of the perovskite seed crystal 23 may be 10 nm ⁇ 200 nm.
  • the perovskite seed crystal 23 with a particle size of 10 nm to 200 nm has a moderate size, which can not only avoid the problem of many internal defects when the grain size of the perovskite seed crystal 23 is too large, but also avoid the perovskite seed crystal. If the grain size of 23 is too small, the subsequent growth of perovskite films is slow.
  • the perovskite seed crystals 23 have the above-mentioned particle size
  • the coverage ratio is 10% to 50%
  • the spacing and number of the perovskite seed crystals 23 distributed on the substrate 21 are appropriate.
  • perovskite films with larger grain size and fewer defects such as grain boundaries can be rapidly formed.
  • the coverage ratio is too high
  • the perovskite seed crystals can be avoided.
  • the coverage ratio of the perovskite seed crystal 23 on the substrate 21 may be 10%, 18%, 20%, 25%, 30%, 34%, 40%, 45%, 50%, and the like.
  • the particle size of the perovskite seed crystal 23 may be 10 nm, 20 nm, 50 nm, 70 nm, 90 nm, 100 nm, 120 nm, 150 nm, 175 nm, 185 nm, 190 nm, 200 nm, or the like.
  • the dispersion degree and coverage of the perovskite seed crystal 23 can be adjusted by adjusting the concentration of the perovskite precursor solution.
  • concentration of the perovskite precursor solution the concentration of the perovskite precursor solution, the smaller the coverage of the perovskite seed crystals 23 and the higher the dispersion of the perovskite seed crystals 23 .
  • the concentration of the perovskite precursor solution may be 0.1mol/L, 0.09mol/L, 0.08mol/L, 0.07mol/L, 0.06mol/L, 0.05mol/L, 0.04mol/L, 0.03mol /L, 0.02mol/L, 0.01mol/L, etc.
  • the concentration of the perovskite precursor solution can be between 0.02 mol/L and 0.05 mol/L.
  • the above-mentioned perovskite seed crystal 23 can also be obtained by adjusting the ratio of the perovskite precursor solution.
  • the general formula of the perovskite material is ABX3, the perovskite precursor solution includes AX precursor and BX2 precursor, X is a halogen element, and A and B are cations.
  • the perovskite material may be an organic-inorganic hybrid material, and the material ratio of the AX precursor and the BX2 precursor may be (2-15):1.
  • the perovskite precursor solution used to make the perovskite layer in which the ratio of AX precursor and BX2 precursor is usually 1:1, even if one of the precursors is excessive for passivation defects, AX:BX2 The ratio is also between (0.9 ⁇ 1.1):1.
  • the amount of AX precursor substances is relatively large, and after the perovskite precursor solution solvent is volatilized to form the perovskite seed crystal intermediate 231, more AX precursors will remain .
  • These excess AX precursors can separate the plurality of perovskite seed intermediates 231, resulting in discrete distribution of perovskite seeds 23 with the coverage described above after annealing.
  • the coverage ratio of the perovskite seed crystal 23 can be regulated by adjusting the material ratio of the AX precursor to the BX2 precursor.
  • the material ratio of the AX precursor and the BX2 precursor can be (0.95-1.05): 1.
  • the coverage rate of the perovskite seed crystal can be adjusted by the concentration of the precursor. .
  • the material ratio of the AX precursor and the BX2 precursor may be 2:1, 3:1, 5:1, 7:1, 9:1, 10:1, 11:1, 12.5:1 , 13:1, 13.4:1, 15:1, etc.
  • the material ratio of the AX precursor and the BX2 precursor can be (5-10):1.
  • the above-mentioned method for coating the perovskite precursor solution may be any one of blade coating, spin coating, drop coating, inkjet, rotogravure coating, spray coating, and roll coating.
  • the method of volatilizing the solvent of the perovskite precursor solution can be natural volatilization, drying volatilization, vacuum flash evaporation, or anti-solvent accelerated crystallization, and it is not limited to this, as long as the perovskite can be guaranteed.
  • the solvent of the precursor solution can be volatilized.
  • the time of the above-mentioned annealing treatment may be 1 min to 30 min.
  • the annealing time may be 1 min, 10 min, 12 min, 17 min, 20 min, 25 min, 28 min, 30 min, or the like.
  • the grain size of the perovskite seed crystal 23 formed after annealing is moderate.
  • the annealing time in this range can also avoid the problem of excessive growth of the perovskite seed crystal 23 caused by the excessively long annealing time, thereby reducing defects in the perovskite seed crystal 23 .
  • the temperature of the above annealing treatment can be designed according to the perovskite seed crystal. Since the perovskite seed crystals 23 are dispersed and discontinuous small grains, the annealing temperature for forming the perovskite seed crystals 23 should be 20°C to 50°C lower than the annealing temperature for forming the perovskite thin film. When the perovskite seed crystal is an all-inorganic material, the temperature of the annealing treatment may be 120°C to 220°C. At this time, it can be ensured that less defects are formed in the perovskite seed crystal 23 after the annealing treatment, and stoichiometric mismatch and decomposition of the perovskite seed crystal 23 can be avoided.
  • the temperature of the annealing treatment may be 160°C to 200°C.
  • the annealing temperature can be 120°C, 130°C, 150°C, 160°C, 170°C, 180°C, 190°C, 200°C, 210°C, 220°C, etc. .
  • the temperature of the annealing treatment may be 60°C to 130°C.
  • the temperature of the annealing treatment may be 90°C to 110°C.
  • the annealing temperature can be 60°C, 70°C, 80°C, 90°C, 95°C, 100°C, 108°C, 110°C, 120°C, 130°C, etc. .
  • the perovskite seed crystal 23 is dipped into the perovskite solution 30 .
  • the perovskite solution 30 may be prepared by dissolving perovskite materials, or may be a perovskite precursor solution.
  • FIG. 8 under the action of the perovskite seed crystal 23 , the perovskite seed crystal 23 grows into a perovskite film; the perovskite film is annealed to form a perovskite layer 24 .
  • the perovskite solute can be quickly diffused and transported to the periphery of the perovskite seed crystal 23, and the perovskite solute consumed by the crystal precipitation around the perovskite seed crystal 23 can be replenished in time. Based on this, on the one hand, due to the timely replenishment of perovskite solutes, the generation of defects such as grain boundaries and pores can be reduced and the density of perovskite films can be improved during the process of growing perovskite films.
  • the perovskite solute can be quickly transported to the periphery of the perovskite seed crystal 23, it can promote the rapid growth of the perovskite seed crystal 23 and accelerate the growth rate of the perovskite film, thereby improving the production efficiency and saving energy. Production time.
  • solubility of perovskite materials there are various ways to reduce the solubility of perovskite materials. For example, reduce the pressure. Another example is cooling. When the solubility of the perovskite material is reduced by cooling, on the one hand, this cooling method is easy to implement and can reduce the difficulty of the process. On the other hand, the process of reducing the solubility of perovskite materials can be easily regulated by adjusting the temperature, so that the process of reducing the solubility of perovskite materials has greater controllability.
  • the cooling rate of cooling is positively correlated with the rate at which the solubility of the perovskite material in the perovskite solution 30 decreases, and the rate at which the solubility of the perovskite material decreases is positively correlated with the growth rate of the perovskite film.
  • the cooling rate of the above cooling may be 0.1°C/h to 10°C/h.
  • the rate at which the solubility of the perovskite material decreases is appropriate, which can speed up the growth rate of the perovskite film while ensuring the quality of the perovskite film. Not only can the problem of excessive defects caused by too fast perovskite crystal growth be avoided, but also the problem of low production efficiency caused by too slow growth of perovskite crystals.
  • the cooling rate of cooling can be 0.1°C/h, 0.5°C/h, 1°C/h, 3°C/h, 4.5°C/h, 5°C/h, 6.2°C/h, 7°C/h, 8.2°C/h, 9°C/h, 10°C/h, etc.
  • the initial temperature of the perovskite solution 30 may be 100°C to 150°C.
  • the initial temperature of the perovskite solution 30 may be 100°C, 110°C, 121°C, 135°C, 146°C, 150°C, 160°C, 180°C, 192°C, 200°C, and the like.
  • the initial temperature of the perovskite solution 30 is relatively high, which facilitates the cooling operation, and the cooling cost is relatively low.
  • the substrate 21 Before immersing the substrate 21 with the perovskite seed crystals 23 into the perovskite solution 30, in order to keep the initial temperature of the entire system constant, the substrate 21 can also be preheated to the initial temperature.
  • the solvent when preparing the perovskite solution 30, the solvent can be heated to the initial temperature, and then the perovskite solute can be added under stirring.
  • the solvent of the perovskite solution 30 can be N,N-dimethylformamide (DMF, the boiling point is 153°C), dimethyl sulfoxide (DMSO, the boiling point is 189°C), N-methylpyrrolidone (NMP, the boiling point is 189°C)
  • DMF N,N-dimethylformamide
  • DMSO dimethyl sulfoxide
  • NMP N-methylpyrrolidone
  • the perovskite material can also be increased by accelerating solvent volatilization in the process of growing the perovskite seed crystal 23 into the perovskite film. saturation.
  • the perovskite solute in the perovskite solution 30 can be brought closer to or in a saturated state, thereby reducing grain boundaries, pores, etc. during the growth of the perovskite seed crystal 23 into a perovskite film.
  • the generation of defects improves the density and growth rate of perovskite films.
  • the evaporation of the solvent can be accelerated by heating.
  • the speed of solvent volatilization can be easily regulated by controlling the heating temperature, and then the growth rate of the perovskite film can be regulated.
  • the initial temperature of the perovskite solution 30 may be 20°C to 30°C; in the process of growing the perovskite seed crystal 23 into a perovskite film, the heating temperature may be 40°C to 100°C. Preferably, the heating temperature may be 50°C to 70°C. At this time, the initial temperature of the perovskite solution 30 is low, so that the perovskite solution 30 can be easily prepared and the cost is low when the perovskite solution 30 is heated to a higher temperature. Moreover, the temperature difference between the heating temperature and the initial temperature is suitable, which can speed up the growth rate of the perovskite film and ensure the quality of the perovskite film.
