WO2022110747A1 - 一种激光显示用钼酸盐发光陶瓷材料及其制备方法与应用 - Google Patents

一种激光显示用钼酸盐发光陶瓷材料及其制备方法与应用 Download PDF

Info

Publication number
WO2022110747A1
WO2022110747A1 PCT/CN2021/097960 CN2021097960W WO2022110747A1 WO 2022110747 A1 WO2022110747 A1 WO 2022110747A1 CN 2021097960 W CN2021097960 W CN 2021097960W WO 2022110747 A1 WO2022110747 A1 WO 2022110747A1
Authority
WO
WIPO (PCT)
Prior art keywords
molybdate
laser display
ceramic material
luminescent ceramic
alkali metal
Prior art date
Application number
PCT/CN2021/097960
Other languages
English (en)
French (fr)
Inventor
叶柿
杨瑞瑞
李曼
张勤远
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2022110747A1 publication Critical patent/WO2022110747A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7736Vanadates; Chromates; Molybdates; Tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the invention belongs to the technical field of preparation technology of special ceramics for laser display, and particularly relates to a molybdate luminescent ceramic material for laser display and a preparation method and application thereof.
  • Laser display has the advantages of wide color gamut, high color saturation, good directionality and high resolution, and is a new generation of display technology.
  • the advantages of low power consumption, long life and low production cost of its equipment have attracted great attention from scientific research institutions and enterprises in the production field.
  • the laser-excited fluorescent material display technology solves the problem of interference speckle noise; improves the brightness and safety of the light source; solves the problem of instantaneous quenching of fluorescent materials under high-energy laser excitation; Reduced production costs.
  • the third generation fluorescent ceramics After the development of the first two generations of phosphors combined with inorganic silica gel and organic silica gel, the third generation fluorescent ceramics have the advantages of good heat resistance, high light transmittance, uniform and dense, and high luminous efficiency. Therefore, the preparation of fluorescent ceramics with good physical and chemical properties and excellent optical properties to obtain the required light source has become the future direction of the laser display field.
  • the quality of the fluorescent material directly determines the color gamut, color rendering brightness and other related parameters of the color rendering product, which in turn affects the display effect.
  • high-energy-density laser irradiation can saturate the light output of most fluorescent materials, so that the energy that cannot be released by fluorescent radiation can increase the ambient temperature and cause device damage. Therefore, the research on fluorescent materials can fundamentally solve the problems of production cost and heat dissipation of light source.
  • most of the light sources used for laser excitation display are blue light sources. Therefore, fluorescent materials must meet the conditions of being excited by blue light.
  • Rare earth ion Ce 3+ doped garnet-based (YAG) fluorescent transparent ceramics are currently the main researched fluorescent ceramic materials excited by blue laser.
  • white light can be obtained by combining the blue light excitation light source and Ce 3+ doped garnet yellow fluorescent ceramics, the white light lacks the red light component, the color rendering index is low, and the emission peak width is not conducive to broadening the color gamut and improving the Lumen Efficiency. If you want to obtain white light with high color rendering index, you must add red component fluorescent materials. Therefore, research and development of a red fluorescent material excited by blue light is the focus of current research.
  • the red phosphors that can satisfy the above conditions are mainly Eu 2+ doped (SrCa)AlSiN 3 system and (SrBa) 2 Si 5 N 8 system.
  • the invention patent application in CN 105753480 B discloses a CaAlSiN 3 :Eu 2+ red light ceramic material excited by a 450nm blue light laser, because the red light emission of Eu 2+ is a broad peak, so that its color purity is not high under high power laser excitation. Therefore, the development of narrow-band red fluorescent ceramics excited by blue laser is urgently needed.
  • the purpose of the present invention is to provide a molybdate luminescent ceramic material for laser display and a preparation method and application thereof.
  • the primary purpose of the present invention is to provide a preparation method of molybdate luminescent ceramic material for laser display.
  • the present invention adopts a high-temperature solid-phase method to introduce halogen ions into the structure to partially replace O 2- in the molybdate, thereby preparing (Li,Na,K)EuMo 2 O 8- x /2 (F/Cl) x powder; then adding PVB and grinding to solidify the powder; finally pressing and calcining to obtain (Li,Na,K)EuMo 2 O 8- x /2 (F/Cl) x ceramic sheet.
  • F - /Cl - ions are introduced into the (Li, Na, K) EuMo 2 O 8 structure, and the partial release of forbidden transition and the enhancement of f ⁇ f transition are realized by reducing the symmetry of the luminescent center.
  • Another object of the present invention is to provide the above preparation method to obtain a pale pink (Li,Na,K)EuMo 2 O 8- x /2 (F/Cl) x ceramic material.
  • Another object of the present invention is to provide a ceramic material obtained by the above preparation method for use in the field of display excited by blue light.
