CN114050189A - 一种具有3d结构的硒硫化锑薄膜太阳电池及其制备方法 - Google Patents

一种具有3d结构的硒硫化锑薄膜太阳电池及其制备方法 Download PDF

Info

Publication number
CN114050189A
CN114050189A CN202111327578.4A CN202111327578A CN114050189A CN 114050189 A CN114050189 A CN 114050189A CN 202111327578 A CN202111327578 A CN 202111327578A CN 114050189 A CN114050189 A CN 114050189A
Authority
CN
China
Prior art keywords
layer
thin film
tio
preparing
batio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111327578.4A
Other languages
English (en)
Inventor
王威
钱洪强
沈鸿烈
张树德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Suzhou Talesun Solar Technologies Co Ltd
Original Assignee
Nanjing University of Aeronautics and Astronautics
Suzhou Talesun Solar Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics, Suzhou Talesun Solar Technologies Co Ltd filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN202111327578.4A priority Critical patent/CN114050189A/zh
Publication of CN114050189A publication Critical patent/CN114050189A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种具有3D结构的硒硫化锑薄膜太阳电池及其制备方法,属于电池制备技术领域。本申请的薄膜太阳电池包括从下至上的依次层叠设置的衬底玻璃、TiO2层、BaTiO3薄膜层、Sb2(S,Se)3薄膜层、空穴传输层和电极层。还包括一种Sb2(S,Se)3薄膜太阳电池的制备方法,制备出的Sb2(S,Se)3薄膜太阳电池其中TiO2层为3D‑TiO2阵列结构,与Sb2(S,Se)3薄膜层形成pn结,BaTiO3薄膜作为钝化层插入到pn结之间,减少异质结在界面处的复合。BaTiO3薄膜层与TiO2层形成双缓冲层结构,增加了耗尽层宽度可以有效提升电池的开路电压。利用BaTiO3自身的铁电性,提高了载流子的分离能力和电池的开路电压。且BaTiO3薄膜厚度较小,基于量子隧穿效应解决了BaTiO3导电性差,导致电池内阻高的问题。

Description

一种具有3D结构的硒硫化锑薄膜太阳电池及其制备方法
技术领域
本发明涉及一种具有3D结构的硒硫化锑薄膜太阳电池及其制备方法,属于电池制备技术领域。
背景技术
寻找低成本、高效率、高稳定性的光伏材料是太阳能电池研究的一个重要内容。为此,一系列的光伏材料及其相应的器件结构相继出现,比如硅电池、薄膜太阳能电池以及钙钛矿型太阳能电池等等。近年来,硒硫化锑(Sb2(S,Se)3)作为一种薄膜太阳电池吸收层材料被研究,Sb2(S,Se)3为正交结构,物相成分易于控制,且带隙在1.1-1.7eV范围内可调,光吸收系数高达105cm-1以上。而且制备Sb2(S,Se)3薄膜的工艺温度较低,非常适合用于柔性薄膜电池,是一种具有实际应用前景的太阳能电池活性材料。然而,这种制备的Sb2(S,Se)3薄膜太阳电池通常转换效率通常较低、界面复合严重。
发明内容
本发明的目的在于提供一种具有3D结构的硒硫化锑薄膜太阳电池及其制备方法,通过本发明制备得到的Sb2(S,Se)3薄膜太阳电池转换效率高,界面复合降低。
为达到上述目的,提供如下技术方案:一种具有3D结构的硒硫化锑薄膜太阳电池,包括从下至上的依次层叠设置的衬底玻璃、缓冲层、钝化层、吸收层、空穴传输层和电极层;
