WO2022107717A1 - 遮熱膜付きガラス基材 - Google Patents

遮熱膜付きガラス基材 Download PDF

Info

Publication number
WO2022107717A1
WO2022107717A1 PCT/JP2021/041899 JP2021041899W WO2022107717A1 WO 2022107717 A1 WO2022107717 A1 WO 2022107717A1 JP 2021041899 W JP2021041899 W JP 2021041899W WO 2022107717 A1 WO2022107717 A1 WO 2022107717A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
film
glass substrate
heat shield
glass
Prior art date
Application number
PCT/JP2021/041899
Other languages
English (en)
French (fr)
Inventor
晋平 森田
陽 池田
美代子 追分
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to CN202180076790.XA priority Critical patent/CN116472172A/zh
Priority to JP2022563738A priority patent/JPWO2022107717A1/ja
Priority to DE112021006087.2T priority patent/DE112021006087T5/de
Publication of WO2022107717A1 publication Critical patent/WO2022107717A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • C03C17/25Oxides by deposition from the liquid phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3618Coatings of type glass/inorganic compound/other inorganic layers, at least one layer being metallic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3649Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer made of metals other than silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3652Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the coating stack containing at least one sacrificial layer to protect the metal from oxidation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3657Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having optical properties
    • C03C17/366Low-emissivity or solar control coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/44Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
    • C03C2217/445Organic continuous phases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/48Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase having a specific function
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/90Other aspects of coatings
    • C03C2217/94Transparent conductive oxide layers [TCO] being part of a multilayer coating
    • C03C2217/944Layers comprising zinc oxide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/116Deposition methods from solutions or suspensions by spin-coating, centrifugation