  • the initial temperature of the perovskite solution 30 may be 20°C, 21.5°C, 22°C, 23°C, 24.5°C, 25.1°C, 26°C, 27°C, 28°C, 29°C, 30°C, and the like.
  • the heating temperature may be 40°C, 50°C, 60°C, 70°C, 80°C, 90°C, 100°C, or the like.
  • the perovskite solution 30 can be configured at room temperature. After the substrate 21 with the perovskite seed crystals 23 is immersed in the perovskite solution 30, the perovskite solution 30 can be heated to accelerate the volatilization of the solvent.
  • the perovskite solution 30 used in the above-mentioned growth of the perovskite thin film may be an unsaturated solution or a saturated solution.
  • a saturated solution to grow the perovskite film
  • the perovskite solution 30 is a saturated solution, and in the process of growing the perovskite film, the perovskite Solution 30 is always saturated.
  • the perovskite solution 30 in a saturated state can make the perovskite material more easily precipitated from the perovskite solution 30, and rapidly precipitate on the surface of the perovskite seed crystal 23 under the action of the perovskite seed crystal 23,
  • the perovskite seed crystal 23 is promoted to grow, forming a perovskite film with less defects and high density.
  • the perovskite solution 30 When the perovskite solution 30 is a saturated solution, the growth power of the perovskite film comes from the supersaturation of the solution. When the perovskite solution 30 is in a supersaturated state, the solutes in the perovskite solution 30 tend to precipitate out thermodynamically. In the presence of the perovskite seed crystal 23, the perovskite solute will rapidly precipitate on the surface of the perovskite seed crystal 23 under the action of the perovskite seed crystal 23, which promotes the growth of the perovskite seed crystal 23, thereby forming Perovskite thin films.
  • the side and back sides of the substrate 21 can be covered before the growth of the perovskite film, or after the growth of the perovskite film, a mixed solvent of acetonitrile and DMF or other polar solvents can be used to wipe and remove.
  • the hole transport layer 25 is formed on the perovskite layer 24 .
  • the hole transport layer 25 can be made of 2,2',7,7'-tetrakis[N,N-bis(4-methoxyphenyl)amino]-9,9'-spirobifluorene (Spiro- OMeTAD), (poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine](PTAA), 2,2',7,7'-tetrakis(bis-p-tolylamino) ) Spiro-9,9'-difluorene (Spiro-TTB), etc.
  • the process of forming the hole transport layer 25 can be any one of spin coating, spray coating, magnetron sputtering process, thermal evaporation coating process, and not only Limited to this. It should be understood that in the production of the above-mentioned perovskite solar cells, the electron transport layer 22 is first made, and then the perovskite layer 24 and the hole transport layer 25 are made. In some perovskite layers, holes can also be made first. The transport layer 25, and then the perovskite layer 24 and the electron transport layer 22 are fabricated.
  • a transparent conductive layer 26 is formed on the hole transport layer 25, and the material of the transparent conductive layer 26 can be tin-doped indium oxide (ITO), zinc-doped indium oxide (IZO), tungsten-doped indium oxide (IWO) ), one or more of titanium-doped indium oxide (ITIO), fluorine-doped tin oxide (FTO), and aluminum-doped zinc oxide (AZO).
  • the process of forming the transparent conductive layer 26 may be a magnetron sputtering process, a thermal evaporation process, or the like. It should be understood that in some perovskite layers, the transparent conductive layer 26 may also be omitted.
  • electrodes 27 are formed on the transparent conductive layer 26 .
  • the material of the electrode 27 may be a metal with good conductivity such as silver and copper.
  • the process of fabricating the electrode 27 may be screen printing, evaporation, sputtering, or the like.
  • the embodiments of the present application divide the process of forming the perovskite seed crystal 23 and growing the perovskite seed crystal 23 into a perovskite film into two steps.
  • the perovskite seed crystal 23 is formed on the substrate 21, and then the perovskite seed crystal 23 is immersed in the perovskite solution 30. Under the action of the perovskite seed crystal 23, the perovskite seed crystal 23 grows into calcium Titanium film.
  • the process of forming the perovskite seed crystal 23 can be independently regulated, so that the perovskite seed crystal 23 with larger grain size and distributed on the entire substrate 21 can be formed.
  • a perovskite film covering the entire substrate 21 can be grown and the defects of the perovskite film can be reduced.
  • the perovskite film is annealed to form a perovskite layer 24 covering the entire substrate 21 and having fewer defects, thereby improving the conversion efficiency of the perovskite layer and reducing the risk of leakage.
  • the first step is to provide a clean FTO conductive glass.
  • an electron transport layer made of SnO2 with a thickness of 100 nm is formed on the FTO conductive glass by a spin coating process.
  • the third step 1032 mg of FAI and 461 mg of PbI2 were dissolved in 20 ml of DMF, and heated and stirred at 60 °C for 2 h to obtain a transparent perovskite precursor solution.
  • FAI:PbI2 (molar ratio) 6:1
  • the solution concentration is 0.05mol/L.
  • the perovskite precursor solution was spin-coated on the electron transport layer at a spin-coating speed of 3000 rpm and a spin-coating time of 30 s. After spin coating, annealed at 100°C for 10min-20min. After the solvent and excess FAI were volatilized, discretely distributed FAPbI3 seed crystals were formed on the electron transport layer.
  • the fourth step 50ml of DMF was heated in a beaker and kept at 120°C, and 0.6g of FAPbI3 perovskite was added until it was completely dissolved. After the solution was clarified, 0.6g of FAPbI3 perovskite was added to dissolve again. The above dissolution process was repeated until the perovskite could no longer be dissolved, and the DMF saturated solution of FAPbI3 perovskite was obtained.
  • the substrate with perovskite seeds was preheated to 120 °C and then immersed in the above-mentioned 120 °C saturated solution of FAPbI3 perovskite in DMF. After sealing the beaker, it was placed in a precision oven preheated to 120°C. A program was set to cool the saturated perovskite solution to room temperature at a rate of 5 °C/h. The growth thickness of the perovskite film is controlled by the cooling range of the saturated perovskite solution. During the process from 120 °C to room temperature, the amount of perovskite solute precipitated due to the difference in solubility is approximately equal to the amount of perovskite deposited on the electron transport layer. amount of titanium ore.
  • the solute in the saturated perovskite solution tends to precipitate out driven by the supersaturation.
  • the perovskite seed crystals crystallize on the surface, and the perovskite seed crystals gradually grow to form a complete and high-quality FAPbI3 perovskite film.
  • the preparation method of the perovskite layer provided in this embodiment is basically the same as the preparation method of the perovskite layer recorded in the first embodiment, and the difference is only:
  • CsI and 461 mg of PbI2 were added to 50 ml of DMF, and stirred at 80 °C for 2 h to obtain a transparent and clear perovskite precursor solution.
  • CsI:PbI2 (molar ratio) 1:1, and the perovskite concentration is 0.02mol/L.
  • the above perovskite precursor solution was spin-coated on the electron transport layer at a spin-coating speed of 4000 rpm and a spin-coating time of 45 s. After spin-coating, annealing and heating at 160°C for 10-30min yields CsPbI3 seed crystals on the electron transport layer.
  • the substrate with CsPbI3 seed crystal is immersed in the above-mentioned saturated solution of ⁇ -butyrolactone of CsPbI3 perovskite, and the beaker is in an open state.
  • the whole system was placed in a precise temperature-controlled environment, and heated from room temperature to 70 °C at a heating rate of 10 °C/h and kept for 8-16 h.
  • the solvent in the saturated perovskite solution continued to volatilize, and the perovskite seed crystal gradually grow up, and finally get a layer of CsPbI3 perovskite film.
  • the preparation method of the perovskite layer provided in this embodiment is basically the same as the preparation method of the perovskite layer recorded in the first embodiment, and the difference is only:
  • the present application further provides a perovskite layer, which can be fabricated by the method for fabricating a perovskite layer described in any of the above embodiments, and the perovskite layer includes
  • the perovskite seed crystal and the perovskite thin film include a first interface between the perovskite seed crystal and the perovskite thin film, wherein the first interface is an interface that can be observed by a high-resolution scanning electron microscope or an electron microscope. Due to the formation of the first interface between the perovskite seed crystal and the perovskite film, which can be observed by high-resolution scanning electron microscopy or electron microscopy.
  • the first interface formed between the perovskite seed crystal and the perovskite thin film is a structural transition layer, wherein the lattice parameter of the structural transition layer is According to the first order, the atomic arrangement of the structural transition layer changes according to the second order.
  • the first order is to change from the initial parameter to the second parameter larger than the initial parameter and then to the initial parameter along the direction away from the perovskite seed crystal.
  • the second order is the order from ordered to disordered and back to ordered along the direction away from the perovskite seed crystal.
  • the defect concentration also changes from the initial concentration to greater than the initial concentration in the direction away from the perovskite seed crystal.
  • the second concentration of the concentration changes into a sequential change of the initial concentration, which makes the perovskite seed crystal change more slowly in the process of forming the perovskite film, so that the defects of the first interface formed are reduced, and the direct change is avoided. Mutations that form perovskite films.
  • At least one (a) of a, b or c may represent: a, b, c, a combination of a and b, a combination of a and c, a combination of b and c, or a combination of a, b and c Combination, where a, b, c can be single or multiple.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请公开一种钙钛矿层、钙钛矿层的制作方法、钙钛矿层太阳能电池及钙钛矿层太阳能电池组件,涉及光伏技术领域,以制作能够完全覆盖衬底且缺陷较少的钙钛矿层。该钙钛矿层的制作方法包括:提供一衬底;在衬底上形成钙钛矿籽晶;将钙钛矿籽晶浸入钙钛矿溶液中;在钙钛矿籽晶的作用下,钙钛矿籽晶生长成钙钛矿薄膜;对钙钛矿薄膜进行退火处理,形成钙钛矿层。本申请提供的钙钛矿层及其制作方法用于太阳能电池制造。