其中,所述缓冲层为3D-TiO2阵列结构,所述钝化层为BaTiO3薄膜层,吸收层为Sb2(S,Se)3薄膜,缓冲层与吸收层形成pn结。
进一步地,所述BaTiO3薄膜层的厚度范围为2-10nm,所述Sb2(S,Se)3薄膜层的厚度范围为300-2000nm。
进一步地,所述TiO2阵列具有至少两个棒结构,所述棒结构长度为100-1000nm,直径为20-70nm,密度在100-200rod·μm-2
一种具有3D结构的硒硫化锑薄膜太阳电池的制备方法,用于制备如上所述的具有3D结构的Sb2(S,Se)3薄膜太阳电池,包括以下步骤:
S1、衬底清洗:以衬底玻璃为窗口层,清洗所述衬底玻璃;
S2、制备缓冲层:以含钛化合物与有机醇溶液配置得到前驱体溶液A,将所述前驱体溶液A旋涂在步骤S1中所述的衬底玻璃上,烘干后退火处理得到TiO2种子层薄膜;
用超纯水稀释含钛化合物并混匀,在酸性环境下配置得到前驱体溶液B,在所述前驱体溶液B内加入模板剂或氟钛酸铵,在所述TiO2种子层薄膜采用水热合成法制备3D-TiO2阵列,形成TiO2层;
S3、制备钝化层:以含钛化合物作为钛源,含钡化合物作为钡源,用所述钛源和钡源配制得到前驱体溶液C,在所述TiO2阵列上采用溶液法原位生长BaTiO3薄膜层,并退火;
S4、制备吸收层:以含硫化合物作为硫源,含锑化合物作为锑源,用超纯水溶解酒石酸、所述硫源及锑源配制得到前驱体溶液D,在所述BaTiO3薄膜层上喷涂所述前驱体溶液D制备得到Sb2(S,Se)3薄膜层;
S5、制备空穴传输层:在所述Sb2(S,Se)3薄膜层上制备空穴传输层;
S6、制备电极层:在所述空穴传输层上面蒸镀电极形成电极层。
进一步地,所述步骤S1具体为:依次采用去污粉水、去离子水、丙酮-乙醇混合液、去离子水超声清洗所述衬底玻璃,衬底玻璃为FTO玻璃、ITO玻璃或AZO玻璃中的一种。
进一步地,所述步骤S2中的含钛化合物为钛酸四丁酯、四氯化钛或钛酸异丙酯中的一种或多种,所述步骤S2中的有机醇溶液为乙醇、乙二醇、丙醇或二乙二醇中的一种或多种混合溶液混合配制。
进一步地,所述步骤S2中的模板剂为聚乙烯吡咯烷酮、烷基苯磺酸钠或乙二胺中的一种或多种。
进一步地,所述步骤S3中的含钛化合物为钛酸四丁酯、四氯化钛或钛酸异丙酯中的一种或多种;所述步骤S3中的含钡化合物为氯化钡、氢氧化钡或钛酸钡中的一种或多种。
进一步地,所述步骤S3中的含钡化合物的溶剂为有机醇溶液。
进一步地,所述步骤S4中的含硫化合物为硫脲、硫代乙酰胺、L-半胱氨酸中的一种或两种组合;所述步骤S4中的含锑化合物为乙酸锑、氯化锑或酒石酸锑钾中的一种或多种。
本发明的有益效果在于:本发明的一种具有3D结构的硒硫化锑薄膜太阳电池,TiO2薄膜与Sb2(S,Se)3薄膜具有良好的能带匹配,形成匹配良好的pn结结构,有效降低界面复合;且BaTiO3薄膜与TiO2薄膜形成双缓冲层结构,增加了耗尽层宽度可以有效提升电池的开路电压。其次,利用BaTiO3的铁电性,自发极化形成电场,其压电势可以有效地影响电荷输运,基于压电光电子效应,将有效提高器件的光电性能,进一步分离载流子减少复合。最后,BaTiO3薄膜可以作为钝化界面,进一步降低界面处的载流子复合率;同时BaTiO3薄膜的厚度较小,利用量子隧穿效应,极大的提高了BaTiO3薄膜的导电性。
本发明的一种具有3D结构的硒硫化锑薄膜太阳电池的制备方法,制备得到的Sb2(S,Se)3薄膜太阳电池转换效率高,因转换效率与异质结界面复合有密切关系,异质结界面复合与异质结的晶格失配以及能带失配有关,TiO2薄膜与Sb2(S,Se)3薄膜具有良好的能带匹配,可以形成匹配良好的pn结结构,降低界面复合,提高了电池转换效率。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
附图说明
图1为实施例1制备的具有3D结构的Sb2(S,Se)3薄膜太阳电池的层叠示意图;
图2为实施例1中所制备的TiO2的X射线衍射(XRD)图谱;
图3为实施例1中所制备的BaTiO3的X射线衍射(XRD)图谱
图4为实施例1中所制备的Sb2(S,Se)3的X射线衍射(XRD)图谱
图5为实施例1中所制备的Sb2(S,Se)3的拉曼图谱
图6为实施例1中所制备的Sb2(S,Se)3的扫描电子显微镜(SEM)图片;
图7为实施例1和对比例1中所制备的薄膜结构的光电流图谱;