Definitions

  • the present invention relates to a glass substrate with a heat shield film.
  • ADAS Advanced Driver-Assistance Systems
  • the radio wave transmitting heat shield glass includes a glass plate having a predetermined thickness and a film containing an infrared absorber provided on one main surface of the glass plate, and has an average transmittance of 18 at a wavelength of 1000 nm.
  • a glass article (heat shield glass) having an average transmittance of about 30% and an average transmittance of 25 to 40% at a wavelength of 1500 nm has been proposed (Patent Document 1).
  • the glass article of Patent Document 1 has high radio wave transmittance and high transparency in the near-infrared region. , And there is a problem that it is difficult to realize high heat insulation at the same time.
  • the present invention provides a glass substrate with a heat-shielding film that can simultaneously realize high radio wave transparency, high transparency in the near-infrared region, and high heat-shielding property.
  • a glass substrate with a heat-shielding film comprising a glass plate and a heat-shielding film provided on one surface of the glass plate.
  • the glass substrate with a heat shield has a radio wave transmission loss of 5 dB or less at a frequency of 80 GHz, a transmittance of 15% or more at a wavelength of 900 nm, and an average reflectance of 25% or more at a wavelength of 5 to 15 ⁇ m.
  • Glass substrate with thermal film [2]
  • the surface resistivity of the heat shield film is 10 ⁇ / sq. Above 10 9 ⁇ / sq.
  • the glass substrate with a heat-shielding film of the present invention can simultaneously realize high radio wave transparency, high transparency in the near-infrared region, and high heat-shielding property.
  • the thickness of the glass plate and the film thickness of the heat shield film are geometrical thicknesses. " ⁇ " Indicating a numerical range means to include it as an upper limit value and a lower limit value of the numerical values described before and after it.
  • the glass substrate 1 with a heat shield film of the present embodiment includes a glass plate 11 and a heat shield film 12 provided on one surface of the glass plate.
  • the glass substrate with a heat shield has a radio wave transmission loss of 5 dB or less at a frequency of 80 GHz, a transmittance of 15% or more at a wavelength of 900 nm, and an average reflectance of 25% or more at a wavelength of 5 to 15 ⁇ m.
  • the material of the glass plate examples include soda lime glass, aluminosilicate glass, non-alkali glass, borosilicate glass and the like, and soda lime glass is preferable.
  • the glass plate may be reinforced.
  • the strengthening means is not limited, and may be physical strengthening or chemical strengthening.
  • the thickness of the glass plate is appropriately set according to the use of the glass substrate with a heat shield film. When a glass substrate with a heat shield film is used as a window glass for a vehicle, the thickness of the glass plate is preferably 2.0 to 6.0 mm, more preferably 2.5 to 5.5 mm, and 2.8 to 5. 0 mm is more preferable.
  • the thickness of the glass plate is within the above-mentioned preferable range, the radio wave transmission and the light transmission in the visible light region and the near infrared region are easily ensured sufficiently.
  • the thickness of the glass plate can be measured by a confocal displacement meter: "Confocal IFC2461MP" manufactured by Micro Episilon. The thickness is measured at 5 randomly selected points of the glass plate, and the average value of the 5 points is taken as the thickness of the glass plate.
  • the heat shield film blocks (reflects) the mid-infrared region to the far-infrared region having a wavelength of 5 to 15 ⁇ m, and has high radio wave transparency and high light transmittance in the visible light region and the near infrared region.
  • the heat shield film has a surface resistivity of 10 ⁇ / sq. Above 10 9 ⁇ / sq.
  • the surface resistivity is R and the film thickness of the heat-shielding film is d ( ⁇ m)
  • it is preferable that the following formula (1) is satisfied in the range where the film thickness d is 0.05 to 5 ⁇ m.
  • R ⁇ 10000exp (14.093 ⁇ d) ⁇ ⁇ ⁇
  • the surface resistivity of the heat-shielding film can be measured according to JIS K 7194 (1994) using a resistivity meter.
  • the surface resistivity of the heat shield film is 109 ⁇ / sq. If it is the following, even if the film thickness of the heat shield film is thin, high reflectance can be easily obtained in the mid-infrared region to the far-infrared region having a wavelength of 5 to 15 ⁇ m.
  • the surface resistivity of the heat shield film is 10 ⁇ / sq. With the above, it is easy to guarantee high radio wave transparency. According to the studies by the inventors of the present application, as the surface resistivity R of the heat-shielding film increases, the film thickness d required to obtain the reflectance for the mid-infrared region to the far-infrared region having a wavelength of 5 to 15 ⁇ m.
  • the surface resistivity of the heat shield film is 10 ⁇ / sq. Above 10 9 ⁇ / sq. The following is preferable, 102 ⁇ / sq. Above 10 8 ⁇ / sq. The following is more preferable, 104 ⁇ / sq. Above 10 8 ⁇ / sq. The following is more preferable.
  • the film thickness of the heat shield film is preferably 5 ⁇ m or less, more preferably 1.5 ⁇ m or less, still more preferably 1 ⁇ m or less.
  • the film thickness of the heat shield film is preferably 50 nm or more.
  • the film thickness of the heat shield film is preferably 50 nm or more and 5 ⁇ m or less, more preferably 50 nm or more and 1.5 ⁇ m or less, and further preferably 50 nm or more and 1 ⁇ m or less.
  • the film thickness of the heat-shielding film is 5 ⁇ m or less, it is possible to reduce the amount of raw materials when forming the heat-shielding film, which is excellent in economy.
  • the film thickness of the heat shield film can be measured by using a stylus type surface shape measuring device for the glass substrate with the heat shield film.
  • the heat-shielding film preferably contains at least one of the group consisting of metal oxide particles and a conductive polymer as a conductive component.
  • the metal oxide particles include tin-doped tin oxide (ITO), antimony-doped tin oxide (ATO), composite tungsten oxide, fluorine-doped tin oxide (FTO), and the like, which have a transmittance of near infrared rays around 1000 nm. From the viewpoint, ITO and ATO are preferable.
  • the particle size of the metal oxide particles may be an average primary particle size of 1 to 150 nm, and more preferably 5 to 100 nm.
  • the average primary particle size of the metal oxide particles can be measured based on a dynamic scattering method using a commercially available nanoparticle size measuring device: "Nanotrac Wave II" manufactured by Microtrac. Specifically, a volume-based cumulative particle size distribution curve is obtained by the dynamic scattering method, and in the obtained cumulative particle size distribution curve, the value of the particle size at the time of 50% accumulation from the fine particle side is defined as the average primary particle size. ..
  • the metal oxide particles have a compound having a reactive group on the surface, a compound having a functional group having hydrogen bonding property, and a compound having a functional group having a hydrogen atom (hereinafter, these compounds are collectively referred to as "reactive group”. (Also referred to as a compound having a compound, etc.) may be chemically bonded or adsorbed. The presence of a compound or the like having a reactive group on the surface of the particles forms a bond between the particles, making it easy to obtain a heat-shielding film having excellent wear resistance and scratch resistance.
  • Reactive groups include amino group, epoxy group, acryloyl group, methacryloyl group, vinyl group, thiol group, isocyanate group, carboxyl group, hydroxyl group, phenol group, nitrile group, imino group, halogen group, ureido group and isocyanurate.
  • the group etc. can be mentioned.
  • Examples of the functional group having a hydrogen-bonding property include an amino group, an epoxy group, an ether group, an isocyanate group, a carbonyl group, a carboxyl group, a hydroxyl group, a phenol group, a nitrile group, an imino group, a ureido group and an isocyanurate group. ..
  • Examples of the functional group having a hydrogen atom include an amino group, a hydroxyl group, a phenol group, a thiol group, and a carboxyl group.
  • the reactive group and functional group of the compound existing on the particle surface may be different for each particle. For example, by including particles in which a compound having an amino group is present on the surface and particles in which a compound having an epoxy group is present on the surface, an interparticle bond is formed by the reaction between the amino group and the epoxy group.
  • the reactive group of the compound existing on the surface of the particles may be a single kind.
  • the particles having the compound having an acryloyl group on the surface form an interparticle bond by the reaction between the acryloyl groups. You can also.
  • an interparticle bond is formed by hydrogen-bonding a functional group having a hydrogen-bonding property with a hydrogen atom of a functional group having a hydrogen atom.
  • the method for chemically bonding a compound having a reactive group, a compound having a functional group having hydrogen bonding property, and a compound having a functional group having a hydrogen atom to the particle surface is not particularly limited, but a method using a silane coupling agent. And so on.
  • Reactive groups such as amino groups and epoxy groups, hydrogen bonding properties, along with alkaline components such as NaOH, KOH, NH 3 or acid components such as sulfuric acid, nitric acid, hydrochloric acid, acetic acid, and maleic acid in the dispersion of metal oxide particles.
  • alkaline components such as NaOH, KOH, NH 3 or acid components such as sulfuric acid, nitric acid, hydrochloric acid, acetic acid, and maleic acid in the dispersion of metal oxide particles.
  • a silane coupling agent having one or more of a functional group having a hydrogen atom and a functional group having a hydrogen atom
  • the silane coupling agent is bonded to the surface of the metal oxide particles and reacts with the particle surface.
  • Sexual groups can be present.
  • the entire surface of the metal oxide particles may be covered with a compound having a reactive group or the like, or a part of the surface may be covered with the metal oxide particles.
  • the coverage of the compound having a reactive group with respect to the entire surface of the metal oxide particles is preferably 5 to 90%, more preferably 10 to 80%, still more preferably 20 to 70%.
  • the coverage can be measured from an image observed with a transmission electron microscope: HT7700 manufactured by Hitachi.
  • the thickness of the coating layer on the surface of the metal particles is preferably 5 nm or less, more preferably 3 nm or less, and particularly preferably 1 nm or less.
  • the thickness of the coating layer is preferably 0.1 to 5 nm, more preferably 0.3 to 3 nm, and even more preferably 0.5 to 1 nm.
  • the thickness of the coating layer can be measured from an image observed with a transmission electron microscope: HT7700 manufactured by Hitachi.
  • the content of the compound having a reactive group is preferably 0.5 to 50% by mass, and is preferably 1 to 30% by mass with respect to the total mass of the compound having a reactive group with the metal oxide particles. Is more preferable, and 3 to 15% by mass is particularly preferable. In the case of a compound having a reactive group, its structure changes depending on the reaction, but in calculating the above content, the total mass of the unit derived from the compound after the change due to the reaction is used.