  • the object of the present invention is achieved by at least one of the following technical solutions.
  • the preparation method of the molybdate luminescent ceramic material for laser display comprises the following steps:
  • the molybdenum oxide is MoO 3 ; the rare earth oxide is Eu 2 O 3 ; and the molar ratio of the molybdenum oxide to the rare earth oxide is 2:1.
  • the alkali metal halide is one or more of LiF, NaF, KF, LiCl, NaCl and KCl;
  • the alkali metal carbonate is Li 2 CO 3 , Na 2 CO 3 and K 2 CO 3 more than one;
  • the molar ratio of the alkali metal halide to the alkali metal carbonate is 1:(1-1.5);
  • the molar ratio of the rare earth oxide to the alkali metal halide is 5:(2-2.5) .
  • the mixing time of the raw materials in step (1) is 20-50 min; the concentration of the F - ion doping is 30-70%.
  • the halide in step (1) is the coexistence of LiF and NaF or the coexistence of LiF and KF.
  • the alkali metal carbonate in step (1) is the coexistence of Li 2 CO 3 and Na 2 CO 3 or the coexistence of Li 2 CO 3 and K 2 CO 3 .
  • the temperature of the calcination treatment in step (1) is 550-750°C, and the calcination treatment time is 2-10h.
  • the time of the calcination treatment in step (2) is 3-9h.
  • step (2) the temperature for heating and melting in step (2) is 30-80° C., and the time for heating and melting is 2 to 8 hours.
  • the mesh number of the sieve in step (3) is 80-300 mesh.
  • the mass ratio of the halide ion-doped molybdate powder to the PVB glue solution in step (3) is 2:(1-4); the mass fraction of the PVB glue is 3-8%.
  • the temperature of the calcination treatment in step (3) is 1000-1400° C.
  • the calcination treatment time is 1-4 h.
  • the present invention provides a molybdate luminescent ceramic material for laser display ((Li,Na,K)EuMo 2 O 8- x /2 ( F/Cl) x material, 0 ⁇ x ⁇ 0.7).
  • the mechanism of the present invention is:
  • the present invention selects (Li, Na, K)EuMo 2 O 8 red phosphor material with strong f ⁇ f transition, and Li/Na/K + and Eu 3+ are mixed to occupy eight-coordinate cation sites.
  • the introduced F/Cl - ions enter the surrounding of Eu 3+ ions, replacing the O 2- ions that are mixed with Eu 3+ ions, forming (Li, Na, K)EuMo 2 with lower Eu 3+ symmetry O 8- x /2 (F/Cl) x .
  • the ceramic sheet of the invention has high absorption rate, good luminous efficiency, high color purity, good monochromaticity, good thermal conductivity and backscattering performance under the excitation of 464nm blue light laser; Laser shows the field of ceramics.
  • the present invention has the following advantages and beneficial effects:
  • the molybdate luminescent ceramic material for laser display prepared by the present invention maintains the red light emitting characteristics of LiEuMo 2 O 8 itself, has strong and narrow linear absorption near 460nm, and has a strong line spectrum at 614nm emission;
  • the molybdate luminescent ceramic material for laser display prepared by the present invention has significantly improved luminous intensity
  • the molybdate luminescent ceramic material for laser display prepared by the present invention has high luminous efficiency under the excitation of a 464nm blue light laser light source, and has a good application prospect in the field of laser display.
  • Fig. 1 is the XRD diffraction pattern of (Li, Na, K)EuMo 2 O 8- x /2 F x powder material prepared in Example 1;
  • Fig. 2 is the excitation spectrum of (Li, Na, K)EuMo 2 O 8- x /2 F x powder material prepared in Example 1;
  • Fig. 3 is the emission spectrum of (Li, Na, K)EuMo 2 O 8- x /2 F x powder material prepared in Example 1;
  • Fig. 4 is the excitation spectrum of (Li, Na, K)EuMo 2 O 8- x /2 Cl x powder material prepared in Example 3;
  • Fig. 5 is the emission spectrum of (Li, Na, K)EuMo 2 O 8- x /2 Cl x powder material prepared in Example 3;
  • Fig. 6 is the emission spectrum of (Li, Na, K)EuMo 2 O 8- x /2 F x ceramic prepared in Example 1 under the excitation of 464 nm blue light laser;
  • FIG. 7 is a color coordinate diagram of the (Li,Na,K)EuMo 2 O 8- x /2 F x ceramic prepared in Example 1 under the excitation of a 464 nm blue light laser.
  • a preparation process of a molybdate luminescent ceramic material for laser display specifically comprising the following steps:
  • the XRD diffraction pattern of the molybdate powder material prepared in this example is shown in FIG. 1 , and it can be seen from FIG. 1 that the doped material maintains the original crystal configuration of the molybdate.
  • the excitation spectrum of the F - doped molybdate powder luminescent material prepared in this example is shown in Figure 2, and it can be seen that the absorption position of the material is near 464 nm, absorbing narrow-band blue light.
  • the emission spectrum of the F - doped molybdate powder luminescent material prepared in this example under the excitation of blue light at 464 nm is shown in Figure 3. It can be seen that the emission of the material is located in the vicinity of 614 nm, which is red light, with a narrow emission peak and good monochromaticity. .
  • the emission spectrum of the ceramic sheet prepared in this example under the excitation of a blue laser of 464 nm is shown in FIG.
  • the color coordinates of the ceramic sheet prepared in this example under the excitation of a 464 nm blue laser can be referred to as shown in FIG. 7 . It can be seen that the color purity of the material is high and the monochromaticity is good.