图8为实施例1和对比例1中所制备的电池结构的I-V曲线。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
本发明提供一种具有3D结构的硒硫化锑薄膜太阳电池,包括从下至上的依次层叠设置的衬底玻璃、TiO2层、钝化层、Sb2(S,Se)3薄膜层、空穴传输层和电极层。其中,TiO2层为的3D-TiO2阵列结构,与Sb2(S,Se)3薄膜层形成pn结,钝化层为BaTiO3薄膜层,减少异质结的界面复合。
衬底玻璃可以是FTO、ITO、AZO等透明导电玻璃,但不限于此,还可以为其他的衬底玻璃。TiO2层为结构的有序的阵列结构,可形成良好载流子输送路径。BaTiO3薄膜层与Sb2(S,Se)3薄膜层具有良好的能带匹配,可形成匹配良好的pn结结构,有效降低界面复合;且BaTiO3薄膜层与TiO2层形成双缓冲层结构,增加了耗尽层宽度可以有效提升电池的开路电压。其次,利用BaTiO3的铁电性,自发极化形成电场,其压电势可以有效地影响电荷输运,基于压电光电子效应,将有效提高器件的光电性能,进一步分离载流子减少复合。最后,BaTiO3薄膜可以作为钝化界面,进一步降低界面处的载流子复合率;同时BaTiO3薄膜层的厚度较小,利用量子隧穿效应,极大的提高了BaTiO3薄膜的导电性。
需要说明的是,TiO2阵列中的棒结构长度为200-1000nm,直径为20-70nm,密度在100-200rod·μm-2。BaTiO3薄膜层的厚度范围为2-10nm,Sb2(S,Se)3薄膜层的厚度范围为300-2000nm。
本申请还提供一种具有3D结构的硒硫化锑薄膜太阳电池的制备方法用以制备如上的具有3D结构的Sb2(S,Se)3薄膜太阳电池,包括以下步骤:
S1、衬底清洗:以衬底玻璃为窗口层,清洗所述衬底玻璃;
S2、制备缓冲层:以含钛化合物与有机醇溶液配置得到前驱体溶液A,将所述前驱体溶液A旋涂在步骤S1中所述的衬底玻璃上,烘干后退火处理得到TiO2种子层薄膜;
用超纯水稀释含钛化合物并混匀,在酸性环境下配置得到前驱体溶液B,在所述前驱体溶液B内加入模板剂或氟钛酸铵,在所述TiO2种子层薄膜采用水热合成法制备3D-TiO2阵列,形成TiO2层;
S3、制备钝化层:以含钛化合物作为钛源,含钡化合物作为钡源,用所述钛源和钡源配制得到前驱体溶液C,在所述TiO2阵列上采用溶液法原位生长BaTiO3薄膜层,并退火;
S4、制备吸收层:以含硫化合物作为硫源,含锑化合物作为锑源,用超纯水溶解酒石酸、所述硫源及锑源配制得到前驱体溶液D,在所述BaTiO3薄膜层上喷涂所述前驱体溶液D制备得到Sb2(S,Se)3薄膜层;
S5、制备空穴传输层:在Sb2(S,Se)3薄膜层上制备空穴传输层;
S6、制备电极层:在空穴传输层上面蒸镀电极形成电极层。
需要说明的是,步骤S1具体为:依次采用去污粉水、去离子水、丙酮-乙醇混合液、去离子水超声清洗衬底玻璃,衬底玻璃为FTO玻璃、ITO玻璃或AZO玻璃中的一种。
步骤S2具体为:量取体积比为1:1-1:30的含钛化合物与有机醇溶液,搅拌0.5-13h后得到前驱体溶液A,将所前驱体溶液A旋涂在步骤S1中的衬底上,烘干后退火处理得到TiO2种子层薄膜;量取体积比为1:5-1:150的含钛化合物与超纯水并混匀,调节pH为0.5-2,搅拌2-10min后加入模板剂或氟钛酸铵,溶液澄清后得到前驱体溶液B,将前驱体溶液B转移至聚四氟乙烯罐中,将步骤S2制得的TiO2种子层薄膜加入聚四氟乙烯罐中在150-220℃下加热10-32h,后在200-550℃下热处理10-60min中得到TiO2阵列,即TiO2层。
步骤S3具体为:取浓度为0.05-2mmol的含钡化合物于有机醇溶液中混匀,调节pH为9-13或添加四丁基氢氧化铵调控BaTiO3形貌,得到前驱体溶液C,将前驱体溶液C转移至聚四氟乙烯罐中,将步骤S3制得的TiO2阵列加入聚四氟乙烯罐中在180-250℃下加热1-8h,得到BaTiO3/TiO2阵列。
步骤S4具体为:称取酒石酸、硫源、含锑化合物溶于超纯水中配置浓度为0.01-0.5mol/L的前驱体溶液D,于250-350℃加热平台上预加热衬底3-5min,以0.02-0.1ml/min流速在S4制得的BaTiO3/TiO2阵列表面喷涂前驱体溶液D,喷涂3-15次,在单温区退火炉加入硒粉,于在250-400℃下热处理5-30min得到Sb2(S,Se)3-BaTiO3/TiO2薄膜。
步骤S5及S6具体为:将空穴传输层溶液旋涂在步骤S4制的备Sb2(S,Se)3-BaTiO3/TiO2薄膜,生长获得空穴传输层薄膜;然后蒸发镀一层金电极,形成欧姆接触,此步骤为常规操作,故在此不再详细赘述。