  • the conductive polymer examples include poly (3,4-ethylenedioxythiophene) (also referred to as PEDOT / PSS) doped with poly (4-styrene sulfonic acid), polyacetylene, polyaniline, polypyrrole, polythiophene and the like. From the viewpoint of air stability, polythiophene or the like having an aromatic ring structure (PEDOT / PSS) is preferable.
  • PEDOT / PSS polythiophene or the like having an aromatic ring structure
  • the content of the conductive component contained in the heat-shielding film is preferably 50% by mass or more, more preferably 60% by mass or more, and 70% by mass, based on the total mass of the solid content of the heat-shielding film. The above is more preferable, and 90% by mass or more is particularly preferable.
  • the content of the conductive component contained in the heat-shielding film is preferably 50 to 100% by mass or more, more preferably 60 to 99% by mass or more, based on the total mass of the solid content of the heat-shielding film. , 70 to 98% by mass or more, and particularly preferably 90 to 97% by mass or more.
  • the content of the conductive component shall be the amount of the metal oxide particles only.
  • the content of the conductive component contained in the heat-shielding film is 50% by mass or more, the surface resistivity of the heat-shielding film is 109 ⁇ / sq. It tends to be as follows. Further, if it is 90% by mass or more, the film thickness is 5 ⁇ m or less and the surface resistivity is 109 ⁇ / sq. It tends to be as follows.
  • the heat shield film may contain matrix components such as an alkoxysilane compound, an epoxy resin, an acrylic resin, and a phenol resin as long as the effects of the present invention are not impaired.
  • the content of the matrix component contained in the heat-shielding film is preferably less than 50% by mass, more preferably less than 40% by mass, and less than 30% by mass with respect to the total mass of the heat-shielding film. Is more preferable, and it is particularly preferable that it is less than 10% by mass.
  • the heat shield film contains a matrix component
  • the content of the matrix component is preferably more than 0% by mass and less than 50% by mass, preferably 1% by mass or more and less than 40% by mass with respect to the total mass of the heat shield film. It is more preferably 2% by mass or more and less than 30% by mass, and particularly preferably 3% by mass or more and less than 10% by mass. Further, as one aspect of the present invention, it is preferable that the heat shield film does not contain a matrix component.
  • the matrix component is bonded to the particle surface, so that a heat-shielding film having excellent wear resistance and scratch resistance can be easily obtained.
  • the matrix component is bonded to the surface of the metal oxide particles and chemically bonded to the surface of the particles.
  • the matrix component that can be chemically bonded to the surface of the metal oxide particles include a matrix component having a silanol group.
  • the matrix component preferably has a reactive group. When the reactive groups in the matrix component bonded to the particle surface react with each other, bonds between the particles are formed, and it becomes easy to obtain a heat-shielding film having excellent wear resistance and scratch resistance.
  • the reactive group include a silanol group, a hydroxyl group, a carbonyl group, an acryloyl group, an epoxy group and the like.
  • a component that crosslinks between metal oxide particles may be contained.
  • the cross-linking agent a compound having two or more reactive functional groups in one molecule and the like can be considered. Examples of compounds having the same reactive group in one molecule include ethylenediamine and diethylenetriamine, and examples of compounds having different reactive groups include aminopropyltrimethoxysilane and glycidoxypropyltrimethoxy, which are silane coupling agents. Examples include silane.
  • the heat shield film may contain impurities (surface conditioner, particle dispersant, organic solvent, water, etc.) that are inevitably introduced during film formation.
  • the content of unavoidable impurities contained in the heat shield film is preferably less than 50% by mass, more preferably less than 40% by mass, and less than 30% by mass with respect to the total mass of the heat shield film. It is more preferably present, and particularly preferably less than 10% by mass.
  • the content of the impurities is preferably more than 0% by mass and less than 50% by mass, and more than 0% by mass and less than 40% by mass with respect to the total mass of the heat shield film. Is more preferable, more than 0% by mass and less than 30% by mass, and particularly preferably more than 0% by mass and less than 10% by mass. Further, as one aspect of the present invention, it is preferable that the heat shield film does not contain impurities.
  • the heat-shielding film may be a single layer, or may be a combination (lamination) of two or more different types of layers. Specifically, the following aspects (a) to (f) can be mentioned.
  • (A) Single layer containing one type of metal oxide particles (b) Single layer containing two or more types of metal oxide particles (c) Single layer containing one type of conductive polymer (d) Two types of conductive polymer Single layer containing the above Single layer (e) Single layer containing one or more metal oxide particles and one or more conductive polymers (f) Two or more of the above layers (a) to (e) Layer combination (lamination)
  • the heat shield film is provided on one surface of the glass plate. Further, it is preferable that the heat shield film is provided on the entire surface of one surface of the glass plate, which is exposed to sunlight.
  • the storage unit is used.
  • a heat shield film may not be provided on the surface of the glass plate in the area to be housed in the glass plate and the area in the vicinity thereof.
  • the glass substrate with a heat-shielding film of the present embodiment has a high radio wave transmittance in the heat-shielding film and high light-transmitting properties in the visible light region and the near-infrared region, and there is no heat-shielding film on the surface of the glass plate. Since it is not necessary to provide a region (transmission region) and it is easy to form a heat shield film, the productivity is excellent.
  • the heat-shielding film may have a functional layer between the glass plate and the heat-shielding film, if necessary, as long as the effect of the present invention is not impaired, and the heat-shielding film is on the surface of the heat-shielding film farthest from the glass plate. It may have a top layer.
  • the functional layer provided as needed is not particularly limited.
  • the functional layer include a heat ray reflecting film containing a metal nitride, a UV blocking film containing an ultraviolet absorber, and an antifog film containing a water-absorbent organic resin.
  • the thickness of the functional layer is preferably 1 nm to 50 ⁇ m, more preferably 5 nm to 30 ⁇ m, and particularly preferably 10 nm to 20 ⁇ m.
  • the top layer provided as needed protects the heat shield film.
  • Examples of the material of the top layer include silicon dioxide, titanium nitride, carbon, an organic resin, and a silane condensate.
  • the thickness of the top layer is preferably 1 to 50 nm, more preferably 1 to 20 nm, and particularly preferably 1 to 10 nm.
  • the glass substrate with a heat shield film of the present embodiment has a radio wave transmission loss of 5 dB or less at a frequency of 80 GHz, preferably 4 dB or less.
  • the range is preferably 0 to 5 dB, more preferably 0 to 4 dB, further preferably 0 to 3.5 dB, and particularly preferably 0 to 3.0 dB. ..
  • the radio wave transmission loss of the glass substrate with a heat shield film can be measured by the free space method. Details of the measurement conditions will be described later in Examples.
  • the glass substrate with a heat shield film of the present embodiment preferably has a radio wave transmission loss of 5 dB or less, more preferably 4 dB or less, at frequencies of 80 GHz, 28 GHz, and 3.5 GHz or less, respectively. It is more preferably 5 dB or less, and particularly preferably 3.0 dB or less.
  • the range is preferably 0 to 5 dB, more preferably 0 to 4 dB, further preferably 0 to 3.5 dB, and particularly preferably 0 to 3.0 dB. ..
  • the radio wave transmission loss at 3.5 GHz or less can be confirmed, for example, by measuring the electromagnetic wave transmission loss at 2 GHz.
  • the radio wave transmission loss By setting the radio wave transmission loss at frequencies of 80 GHz, 28 GHz, and 3.5 GHz or less to 5 dB or less, the radio wave transmission required for multiple information communication terminals such as millimeter-wave radar, television / radio / satellite broadcasting, and 5G / LTE. Can be guaranteed at the same time.
  • the radio wave transmission loss for radio waves having frequencies of 80 GHz, 28 GHz, and 3.5 GHz or less has been described as an example, but it is limited to these frequency bands. Instead, it is preferable that the same radio wave transmission loss as described above can be obtained in a frequency band of about several hundred MHz to several tens of GHz.
  • the glass substrate with a heat-shielding film of the present embodiment has a transmittance of 15% or more at a wavelength of 900 nm, preferably in the range of 15 to 50%, and more preferably in the range of 20 to 40%.
  • a transmittance of 15% or more can be measured using a spectrophotometer.
  • the glass substrate with a heat shield film of the present embodiment has an average reflectance of 25% or more at a wavelength of 5 to 15 ⁇ m, preferably in the range of 30 to 70%, and preferably in the range of 30 to 60%. More preferred.
  • the reflectance of the glass substrate with a heat shield film at a wavelength of 5 to 15 ⁇ m can be measured using an infrared spectrophotometer equipped with a reflection measuring device.
  • the average reflectance at a wavelength of 5 to 15 ⁇ m can be calculated as an average value (%) by measuring the reflectance at a wavelength of 5 to 15 ⁇ m for each wavelength of 5 nm.
  • the visible light transmittance of the glass substrate with a heat shield film of the present embodiment is preferably 50 to 95%, more preferably 60 to 85%, still more preferably 70 to 75%.
  • the visible light transmittance of the glass substrate with a heat shield film can be calculated according to JIS R3212 (1998) by measuring the transmittance of each wavelength using a spectrophotometer.
  • a step of applying a liquid composition containing a conductive component on a glass plate and then heating and drying the glass plate to which the liquid composition is applied is performed at least once. It can be manufactured repeatedly. In the production of the glass substrate with a heat shield film, other steps may be included if necessary.
  • the drying treatment the liquid medium is removed from the liquid composition containing the conductive component, and a film containing the conductive component is formed on the surface of the glass plate.
  • the metal oxide particles are dispersed in a liquid medium to obtain a liquid composition prepared to have an arbitrary solid content concentration.
  • the liquid composition contains a compound or the like having a reactive group and an alkaline component or an acid component. ..
  • the conductive component contains a conductive polymer
  • the conductive polymer is dissolved or dispersed in a liquid medium to obtain a liquid composition prepared at an arbitrary concentration.
  • Liquid media include ketones such as acetone and methyl ethyl ketone, esters such as ethyl acetate and butyl acetate, alcohols such as methanol, ethanol, 1-propanol and 2-propanol, carboxylic acids such as acetic acid, and nitriles such as acetonitrile. , Water, etc. These may be used alone or in combination of two or more.