  • the optical power, internal efficiency, blue light absorption rate and thermal conductivity of the ceramic sheet prepared in this example can be shown in Table 1 under the excitation of 464 nm blue light laser, and it can be seen that the ceramic material has good thermal conductivity and backscattering performance.
  • a preparation process of a molybdate luminescent ceramic material for laser display specifically comprising the following steps:
  • the XRD diffraction pattern of the molybdate powder material prepared in this example is similar to FIG. 1 , and it can be seen from the figure that the doped material maintains the original crystal configuration of the molybdate.
  • the excitation spectrum of the F - doped molybdate powder luminescent material prepared in this example can be referred to as shown in FIG. 2 .
  • the absorption position of the material is near 464 nm and absorbs narrow-band blue light.
  • the emission spectrum of the F - doped molybdate powder luminescent material prepared in this example under the excitation of blue light at 464 nm can be referred to as shown in Figure 3.
  • the emission of the material is located in the vicinity of 614 nm, which is red light, with narrow emission peak and monochromaticity. it is good.
  • the emission spectrum of the ceramic sheet prepared in this example under the excitation of a 464 nm blue laser can be referred to as shown in FIG. 6 , and the absorption rate of the narrow-band red light ceramic is relatively high.
  • the color coordinates of the ceramic sheet prepared in this example under the excitation of a 464 nm blue laser can be referred to as shown in FIG. 7 .
  • the color purity of the material is high and the monochromaticity is good.
  • the optical power, internal efficiency, blue light absorption rate and thermal conductivity of the ceramic sheet prepared in this example can be shown in Table 1 under the excitation of 464nm blue light laser, and the ceramic material has good thermal conductivity and backscattering performance.
  • a preparation process of a molybdate luminescent ceramic material for laser display specifically comprising the following steps:
  • the XRD diffraction pattern of the molybdate powder material prepared in this example is similar to FIG. 1 , and it can be seen from the figure that the doped material maintains the original crystal configuration of the molybdate.
  • the excitation spectrum of the Cl - doped molybdate powder luminescent material prepared in this example can be referred to as shown in FIG. 4 .
  • the absorption position of the material is near 464 nm and absorbs narrow-band blue light.
  • the emission spectrum of the Cl - doped molybdate powder luminescent material prepared in this example under the excitation of blue light at 464 nm can be referred to as shown in Fig. 5.
  • the emission of the material is located in the vicinity of 614 nm, which is red light, with narrow emission peak and good monochromaticity. .
  • the emission spectrum of the ceramic sheet prepared in this example under the excitation of a 464 nm blue laser can be referred to as shown in FIG. 6 , and the absorption rate of the narrow-band red light ceramic is relatively high.
  • the color coordinates of the ceramic sheet prepared in this example under the excitation of a 464 nm blue laser can be referred to as shown in FIG. 7 .
  • the color purity of the material is high and the monochromaticity is good.
  • the optical power, internal efficiency, blue light absorption rate and thermal conductivity of the ceramic sheet prepared in this example can be shown in Table 1 under the excitation of 464nm blue light laser, and the ceramic material has good thermal conductivity and backscattering performance.
  • a preparation process of a molybdate luminescent ceramic material for laser display specifically comprising the following steps:
  • the XRD diffraction pattern of the molybdate powder material prepared in this example can be referred to as shown in FIG. 1 , and the doped material maintains the original crystal configuration of the molybdate.
  • the excitation spectrum of the Cl - doped molybdate powder luminescent material prepared in this example can be referred to as shown in FIG. 4 .
  • the absorption position of the material is near 464 nm and absorbs narrow-band blue light.
  • the emission spectrum of the Cl - doped molybdate powder luminescent material prepared in this example under the excitation of blue light at 464 nm is shown in Figure 5.
  • the emission of the material is at the vicinity of 614 nm, which is red light, with narrow emission peak and good monochromaticity.
  • the emission spectrum of the ceramic sheet prepared in this example under the excitation of a 464 nm blue laser can be referred to as shown in FIG.
  • the color coordinates of the ceramic sheet prepared in this example under the excitation of a 464 nm blue laser can be referred to as shown in FIG. 7 .
  • the color purity of the material is high and the monochromaticity is good.
  • the optical power, internal efficiency, blue light absorption rate and thermal conductivity of the ceramic sheet prepared in this example can be shown in Table 1 under the excitation of 464nm blue light laser, and the ceramic material has good thermal conductivity and backscattering performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种激光显示用钼酸盐发光陶瓷材料及其制备方法与应用,属于激光显示用特种陶瓷制备工艺技术领域。该方法包括:将碱金属卤化物、碱金属碳酸盐混合,将氧化钼、氧化铕按摩尔比称量,混合,研磨,压片,煅烧,研磨制得钼酸盐粉末样品;将PVB胶加热搅拌,制得澄清的PVB胶溶液;将钼酸盐粉末材料过筛,加入PVB胶溶液,在紫外灯下研磨,直到PVB胶固化,压片,煅烧,制得陶瓷片。本发明的陶瓷片在464nm蓝光激光激发下吸收率高,发光效率好,色纯度高,单色性好,热导性和背散射性能佳;在614nm(红)具有较窄带发射峰,可用于激光显示陶瓷领域。