需要说明的是,步骤S2中的含钛化合物为钛酸四丁酯、四氯化钛或钛酸异丙酯中的一种或多种,步骤S2中的有机醇溶液为乙醇、乙二醇、丙醇或二乙二醇中的一种或多种混合溶液混合配制。步骤S2中的模板剂为聚乙烯吡咯烷酮、烷基苯磺酸钠或乙二胺中的一种或多种。
步骤S3中的含钛化合物为钛酸四丁酯、四氯化钛或钛酸异丙酯中的一种或多种;步骤S3中的含钡化合物为氯化钡、氢氧化钡或钛酸钡中的一种或多种。步骤S3中的含钡化合物的溶剂为有机醇溶液,如乙醇、乙二醇、丙醇或二乙二醇中的一种或多种混合溶液混合配制,但不仅限于此。
步骤S4中的硫源为硫脲、硫代乙酰胺、L-半胱氨酸中的一种或两种组合;步骤S4中的含锑化合物为乙酸锑、氯化锑或酒石酸锑钾中的一种或多种。
步骤S5中空穴传输层可使用NiO或Cu2Se制备,但不仅限于此,还可以为其他材料。
下面以具体实施例进行详细说明:
实施例一
S1、量取1ml钛酸四丁酯与20ml的乙醇溶液中,搅拌0.5h后得到前驱体溶液A,以1500rpm的转速旋涂在FTO玻璃表面,在100℃的加热平台上预退火3min后,旋涂10层,并在马弗炉中在200℃下热处理60min中得到TiO2种子层薄膜;
S2、称取0.5ml的钛酸四丁酯于25ml的超纯水中,用浓盐酸调节pH到0.5,搅拌10min,后加入0.5g氟钛酸铵,待溶液澄清后得到前驱体溶液B,将前驱体溶液B转移至聚四氟乙烯罐中,放入TiO2种子层薄膜,在180℃下加热16h,后在550℃下热处理60min中得到TiO2阵列;
S3、称取0.05mmol的氢氧化钡于30ml的乙醇、二乙二醇、丙醇混合溶液,用NaOH调节体系pH至9调控BaTiO3形貌,得到前驱体溶液C,将制备好的前驱体溶液C转移至聚四氟乙烯罐中,放入TiO2阵列,在180℃下加热5h,得到BaTiO3/TiO2阵列;
S4、称取1mmol酒石酸、9mmol硫脲、2mmol氯化锑溶于100ml超纯水中得到前驱体溶液D,在325℃加热平台上预加热衬底5min,以0.3ml/min流速在BaTiO3/TiO2阵列表面喷涂前驱体溶液D,喷涂10次,最后在单温区退火炉中加入3mg的硒粉,在350℃下热处理20min得到Sb2(S,Se)3-BaTiO3/TiO2薄膜;
S5及S6、蒸发法制备NiO薄膜做薄膜电池的空穴传输层;利用真空蒸发法制备Au薄膜作为电池的电极,制备出薄膜太阳电池。
实施例1的对比实验1
S1、量取1ml钛酸四丁酯与20ml的乙醇溶液中,搅拌0.5h后得到前驱体溶液A,以1500rpm的转速旋涂在FTO玻璃表面,在100℃的加热平台上预退火3min后,旋涂10层,并在马弗炉中在200下热处理60min中得到TiO2种子层薄膜;
S2、称取0.5ml的含钛化合物于25ml的超纯水中,用浓盐酸调节pH到0.5,搅拌10min,后加入0.5g氟钛酸铵,待溶液澄清后得到前驱体溶液B,将前驱体溶液B转移至聚四氟乙烯罐中,放入TiO2种子层薄膜,在180℃下加热16h,后在550℃下热处理60min中等到TiO2阵列;
S3、称取1mmol酒石酸、9mmol硫脲、2mmol氯化锑溶于100ml超纯水中得到前驱体溶液C,在300℃加热平台上预加热衬底5min,以0.1ml/min流速在TiO2阵列表面喷涂前驱体溶液C,喷涂10次,最后在单温区退火炉中加入15mg的硒粉,在300℃下热处理20min得到Sb2(S,Se)3-TiO2薄膜;
S4及S5、蒸发法制备NiO薄膜做薄膜电池的空穴传输层;利用真空蒸发法制备Au薄膜作为电池的电极,制备出薄膜太阳电池。
实施例2
量取8ml四氯化钛与20ml的乙二醇溶液中,搅拌13h后得到前驱体溶液A,以4000rpm的转速旋涂在ITO玻璃表面,在150℃的加热平台上预退火2min后,旋涂5层,并在马弗炉中在500℃下热处理15min中等到TiO2种子层薄膜;
称取5ml的钛酸异丙酯于30ml的超纯水中,用浓盐酸调节pH到1,搅拌8min,后加入0.5g聚乙烯吡咯烷酮,待溶液澄清后得到前驱体溶液B,将前驱体溶液B转移至聚四氟乙烯罐中,放入TiO2种子层薄膜,在150℃下加热32h,后在200℃下热处理50min中得到TiO2阵列;
称取2mmol的乙酸钡于10ml的乙二醇、丙醇混合溶液,用NaOH调节体系pH至13调控BaTiO3形貌,得到前驱体溶液C,将制备好的前驱体溶液C转移至聚四氟乙烯罐中,放入TiO2阵列,在200℃下加热8h,得到BaTiO3/TiO2阵列;