  • the liquid composition may contain a matrix component such as an alkoxysilane compound, an epoxy resin, an acrylic resin, and a phenol resin as long as the effects of the present invention are not impaired.
  • a matrix component such as an alkoxysilane compound, an epoxy resin, an acrylic resin, and a phenol resin
  • the content of the matrix component in the liquid composition is preferably 50% by mass or less, more preferably 5 to 40% by mass, and 10 to 30% by mass with respect to the total mass of the composition. Is even more preferable.
  • the content of the matrix component is the solid content equivalent content.
  • the solid content in terms of solid content of a component means the mass of the residue excluding volatile components such as water.
  • liquid composition on the surface of the glass plate
  • general application methods such as spin coating, dip coating, spray coating, flow coating, and die coating can be applied.
  • the flow coat is particularly suitable for a glass plate having a curved surface shape.
  • an electric furnace In the process of heating and drying the glass plate coated with the liquid composition, an electric furnace, a gas furnace, an infrared heating furnace, etc. can be used.
  • the heating temperature and time can be adjusted as appropriate.
  • the heating temperature may be, for example, in the range of 70 to 300 ° C.
  • the heating time may be, for example, 1 to 180 minutes.
  • the glass substrate with a heat shield film of the present embodiment can be used as a window glass for a vehicle as a heat shield glass.
  • the glass substrate with a heat-shielding film of the present embodiment may be used as a veneer as it is, may be used for laminated glass, or may be used for double glazing.
  • the laminated glass has a first transparent substrate, a second transparent substrate, and an interlayer film arranged between these transparent substrates.
  • the glass substrate with a heat shield film of the present invention can be used as either a first transparent substrate or a second transparent substrate.
  • the double glazing is interposed on the peripheral edge of the first transparent substrate and the second transparent substrate so that a gap is formed between the first transparent substrate, the second transparent substrate, and the transparent substrate. It has a frame-shaped spacer.
  • the glass substrate with a heat shield film of the present invention can be used as either a first transparent substrate or a second transparent substrate.
  • the heat-shielding film is arranged so as to be on the inside (the side in contact with the room).
  • the glass substrate with a heat shield film of the present embodiment described above has a radio wave transmission loss of 5 dB or less at a frequency of 80 GHz, a transmittance of 15% or more at a wavelength of 900 nm, and an average reflectance of 25 at a wavelength of 5 to 15 ⁇ m. % Or more.
  • the heat-shielding property can be ensured by blocking (reflecting) the mid-infrared region to the far-infrared region as the newly found heat-shielding property development region.
  • the radio wave transmission loss at frequencies of 80 GHz, 28 GHz, and 3.5 GHz or less is 4 dB or less, millimeter wave radar, television / radio / satellite broadcasting, 5 G. It is possible to simultaneously guarantee the radio wave transmission required for a plurality of information communication terminals such as LTE.
  • the microwave radar does not provide a transmission region in the region where the heat shield film of the glass base material is provided while maintaining the heat shield property.
  • Microwave radar, LiDAR, rain sensor and other radar sensors can be operated at the same time. Further, the radar sensors can be freely arranged in the region where the heat shield film of the glass base material is provided without providing the transmission region.
  • Examples 1 to 3 and 7 are examples, and examples 4 to 6 are comparative examples.
  • the film thickness ( ⁇ m) of the heat shield film was measured using a stylus type surface shape measuring device (ULVAC: Dektak150).
  • the content of the conductive component contained in the heat-shielding film when the heat-shielding film was formed using the liquid composition, the content of the conductive component with respect to the total solid content contained in the prepared liquid composition was calculated. .. Further, in the case of a laminated film containing two or more types of layers, the content of the conductive component when the entire laminated film is used as a heat-shielding film and the conductivity when an arbitrary layer (single layer) is used as a heat-shielding film. The content of each component was calculated.
  • the radio wave transmission loss of the prepared glass substrate with a heat shield film was measured by the free space method.
  • antennas are opposed to each other, and a glass substrate with a heat shield film is installed in the middle so that the extension direction of the opening and the polarization direction of the radio wave are orthogonal to each other, and heat is shielded at the opening of 100 mm ⁇ .
  • the radio wave transmission loss for radio waves having frequencies of 2 GHz, 28 GHz, and 80 GHz was measured, assuming that there was no glass substrate with a film at 0 dB.
  • the radio wave transmission loss was measured in the same manner only for the glass plate before the heat shield film was formed.
  • Abrasion resistance evaluation For wear resistance, use a reciprocating traverse tester (manufactured by KNT), apply a load of 500 g to the flannel cloth so that the wear surface is 1 cm x 4 cm, and reciprocate 500 times, then visually observe the appearance. The one with no scratches or peeling was designated as A, and the one with slight rubbing marks by reflected light was designated as B.
  • Example 1 Liquid composition 1 obtained by diluting 5 g of ITO dispersion (solid content concentration 20%) with 15 g of methanol is applied to a 10 cm ⁇ 10 cm ⁇ 3.5 mmt high heat ray absorbing glass (AGC: UVFL) and a spin coater (Mikasa: MS). -B200) was used for spin coating at a rotation speed of 100 rpm, and then dried at 150 ° C. for 3 minutes in an air atmosphere. Further, the liquid composition 1 was spin-coated on the dried substrate under the same conditions, and spin coating and drying were repeated three times in total to obtain a glass substrate with a heat-shielding film.
  • APC UVFL
  • MS spin coater
  • Example 2 Liquid composition 2 in which poly (3,4-ethylenedioxythiophene) (PEDOT / PSS) (manufactured by Sigma-Aldrich) doped with poly (4-styrene sulfonic acid) is diluted with distilled water to a concentration of 1.3%.
  • PEDOT / PSS poly (3,4-ethylenedioxythiophene)
  • PES poly (4-styrene sulfonic acid
  • Example 3 A glass substrate with a heat shield film was obtained by the same procedure as in Example 2 except that the rotation speed of the spin coat was changed from 100 rpm to 500 rpm.
  • Example 4 High heat absorption glass (made by AGC: UVFL) having a size of 10 cm ⁇ 10 cm ⁇ 3.5 mmt was used without forming a film.
  • Example 5 A 10 cm ⁇ 10 cm ⁇ 2.8 mmt glass plate (made by AGC: FL) was introduced into an in-line sputter device, and vacuum was exhausted until the degree of vacuum became 2 ⁇ 10-6 Torr or less. The film was formed so that the total thickness of the two layers of the doped zinc oxide and the aluminum-doped zinc oxide was 43.5 nm. Next, the total thickness of the three layers is 87 in the order of silver having a thickness of 12.5 nm, titanium having a thickness of 2 nm, aluminum-doped zinc oxide, tin-doped zinc oxide, and aluminum-doped zinc oxide.
  • the total thickness of the two layers is 31.5 nm and titanium oxide 1 nm in the order of 5.5 nm, silver 12.5 nm, titanium 2 nm, aluminum-doped zinc oxide, and tin-doped zinc oxide. It was filmed. After the film formation, the laminate was heat-treated at 730 ° C. for 4 minutes in the air to obtain a glass substrate with a heat shield film. As for the content of the conductive component contained in the heat-shielding film, silver was used as the conductive component, and the content in the entire laminated film and the content in the single silver layer were calculated.
  • Example 6 2,2', 4,4'-Tetrahydroxybenzophenone (manufactured by BASF) 2.05 g, 3-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.) 5.14 g, benzyltriethylammonium chloride (manufactured by Junsei Chemical Co., Ltd.) ) 0.033 g and 4.17 g of butyl acetate (manufactured by Junsei Chemical Co., Ltd.) were charged, heated to 120 ° C., stirred for 4 hours, and then cooled to room temperature.
  • Solmix AP-1 46.2 g, Tetraethoxysilane (manufactured by Genuine Chemical Co., Ltd.) 14.2 g, SR-SEP (manufactured by Sakamoto Yakuhin Kogyo Co., Ltd.) 0.87 g, pure water 18.4 g, BYK307 (manufactured by Big Chemie). ) 0.06 g, 0.10 g of a nitric acid aqueous solution having a concentration of 63% by mass, and 0.012 g of maleic acid were charged, and after stirring at 50 ° C. for 2 hours, YMF-02A (Sumitomo Metals), which is a dispersion of cesium oxide tungsten nanoparticles.
  • YMF-02A Suditomo Metals
  • Example 7 Surface-coated particles are obtained by diluting 5 g of an ITO dispersion (solid content concentration 20%) with 15 g of methanol, further adding 0.14 g of 3-aminopropyltrimethoxysilane and 1.13 g of a 1 mol / L NaOH aqueous solution, and stirring the mixture. Dispersion liquid 1 was obtained. Similarly, 5 g of an ITO dispersion (solid content concentration 20%) is diluted with 15 g of methanol, 0.14 g of 3-glycidoxypropyltrimethoxysilane and 1.13 g of a 1 mol / L NaOH aqueous solution are added and stirred.
  • the surface-coated particle dispersion liquid 2 was obtained.
  • the liquid composition obtained by mixing and stirring the surface coating dispersions 1 and 2 in the same amount was formed into a 10 cm ⁇ 10 cm ⁇ 3.5 mmt high heat ray absorbing glass (AGC: UVFL) in the same procedure as in Example 1 to shield the heat.
  • a glass substrate with a film was obtained.
  • the film thickness of the heat shield film, the content of the conductive component contained in the heat shield film, the surface resistance, the radio wave transmittance loss, and the transmission at a wavelength of 900 nm was measured, and the heat shielding property was evaluated. The results are shown in Table 1 below.
  • the glass substrate with a heat shield film of Examples 1 to 3 and 7 has a radio wave transmission loss of 5 dB or less at a frequency of 80 GHz, a transmittance of 15% or more at a wavelength of 900 nm, and an average reflectance of 25 at a wavelength of 5 to 15 ⁇ m. % Or more, so that high radio wave transmittance, high transparency in the near infrared region, and high heat shielding property were satisfied at the same time.
  • the glass substrate with a heat shield film of Example 7 uses metal oxide particles having a compound having a reactive group as a conductive component on the surface, so that bonds are formed between the metal oxide particles via these compounds. It was formed and found to be excellent in abrasion resistance.
  • the glass substrate with a heat-shielding film of Example 5 has a heat-shielding film containing silver as a conductive component, and has heat-shielding properties in order to block the near-infrared region (900 nm), which is one of the heat-shielding regions.
  • high radio wave transparency and high transparency in the near infrared region could not be obtained.
  • the glass substrate with a heat-shielding film of Example 6 has a heat-shielding film containing tungsten cesium oxide as a conductive component, and has radio wave transmission and heat-shielding properties, but high transparency in the near-infrared region cannot be obtained. rice field.
  • the glass substrate with a heat shield film of the present invention is useful as a heat shield glass for vehicle window glass and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

本発明は、ガラス板(11)と、前記ガラス板の一方の表面に設けられた遮熱膜(12)とを備える遮熱膜付きガラス基材(1)であって、前記遮熱膜付きガラス基材は、周波数80GHzにおける電波透過損失が5dB以下であり、波長900nmにおける透過率が15%以上であり、波長5~15μmにおける平均反射率が25%以上である、遮熱膜付きガラス基材(1)に関する。

Description

遮熱膜付きガラス基材
 本発明は、遮熱膜付きガラス基材に関する。
 本願は、2020年11月18日に、日本に出願された特願2020-192038号に基づき優先権を主張し、その内容をここに援用する。
 ADAS(Advanced Driver-Assistance Systems,先進運転支援システム)技術の発達に伴い、自動車の車内(ガラスの内側)には、センシングに関わる機器が搭載される事例が増えている。そこで、自動車用ガラスには、AM、FM、テレビ等の電波透過性に加え、可視光線カメラ、ミリ波レーダ、LiDar、レインセンサ等の光線透過性が要求される。
 また、自動車用ガラスには、燃費規制や省エネ化のニーズの高まりにより、高い遮熱性が要求される。電波透過性の遮熱ガラスとしては、所定の板厚のガラス板と、ガラス板の一方の主面上に設けられた赤外線吸収剤を含有する被膜とを備え、波長1000nmにおける平均透過率が18~30%、かつ波長1500nmにおける平均透過率が25~40%であるガラス物品(遮熱ガラス)が提案されている(特許文献1)。
特開2017-145162号公報
 しかし、波長1000nm付近の近赤外領域の透過率を下げると、赤外センサ等の感度が得られないため、特許文献1のガラス物品は、高い電波透過性、近赤外領域の高い透過性、及び高い遮熱性を同時に実現することが困難であるという課題がある。
 本発明は、高い電波透過性、近赤外領域の高い透過性、及び高い遮熱性を同時に実現可能な遮熱膜付きガラス基材を提供する。
 本発明は、以下の態様を有する。
[1] ガラス板と、前記ガラス板の一方の表面に設けられた遮熱膜とを備える遮熱膜付きガラス基材であって、
 前記遮熱膜付きガラス基材は、周波数80GHzにおける電波透過損失が5dB以下であり、波長900nmにおける透過率が15%以上であり、波長5~15μmにおける平均反射率が25%以上である、遮熱膜付きガラス基材。
[2] 前記遮熱膜の表面抵抗率が、10Ω/sq.以上10Ω/sq.以下であり、前記表面抵抗率をRとし、前記遮熱膜の膜厚をd(μm)としたとき、下式(1)を満たす、[1]に記載の遮熱膜付きガラス基材。
 R<10000exp(14.093×d) ・・・(1)
[3] 前記遮熱膜の膜厚が、5μm以下である、[1]又は[2]に記載の遮熱膜付きガラス基材。
[4] 前記遮熱膜が、導電性成分として金属酸化物粒子及び導電性高分子からなる群のうち、いずれか1種以上を含む、[1]乃至[3]のいずれかに記載の遮熱膜付きガラス基材。
[5] 前記導電性高分子が、芳香環構造を有する、[4]に記載の遮熱膜付きガラス基材。
[6] 前記遮熱膜は、前記導電性成分の含有量が50質量%以上の膜である、[4]又は[5]に記載の遮熱膜付きガラス基材。
[7] 前記ガラス板の一方の表面のうち、日光が照射される領域の全面に前記遮熱膜が設けられる、[1]乃至[6]のいずれか一項に記載の遮熱膜付きガラス基材。
[8] 前記ガラス板が、車両用窓ガラスである、[1]乃至[7]のいずれかに記載の遮熱膜付きガラス基材。
 本発明の遮熱膜付きガラス基材は、高い電波透過性、近赤外領域の高い透過性、及び高い遮熱性を同時に実現できる。
本実施形態の遮熱膜付きガラス基材の構成を示した概略模式図である。
 以下に、本発明を適用した一実施形態である遮熱膜付きガラス基材の構成について説明する。
 以下の用語の定義は、本明細書及び請求の範囲にわたって適用される。
 ガラス板の厚さ及び遮熱膜の膜厚は、幾何学的厚さである。
 数値範囲を示す「~」は、その前後に記載された数値の上限値及び下限値として含むことを意味する。
 本実施形態の遮熱膜付きガラス基材1は、図1に示されるようにガラス板11と、前記ガラス板の一方の表面に設けられた遮熱膜12とを備える。前記遮熱膜付きガラス基材は、周波数80GHzにおける電波透過損失が5dB以下であり、波長900nmにおける透過率が15%以上であり、波長5~15μmにおける平均反射率が25%以上である。
 ガラス板の材質としては、ソーダライムガラス、アルミノケイ酸塩ガラス、無アルカリガラス、ホウケイ酸ガラス等が挙げられ、ソーダライムガラスが好ましい。
 ガラス板は、強化されていてもよい。強化手段は限定されず、物理強化であっても化学強化であってもよい。
 ガラス板の厚さは、遮熱膜付きガラス基材の用途に応じて適宜設定される。遮熱膜付きガラス基材を車両用窓ガラスとして用いる場合、ガラス板の厚さは、2.0~6.0mmが好ましく、2.5~5.5mmがより好ましく、2.8~5.0mmがさらに好ましい。ガラス板の厚さが上記好ましい範囲であると、電波透過性、可視光領域及び近赤外領域における光線透過性が充分に担保されやすい。ガラス板の厚さは、共焦点式変位計:Micro Epsilon社製「Confocal IFC2461MP」によって測定することができる。ガラス板の無作為に選択した5点において厚さを測定し、5点の平均値をガラス板の厚さとする。
 遮熱膜は、波長5~15μmの中赤外領域~遠赤外領域を遮断(反射)し、高い電波透過性、可視光領域及び近赤外領域における高い光線透過性を有する。
 遮熱膜は、表面抵抗率が10Ω/sq.以上10Ω/sq.以下であり、表面抵抗率をRとし、遮熱膜の膜厚をd(μm)としたとき、膜厚dが0.05~5μmの範囲において、下式(1)を満たすことが好ましい。
 R<10000exp(14.093×d) ・・・(1)
 遮熱膜の表面抵抗率は、抵抗率計を用い、JIS K 7194(1994年)に従って測定することができる。
 遮熱膜の表面抵抗率が10Ω/sq.以下であれば、遮熱膜の膜厚が薄くても波長5~15μmの中赤外領域~遠赤外領域に対して高い反射率が得られやすい。
 遮熱膜の表面抵抗率が10Ω/sq.以上であれば、高い電波透過性を担保しやすい。
 本願発明者らの検討によれば、遮熱膜の表面抵抗率Rが上昇するに伴い、波長5~15μmの中赤外領域~遠赤外領域に対する反射率を得るために必要な膜厚dは上昇し、表面抵抗率Rが10Ω/sq.超の膜では厚膜化しても中赤外領域~遠赤外領域に対する高い反射率が得られないことを確認した。上記式(1)を満たす遮熱膜によれば、所定の膜厚の範囲において、中赤外領域~遠赤外領域に対する高い反射率が得られやすい。
 遮熱膜の表面抵抗率は、10Ω/sq.以上10Ω/sq.以下が好ましく、10Ω/sq.以上10Ω/sq.以下がより好ましく、10Ω/sq.以上10Ω/sq.以下がさらに好ましい。
 遮熱膜の膜厚は、5μm以下が好ましく、1.5μm以下がより好ましく、1μm以下がさらに好ましい。遮熱膜の膜厚は、50nm以上が好ましい。遮熱膜の膜厚は50nm以上、5μm以下が好ましく、50nm以上、1.5μm以下がより好ましく、50nm以上、1μm以下がさらに好ましい。遮熱膜の膜厚が上記範囲内であれば、波長5~15μmの中赤外領域~遠赤外領域に対する反射率を得るために必要な表面抵抗率が得られやすくなる。さらに、遮熱膜の膜厚が5μm以下であれば、遮熱膜を成膜する際の原料の削減が可能となり、経済性に優れる。
 遮熱膜の膜厚は、遮熱膜付きガラス基材について、触針式表面形状測定器を用い、測定することができる。
 遮熱膜は、導電性成分として金属酸化物粒子及び導電性高分子からなる群のうち、いずれか1種以上を含むことが好ましい。
 金属酸化物粒子としては、錫ドープ酸化インジウム(ITO)、アンチモンドープ酸化錫(ATO)、複合タングステン酸化物、フッ素ドープ酸化スズ(FTO)等が挙げられ、波長1000nm付近の近赤外線の透過性の観点から、ITO、ATOが好ましい。金属酸化物粒子の粒子径は、平均一次粒子径が、1~150nmであればよく、5~100nmであればより好ましい。
 なお、金属酸化物粒子の平均一次粒子径は、市販のナノ粒子径測定装置:マイクロトラック社製、「Nanotrac Wave II」を用い、動的散乱法に基づいて測定することができる。具体的には、動的散乱法により、体積基準の累積粒度分布曲線を得、得られた累積粒度分布曲線において、微小粒子側から50%累積時の粒子径の値を平均一次粒子径とする。
 金属酸化物粒子は、表面に、反応性基を有する化合物、水素結合性を有する官能基を有する化合物、水素原子を有する官能基を有する化合物(以下、これらの化合物を総称して「反応性基を有する化合物等」ともいう。)が化学結合、吸着していてもよい。粒子表面に反応性基を有する化合物等が存在することにより粒子間での結合が形成され、耐摩耗性や耐傷つき性に優れた遮熱膜が得られやすくなる。
 反応性基としては、アミノ基、エポキシ基、アクリロイル基、メタクリロイル基、ビニル基、チオール基、イソシアネート基、カルボキシル基、ヒドロキシル基、フェノール基、ニトリル基、イミノ基、ハロゲン基、ウレイド基、イソシアヌレート基などが挙げられる。
 水素結合性を有する官能基としては、アミノ基、エポキシ基、エーテル基、イソシアネート基、カルボニル基、カルボキシル基、ヒドロキシル基、フェノール基、ニトリル基、イミノ基、ウレイド基、イソシアヌレート基などが挙げられる。
 水素原子を有する官能基としては、アミノ基、ヒドロキシル基、フェノール基、チオール基、カルボキシル基などが挙げられる。
 粒子表面に存在している化合物の反応性基、官能基は粒子ごとに異なっていてもよい。例えば、アミノ基を有する化合物が表面に存在している粒子とエポキシ基を有する化合物が表面に存在している粒子がそれぞれ含まれることで、アミノ基とエポキシ基の反応によって粒子間結合が形成される。逆に粒子表面に存在している化合物の反応性基は単一種でも良く、例えば、アクリロイル基を有する化合物が表面に存在している粒子は、アクリロイル基同士の反応により粒子間結合を形成することもできる。
 また、水素結合性を有する官能基を有する化合物が表面に存在している粒子と、水素原子を有する官能基を有する化合物が表面に存在している粒子が含まれることが好ましい。このような場合、水素結合性を有する官能基が水素原子を有する官能基の水素原子と水素結合することで、粒子間結合が形成される。
 反応性基を有する化合物、水素結合性を有する官能基を有する化合物、水素原子を有する官能基を有する化合物を粒子表面に化学結合させる方法として、特に限定はされないが、シランカップリング剤を用いる方法などが考えられる。金属酸化物粒子の分散液中にNaOH,KOH,NHなどのアルカリ成分又は硫酸、硝酸、塩酸、酢酸、マレイン酸などの酸成分と共に、アミノ基やエポキシ基などの反応性基、水素結合性を有する官能基、及び水素原子を有する官能基のいずれか一種以上の基を有するシランカップリング剤を添加し攪拌することで、金属酸化物粒子表面にシランカップリング剤が結合し粒子表面に反応性基を存在させることができる。
 反応性基を有する化合物等により金属酸化物粒子表面の全面が被覆されていてもよく、一部が被覆されていてもよい。金属酸化物粒子表面の全面積に対する反応性基を有する化合物等の被覆率は、5~90%が好ましく、10~80%がより好ましく、20~70%がさらに好ましい。
 被覆率は、透過型電子顕微鏡:日立製HT7700で観察した像より測定することができる。
 金属酸化物粒子表面の全面が反応性基を有する化合物等により被覆されている場合、被覆層が厚すぎると遮熱膜の表面抵抗値が高くなりすぎる場合がある。そのため、金属粒子表面の被覆層の厚さは5nm以下が好ましく、3nm以下がより好ましく、1nm以下が特に好ましい。被覆層の厚さは0.1~5nmが好ましく、0.3~3nmがより好ましく、0.5~1nmがさらに好ましい。
 被覆層の厚さは、透過型電子顕微鏡:日立製HT7700で観察した像より測定することができる。
 金属酸化物粒子と反応性基を有する化合物等の総質量に対する、反応性基を有する化合物等の含有量は、0.5~50質量%であることが好ましく、1~30質量%であることがより好ましく、3~15質量%であることが特に好ましい。なお、反応性基を有する化合物の場合、反応により、その構造が変化するが、上記含有量を計算する上では、反応により変化した後の化合物由来の単位の総質量を使用する。
 導電性高分子としては、ポリ(4-スチレンスルホン酸)をドープしたポリ(3,4-エチレンジオキシチオフェン)(PEDOT/PSSともいう。)、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン等が挙げられ、空気安定性の観点から、芳香環構造を有する(PEDOT/PSS)、ポリチオフェン等が好ましい。
 遮熱膜に含まれる導電性成分の含有量は、遮熱膜の固形分の総質量に対して50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることがさらに好ましく、90質量%以上であることが特に好ましい。遮熱膜に含まれる導電性成分の含有量は、遮熱膜の固形分の総質量に対して50~100質量%以上であることが好ましく、60~99質量%以上であることがより好ましく、70~98質量%以上であることがさらに好ましく、90~97質量%以上であることが特に好ましい。
 金属酸化物粒子の表面に反応性基を有する化合物等が存在する場合は、導電性成分の含有量は、金属酸化物粒子のみの量とする。
 遮熱膜に含まれる導電性成分の含有量が50質量%以上であれば、遮熱膜の表面抵抗率が10Ω/sq.以下となりやすい。さらに、90質量%以上であれば、膜厚5μm以下で表面抵抗率が10Ω/sq.以下となりやすい。
 遮熱膜には、本発明の効果を損なわない範囲において、アルコキシシラン化合物、エポキシ樹脂、アクリル樹脂、フェノール樹脂等のマトリクス成分が含まれてもよい。
 遮熱膜に含まれるマトリクス成分の含有量は、遮熱膜の総質量に対して50質量%未満であることが好ましく、40質量%未満であることがより好ましく、30質量%未満であることがさらに好ましく、10質量%未満であることが特に好ましい。遮熱膜にマトリクス成分が含まれる場合、マトリクス成分の含有量は、遮熱膜の総質量に対して0質量%超50質量%未満であることが好ましく、1質量%以上40質量%未満であることがより好ましく、2質量%以上30質量%未満であることがさらに好ましく、3質量%以上10質量%未満であることが特に好ましい。また、本発明の一つの側面としては、遮熱膜には、マトリクス成分が含まれていないことが好ましい。
 金属酸化物粒子を用いた遮熱膜の場合、マトリクス成分が粒子表面に結合することで、耐摩耗性や耐傷つき性に優れた遮熱膜が得られやすくなる。マトリクス成分は金属酸化物粒子表面に吸着、化学結合することにより、粒子表面に結合する。金属酸化物粒子表面と化学結合可能なマトリクス成分としてはシラノール基を有するマトリクス成分が例として挙げられる。また、マトリクス成分は、反応性基を有することが好ましい。粒子表面に結合したマトリクス成分中の反応性基が反応することにより粒子間の結合が形成され、耐摩耗性や耐傷つき性に優れた遮熱膜が得られやすくなる。反応性基としては、シラノール基、ヒドロキシル基、カルボニル基、アクリロイル基、エポキシ基などが挙げられる。
 マトリクス成分とは別に金属酸化物粒子間を架橋する成分が含まれていてもよい。架橋剤としては一分子中に2つ以上の反応性官能基を有する化合物等が考えられる。一分子中に同一の反応基を有する化合物の例としてはエチレンジアミン、ジエチレントリアミンなどが挙げられ、異なる反応性基を有する化合物としてはシランカップリング剤であるアミノプロピルトリメトキシシランやグリシドキシプロピルトリメトキシシランなどが挙げられる。
 遮熱膜には、成膜時に不可避的に導入される不純物(表面調整剤、粒子分散剤、有機溶媒、水等)が含まれてもよい。
 遮熱膜に含まれる不可避的な不純物の含有量は、遮熱膜の総質量に対して50質量%未満であることが好ましく、40質量%未満であることがより好ましく、30質量%未満であることがさらに好ましく、10質量%未満であることが特に好ましい。遮熱膜に不純物が含まれる場合、不純物の含有量は、遮熱膜の総質量に対して0質量%超50質量%未満であることが好ましく、0質量%超40質量%未満であることがより好ましく、0質量%超30質量%未満であることがさらに好ましく、0質量%超10質量%未満であることが特に好ましい。また、本発明の一つの側面としては、遮熱膜には、不純物が含まれていないことが好ましい。
 遮熱膜は、単層であってもよく、種類の異なる2種以上の層の組み合わせ(積層)であってもよい。具体的には、以下の(a)~(f)の態様が挙げられる。(a)金属酸化物粒子を1種含む単層
(b)金属酸化物粒子を2種以上含む単層
(c)導電性高分子を1種含む単層
(d)導電性高分子を2種以上含む単層
(e)金属酸化物粒子を1種以上と、導電性高分子を1種以上とを含む単層
(f)上記(a)~(e)の層のうち、2種以上の層の組み合わせ(積層)
 遮熱膜は、ガラス板の一方の表面に設けられる。また、遮熱膜は、ガラス板の一方の表面のうち、日光が照射される領域の全面に設けられることが好ましい。なお、本実施形態の遮熱膜付きガラス基材が上下方向に昇降あるいは左右方向にスライド(可動)して前記遮熱膜付きガラス基材の一部が収納部に収納される場合、収納部に収納される領域及びその近傍の領域においてはガラス板の表面に遮熱膜が設けられていなくてもよい。
 本実施形態の遮熱膜付きガラス基材は、遮熱膜が高い電波透過性、可視光領域及び近赤外領域における高い光線透過性を有しており、ガラス板表面において遮熱膜がない領域(透過領域)を設ける必要がなく、遮熱膜を成膜が容易であるため、生産性に優れる。
 遮熱膜は、本発明の効果を損なわない範囲において、必要に応じてガラス板と遮熱膜との間に機能層を有していてもよく、最もガラス板から遠い遮熱膜の表面にトップ層を有していてもよい。
 必要に応じて設けられる機能層は、特に限定されない。機能層としては、金属窒化物を含む熱線反射膜、紫外線吸収剤を含むUVカット膜、吸水性有機樹脂を含む防曇膜等が挙げられる。
 機能層の厚さは、1nm~50μmが好ましく、5nm~30μmがより好ましく、10nm~20μmが特に好ましい。
 必要に応じて設けられるトップ層は、遮熱膜を保護する。
 トップ層の材質としては、二酸化ケイ素、窒化チタン、カーボン、有機樹脂、シラン縮合体等が挙げられる。
 トップ層の厚さは、1~50nmが好ましく、1~20nmがより好ましく、1~10nmが特に好ましい。
 本実施形態の遮熱膜付きガラス基材は、周波数80GHzにおける電波透過損失が5dB以下であり、4dB以下が好ましい。0~5dBの範囲とすることが好ましく、0~4dBの範囲とすることがより好ましく、0~3.5dBの範囲とすることがさらに好ましく、0~3.0dBの範囲とすることが特に好ましい。周波数80GHzにおける電波透過損失を5dB以下とすることで、ミリ波レーダ等に必要な電波透過性を担保しやすい。
 遮熱膜付きガラス基材の電波透過損失は、自由空間法にて測定することができる。測定条件の詳細は、実施例で後述する。
 また、本実施形態の遮熱膜付きガラス基材は、周波数80GHz、28GHz、及び3.5GHz以下における電波透過損失がそれぞれ5dB以下であることが好ましく、4dB以下であることがより好ましく、3.5dB以下であることがさらに好ましく、3.0dB以下であることが特に好ましい。0~5dBの範囲とすることが好ましく、0~4dBの範囲とすることがより好ましく、0~3.5dBの範囲とすることがさらに好ましく、0~3.0dBの範囲とすることが特に好ましい。なお、3.5GHz以下における電波透過損失は、例えば2GHzの電磁透過損失を測定することにより、確認することができる。周波数80GHz、28GHz、及び3.5GHz以下における電波透過損失をそれぞれ5dB以下とすることで、ミリ波レーダ、テレビ・ラジオ・衛星放送、5G・LTE等の複数の情報通信端末に必要な電波透過性を同時に担保できる。
 なお、本実施形態の遮熱膜付きガラス基材では、周波数80GHz、28GHz、及び3.5GHz以下の電波に対する電波透過損失を例に挙げて説明したが、これらの周波域帯に限定されるものではなく、数百MHz~数十GHz程度の周波数帯において上記と同様の電波透過損失が得られることが好ましい。
 本実施形態の遮熱膜付きガラス基材は、波長900nmにおける透過率が15%以上であり、15~50%の範囲とすることが好ましく、20~40%の範囲とすることがより好ましい。波長900nmにおける透過率を15%以上とすることで、赤外センサ等に必要な近赤外領域における光線透過性を担保しやすい。
 遮熱膜付きガラス基材の波長900nmにおける透過率は、分光光度計を用い、測定することができる。
 本実施形態の遮熱膜付きガラス基材は、波長5~15μmにおける平均反射率が25%以上であり、30~70%の範囲とすることが好ましく、30~60%の範囲とすることがより好ましい。波長5~15μmにおける平均反射率を25%以上とすることで、本願の発明者らが新しく見出した遮熱性発現領域である中赤外領域~遠赤外領域において高い反射率を担保できる。
 遮熱膜付きガラス基材の波長5~15μmにおける反射率は、反射測定装置を設置した赤外分光光度計を用い、測定することができる。波長5~15μmにおける平均反射率は、波長5~15μmの反射率を波長5nmずつ測定して、その平均値(%)として算出することができる。
 本実施形態の遮熱膜付きガラス基材の可視光線透過率は、50~95%が好ましく、60~85%がより好ましく、70~75%がさらに好ましい。可視光線透過率が前記範囲内であると、透過像の認識に必要な透過光量を維持しつつ、遮熱性を高めることができる。
 遮熱膜付きガラス基材の可視光線透過率は、分光光度計を用いて各波長の透過率を測定し、JIS R3212(1998年)に従って算出することができる。 
 本実施形態の遮熱膜付きガラス基材は、導電性成分を含む液状組成物をガラス板上に塗布した後、液状組成物が塗布されたガラス板を加熱して乾燥する工程を1回以上繰り返して製造することができる。遮熱膜付きガラス基材の製造では、必要に応じてその他の工程を有していてもよい。乾燥処理により、導電性成分を含む液状組成物から液状媒体が除去され、ガラス板の表面に導電性成分を含む被膜が形成される。
 導電性成分が金属酸化物粒子を含む場合、液状媒体に金属酸化物粒子を分散させて任意の固形分濃度に調製された液状組成物を得る。金属酸化物粒子の表面を、前記反応性基を有する化合物等で被覆する場合は、液状組成物に反応性基を有する化合物等と、アルカリ成分又は酸成分と、が含まれていることが好ましい。
 導電性成分が導電性高分子を含む場合、液状媒体に導電性高分子を溶解、又は分散させて任意の濃度に調製された液状組成物を得る。
 液状媒体としては、アセトン、メチルエチルケトン等のケトン類、酢酸エチル、酢酸ブチル等のエステル類、メタノール、エタノール、1-プロパノール、2-プロパノール等のアルコール類、酢酸等のカルボン酸類、アセトニトリル等のニトリル類、水等が挙げられる。これらは、単独で使用してもよく、2種類以上を併用してもよい。
 液状組成物は、本発明の効果を損なわない範囲において、アルコキシシラン化合物、エポキシ樹脂、アクリル樹脂、フェノール樹脂等のマトリクス成分を含んでいてもよい。液状組成物がマトリクス成分を含む場合、液状組成物におけるマトリクス成分の含有量は、組成物の総質量に対して50質量%以下が好ましく、5~40質量%がより好ましく、10~30質量%がさらに好ましい。なお、マトリクス成分の含有量は、固形分換算含有量である。本発明において、成分の固形分換算含有量とは、水等の揮発性成分を除いた残渣の質量をいう。
 液状組成物のガラス板の表面上への塗布は、スピンコート、ディップコート、スプレーコート、フローコート、ダイコート等の一般的な塗布方法を適用できる。フローコートは、曲面形状を有すガラス板の場合に特に好適である。
 液状組成物が塗布されたガラス板を加熱して乾燥する工程では、電気炉、ガス炉、赤外加熱炉等を使用できる。加熱温度や時間は、適宜調整することができる。加熱温度としては、例えば、70~300℃の範囲が挙げられる。また、加熱時間としては、例えば、1~180分間が挙げられる。
 本実施形態の遮熱膜付きガラス基材は、遮熱ガラスとして車両用窓ガラス等として用いることができる。
 本実施形態の遮熱膜付きガラス基材は、そのまま単板で用いてもよく、合わせガラスに用いてもよく、複層ガラスに用いてもよい。
 合わせガラスは、第1の透明基板と、第2の透明基板と、これらの透明基板の間に配置された中間膜とを有する。本発明の遮熱膜付きガラス基材は、第1の透明基板及び第2の透明基板のいずれか一方として用いることができる。
 複層ガラスは、第1の透明基板と、第2の透明基板と、これらの透明基板の間に空隙が形成されるように第1の透明基板及び第2の透明基板の周縁部に介在配置された枠状のスペーサとを有する。本発明の遮熱膜付きガラス基材は、第1の透明基板及び第2の透明基板のいずれか一方として用いることができる。
 本実施形態の遮熱膜付きガラス基材を合わせガラス又は複層ガラスに用いる場合、遮熱膜が内側(室内に接する側)となるように配置する。
 以上説明した本実施形態の遮熱膜付きガラス基材は、周波数80GHzにおける電波透過損失が5dB以下であり、波長900nmにおける透過率が15%以上であり、波長5~15μmにおける平均反射率が25%以上である。従来の遮熱膜が遮熱性を得るために遮断していた波長900nmにおける透過率が15%以上とすることで、赤外センサ等に必要な近赤外領域における光線透過性を担保できる。一方で、新しく見出した遮熱性発現領域として中赤外領域~遠赤外領域を遮断(反射)することで、遮熱性を担保できる。その結果、電波透過性、近赤外領域の透過性、及び遮熱性を同時に満足するガラス基材が提供できる。
 また、本実施形態の遮熱膜付きガラス基材は、周波数80GHz、28GHz、及び3.5GHz以下における電波透過損失がそれぞれ4dB以下である場合、ミリ波レーダ、テレビ・ラジオ・衛星放送、5G・LTE等の複数の情報通信端末に必要な電波透過性を同時に担保できる。
 本実施形態の遮熱膜付きガラス基材を車両用窓ガラスとして用いる場合、遮熱性を維持しつつ、ガラス基材の遮熱膜が設けられた領域において透過領域を設けることなく、ミリ波レーダ、マイクロ波レーダ、LiDAR、レインセンサ等のレーダ・センサ類を同時に機能させることが可能となる。また、ガラス基材の遮熱膜が設けられた領域において透過領域を設けることなく、レーダ・センサ類を自由に配置できる。
 なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の効果を損なわない範囲において種々の変更を加えることが可能である。
 以下、実施例によって本発明を詳細に説明するが、本発明はこれらに限定されない。例1~3、7は実施例であり、例4~6は比較例である。
(膜厚)
 遮熱膜付きガラス基材について、触針式表面形状測定器(ULVAC:Dektak150)を用い、遮熱膜の膜厚(μm)を測定した。
(導電性成分の含有量)
 遮熱膜に含まれる導電性成分の含有量は、液状組成物を用いて遮熱膜を成膜する場合、調製した液状組成物に含まれる全固形分に対する導電性成分の含有量を算出した。
 また、2種以上の層を含む積層膜の場合、積層膜全体を遮熱膜とした際の導電性成分の含有量と、任意の層(単層)を遮熱膜とした際の導電性成分の含有量とを、それぞれ算出した。
(表面抵抗率)
 遮熱膜付きガラス基材について、抵抗率計(三菱化学製:ロレスタGP)を用い、JIS K 7194(1994年)に従って表面抵抗率(Ω/sq.)を測定した。
(電波透過損失)
 作製した遮熱膜付きガラス基材の電波透過損失を、自由空間法にて測定した。
 電波透過損失は、アンテナを対向させ、それらの中間に、遮熱膜付きガラス基材を開口部の延伸方向と電波の偏波方向が直交するように設置し、100mmΦの開口部にて遮熱膜付きガラス基材がない場合を0dBとして、周波数2GHz、28GHz、80GHzの電波に対する電波透過損失をそれぞれ測定した。また、遮熱膜を形成する前のガラス板のみについても同様に電波透過損失を測定した。
(波長900nmの透過率)
 遮熱膜付きガラス基材について、分光光度計(日立製作所製:U-4100)を用い、波長900nmの透過率(%)を測定した。
(波長5~15μmの平均反射率)
 遮熱膜付きガラス基材について、反射測定装置(日本分光製:RF-81S)を設置した赤外分光光度計(日本分光製:FT/IR-4600U-4100)を用い、波長5~15μmの反射率を波長5nmずつ測定して、その平均値(%)を算出した。
(可視光線透過率)
 遮熱膜付きガラス基材について、分光光度計(日立製作所製:U-4100)を用いて各波長の透過率を測定し、JIS R3212(1998年)に従って可視光線透過率(Tv[%])を算出した。
(遮熱性評価)
 遮熱性は、人口太陽灯、セラミックヒーター、シートヒーターによって加熱したガラスを用い、ガラス越しに手の甲へ波長0.8~20μmの光を照射した際の暑熱感について、ユーザ63人に対して行ったアンケートによって評価した。
 被験者は、照射前後の寒暑感申告、及び照射直後の照射による手背の感覚についての主観的申告を申告用紙にて回答した。
 遮熱膜を有さない車両用ガラスと比較して遮熱性を有すると回答した人数が50人以上の場合、「A」と評価した。一方、遮熱膜を有さない車両用ガラスと比較して遮熱性を有さない(違いがない)と回答した人数が50人未満の場合、「B」と評価した。
(耐摩耗性評価)
 耐摩耗性は往復式トラバース試験機(ケイエヌテー社製)を用いて、摩耗面が1cm×4cmとなるようにネル布に500gの荷重をかけて500回往復させたのちの外観を目視により観察し、まったく傷や剥離がないものをA、反射光でわずかにこすり跡が見えるものをBとした。
(例1)
 ITO分散液(固形分濃度20%)5gをメタノール15gで希釈した液状組成物1を、10cm×10cm×3.5mmtの高熱線吸収ガラス(AGC製:UVFL)にスピンコーター(ミカサ社製:MS-B200)を用い、回転数100rpmでスピンコートしたのち、大気雰囲気において150℃で3分間乾燥した。さらに、乾燥後の基材上に液状組成物1を同条件でスピンコートし、スピンコートと乾燥は合計3回繰り返して行い、遮熱膜付きガラス基材を得た。
(例2)
 ポリ(4-スチレンスルホン酸)をドープしたポリ(3,4-エチレンジオキシチオフェン)(PEDOT/PSS)(Sigma-Aldrich社製)を濃度1.3%に蒸留水で希釈した液状組成物2を、10cm×10cm×3.5mmtの高熱線吸収ガラス(AGC製:UVFL)にスピンコーター(ミカサ社製:MS-B200)を用い、回転数100rpmでスピンコートしたのち、大気雰囲気において100℃で30分間乾燥し、遮熱膜付きガラス基材を得た。
(例3)
 スピンコートの回転数を100rpmから500rpmに変更した以外は例2と同様の手順で、遮熱膜付きガラス基材を得た。
(例4)
 10cm×10cm×3.5mmtの高熱線吸収ガラス(AGC製:UVFL)を製膜せずに用いた。
(例5)
 10cm×10cm×2.8mmtのガラス板(AGC製:FL)をインライン型スパッタ装置に導入し、真空度が2×10-6Torr以下になるまで真空排気し、上記ガラス板面に、スズがドープされた亜鉛酸化物とアルミニウムがドープされた亜鉛酸化物の2層の合計膜厚が43.5nmになるように成膜した。次いで、銀を膜厚12.5nm、チタンを2nm、アルミニウムがドープされた亜鉛酸化物、スズがドープされた亜鉛酸化物、アルミニウムがドープされた亜鉛酸化物の順に3層の合計膜厚が87.5nm、銀を12.5nm、チタンを2nm、アルミニウムがドープされた亜鉛酸化物、スズがドープされた亜鉛酸化物の順に2層の合計膜厚が31.5nm、チタン酸化物1nmを順次成膜した。成膜後、730℃、空気中で4分間の条件で積層体を熱処理し、遮熱膜付きガラス基板を得た。
 なお、遮熱膜に含まれる導電性成分の含有量は、銀を導電性成分とし、積層膜全体における含有量と、銀単層における含有量とをそれぞれ算出した。
(例6)
 2,2’,4,4’-テトラヒドロキシベンゾフェノン(BASF社製)2.05g、3-グリシドキシプロピルトリメトキシシラン(信越化学社製)5.14g、塩化ベンジルトリエチルアンモニウム(純正化学社製)0.033g、酢酸ブチル(純正化学社製)4.17gを仕込み、120℃まで加熱し4時間攪拌したのちに、常温に冷却した。次いで、ソルミックスAP-1:46.2g、テトラエトキシシラン(純正化学社製)14.2g、SR-SEP(阪本薬品工業社製)0.87g、純水18.4g、BYK307(ビックケミー社製)0.06g、濃度63質量%の硝酸水溶液0.10g、マレイン酸0.012gを仕込み、50℃で2時間撹拌したのちに、セシウム酸化タングステンナノ粒子の分散液であるYMF-02A(住友金属鉱山社製)8.7gを加えて液状組成物6を得た。
 得られた液状組成物6を、10cm×10cm×3.5mmtの高熱線吸収ガラス(AGC製:UVFL)にスピンコーター(ミカサ社製:MS-B200)を用い、回転数50rpmでスピンコートしたのち、大気雰囲気において200℃で30分間乾燥し、遮熱膜付きガラス基材を得た。
(例7)
 ITO分散液(固形分濃度20%)5gをメタノール15gで希釈し、さらに3-アミノプロピルトリメトキシシラン0.14gと1mol/LのNaOH水溶液1.13gを添加して攪拌することで表面被覆粒子分散液1を得た。
 同様に、ITO分散液(固形分濃度20%)5gをメタノール15gで希釈し、さらに3-グリシドキシプロピルトリメトキシシラン0.14gと1mol/LのNaOH水溶液1.13gを添加して攪拌することで表面被覆粒子分散液2を得た。
 表面被覆分散液1と2を同量で混合攪拌した液状組成物を例1と同様の手順で10cm×10cm×3.5mmtの高熱線吸収ガラス(AGC製:UVFL)に製膜し、遮熱膜付きガラス基板を得た。
 得られた例1~例7の遮熱膜付きガラス基材について、遮熱膜の膜厚、遮熱膜に含まれる導電性成分の含有量、表面抵抗率、電波透過損失、波長900nmの透過率、波長5~15μmの平均反射率、及び可視光線透過率(Tv)の測定、並びに遮熱性評価を行った。結果を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 例1~3、7の遮熱膜付きガラス基材は、周波数80GHzにおける電波透過損失が5dB以下であり、波長900nmにおける透過率が15%以上であり、波長5~15μmにおける平均反射率が25%以上であるため、高い電波透過性、近赤外領域の高い透過性、及び高い遮熱性を同時に満たした。
 特に例7の遮熱膜付きガラス基材は、導電性成分として反応性基を有する化合物が表面に存在する金属酸化物粒子を用いたため、これらの化合物を介して金属酸化物粒子間に結合が形成され、耐摩耗性に優れることがわかった。
 例4のガラス基材は、遮熱膜を有さないため、電波透過性及び近赤外領域の透過性を有するが、高い遮熱性が得られなかった。
 例5の遮熱膜付きガラス基材は、銀を導電性成分とする遮熱膜を有し、遮熱領域の一つである近赤外領域(900nm)を遮断するために遮熱性を有するが、高い電波透過性及び近赤外領域の高い透過性が得られなかった。
 例6の遮熱膜付きガラス基材は、セシウム酸化タングステンを導電性成分とする遮熱膜を有し、電波透過性及び遮熱性を有するが、近赤外領域の高い透過性が得られなかった。
 本発明の遮熱膜付きガラス基材は、遮熱ガラスとして車両用窓ガラス等に有用である。
 1・・・遮熱膜付きガラス基材
 11・・・ガラス板
 12・・・遮熱膜

Claims (8)

  1.  ガラス板と、前記ガラス板の一方の表面に設けられた遮熱膜とを備える遮熱膜付きガラス基材であって、
     前記遮熱膜付きガラス基材は、周波数80GHzにおける電波透過損失が5dB以下であり、波長900nmにおける透過率が15%以上であり、波長5~15μmにおける平均反射率が25%以上である、遮熱膜付きガラス基材。
  2.  前記遮熱膜の表面抵抗率が、10Ω/sq.以上10Ω/sq.以下であり、
     前記表面抵抗率をRとし、前記遮熱膜の膜厚をd(μm)としたとき、下式(1)を満たす、請求項1に記載の遮熱膜付きガラス基材。
     R<10000exp(14.093×d) ・・・(1)
  3.  前記遮熱膜の膜厚が、5μm以下である、請求項1又は2に記載の遮熱膜付きガラス基材。
  4.  前記遮熱膜が、導電性成分として金属酸化物粒子及び導電性高分子からなる群のうち、いずれか1種以上を含む、請求項1乃至3のいずれか一項に記載の遮熱膜付きガラス基材。
  5.  前記導電性高分子が、芳香環構造を有する、請求項4に記載の遮熱膜付きガラス基材。
  6.  前記遮熱膜は、前記導電性成分の含有量が50質量%以上の膜である、請求項4又は5に記載の遮熱膜付きガラス基材。
  7.  前記ガラス板の一方の表面のうち、日光が照射される領域の全面に前記遮熱膜が設けられる、請求項1乃至6のいずれか一項に記載の遮熱膜付きガラス基材。
  8.  前記ガラス板が、車両用窓ガラスである、請求項1乃至7のいずれか一項に記載の遮熱膜付きガラス基材。
PCT/JP2021/041899 2020-11-18 2021-11-15 遮熱膜付きガラス基材 WO2022107717A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180076790.XA CN116472172A (zh) 2020-11-18 2021-11-15 带隔热膜玻璃基材
JP2022563738A JPWO2022107717A1 (ja) 2020-11-18 2021-11-15
DE112021006087.2T DE112021006087T5 (de) 2020-11-18 2021-11-15 Glassubstrat mit einem wärmeabschirmungsfilm

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-192038 2020-11-18
JP2020192038 2020-11-18

Publications (1)

Publication Number Publication Date
WO2022107717A1 true WO2022107717A1 (ja) 2022-05-27

Family

ID=81708006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041899 WO2022107717A1 (ja) 2020-11-18 2021-11-15 遮熱膜付きガラス基材

Country Status (4)

Country Link
JP (1) JPWO2022107717A1 (ja)
CN (1) CN116472172A (ja)
DE (1) DE112021006087T5 (ja)
WO (1) WO2022107717A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004011381A1 (ja) * 2002-07-29 2004-02-05 Asahi Glass Company, Limited 赤外線遮蔽ガラス
JP2004338986A (ja) * 2003-05-14 2004-12-02 Nippon Sheet Glass Co Ltd 熱線遮蔽膜付き基体の製造方法および導電性酸化物を含む物品の製造方法
JP2019199877A (ja) * 2017-04-20 2019-11-21 Agc株式会社 断熱構造体
WO2020054762A1 (ja) * 2018-09-14 2020-03-19 Agc株式会社 電波透過性基板

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3130406B2 (ja) * 1993-05-14 2001-01-31 三菱電機株式会社 電波と赤外線との分離板およびその製法
JPH09142883A (ja) * 1995-11-17 1997-06-03 Central Glass Co Ltd 電波透過型熱線遮蔽ガラス及びその製造法
JP4279501B2 (ja) * 2002-03-28 2009-06-17 小松精練株式会社 電波吸収体用抵抗皮膜の製造方法
JP6679973B2 (ja) 2016-02-16 2020-04-15 Agc株式会社 赤外線吸収ガラス物品
JP7240955B2 (ja) 2019-05-27 2023-03-16 アロン化成株式会社 浴室用椅子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004011381A1 (ja) * 2002-07-29 2004-02-05 Asahi Glass Company, Limited 赤外線遮蔽ガラス
JP2004338986A (ja) * 2003-05-14 2004-12-02 Nippon Sheet Glass Co Ltd 熱線遮蔽膜付き基体の製造方法および導電性酸化物を含む物品の製造方法
JP2019199877A (ja) * 2017-04-20 2019-11-21 Agc株式会社 断熱構造体
WO2020054762A1 (ja) * 2018-09-14 2020-03-19 Agc株式会社 電波透過性基板

Also Published As

Publication number Publication date
JPWO2022107717A1 (ja) 2022-05-27
DE112021006087T5 (de) 2023-09-14
CN116472172A (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
JP4096277B2 (ja) 日射遮蔽材料、日射遮蔽膜用塗布液、及び、日射遮蔽膜
CN100429168C (zh) 一种透明隔热玻璃
JP6301483B2 (ja) 断熱フィルム、断熱フィルムの製造方法、断熱ガラスおよび窓
JP6492625B2 (ja) 赤外線遮蔽積層体及びこれを用いた赤外線遮蔽材
JP2008037668A (ja) 窓用合わせガラス
JP2022041986A (ja) 赤外線吸収粒子の製造方法
WO2007058016A1 (ja) 熱線遮蔽膜形成基材の製法
CN108531076B (zh) 日照遮蔽膜形成用涂布液及相关的粘合剂、日照遮蔽膜和基材
JP3262098B2 (ja) 熱線遮蔽材料とこれを用いた熱線遮蔽器材並びに塗布液および熱線遮蔽膜
JPH0841441A (ja) 紫外線、近赤外線遮へい用インジウム−錫酸化物粉末とこれを用いた紫外線、近赤外線遮へいガラスおよびその製造方法
JP2005226008A (ja) 日射遮蔽体形成用分散液及び日射遮蔽体並びにその製造方法
Morimoto et al. Wet chemical functional coatings for automotive glasses and cathode ray tubes
JP2008037671A (ja) 赤外線遮蔽膜付きガラス板
JP2002131531A (ja) 熱線反射性透明基材とその製造方法および熱線反射性透明基材が適用された表示装置
JP2003176132A (ja) 日射遮蔽用アンチモン錫酸化物粒子および日射遮蔽膜形成用塗布液ならびに日射遮蔽膜
JP3744188B2 (ja) 熱線遮蔽膜形成用塗布液及び熱線遮蔽膜
KR100471098B1 (ko) 열선차폐필름용코팅용액및이를사용하여열선차폐필름을제조하는방법
KR20070099457A (ko) 적외선 차단 필름―코팅 유리판 및 그의 제조 방법
WO2016121934A1 (ja) 断熱フィルム、断熱ガラスおよび窓
WO2022107717A1 (ja) 遮熱膜付きガラス基材
CN107815247A (zh) 新型高性能日照遮蔽涂料及相关的粘合剂、日照遮蔽膜和基材
JPH10101375A (ja) 日射遮蔽膜用塗布液およびこれを用いた日射遮蔽膜
JP2003215328A (ja) 日射遮蔽用微粒子とこの微粒子を含む日射遮蔽膜形成用塗布液および日射遮蔽膜
JP2012082109A (ja) 高耐熱性熱線遮蔽体形成用タングステン酸化物微粒子の製造方法、高耐熱性熱線遮蔽体形成用タングステン酸化物微粒子および高耐熱性熱線遮蔽体形成用分散液、並びに高耐熱性熱線遮蔽体
JP2014097623A (ja) 熱線遮蔽フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894591

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022563738

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180076790.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 112021006087

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21894591

Country of ref document: EP

Kind code of ref document: A1