Description

一种激光显示用钼酸盐发光陶瓷材料及其制备方法与应用 技术领域
本发明属于激光显示特种陶瓷制备工艺技术领域,具体涉及一种激光显示用钼酸盐发光陶瓷材料及其制备方法与应用。
背景技术
激光显示具有色域宽、色彩饱和度高、方向性好和分辨率高等优点,是新一代显示技术。此外,其设备功耗低、寿命长及生产成本低等优势引起了科研机构和生产领域企业的极大关注。与传统的激光显示技术相比,激光激发荧光材料显示技术解决了干涉散斑噪音的问题;提高了光源的亮度和安全性;解决了荧光材料在高能量激光激发下出现的瞬间淬灭问题;降低了生产成本。经历了前两代荧光粉与无机硅胶和有机硅胶的结合的发展,第三代荧光陶瓷兼具了耐热性好、透光率高、均匀致密、发光效率高等优点。因此,制备物理化学性质好且光学性能优异的荧光陶瓷,用来获得所需光源成为激光显示领域的未来方向。
在激光显示技术中,荧光材料的好坏直接决定着显色产品的色域、显色亮度等相关参数,进而影响显示效果。此外,高能量密度激光照射会使大多数荧光材料产生光输出饱和,致使无法以荧光辐射方式释放的能量会提高环境温度,造成器件损坏。因此,对荧光材料的研究可从根本上解决生产成本、光源散热等问题。目前,激光激发显示用光源多为蓝色光源,因此,荧光材料必须符合被蓝光激发的条件。稀土离子Ce 3+掺杂的石榴石基(YAG)荧光透明陶瓷是当前主要研究的蓝光激光激发的荧光陶瓷材料。虽然将蓝光激发光源和Ce 3+掺杂的石榴石黄色荧光陶瓷结合能得到白光,但该白光因缺少红光成分,显色指数偏低,且其发射峰宽不利于扩宽色域和提高流明效率。若想获得高显色指数的白光,须加入红色成分荧光材料。因此,研究开发一种蓝光激发的红色荧光材料是目前人们研究的重点。
目前,能满足以上条件的红色荧光粉主要是Eu 2+掺杂的(SrCa)AlSiN 3体系和(SrBa) 2Si 5N 8体系。在CN 105753480 B中的发明专利申请公开了450nm蓝光激光激发的CaAlSiN 3:Eu 2+红光陶瓷材料,由于Eu 2+的红光发射为宽峰,致使在高功率激光激发下其色纯度不高、流明效率不高等,因此,亟需开发蓝光激光激发的窄带红光荧光陶瓷。
技术解决方案
为了克服现有技术存在的不足,本发明的目的是提供一种激光显示用钼酸盐发光陶瓷材料及其制备方法与应用。
为制备出能被蓝光激光激发,且发光强、散热效果好的窄带红光陶瓷材料,本发明的首要目的是提供一种激光显示用钼酸盐发光陶瓷材料的制备方法。本发明采用高温固相法将卤素离子引入到结构中,部分取代钼酸盐中的O 2-,从而制备出(Li,Na,K)EuMo 2O 8- x/2 (F/Cl) x 粉末;随后在加入PVB并研磨使粉末固化;最后压片煅烧得到(Li,Na,K)EuMo 2O 8- x/2 (F/Cl) x 陶瓷片。本发明将F -/Cl -离子引入到(Li,Na,K)EuMo 2O 8结构中,通过降低发光中心的对称性来实现禁阻跃迁部分解禁和f→f跃迁增强。
本发明的另一个目的在于提供上述制备方法得到一种淡粉色(Li,Na,K)EuMo 2O 8- x/2 (F/Cl) x 陶瓷材料。
本发明的又一个目的在于提供上述制备方法得到的一种陶瓷材料应用于蓝光激光激发的显示领域。
本发明的目的至少通过如下技术方案之一实现。
本发明提供的激光显示用钼酸盐发光陶瓷材料的制备方法,包括如下步骤:
(1)高温固相法制备粉末:将钼氧化物、稀土氧化物、碱金属卤化物及碱金属碳酸盐混合,研磨成粉,压片,升温进行煅烧处理,研磨成粉,得到卤素掺杂的钼酸盐粉末;
(2)PVB胶溶液的制备:在搅拌状态下将PVB胶加热熔化,得到澄清的PVB胶溶液;
(3)陶瓷片的制备:将步骤(1)所述卤素离子掺杂的钼酸盐粉末((Li,Na,K)EuMo 2O 8- x/2 (F/Cl) x 粉末)过筛,然后与澄清的PVB胶溶液混合均匀,得到混合物;将混合物在紫外灯照射下研磨至澄清的PVB胶固化,压片,升温进行煅烧处理,得到所述激光显示用钼酸盐发光陶瓷材料。
进一步地,步骤(1)所述钼氧化物为MoO 3;所述稀土氧化物为Eu 2O 3;所述钼氧化物与稀土氧化物的摩尔比为2:1。
进一步地,所述碱金属卤化物为LiF、NaF、KF、LiCl、NaCl和KCl中的一种以上;所述碱金属碳酸盐为Li 2CO 3、Na 2CO 3和K 2CO 3中的一种以上;所述碱金属卤化物与碱金属碳酸盐的摩尔比为1:(1-1.5);所述稀土氧化物与碱金属卤化物的摩尔比为5:(2-2.5)。
优选地,步骤(1)中所述的原料混合后研磨时间为20-50min;所述的F -离子掺杂的浓度为30-70%。
优选地,步骤(1)所述卤化物为LiF与NaF并存或LiF与KF并存。
优选地,步骤(1)所述碱金属碳酸盐为Li 2CO 3与Na 2CO 3并存或Li 2CO 3与K 2CO 3并存。
进一步地,步骤(1)所述煅烧处理的温度为550-750℃,煅烧处理的时间为2-10h。
优选地,步骤(2)所述煅烧处理的时间为3-9h。
进一步地,步骤(2)所述加热熔化的温度为30-80℃,加热熔化的时间为2~8小时。
进一步地,步骤(3)所述过筛的筛孔目数为80-300目。