称取0.1mmol酒石酸、3mmol硫脲、1mmol氯化锑溶于100ml超纯水中得到前驱体溶液D,在350℃加热平台上预加热衬底3min,以0.1ml/min流速在BaTiO3/TiO2阵列表面喷涂前驱体溶液D,喷涂8次,最后在单温区退火炉中加入5mg的硒粉,在400℃下热处理20min得到Sb2(S,Se)3-BaTiO3/TiO2薄膜;
蒸发法制备Cu2Se薄膜做薄膜电池的空穴传输层;利用真空蒸发法制备Au薄膜作为电池的电极,制备出薄膜太阳电池。
请参见图1,为实施例1制备的具有3D结构的Sb2(S,Se)3薄膜太阳电池的层叠示意图。其中1为衬底玻璃;2为缓冲层,即TiO2种子层上生长的TiO2阵列;3为钝化层,即BaTiO3薄膜层;4为吸收层,即Sb2(S,Se)3薄膜层;5为空穴传输层,即HTL层;6为电极层,即Au层。
请参见图2至图6,图2为所制备的TiO2的X射线衍射(XRD)图谱、图3为所制备的BaTiO3的X射线衍射(XRD)图谱、图4为所制备的Sb2(S,Se)3的X射线衍射(XRD)图谱、图5为所制备的Sb2Se3的拉曼图谱,观察图谱,发现成功的制备出TiO2、BaTiO3、和Sb2Se3相。图6为中所制备的Sb2Se3的扫描电子显微镜(SEM)图片,观察图片,发现制备的Sb2(S,Se)3薄膜致密性较好,表面存在明显的大晶粒。
参见图7和图8,图7为实施例1中所制备的薄膜结构于对比实验1中所制备的薄膜结构的光电流图谱,观察图谱,发现添加BaTiO3薄膜的实施例1制得的材料的光电响应明显优于未添加BaTiO3薄膜的对比实验1制得材料的光电响应。图8为实施例1所制备的电池和对比实验1中所制备的电池结构的I-V曲线,发现BaTiO3可以明显提高电池的开路电压。
实施例1中TiO2阵列棒的长度约为800nm,实施案例2中TiO2阵列棒的长度为1000nm。实施案例1中BaTiO3为薄片状结构附着在阵列表面,实施案例2中BaTiO3为球形微晶在TiO2表面。
综上,本发明的一种具有3D结构的Sb2(S,Se)3薄膜太阳电池,BaTiO3薄膜与Sb2(S,Se)3薄膜具有良好的能带匹配,形成匹配良好的pn结结构,有效降低界面复合;且BaTiO3与TiO2薄膜形成双缓冲层结构,增加了耗尽层宽度可以有效提升电池的开路电压。其次,利用BaTiO3的铁电性,自发极化形成电场,其压电势可以有效地影响电荷输运,基于压电光电子效应,将有效提高器件的光电性能,进一步分离载流子减少复合。最后,BaTiO3薄膜可以作为钝化界面,进一步降低界面处的载流子复合率;同时BaTiO3薄膜层中的BaTiO2的粒子纳米粒径小,利用量子隧穿效应,极大的提高了BaTiO3薄膜的导电性。
本发明的一种具有3D结构的硒硫化锑薄膜太阳电池的制备方法,制备得到的Sb2(S,Se)3薄膜太阳电池转换效率高,因转换效率与异质结界面复合有密切关系,异质结界面复合与异质结的晶格失配以及能带失配有关,BaTiO3薄膜与Sb2(S,Se)3薄膜具有良好的能带匹配,可以形成匹配良好的pn结结构,降低界面复合,提高了电池转换效率。
以上所述实施例的各技术特征以及各检测项目可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种具有3D结构的硒硫化锑薄膜太阳电池,其特征在于,包括从下至上的依次层叠设置的衬底玻璃、缓冲层、钝化层、吸收层、空穴传输层和电极层;
其中,所述缓冲层为3D-TiO2阵列结构,所述钝化层为BaTiO3薄膜层,吸收层为Sb2(S,Se)3薄膜,缓冲层与吸收层形成pn结。
2.如权利要求1所述的具有3D结构的Sb2(S,Se)3薄膜太阳电池,其特征在于,所述BaTiO3薄膜层的厚度范围为2-10nm,所述Sb2(S,Se)3薄膜层的厚度范围为300-2000nm。
3.如权利要求1所述的具有3D结构的Sb2(S,Se)3薄膜太阳电池,其特征在于,所述TiO2阵列具有至少两个棒结构,所述棒结构长度为100-1000nm,直径为20-70nm,密度在100-200rod·μm-2
4.一种具有3D结构的硒硫化锑薄膜太阳电池的制备方法,用于制备如权利要求1-3任一项所述的具有3D结构的Sb2(S,Se)3薄膜太阳电池,其特征在于,包括以下步骤:
S1、衬底清洗:以衬底玻璃为窗口层,清洗所述衬底玻璃;
S2、制备缓冲层:以含钛化合物与有机醇溶液配置得到前驱体溶液A,将所述前驱体溶液A旋涂在步骤S1中所述的衬底玻璃上,烘干后退火处理得到TiO2种子层薄膜;
