WO2022110392A1 - 具有良好阻燃和加工性能的无卤阻燃剂及阻燃树脂组合物 - Google Patents

具有良好阻燃和加工性能的无卤阻燃剂及阻燃树脂组合物 Download PDF

Info

Publication number
WO2022110392A1
WO2022110392A1 PCT/CN2020/137511 CN2020137511W WO2022110392A1 WO 2022110392 A1 WO2022110392 A1 WO 2022110392A1 CN 2020137511 W CN2020137511 W CN 2020137511W WO 2022110392 A1 WO2022110392 A1 WO 2022110392A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame retardant
halogen
flame
retardant
melamine
Prior art date
Application number
PCT/CN2020/137511
Other languages
English (en)
French (fr)
Inventor
李金玉
庄严
周静
李四新
Original Assignee
浙江旭森非卤消烟阻燃剂有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江旭森非卤消烟阻燃剂有限公司 filed Critical 浙江旭森非卤消烟阻燃剂有限公司
Publication of WO2022110392A1 publication Critical patent/WO2022110392A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/06Pretreated ingredients and ingredients covered by the main groups C08K3/00 - C08K7/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3445Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34928Salts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • C08K5/372Sulfides, e.g. R-(S)x-R'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5313Phosphinic compounds, e.g. R2=P(:O)OR'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/5399Phosphorus bound to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/387Borates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/22Halogen free composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the invention relates to the technical field of polymer material preparation, in particular to a halogen-free flame retardant and a flame retardant resin composition with good flame retardant and processing properties.
  • piperazine phosphate flame retardants show high flame retardant properties, among which piperazine pyrophosphate has high thermal stability and carbon-forming properties, and has been widely used In halogen-free flame retardant materials of polypropylene and glass fiber reinforced systems.
  • CN105694443B discloses the flame retardant properties of piperazine pyrophosphate and hypophosphite compound flame retardant in glass fiber reinforced nylon material.
  • the piperazine pyrophosphate flame retardant is a strong polar compound, and the powder is easy to absorb water and agglomerate, resulting in easy bridging and breaking during processing, reducing production. efficiency.
  • silicone oil is used to treat piperazine pyrophosphate flame retardant to inhibit powder agglomeration to improve powder properties.
  • lubricants and silicone oils are used together to treat piperazine pyrophosphate.
  • the above-mentioned silicone oil treatment method improves the problem of hygroscopic agglomeration of piperazine pyrophosphate, and has good water resistance in the normal temperature environment, but the melting point of the silicone oil itself is not high, and it is easy to soften again when heated, so that the modified product can be used in high temperature, high humidity and hot water.
  • Patent CN111032829A uses alumina monohydrate to improve processability and anti-drip, but the compatibility between inorganic powder and resin is poor, which deteriorates the mechanical properties of the material.
  • Patent CN110079009A discloses the use of hyperdispersant, high aspect ratio filler and nanofiller in the piperazine pyrophosphate flame retardant system to obtain a halogen-free flame retardant polypropylene material with ultra-high fluidity, but the second-order side feed is used in processing. The twin-screw extruder with the feed port has high requirements on the processing equipment.
  • the compound flame retardant of piperazine phosphate is mixed with a hyperdispersant, a low melting point lubricating flame retardant, and an organic sulfur-containing compound. Inhibit the secondary agglomeration of the flame retardant powder, improve the dispersibility and compatibility of the flame retardant in the resin, and burn without dripping, improve the melt index of the flame retardant resin, and at the same time make the surface of the product smooth, giving the resin better quality. Flame retardant properties and processability.
  • the object of the present invention is to provide a halogen-free flame retardant and flame retardant resin composition with good flame retardant and processability, specifically in the compound flame retardant of piperazine phosphate by adding hyperdispersion agent, low melting point lubricating flame retardant auxiliary, organic sulfur-containing compound to obtain less secondary agglomeration, good powder fluidity, good compatibility and dispersibility in resin, no dripping in combustion, flame retardant performance and processing performance
  • a good halogen-free flame retardant and resin composition to solve the above problems.
  • Halogen-free flame retardant with good flame retardant and processing properties which is composed of piperazine phosphate, melamine and its derivatives, metal salt flame retardant synergists, hyperdispersants, low melting point lubricating flame retardant additives, and organic flame retardants. Sulfur-containing compounds.
  • the mass percentage of the piperazine phosphate salt is 40-80%, the mass percentage of the melamine and its derivatives is 20-50%, and the mass percentage of the metal salt flame retardant synergist is 1-10%,
  • the mass percentage of the hyperdispersant is 0.01-5%
  • the mass percentage of the low-melting point lubricating flame retardant auxiliary is 0.01-10%
  • the mass percentage of the organic sulfur-containing compound is 0.01-5%
  • the The low melting point lubricating flame retardant auxiliary is a liquid organic phosphate ester or a solid with a melting point lower than 200°C under normal conditions.
  • piperazine phosphate salt is one or more mixtures of piperazine monophosphate, piperazine diphosphate, piperazine pyrophosphate and piperazine polyphosphate without surface treatment or modified by surface treatment.
  • the melamine and its derivatives are one or a mixture of melamine, melamine phosphate, melamine pyrophosphate, melamine polyphosphate, and melamine cyanurate.
  • the metal salt flame retardant synergist is zinc oxide, zinc borate, silicon dioxide, titanium dioxide, aluminum oxide, aluminum hypophosphite, diethyl aluminum hypophosphite, dimethyl aluminum hypophosphite, diphenyl
  • the hyperdispersant is one or a mixture of polyether hyperdispersants, polyester hyperdispersants, and polyacrylate hyperdispersants.
  • the low melting point lubricating flame retardant auxiliary is (6H)-dibenzo-(c,e)(1,2)-phosphine oxide in the organic heterocyclic compound six-membered phosphine phosphinate Cyclo-6-one (DOPO), [(6-oxo-(6H)-dibenzo-(c,e)(1,2)-phosphin-6-one)methyl]-butanedi acid (DOPO-ITA), 10-(1,4-succinic acid-2-yl)-9,10-dihydro-9-oxa-10-phosphinophenanthrene-1-oxide (DOPO-MA), 10-(2,5-Dihydroxyphenyl)-10-hydro-9-oxa-10-phosphaphenanthrene-10-oxide (ODOPB) and/or hexaphenoxycyclotriphosphazene, phthalate Aminocyclotriphosphazene and/or tert-butyl triphenyl phosphate, phthal
  • the organic sulfur-containing compound is selected from n-dodecyl sulfide, 4,4'-dihydroxydiphenyl sulfide, 4,4'-sulfonyl diphenol, disulfide alkylphenol, 2-sulfur One or more mixtures of alcohol-based benzimidazole, 2-thiol-methyl benzimidazole and diphenyl sulfone.
  • a flame retardant resin composition which is composed of the above-mentioned halogen-free flame retardant with good flame retardant and processing properties and a resin, and the mass percentage of the halogen-free flame retardant with good flame retardant and processing properties is 15-50% .
  • the halogen-free flame retardant and resin are pelletized by a twin-screw extruder to prepare the flame retardant resin composition, and the temperature of the extruder is 180-280°C.
  • the halogen-free flame retardant provided by the present invention is composed of piperazine phosphate, melamine and its derivatives, metal salt flame retardant synergist, hyperdispersant, low melting point lubricating flame retardant auxiliary, and It is composed of organic sulfur-containing compounds. These different elements play different roles in flame retardants. Specifically, the compounded halogen-free flame retardants of piperazine phosphate mainly play flame retardant effects through condensed phases. Acid sources, carbon sources and gas sources Synergistically, an expanded carbon layer is formed on the surface of the material to insulate oxygen and heat transfer, thereby interrupting combustion.
  • the melt index of the resin can be increased, the compatibility and dispersibility of the flame retardant can be improved, and the processing efficiency can be improved, but it will promote melting and dripping during combustion.
  • Additive for anti-drip effect As a supplementary acid source, organic sulfur-containing compounds can change the decomposition process of polymers, and have a good flame retardant synergy with phosphorus and nitrogen elements in flame retardants, phosphate esters, DOPO, phosphazene and other lubricating processing aids.
  • the organic sulfur-containing compound also has good compatibility with the resin material, which reduces the influence of the halogen-free flame retardant on the mechanical properties of the material. Meanwhile, the present invention also has the following advantages:
  • a hyperdispersant with similar polarity is used to isolate the flame retardant powder to effectively inhibit the secondary agglomeration of the powder. , to improve powder properties and dispersibility in resins.
  • organic sulfur-containing compounds as a supplementary acid source can promote the formation of coke in the condensed phase, thereby improving the quality and continuity of the expanded carbon layer, thereby effectively suppressing the burning droplets and preventing the fire from igniting again.
  • the flame retardant of the present invention has a higher thermal decomposition temperature, and is suitable for systems and injection molding processes with higher processing temperatures such as continuous long glass fiber reinforced polypropylene. .
  • the halogen-free flame retardant with good flame retardant and processing properties provided by the invention is composed of piperazine phosphate, melamine and its derivatives, metal salt flame retardant synergist, hyperdispersant, low melting point lubricating flame retardant auxiliary, and an organic sulfur-containing compound composition, specifically, in the halogen-free flame retardant, the mass percentage of the piperazine phosphate salt is 40-80%, and the mass percentage of the melamine and its derivatives is 20-50% , the mass percentage of the metal salt flame retardant synergist is 1-10%, the mass percentage of the hyperdispersant is 0.01-5%, and the mass percentage of the low melting point lubricating flame retardant auxiliary is 0.01-10% %, and the mass percentage of the organic sulfur-containing compound is 0.01-5%.
  • piperazine phosphate salt itself is the prior art, and it can be one of piperazine monophosphate, piperazine diphosphate, piperazine pyrophosphate, piperazine polyphosphate without surface treatment or modified by surface treatment. several mixtures.
  • each of the above-mentioned materials will not be described in detail here, and itself is the prior art, such as patent number CN201310645585.8, the patent name is a preparation method of piperazine phosphate, which discloses a kind of how to prepare piperazine diphosphate. azine method.
  • Piperazine pyrophosphate can be formed by the reaction of piperazine and phosphoric acid, taking piperazine as raw material, reacting with phosphoric acid, after distillation and dehydration, and then obtaining piperazine pyrophosphate salt through centrifugation, washing, drying and pulverization.
  • a piperazine pyrophosphate salt can be obtained, which is a prior art as a flame retardant, and will not be described in detail here.
  • the piperazine phosphate after surface treatment modification can be selected from the piperazine phosphate after surface coating treatment with epoxy resin, UV-curable polyacrylate, melamine, silane, titanate, or aluminate.
  • epoxy resin UV-curable polyacrylate
  • melamine silane
  • titanate titanium oxide
  • aluminate a strong polar compound
  • piperazine phosphate is easy to absorb water and has secondary agglomeration, which will affect the processing performance of the flame retardant powder as well as the dispersion and compatibility in the resin.
  • the piperazine phosphate salt without surface treatment still has these problems.
  • the piperazine phosphate is a surface-treated piperazine phosphate.
  • the melamine and its derivatives are the prior art, such as the application of melamine and its derivatives disclosed in "Chemical Propellant and Macromolecular Materials” in Volume 5, No. 6, 2007, which discloses the melamine and The specific content of its derivatives.
  • the melamine and its derivatives can be one or a mixture of melamine, melamine phosphate, melamine pyrophosphate, melamine polyphosphate, and melamine cyanurate.
  • the use of melamine and its derivatives in flame retardants is a prior art, so its function and mechanism of action will not be described in detail.
  • the metal salt flame retardant synergist can be zinc oxide, zinc borate, silicon dioxide, titanium dioxide, aluminum oxide, aluminum hypophosphite, aluminum diethyl hypophosphite, aluminum dimethyl hypophosphite, diphenyl hypophosphite
  • aluminum, magnesium silicate, aluminosilicate, zinc hypophosphite, zinc stannate, zinc sulfide, zinc dimethyl hypophosphite, zinc diethyl hypophosphite, zinc diphenyl hypophosphite mix is also a prior art, and its function and action mechanism will not be described in detail.
  • the hyperdispersant can be selected from highly polar polyether hyperdispersants, or with tertiary amine and cyclic structure as anchoring groups, a series of urethane groups or segments are uniformly distributed in the molecular chain or grafted.
  • the piperazine phosphate salt has high polarity, it is easy to absorb water and agglomerate. Therefore, according to the similar compatibility principle, a hyperdispersant with a certain polarity is selected, which is beneficial to disperse the piperazine phosphate salt.
  • the hyperdispersant replaces the hydrophilic and lipophilic groups of traditional dispersants such as surfactants with anchoring groups and solvation chains, and is tightly adsorbed on solids through interactions such as ionic bonds, hydrogen bonds, covalent bonds and van der Waals forces.
  • the surface of the particles hinders the mutual agglomeration of the particles, avoids the problem of bridging during processing and blanking, and at the same time improves the dispersion of the flame retardant in the resin and the smoothness of the surface of the product.
  • the low-melting point lubricating flame retardant auxiliary can be selected from phosphoric acid esters that are liquid in a normal state with a certain flame retardant effect, such as tert-butyl triphenyl phosphate, tetraphenyl bisphenol A diphosphate, tetraphenyl phosphate. Resorcinol diphosphate, and phenyl phosphate.
  • the low melting point lubricating flame retardant auxiliary can also be selected from solid flame retardant auxiliary with melting point lower than 200°C, such as (6H)-dibenzo-(c) in the organic heterocyclic compound six-membered phosphaphosphinate.
  • DOPO 1,2)-phosphinohexan-6-one
  • DOPO-ITA [(6-oxo-(6H)-dibenzo-(c,e)(1,2)-phosphine Hexan-6-one)methyl]-succinic acid
  • DOPO-MA 10-(1,4-succinic acid-2-yl)-9,10-dihydro-9-oxa-10- Phosphaphenanthrene-1-oxide
  • DOPO-MA 10-(2,5-dihydroxyphenyl)-10-hydro-9-oxa-10-phosphophenanthrene-10-oxide
  • ODOPB hexaphenyl
  • the above-mentioned DOPO and phosphazene derivatives are preferred, but not limited to the specific derivatives listed above. During processing, it will melt into a liquid state, and DOPO and phosphazene derivatives with a melting point below 200° C. can be used as the low-melting point lubricating flame retardant auxiliary.
  • the selected low-melting point lubricating flame retardant additives such as phosphoric acid ester, DOPO and phosphazene derivatives mentioned above all have certain flame retardancy, so that the flame retardant efficiency of the flame retardant system can be enhanced.
  • the liquid phosphate ester flame retardant is directly in a liquid state during the twin-screw extrusion granulation process, which improves the fluidity of the resin after melting and increases the melt index, thereby improving the dispersion of the flame retardant powder in the resin.
  • the shearing effect of the screw is reduced, the extrusion resistance is weakened, and the processing performance is significantly improved.
  • the melting point of DOPO and phosphazene derivatives is generally within 200°C, and the decomposition temperature is relatively high. Since the processing temperature of the flame retardant resin composition is usually 180-280°C, the DOPO and phosphazene derivatives can be melted and decomposed. It becomes liquid, which weakens extrusion resistance and improves processability. Therefore, according to different resin systems and processing temperatures, DOPO and phosphazene derivatives with suitable melting points can be selected, so that they can be melted into a liquid state during the twin-screw extrusion process, increasing the melt index and improving the processing performance. Among them, DOPO and its derivatives have relatively better effects on improving flame retardancy and processability.
  • the organic sulfur-containing compound can be a divalent sulfur-containing organic compound and a high-valent (tetravalent or hexavalent) sulfur-containing organic compound, which can be selected from n-dodecyl sulfide, 4,4'-dihydroxydi One or more of phenylene sulfide, 4,4'-sulfonyldiphenol, disulfide alkylphenol, 2-thiol benzimidazole, 2-thiol methyl benzimidazole and diphenyl sulfone mix of species.
  • the compound flame retardant of the piperazine phosphate salt can inhibit the secondary agglomeration under the action of the hyperdispersant, improve the fluidity of the powder, and match the flame retardant with low melting point, easy melting and flame retardant effect.
  • DOPO and phosphazene derivatives are used as lubricants, and organic sulfur-containing compounds are used as supplementary acid sources to exert a synergistic effect of phosphorus-sulfur, which promotes the flame retardancy of the condensed phase to form carbon during combustion, thereby improving the flame retardancy of the flame retardant system.
  • organic sulfur-containing compounds have good compatibility with resins, and have little effect on the mechanical properties of materials.
  • the flame retardant resin composition is composed of the above compounded halogen-free flame retardant and resin.
  • the mass percentage of the halogen-free flame retardant in the resin composition is 15-50%.
  • the flame retardant resin composition is pelletized by a twin-screw extruder, and the extruder temperature is 180-280° C., thereby forming resin composition pellets that can be used to make various products.
  • the halogen-free flame retardant can be flame retardant resin, which can be homopolymerized and copolymerized polypropylene, glass fiber reinforced polypropylene, continuous long glass fiber reinforced polypropylene, high density polyethylene, low density polyethylene, low linearity Density polyethylene, ethylene-vinyl acetate copolymers, thermoplastic elastomers, silicone rubber, EPDM rubber, preferably polypropylene and its glass fiber reinforced systems.
  • the processing temperature of conventional polypropylene and glass fiber reinforced materials is usually 180-210 °C
  • the processing temperature of continuous long glass fiber reinforced polypropylene is 220-280 °C.
  • the selection of each component, especially the low-melting point lubricating flame retardant auxiliary needs to be screened and determined according to the change of resin processing temperature.
  • the flame retardant resin composition in the present invention is not limited to the use of the above components.
  • antioxidants anti-ultraviolet agents, anti-drip agents, commonly used in modified plastic systems can be selected.
  • Antistatic agents, fillers, lubricants, coupling agents, compatibilizers, etc., the dosages of each component are conventional dosages, and are selected from existing commercial products.
  • the halogen-free flame retardant provided by the present invention is prepared by adding piperazine phosphate, melamine and its derivatives, metal salt flame retardant synergists, hyperdispersant, low melting point lubricating flame retardant auxiliary, As well as organic sulfur-containing compounds, these different elements play different roles in flame retardants.
  • piperazine phosphate compound halogen-free flame retardants mainly play a flame retardant role through condensed phase, acid source, carbon source and gas source. Synergistically, an expanded carbon layer is formed on the surface of the material to insulate heat and oxygen to suppress the droplets, thereby interrupting the combustion.
  • the melt index of the resin can be increased, and it is easy to produce melting and dripping during combustion, and it is necessary to use an auxiliary agent with anti-drip effect.
  • the sulfur element in the organic sulfur-containing compound can change the decomposition process of the polymer. As a supplementary acid source, it can produce better resistance to the phosphorus and nitrogen elements in the flame retardant and the phosphate ester, DOPO, phosphazene and other lubricating processing aids.
  • the organic sulfur-containing compound also has good compatibility with the resin material, which reduces the influence of the halogen-free flame retardant on the mechanical properties of the material.
  • a hyperdispersant with similar polarity is used to isolate the flame retardant powder to effectively inhibit the secondary agglomeration of the powder. , thereby reducing the particle size of the halogen-free flame retardant, thereby improving the powder properties and the dispersibility in the resin.
  • organic sulfur-containing compounds as a supplementary acid source can promote the formation of coke in the condensed phase, thereby improving the quality and continuity of the expanded carbon layer, thereby effectively suppressing the burning droplets and preventing the fire from igniting again.
  • the flame retardant of the present invention has a higher thermal decomposition temperature, and is suitable for systems and injection molding processes with higher processing temperatures such as continuous long glass fiber reinforced polypropylene. .
  • the raw material components used are all commodities purchased from the market by those skilled in the art or products prepared by known methods.
  • MFI Melt flow index
  • Table 1 The formulation of comparative example 1 and examples 1-9 flame retardant polypropylene materials
  • Comparative Example 1 Under the same extrusion process conditions, in Comparative Example 1, sometimes powder bridging, uneven cutting, and broken strips may occur. It is necessary for technicians to observe the cutting situation in the cutting hopper from time to time and increase the labor of personnel. strength, reducing production efficiency, and the surface of the spline is rough with white spots visible to the naked eye. And embodiment 1-9, after adding hyperdispersant, low melting point lubricating flame retardant auxiliary, organic sulfur-containing compound in the flame retardant compounded by piperazine phosphate, the above situation does not occur during processing, and the material is uniformly cut. Continuous strips, the spline surface is smooth without white spots.
  • Comparative Example 8 and Examples 10-11 compare the properties of flame retardant polypropylene materials with different talc loadings
  • Comparative Example 9 and Examples 12-14 compare the properties of glass fiber reinforced flame retardant polypropylene with different contents.
  • the specific formula and test data are shown in Table 5 and Table 6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fireproofing Substances (AREA)

Abstract

具有良好阻燃和加工性能的无卤阻燃剂及阻燃树脂组合物,具有良好阻燃和加工性能的无卤阻燃剂由磷酸哌嗪盐,三聚氰胺及其衍生物,金属盐类阻燃协效剂,超分散剂,低熔点润滑阻燃助剂,以及有机含硫化合物组成。所述阻燃树脂组合物由具有良好阻燃和加工性能的无卤阻燃剂和树脂组成,所述具有良好阻燃和加工性能的无卤阻燃剂的质量百分比为比为15~50%。本发明的无卤阻燃剂阻燃性能优异,在树脂中的相容性和分散性较好,阻燃制件表面光滑,无白点,成品率高。

Description

具有良好阻燃和加工性能的无卤阻燃剂及阻燃树脂组合物 技术领域
本发明涉及高分子材料制备技术领域,特别涉及具有良好阻燃和加工性能的无卤阻燃剂及阻燃树脂组合物。
背景技术
在无卤阻燃研究和高分子材料产品开发中,哌嗪磷酸盐类阻燃剂表现出高效的阻燃性能,其中焦磷酸哌嗪具有较高的热稳定性和成炭性能,已经广泛应用在聚丙烯及玻纤增强体系的无卤阻燃材料中。在1986年的美国专利US4599375公开的一种阻燃性合成树脂组合物,其含有(a)合成树脂,(b)焦磷酸哌嗪,(c)焦磷酸密胺盐,(d)二氧化钛或二氧化硅。在CN101827885A、CN109503941A、CN104119610A、CN105061887A等诸多专利中都公开了焦磷酸哌嗪作为原料的无卤阻燃剂在聚丙烯中的应用。CN105694443B公开了焦磷酸哌嗪及次磷酸盐复配阻燃剂在玻纤增强尼龙材料中的阻燃性能。采用这些常规的阻燃体系,尽管可以提高材料的阻燃性能,但是焦磷酸哌嗪阻燃剂作为强极性化合物,粉体容易吸水团聚,导致在加工过程中易架桥断条,降低生产效率。同时由于粉体和树脂的相容性较差,在树脂熔融过程中分散不均匀,导致样条表面粗糙有白点,严重影响材料的力学性能。在一些低熔指聚丙烯及玻纤增强体系中,由于阻燃剂粉体的加入致使树脂的熔融指数显著降低,加工流动性变差,对注塑成型工艺的要求增加,成品率低。因此,抑制磷酸哌嗪盐尤其是焦磷酸哌嗪粉体的二次团聚,以提高其在树脂中的分散性和相容性,以及降低阻燃剂对树脂熔体流动性的影响,成为进一步拓展焦磷酸哌嗪阻燃体系的应用领域所急需解决的问题。
在专利CN1922260B中使用硅油处理焦磷酸哌嗪阻燃剂抑制粉体团聚,以提高粉体特性。在CN110483898A公开润滑剂和硅油类配合使用来处理焦磷酸哌嗪。上述硅油处理方法改善了焦磷酸哌嗪的吸湿团聚问题,在常温环境中的耐水性良好,但硅油自身的熔点不高,受热容易再次软化,使得改性后的产品在高温高湿和热水环境中耐水性变差,且硅油包覆处理后没有进行隔离分散处理也容易使粉体长期存放后结块。专利CN111032829A采用氧化铝一水合物提 高加工成型性和防滴落,但是无机物粉体与树脂的相容性差,恶化了材料的力学性能。专利CN110079009A公开了焦磷酸哌嗪阻燃体系中使用超分散剂、高长径比填料和纳米填料以获得一种超高流动性的无卤阻燃聚丙烯材料,但加工中使用二阶侧喂料口的双螺杆挤出机,对加工设备的要求高。根据相关的文献和专利记载,完全不能推测出能够得到如下的阻燃剂:将哌嗪磷酸盐复配阻燃剂与超分散剂和低熔点的润滑阻燃剂、有机含硫化合物混合,以抑制阻燃剂粉体二次团聚,提高阻燃剂在树脂中的分散性和相容性,且燃烧无滴落,提高阻燃树脂的熔融指数,同时使得制品表面光滑,赋予树脂较好的阻燃性能和加工性能。
发明内容
有鉴于此,本发明的目的在于提供一种具有良好阻燃和加工性能的无卤阻燃剂及阻燃树脂组合物,具体地是在哌嗪磷酸盐复配阻燃剂中通过添加超分散剂、低熔点润滑阻燃助剂、有机含硫化合物而得到二次团聚少、粉体流动性好,且在树脂中相容性和分散性好,燃烧无滴落,阻燃性能和加工性能良好的无卤阻燃剂及树脂组合物,以解决上述问题。
具有良好阻燃和加工性能的无卤阻燃剂,其由磷酸哌嗪盐,三聚氰胺及其衍生物,金属盐类阻燃协效剂,超分散剂,低熔点润滑阻燃助剂,以及有机含硫化合物组成。所述磷酸哌嗪盐的质量百分比为40~80%,所述三聚氰胺及其衍生物的质量百分比为20~50%,所述金属盐类阻燃协效剂的质量百分比为1~10%,所述超分散剂的质量百分比为0.01~5%,所述低熔点润滑阻燃助剂的质量百分比为0.01~10%,以及所述有机含硫化合物的质量百分比为0.01~5%,其中所述低熔点润滑阻燃助剂为常规状态下为液体的有机磷酸酯或熔点低于200℃的固体。
进一步地,所述磷酸哌嗪盐为未经表面处理或经表面处理改性后的一磷酸哌嗪、二磷酸哌嗪、焦磷酸哌嗪、聚磷酸哌嗪中一种或几种的混合物。
进一步地,所述三聚氰胺及其衍生物为三聚氰胺、磷酸三聚氰胺、焦磷酸三聚氰胺、聚磷酸三聚氰胺、三聚氰胺氰尿酸盐中的一种或几种的混合物。
进一步地,所述金属盐类阻燃协效剂为氧化锌、硼酸锌、二氧化硅、二氧化钛、氧化铝、次磷酸铝、二乙基次磷酸铝、二甲基次磷酸铝、二苯基次磷酸 铝、硅酸镁、硅铝酸酯、次磷酸锌、锡酸锌、硫化锌、二甲基次磷酸锌、二乙基次磷酸锌、二苯基次磷酸锌中的一种或几种的混合物。
进一步地,所述超分散剂为聚醚型超分散剂、聚酯型超分散剂、聚丙烯酸酯型超分散剂中的一种或几种的混合物。
进一步地,所述低熔点润滑阻燃助剂为有机杂环化合物六元磷杂次膦酸酯中的(6H)-二苯并-(c,e)(1,2)-氧膦杂己环-6-酮(DOPO)、[(6-氧-(6H)-二苯并-(c,e)(1,2)-氧膦杂己环-6-酮)甲基]-丁二酸(DOPO-ITA)、10-(1,4-丁二酸-2-基)-9,10-二氢-9-氧杂-10-膦菲-1-氧化物(DOPO-MA)、10-(2,5-二羟基苯基)-10-氢-9-氧杂-10-憐杂菲-10-氧化物(ODOPB)和/或六苯氧基环三磷腈、邻苯二胺基环三磷腈和/或叔丁基磷酸三苯酯、四苯基双酚A二磷酸酯、四苯基间苯二酚二磷酸酯、苯基磷酸酯和/或三(环氧丙基)异氰尿酸酯中的一种或几种的混合物。
进一步地,所述有机含硫化合物选自正十二烷基硫醚、4,4'-二羟基二苯硫醚、4,4'-磺酰基二苯酚、二硫化烷基酚、2-硫醇基苯并咪唑、2-硫醇基甲基苯并咪唑、二苯基砜中的一种或几种的混合物。
阻燃树脂组合物,其由上述的具有良好阻燃和加工性能的无卤阻燃剂和树脂组成,所述具有良好阻燃和加工性能的无卤阻燃剂的质量百分比为15~50%。所述无卤阻燃剂与树脂经过双螺杆挤出机造粒制成所述阻燃树脂组合物,挤出机温度为180-280℃。
与现有技术相比,本发明提供的无卤阻燃剂由磷酸哌嗪盐、三聚氰胺及其衍生物、金属盐类阻燃协效剂、超分散剂、低熔点润滑阻燃助剂、以及有机含硫化合物组成,这些不同的元素在阻燃剂中发挥不同的作用,具体地磷酸哌嗪盐复配无卤阻燃剂主要通过凝聚相发挥阻燃作用,酸源、碳源和气源协效,从而在材料表面形成膨胀炭层隔热绝氧和热量传递,进而中断燃烧。添加所述低熔点润滑阻燃助剂后,可以增大树脂的熔指,改善阻燃剂的相容性和分散性,提高加工效率,但在燃烧时会促进熔融滴落,需要配合使用具有防滴落效果的助剂。有机含硫化合物作为补充酸源,硫元素能改变聚合物的分解历程,与阻燃剂及磷酸酯、DOPO、磷腈等润滑加工助剂中的磷、氮元素产生较好的阻燃协同作用,在燃烧时受热分解释放出硫酸类物质,生成的酸和碳源结合发生酯化反应,促进了凝聚相阻燃成炭,提高炭层的质量和连续度,防止熔滴造成二次 燃烧。同时,有机含硫化合物还与树脂材料具有良好的相容性,减小该无卤阻燃剂对材料力学性能的影响。同时本发明还具有以下优点:
(1)针对哌嗪磷酸盐类复配阻燃剂易吸湿团聚,加工架桥的问题,选用极性相近的超分散剂对阻燃剂粉体进行隔离处理,有效抑制粉体的二次团聚,提高粉体特性及在树脂中的分散性。
(2)添加具有一定阻燃功能的液体磷酸酯或DOPO及磷腈类衍生物等低熔点助剂,其可以在加工过程中快速熔融,从而可以增大阻燃树脂组合物的熔体流动速率,进而降低螺杆剪切力和加工阻力,避免阻燃剂因剪切生热而降解,提高加工耐受性和生产效率,同时改善阻燃剂粉体在树脂中的分散性和相容性。
(3)使用有机含硫化合物作为补充酸源,其可以促进凝聚相成炭,从而提高膨胀炭层的质量和连续度,进而可以有效抑制燃烧熔滴,防止火灾再次引燃。
(4)本发明的阻燃剂热分解温度较高,适用于连续长玻纤增强聚丙烯等加工温度较高的体系和注塑成型工艺,阻燃制件表面光滑,无白点,成品率高。
具体实施方式
以下对本发明的具体实施例进行进一步详细说明。应当理解的是,此处对本发明实施例的说明并不用于限定本发明的保护范围。
本发明提供的具有良好阻燃和加工性能的无卤阻燃剂由磷酸哌嗪盐,三聚氰胺及其衍生物,金属盐类阻燃协效剂,超分散剂,低熔点润滑阻燃助剂,以及有机含硫化合物组成,具体地,在所述无卤阻燃剂中,所述磷酸哌嗪盐的质量百分比为40-80%,所述三聚氰胺及其衍生物的质量百分比为20-50%,所述金属盐类阻燃协效剂的质量百分比为1-10%,所述超分散剂的质量百分比为0.01-5%,所述低熔点润滑阻燃助剂的质量百分比为0.01-10%,以及所述有机含硫化合物的质量百分比为0.01-5%。
所述磷酸哌嗪盐本身为现有技术,其可以为未经表面处理或经表面处理改性后的一磷酸哌嗪、二磷酸哌嗪、焦磷酸哌嗪、聚磷酸哌嗪中一种或几种的混合物。上述的每一种材料在此不再详细说明,其本身都为现有技术,如专利号CN201310645585.8,专利名称为一种磷酸哌嗪的制备方法,其公开了一种如何制备二磷酸哌嗪的方法。焦磷酸哌嗪可以是哌嗪与磷酸反应而形成的,以哌嗪为原料,经与磷酸反应,蒸馏脱水后,再经离心、洗涤、干燥、粉碎得到焦磷 酸哌嗪盐。
通过上述的方法,可以获得一种焦磷酸哌嗪盐,其作为阻燃剂为现有技术,在此不再详细说明。经表面处理改性后的磷酸哌嗪盐可以选自经环氧树脂、UV固化聚丙烯酸酯、三聚氰胺、硅烷、钛酸酯、或铝酸酯表面包覆处理后的磷酸哌嗪盐。磷酸哌嗪盐作为强极性化合物容易吸水,存在二次团聚,进而会影响阻燃剂粉体的加工性能以及在树脂中的分散及相容性。未经表面处理的磷酸哌嗪盐仍会存在这些问题,虽和所述超分散剂混合后可以显著抑制粉体的团聚,但是仍存在一定的吸湿性。而使用经表面处理后的磷酸哌嗪盐可以提高粉体的耐水性,减少团聚,和超分散剂混合使用后,粉体的流动性及在树脂中的分散性更好。因此,优选的是,所述磷酸哌嗪盐为经表面处理后的磷酸哌嗪盐。
所述三聚氰胺及其衍生物本身为现有技术,如《化学推剂与高分子材料》在2007年第5卷第6期所公开的三聚氰胺及其衍生物的应用,其公开了所述三聚氰胺及其衍生物的具体内容。所述三聚氰胺及其衍生物可以为三聚氰胺、磷酸三聚氰胺、焦磷酸三聚氰胺、聚磷酸三聚氰胺、三聚氰胺氰尿酸盐中的一种或几种的混合物。但是三聚氰胺及其衍生物在阻燃剂中的使用是一种现有技术,因此其功能及作用机理不再详细说明。
所述金属盐类阻燃协效剂可以为氧化锌、硼酸锌、二氧化硅、二氧化钛、氧化铝、次磷酸铝、二乙基次磷酸铝、二甲基次磷酸铝、二苯基次磷酸铝、硅酸镁、硅铝酸酯、次磷酸锌、锡酸锌、硫化锌、二甲基次磷酸锌、二乙基次磷酸锌、二苯基次磷酸锌中的一种或几种的混合。所述金属盐类阻燃协效剂在阻燃剂中的使用也是一种现有技术,其功能及作用机理不再详细说明。
所述超分散剂可以选自强极性的聚醚型超分散剂,或者以叔胺和环状结构为锚固基团、一系列氨基甲酸酯基团或链段均匀分布在分子链或接枝的侧链上的中等极性聚酯类超分散剂,或者带有游离羧酸、磺酸亲水基团的中等极性接枝丙烯酸型超分散剂中的一种或几种的混合。由于所述磷酸哌嗪盐具有较高的极性,且容易吸水团聚。因此根据相似相容原理,选用具有一定极性的超分散剂,有利于分散所述磷酸哌嗪盐。所述超分散剂以锚固基团和溶剂化链取代表面活性剂等传统分散剂的亲水亲油基团,通过离子键、氢键、共价键及范德华力等相互作用紧紧吸附在固体颗粒表面,阻碍了粒子之间的相互团聚,避免加工下料过程中出现架桥问题,同时提高阻燃剂在树脂中的分散性及制品表面的 光滑度。
所述低熔点润滑阻燃助剂可以选自具有一定阻燃作用的常规状态下为液体的磷酸酯类,如叔丁基磷酸三苯酯、四苯基双酚A二磷酸酯、四苯基间苯二酚二磷酸酯、以及苯基磷酸酯。所述低熔点润滑阻燃助剂也可以选自熔点低于200℃的固体阻燃助剂,如有机杂环化合物六元磷杂次膦酸酯中的(6H)-二苯并-(c,e)(1,2)-氧膦杂己环-6-酮(DOPO)、[(6-氧-(6H)-二苯并-(c,e)(1,2)-氧膦杂己环-6-酮)甲基]-丁二酸(DOPO-ITA)、10-(1,4-丁二酸-2-基)-9,10-二氢-9-氧杂-10-膦菲-1-氧化物(DOPO-MA)、10-(2,5-二羟基苯基)-10-氢-9-氧杂-10-憐杂菲-10-氧化物(ODOPB)六苯氧基环三磷腈、邻苯二胺基环三磷腈、三(环氧丙基)异氰尿酸酯中的一种或几种的混合物。对于熔点低于200℃的固体阻燃助剂,优选上述的DOPO及磷腈衍生物,但不仅限于上述列出的具体衍生物。在加工过程中会熔融为液态,熔点低于200℃的DOPO及磷腈衍生物都可以作为所述低熔点润滑阻燃助剂使用。
所选用的上述的磷酸酯、DOPO及磷腈类衍生物等低熔点润滑阻燃助剂,其都具有一定的阻燃性,从而可以增强阻燃剂体系的阻燃效率。同时,液体磷酸酯类阻燃剂在双螺杆挤出造粒的加工过程中直接呈现液体状态,提高了树脂熔融后的流动性,熔指增加,进而提高阻燃剂粉体在树脂中的分散性和相容性,同时降低螺杆的剪切作用,挤出阻力减弱,显著改善加工性能。DOPO及磷腈类衍生物的熔点一般在200℃以内,而分解温度较高,由于阻燃树脂组合物的加工温度通常在180-280℃,可以使得所述DOPO及磷腈类衍生物熔化而成为液体状,进而减弱挤出阻力,改善加工性能。因此,针对不同的树脂体系和加工温度,可以选用熔点合适的DOPO及磷腈类衍生物,从而可以在双螺杆挤出加工过程中熔融成液态,增大熔指,改善加工性能。其中,DOPO及其衍生物提高阻燃和加工性能的效果相对更好。
所述有机含硫化合物可以为含二价硫的有机化合物和含高价(四价或六价)硫的有机化合物,其可以选自正十二烷基硫醚、4,4'-二羟基二苯硫醚、4,4'-磺酰基二苯酚、二硫化烷基酚、2-硫醇基苯并咪唑、2-硫醇基甲基苯并咪唑、二苯基砜中的一种或几种的混合。
与现有技术相比,所述磷酸哌嗪盐复配阻燃剂在所述超分散剂作用下可以抑制二次团聚,改善粉体的流动性,配合低熔点易熔融兼有阻燃效果的DOPO及 磷腈类衍生物作为润滑剂,同时有机含硫化合物作为补充酸源,发挥出磷-硫协效作用,在燃烧时促进凝聚相阻燃成炭,进而提高阻燃体系的阻燃性,同时,有机含硫化合物与树脂的相容性较好,对材料的力学性能影响较小。
所述阻燃树脂组合物由上述复配的无卤阻燃剂和树脂组成。所述无卤阻燃剂在所述树脂组合物的质量百分比为15-50%。所述阻燃树脂组合物经过双螺杆挤出机造粒,挤出机温度为180-280℃,从而形成可以制作各种产品的树脂组合物颗粒。
本发明中无卤阻燃剂进行阻燃化的树脂,可以为均聚及共聚聚丙烯、玻纤增强聚丙烯、连续长玻纤增强聚丙烯、高密度聚乙烯、低密度聚乙烯、线性低密度聚乙烯、乙烯-醋酸乙烯酯共聚物、热塑性弹性体、硅橡胶、三元乙丙橡胶,优选聚丙烯及及其玻纤增强体系。不同树脂材料的加工温度存在一定的差异,常规聚丙烯及玻纤增强材料的加工温度通常在180-210℃,连续长玻纤增强聚丙烯的加工温度在220-280℃。本发明中各组分尤其是低熔点润滑阻燃助剂的选择需要根据树脂加工温度的变化筛选确定。
同时,本发明中阻燃树脂组合物不仅限于上述组分的使用,根据阻燃树脂应用环境的不同要求,可以选择添加改性塑料体系常用的抗氧剂、抗紫外剂、抗滴落剂、抗静电剂、填充剂、润滑剂、偶联剂、相容剂等,各组分的用量为常规用量,选自已有的市售商品。
与现有技术相比,本发明提供的无卤阻燃剂通过添加磷酸哌嗪盐、三聚氰胺及其衍生物、金属盐类阻燃协效剂、超分散剂、低熔点润滑阻燃助剂、以及有机含硫化合物,这些不同的元素在阻燃剂中发挥不同的作用,具体地磷酸哌嗪盐复配无卤阻燃剂主要通过凝聚相发挥阻燃作用,酸源、碳源和气源协效,从而在材料表面形成膨胀炭层隔热绝氧以抑制熔滴,进而中断燃烧。添加所述低熔点润滑阻燃助剂后,从而可以增大树脂的熔指,在燃烧时容易产生熔融滴落,需要配合使用具有防滴落效果的助剂。有机含硫化合物中的硫元素能改变聚合物的分解历程,其作为补充酸源能与阻燃剂及磷酸酯、DOPO、磷腈等润滑加工助剂中的磷、氮元素产生较好的阻燃协同作用,从而在燃烧时受热分解释放出硫酸类物质,而生成的酸和碳源结合发生酯化反应,促进了凝聚相阻燃成炭,提高炭层的质量和连续度,防止熔滴造成二次燃烧。同时,有机含硫化合物还与树脂材料具有良好的相容性,减小该无卤阻燃剂对材料力学性能的影响。 同时本发明还具有以下优点:
(1)针对哌嗪磷酸盐类复配阻燃剂易吸湿团聚,加工架桥的问题,选用极性相近的超分散剂对阻燃剂粉体进行隔离处理,有效抑制粉体的二次团聚,从而减小了该无卤阻燃剂的粒径,从而可以提高粉体特性及在树脂中的分散性。
(2)添加具有一定阻燃功能的液体磷酸酯或DOPO及磷腈类衍生物等低熔点助剂,其可以在加工过程中快速熔融,从而可以增大阻燃树脂组合物中的树脂的熔体流动速率,进而可以降低螺杆剪切力和加工阻力,从而可以避免阻燃剂因剪切生热而降解,提高加工耐受性和生产效率,同时改善阻燃剂粉体在树脂中的分散性和相容性。
(3)使用有机含硫化合物作为补充酸源,其可以促进凝聚相成炭,从而提高膨胀炭层的质量和连续度,进而可以有效抑制燃烧熔滴,防止火灾再次引燃。
(4)本发明的阻燃剂热分解温度较高,适用于连续长玻纤增强聚丙烯等加工温度较高的体系和注塑成型工艺,阻燃制件表面光滑,无白点,成品率高。
以下各实施方式或实施例中,若无特殊说明,所用的原料组分均为本领域技术人员从市场中购买的商品或者通过公知方法制备的产品。
样品测试方法和标准如下:
1)熔体流动指数(MFI):按照GB/T3682.1标准测定。
2)表面平滑性:对挤出机挤出样条表面平滑性进行人工评价,○表示样条表面平滑性好,△表示样条表面平滑性一般,×表示样条表面平滑性差。
3)垂直燃烧级数:按照GB/T 2408标准测试。
如表1中的对比例1及实施例1-9按照表1中各组分质量配比,先将哌嗪磷酸酸盐、三聚氰胺及其衍生物、金属盐类阻燃协效剂、超分散剂、低熔点润滑阻燃助剂、有机含硫化合物按比例加入到高速混合机中,混合10min,得到复配阻燃剂混合物。将聚丙烯树脂和复配阻燃剂混合物按比例在低速混合机中预混8min,通过主喂料口在双螺杆挤出机中挤出,挤出机各区温度控制在180℃—200℃,水冷切粒。
表1对比例1和实施例1-9阻燃聚丙烯材料的配方
Figure PCTCN2020137511-appb-000001
Figure PCTCN2020137511-appb-000002
表2对比例1和实施例1-9的阻燃聚丙烯材料的性能测试结果
Figure PCTCN2020137511-appb-000003
在相同的挤出工艺条件下,对比例1有时会出现粉体架桥,下料不均匀,挤出断条的现象,需要技术人员不定时观察下料料斗中的下料情况,增加人员劳动强度,降低生产效率,且样条表面粗糙,有肉眼可见的白点。而实施例1-9,在磷酸哌嗪盐复配的阻燃剂中添加超分散剂、低熔点润滑阻燃助剂、有机含硫化合物后,加工过程中没有出现上述情况,下料均匀,不断条,样条表面光滑无白点。
从表2中的对比例1和实施例1的阻燃聚丙烯材料测试结果可以看出,添加超分散剂、低熔点润滑阻燃助剂、有机含硫化合物后,阻燃剂粉体的流动速率增加,聚丙烯树脂的熔体流动速率增大,表面平滑性好,阻燃性能稍微提高,力学性能显著提升。实施例1和2的配方中对比了焦磷酸哌嗪表面改性前后的配方数据,使用环氧树脂处理的焦磷酸哌嗪,阻燃剂粉体和阻燃树脂的各项性能相对更好,且粉体的水溶性减小,长时间存放不易结块。
表3中的对比例2-7中列举了不使用超分散剂、低熔点润滑阻燃助剂、有机含硫化合物中的一种或两种时,对复配阻燃剂粉体及阻燃聚丙烯材料加工及性能的影响,具体配方及测试结果见表3和表4。
表3对比例2-7的具体配方
Figure PCTCN2020137511-appb-000004
表4对比例2-7的性能测试结果
熔融指数(g/10min,230℃,2.16kg) 3.76 2.81 3.65 2.79 3.62 2.24
表面平滑性 × × × × ×
UL94(1.6mm) V-0 V-0 V-1 V-2 V-1 V-0
表4中的对比例2-7和表1中实施例1的性能测试数据对比看出,在不添加超分散剂、低熔点润滑阻燃助剂、有机含硫化合物时,阻燃聚丙烯的性能都呈现出相应的变动。在不添加超分散剂时,样条的表面平滑性变差,呈现出不同程度的白点。当不添加低熔点润滑阻燃助剂时,阻燃树脂的熔体流动速率减小,样条表面平滑性变差,加工性能降低。当不添加有剂含硫化合物时,阻燃聚丙烯的阻燃等级降低,燃烧超时或者有熔滴。不添加助剂对阻燃材料的性能影响,也与发明人筛选助剂的出发点及在整体配方中发挥的功能相匹配,进一步验证了各助剂在配方中发挥的不同效果,是阻燃配方中不可缺少的组分。
从阻燃产品的成本及性能出发,在聚丙烯树脂中添加无机填料及玻纤增强 材料是汽车、家电等行业中普遍使用的方法。对比例8和实施例10-11对比了不同滑石粉填充量下的阻燃聚丙烯材料的性能,对比例9和实施例12-14对比了不同含量的玻纤增强阻燃聚丙烯的性能,具体配方及测试数据见表5和表6。
表5对比例8和9以及实施例10-14的具体配方
Figure PCTCN2020137511-appb-000005
表6对比例8和9以及实施例10-14的性能测试结果
熔融指数(g/10min,230℃,2.16kg) 1.23 0.84 3.05 2.79 2.48 1.76 1.34
表面平滑性 ×
UL94(1.6mm) V-0 V-0 V-0 V-0 V-0 V-0 V-0
从表6中,对比添加滑石粉和玻纤增强聚丙烯阻燃材料的测试数据发现,只添加阻燃剂和填料时,阻燃材料的熔体流动性显著降低,样条的表面平滑性差;当添加少量的超分散剂和DOPO、有机含硫化合物时,阻燃材料的阻燃等级没有变化,但是熔体流动速率显著增加,样品的表面平滑性较好。
以上仅为本发明的较佳实施例,并不用于局限本发明的保护范围,任何在本发明精神内的修改、等同替换或改进等,都涵盖在本发明的权利要求范围内。

Claims (8)

  1. 具有良好阻燃和加工性能的无卤阻燃剂,其特征在于,所述具有良好阻燃和加工性能的无卤阻燃剂由磷酸哌嗪盐,三聚氰胺及其衍生物,金属盐类阻燃协效剂,超分散剂,低熔点润滑阻燃助剂,以及有机含硫化合物组成,所述磷酸哌嗪盐的质量百分比为40~80%,所述三聚氰胺及其衍生物的质量百分比为20~50%,所述金属盐类阻燃协效剂的质量百分比为1~10%,所述超分散剂的质量百分比为0.01~5%,所述低熔点润滑阻燃助剂的质量百分比为0.01~10%,以及所述有机含硫化合物的质量百分比为0.01~5%,其中所述低熔点润滑阻燃助剂为常规状态下为液体的有机磷酸酯或熔点低于200℃的固体。
  2. 如权利要求1所述的具有良好阻燃和加工性能的无卤阻燃剂,其特征在于:所述磷酸哌嗪盐为未经表面处理或经表面处理改性后的一磷酸哌嗪、二磷酸哌嗪、焦磷酸哌嗪、聚磷酸哌嗪中一种或几种的混合物。
  3. 如权利要求1所述的具有良好阻燃和加工性能的无卤阻燃剂,其特征在于:所述三聚氰胺及其衍生物为三聚氰胺、磷酸三聚氰胺、焦磷酸三聚氰胺、聚磷酸三聚氰胺、三聚氰胺氰尿酸盐中的一种或几种的混合物。
  4. 如权利要求1所述的具有良好阻燃和加工性能的无卤阻燃剂,其特征在于:所述金属盐类阻燃协效剂为氧化锌、硼酸锌、二氧化硅、二氧化钛、氧化铝、次磷酸铝、二乙基次磷酸铝、二甲基次磷酸铝、二苯基次磷酸铝、硅酸镁、硅铝酸酯、次磷酸锌、锡酸锌、硫化锌、二甲基次磷酸锌、二乙基次磷酸锌、二苯基次磷酸锌中的一种或几种的混合物。
  5. 如权利要求1所述的具有良好阻燃和加工性能的无卤阻燃剂,其特征在于:所述超分散剂为聚醚型超分散剂、聚酯型超分散剂、聚丙烯酸酯型超分散剂中的一种或几种的混合物。
  6. 如权利要求1所述的具有良好阻燃和加工性能的无卤阻燃剂,其特征在于:所述低熔点润滑阻燃助剂为有机杂环化合物六元磷杂次膦酸酯中的(6H)-二苯并-(c,e)(1,2)-氧膦杂己环-6-酮(DOPO)、[(6-氧-(6H)-二苯并-(c,e)(1,2)-氧膦杂己环-6-酮)甲基]-丁二酸(DOPO-ITA)、10-(1,4-丁二酸-2-基)-9,10-二氢-9-氧杂-10-膦菲-1-氧化物(DOPO-MA)、10-(2,5-二羟基苯基)-10-氢-9- 氧杂-10-憐杂菲-10-氧化物(ODOPB)和/或六苯氧基环三磷腈、邻苯二胺基环三磷腈和/或叔丁基磷酸三苯酯、四苯基双酚A二磷酸酯、四苯基间苯二酚二磷酸酯、苯基磷酸酯和/或三(环氧丙基)异氰尿酸酯中的一种或几种的混合物。
  7. 如权利要求1所述的具有良好阻燃和加工性能的无卤阻燃剂,其特征在于:所述有机含硫化合物选自正十二烷基硫醚、4,4'-二羟基二苯硫醚、4,4'-磺酰基二苯酚、二硫化烷基酚、2-硫醇基苯并咪唑、2-硫醇基甲基苯并咪唑、二苯基砜中的一种或几种的混合物。
  8. 阻燃树脂组合物,其特征在于:所述阻烯树脂组合物由权利要求1至7任一项所述的具有良好阻燃和加工性能的无卤阻燃剂和树脂组成,所述具有良好阻燃和加工性能的无卤阻燃剂的质量百分比为比为15~50%,所述无卤阻燃剂与树脂经过双螺杆挤出机造粒制成所述阻燃树脂组合物,挤出机温度为180-280℃。
PCT/CN2020/137511 2020-11-26 2020-12-18 具有良好阻燃和加工性能的无卤阻燃剂及阻燃树脂组合物 WO2022110392A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011350705.8 2020-11-26
CN202011350705.8A CN112409693B (zh) 2020-11-26 2020-11-26 具有良好阻燃和加工性能的无卤阻燃剂及阻燃树脂组合物

Publications (1)

Publication Number Publication Date
WO2022110392A1 true WO2022110392A1 (zh) 2022-06-02

Family

ID=74843273

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137511 WO2022110392A1 (zh) 2020-11-26 2020-12-18 具有良好阻燃和加工性能的无卤阻燃剂及阻燃树脂组合物

Country Status (2)

Country Link
CN (1) CN112409693B (zh)
WO (1) WO2022110392A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115216090A (zh) * 2022-08-25 2022-10-21 佛山市湘聚新材料有限公司 一种建筑模板材料及其制备方法
CN115536909A (zh) * 2022-06-17 2022-12-30 上海力道新材料科技股份有限公司 一种无卤素阻燃剂组合物及其制备方法、用途
CN115772285A (zh) * 2022-12-12 2023-03-10 云南云天化股份有限公司 一种改性焦磷酸哌嗪的制备方法和改性焦磷酸哌嗪
CN116041846A (zh) * 2022-12-28 2023-05-02 上海日之升科技有限公司 一种高频振动环境使用的低蠕变紫外阻燃材料
CN116285013A (zh) * 2023-03-15 2023-06-23 赛得利(江苏)纤维有限公司 一种阻燃粘胶生产工艺
CN116656130A (zh) * 2023-06-06 2023-08-29 浙江佳华精化股份有限公司 一种自增容型阻燃有机硅热塑性弹性体材料及其制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113248793B (zh) * 2021-04-21 2022-10-14 国家能源集团宁夏煤业有限责任公司 无卤阻燃-抗静电-稳定剂组合物和无卤阻燃-抗静电聚乙烯复合材料及其制备方法
CN115386142B (zh) * 2021-05-25 2023-07-11 金发科技股份有限公司 一种良分散的无卤阻燃剂及其制备方法和应用
CN114031844B (zh) * 2021-10-25 2023-10-03 浙江旭森阻燃剂股份有限公司 连续长玻纤增强聚丙烯用无卤阻燃母粒及其制备方法
CN114213807B (zh) * 2021-12-15 2023-06-27 天津大学 一种高热稳定性的膨胀型复配阻燃剂改性环氧树脂材料及其制备方法
CN114539618B (zh) * 2022-02-15 2023-07-11 东莞市宏泰基阻燃材料有限公司 一种硅橡胶无卤阻燃剂及其制备方法和应用
CN114773871B (zh) * 2022-03-31 2023-08-22 上海化工研究院有限公司 一种高稳定性、高阻燃性复合弹性体材料及其制备方法
CN115232404B (zh) * 2022-09-06 2023-06-06 金旸(厦门)新材料科技有限公司 一种耐析出高表观的磷氮系阻燃聚丙烯复合材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104059278A (zh) * 2014-06-30 2014-09-24 成都硕屋科技有限公司 一种耐水解不迁移无卤阻燃聚烯烃组合物及其制备方法
CN107109236A (zh) * 2015-02-06 2017-08-29 株式会社艾迪科 阻燃剂组合物和阻燃性合成树脂组合物
US20190031829A1 (en) * 2016-03-14 2019-01-31 Adeka Corporation Flame retardant thermoplastic polyurethane resin composition
CN110591299A (zh) * 2019-09-30 2019-12-20 上海化工研究院有限公司 一种新能源汽车充电电缆用无卤阻燃电缆料及制备方法
JP6675331B2 (ja) * 2015-02-06 2020-04-01 株式会社Adeka 難燃性ポリプロピレン組成物
CN111032829A (zh) * 2017-09-07 2020-04-17 株式会社艾迪科 组合物及阻燃性树脂组合物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4753498B2 (ja) * 2001-07-17 2011-08-24 株式会社Adeka 難燃性合成樹脂組成物
DE102007035417A1 (de) * 2007-07-28 2009-01-29 Chemische Fabrik Budenheim Kg Halogenfreies Flammschutzmittel
WO2014060004A1 (de) * 2012-10-16 2014-04-24 Wolfgang Wehner Verfahren zur herstellung von metall-2-hydroxydiphenyl-2' -(thio)phosphinaten und metall-diphenylen-(thio)phosphonaten, diese enthaltende zusammensetzungen sowie deren verwendung als flammschutzmittel
WO2015088170A1 (ko) * 2013-12-10 2015-06-18 (주) 엘지화학 폴리올레핀 난연수지 조성물 및 성형품
CN110483898B (zh) * 2019-09-29 2022-07-19 上海化工研究院有限公司 一种高流动性耐析出无卤阻燃剂及其制备方法和应用
CN110964256A (zh) * 2019-12-27 2020-04-07 重庆科聚孚工程塑料有限责任公司 一种高效无卤膨胀型阻燃玻纤增强聚丙烯材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104059278A (zh) * 2014-06-30 2014-09-24 成都硕屋科技有限公司 一种耐水解不迁移无卤阻燃聚烯烃组合物及其制备方法
CN107109236A (zh) * 2015-02-06 2017-08-29 株式会社艾迪科 阻燃剂组合物和阻燃性合成树脂组合物
JP6675331B2 (ja) * 2015-02-06 2020-04-01 株式会社Adeka 難燃性ポリプロピレン組成物
US20190031829A1 (en) * 2016-03-14 2019-01-31 Adeka Corporation Flame retardant thermoplastic polyurethane resin composition
CN111032829A (zh) * 2017-09-07 2020-04-17 株式会社艾迪科 组合物及阻燃性树脂组合物
CN110591299A (zh) * 2019-09-30 2019-12-20 上海化工研究院有限公司 一种新能源汽车充电电缆用无卤阻燃电缆料及制备方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115536909A (zh) * 2022-06-17 2022-12-30 上海力道新材料科技股份有限公司 一种无卤素阻燃剂组合物及其制备方法、用途
CN115536909B (zh) * 2022-06-17 2023-11-17 上海力道新材料科技股份有限公司 一种无卤素阻燃剂组合物及其制备方法、用途
CN115216090A (zh) * 2022-08-25 2022-10-21 佛山市湘聚新材料有限公司 一种建筑模板材料及其制备方法
CN115772285A (zh) * 2022-12-12 2023-03-10 云南云天化股份有限公司 一种改性焦磷酸哌嗪的制备方法和改性焦磷酸哌嗪
CN116041846A (zh) * 2022-12-28 2023-05-02 上海日之升科技有限公司 一种高频振动环境使用的低蠕变紫外阻燃材料
CN116041846B (zh) * 2022-12-28 2024-02-23 上海日之升科技有限公司 一种高频振动环境使用的低蠕变紫外阻燃材料
CN116285013A (zh) * 2023-03-15 2023-06-23 赛得利(江苏)纤维有限公司 一种阻燃粘胶生产工艺
CN116285013B (zh) * 2023-03-15 2024-05-03 赛得利(江苏)纤维有限公司 一种阻燃粘胶生产工艺
CN116656130A (zh) * 2023-06-06 2023-08-29 浙江佳华精化股份有限公司 一种自增容型阻燃有机硅热塑性弹性体材料及其制备方法
CN116656130B (zh) * 2023-06-06 2024-02-20 江西佳化新材料有限公司 一种自增容型阻燃有机硅热塑性弹性体材料及其制备方法

Also Published As

Publication number Publication date
CN112409693A (zh) 2021-02-26
CN112409693B (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
WO2022110392A1 (zh) 具有良好阻燃和加工性能的无卤阻燃剂及阻燃树脂组合物
KR101424001B1 (ko) 할로겐 없는 난연제 조성물들, 이를 포함하여 구성되는 열가소성 조성물들 및 이러한 조성물들의 제조 방법
Si et al. Synergistic flame retardant effects and mechanisms of nano-Sb2O3 in combination with aluminum phosphinate in poly (ethylene terephthalate)
CN109233101B (zh) 一种耐热阻燃聚丙烯组合物及其制备方法
KR101322145B1 (ko) 할로겐-프리 열가소성 abs 난연 수지 조성물
CN104693485A (zh) 一种无卤膨胀型复配阻燃剂及其在高密度聚乙烯中的应用
JP7112422B2 (ja) 難燃性スチレン含有配合物
CN109206829B (zh) 一种高抗黄变耐析出无卤阻燃热塑性弹性体组合物及其制备方法
CN111333960A (zh) 一种无锑阻燃聚丙烯组合物及其制备方法
CN112608592A (zh) 高可分散高浓度尼龙基无卤阻燃母粒及其制备方法
US20050009969A1 (en) Fire-retarded polycarbonate resin composition
EP3140346B1 (en) Environmental friendly flame retardant moulding compositions based on thermoplastic impact modified styrenic polymers
CN104693760A (zh) 一种聚碳酸酯和聚对苯二甲酸丁二醇酯的共混合金
CN103709666A (zh) 无卤阻燃改性pet工程塑料及其制备方法
CN108059824B (zh) 一种透明阻燃高温尼龙及其制备方法
CN104327474A (zh) 一种蒙脱土协效阻燃pc/abs合金材料及其制备方法
JP7153029B2 (ja) 難燃性スチレン含有組成物
CN104861622A (zh) 阻燃抗静电聚碳酸酯/聚对苯二甲酸丁二醇酯组合物
JP2000119515A (ja) ポリアミド樹脂組成物
CN104693720A (zh) 磷氮无卤阻燃改性pc/pet复合材料及其制备方法
DE112017003897T5 (de) Flammhemmende Polyesterzusammensetzung
CN111303610A (zh) 一种新型无卤阻燃母粒及制备方法
WO2020067205A1 (ja) 難燃性樹脂組成物及び成形体
KR101540503B1 (ko) 할로겐-프리 열가소성 abs 난연 수지 조성물
JP2000119514A (ja) ポリアミド樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20963280

Country of ref document: EP

Kind code of ref document: A1