进一步地,步骤(3)所述卤素离子掺杂的钼酸盐粉末与PVB胶溶液的质量比为2:(1-4);所述PVB胶的质量分数为3-8%。
进一步地,步骤(3)所述煅烧处理的温度为1000-1400℃,煅烧处理的时间为1-4h。
本发明提供一种由上述的制备方法制得的激光显示用钼酸盐发光陶瓷材料((Li,Na,K)EuMo 2O 8- x/2 (F/Cl) x 材料,0≤ x≤0.7)。
本发明提供的激光显示用钼酸盐发光陶瓷材料在蓝光激光激发的显示领域中的应用。
本发明的机理为:
本发明选择具有强f→f跃迁的(Li,Na,K)EuMo 2O 8红色荧光粉材料,Li/Na/K +和Eu 3+混合占据八配位阳离子位置。引入的F/Cl -离子进入了Eu 3+离子的周围,取代了与Eu 3+混配位的O 2-离子,形成了Eu 3+对称性更低的(Li,Na,K)EuMo 2O 8- x/2 (F/Cl) x
本发明的陶瓷片在464nm蓝光激光激发下吸收率高,发光效率好,色纯度高,单色性好,热导性和背散射性能佳;在614nm(红)具有较窄带发射峰,可用于激光显示陶瓷领域。
有益效果
与现有技术相比,本发明具有如下优点和有益效果:
(1)本发明制备的激光显示用钼酸盐发光陶瓷材料保持了LiEuMo 2O 8本身的红光发光特性,在460nm附近有强而窄的线状吸收,在614nm处有较强的线谱发射;
(2)本发明制备的激光显示用钼酸盐发光陶瓷材料与LiEuMo 2O 8发光相比,发光强度得到明显提高;
(3)本发明制备的激光显示用钼酸盐发光陶瓷材料在464nm蓝光激光光源的激发下,具有较高的发光效率,在激光显示领域存在着良好的应用前景。
附图说明
图1为实施例1制备的(Li,Na,K)EuMo 2O 8- x/2 F x 粉末材料的XRD衍射谱图;
图2为实施例1制备的(Li,Na,K)EuMo 2O 8- x/2 F x 粉末材料的激发光谱图;
图3为实施例1制备的(Li,Na,K)EuMo 2O 8- x/2 F x 粉末材料的发射光谱图;
图4为实施例3制备的(Li,Na,K)EuMo 2O 8- x/2 Cl x 粉末材料的激发光谱图;
图5为实施例3制备的(Li,Na,K)EuMo 2O 8- x/2 Cl x 粉末材料的发射光谱图;
图6为实施例1制备的(Li,Na,K)EuMo 2O 8- x/2 F x 陶瓷在464nm蓝光激光激发下的发射光谱图;
图7为为实施例1制备的(Li,Na,K)EuMo 2O 8- x/2 F x 陶瓷在464nm蓝光激光激发下的色坐标图。
本发明的实施方式
以下结合实例对本发明的具体实施作进一步说明,但本发明的实施和保护不限于此。需指出的是,以下若有未特别详细说明之过程,均是本领域技术人员可参照现有技术实现或理解的。所用试剂或仪器未注明生产厂商者,视为可以通过市售购买得到的常规产品。
实施例 1
一种激光显示用钼酸盐发光陶瓷材料的制备过程,具体包括以下步骤:
(1)准确称取0.10g氟化锂(LiF),0.15g碳酸盐((Li/Na/K) 2CO 3),2.33g氧化钼(MoO 3),1.42g 氧化铕(Eu 2O 3)充分研磨30min,压片(压力为6-8 MPa,直径为13mm),750℃下煅烧6h,研磨制得卤素离子掺杂的钼酸盐粉末样品;
(2)准确称量质量分数为5%的PVB胶4g,加入到烧杯中,50℃下加热搅拌4小时,制得澄清的PVB胶溶液。
(3)将(Li/Na/K)EuMo 2O 8- x/2 F x 粉末材料(卤素离子掺杂的钼酸盐粉末, x=0.5)过筛(200目),准确称取过筛后的粉末材料2g,加入澄清的PVB胶溶液4g,在紫外灯下研磨,直到澄清的PVB胶固化,压片(直径为13mm),1200℃下煅烧2h,制得陶瓷片。
(4)将陶瓷片样品直接置于标准漫反射板上,在小积分球中进行测试。
本实施例制备的钼酸盐粉末材料的XRD衍射图谱如图1所示,从图1中可知,掺杂后的材料保持了钼酸盐的原晶体构型。
本实施例制备的F -掺杂的钼酸盐粉末发光材料的激发光谱如图2所示,可见材料吸收位置位于464nm附近,吸收窄带蓝光。
本实施例制备的F -掺杂的钼酸盐粉末发光材料在464nm的蓝光激发下的发射光谱如图3所示,可见材料发光位于614nm附件,为红光,发光峰窄,单色性好。
本实施例制备的陶瓷片在464nm的蓝激光激发下的发射光谱如图6所示,可见窄带红光陶瓷的吸收率较高。
本实施例制备的陶瓷片在464nm的蓝激光激发下的色坐标可参照图7所示,可见材料的色纯度较高,单色性好。
本实施例制备的陶瓷片在464nm蓝光激光激发下光功率、内效率、蓝光吸收率及热导率可参照表1所示,可见该陶瓷材料的热导性和背散射性能佳。
表1
Figure dest_path_image001
实施例 2
一种激光显示用钼酸盐发光陶瓷材料的制备过程,具体包括以下步骤:
(1)准确称取0.08g氟化锂(LiF),0.18g碳酸盐((Li/Na/K) 2CO 3),2.32g氧化钼(MoO 3),1.42g 氧化铕(Eu 2O 3)充分研磨20min,压片(压力为6-8 MPa,直径为13mm),750℃下煅烧10h,研磨制得卤素离子掺杂的钼酸盐粉末样品。