用超纯水稀释含钛化合物并混匀,在酸性环境下配置得到前驱体溶液B,在所述前驱体溶液B内加入模板剂或氟钛酸铵,在所述TiO2种子层薄膜采用水热合成法制备3D-TiO2阵列,形成TiO2层;
S3、制备钝化层:以含钛化合物作为钛源,含钡化合物作为钡源,用所述钛源和钡源配制得到前驱体溶液C,在所述TiO2阵列上采用溶液法原位生长BaTiO3薄膜层,并退火;
S4、制备吸收层:以含硫化合物作为硫源,含锑化合物作为锑源,用超纯水溶解酒石酸、所述硫源及锑源配制得到前驱体溶液D,在所述BaTiO3薄膜层上喷涂所述前驱体溶液D制备得到Sb2(S,Se)3薄膜层;
S5、制备空穴传输层:在所述Sb2(S,Se)3薄膜层上制备空穴传输层;
S6、制备电极层:在所述空穴传输层上面蒸镀电极形成电极层。
5.如权利要求4所述的具有3D结构的硒硫化锑薄膜太阳电池的制备方法,其特征在于,所述步骤S1具体为:依次采用去污粉水、去离子水、丙酮-乙醇混合液、去离子水超声清洗所述衬底玻璃,衬底玻璃为FTO玻璃、ITO玻璃或AZO玻璃中的一种。
6.如权利要求4所述的具有3D结构的硒硫化锑薄膜太阳电池的制备方法,其特征在于,所述步骤S2中的含钛化合物为钛酸四丁酯、四氯化钛或钛酸异丙酯中的一种或多种,所述步骤S2中的有机醇溶液为乙醇、乙二醇、丙醇或二乙二醇中的一种或多种混合溶液混合配制。
7.如权利要求4所述的具有3D结构的硒硫化锑薄膜太阳电池的制备方法,其特征在于,所述步骤S2中的模板剂为聚乙烯吡咯烷酮、烷基苯磺酸钠或乙二胺中的一种或多种。
8.如权利要求4所述的具有3D结构的硒硫化锑薄膜太阳电池的制备方法,其特征在于,所述步骤S3中的含钛化合物为钛酸四丁酯、四氯化钛或钛酸异丙酯中的一种或多种;所述步骤S3中的含钡化合物为氯化钡、氢氧化钡或钛酸钡中的一种或多种。
9.如权利要求8所述的具有3D结构的硒硫化锑薄膜太阳电池的制备方法,其特征在于,所述步骤S3中的含钡化合物的溶剂为有机醇溶液。
10.如权利要求3所述的具有3D结构的硒硫化锑薄膜太阳电池的制备方法,其特征在于,所述步骤S4中的含硫化合物为硫脲、硫代乙酰胺、L-半胱氨酸中的一种或两种组合;所述步骤S4中的含锑化合物为乙酸锑、氯化锑或酒石酸锑钾中的一种或多种。
CN202111327578.4A 2021-11-10 2021-11-10 一种具有3d结构的硒硫化锑薄膜太阳电池及其制备方法 Pending CN114050189A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111327578.4A CN114050189A (zh) 2021-11-10 2021-11-10 一种具有3d结构的硒硫化锑薄膜太阳电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111327578.4A CN114050189A (zh) 2021-11-10 2021-11-10 一种具有3d结构的硒硫化锑薄膜太阳电池及其制备方法

Publications (1)

Publication Number Publication Date
CN114050189A true CN114050189A (zh) 2022-02-15

Family

ID=80208588

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111327578.4A Pending CN114050189A (zh) 2021-11-10 2021-11-10 一种具有3d结构的硒硫化锑薄膜太阳电池及其制备方法

Country Status (1)

Country Link
CN (1) CN114050189A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114597272A (zh) * 2022-03-09 2022-06-07 陈王伟 Sb2(S,Se)3基体型异质结薄膜、太阳能电池及其电池制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130048062A1 (en) * 2011-08-29 2013-02-28 Korea Institute Of Science And Technology Solar cell comprising bulk heterojunction inorganic thin film and fabrication of the solar cell