Description

一种钙钛矿层、钙钛矿层的制作方法、钙钛矿层太阳能电池及钙钛矿层太阳能电池组件
本申请要求在2020年11月25日提交中国专利局、申请号为202011343679.6、发明名称为“一种钙钛矿层、钙钛矿层的制作方法、钙钛矿层太阳能电池及钙钛矿层太阳能电池组件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光伏技术领域,特别是涉及一种钙钛矿层、钙钛矿层的制作方法、钙钛矿层太阳能电池及钙钛矿层太阳能电池组件。
背景技术
在制作钙钛矿太阳能电池的过程中,通常采用湿化学法制作钙钛矿层。制作钙钛矿层时,一般会在衬底上涂覆钙钛矿前驱溶液,然后采用烘干等手段使溶质结晶析出,形成钙钛矿层。
现有技术中,形成的钙钛矿层往往无法完全覆盖衬底,并且存在较多的裂纹、大晶界、孔洞等缺陷,严重影响钙钛矿电池的性能。在现有技术中,虽然可以通过反溶剂的方法、两步沉积的方法,缓解钙钛矿薄膜结晶过程中的裂纹、大晶界、孔洞等缺陷,但是结晶和晶粒长大过程中,钙钛矿溶质扩散速度较慢,无法及时补充到钙钛矿籽晶周围所导致的缺陷依然存在。另外,反溶剂法、两步法等方法制作钙钛矿层时,控制难度大,对环境、气氛等因素的要求较高,而且目前使用的反溶剂的毒性都比较大。
申请内容
本申请的目的在于提供一种钙钛矿层、钙钛矿层的制作方法、钙钛矿层太阳能电池及钙钛矿层太阳能电池组件,以制作能够完全覆盖衬底且缺陷较少的钙钛矿层。
第一方面,本申请提供一种钙钛矿层的制作方法。该钙钛矿层的制作方法 包括:提供一衬底;在衬底上形成钙钛矿籽晶;将所述钙钛矿籽晶浸入钙钛矿溶液中以生长成钙钛矿薄膜;对钙钛矿薄膜进行退火处理,形成钙钛矿层。
采用上述技术方案时,将形成钙钛矿籽晶和钙钛矿籽晶生长成钙钛矿薄膜的过程分成两步进行。先在衬底上形成钙钛矿籽晶,然后将钙钛矿籽晶浸入钙钛矿溶液中以生长成钙钛矿薄膜。基于此,可以独立的对形成钙钛矿籽晶的过程进行调控,从而可以形成晶粒尺寸较大且分布在整个衬底上的钙钛矿籽晶。在这些晶粒尺寸较大且分布在整个衬底上的钙钛矿籽晶的作用下,可以生长覆盖整个衬底的钙钛矿薄膜,并减少钙钛矿薄膜的缺陷。此时,这种钙钛矿薄膜经过退火处理,可以形成覆盖整个衬底且缺陷较少的钙钛矿层,进而提高钙钛矿层的转换效率,降低漏电的风险。
在一些可能的实现方式中,在上述钙钛矿籽晶生长成钙钛矿薄膜的过程中,采用降低钙钛矿材料在钙钛矿溶液中溶解度的方式促使钙钛矿材料从钙钛矿溶液中析出并为钙钛矿籽晶生长提供钙钛矿材料。随着钙钛矿材料在钙钛矿溶液中溶解度的降低,钙钛矿溶液中的钙钛矿溶质更加趋近或处于饱和状态,使得钙钛矿溶质较容易从钙钛矿溶液中析出。此时,钙钛矿溶质可以较快的扩散输送到钙钛矿籽晶周围,及时的补充钙钛矿籽晶周围因晶体析出所消耗的钙钛矿溶质。基于此,一方面由于钙钛矿溶质的及时补充,可以在生长钙钛矿薄膜的过程中减少晶界、孔洞等缺陷的产生并提高钙钛矿薄膜的致密度。另一方面,由于钙钛矿溶质能够较快的输送到钙钛矿籽晶周围,可以促使钙钛矿籽晶快速长大,加快钙钛矿薄膜的生长速度,从而提高生产效率,节约生产时间。
在一些可能的实现方式中,采用降温的方式降低钙钛矿材料的溶解度。一方面,这种降温的方式便于实施,可以降低工艺难度。另一方面,可以通过调控温度,方便的调控钙钛矿材料溶解度降低的过程,使得降低钙钛矿材料溶解度的过程具有较大的可控性。
在一些可能的实现方式中,上述降温的降温速度为0.1℃/h~10℃/h。此时,钙钛矿材料溶解度降低的速度较合适,可以在加快钙钛矿薄膜生长速度的同时确保钙钛矿薄膜质量。不仅可以避免钙钛矿晶体生长速度过快导致的缺陷过多的问题,而且可以避免钙钛矿晶体生长速度过慢导致的生产效率较低的问题。
在一些可能的实现方式中,上述降温前,钙钛矿溶液的初始温度为 100℃~150℃。此时,钙钛矿溶液的初始温度较高,便于进行降温操作,且降温成本较低。
在一些可能的实现方式中,在上述钙钛矿籽晶生长成钙钛矿薄膜的过程中,采用加速溶剂挥发的方式促使钙钛矿材料从钙钛矿溶液中析出并为钙钛矿籽晶生长提供钙钛矿材料。通过加速溶剂挥发的方式,可以使钙钛矿溶液中的钙钛矿材料更加趋近或处于饱和状态,进而减少钙钛矿籽晶生长成钙钛矿薄膜的过程中晶界、孔洞等缺陷的产生,提高钙钛矿薄膜的致密度和生长速度。
在一些可能的实现方式中,采用加热的方式加速溶剂挥发。此时,可以通过控制加热温度,方便的调控溶剂挥发的速度,进而调控钙钛矿薄膜的生长速度。
在一些可能的实现方式中,上述钙钛矿溶液的初始温度为20℃~30℃;在钙钛矿籽晶生长成钙钛矿薄膜的过程中,加热温度为40℃~100℃。此时,钙钛矿溶液的初始温度较低,便于制作钙钛矿溶液且加热至较高温度时,成本较低。另外,加热温度与初始温度的温差较合适,可以在加快钙钛矿薄膜生长速度的同时确保钙钛矿薄膜质量。
在一些可能的实现方式中,在上述钙钛矿籽晶浸入钙钛矿溶液时,钙钛矿溶液为饱和溶液。处于饱和状态的钙钛矿溶液,可以使钙钛矿材料更容易从钙钛矿溶液中析出,并在钙钛矿籽晶的作用下,快速在钙钛矿籽晶表面析出,促使钙钛矿籽晶长大,形成缺陷少且致密度高的钙钛矿薄膜。
在一些可能的实现方式中,上述钙钛矿籽晶以离散分布的方式分布在衬底上。此时,衬底上离散分布的多个钙钛矿籽晶,作为钙钛矿薄膜生长的多个生长基点,不断长大可以形成连续的钙钛矿薄膜。在此过程中,离散分布的钙钛矿籽晶,可以避免钙钛矿籽晶之间相互交叠覆盖导致的钙钛矿薄膜晶粒过小的问题,从而可以形成较均匀的钙钛矿薄膜,并全覆盖整个衬底。
在一些可能的实现方式中,上述钙钛矿籽晶在衬底上的覆盖率为10%~50%,钙钛矿籽晶的粒径为10nm~200nm。一方面,粒径为10nm~200nm的钙钛矿籽晶,尺寸适中,可以避免钙钛矿籽晶晶粒尺寸过大时内部缺陷较多的问题。另一方面,在钙钛矿籽晶具有上述粒径的前提下,覆盖率为10%~50%时,衬底上分布的钙钛矿籽晶间距和数量较合适。在这些钙钛矿籽晶的作用下, 可以快速形成晶粒尺寸较大且晶界等缺陷较少的钙钛矿薄膜。此时,不仅可以避免钙钛矿籽晶之间间距过小(覆盖率过高)导致的钙钛矿薄膜晶粒尺寸较小,晶界较多的问题,还可以避免钙钛矿籽晶之间间距过大(覆盖率过低)导致的钙钛矿薄膜生长速度较慢的问题。
在一些可能的实现方式中,在衬底上形成钙钛矿籽晶包括:
在衬底上涂覆钙钛矿前驱溶液,挥发钙钛矿前驱溶液的溶剂,形成钙钛矿籽晶中间体;
对钙钛矿籽晶中间体进行退火处理,形成钙钛矿籽晶。
在一些可能的实现方式中,上述钙钛矿前驱溶液的浓度小于或等于0.1mol/L。此时,钙钛矿前驱溶液中较多的溶剂可以将结晶析出的钙钛矿籽晶分隔开,形成离散分布的钙钛矿籽晶,从而可以形成具有上述覆盖率且离散分布的钙钛矿籽晶。可以通过调节钙钛矿前驱溶液的浓度,调节钙钛矿籽晶的分散程度和覆盖率。
在一些可能的实现方式中,形成上述钙钛矿籽晶的退火处理的时间为1min~30min。退火时间处于该范围时,退火后所形成的钙钛矿籽晶晶粒尺寸适中。并且,该范围的退火时间,还可以避免退火时间过长导致的钙钛矿籽晶过分长大的问题,进而减少钙钛矿籽晶内部的缺陷。
在一些可能的实现方式中,上述钙钛矿籽晶的通式为ABX3;钙钛矿前驱溶液包括AX前驱体和BX2前驱体,X为卤族元素,A和B为阳离子;所述钙钛矿籽晶为有机无机杂化材料,AX前驱体和BX2前驱体的物质的量比为(2~15):1,采用上述前驱体配比,能够在退火后形成离散分布且具有上述覆盖率的钙钛矿籽晶。基于此,可以通过调节AX前驱体与BX2前驱体的物质的量比,调控钙钛矿籽晶的覆盖率。所述钙钛矿籽晶也可以为全无机材料,AX前驱体和BX2前驱体的物质的量比为(0.95~1.05):1,此时可以通过前驱体浓度来调控钙钛矿籽晶的覆盖率。
在一些可能的实现方式中,钙钛矿籽晶为有机无机杂化材料,形成钙钛矿籽晶的退火处理的温度为60℃~130℃。在对钙钛矿籽晶中间体进行退火处理,形成钙钛矿籽晶的过程中,退火处理的高温可以同时将有机卤化物挥发掉。可见,当AX为有机卤化物时,形成钙钛矿籽晶后过量的AX前驱体可以方便的 去除。
在一些可能的实现方式中,钙钛矿籽晶为全无机材料,退火处理的温度为120℃~220℃。
第二方面,本申请还提供了一种钙钛矿层,该钙钛矿层包括钙钛矿籽晶和钙钛矿薄膜,钙钛矿籽晶和钙钛矿薄膜之间包括第一界面,其中,第一界面为通过高分辨的扫描电子显微镜或者电子显微镜可观察到的界面。由于钙钛矿籽晶和钙钛矿薄膜之间形成可以通过高分辨的扫描电子显微镜或者电子显微镜可观察到的第一界面。
在一些可能的实现方式中,上述钙钛矿籽晶和钙钛矿薄膜之间形成的第一界面处还包括结构过渡层,其中,结构过渡层的晶格参数按照第一顺序变化,结构过渡层的原子排布方式按照第二顺序变化,第一顺序为沿远离钙钛矿籽晶的方向由初始参数变为大于初始参数的第二参数再变为初始参数的顺序,第二顺序为沿远离钙钛矿籽晶的方向由有序变为无序再变为有序的顺序。由于结构过渡层的晶格参数按照第一顺序变化,结构过渡层的原子排布方式按照第二顺序变化,因此使得缺陷浓度也按照沿远离钙钛矿籽晶的方向由初始浓度变为大于初始浓度的第二浓度再变为初始浓度的顺序变化,进而使得钙钛矿籽晶在形成钙钛矿薄膜的过程中变化更为缓慢,使得形成的第一界面的缺陷降低,避免因直接变化而形成钙钛矿薄膜的突变。
在一些可能的实现方式中,上述结构过渡层的厚度大于或者等于0.5nm,且小于或者等于5nm,以使得钙钛矿籽晶和钙钛矿薄膜形成一个“缓慢过渡”的效果。
第三方面,本申请提供一种钙钛矿层太阳能电池。该钙钛矿层钙钛矿层太阳能电池包括第二方面或第二方面任一可能的实现方式所描述的钙钛矿层。
第二方面提供的钙钛矿层的有益效果可以参考第二方面或第二方面任一可能的实现方式描述的钙钛矿层的有益效果,在此不再赘述;
第四方面,本申请提供一种钙钛矿层太阳能电池组件,该钙钛矿层太阳能电池组件包括第三方面所述的钙钛矿层太阳能电池。
第三方面提供的钙钛矿层太阳能电池组件的有益效果可以参考第二方面 或第二方面任一可能的实现方式描述的钙钛矿层的有益效果,在此不再赘述。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1~图3为现有技术中制作钙钛矿层的过程示意图;
图4~图11为本申请实施例提供的钙钛矿层的制作方法的各阶段状态示意图;
图12为本申请实施例提供的一种钙钛矿层的结构示意图;
图13为本申请实施例提供的另一种钙钛矿层的结构示意图
图14为本申请实施例提供的图13在A处的局部放大示意图;
图15为本申请实施例提供的AX为有机卤化物且过量时,退火处理形成钙钛矿籽晶示意图。
图1~图3中,11-衬底,12-电子传输层,13-钙钛矿前驱溶液层,131-低浓度区域,141-钙钛矿籽晶,142-钙钛矿层。
图4~图14中,21-衬底,22-电子传输层,23-钙钛矿籽晶,230-AX前驱体,231-钙钛矿籽晶中间体,232-第一界面,233-结构过渡层,24-钙钛矿层,25-空穴传输层,26-透明导电层,27-电极,30-钙钛矿溶液。
具体实施方式
为了便于清楚描述本申请实施例的技术方案,在本申请的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分。本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
钙钛矿太阳能电池经过十余年的发展,其能光电转换效率已经接近晶硅太阳能电池的水平。由于钙钛矿太阳能电池具有较高的转换效率、简单的器件结构、湿化学法为主的制作工艺等诸多优点,使其成为最有可能付诸应用的下一代太阳能电池。
目前钙钛矿电池的钙钛矿层,主要采用湿化学法制作。钙钛矿层的主要制作过程包括:如图1所示,无论是一步法,还是两步法,其都是预先在具有电子传输层12的衬底11上涂敷钙钛矿前驱溶液形成钙钛矿前驱溶液层13。如图2所示,然后通过直接烘干、反溶剂结晶、真空闪蒸等手段,让钙钛矿前驱溶液层13中的溶剂挥发,溶质(钙钛矿材料)结晶析出,形成钙钛矿薄膜。钙钛矿薄膜经过退火处理后,可以形成钙钛矿层142。
在上述制作钙钛矿层的过程中,如图1所示,在具有电子传输层12的衬底11上涂敷钙钛矿前驱溶液层13后,随着溶剂的挥发,钙钛矿前驱溶液层13和电子传输层12接触的部分会首先析出一些极小的钙钛矿晶粒,这些晶粒将作为钙钛矿薄膜的钙钛矿籽晶141。
如图3所示,钙钛矿籽晶141形成后,其周围的钙钛矿溶质浓度降低,形成一层低浓度区域131。该低浓度区域131内,钙钛矿溶质浓度低于钙钛矿前驱溶液层13中钙钛矿溶质浓度。在浓度差的驱动下,钙钛矿前驱溶液层13中的钙钛矿溶质向低浓度区域131扩散输运。在这种扩散输运进行的同时,钙钛矿前驱溶液层13中的溶剂持续不断的挥发。钙钛矿前驱溶液层13溶剂的挥发会加大钙钛矿前驱溶液层13和低浓度区域131的浓度差,从而加速钙钛矿籽晶141的生长。在这种机制下,钙钛矿前驱溶液层13中的溶质不断向钙钛矿籽晶141表面输运,钙钛矿籽晶141逐渐长大,最终在电子传输层12上形成一层钙钛矿薄膜。
在结晶和晶粒长大过程中,钙钛矿溶质扩散速度较慢,无法及时补充到钙钛矿籽晶141周围所导致的缺陷,本申请实施例提供一种钙钛矿层。该钙钛矿层不仅能够完全覆盖衬底21,而且薄膜质量较高,存在较少的缺陷。此外,钙钛矿层24制作时间较短,生长速度较快,工作效率较高。该钙钛矿层可以为有机无机杂化钙钛矿层,也可以为无机钙钛矿层,还可以为有机钙钛矿层。具体的,该钙钛矿层也可以为无铅钙钛矿层、双钙钛矿层。
本申请实施例还提供上述钙钛矿层的制作方法。图4-图11示出本申请实施例提供钙钛矿太阳电池的制作方法的各阶段状态示意图。如图4-图11所示,本申请实施例提供的钙钛矿层的制作方法如下所示。
如图4所示,提供一衬底21。该衬底21为导电衬底。具体的,该衬底21 可以为掺锡氧化铟(ITO)透明导电玻璃、掺锌氧化铟(IZO)透明导电玻璃、掺钨氧化铟(IWO)透明导电玻璃、掺钛氧化铟(ITIO)透明导电玻璃、掺氟氧化锡(FTO)透明导电玻璃、掺铝氧化锌(AZO)透明导电玻璃中的任一种。在实际应用中,上述衬底21可以通过采购的方式获得,也可以通过磁控溅射等工艺自行制备。
为了便于后续操作对衬底21进行加工处理,还可以对衬底21进行清洗处理。
如图5所示,在衬底21上形成电子传输层22。电子传输层22的材质可以为SnO2、TiO2、[6,6]-苯基-C61-丁酸异甲酯(PCBM)中的任一种,且不仅限于此。电子传输层22的厚度可以为50nm~100nm。电子传输层22的制备工艺可以为旋涂、蒸镀等,且不仅限于此。
如图6所示,在具有电子传输层22的衬底21上形成钙钛矿籽晶23。形成钙钛矿籽晶23主要包括如下步骤:
在衬底21上涂覆钙钛矿前驱溶液,挥发钙钛矿前驱溶液的溶剂,形成钙钛矿籽晶中间体231。对钙钛矿籽晶中间体231进行退火处理,形成钙钛矿籽晶23。
上述钙钛矿籽晶23以离散分布的方式分布在衬底21上。多个钙钛矿籽晶23颗粒分布在整个衬底21上,且钙钛矿籽晶23之间具有一定的间隔,没有交叠覆盖的情况。此时,衬底21上离散分布的多个钙钛矿籽晶23,作为钙钛矿薄膜生长的多个生长基点,不断长大可以形成连续的钙钛矿薄膜。在此过程中,离散分布的钙钛矿籽晶23,可以避免钙钛矿籽晶23之间相互交叠覆盖导致的钙钛矿薄膜晶粒过小的问题,从而可以形成较均匀的钙钛矿薄膜并完全覆盖衬底21。
上述钙钛矿籽晶23在衬底21上的覆盖率可以为10%~50%,钙钛矿籽晶23的粒径可以为10nm~200nm。一方面,粒径为10nm~200nm的钙钛矿籽晶23,尺寸适中,不仅可以避免钙钛矿籽晶23晶粒尺寸过大时内部缺陷较多的问题,还可以避免钙钛矿籽晶23的晶粒尺寸过小时,后续生长钙钛矿薄膜速度较慢的问题。另一方面,在钙钛矿籽晶23具有上述粒径的前提下,覆盖率为10%~50%时,衬底21上分布的钙钛矿籽晶23间距和数量较合适。在这些 钙钛矿籽晶23的作用下,可以快速形成晶粒尺寸较大且晶界等缺陷较少的钙钛矿薄膜。此时,不仅可以避免钙钛矿籽晶23之间间距过小(覆盖率过高)导致的钙钛矿薄膜晶粒尺寸较小,晶界较多的问题,还可以避免钙钛矿籽晶23之间间距过大(覆盖率过低)导致的钙钛矿薄膜生长速度较慢的问题。
示例性的,钙钛矿籽晶23在衬底21上的覆盖率可以为10%、18%、20%、25%、30%、34%、40%、45%、50%等。钙钛矿籽晶23的粒径可以为10nm、20nm、50nm、70nm、90nm、100nm、120nm、150nm、175nm、185nm、190nm、200nm等。
在实际应用中,可以采用调控钙钛矿前驱溶液浓度的方式,获得上述钙钛矿籽晶23。具体的,钙钛矿前驱溶液的浓度可以小于或等于0.1mol/L。通常制备钙钛矿层的钙钛矿前驱溶液的浓度在0.5mol/L~1.5mol/L,本申请实施例中,钙钛矿前驱溶液的浓度远低于通常使用的浓度。较多的溶剂可以将结晶析出的钙钛矿籽晶23分隔开,形成离散分布的钙钛矿籽晶23,从而可以形成具有上述覆盖率且离散分布的钙钛矿籽晶23。此时,可以通过调节钙钛矿前驱溶液的浓度,调节钙钛矿籽晶23的分散程度和覆盖率。钙钛矿前驱溶液的浓度越低,钙钛矿籽晶23的覆盖率越小,钙钛矿籽晶23的分散度越高。
示例性的,钙钛矿前驱溶液的浓度可以为0.1mol/L、0.09mol/L、0.08mol/L、0.07mol/L、0.06mol/L、0.05mol/L、0.04mol/L、0.03mol/L、0.02mol/L、0.01mol/L等。为了获得覆盖率较好的钙钛矿籽晶23,钙钛矿前驱溶液的浓度可以在0.02mol/L~0.05mol/L之间。
在实际应用中,还可以通过调控钙钛矿前驱溶液配比的方式,获得上述钙钛矿籽晶23。钙钛矿材料的通式为ABX3,钙钛矿前驱溶液包括AX前驱体和BX2前驱体,X为卤族元素,A和B为阳离子。钙钛矿材料可以为有机无机杂化材料,AX前驱体和BX2前驱体的物质的量比可以为(2~15):1。制作钙钛矿层使用的钙钛矿前驱溶液,其中AX前驱体和BX2前驱体的物质的量比通常为1:1,即使出于钝化缺陷的考虑,使其中一个前驱体过量,AX:BX2的比例也在(0.9~1.1):1之间。在本申请实施例中,如图15所示,AX前驱体物质的量较多,在挥发钙钛矿前驱溶液的溶剂形成钙钛矿籽晶中间体231后,会残留较多的AX前驱体。这些过量的AX前驱体可以将多个钙钛矿籽晶中间 体231分隔开,从而在退火后形成离散分布且具有上述覆盖率的钙钛矿籽晶23。基于此,可以通过调节AX前驱体与BX2前驱体的物质的量比,调控钙钛矿籽晶23的覆盖率。AX前驱体的物质的量相对BX2的物质的量越多,钙钛矿籽晶23的覆盖率越低,钙钛矿籽晶23分散度越高。当钙钛矿材料为全无机材料时,AX前驱体和BX2前驱体的物质的量比可以为(0.95~1.05):1,此时可以通过前驱体浓度来调控钙钛矿籽晶的覆盖率。
示例性的,上述AX前驱体和BX2前驱体的物质的量比可以为2:1、3:1、5:1、7:1、9:1、10:1、11:1、12.5:1、13:1、13.4:1、15:1等。为了获得覆盖率较合适的钙钛矿籽晶23,AX前驱体和BX2前驱体的物质的量比可以在(5-10):1。
上述涂覆钙钛矿前驱溶液的方法可以为刮涂、旋涂、滴涂、喷墨、轮转凹版涂、喷涂和辊涂中的任一种。挥发钙钛矿前驱溶液的溶剂的方法可以为自然挥发,也可以为烘干挥发,也可以为真空闪蒸,还可以为反溶剂加速结晶的方式,且不仅限于此,只要能确保钙钛矿前驱溶液的溶剂能挥发掉即可。
上述退火处理的时间可以为1min~30min。例如,退火时间可以为1min、10min、12min、17min、20min、25min、28min、30min等。此时,退火后所形成的钙钛矿籽晶23晶粒尺寸适中。并且,该范围的退火时间,还可以避免退火时间过长导致的钙钛矿籽晶23过分长大的问题,进而减少钙钛矿籽晶23内部的缺陷。
上述退火处理的温度可以根据钙钛矿籽晶进行设计。由于钙钛矿籽晶23为分散不连续的小晶粒,形成钙钛矿籽晶23的退火温度应当比形成钙钛矿薄膜时的退火温度低20℃~50℃。当钙钛矿籽晶为全无机材料时,退火处理的温度可以为120℃~220℃。此时,可以确保退火处理后形成钙钛矿籽晶23缺陷较少,并且可以避免化学计量失配和钙钛矿籽晶23分解。优选地,退火处理的温度可以为160℃~200℃。例如,当钙钛矿籽晶为全无机材料时,退火处理的温度可以为120℃、130℃、150℃、160℃、170℃、180℃、190℃、200℃、210℃、220℃等。
当钙钛矿籽晶为有机无机杂化钙钛矿材料,也就是AX为有机卤化物时,退火处理的温度可以为60℃~130℃。优选的,退火处理的温度可以为90℃ ~110℃。例如,当钙钛矿籽晶为有机无机材料时,退火处理的温度可以为60℃、70℃、80℃、90℃、95℃、100℃、108℃、110℃、120℃、130℃等。
如图7所示,将钙钛矿籽晶23浸入钙钛矿溶液30中。该钙钛矿溶液30可以是溶解钙钛矿材料制作而成,也可以是钙钛矿前驱溶液。如图8所示,在钙钛矿籽晶23的作用下,钙钛矿籽晶23生长成钙钛矿薄膜;对钙钛矿薄膜进行退火处理,形成钙钛矿层24。
为了减少钙钛矿薄膜所具有的裂纹、晶界、孔洞等缺陷,可以在上述钙钛矿籽晶23生长成钙钛矿薄膜的过程中,降低钙钛矿材料的溶解度。随着钙钛矿材料在钙钛矿溶液30中溶解度的降低,钙钛矿溶液30中的钙钛矿溶质更加趋近或处于饱和状态,使得钙钛矿溶质较容易从钙钛矿溶液30中析出。此时,钙钛矿溶质可以较快的扩散输送到钙钛矿籽晶23周围,及时的补充钙钛矿籽晶23周围因晶体析出所消耗的钙钛矿溶质。基于此,一方面由于钙钛矿溶质的及时补充,可以在生长钙钛矿薄膜的过程中减少晶界、孔洞等缺陷的产生并提高钙钛矿薄膜的致密度。另一方面,由于钙钛矿溶质能够较快的输送到钙钛矿籽晶23周围,可以促使钙钛矿籽晶23快速长大,加快钙钛矿薄膜的生长速度,从而提高生产效率,节约生产时间。
降低钙钛矿材料的溶解度的方式可以有多种。例如,降低压强。又例如,降温。当采用降温的方式降低钙钛矿材料的溶解度时,一方面,这种降温的方式便于实施,可以降低工艺难度。另一方面,可以通过调控温度,方便的调控钙钛矿材料溶解度降低的过程,使得降低钙钛矿材料溶解度的过程具有较大的可控性。
降温的降温速度与钙钛矿溶液30中钙钛矿材料的溶解度降低的速度正相关,而钙钛矿材料的溶解度降低的速度与钙钛矿薄膜的生长速度正相关。基于此,上述降温的降温速度可以为0.1℃/h~10℃/h。此时,钙钛矿材料溶解度降低的速度较合适,可以在加快钙钛矿薄膜生长速度的同时确保钙钛矿薄膜质量。不仅可以避免钙钛矿晶体生长速度过快导致的缺陷过多的问题,而且可以避免钙钛矿晶体生长速度过慢导致的生产效率较低的问题。
示例性的,降温的降温速度可以为0.1℃/h、0.5℃/h、1℃/h、3℃/h、4.5℃/h、5℃/h、6.2℃/h、7℃/h、8.2℃/h、9℃/h、10℃/h等。
上述降温前,钙钛矿溶液30的初始温度可以为100℃~150℃。例如,钙钛矿溶液30的初始温度可以为100℃、110℃、121℃、135℃、146℃、150℃、160℃、180℃、192℃、200℃等。此时,钙钛矿溶液30的初始温度较高,便于进行降温操作,且降温成本较低。将具有钙钛矿籽晶23的衬底21浸入钙钛矿溶液30前,为了使整个体系初始温度恒定,还可以将衬底21预热至初始温度。基于这种生长钙钛矿薄膜的方式,在配制钙钛矿溶液30时,可以先将溶剂加热到初始温度,然后在搅拌状态下加入钙钛矿溶质。钙钛矿溶液30的溶剂可以为N,N-二甲基甲酰胺(DMF,沸点为153℃)、二甲基亚砜(DMSO,沸点为189℃)、N-甲基吡咯烷酮(NMP,沸点为202℃)、γ-丁内酯(沸点为204℃)中的一种或多种混合。初始温度较高,可以获得溶解度较大的钙钛矿溶液30,且始终低于溶剂的沸点。
为了减少钙钛矿薄膜所具有的裂纹、晶界、孔洞等缺陷,还可以在上述钙钛矿籽晶23生长成钙钛矿薄膜的过程中,采用加速溶剂挥发的方式提高钙钛矿材料的饱和度。通过加速溶剂挥发的方式,可以使钙钛矿溶液30中的钙钛矿溶质更加趋近或处于饱和状态,进而减少钙钛矿籽晶23生长成钙钛矿薄膜的过程中晶界、孔洞等缺陷的产生,提高钙钛矿薄膜的致密度和生长速度。
具体的,可以采用加热的方式加速溶剂挥发。此时,可以通过控制加热温度,方便的调控溶剂挥发的速度,进而调控钙钛矿薄膜的生长速度。
上述钙钛矿溶液30的初始温度可以为20℃~30℃;在钙钛矿籽晶23生长成钙钛矿薄膜的过程中,加热温度可以为40℃~100℃。优选地,加热温度可以为50℃~70℃。此时,钙钛矿溶液30的初始温度较低,便于制作钙钛矿溶液30且加热至较高温度时,成本较低。并且,加热温度与初始温度的温差较合适,可以在加快钙钛矿薄膜生长速度的同时确保钙钛矿薄膜质量。示例性的,钙钛矿溶液30的初始温度可以为20℃、21.5℃、22℃、23℃、24.5℃、25.1℃、26℃、27℃、28℃、29℃、30℃等。加热温度可以为40℃、50℃、60℃、70℃、80℃、90℃、100℃等。基于此,可以在室温下配置钙钛矿溶液30。将具有钙钛矿籽晶23的衬底21浸入钙钛矿溶液30后,可以加热钙钛矿溶液30,加速溶剂挥发。
上述生长钙钛矿薄膜所使用的钙钛矿溶液30,可以为不饱和溶液,也可 以为饱和溶液。当采用饱和溶液生长钙钛矿薄膜时,在上述钙钛矿籽晶23浸入钙钛矿溶液30时,钙钛矿溶液30为饱和溶液,且在生在钙钛矿薄膜的过程中钙钛矿溶液30始终处于饱和状态。处于饱和状态的钙钛矿溶液30,可以使钙钛矿材料更容易从钙钛矿溶液30中析出,并在钙钛矿籽晶23的作用下,快速在钙钛矿籽晶23表面析出,促使钙钛矿籽晶23长大,形成缺陷少且致密度高的钙钛矿薄膜。
当钙钛矿溶液30为的饱和溶液时,钙钛矿薄膜的生长动力来源于溶液的过饱和度。当钙钛矿溶液30处于过饱和状态时,钙钛矿溶液30中的溶质在热力学上趋向于析出。在存在钙钛矿籽晶23的情况下,钙钛矿溶质会在钙钛矿籽晶23的作用下在钙钛矿籽晶23表面快速析出,促使钙钛矿籽晶23长大,从而形成钙钛矿薄膜。
配制饱和的钙钛矿溶液30时,可以在搅拌状态下,向溶剂中加入一定量的钙钛矿溶质,然后搅拌至溶质完全溶解,然后再次加入溶质,依次循环,直至搅拌30min后溶质仍然不能溶解,饱和的钙钛矿溶液30配制完成。
需要说明的是,在钙钛矿薄膜生长过程中,衬底21的侧边、背面也有可能存在钙钛矿溶质析出。此时,可以在钙钛矿薄膜生长之前,将衬底21的侧面和背面包覆起来,也可以在钙钛矿薄膜生长之后,使用乙腈和DMF的混合溶剂或其它极性溶剂擦拭去除。
如图9所示,在钙钛矿层24上形成空穴传输层25。该空穴传输层25的材质可以为2,2’,7,7’-四[N,N-二(4-甲氧基苯基)氨基]-9,9’-螺二芴(Spiro-OMeTAD)、(聚[双(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)、2,2',7,7'-四(二-对甲苯基氨基)螺-9,9'-二芴(Spiro-TTB)等。形成空穴传输层25的工艺可以为旋涂、喷涂、磁控溅射工艺、热蒸发镀膜工艺中的任一种,且不仅限于此。应理解,在上述钙钛矿太阳电池的制作中,先制作电子传输层22,后制作钙钛矿层24和空穴传输层25。在一些钙钛矿层中,也可以先制作空穴传输层25,后制作钙钛矿层24和电子传输层22。
如图10所示,在空穴传输层25上形成透明导电层26,该透明导电层26的材质可以为掺锡氧化铟(ITO)、掺锌氧化铟(IZO)、掺钨氧化铟(IWO)、掺钛氧化铟(ITIO)、掺氟氧化锡(FTO)、掺铝氧化锌(AZO)中的一种或 多种。形成透明导电层26的工艺可以为磁控溅射工艺、热蒸镀工艺等。应理解,在一些钙钛矿层中,该透明导电层26也可以省略。
如图11所示,在透明导电层26上制作电极27。具体的,电极27的材质可以为银、铜等导电性较好的金属。制作电极27的工艺可以为丝网印刷、蒸镀、溅射等。
基于上述制作方法,本申请实施例将形成钙钛矿籽晶23和钙钛矿籽晶23生长成钙钛矿薄膜的过程分成两步进行。先在衬底21上形成钙钛矿籽晶23,然后将钙钛矿籽晶23浸入钙钛矿溶液30中,在钙钛矿籽晶23的作用下,钙钛矿籽晶23生长成钙钛矿薄膜。基于此,可以独立的对形成钙钛矿籽晶23的过程进行调控,从而可以形成晶粒尺寸较大且分布在整个衬底21上的钙钛矿籽晶23。在这些晶粒尺寸较大且分布在整个衬底21上的钙钛矿籽晶23的作用下,可以生长覆盖整个衬底21的钙钛矿薄膜,并减少钙钛矿薄膜的缺陷。此时,这种钙钛矿薄膜经过退火处理,可以形成覆盖整个衬底21且缺陷较少的钙钛矿层24,进而提高钙钛矿层的转换效率,降低漏电的风险。
为了验证本申请实施例提供的钙钛矿层的制作方法制作的钙钛矿-太阳能电池的性能,下面以多个实施例对比的方式进行说明。
实施例一
本实施例提供的钙钛矿层的制作方法,具体如下所述:
第一步,提供一清洁的FTO导电玻璃。
第二步,采用旋涂工艺在FTO导电玻璃上形成材质为SnO2厚度为100nm的电子传输层。
第三步,将1032mg FAI、461mg PbI2溶解于20ml的DMF中,在60℃下加热搅拌2h,得到透明的钙钛矿前驱溶液。其中FAI:PbI2(摩尔比)=6:1,溶液浓度为0.05mol/L。将该钙钛矿前驱溶液旋涂在电子传输层上,旋涂速度3000rpm,旋涂时间30s。旋涂结束后在100℃退火处理10min-20min,溶剂和过量的FAI挥发后,在电子传输层上形成离散分布的FAPbI3籽晶。
第四步,取50ml的DMF在烧杯中加热并保温在120℃,加入0.6g FAPbI3钙钛矿至完全溶解,溶液澄清后,再加入0.6g FAPbI3钙钛矿再次溶解。重复上述溶解过程,直至钙钛矿不能继续溶解,得到FAPbI3钙钛矿的DMF饱和 溶液。
将具有钙钛矿籽晶的衬底预热至120℃,然后浸入上述120℃的FAPbI3钙钛矿的DMF饱和溶液。将烧杯密封后,置入预热至120℃的精密烘箱中。设定程序,使钙钛矿饱和溶液以5℃/h的速度降温至室温。钙钛矿薄膜的生长厚度通过钙钛矿饱和溶液的降温幅度来控制,从120℃到室温的过程中,由于溶解度差值而析出的钙钛矿溶质的量近似等于沉积在电子传输层上钙钛矿的量。在降温过程中,钙钛矿饱和溶液中的溶质在过饱和度的驱动下趋向于析出。通过钙钛矿籽晶作用,在钙钛矿籽晶表面结晶,钙钛矿籽晶逐渐长大,形成一层完整高质量的FAPbI3钙钛矿薄膜。
第五步,采用旋涂工艺在钙钛矿层形成50nm厚材质为Spiro-OMeTAD的空穴传输层。
第六步,采用热蒸镀工艺在空穴传输层上形成100nm厚材质为FTO的透明导电层。
第七步,采用蒸镀工艺在透明导电层上形成银电极。
实施例二
本实施例提供的钙钛矿层的制作方法与实施例一记载的钙钛矿层的制作方法基本相同,区别仅在于:
第三步,将688mg FAI、461mg PbI2添加至20ml的DMF中,在60℃下加热搅拌2h,得到透明的钙钛矿前驱溶液。其中FAI:PbI2(摩尔比)=4:1,溶液浓度为0.05mol/L。将钙钛矿前驱溶液旋涂在电子传输层上,旋涂速度3000rpm,旋涂时间30s。旋涂结束后在105℃退火处理10min-20min,溶剂和过量的FAI挥发后,在电子传输层上得到FAPbI3籽晶。
第四步,在室温(25℃左右)下取50ml的γ-丁内酯放入烧杯中,加入0.6g FAPbI3钙钛矿至完全溶解,溶液澄清后,再加入0.6g FAPbI3钙钛矿再次溶解。重复上述溶解过程,直至钙钛矿不能继续溶解,得到FAPbI3钙钛矿的γ-丁内酯饱和溶液。由于γ-丁内酯的沸点较高,γ-丁内酯溶剂挥发速度较慢,薄膜生长速度较慢,可以得到质量更高的钙钛矿薄膜。
将具有FAPbI3籽晶的衬底,浸入上述的FAPbI3钙钛矿的γ-丁内酯饱和溶液中,烧杯处于敞开状态。将整个体系(烧杯)放在精密控温的环境中,并 以10℃/h的升温速度从室温加热至60℃并保温6h-12h。在此过程中,饱和溶液中的溶剂不断挥发,钙钛矿籽晶逐渐长大,最终得到一层高质量FAPbI3钙钛矿薄膜。
实施例三
本实施例提供的钙钛矿层的制作方法与实施例一记载的钙钛矿层的制作方法基本相同,区别仅在于:
第三步,将259.8mg CsI、461mg PbI2添加至50ml的DMF中,在80℃下搅拌2h,得到透明澄清的钙钛矿前驱溶液。其中CsI:PbI2(摩尔比)=1.05:1,钙钛矿浓度为0.02mol/L。将上述钙钛矿前驱溶液旋涂在电子传输层上,旋涂速度4000rpm,旋涂时间45s。旋涂结束后在160℃退火处理10min-30min,在电子传输层上得到CsPbI3籽晶。
取50ml DMSO放入烧杯中加热至130℃并保温,加入0.6g CsPbI3钙钛矿至完全溶解,溶液澄清后,再加入0.6g CsPbI3钙钛矿再次溶解。重复上述溶解过程,直至钙钛矿不能继续溶解,得到CsPbI3钙钛矿的DMSO饱和溶液。
将具有CsPbI3籽晶的衬底预热到130℃,然后浸入保温在130℃的CsPbI3钙钛矿的DMSO饱和溶液。将烧杯密封,置入预热至130℃的精密烘箱中。设定程序,使整个体系以6℃/h的速度降温至室温。在降温过程中,饱和溶液中的溶质在过饱和的驱动下趋向于析出。通过籽晶作用,在钙钛矿籽晶表面缓慢结晶,钙钛矿籽晶逐渐长大,形成一层完整高质量的CsPbI3钙钛矿薄膜。
实施例四
本实施例提供的钙钛矿层的制作方法与实施例一记载的钙钛矿层的制作方法基本相同,区别仅在于:
第三步,将259.8mg CsI、461mg PbI2添加至50ml的DMF中,在80℃下搅拌2h,得到透明澄清的钙钛矿前驱溶液。其中CsI:PbI2(摩尔比)=1:1,钙钛矿浓度为0.02mol/L。将上述钙钛矿前驱溶液旋涂在电子传输层上,旋涂速度4000rpm,旋涂时间45s。旋涂结束后在160℃退火加热10-30min,在电子传输层上得到CsPbI3籽晶。
在室温下取50mlγ-丁内酯放入烧杯中,加入0.6g CsPbI3钙钛矿至完全溶解,溶液澄清后,再加入0.6g CsPbI3钙钛矿再次溶解。重复上述溶解过程, 直至钙钛矿不能继续溶解,得到CsPbI3钙钛矿的γ-丁内酯饱和溶液。
将具有CsPbI3籽晶的衬底,浸入上述的CsPbI3钙钛矿的γ-丁内酯饱和溶液中,烧杯处于敞开状态。将整个体系放在精密控温的环境中,并以10℃/h的升温速度从室温加热至70℃并保温8-16h,钙钛矿饱和溶液中的溶剂不断挥发,钙钛矿籽晶逐渐长大,最终得到一层CsPbI3钙钛矿薄膜。
实施例五
本实施例提供的钙钛矿层的制作方法与实施例一记载的钙钛矿层的制作方法基本相同,区别仅在于:
第四步,取50ml的DMF在烧杯中加热并保温在120℃,加入3g FAPbI3钙钛矿至完全溶解,溶液澄清后得到FAPbI3钙钛矿的DMF不饱和溶液。
观察实施例一至实施例五制作的钙钛矿层的微观结构发现,实施例一至实施例五所制作的钙钛矿层的钙钛矿层裂纹、晶界、孔洞较少,且致密度高。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看附图、公开内容、以及所附权利要求书,可理解并实现公开实施例的其他变化。实施例六
如图12所示,第二方面,本申请还提供了一种钙钛矿层,该钙钛矿层可以由上述任一实施例所述的钙钛矿层的制作方法制作而成,该钙钛矿层包括钙钛矿籽晶和钙钛矿薄膜,钙钛矿籽晶和钙钛矿薄膜之间包括第一界面,其中,第一界面为通过高分辨的扫描电子显微镜或者电子显微镜可观察到的界面。由于钙钛矿籽晶和钙钛矿薄膜之间形成可以通过高分辨的扫描电子显微镜或者电子显微镜可观察到的第一界面。
如图13和图14所示,在一些可能的实现方式中,上述钙钛矿籽晶和钙钛矿薄膜之间形成的第一界面处为结构过渡层,其中,结构过渡层的晶格参数按照第一顺序变化,结构过渡层的原子排布方式按照第二顺序变化,第一顺序为沿远离钙钛矿籽晶的方向由初始参数变为大于初始参数的第二参数再变为初始参数的顺序,第二顺序为沿远离钙钛矿籽晶的方向由有序变为无序再变为有序的顺序。由于结构过渡层的晶格参数按照第一顺序变化,结构过渡层的原子排布方式按照第二顺序变化,因此使得缺陷浓度也按照沿远离钙钛矿籽晶的方向由初始浓度变为大于初始浓度的第二浓度再变为初始浓度的顺序变化,进而 使得钙钛矿籽晶在形成钙钛矿薄膜的过程中变化更为缓慢,使得形成的第一界面的缺陷降低,避免因直接变化而形成钙钛矿薄膜的突变。
在一些可能的实现方式中,使得结构过渡层的厚度大于一定数值的原子层的厚度,通常为10个原子层的厚度,上述结构过渡层233的厚度大于或者等于0.5nm,且小于或者等于5nm。以使得钙钛矿籽晶23和钙钛矿薄膜24形成一个“缓慢过渡”的效果。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,a和b的结合,a和c的结合,b和c的结合,或a、b和c的结合,其中a,b,c可以是单个,也可以是多个。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (19)

  1. 一种钙钛矿层的制作方法,其特征在于,包括:
    提供一衬底;
    在所述衬底上形成钙钛矿籽晶;
    将所述钙钛矿籽晶浸入钙钛矿溶液中以生长成钙钛矿薄膜;
    对所述钙钛矿薄膜进行退火处理,形成钙钛矿层。
  2. 根据权利要求1所述的钙钛矿层的制作方法,其特征在于,在所述钙钛矿籽晶生长成钙钛矿薄膜的过程中,采用降低钙钛矿材料在钙钛矿溶液中溶解度的方式,促使钙钛矿材料从钙钛矿溶液中析出并为钙钛矿籽晶生长提供钙钛矿材料。
  3. 根据权利要求2所述的钙钛矿层的制作方法,其特征在于,采用降温的方式降低钙钛矿材料的溶解度。
  4. 根据权利要求3所述的钙钛矿层的制作方法,其特征在于,所述降温的降温速度为0.1℃/h~10℃/h;和/或,
    所述降温前,所述钙钛矿溶液的初始温度为100℃~150℃。
  5. 根据权利要求1或2所述的钙钛矿层的制作方法,其特征在于,在所述钙钛矿籽晶生长成钙钛矿薄膜的过程中,采用加速溶剂挥发的方式促使钙钛矿材料从钙钛矿溶液中析出,并为钙钛矿籽晶生长提供钙钛矿材料。
  6. 根据权利要求5所述的钙钛矿层的制作方法,其特征在于,采用加热的方式加速溶剂挥发;
    所述钙钛矿溶液的初始温度为20℃~30℃;在所述钙钛矿籽晶生长成钙钛矿薄膜的过程中,加热温度为40℃~100℃。
  7. 根据权利要求1~6任一项所述的钙钛矿层的制作方法,其特征在于, 在所述钙钛矿籽晶浸入钙钛矿溶液时,所述钙钛矿溶液为饱和溶液。
  8. 根据权利要求1~6任一项所述的钙钛矿太阳能电池的制作方法,其特征在于,所述钙钛矿籽晶以离散分布的方式分布在所述衬底上。
  9. 根据权利要求8所述的钙钛矿层的制作方法,其特征在于,所述钙钛矿籽晶在所述衬底上的覆盖率为10%~50%,所述钙钛矿籽晶的粒径为10nm~200nm。
  10. 根据权利要求1~6任一项所述的钙钛矿层的制作方法,其特征在于,在所述衬底上形成钙钛矿籽晶包括:
    在所述衬底上涂覆钙钛矿前驱溶液,挥发所述钙钛矿前驱溶液的溶剂,形成钙钛矿籽晶中间体;
    对所述钙钛矿籽晶中间体进行退火处理,形成钙钛矿籽晶。
  11. 根据权利要求10所述的钙钛矿层的制作方法,其特征在于,所述钙钛矿籽晶的通式为ABX3;
    所述钙钛矿前驱溶液包括AX前驱体和BX2前驱体,X为卤族元素;
    所述钙钛矿籽晶为有机无机杂化材料,AX前驱体和BX2前驱体的物质的量比为(2~15):1,或,所述钙钛矿籽晶为全无机材料,AX前驱体和BX2前驱体的物质的量比为(0.95-1.05):1。
  12. 根据权利要求11所述的钙钛矿层的制作方法,其特征在于,所述钙钛矿前驱溶液的浓度小于或等于0.1mol/L;和/或,
    形成所述钙钛矿籽晶的退火处理的时间为1min~30min。
  13. 根据权利要求12所述的钙钛矿层的制作方法,其特征在于,所述钙钛矿籽晶为有机无机杂化材料,形成所述钙钛矿籽晶的退火处理的温度为60℃~130℃;或,
    所述钙钛矿籽晶为全无机材料,形成所述钙钛矿籽晶的退火处理的温度为120℃~220℃。
  14. 根据权利要求1所述的钙钛矿层的制作方法,其特征在于,所述钙钛矿籽晶的钙钛矿成分与所述钙钛矿溶液的钙钛矿成分相同。
  15. 一种钙钛矿层,其特征在于,所述钙钛矿层包括钙钛矿籽晶和钙钛矿薄膜;
    所述钙钛矿籽晶和所述钙钛矿薄膜之间包括第一界面,其中,所述第一界面可通过高分辨的扫描电子显微镜或者电子显微镜被观察到。
  16. 根据权利要求15所述的钙钛矿层,其特征在于,所述所述钙钛矿籽晶和所述钙钛矿薄膜之间包括的所述第一界面处还包括结构过渡层,其中,所述结构过渡层的晶格参数按照第一顺序变化,所述结构过渡层的原子排布方式按照第二顺序变化,所述第一顺序为沿远离所述钙钛矿籽晶的方向由初始参数变为大于初始参数的第二参数再变为初始参数的顺序,所述第二顺序为沿远离所述钙钛矿籽晶的方向由有序变为无序再变为有序的顺序。
  17. 根据权利要求17所述的钙钛矿层,其特征在于,所述结构过渡层的厚度大于或者等于0.5nm,且小于或者等于5nm。
  18. 一种钙钛矿太阳能电池,其特征在于,所述钙钛矿电池包括权利要求14~16任一项所述的钙钛矿层。
  19. 一种钙钛矿层太阳能电池组件,其特征在于,所述钙钛矿层太阳能电池组件包括权利要求17所述的钙钛矿太阳能电池。
PCT/CN2021/123523 2020-11-25 2021-10-13 一种钙钛矿层、钙钛矿层的制作方法、钙钛矿层太阳能电池及钙钛矿层太阳能电池组件 WO2022111096A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2021387072A AU2021387072A1 (en) 2020-11-25 2021-10-13 Perovskite layer, manufacture method for perovskite layer, perovskite layer solar cell, and perovskite layer solar cell assembly
JP2023520492A JP2023549305A (ja) 2020-11-25 2021-10-13 ペロブスカイト層、ペロブスカイト層の製造方法、ペロブスカイト層付き太陽電池及びペロブスカイト層付き太陽電池モジュール
US18/029,058 US20230380197A1 (en) 2020-11-25 2021-10-13 Perovskite layer, manufacture method for perovskite layer, perovskite layer solar cell, and perovskite layer solar cell assembly
EP21896598.6A EP4254530A1 (en) 2020-11-25 2021-10-13 Perovskite layer, manufacture method for perovskite layer, perovskite layer solar cell, and perovskite layer solar cell assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011343679.6A CN112467043B (zh) 2020-11-25 2020-11-25 一种钙钛矿太阳能电池及其制作方法
CN202011343679.6 2020-11-25

Publications (1)

Publication Number Publication Date
WO2022111096A1 true WO2022111096A1 (zh) 2022-06-02

Family

ID=74808452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123523 WO2022111096A1 (zh) 2020-11-25 2021-10-13 一种钙钛矿层、钙钛矿层的制作方法、钙钛矿层太阳能电池及钙钛矿层太阳能电池组件

Country Status (6)

Country Link
US (1) US20230380197A1 (zh)
EP (1) EP4254530A1 (zh)
JP (1) JP2023549305A (zh)
CN (1) CN112467043B (zh)
AU (1) AU2021387072A1 (zh)
WO (1) WO2022111096A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112467043B (zh) * 2020-11-25 2023-01-20 隆基绿能科技股份有限公司 一种钙钛矿太阳能电池及其制作方法
CN113193128A (zh) * 2021-05-24 2021-07-30 电子科技大学 一种具有界面修饰层的钙钛矿太阳能电池及其制备方法
CN114447232A (zh) * 2021-12-22 2022-05-06 西安隆基乐叶光伏科技有限公司 一种钙钛矿层制备方法、太阳能电池及组件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105926040A (zh) * 2016-06-24 2016-09-07 哈尔滨工业大学 一种以二异丙胺卤盐为前体材料的有机-无机杂化钙钛矿结构晶体的制备方法
CN110854274A (zh) * 2019-11-22 2020-02-28 中南大学 一种钙钛矿形核过程的调控方法、钙钛矿薄膜基太阳能电池的制备方法
US20200335285A1 (en) * 2019-04-22 2020-10-22 Nazarbayev University Research and Innovation System Method of preparing perovskite material and solar cell containing it as a light absorber
CN112467043A (zh) * 2020-11-25 2021-03-09 隆基绿能科技股份有限公司 一种钙钛矿太阳能电池及其制作方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI692879B (zh) * 2018-12-27 2020-05-01 財團法人工業技術研究院 鈣鈦礦太陽能電池及其製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105926040A (zh) * 2016-06-24 2016-09-07 哈尔滨工业大学 一种以二异丙胺卤盐为前体材料的有机-无机杂化钙钛矿结构晶体的制备方法
US20200335285A1 (en) * 2019-04-22 2020-10-22 Nazarbayev University Research and Innovation System Method of preparing perovskite material and solar cell containing it as a light absorber
CN110854274A (zh) * 2019-11-22 2020-02-28 中南大学 一种钙钛矿形核过程的调控方法、钙钛矿薄膜基太阳能电池的制备方法
CN112467043A (zh) * 2020-11-25 2021-03-09 隆基绿能科技股份有限公司 一种钙钛矿太阳能电池及其制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GU ZHENKUN, HUANG ZHANDONG, LI CHANG, LI MINGZHU, SONG YANLIN: "A general printing approach for scalable growth of perovskite single-crystal films", SCIENCE ADVANCES, vol. 4, no. 6, 1 June 2018 (2018-06-01), XP055933198, DOI: 10.1126/sciadv.aat2390 *

Also Published As

Publication number Publication date
AU2021387072A1 (en) 2023-06-01
CN112467043A (zh) 2021-03-09
EP4254530A1 (en) 2023-10-04
US20230380197A1 (en) 2023-11-23
CN112467043B (zh) 2023-01-20
JP2023549305A (ja) 2023-11-24

Similar Documents

Publication Publication Date Title
WO2022111096A1 (zh) 一种钙钛矿层、钙钛矿层的制作方法、钙钛矿层太阳能电池及钙钛矿层太阳能电池组件
CN109103274B (zh) 一种全无机钙钛矿太阳能电池及制备方法
CN109148644B (zh) 基于梯度退火与反溶剂的全无机钙钛矿电池及其制备方法
WO2019148326A1 (zh) 钙钛矿薄膜的制备方法及其应用
AU2021387072A9 (en) Perovskite layer, manufacture method for perovskite layer, perovskite layer solar cell, and perovskite layer solar cell assembly
JP2010141307A (ja) 薄膜太陽電池の製法
CN107369774A (zh) 一种钙钛矿复合多量子阱led及其制备方法
CN113903861B (zh) 空气中快速退火的钙钛矿太阳能电池及其制备方法
CN112289932A (zh) 钙钛矿薄膜及其制备方法和应用
CN113675343A (zh) 一种采用多官能团配体量子点的钙钛矿薄膜及其制备和应用
CN112331557A (zh) 一种无机无铅双钙钛矿薄膜、太阳能电池及其制备方法
CN111697142A (zh) 一种有机无机杂化钙钛矿薄膜的制备方法
CN109671848B (zh) CuPbSbS3新型薄膜太阳能电池及其制备方法
KR101804173B1 (ko) BaSnO3 박막 및 이의 저온 제조 방법
US20240114760A1 (en) Close space annealing method and method for preparing perovskite film or solar cell
TWI765376B (zh) 鈣鈦礦薄膜及其前驅組成物、鈣鈦礦薄膜製備方法、包括此薄膜之半導體元件
CN110634965B (zh) 一种全无机钙钛矿太阳能电池及其制备方法
CN112133835A (zh) 一种钙钛矿前驱体溶液及使用其制备钙钛矿太阳能电池的方法
CN114050189A (zh) 一种具有3d结构的硒硫化锑薄膜太阳电池及其制备方法
KR101912735B1 (ko) BaSnO3 박막 및 이의 저온 제조 방법
Fahsyar et al. Ambient fabrication of perovskite solar cells through delay-deposition technique
CN116507185B (zh) 一种甲脒钙钛矿太阳能电池及其制备方法
KR102524637B1 (ko) 박막 태양전지 및 광흡수층에 대한 용액 기반 알카리 원소 후증착 처리 방법
CN115818975B (zh) 一种极性可调式高透光ZnO薄膜的液相制备方法
CN114031310B (zh) 一种二维钙钛矿衬底调控生长梯度相变型全无机钙钛矿薄膜的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896598

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023520492

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021387072

Country of ref document: AU

Date of ref document: 20211013

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021896598

Country of ref document: EP

Effective date: 20230626