(2)准确称量质量分数为5%的PVB胶2g,加入到烧杯中,60℃下加热搅拌4小时,制得澄清的PVB胶溶液。
(3)将(Li/Na/K)EuMo 2O 8- x/2 F x 粉末材料(卤素离子掺杂的钼酸盐粉末, x=0.4)过筛(200目),准确称取过筛后的粉末材料2g,加入澄清的PVB胶溶液2g,在紫外灯下研磨2h,直到澄清的PVB胶固化,压片(直径为10mm),1200℃下煅烧4h,制得陶瓷片。
(4)将陶瓷片样品直接置于标准漫反射板上,在小积分球中进行测试。
本实施例制备的钼酸盐粉末材料的XRD衍射图谱与图1类似,从图中可知,掺杂后的材料保持了钼酸盐的原晶体构型。
本实施例制备的F -掺杂的钼酸盐粉末发光材料的激发光谱可参照图2所示,该材料吸收位置位于464nm附近,吸收窄带蓝光。
本实施例制备的F -掺杂的钼酸盐粉末发光材料在464nm的蓝光激发下的发射光谱可参照图3所示,该材料发光位于614nm附件,为红光,发光峰窄,单色性好。
本实施例制备的陶瓷片在464nm的蓝激光激发下的发射光谱可参照图6所示,窄带红光陶瓷的吸收率较高。
本实施例制备的陶瓷片在464nm的蓝激光激发下的色坐标可参照图7所示,该材料的色纯度较高,单色性好。
本实施例制备的陶瓷片在464nm蓝光激光激发下光功率、内效率、蓝光吸收率及热导率可参照表1所示,该陶瓷材料的热导性和背散射性能佳。
实施例 3
一种激光显示用钼酸盐发光陶瓷材料的制备过程,具体包括以下步骤:
(1)准确称取0.10g氟化锂(LiCl),0.15g碳酸盐((Li/Na/K) 2CO 3),2.33g氧化钼(MoO 3),1.42g 氧化铕(Eu 2O 3)充分研磨30min,压片(压力为6-8 MPa,直径为13mm),750℃下煅烧6h,研磨制得卤素离子掺杂的钼酸盐粉末样品。
(2)准确称量质量分数为5%的PVB胶4g,加入到烧杯中,50℃下加热搅拌4小时,制得澄清的PVB胶溶液。
(3)将(Li/Na/K)EuMo 2O 8- x/2 Cl x 粉末材料(卤素离子掺杂的钼酸盐粉末, x=0.5)过筛(200目),准确称取过筛后的粉末材料2g,加入澄清的PVB胶溶液4g,在紫外灯下研磨,直到澄清的PVB胶固化,压片(直径为10mm),1200℃下煅烧2h,制得陶瓷片。
(4)将陶瓷片样品直接置于标准漫反射板上,在小积分球中进行测试。
本实施例制备的钼酸盐粉末材料的XRD衍射图谱与图1类似,从图中可知,掺杂后的材料保持了钼酸盐的原晶体构型。
本实施例制备的Cl -掺杂的钼酸盐粉末发光材料的激发光谱可参照图4所示,材料吸收位置位于464nm附近,吸收窄带蓝光。
本实施例制备的Cl -掺杂的钼酸盐粉末发光材料在464nm的蓝光激发下的发射光谱可参照图5所示,材料发光位于614nm附件,为红光,发光峰窄,单色性好。
本实施例制备的陶瓷片在464nm的蓝激光激发下的发射光谱可参照图6所示,窄带红光陶瓷的吸收率较高。
本实施例制备的陶瓷片在464nm的蓝激光激发下的色坐标可参照图7所示,材料的色纯度较高,单色性好。
本实施例制备的陶瓷片在464nm蓝光激光激发下光功率、内效率、蓝光吸收率及热导率可参照表1所示,该陶瓷材料的热导性和背散射性能佳。
实施例 4
一种激光显示用钼酸盐发光陶瓷材料的制备过程,具体包括以下步骤:
(1)准确称取0.08g氟化锂(LiCl),0.18g碳酸盐((Li/Na/K) 2CO 3),2.32g氧化钼(MoO 3),1.42g 氧化铕(Eu 2O 3)充分研磨20min,压片(压力为6-8 MPa,直径为13mm),750℃下煅烧10h,研磨制得卤素离子掺杂的钼酸盐粉末样品。
(2)准确称量质量分数为5%的PVB胶2g,加入到烧杯中,60℃下加热搅拌4小时,制得澄清的PVB胶溶液。
(3)将(Li/Na/K)EuMo 2O 8- x/2 Cl x 粉末材料(卤素离子掺杂的钼酸盐粉末, x=0.4)过筛(200目),准确称取过筛后的粉末材料2g,加入澄清的PVB胶溶液2g,在紫外灯下研磨2h,直到澄清的PVB胶固化,压片(直径为10mm),1200℃下煅烧4h,制得陶瓷片。
(4)将陶瓷片样品直接置于标准漫反射板上,在小积分球中进行测试。
本实施例制备的钼酸盐粉末材料的XRD衍射图谱可参照图1所示,掺杂后的材料保持了钼酸盐的原晶体构型。
本实施例制备的Cl -掺杂的钼酸盐粉末发光材料的激发光谱可参照图4所示,材料吸收位置位于464nm附近,吸收窄带蓝光。
本实施例制备的Cl -掺杂的钼酸盐粉末发光材料在464nm的蓝光激发下的发射光谱参照图5所示,材料发光位于614nm附件,为红光,发光峰窄,单色性好。
本实施例制备的陶瓷片在464nm的蓝激光激发下的发射光谱可参照图6所示,可见窄带红光陶瓷的吸收率较高。
本实施例制备的陶瓷片在464nm的蓝激光激发下的色坐标可参照图7所示,材料的色纯度较高,单色性好。
本实施例制备的陶瓷片在464nm蓝光激光激发下光功率、内效率、蓝光吸收率及热导率可参照表1所示,该陶瓷材料的热导性和背散射性能佳。
以上实施例仅为本发明较优的实施方式,仅用于解释本发明,而非限制本发明,本领域技术人员在未脱离本发明精神实质下所作的改变、替换、修饰等均应属于本发明的保护范围。

Claims (10)

  1. 一种激光显示用钼酸盐发光陶瓷材料的制备方法,其特征在于,包括如下步骤:
    (1)将钼氧化物、稀土氧化物、碱金属卤化物及碱金属碳酸盐混合,研磨成粉,压片,升温进行煅烧处理,研磨成粉,得到卤素掺杂的钼酸盐粉末;
    (2)在搅拌状态下将PVB胶加热熔化,得到PVB胶溶液;
    (3)将步骤(1)所述卤素离子掺杂的钼酸盐粉末过筛,然后与PVB胶溶液混合均匀,得到混合物;将混合物在紫外灯辐照下研磨至PVB胶固化,压片,升温进行煅烧处理,得到所述激光显示用钼酸盐发光陶瓷材料。
  2. 根据权利要求1所述的激光显示用钼酸盐发光陶瓷材料的制备方法,其特征在于,步骤(1)所述钼氧化物为MoO 3;所述稀土氧化物为Eu 2O 3;所述钼氧化物与稀土氧化物的摩尔比为2:1。
  3. 根据权利要求1所述的激光显示用钼酸盐发光陶瓷材料的制备方法,其特征在于,所述碱金属卤化物为LiF、NaF、KF、LiCl、NaCl和KCl中的一种以上;所述碱金属碳酸盐为Li 2CO 3、Na 2CO 3和K 2CO 3中的一种以上;所述碱金属卤化物与碱金属碳酸盐的摩尔比为1:(1-1.5);所述稀土氧化物与碱金属卤化物的摩尔比为5:(2-2.5)。
  4. 根据权利要求1所述的激光显示用钼酸盐发光陶瓷材料的制备方法,其特征在于,步骤(1)所述煅烧处理的温度为550-750℃,煅烧处理的时间为2-10h。
  5. 根据权利要求1所述的激光显示用钼酸盐发光陶瓷材料的制备方法,其特征在于,步骤(2)所述加热熔化的温度为30-80℃,加热熔化的时间为2-8h。
  6. 根据权利要求1所述的激光显示用钼酸盐发光陶瓷材料的制备方法,其特征在于,步骤(3)所述过筛的筛孔目数为80-300目。
  7. 根据权利要求1所述的激光显示用钼酸盐发光陶瓷材料的制备方法,其特征在于,步骤(3)所述卤素离子掺杂的钼酸盐粉末与PVB胶溶液的质量比为2:(1-4);所述PVB胶的质量分数为3-8%。
  8. 根据权利要求1所述的激光显示用钼酸盐发光陶瓷材料的制备方法,其特征在于,步骤(3)所述煅烧处理的温度为1000-1400℃,煅烧处理的时间为1-4h。
  9. 一种由权利要求1-8任一项所述的制备方法制得的激光显示用钼酸盐发光陶瓷材料。
  10. 权利要求9所述的激光显示用钼酸盐发光陶瓷材料在蓝光激光激发的显示领域中的应用。
PCT/CN2021/097960 2020-11-30 2021-06-02 一种激光显示用钼酸盐发光陶瓷材料及其制备方法与应用 WO2022110747A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011381305.3A CN112500161A (zh) 2020-11-30 2020-11-30 一种激光显示用钼酸盐发光陶瓷材料及其制备方法与应用
CN202011381305.3 2020-11-30

Publications (1)

Publication Number Publication Date
WO2022110747A1 true WO2022110747A1 (zh) 2022-06-02

Family

ID=74968901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097960 WO2022110747A1 (zh) 2020-11-30 2021-06-02 一种激光显示用钼酸盐发光陶瓷材料及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN112500161A (zh)
WO (1) WO2022110747A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112500161A (zh) * 2020-11-30 2021-03-16 华南理工大学 一种激光显示用钼酸盐发光陶瓷材料及其制备方法与应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1462789A (zh) * 2003-05-21 2003-12-24 温州师范学院 红色荧光粉
CN101298561A (zh) * 2008-06-30 2008-11-05 上海师范大学 一种蓝光激发的红光荧光体及其制备方法
CN102585831A (zh) * 2012-01-19 2012-07-18 苏州大学 一种铕离子激活的氟钼酸盐红色荧光粉、制备方法及应用
CN103897697A (zh) * 2012-12-28 2014-07-02 新昌县冠阳技术开发有限公司 一种高显色性暖白光led用荧光粉
CN104804742A (zh) * 2015-03-31 2015-07-29 江苏师范大学 一种白光led用红色荧光粉及其制备方法
CN104891967A (zh) * 2015-05-08 2015-09-09 苏州工业园区晶冠瓷材料科技有限公司 一种用于高光效led的绿光透明陶瓷荧光体的制备方法
CN106800930A (zh) * 2017-01-10 2017-06-06 陕西师范大学 一种Mn(IV)激活的氟氧化物红色荧光粉及其制备方法
CN107345135A (zh) * 2017-06-28 2017-11-14 陕西科技大学 稀土铕激活钼酸盐基红色荧光粉及其制备方法
CN110294627A (zh) * 2018-03-21 2019-10-01 深圳光峰科技股份有限公司 发光陶瓷及其制备方法
CN110724529A (zh) * 2019-10-31 2020-01-24 云南民族大学 一种蓝光激发掺Mn4+钼酸盐红色发光材料及合成方法
CN112500161A (zh) * 2020-11-30 2021-03-16 华南理工大学 一种激光显示用钼酸盐发光陶瓷材料及其制备方法与应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3360673A (en) * 1964-06-09 1967-12-26 Sylvania Electric Prod Lamps having a molybdenum phosphate phosphor
US20060273285A1 (en) * 2005-06-03 2006-12-07 Changzai Chi Method for controlling the size of fluoride nanoparticles
CN103497768A (zh) * 2013-09-29 2014-01-08 华南理工大学 一种近紫外激发的钼钨硼酸盐红色荧光粉及其制备方法
CN108863345A (zh) * 2018-07-20 2018-11-23 广东奥胜新材料有限公司 一种发光介质陶瓷材料及其制备方法
CN111196921A (zh) * 2018-11-20 2020-05-26 苏州星烁纳米科技有限公司 荧光纳米材料-聚合物复合体、波长转换元件的制备方法及发光装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1462789A (zh) * 2003-05-21 2003-12-24 温州师范学院 红色荧光粉
CN101298561A (zh) * 2008-06-30 2008-11-05 上海师范大学 一种蓝光激发的红光荧光体及其制备方法
CN102585831A (zh) * 2012-01-19 2012-07-18 苏州大学 一种铕离子激活的氟钼酸盐红色荧光粉、制备方法及应用
CN103897697A (zh) * 2012-12-28 2014-07-02 新昌县冠阳技术开发有限公司 一种高显色性暖白光led用荧光粉
CN104804742A (zh) * 2015-03-31 2015-07-29 江苏师范大学 一种白光led用红色荧光粉及其制备方法
CN104891967A (zh) * 2015-05-08 2015-09-09 苏州工业园区晶冠瓷材料科技有限公司 一种用于高光效led的绿光透明陶瓷荧光体的制备方法
CN106800930A (zh) * 2017-01-10 2017-06-06 陕西师范大学 一种Mn(IV)激活的氟氧化物红色荧光粉及其制备方法
CN107345135A (zh) * 2017-06-28 2017-11-14 陕西科技大学 稀土铕激活钼酸盐基红色荧光粉及其制备方法
CN110294627A (zh) * 2018-03-21 2019-10-01 深圳光峰科技股份有限公司 发光陶瓷及其制备方法
CN110724529A (zh) * 2019-10-31 2020-01-24 云南民族大学 一种蓝光激发掺Mn4+钼酸盐红色发光材料及合成方法
CN112500161A (zh) * 2020-11-30 2021-03-16 华南理工大学 一种激光显示用钼酸盐发光陶瓷材料及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, J. ; JING, X. ; YAN, C. ; LIN, J. ; LIAO, F.: "Influence of fluoride on f-f transitions of Eu^3^+ in LiEuM"2O"8 (M=Mo, W)", JOURNAL OF LUMINESCENCE, ELSEVIER BV NORTH-HOLLAND, NL, vol. 121, no. 1, 1 November 2006 (2006-11-01), NL , pages 57 - 61, XP028045350, ISSN: 0022-2313, DOI: 10.1016/j.jlumin.2005.10.003 *

Also Published As

Publication number Publication date
CN112500161A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
Hongpeng et al. VUV excitation properties of LnAl3B4O12: Re (Ln= Y, Gd; Re= Eu, Tb)
CN112011332B (zh) 一种远红光荧光粉以及包含该荧光粉的发光装置
Ma et al. Novel bifunctional YAG: Ce3+ based phosphor-in-glasses for WLEDs by Eu2+ enhancement
US20220089498A1 (en) Multicolor light-storing ceramic for fire-protection indication and preparation method thereof
Gorbenko et al. Luminescence of Ce3+ multicenters in Ca2+-Mg2+-Si4+ based garnet phosphors
CN104003619A (zh) 一种白光led用铈激活钇铝石榴石微晶玻璃及其制备方法
CN101694862B (zh) 暖白光发光二极管及其锂化物荧光粉
CN101445729B (zh) 一种白光led用荧光粉的制备方法
CN108300467A (zh) 一种白光led用蓝光荧光粉及制备方法和白光led发光装置
WO2022110747A1 (zh) 一种激光显示用钼酸盐发光陶瓷材料及其制备方法与应用
CN110003908A (zh) 白光led用硅酸盐红色荧光粉及制备方法和白光led发光装置
CN105219382A (zh) Eu2+-Eu3+共掺杂氟铝酸盐基质荧光粉及其合成方法与应用
CN103289685A (zh) 一种Eu2+激活的氟硅酸盐蓝色荧光粉、制备方法及应用
Qu et al. Wide-band blue-emitting in Ce3+ doped Ca2YZr2Al3O12 garnet-type phosphor designed via local structural lattice distortion and synthesized in nonreducing atmosphere
CN104910908A (zh) 一种白光led用红色荧光材料及其制备方法
CN104830335B (zh) 一种铕掺杂的硼酸盐基荧光粉及其制备方法
CN107338051A (zh) 适用于白光led的钼酸盐基掺钐红色荧光粉及其制备方法
CN104059640B (zh) 一种硼酸盐荧光粉基质及荧光粉的制备方法
WO2021004224A1 (zh) 一种CaO-SiO2-EuO全光谱荧光粉及其制备方法
CN106367062B (zh) 白光led用全光谱荧光粉及其制备方法和白光led发光装置
CN106281313A (zh) 一种硅酸盐荧光粉及其制备方法和应用
CN108441213B (zh) 一种红色荧光粉及其制备方法
CN112322292A (zh) Eu3+掺杂的荧光材料及其制备方法
CN110295044A (zh) 一种发光强度很高的稀土Eu3+离子掺杂钼酸钆锂红色荧光粉制备方法
CN105419798A (zh) 一种橙红色锑酸盐荧光材料的制备方法及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896256

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896256

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/09/2023)