US20150221784A1 (en) * 2012-05-14 2015-08-06 The John Hopkins University Simplified devices utilizing novel pn-semiconductur structures
CN107946464A (zh) * 2017-11-13 2018-04-20 河南大学 一种基于钛酸钡界面修饰层的钙钛矿太阳能电池及其制备方法
WO2018124459A1 (ko) * 2016-12-28 2018-07-05 한국기계연구원 페로브스카이트 화합물 및 그 제조방법, 페로브스카이트 화합물을 포함하는 태양전지 및 그 제조방법
US20180337004A1 (en) * 2017-05-19 2018-11-22 Unist (Ulsan National Institute Of Science And Tec Hnology) Lead-free perovskite-based hole transport material composites, solar cells including the same, and method of manufacturing the same
CN110459619A (zh) * 2019-06-05 2019-11-15 南京格兰泽光电科技有限公司 硒硫化锑电池组件及其制备方法
CN209947847U (zh) * 2019-03-30 2020-01-14 福建农林大学 一种基于硫硒化锑/氧化钛纳米棒核壳异质结的太阳能电池
CN110844936A (zh) * 2019-12-10 2020-02-28 中国科学院合肥物质科学研究院 一种三硫化二锑纳米棒阵列的制备方法及基于其的太阳电池
CN213340427U (zh) * 2020-11-12 2021-06-01 珠海格力电器股份有限公司 太阳能电池及用电设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130048062A1 (en) * 2011-08-29 2013-02-28 Korea Institute Of Science And Technology Solar cell comprising bulk heterojunction inorganic thin film and fabrication of the solar cell
US20150221784A1 (en) * 2012-05-14 2015-08-06 The John Hopkins University Simplified devices utilizing novel pn-semiconductur structures
WO2018124459A1 (ko) * 2016-12-28 2018-07-05 한국기계연구원 페로브스카이트 화합물 및 그 제조방법, 페로브스카이트 화합물을 포함하는 태양전지 및 그 제조방법
US20180337004A1 (en) * 2017-05-19 2018-11-22 Unist (Ulsan National Institute Of Science And Tec Hnology) Lead-free perovskite-based hole transport material composites, solar cells including the same, and method of manufacturing the same
CN107946464A (zh) * 2017-11-13 2018-04-20 河南大学 一种基于钛酸钡界面修饰层的钙钛矿太阳能电池及其制备方法
CN209947847U (zh) * 2019-03-30 2020-01-14 福建农林大学 一种基于硫硒化锑/氧化钛纳米棒核壳异质结的太阳能电池
CN110459619A (zh) * 2019-06-05 2019-11-15 南京格兰泽光电科技有限公司 硒硫化锑电池组件及其制备方法
CN110844936A (zh) * 2019-12-10 2020-02-28 中国科学院合肥物质科学研究院 一种三硫化二锑纳米棒阵列的制备方法及基于其的太阳电池
CN213340427U (zh) * 2020-11-12 2021-06-01 珠海格力电器股份有限公司 太阳能电池及用电设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114597272A (zh) * 2022-03-09 2022-06-07 陈王伟 Sb2(S,Se)3基体型异质结薄膜、太阳能电池及其电池制备方法
CN114597272B (zh) * 2022-03-09 2024-02-09 陈王伟 Sb2(S,Se)3基体型异质结薄膜、太阳能电池及其电池制备方法

Similar Documents

Publication Publication Date Title
KR102595057B1 (ko) 멕신-변형 하이브리드 광변환기
Parize et al. ZnO/TiO2/Sb2S3 core–shell nanowire heterostructure for extremely thin absorber solar cells
Guo et al. Low-temperature processed non-TiO 2 electron selective layers for perovskite solar cells
Zheng et al. Solid-state nanocrystalline solar cells with an antimony sulfide absorber deposited by an in situ solid–gas reaction
CN109904318B (zh) 一种基于反溶液浴的钙钛矿薄膜制备方法及太阳能电池
JP2020506548A (ja) ペロブスカイトオプトエレクトロニクスのためのコンタクトパッシベーション
CN108598268B (zh) 环境条件下印刷制备平面异质结钙钛矿太阳电池的方法
WO2022037653A1 (zh) 一种叠层电池
CN103474575B (zh) 一种以硫氧化锌为电子传输层的杂化太阳能电池及其制备
Farhana et al. Recent advances and new research trends in Sb2S3 thin film based solar cells
CN109560197B (zh) 一种基于极化的铁电钙钛矿太阳能电池及其制备方法
Shargaieva et al. Influence of the grain size on the properties of CH3NH3PbI3 thin films
CN110854273A (zh) 一种有机体异质结掺杂的钙钛矿太阳能电池及其制备方法
Pauportè Synthesis of ZnO nanostructures for solar cells—a focus on dye-sensitized and perovskite solar cells
CN113675343A (zh) 一种采用多官能团配体量子点的钙钛矿薄膜及其制备和应用
WO2023115870A1 (zh) 一种pn异质结硒化锑/钙钛矿太阳能电池及其制备方法
CN113314672A (zh) 一种钙钛矿太阳能电池及其制备方法
CN109671848B (zh) CuPbSbS3新型薄膜太阳能电池及其制备方法
CN107331774B (zh) 一种新型钙钛矿太阳能电池结构和制备方法
CN114050189A (zh) 一种具有3d结构的硒硫化锑薄膜太阳电池及其制备方法
Singh et al. Performances of spin coated silver doped ZnO photoanode based dye sensitized solar cell
CN111192964B (zh) 一种钙钛矿量子点太阳能电池及其制备方法
CN110165020B (zh) 一种基于CdS/SnO2混合N型层的高效Sb2Se3薄膜电池及其制备方法
CN115568233A (zh) 一种钙钛矿本征偶极子定向排列的有机-无机钙钛矿太阳能电池及其制备方法
CN114975790A (zh) 一种离子液体修饰双界面的钙钛矿太阳电池及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination