WO2016121934A1 - 断熱フィルム、断熱ガラスおよび窓 - Google Patents

断熱フィルム、断熱ガラスおよび窓 Download PDF

Info

Publication number
WO2016121934A1
WO2016121934A1 PCT/JP2016/052674 JP2016052674W WO2016121934A1 WO 2016121934 A1 WO2016121934 A1 WO 2016121934A1 JP 2016052674 W JP2016052674 W JP 2016052674W WO 2016121934 A1 WO2016121934 A1 WO 2016121934A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
fibrous metal
layer
insulating film
metal particle
Prior art date
Application number
PCT/JP2016/052674
Other languages
English (en)
French (fr)
Inventor
長谷川 和弘
清都 尚治
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2016121934A1 publication Critical patent/WO2016121934A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B5/00Doors, windows, or like closures for special purposes; Border constructions therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters

Definitions

  • the present invention relates to a heat insulating film, a heat insulating glass, and a window. More specifically, in the case of using a fibrous metal particle-containing layer containing a fibrous metal particle and a binder containing silver as a main component, a heat insulating film capable of suppressing a change in heat insulation after wet heat aging, heat insulation using this heat insulating film
  • the present invention relates to glass and a window using this heat insulating film.
  • the heat insulating film is a film that delays the heat transfer between the indoor side and the outdoor side by sticking it on a window or the like. By using this film, the amount of air-conditioning used can be reduced, and a power saving effect can be expected. Thermal insulation is defined by the thermal conductivity. According to the solar radiation adjustment film procurement standards for windows in the law on the promotion of the procurement of environmental goods, etc.
  • JIS Joint Industrial Standards
  • a 5759 “Film for architectural window glass”
  • the measurement method requires that the heat transmissivity is less than 5.9 W / (m 2 ⁇ K), and the smaller this number, the higher the heat insulation.
  • the thermal transmissivity can be obtained from the reflection spectrum of far infrared rays having a wavelength of 5 ⁇ m to 50 ⁇ m. That is, it is preferable to increase the reflectivity of far-infrared rays having a wavelength of 5 ⁇ m to 50 ⁇ m in order to reduce the heat transmissivity.
  • Patent Document 1 discloses a structure in which a heat ray shielding film is attached to one side of a transparent glass, and the contact angle with water on the surface on the heat ray shielding film side is 50 ° or less and integrated visible light at a wavelength of 400 to 750 nm.
  • Patent Document 1 includes a laminated film in which a wettability improver is laminated in order to control the contact angle of water on the surface on the heat ray blocking film side as a preferable embodiment. A method of applying the liquid is described.
  • a multilayer film including at least one noble metal thin film is laminated on the surface of a glass substrate, and then a) a hydrophilic polymer, b) a metal selected from Si, Ti, Zr, and Al.
  • a heat insulating glass containing an alkoxide compound and having a hydrophilic film obtained by hydrolyzing and polycondensing the metal alkoxide of b) is disclosed.
  • the infrared shielding layer includes (A) an ionizing radiation curable resin, (B) an infrared absorber, An antifouling infrared shielding film comprising a cured product of a coating film containing (C) 0.1 to 50 parts by mass of (C) ionizing radiation curable silicone resin per 100 parts by mass of ionizing radiation curable resin is disclosed.
  • Patent Document 4 describes a heat ray shielding film including a transparent film and a far infrared reflective layer provided on the surface thereof, and the far infrared reflective layer includes a fibrous metal particle. Yes. According to Patent Document 4, since the far-infrared reflective layer of the heat ray shielding film contains fibrous metal particles, the heat rays such as heating that are radiated from the inside are not reflected and escaped, and the heat of the outside air is not taken indoors. It is described as being excellent in heat insulation.
  • the heat insulating film used by being attached to the inside of the window glass reflects far infrared rays from the room to prevent heat from escaping through the window glass.
  • the fibrous metal particles mainly containing silver and the binder described in Patent Document 4 are used.
  • a fibrous metal particle-containing layer that contains problems such as the occurrence of condensation on the surface of the heat insulating film arise, water becomes a good absorber of far infrared rays, and heat is released by heat conduction, so the heat insulating film It was found that the performance of can not be demonstrated.
  • Patent Documents 1 to 3 do not describe the use of fibrous metal particles mainly composed of silver in the infrared reflecting layer.
  • the change in heat insulating property when aged in a humid heat environment is not so large. Therefore, when the fibrous metal particle-containing layer containing a fibrous metal particle mainly containing silver and a binder is used, the problem that the heat insulating property change after wet heat aging becomes large is a fiber mainly containing silver. In Patent Documents 1 to 3 that do not use the metal particles, this is a new problem that has not been a problem.
  • the problem to be solved by the present invention is to provide a heat insulating film capable of suppressing a change in heat insulating property after wet heat aging when a fibrous metal particle-containing layer containing fibrous metal particles mainly composed of silver and a binder is used. It is to be.
  • the present inventors have found that the water contact angle on the outermost surface of the heat insulating film is 25 ° when the fibrous metal particles containing silver as the main component and the fibrous metal particle-containing layer containing a binder are used. It was found that a heat insulating film capable of suppressing a heat insulating change after wet heat aging can be provided.
  • the present invention can be achieved by the following specific means.
  • a support A heat insulating film that is disposed on one surface of a support and has a fibrous metal particle-containing layer containing a fibrous metal particle mainly composed of silver and a binder, The heat insulation film whose water contact angle of the outermost surface of a heat insulation film is 25 degrees or less.
  • the outermost surface having a water contact angle of 25 ° or less of the heat insulating film is preferably the outermost surface closer to the fibrous metal particle-containing layer than the support. .
  • the heat insulating film according to [1] or [2] may further include a surface layer having a water contact angle of 25 ° or less on a surface opposite to the support of the fibrous metal particle-containing layer. preferable.
  • the main component of the surface layer is preferably a material containing silicon.
  • the heat insulating film according to [3] or [4] preferably has a surface layer thickness of 1 ⁇ m or less.
  • the surface layer is preferably a monomolecular film.
  • the main component of the binder of the fibrous metal particle-containing layer is preferably a material containing silicon.
  • the heat insulating film according to any one of [1] to [7] further includes a near-infrared shielding layer on a surface of the support opposite to the surface on which the fibrous metal particle-containing layer is disposed. It is preferable.
  • the water contact angle on the outermost surface of the heat insulating film is preferably 10 ° or less.
  • the support is preferably a transparent film.
  • the average major axis length of the fibrous metal particles is preferably 5 to 50 ⁇ m.
  • the heat insulating film according to any one of [1] to [11] is disposed inside the window, It is preferable that the fibrous metal particle-containing layer is disposed on the surface of the support opposite to the window side.
  • a window comprising the transparent support for windows and the heat insulating film according to any one of [1] to [12] bonded to the transparent support for windows.
  • the heat insulation film which can suppress the heat insulation change after wet heat aging can be provided.
  • FIG. 1 is a schematic view showing a cross section of an example of the heat insulating film of the present invention.
  • FIG. 2 is a schematic view showing a cross section of another example of the heat insulating film of the present invention.
  • FIG. 3 is a schematic view showing a cross section of another example of the heat insulating film of the present invention.
  • FIG. 4 is a schematic view showing a cross section of another example of the heat insulating film of the present invention.
  • FIG. 5 is a schematic view showing a cross section of an example of the heat insulating glass of the present invention.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the main component of a composition means the component contained 50 mass% or more with respect to the whole quantity of a composition.
  • the main component of the binder means a component contained in an amount of 50% by mass or more based on the total amount of the binder.
  • the main component of the surface layer means a component contained by 50% by mass or more with respect to the total amount of the surface layer.
  • the heat-insulating film of the present invention is a heat-insulating film having a support and a fibrous metal particle-containing layer that is disposed on one surface of the support and contains fibrous metal particles mainly containing silver and a binder.
  • the water contact angle on the outermost surface of the heat insulating film is 25 ° or less.
  • the condensed water droplets can be made into a thin film and returned to the indoor space as water vapor, and the time during which the silver is corroded by the sulfur component entering through the water droplets can be shortened to suppress the heat insulation change after the aging.
  • the fibrous metal particles mainly composed of silver responsible for far-infrared reflection used in the heat insulating film of the present invention are likely to be sulfided with sulfur components dissolved from the air because water droplets stay on the film surface for a long time.
  • Insulation performance deterioration due to disconnection or conductivity decrease is more likely to occur than with Ag sputtered films, etc., so that the water contact angle on the outermost surface of the heat insulation film is 25 ° or less, suppressing the change in heat insulation properties after wet heat aging The effect is extremely high.
  • the preferred embodiment of the heat insulating film of the present invention has an effect that the surface of the heat insulating film is hydrophilic and can be easily removed by wiping with water even when dust or oil stains adhere.
  • the heat insulation film which has an example of the preferable aspect of the heat insulation film of this invention and has both the heat insulation / heat insulation function containing a near-infrared shielding layer, the heat ray from sunlight is shielded and it will be in the condition which is easy to condense. Therefore, the effect which can further suppress the heat insulation change after wet heat aging is high.
  • it is excellent in productivity rather than the laminated conductive layer formed by the vacuum film-forming method.
  • the preferable aspect of the heat insulation film of this invention is demonstrated.
  • the water contact angle of the outermost surface of a heat insulation film is 25 degrees or less.
  • the water contact angle of the outermost surface of the heat insulating film is preferably 15 ° or less from the viewpoint of suppressing the heat insulating property change after wet heat aging and improving the dirt wiping property, more preferably 10 ° or less, It is particularly preferable that the angle is 5 ° or less.
  • the heat insulating film of the present invention has a small rate of change after the rubbing test of the water contact angle on the outermost surface of the heat insulating film.
  • the method for controlling the water contact angle of the outermost surface of the heat insulating film is not particularly limited, but when the fibrous metal particle-containing layer is the outermost surface, a method of adding an additive to the fibrous metal particle-containing layer, The method of surface-treating the surface of a fibrous metal particle content layer can be mentioned.
  • the surface layer is the outermost surface, a method in which a material capable of forming a surface having a small water contact angle is used as the main component of the surface layer can be mentioned.
  • the heat insulating film of the present invention further includes a surface layer having a water contact angle of 25 ° or less on the surface opposite to the support of the fibrous metal particle-containing layer.
  • the heat-insulating film of the present invention has a small rate of change in heat insulating properties (heat transmissivity described later, U value) after wet heat aging.
  • the rate of change after wet heat aging determined by the method described in Examples below is preferably 10% or less, more preferably 7% or less, and 5% or less. Is particularly preferable, and it is particularly preferably 4% or less.
  • the heat insulating film of the present invention is preferably excellent in the initial value of heat insulating properties (heat transmissivity, U value). Insulation film of the present invention preferably has an initial value of the thermal insulation (U value) is less than 5.5W / m 2 ⁇ K, more preferably at most 5.2W / m 2 ⁇ K, 4 . It is particularly preferably 9 W / m 2 ⁇ K or less.
  • the radio wave permeability is further excellent from the viewpoint of enhancing the permeability of useful radio waves emitted from a mobile phone or the like. From the viewpoint of radio wave permeability, it is preferable to increase the surface resistance.
  • the fibrous metal particle-containing layer has a higher surface resistance than the sputtered metal laminate and is preferable. By increasing the surface resistance of the fibrous metal particle-containing layer, the radio wave transmission becomes better.
  • the surface resistance is preferably 1000 ⁇ / ⁇ ( ⁇ per square) or more from the viewpoint of improving radio wave transmission, and more preferably 10000 ⁇ / ⁇ or more.
  • FIG. 1 to 4 are schematic views showing a cross section of an example of the heat insulating film of the present invention.
  • the schematic which shows the cross section of an example of the heat insulation glass of this invention containing the heat insulation film of this invention in FIG. 5 was shown.
  • the heat insulating film of the present invention shown in FIG. 1 includes a support 10 and a fibrous metal particle-containing layer 20.
  • the heat insulation film of this invention shown in FIG. 2 contains the support body 10, the fibrous metal particle content layer 20, and the surface layer 21 in this order.
  • the outermost surface whose water contact angle of a heat insulation film is 25 degrees or less is the outermost surface of the side closer to a fibrous metal particle content layer than a support body.
  • the fibrous metal particle-containing layer 20 is preferably the outermost surface having a water contact angle of 25 ° or less.
  • the surface layer 21 is the outermost surface whose water contact angle is 25 degrees or less. That is, the heat insulating film of the present invention includes a surface layer 21 having a water contact angle of 25 ° or less on the surface of the fibrous metal particle-containing layer 20 opposite to the support 10 as shown in FIG. Is preferred.
  • the heat insulating film of the present invention is preferably a heat insulating film for windows.
  • the heat insulating film of the present invention is preferably arranged inside the window, and the fibrous metal particle-containing layer 20 is arranged on the surface of the support 10 opposite to the window (glass 61 in FIG. 5) side. This is preferable because it is easy to reflect far infrared rays. When there is no heat insulation film, indoor far infrared rays are absorbed by the glass, and heat conduction through the glass causes indoor heat to go out outdoors, but if there is a heat insulation film, the far infrared rays are reflected indoors. Indoor heat is less likely to go out.
  • the fibrous metal particle-containing layer 20 is preferably in a layer as close as possible to the outermost layer on the indoor side, the surface layer 21 is the outermost layer, and the fibrous metal particle-containing layer 20 is in the layer next to the outermost layer. Is preferable from the viewpoint of enhancing heat insulation.
  • the heat insulating film of the present invention shown in FIG. 3 includes an adhesive layer 51, a support 10, a fibrous metal particle-containing layer 20, and a surface layer 21 in this order.
  • the heat insulating film of the present invention preferably has an adhesive layer 51 on the window (glass 61 in FIG. 5) side of the support 10 as shown in FIG. 3 or FIG. 4, and the glass 61 and the adhesive layer 51 are bonded together. It is preferable.
  • the heat insulating film of the present invention preferably further includes a near-infrared shielding layer on the surface of the support opposite to the surface on which the fibrous metal particle-containing layer is disposed.
  • a near-infrared shielding layer on the surface of the support opposite to the surface on which the fibrous metal particle-containing layer is disposed.
  • layer 41 is included.
  • an example of the heat insulation film of this invention has the near-infrared shielding layer 41 containing a near-infrared shielding material.
  • the near-infrared shielding material may be contained in other layers without forming the near-infrared shielding layer 41 alone.
  • the near-infrared shielding material may be included in the fibrous metal particle-containing layer 20, may be included in the first adhesive layer 31 or the second adhesive layer 32, and is included in the adhesive layer 51.
  • the near-infrared shielding material is included in the surface of the support opposite to the surface on which the fibrous metal particle-containing layer is arranged, that is, the layer on the surface of the support 10 on the window (glass 61) side. This is preferable from the viewpoint of shielding infrared light.
  • the heat insulating glass 111 of the present invention shown in FIG. 5 includes the heat insulating film 103 of the present invention and the glass 61.
  • the heat insulating film 103 of the present invention is the inside of the window (indoor side, indoor side, opposite to the sunlight incident side in the daytime, in FIG. (IN side) is preferable.
  • the laminated body in which the support 10, the fibrous metal particle-containing layer 20, and the surface layer 21 are bonded together through an adhesive layer may be referred to as a heat insulating member 102.
  • the adhesive layer may be a single layer or a laminate of two or more layers. In FIG. 5, the adhesive layer is a laminate of the first adhesive layer 31 and the second adhesive layer 32.
  • the laminated body which provided the contact bonding layer (The laminated body of the 1st contact bonding layer 31 and the 2nd contact bonding layer 32 in FIG. 5) on the support body 10 may be called the support body 101 with an contact bonding layer.
  • the preferable aspect of each layer which comprises the heat insulation film of this invention is demonstrated.
  • the support various materials can be used depending on the purpose as long as the support can bear the fibrous metal particle-containing layer. Generally, a plate or sheet is used.
  • the support may be transparent or opaque, but is preferably transparent and more preferably transparent to visible light.
  • the support preferably has a total visible light transmittance of 70% or more, more preferably 85% or more, and still more preferably 90% or more. The total visible light transmittance of the support is measured in accordance with ISO (International Organization for Standardization) 13468-1 (1996).
  • ISO International Organization for Standardization
  • the support is preferably a transparent film.
  • the material constituting the support examples include synthetic resins such as polycarbonate, polyethersulfone, polyester, acrylic resin, vinyl chloride resin, aromatic polyamide resin, polyamideimide, polyimide, polyethylene terephthalate, and polycycloolefin. it can.
  • the surface of the support on which the fibrous metal particle-containing layer is formed is optionally cleaned with an alkaline aqueous solution, chemical treatment such as a silane coupling agent, plasma treatment, ion plating, sputtering, gas phase reaction method. Alternatively, pretreatment may be performed by vacuum deposition or the like.
  • the support has a desired thickness depending on the application. Generally, it is selected from the range of 1 ⁇ m to 500 ⁇ m, more preferably 3 ⁇ m to 400 ⁇ m, and even more preferably 5 ⁇ m to 300 ⁇ m.
  • the fibrous metal particle-containing layer is disposed on one surface of the support and includes fibrous metal particles mainly composed of silver and a binder.
  • the fibrous metal particle-containing layer preferably has a small void size for reflecting far infrared rays.
  • the void size of 80% or more voids is 25 ( ⁇ m) 2 or less. The void area is more preferable.
  • fibrous metal particles mainly composed of silver are used.
  • the fibrous metal particles are fibrous, and the fibrous form is synonymous with a wire form or a line form.
  • the fibrous metal particles include metal nanowires and rod-like metal particles.
  • metal nanowires are preferable.
  • metal nanowires may be described as a representative example of fibrous metal particles, but descriptions relating to metal nanowires can be used as general descriptions of fibrous metal particles.
  • the fibrous metal particle-containing layer preferably contains metal nanowires having an average minor axis length of 150 nm or less as the fibrous metal particles. It is preferable for the average minor axis length to be 150 nm or less because the heat insulation is improved and the optical properties are hardly deteriorated due to light scattering or the like.
  • the fibrous metal particles such as metal nanowires preferably have a solid structure.
  • the fibrous metal particles such as metal nanowires preferably have an average minor axis length of 1 nm to 150 nm.
  • the average minor axis length (average diameter) of fibrous metal particles such as metal nanowires is preferably 100 nm or less, more preferably 60 nm or less, and 50 nm or less. More preferably, it is particularly preferably 25 nm or less, since a further excellent haze can be obtained.
  • the average minor axis length is more preferably 5 nm or more, further preferably 10 nm or more, and particularly preferably 15 nm or more.
  • the average major axis length of the fibrous metal particles such as metal nanowires is preferably about the same as the far-infrared reflection band to be reflected from the viewpoint of easily reflecting the far-infrared reflection band to be reflected.
  • the average major axis length of fibrous metal particles such as metal nanowires is preferably 5 ⁇ m to 50 ⁇ m from the viewpoint of easily reflecting far infrared rays having a wavelength of 5 to 50 ⁇ m, more preferably 10 ⁇ m to 40 ⁇ m, and more preferably 15 ⁇ m to More preferably, it is 40 ⁇ m.
  • the average major axis length of the metal nanowires is 40 ⁇ m or less, it becomes easy to synthesize the metal nanowires without generating aggregates, and when the average major axis length is 15 ⁇ m or more, sufficient heat insulation is obtained. Becomes easy.
  • the average minor axis length (average diameter) and the average major axis length of the fibrous metal particles such as metal nanowires are measured using, for example, a transmission electron microscope (TEM) and an optical microscope, and a TEM image or an optical microscope image is obtained. It can be determined by observing.
  • TEM transmission electron microscope
  • optical microscope optical microscope
  • the average minor axis length (average diameter) and the average major axis length of the fibrous metal particles such as metal nanowires were measured using a transmission electron microscope (manufactured by JEOL Ltd., trade name: JEM-2000FX). About 300 randomly selected metal nanowires, the short axis length and the long axis length can be measured, respectively, and the average short axis length and the average long axis length of the fibrous metal particles such as metal nanowires can be obtained from the average value. . In this specification, the value obtained by this method is adopted.
  • the short-axis length when the short-axis direction cross section of metal nanowire is not circular makes the length of the longest part the short-axis length by the measurement of a short-axis direction. Also. When fibrous metal particles, such as metal nanowires, are bent, a circle having the arc as an arc is taken into consideration, and a value calculated from the radius and the curvature is taken as the major axis length.
  • the minor axis length (diameter) is 150 nm or less and the major axis length is 5 ⁇ m or more and 50 ⁇ m or less with respect to the content of fibrous metal particles such as all-metal nanowires in the fibrous metal particle-containing layer.
  • the content of fibrous metal particles such as metal nanowires is preferably 50% by mass or more in terms of metal amount, more preferably 60% by mass or more, and further preferably 75% by mass or more.
  • the minor axis length (diameter) is 150 nm or less and the ratio of the fibrous metal particles such as metal nanowires having a length of 5 ⁇ m or more and 50 ⁇ m or less is 50% by mass or more, sufficient heat insulation can be obtained.
  • the haze reduction caused by particles having a short axis length and particles having a short length can be suppressed.
  • a decrease in transparency can be avoided even when plasmon absorption is strong.
  • the coefficient of variation of the short axis length (diameter) of fibrous metal particles such as metal nanowires used in the fibrous metal particle-containing layer is preferably 40% or less, more preferably 35% or less, and even more preferably 30% or less.
  • the coefficient of variation is 40% or less, the ratio of metal nanowires that easily reflect far-infrared rays having a wavelength of 5 to 50 ⁇ m increases, which is preferable from the viewpoint of transparency and heat insulation.
  • the coefficient of variation of the short axis length (diameter) of a fibrous metal particle such as a metal nanowire is measured by measuring the short axis length (diameter) of 300 nanowires randomly selected from a transmission electron microscope (TEM) image, for example. It can be obtained by calculating the standard deviation and the arithmetic mean value and dividing the standard deviation by the arithmetic mean value.
  • TEM transmission electron microscope
  • the aspect ratio of fibrous metal particles such as metal nanowires that can be used in the present invention is preferably 10 or more.
  • the aspect ratio means the ratio of the average major axis length to the average minor axis length (average major axis length / average minor axis length).
  • the aspect ratio can be calculated from the average major axis length and the average minor axis length calculated by the method described above.
  • the aspect ratio of the fibrous metal particles such as metal nanowires is not particularly limited as long as it is 10 or more and can be appropriately selected according to the purpose, but is preferably 10 to 100,000, more preferably 50 to 100,000. 100 to 100,000 is more preferable.
  • the aspect ratio is 10 or more, a network in which fibrous metal particles such as metal nanowires are uniformly dispersed is easily formed, and a fibrous metal particle-containing layer having high heat insulation is easily obtained.
  • the aspect ratio is 100,000 or less, for example, in a coating solution when a fibrous metal particle-containing layer is provided on a support by coating, fibrous metal particles such as metal nanowires are entangled to form an aggregate.
  • the content of fibrous metal particles such as metal nanowires having an aspect ratio with respect to the mass of the fibrous metal particles such as all metal nanowires contained in the fibrous metal particle-containing layer is not particularly limited. For example, it is preferably 70% by mass or more, more preferably 75% by mass or more, and most preferably 80% by mass or more.
  • the shape of the fibrous metal particles such as metal nanowires may be any shape such as a columnar shape, a rectangular parallelepiped shape, or a columnar shape with a polygonal cross section, but for applications that require high transparency, It is preferable that the cross section is a polygon having a pentagon or more and a cross section having no acute angle.
  • the cross-sectional shape of fibrous metal particles such as metal nanowires can be detected by applying an aqueous dispersion of fibrous metal particles such as metal nanowires on a support and observing the cross-section with a transmission electron microscope (TEM). it can.
  • TEM transmission electron microscope
  • the metal which forms a fibrous metal particle has silver as a main component.
  • two or more metals may be used in combination, or an alloy may be used. Among these, those formed from simple metals or metal compounds are preferable, and those formed from simple metals are more preferable.
  • the metal that forms the fibrous metal particles is at least one selected from the group consisting of the fourth period, the fifth period, and the sixth period of the Long Periodic Table (IUPAC (International Union of Pure and Applied Chemistry) 1991). And at least one metal selected from Groups 2 to 14 is more preferable. Group 2, Group 8, Group 9, Group 10, Group 11, Group 12, Group 13, And at least one metal selected from Group 14 is more preferred, but it contains at least silver as a main component.
  • metals include copper, silver, gold, platinum, palladium, nickel, tin, cobalt, rhodium, iridium, iron, ruthenium, osmium, manganese, molybdenum, tungsten, niobium, tantalum, titanium, bismuth, antimony, Examples thereof include lead and alloys containing any of these.
  • copper, silver, gold, platinum, palladium, nickel, tin, cobalt, rhodium, iridium or alloys thereof are preferable, palladium, copper, silver, gold, platinum, tin, or any of these
  • the alloy containing is more preferable, and silver or an alloy containing silver is particularly preferable.
  • the silver content in the alloy containing silver is preferably 50 mol% or more, more preferably 60 mol% or more, and further preferably 80 mol% or more based on the total amount of the alloy. .
  • the silver-based fibrous metal particles are preferably silver nanowires.
  • the content of silver nanowires with respect to the mass of fibrous metal particles such as all metal nanowires contained in the fibrous metal particle-containing layer is not particularly limited as long as the effects of the present invention are not hindered.
  • the content of silver nanowires with respect to the mass of fibrous metal particles such as all metal nanowires contained in the fibrous metal particle-containing layer is preferably 50% by mass or more, more preferably 80% by mass or more, More preferably, the fibrous metal particles such as all metal nanowires are substantially silver nanowires.
  • substantially means that metal atoms other than silver inevitably mixed are allowed.
  • the mass per unit area of the fibrous metal particle-containing layer (the coating amount of the total solid content of the coating liquid during film formation) is the desired range of the heat insulating property, total light transmittance, and haze value of the fibrous metal particle-containing layer. Is selected. If the coating amount is too small, sufficient heat insulating properties cannot be obtained. If the coating amount is too large, haze increases or a failure such as cracking or peeling of the fibrous metal particle-containing layer occurs. Preferably it is in the range of 0.050 to 1.000 g / m 2 , more preferably in the range of 0.100 to 0.600 g / m 2 , and particularly preferably in the range of 0.110 to 0.500 g / m 2. preferable.
  • the amount of the fibrous metal particles relative to the fibrous metal particle-containing layer is preferably selected so that the heat insulating property, the total light transmittance, and the haze value of the fibrous metal particle-containing layer are in a desired range.
  • the amount of the fibrous metal particles relative to the fibrous metal particle-containing layer is preferably 1 to 65% by mass, more preferably 3 to 50% by mass, and particularly preferably 5 to 35% by mass.
  • the fibrous metal particles such as metal nanowires are not particularly limited, and may be produced by any method. As described below, it is preferable to produce by reducing metal ions in a solvent in which a halogen compound and a dispersant are dissolved. Moreover, after forming the fibrous metal particles such as metal nanowires, it is preferable to perform a desalting treatment by a conventional method from the viewpoints of dispersibility and temporal stability of the fibrous metal particle-containing layer. As a method for producing fibrous metal particles such as metal nanowires, JP2009-215594A, JP2009-242880A, JP2009-299162A, JP2010-84173A, and JP2010-A. The method described in Japanese Patent No. 86714 can be used.
  • the solvent used for the production of fibrous metal particles such as metal nanowires is preferably a hydrophilic solvent, and examples thereof include water, alcohol solvents, ether solvents, ketone solvents, and these are used alone. You may use 2 or more types together.
  • the alcohol solvent include methanol, ethanol, propanol, isopropanol, butanol, ethylene glycol, and the like.
  • the ether solvent include dioxane and tetrahydrofuran.
  • the ketone solvent include acetone.
  • the heating temperature is preferably 250 ° C. or lower, more preferably 20 ° C. or higher and 200 ° C. or lower, further preferably 30 ° C. or higher and 180 ° C.
  • the temperature may be changed during the grain formation process. Changing the temperature during the process has the effect of controlling nucleation, suppressing renucleation, and improving monodispersity by promoting selective growth. There is.
  • the heat treatment is preferably performed by adding a reducing agent.
  • the reducing agent is not particularly limited and can be appropriately selected from those usually used.
  • reducing sugars, sugar alcohols as derivatives thereof, and ethylene glycol are particularly preferable.
  • there is a compound that functions as a dispersant or a solvent as a function there is a compound that functions as a dispersant or a solvent as a function, and can be preferably used in the same manner.
  • the production of fibrous metal particles such as metal nanowires is preferably performed by adding a dispersant and a halogen compound or metal halide fine particles.
  • the timing of addition of the dispersant and the halogen compound may be before or after the addition of the reducing agent, and may be before or after the addition of the metal ions or metal halide fine particles. In order to obtain it, it is preferable to divide the addition of the halogen compound into two or more stages because nucleation and growth can be controlled.
  • the step of adding the dispersant is not particularly limited. It may be added before the preparation of fibrous metal particles such as metal nanowires, and may be added in the presence of a dispersing agent, or may be added after the preparation of fibrous metal particles such as metal nanowires. You may add for control.
  • the dispersant include an amino group-containing compound, a thiol group-containing compound, a sulfide group-containing compound, an amino acid or a derivative thereof, a peptide compound, a polysaccharide, a natural polymer derived from a polysaccharide, a synthetic polymer, or a gel derived therefrom. And the like, and the like.
  • various polymer compounds that are preferably used as a dispersant are compounds included in the polymer described below.
  • polymer suitably used as the dispersant examples include gelatin, polyvinyl alcohol, methyl cellulose, hydroxypropyl cellulose, polyalkylene amine, polyalkylene amine, partially alkyl ester of polyacrylic acid, polyvinyl pyrrolidone, and polyvinyl pyrrolidone structure, which are protective colloid polymers.
  • a polymer having a hydrophilic group such as a copolymer containing a polyacrylic acid having an amino group or a thiol group is preferable.
  • the polymer used as the dispersant preferably has a weight average molecular weight (Mw) of 3,000 to 300,000, preferably 5,000 to 100,000, as measured by gel permeation chromatography (GPC). Is more preferable.
  • Mw weight average molecular weight
  • GPC gel permeation chromatography
  • the halogen compound is not particularly limited as long as it is a compound containing bromine, chlorine, or iodine, and can be appropriately selected according to the purpose.
  • sodium bromide, sodium chloride, sodium iodide, potassium iodide, odor Preference is given to compounds that can be used in combination with alkali halides such as potassium chloride and potassium chloride and the following dispersion additives.
  • the halogen compound may function as a dispersion additive, it can be preferably used in the same manner.
  • silver halide fine particles may be used, or both a halogen compound and silver halide fine particles may be used.
  • a single substance having both the function of a dispersant and the function of a halogen compound may be used. That is, by using a halogen compound having a function as a dispersant, the functions of both the dispersant and the halogen compound are expressed with one compound.
  • the halogen compound having a dispersant function include hexadecyl-trimethylammonium bromide (HTAB) containing an amino group and a bromide ion, hexadecyl-trimethylammonium chloride (HTAC) containing an amino group and a chloride ion, an amino group and a bromide.
  • HTAB hexadecyl-trimethylammonium bromide
  • HTAC hexadecyl-trimethylammonium chloride
  • desalting is preferably performed after the formation of fibrous metal particles such as metal nanowires.
  • the desalting treatment after formation of fibrous metal particles such as metal nanowires can be performed by techniques such as ultrafiltration, dialysis, gel filtration, decantation, and centrifugation.
  • fibrous metal particles such as metal nanowires contain as little inorganic ions as possible, such as alkali metal ions, alkaline earth metal ions, and halide ions.
  • the electrical conductivity of a dispersion obtained by dispersing metal nanowires in an aqueous solvent is preferably 1 mS / cm or less, more preferably 0.1 mS / cm or less, and even more preferably 0.05 mS / cm or less.
  • the aqueous dispersion of fibrous metal particles such as metal nanowires is preferably 0.5 mPa ⁇ s to 100 mPa ⁇ s, and more preferably 1 mPa ⁇ s to 50 mPa ⁇ s. Electrical conductivity and viscosity are measured at a concentration of fibrous metal particles such as metal nanowires in the aqueous dispersion of 0.45% by mass. When the concentration of fibrous metal particles such as metal nanowires in the aqueous dispersion is higher than the above concentration, the aqueous dispersion is diluted with distilled water and measured.
  • the fibrous metal particle-containing layer contains a binder.
  • the binder By containing the binder, the dispersion of the fibrous metal particles such as metal nanowires in the fibrous metal particle-containing layer is stably maintained, and the fibrous metal particle-containing layer is not formed on the support surface without an adhesive layer. Even when formed, there is a tendency that strong adhesion between the support and the fibrous metal particle-containing layer is secured.
  • Preferred binders include sol-gel cured products obtained by hydrolysis and polycondensation of alkoxide compounds of the element (b) selected from the group consisting of Si, Ti, Zr and Al, conductive polymers, organic polymer polymers (conductivity). (Excluding the conductive polymer).
  • the main component of the binder of the fibrous metal particle-containing layer is preferably a sol-gel cured product.
  • the heat insulating film of the present invention is more preferably a material in which the main component of the binder of the fibrous metal particle-containing layer contains silicon.
  • the silicon-containing material is particularly preferably a sol-gel cured product obtained by hydrolysis and polycondensation of an Si element alkoxide compound.
  • the heat insulating film of the present invention is obtained by hydrolysis and polycondensation of an alkoxide compound of an element (b) selected from the group consisting of Si, Ti, Zr and Al as a main component of the binder of the fibrous metal particle-containing layer.
  • a sol-gel cured product is preferably included, and a sol-gel cured product obtained by hydrolysis and polycondensation of an alkoxide compound of Si element is particularly preferable in terms of production cost and reflectance in the far infrared region.
  • a sol-gel cured product obtained by hydrolysis and polycondensation of an alkoxide compound (hereinafter also referred to as a specific alkoxide compound) of an element (b) selected from the group consisting of Si, Ti, Zr and Al includes silicon oxide, zirconium oxide, It is at least one selected from titanium oxide and aluminum oxide.
  • the main component of the binder of the fibrous metal particle-containing layer is a sol-gel cured product obtained by hydrolysis and polycondensation of an alkoxide compound of the element (b) selected from the group consisting of Si, Ti, Zr and Al
  • the main component of the binder of the fibrous metal particle-containing layer is at least one selected from silicon oxide, zirconium oxide, titanium oxide, and aluminum oxide.
  • the fibrous metal particle-containing layer preferably satisfies at least one of the following conditions (i) and (ii), more preferably satisfies at least the following condition (ii), and satisfies the following conditions (i) and (ii): It is particularly preferable to satisfy it.
  • Ratio of the amount of the element (b) contained in the fibrous metal particle-containing layer to the amount of the metal element (a) contained in the fibrous metal particle-containing layer [(number of moles of the element (b) ) / (Number of moles of metal element (a))] is in the range of 0.10 / 1 to 22/1.
  • Ratio of the mass of the alkoxide compound used for forming the sol-gel cured product in the fibrous metal particle-containing layer and the mass of the fibrous metal particles such as metal nanowires contained in the fibrous metal particle-containing layer is in the range of 0.25 / 1 to 30/1.
  • the fibrous metal particle-containing layer has a ratio of the usage amount of the specific alkoxide compound to the usage amount of the fibrous metal particles such as the above-described metal nanowire, that is, [(mass of the specific alkoxide compound) / (fibrous metal such as the metal nanowire).
  • the ratio of the mass of particles)] is preferably in the range of 0.25 / 1 to 30/1.
  • the mass ratio is 0.25 / 1 or more, the heat insulation (conceived to be due to the high conductivity of the fibrous metal particles) and the transparency are excellent, and at the same time, the wear resistance, heat resistance, and wet heat durability. It can be a fibrous metal particle-containing layer that is excellent in both properties and bending resistance.
  • the said mass ratio When the said mass ratio is 30/1 or less, it can become a fibrous metal particle content layer excellent in electroconductivity and bending resistance.
  • the mass ratio is more preferably in the range of 0.5 / 1 to 25/1, still more preferably in the range of 1/1 to 20/1, and most preferably in the range of 2/1 to 15/1.
  • the obtained fibrous metal particle-containing layer has high heat insulating properties and high transparency (visible light transmittance and haze), as well as wear resistance, heat resistance, and wet heat. It will be excellent in durability and bend resistance, and a heat insulating film having suitable physical properties can be obtained stably.
  • the main component of the binder in the fibrous metal particle-containing layer is preferably a conductive polymer.
  • Conductive polymers also effectively block infrared rays and exhibit heat insulation. This is thought to be because the plasma absorption wavelength due to free electrons of the conductive polymer is shorter than the radiation of an object near the ground temperature, and reflects electromagnetic waves having a wavelength higher than the plasma absorption wavelength.
  • the conductive polymer used as the main component of the binder of the fibrous metal particle-containing layer the conductive polymers described in JP-A-2012-189683, [0038] to [0046] and Examples are preferably used. Can do.
  • the conductive polymer is generally an organic polymer having a conjugated double bond as a basic skeleton, specifically, polythiophene, polypyrrole, polyaniline, polyacetylene, polyparaphenylene, polyfuran, polyfluorene, polyphenylene.
  • Preferable examples include any one kind or a mixture of two or more kinds of conductive polymers selected from vinylene, derivatives thereof, and copolymers of monomers constituting them.
  • polythiophene derivatives that are soluble or dispersible in water or other solvents and exhibit high conductivity and transparency are preferable.
  • formula (I) the following formula (I):
  • R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, or R 1 and R 2 may be bonded to each other and optionally substituted
  • a polythiophene derivative containing a repeating unit represented by (forms an alkylene group having 1 to 4 carbon atoms, and n represents an integer of 50 to 1000) is preferable.
  • the optionally substituted alkylene group having 1 to 4 carbon atoms formed by bonding R 1 and R 2 to each other is specifically methylene substituted with an alkyl group.
  • Groups, groups that form ethylene-1,2 groups, propylene-1,3 groups, butene-1,4 groups optionally substituted with alkyl groups having 1 to 12 carbon atoms or phenyl groups.
  • R 1 and R 2 in the formula (I) are preferably a methyl group or an ethyl group, or a methylene group, an ethylene-1, 2 group, or a propylene-1, formed by combining R 1 and R 2 with each other Three groups.
  • Particularly preferred polythiophene derivatives include the following formula (II):
  • p represents an integer of 50 to 1000
  • p represents an integer of 50 to 1000
  • the conductive polymer preferably further contains a dopant (electron donor).
  • a dopant electron donor
  • Preferred examples of the dopant include polystyrene sulfonic acid, polyacrylic acid, polymethacrylic acid, polymaleic acid, and polyvinyl sulfonic acid.
  • polystyrene sulfonic acid is preferable.
  • the number average molecular weight (Mn) of the dopant is preferably 1,000 to 2,000,000, particularly preferably 2,000 to 500,000.
  • the content of the dopant is usually 20 to 2000 parts by mass, preferably 40 to 200 parts by mass with respect to 100 parts by mass of the conductive polymer.
  • a polythiophene derivative of the formula (II) is used as a conductive polymer and polystyrene sulfonic acid is used as a dopant
  • 100 to 200 parts by mass of polystyrene sulfonic acid is preferable with respect to 100 parts by mass of polythiophene, and particularly 120 to 180 parts by mass. Part is preferred.
  • organic polymer used as the main component of the binder of the fibrous metal particle-containing layer include polymethacrylic acid, polymethacrylate (for example, poly (methyl methacrylate)), polyacrylate, and polyacrylonitrile.
  • Acrylic acid polyvinyl alcohol (PVA; for example, POVAL VC-13, manufactured by Nippon Vineyard Poval Co., Ltd.), polyester (for example, polyethylene terephthalate (PET), polyester naphthalate, and polycarbonate), phenol or cresol-formaldehyde (Novolacs ( Registered trademark)), polystyrene, polyvinyltoluene, polyvinylxylene, polyimide, polyamide, polyamideimide, polyetherimide, polysulfide, polysulfone, polyphenylene, and Highly aromatic polymer such as polyphenyl ether, polyurethane (PU; Takelac (registered trademark) WS-4000 manufactured by Mitsui Chemicals, Inc.), epoxy, polyolefin (eg, polypropylene, polymethylpentene, and polycycloolefin) ), Acrylonitrile-butadiene-styrene copolymer (ABS), cellulose, silicone and other silicon-containing
  • the polycycloolefin used as the main component of the binder of the fibrous metal particle-containing layer the transparent film materials described in JP 2012-189683 A, [0020] to [0022] and Examples are preferably used. it can.
  • the polycycloolefin used as the main component of the binder of the fibrous metal particle-containing layer is preferably polynorbornene. Polynorbornene has little absorption in the infrared region and is excellent in heat insulation and weather resistance.
  • ZEONEX registered trademark
  • ZEONOR registered trademark
  • the fibrous metal particle-containing layer may further contain a matrix other than the binder (hereinafter referred to as “other matrix”).
  • the “matrix” is a general term for substances that form a layer containing fibrous metal particles such as metal nanowires.
  • the fibrous metal particle-containing layer containing the other matrix is formed by adding a material capable of forming the other matrix to the liquid composition described later and applying it to the support (for example, by coating). That's fine.
  • the matrix may be non-photosensitive or photosensitive such as a photoresist composition.
  • the fibrous metal particle-containing layer contains other matrix, for example, 0.10% by mass to 20% by mass, preferably 0.15% by mass to 10% by mass, and more preferably 0.20% with respect to the content of the binder. It is advantageous to select from the range of 5% by mass to 5% by mass because a fibrous metal particle-containing layer having excellent heat insulating properties, transparency, film strength, abrasion resistance and bending resistance can be obtained.
  • the water contact angle of the fibrous metal particle-containing layer can be 25 ° or less by a method of adding an additive to the fibrous metal particle-containing layer.
  • a metal coupling agent such as a silane coupling agent, a surfactant having a sodium carboxylate group or a sodium sulfonate group, or the like may be used. it can.
  • the metal coupling agent such as a silane coupling agent used for the fibrous metal particle-containing layer include materials described in [0104] to [0106] of JP2012-25820A. Are incorporated herein.
  • silane coupling agent trade names X-41-1805, X-41-1053 manufactured by Shin-Etsu Silicone Co., Ltd. can be preferably used.
  • Dispersant- A dispersing agent is used in order to disperse
  • the dispersant is not particularly limited as long as the metal nanowires can be dispersed, and can be appropriately selected according to the purpose.
  • a commercially available dispersant can be used as a pigment dispersant, and a polymer dispersant having a property of adsorbing to metal nanowires is particularly preferable.
  • polymer dispersants examples include polyvinylpyrrolidone, BYK series (registered trademark, manufactured by Big Chemie), Solsperse series (registered trademark, manufactured by Nihon Lubrizol, etc.), Ajisper series (registered trademark, Ajinomoto Co., Inc.). Manufactured).
  • the content of the dispersant in the fibrous metal particle-containing layer is 0.1 mass relative to 100 mass parts of the binder when the binder described in [0086] to [0095] of JP2013-225461A is used. To 50 parts by mass, preferably 0.5 to 40 parts by mass, more preferably 1 to 30 parts by mass.
  • the content of the dispersant with respect to the binder By setting the content of the dispersant with respect to the binder to 0.1 parts by mass or more, aggregation of fibrous metal particles such as metal nanowires in the dispersion is effectively suppressed, and by setting the content to 50 parts by mass or less. This is preferable because a stable liquid film is formed in the coating process and the occurrence of coating unevenness is suppressed.
  • the solvent is a coating solution for forming a composition containing fibrous metal particles such as the above-described metal nanowires and a binder on the surface of the support or the surface of the adhesive layer of the support with an adhesive layer. It is a component used and can be appropriately selected according to the purpose.
  • the solvent may be anything as long as it can dissolve the binder in an amount of 0.1% by mass or more, and includes water, alcohol solvents, ketone solvents, ether solvents, hydrocarbon solvents, aromatic solvents, halogen solvents, and the like. It is done.
  • This solvent may also serve as at least a part of the solvent of the metal nanowire dispersion described above. These may be used individually by 1 type and may use 2 or more types together.
  • the solid content concentration of the coating solution containing such a solvent is preferably in the range of 0.1% by mass to 20% by mass.
  • the fibrous metal particle-containing layer preferably contains a metal corrosion inhibitor for fibrous metal particles such as metal nanowires.
  • a metal corrosion inhibitor for fibrous metal particles such as metal nanowires.
  • thiols, azoles, etc. are suitable.
  • the metal corrosion inhibitor is added to the composition for forming a fibrous metal particle-containing layer in a state dissolved in a suitable solvent, or in powder form, or after forming a conductive film with a conductive layer coating solution described later, It can be applied by soaking in a corrosion inhibitor bath.
  • the content in the fibrous metal particle-containing layer is preferably 0.5% by mass to 10% by mass with respect to the content of the fibrous metal particles such as metal nanowires. .
  • the other matrix it is possible to use a polymer compound as a dispersant used in the production of the fibrous metal particles such as the above-described metal nanowires as at least a part of the components constituting the matrix.
  • conductive materials in addition to fibrous metal particles such as metal nanowires, other conductive materials such as conductive particles can be used in combination as long as the effects of the present invention are not impaired.
  • the conductive particles include metal particles, tin-doped indium oxide (ITO) particles, antimony-doped tin oxide (ATO) particles, and cesium-doped tungsten oxide (CWO) particles.
  • ITO tin-doped indium oxide
  • ATO antimony-doped tin oxide
  • CWO cesium-doped tungsten oxide
  • the conductive oxide particles are listed.
  • ITO is preferable because it increases the infrared reflection of the fibrous metal particle-containing layer.
  • the content ratio of fibrous metal particles such as metal nanowires is based on the total amount of conductive material including fibrous metal particles such as metal nanowires. On a volume basis, it is preferably 50% or more, more preferably 60% or more, and particularly preferably 75% or more.
  • a fibrous metal particle-containing layer having high heat insulating properties can be easily obtained.
  • conductive particles having a shape other than the fibrous metal particles such as metal nanowires may not significantly contribute to the conductivity in the fibrous metal particle-containing layer and may have absorption in the visible light region.
  • the ratio of fibrous metal particles such as metal nanowires can be obtained as follows.
  • the fibrous metal particles are silver nanowires and the conductive particles are silver particles
  • the silver nanowire aqueous dispersion is filtered to separate the silver nanowires from the other conductive particles and induce
  • the ratio of the metal nanowires can be calculated by measuring the amount of silver remaining on the filter paper and the amount of silver transmitted through the filter paper using an coupled plasma (Inductively Coupled Plasma; ICP) emission spectrometer.
  • ICP Inductively Coupled Plasma
  • the aspect ratio of fibrous metal particles such as metal nanowires is determined by observing the fibrous metal particles such as metal nanowires remaining on the filter paper with a TEM, and the short axis length and long axis of the fibrous metal particles such as 300 metal nanowires. Calculated by measuring each length.
  • the average film thickness of the fibrous metal particle-containing layer is usually selected in the range of 0.005 ⁇ m to 2 ⁇ m. For example, by setting the average film thickness to 0.001 ⁇ m or more and 0.5 ⁇ m or less, sufficient durability and film strength can be obtained. In particular, if the average film thickness is in the range of 0.01 ⁇ m to 0.1 ⁇ m, an acceptable range in manufacturing can be secured, which is preferable.
  • the fibrous metal particle-containing layer satisfying at least one of the above-mentioned conditions (i) and (ii), it is possible to maintain high heat insulating properties and transparency, and due to the sol-gel cured product, metal nanowires It is preferable that fibrous metal particles such as can be stably fixed and can achieve high strength and durability. For example, even if the thickness of the fibrous metal particle-containing layer is a thin layer of 0.005 ⁇ m to 0.5 ⁇ m, the fibrous metal particles have wear resistance, heat resistance, wet heat durability, and bending resistance that do not cause any practical problems. A containing layer can be obtained. For this reason, the heat insulation film which is one Embodiment of this invention is used suitably for various uses.
  • the film thickness may be 0.005 ⁇ m to 0.5 ⁇ m, more preferably 0.007 ⁇ m to 0.3 ⁇ m, more preferably 0.008 ⁇ m to 0.2 ⁇ m, and more preferably 0.01 ⁇ m to 0.2 ⁇ m. 0.1 ⁇ m is most preferable.
  • the fibrous metal particle-containing layer thinner, the transparency of the fibrous metal particle-containing layer can be further improved.
  • the average film thickness of the fibrous metal particle-containing layer is calculated as an arithmetic average value by measuring the thickness of the fibrous metal particle-containing layer at five points by directly observing the cross section of the fibrous metal particle-containing layer with an electron microscope. .
  • the film thickness of the fibrous metal particle-containing layer is, for example, a portion of the fibrous metal particle-containing layer formed using a stylus type surface shape measuring instrument (Dektak (registered trademark) 150, manufactured by Bruker AXS) and a fibrous shape. It can also be measured as a step in the portion from which the metal particle-containing layer has been removed.
  • the heat insulation film of this invention contains the surface layer whose water contact angle is 25 degrees or less further on the surface opposite to the support body of a fibrous metal particle content layer.
  • the composition of the surface layer includes COP (cycloolefin polymer), COC (cycloolefin copolymer), hydrophilic polymer such as polymer containing modified acrylate and silicon, monomolecular film, sol-gel cured product, colloidal silica, silica film (sputtering).
  • COP cycloolefin polymer
  • COC cycloolefin copolymer
  • hydrophilic polymer such as polymer containing modified acrylate and silicon
  • monomolecular film, sol-gel cured product colloidal silica, silica film (sputtering).
  • a film such as a film) is preferred, and a hydrophilic polymer, a monomolecular film or a sol-gel cured product is more preferred.
  • the main component of the surface layer is preferably a material containing silicon from the viewpoint of improving the abrasion resistance.
  • the material containing silicon include a polymer containing silicon among hydrophilic polymers, a sol-gel cured product obtained by hydrolysis and polycondensation of an alkoxide compound of Si element, colloidal silica, and a silica film.
  • the surface layer is preferably a monomolecular film from the viewpoint of improving heat insulating properties (initial U value).
  • the hydrophilic polymer used for the surface layer include hydrophilic polymers described in [0033] to [0131] of JP 2011-073359 A.
  • a silicon-containing polymer is preferable.
  • the contents of the publication are incorporated herein.
  • a modified acrylate is used as the hydrophilic polymer used for the surface layer
  • materials described in JP-A-2008-30337, [0011] to [0035] can be mentioned, and the contents of this publication are incorporated herein. It is.
  • As a commercially available modified acrylate Toyo Chemicals Co., Ltd. product name Miramer M4004 etc. can be used preferably.
  • Examples of the material for forming the monomolecular film used for the surface layer include materials described in JP-A-2014-213044, [0019] to [0021].
  • a Si-based monomolecular film is also included.
  • the surface layer preferably has a low moisture permeability from the viewpoint of improving heat-insulating wet heat durability.
  • the moisture permeability of the surface layer the product of the water vapor transmission rate and the film thickness can be used as an index.
  • the material having a low water vapor transmission rate that can be preferably used for the surface layer in the present invention include silicon-containing materials.
  • the film thickness of the surface layer is preferably 1 ⁇ m or less from the viewpoint of improving the initial value of heat insulating properties, more preferably 0.5 ⁇ m or less, and 0.3 ⁇ m or less. It is particularly preferred.
  • the surface layer may contain oxide particles for the purpose of adjusting the refractive index or increasing the surface hardness.
  • oxide particles include silicon oxide, titanium oxide, and zirconium oxide. Since the surface layer is the outermost layer of the heat insulating film, it is preferable to use silicon oxide having a low refractive index from the viewpoint of antireflection, and it is particularly preferable to use silicon oxide of hollow particles.
  • the particle size of the oxide particles is preferably in the range of 1 to 500 nm, more preferably in the range of 10 to 200 nm.
  • the amount of oxide particles added is preferably in the range of 1 to 50% by mass, and more preferably in the range of 10 to 40% by mass.
  • the heat insulating film preferably has at least one intermediate layer between the support and the fibrous metal particle-containing layer.
  • the intermediate layer By providing an intermediate layer between the support and the fibrous metal particle-containing layer, the adhesion between the support and the fibrous metal particle-containing layer, the total light transmittance of the fibrous metal particle-containing layer, and the fibrous metal particles It is possible to improve at least one of the haze of the containing layer and the film strength of the fibrous metal particle-containing layer.
  • an adhesive layer for improving the adhesive force between the support and the fibrous metal particle-containing layer, and a functional layer that improves functionality by interaction with the components contained in the fibrous metal particle-containing layer Etc. are appropriately provided depending on the purpose.
  • the fibrous metal particle-containing layer 20 is provided on a support 101 with an adhesive layer having an intermediate layer (first adhesive layer 31 and second adhesive layer) on the support. Yes. Between the support 10 and the fibrous metal particle-containing layer 20, the first adhesive layer 31 excellent in affinity with the support 10 and the second excellent in affinity between the fibrous metal particle-containing layer 20.
  • the intermediate layer including the adhesive layer 32 is provided.
  • An intermediate layer having a configuration other than that in FIG. 5 may be included.
  • the first adhesive layer 31 and the first adhesive layer 31 similar to those in the embodiment in FIG. 5 are provided between the support 10 and the fibrous metal particle-containing layer 20.
  • ⁇ Near-infrared shielding layer> Furthermore, by using a near-infrared shielding material, the shielding property of near-infrared light can be improved.
  • a near-infrared shielding material flat metal particles (for example, silver nanodisks), organic multilayer films, spherical metal oxide particles (for example, tin-doped indium oxide (ITO) particles, antimony-doped tin oxide (ATO) particles, Cesium-doped tungsten oxide (CWO) particles).
  • a near-infrared shielding material is contained in a near-infrared shielding layer, and it is more preferable that it is a material which forms a near-infrared shielding layer independently.
  • the near-infrared shielding layer is divided into a heat ray reflection type near infrared reflection layer and a heat ray absorption type near infrared absorption layer depending on the material contained therein.
  • Near-infrared reflective layer using flat metal particles From the viewpoint of heat ray shielding (acquisition rate of solar heat), a heat ray reflection type with no re-radiation is desirable rather than a heat ray absorption type with re-radiation of absorbed light into the room (about 1/3 of the absorbed solar energy). . From the viewpoint of reflecting near-infrared light, it is preferable to use flat metal particles as the near-infrared shielding material.
  • a near-infrared reflective layer using such flat metal particles is disclosed in JP 2013-228694 A [0019] to [0046], JP 2013-083974 A, JP 2013-080222 A, JP
  • the near-infrared shielding materials described in JP2013-080221A, JP2013-077007A, JP2013-068945A, and the like can be used, and the descriptions of these publications are incorporated in this specification.
  • the near-infrared reflective layer is a layer containing at least one kind of metal particles, and the metal particles have 60% by number or more of hexagonal or circular plate-like metal particles, and the hexagonal or circular shape.
  • the main plane of the shaped flat metal particles is plane-oriented in an average range of 0 ° to ⁇ 30 ° with respect to one surface of the near-infrared reflective layer.
  • the material of the metal particles is not particularly limited and can be appropriately selected according to the purpose. However, silver, gold, aluminum, copper, rhodium, nickel, platinum are preferred because of the high heat ray (near infrared) reflectance. Etc. are preferable.
  • a near-infrared absorbing layer of a heat ray absorption type that easily generates heat on the heat insulating film is preferable among the near-infrared shielding layers.
  • the near-infrared absorption layer [0033] of Japanese Patent Application Laid-Open No. 2014-240907, [0011] to [0022] of Japanese Patent Application Laid-Open No. 2014-214299, and [0013] to [0017] of Japanese Patent Application Laid-Open No. 2014-148567.
  • JP-A-2014-139617, [0010] to [0034], JP-A-2014-80466, [0022] to [0035] can be preferably used. Incorporated in the description.
  • the heat insulating film of the present invention preferably has an adhesive layer.
  • the adhesive layer can contain an ultraviolet absorber.
  • the material that can be used for forming the adhesive layer is not particularly limited and may be appropriately selected depending on the intended purpose.
  • An adhesive layer made of these materials can be formed by coating.
  • you may add an antistatic agent, a lubricant, an antiblocking agent, etc. to the adhesion layer.
  • the thickness of the adhesive layer is preferably 0.1 ⁇ m to 10 ⁇ m.
  • the method for producing a heat insulating film is a step of forming a fibrous metal particle-containing layer by applying a coating solution for forming a fibrous metal particle-containing layer containing fibrous metal particles mainly composed of silver and a binder onto a support. It is preferable to contain. It is also preferable to include a step of forming a surface layer by applying a coating liquid for forming a surface layer having a water contact angle of 25 ° or less onto the above-mentioned fibrous metal particle-containing layer.
  • the coating liquid for forming the fibrous metal particle-containing layer is prepared by preparing an aqueous dispersion of fibrous metal particles such as metal nanowires, and a material other than the metal oxide derived from the specific alkoxide compound described above ( For example, it may be prepared by mixing a binder mainly composed of the aforementioned conductive polymer).
  • the coating for forming the fibrous metal particle-containing layer is used as a method of forming the fibrous metal particle-containing layer on the support.
  • a liquid hereinafter also referred to as “sol-gel coating liquid” is applied onto a support to form a liquid film, and a hydrolysis and polycondensation reaction of a specific alkoxide compound in the liquid film (hereinafter referred to as this The reaction of hydrolysis and polycondensation is also referred to as “sol-gel reaction.”) To form a fibrous metal particle-containing layer by causing a reaction.
  • the sol-gel coating solution may be prepared by preparing an aqueous dispersion of fibrous metal particles such as metal nanowires and mixing this with a specific alkoxide compound.
  • an aqueous solution containing a specific alkoxide compound is prepared, and the aqueous solution is heated to hydrolyze and polycondensate at least a part of the specific alkoxide compound to form a sol state.
  • a sol-gel coating solution may be prepared by mixing with an aqueous dispersion of fibrous metal particles. In order to promote the sol-gel reaction, it is practically preferable to use an acidic catalyst or a basic catalyst in combination because the reaction efficiency can be increased.
  • the coating film After coating, it can be dried by any method, and is preferably dried by heating.
  • a binder mainly composed of the metal oxide derived from the specific alkoxide compound hydrolysis and condensation reactions of the specific alkoxide compound occur in the coating film of the sol-gel coating liquid formed on the support.
  • the coating film is preferably heated and dried.
  • the heating temperature for promoting the sol-gel reaction is suitably in the range of 30 ° C. to 200 ° C., more preferably in the range of 50 ° C. to 180 ° C.
  • the heating and drying time is preferably 10 seconds to 300 minutes, more preferably 1 minute to 120 minutes.
  • the coating method in each step described above there is no particular limitation on the coating method in each step described above, and it can be performed by a general coating method and can be appropriately selected depending on the purpose. Examples thereof include a roll coating method, a bar coating method, a dip coating method, a spin coating method, a casting method, a die coating method, a blade coating method, a gravure coating method, a curtain coating method, a spray coating method, and a doctor coating method.
  • the surface treatment of the fibrous metal particle-containing layer may be a plasma treatment from the viewpoint of damage to the fibrous metal particle-containing layer.
  • atmospheric pressure plasma treatment is more preferable, and atmospheric pressure plasma treatment performed in a nitrogen stream is particularly preferable.
  • the coating liquid for forming the surface layer can form a uniform liquid film on the fibrous metal particle-containing layer by using the same solvent as the fibrous metal particle-containing layer.
  • the coating liquid for forming the surface layer can form a uniform liquid film on the fibrous metal particle-containing layer by using the same solvent as the fibrous metal particle-containing layer.
  • the heat insulation glass of this invention is the heat insulation glass which laminated
  • the window of this invention is a window containing the heat insulating film of this invention bonded together to the transparent support body for windows, and the transparent support body for windows.
  • the transparent support for windows is preferably a transparent support for windows having a thickness of 0.5 mm or more, more preferably a transparent support for windows having a thickness of 1 mm or more, and is caused by the thickness of the transparent support for windows. From the viewpoint of suppressing heat conduction and increasing warmth, a transparent support for windows having a thickness of 2 mm or more is particularly preferable.
  • the transparent support for windows is generally a plate or sheet.
  • transparent support for windows transparent glass such as white plate glass, blue plate glass, silica coated blue plate glass; synthesis of polycarbonate, polyethersulfone, polyester, acrylic resin, vinyl chloride resin, aromatic polyamide resin, polyamideimide, polyimide, etc. Examples thereof include a resin plate of resin.
  • the transparent support body for windows is a transparent glass or a resin board, and it is more preferable that it is transparent glass.
  • Transparent glass such as white plate glass, blue plate glass, silica coat blue plate glass, can be used as glass and window glass, for example.
  • the glass used in the present invention preferably has a smooth surface, and is preferably float glass.
  • the heat insulation film of this invention is affixed on the inner side of a window, ie, the indoor side of a window glass.
  • the fibrous metal particle-containing layer of the heat insulating film of the present invention is disposed on the surface of the support opposite to the surface on the window (glass) side.
  • the fibrous metal particle-containing layer depends on the thickness of the layer
  • the distance between the fibrous metal particle-containing layer and the outermost surface on the indoor side is preferably within 5 ⁇ m from the viewpoint of enhancing the heat insulating property. It is particularly preferably 1 to 5 ⁇ m or less, and particularly preferably 2 to 4 ⁇ m or less.
  • the fibrous metal particle-containing layer of the heat insulating film of the present invention is preferably in the layer next to the outermost layer on the indoor side from the viewpoint of improving heat insulating properties.
  • the near infrared shielding layer is installed on the sunlight side as much as possible because it can reflect the infrared rays entering the indoor in advance.
  • the near infrared shielding layer It is preferable to laminate the adhesive layer so that is placed on the sunlight incident side. Specifically, an adhesive layer is provided on the near-infrared shielding layer or a functional layer such as an overcoat layer provided on the near-infrared shielding layer, and is bonded to the window glass through the adhesive layer. It is preferable.
  • the heat insulating film of the present invention When the heat insulating film of the present invention is applied to the window glass, the heat insulating film of the present invention prepared by coating or laminating the adhesive layer is prepared, and the interface between the window glass surface and the adhesive layer surface of the heat insulating film of the present invention is prepared in advance. After spraying an aqueous solution containing an activator (mainly anionic), the heat insulating film of the present invention may be installed on the window glass through an adhesive layer. Until the moisture evaporates, the adhesive force of the adhesive layer decreases, and therefore the position of the heat insulating film of the present invention can be adjusted on the glass surface.
  • an activator mainly anionic
  • the window glass is swept away from the glass center toward the edge by using a squeegee or the like to leave moisture remaining between the window glass and the heat insulating film of the present invention.
  • the heat insulation film of this invention can be fixed to the surface. Thus, it is possible to install the heat insulation film of this invention in a window glass.
  • a building material is a building material containing the heat insulation film of this invention or the heat insulation glass of this invention.
  • the building is a building including the heat insulating film of the present invention, the heat insulating glass of the present invention, the building material of the present invention, or the window of the present invention.
  • buildings include houses, buildings, and warehouses.
  • the vehicle is a vehicle including the heat insulating film of the present invention, the heat insulating glass of the present invention or the window of the present invention. Examples of the vehicle include an automobile, a railway vehicle, and a ship.
  • additive liquid G 1 g of glucose powder was dissolved in 280 mL of pure water to prepare additive solution G.
  • additive solution H was prepared by dissolving 4 g of HTAB (hexadecyl-trimethylammonium bromide) powder in 220 mL of pure water.
  • a silver nanowire aqueous dispersion (1) was prepared as follows. 410 mL of pure water was placed in a three-necked flask, and 82.5 mL of additive solution H and 206 mL of additive solution G were added through a funnel while stirring at 20 ° C. (first stage). To this solution, 206 mL of additive solution A was added at a flow rate of 2.0 mL / min and at a stirring rotation speed of 800 rpm (round per minutes) (second stage). Ten minutes later, 82.5 mL of additive liquid H was added (third stage). Thereafter, the internal temperature was raised to 73 ° C. at 3 ° C./min.
  • the above washing was repeated until the electric conductivity (measured with CM-25R manufactured by Toa DKK Co., Ltd.) was 50 ⁇ S / cm or less, followed by concentration to obtain a 0.84% silver nanowire aqueous dispersion (1). It was.
  • the obtained silver nanowire aqueous dispersion (1) was used as the silver nanowire aqueous dispersion of Preparation Example 1.
  • the average minor axis length, the average major axis length, and the minor axis length of the fibrous metal particles were as described above. The coefficient of variation was measured.
  • silver nanowire aqueous dispersion (1) indicates the silver nanowire aqueous dispersion obtained by the above method.
  • a bonding solution 1 was prepared with the following composition.
  • Adhesive solution 1 -Takelac (registered trademark) WS-4000 5.0 parts by mass (polyurethane for coating, solid content concentration 30%, manufactured by Mitsui Chemicals, Inc.) ⁇ Surfactant 0.3 part by mass (Brand name: NAROACTY HN-100, manufactured by Sanyo Chemical Industries, Ltd.) ⁇ Surfactant 0.3 part by mass (Sandet (registered trademark) BL, solid content concentration 43%, manufactured by Sanyo Chemical Industries, Ltd.) ⁇ 94.4 parts by mass of water
  • One surface of a 75 ⁇ m-thick PET film (reference numeral 10 in FIG. 5) used as a support is subjected to corona discharge treatment, and the adhesive solution 1 is applied to the surface subjected to the corona discharge treatment, and the temperature is 120 ° C. And dried for 2 minutes to form a first adhesive layer (reference numeral 31 in FIG. 5) having a thickness of 0.11 ⁇ m.
  • An adhesive solution 2 was prepared with the following composition.
  • Adhesive solution 2 was prepared by the following method. While the aqueous acetic acid solution was vigorously stirred, 3-glycidoxypropyltrimethoxysilane was dropped into the aqueous acetic acid solution over 3 minutes. Next, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane was added to the aqueous acetic acid solution over 3 minutes with vigorous stirring. Next, tetraethoxysilane was added to the acetic acid aqueous solution over 5 minutes with vigorous stirring, and then stirring was continued for 2 hours. Next, colloidal silica, a curing agent, and a surfactant were sequentially added to prepare an adhesive solution 2.
  • the adhesive solution 2 is applied to the surface by a bar coating method and heated at 170 ° C. for 1 minute. It dried and formed the 2nd contact bonding layer (code
  • Example 1 ⁇ Formation by application of fibrous metal particle-containing layer> The solution of the alkoxide compound having the following composition was stirred at 60 ° C. for 1 hour to confirm that the solution became uniform. The prepared solution was used as a sol-gel solution.
  • a sol-gel coating liquid which is a coating liquid for use, was obtained.
  • the surface of the second adhesive layer of the above support with an adhesive layer is subjected to a corona discharge treatment, and the surface is coated with a silver amount of 0.040 g / m 2 and the total solid content applied amount is 0.120 g / m.
  • the sol-gel coating solution was applied so as to be 2 . After that, it was dried at 175 ° C. for 1 minute to cause a sol-gel reaction to form a fibrous metal particle-containing layer.
  • the mass ratio of tetraethoxysilane (alkoxide compound) / silver nanowire in the fibrous metal particle-containing layer was 2/1.
  • the obtained solid was washed with n-hexane to obtain a hydrophilic polymer (I-2) which is an exemplary compound (I-2) having the following structure.
  • the mass of the solid after drying was 80.6 g.
  • the hydrophilic polymer (I-2) was a polymer having a mass average molecular weight of 22,000 according to GPC (polyethylene oxide standard).
  • ⁇ Hydrophilic sol-gel solution> In 90 g of purified water, 10 g of the hydrophilic polymer (I-2) prepared by the above method was mixed as a hydrophilic polymer and stirred at room temperature for 2 hours to prepare a hydrophilic sol-gel solution.
  • Example 2 As a hydrophilic composition, a hydrophilic composition was prepared in the same manner as in Example 1 except that 5 g of the hydrophilic sol-gel solution prepared in Example 1 was mixed with 495 g of purified water to prepare a hydrophilic composition. Then, on the surface of the fibrous metal particle-containing layer, the hydrophilic composition is applied using an applicator so that the film thickness after drying is 0.8 ⁇ m, and dried by heating at 170 ° C. for 1 minute. And the heat insulation film of Example 2 was obtained.
  • Example 3 As a hydrophilic composition, a hydrophilic composition was prepared in the same manner as in Example 1 except that 10 g of the hydrophilic sol-gel solution prepared in Example 1 was mixed with 490 g of purified water to prepare a hydrophilic composition. Then, on the surface of the fibrous metal particle-containing layer, the hydrophilic composition is applied using an applicator so that the film thickness after drying is 1.5 ⁇ m, and dried by heating at 170 ° C. for 1 minute. And the heat insulation film of Example 3 was obtained.
  • Example 4 ⁇ Monomolecular film composition> A super hydrophilic coating material (trade name: LAMBIC-500WP, solid content: 10% by mass, manufactured by Osaka Organic Chemical Industry Co., Ltd.) was prepared.
  • the superhydrophilic coating solution was applied using an applicator, heated at 170 ° C. for 1 minute and dried to obtain a heat insulating film of Example 4.
  • the obtained surface layer was confirmed to be a monomolecular film by X-ray reflectivity measurement.
  • NALCO registered trademark
  • Phosphoric acid was added dropwise to the resulting solution to adjust the pH to 1.5 to 2.0 to prepare a colloidal silica dispersion.
  • ⁇ Colloidal silica coating solution> To the above colloidal silica dispersion, 23.5 g of purified water, 1.06 g of ethanol, and 0.56 g of a 10 mass% aqueous solution of TRITON BG10 (manufactured by Dow Chemical Co., Ltd., nonionic surfactant) are added, and phosphoric acid is added. The pH of the solution was adjusted to 2.4 by using a colloidal silica coating solution (solid content: 2.76% by mass).
  • TRITON BG10 manufactured by Dow Chemical Co., Ltd., nonionic surfactant
  • ⁇ Modified acrylate hydrophilic composition 76 parts by mass of a modified acrylate hydrophilic monomer (trade name Miramer M4004, manufactured by Toyo Chemicals Co., Ltd.), 21 parts by mass of a crosslinking agent (trade name A-DPH, manufactured by Shin-Nakamura Chemical Co., Ltd.), a polymerization initiator ( 3 parts by mass (trade name IRGACURE 184 BASF), 15 parts by mass of methyl alcohol, and 35 parts by mass of propylene glycol monomethyl ether were mixed to prepare a modified acrylate hydrophilic composition.
  • a modified acrylate hydrophilic monomer trade name Miramer M4004, manufactured by Toyo Chemicals Co., Ltd.
  • a crosslinking agent trade name A-DPH, manufactured by Shin-Nakamura Chemical Co., Ltd.
  • a polymerization initiator 3 parts by mass (trade name IRGACURE 184 BASF)
  • the modified acrylate hydrophilic composition is applied using an applicator so that the film thickness after drying is 0.2 ⁇ m, and dried by heating at 60 ° C. for 10 minutes. Then, the monomer was cured by UV (ultraviolet) irradiation to obtain a heat insulating film of Example 6.
  • Example 7 ⁇ Formation of fibrous metal particle-containing layer using PEDOT / PSS binder> A poly (3,4-ethylenedioxythiophene) (PEDOT) solution doped with polystyrene sulfonic acid (PSS) having the following composition was prepared. -Poly (3,4-ethylenedioxythiophene) aqueous dispersion 50.0 parts by mass (CleviosP AI 4083, manufactured by Heraeus Co., Ltd.) -2.0 parts by mass of distilled water-8.0 parts by mass of ethanol 18.0 parts by mass of the obtained PEDOT solution and 32.70 parts by mass of the silver nanowire aqueous dispersion (1) obtained in Preparation Example 1 were mixed.
  • PEDOT poly (3,4-ethylenedioxythiophene)
  • PSS polystyrene sulfonic acid
  • distribution PEDOT coating liquid which is a coating liquid for fibrous metal particle content layer formation.
  • the surface of the second adhesive layer of the above support with an adhesive layer is subjected to a corona discharge treatment, and the surface is coated with a silver amount of 0.040 g / m 2 and the total solid content applied amount is 0.120 g / m.
  • the silver nanowire-dispersed PEDOT coating solution was applied so as to be 2 . After that, it was dried at 100 ° C. for 2 minutes to form a fibrous metal particle-containing layer using a PEDOT / PSS binder.
  • the mass ratio of binder / silver nanowire in the fibrous metal particle-containing layer using the PEDOT / PSS binder was 2/1.
  • a surface layer was formed in the same manner as in Example 2 to obtain a heat insulating film of Example 7.
  • Example 8 ⁇ Formation of fibrous metal particle-containing layer using COP binder>
  • the silver nanowire aqueous dispersion obtained in Preparation Example 1 was subjected to solvent substitution with n-propanol without changing the silver nanowire concentration of the dispersion, and then further with 1-isopropyl-4-methylcyclohexane.
  • a cycloolefin polymer (COP) solution having the following composition was prepared.
  • the above COP solution 3.50 parts by mass and the above-mentioned solvent-substituted silver nanowire aqueous dispersion 32.70 parts by mass are mixed and silver nanowire-dispersed COP coating is performed.
  • a liquid was obtained.
  • the surface of the second adhesive layer of the above support with an adhesive layer is subjected to a corona discharge treatment, and the surface is coated with a silver amount of 0.040 g / m 2 and the total solid content applied amount is 0.120 g / m.
  • the silver nanowire-dispersed COP coating solution was applied so as to be 2 . After that, it was dried at 100 ° C. for 2 minutes to form a fibrous metal particle-containing layer using a COP binder.
  • the mass ratio of COP / silver nanowire in the fibrous metal particle-containing layer using the COP binder was 2/1.
  • a surface layer was formed in the same manner as in Example 2 to obtain a heat insulating film of Example 8.
  • Example 9 ⁇ Formation of fibrous metal particle-containing layer using PU binder> A polyurethane (PU) solution having the following composition was prepared. -Polyurethane aqueous dispersion 5.0 parts by mass (trade name, Takerak (registered trademark) WS-4000, manufactured by Mitsui Chemicals, Inc.) -95.0 parts by mass of distilled water 15.0 parts by mass of the obtained PU solution and 32.70 parts by mass of the silver nanowire aqueous dispersion (1) obtained in Preparation Example 1 were mixed and further diluted with distilled water. Thus, a silver nanowire-dispersed PU coating solution was obtained.
  • PU polyurethane
  • the surface of the second adhesive layer of the above support with an adhesive layer is subjected to a corona discharge treatment, and the surface is coated with a silver amount of 0.040 g / m 2 and the total solid content applied amount is 0.120 g / m.
  • the silver nanowire-dispersed PU coating solution was applied so as to be 2 . Thereafter, it was dried at 120 ° C. for 2 minutes to form a fibrous metal particle-containing layer using a PU binder.
  • the mass ratio of PU / silver nanowires in the fibrous metal particle-containing layer using the PU binder was 2/1.
  • a surface layer was formed in the same manner as in Example 2 to obtain a heat insulating film of Example 9.
  • Example 10 ⁇ Formation of fibrous metal particle-containing layer using PVA binder> A polyvinyl alcohol (PVA) solution having the following composition was prepared. ⁇ 5.0 parts by mass of PVA (trade name: POVAL VC-13, manufactured by Nippon Vinegar Poval Co., Ltd.) -Distilled water 95.0 parts by mass The obtained PVA solution 4.4 parts by mass and the silver nanowire aqueous dispersion (1) 32.70 parts by mass obtained in Preparation Example 1 were mixed and further diluted with distilled water. Thus, a silver nanowire-dispersed PVA coating solution was obtained.
  • PVA polyvinyl alcohol
  • the surface of the second adhesive layer of the above support with an adhesive layer is subjected to a corona discharge treatment, and the surface is coated with a silver amount of 0.040 g / m 2 and the total solid content applied amount is 0.120 g / m.
  • the silver nanowire-dispersed PVA coating solution was applied so as to be 2 . Then, it dried for 2 minutes at 100 degreeC, and formed the fibrous metal particle content layer using PVA.
  • the mass ratio of PVA / silver nanowire in the fibrous metal particle-containing layer using the PVA binder was 2/1.
  • a surface layer was formed in the same manner as in Example 2 to obtain a heat insulating film of Example 10.
  • Example 11 Silver used in Example 11 was added 0.1 parts by mass of a silane coupling agent (trade name X-41-1805, manufactured by Shin-Etsu Silicone Co., Ltd.) in the silver nanowire-dispersed COP coating solution prepared in Example 8. A nanowire-dispersed COP coating solution was prepared. The surface of the second adhesive layer of the above support with an adhesive layer is subjected to a corona discharge treatment, and the surface is coated with a silver amount of 0.040 g / m 2 and the total solid content applied amount is 0.120 g / m. The silver nanowire-dispersed COP coating solution was applied so as to be 2 .
  • a silane coupling agent trade name X-41-1805, manufactured by Shin-Etsu Silicone Co., Ltd.
  • the obtained laminated body was used as the heat insulating film of Example 11.
  • the mass ratio of COP / silver nanowire in the fibrous metal particle-containing layer of the heat insulating film of Example 11 was 2/1.
  • Example 12 ⁇ N 2 plasma processing>
  • the surface of the fibrous metal particle-containing layer using the COP binder prepared in Example 8 above was output 1.7 kW and nitrogen flow rate 200 L / min using a remote atmospheric pressure plasma processing apparatus (manufactured by E-Square). The surface treatment was carried out under the condition of the conveyance speed of 2 m / min. The obtained laminated body was used as the heat insulating film of Example 12.
  • Example 13 For the heat insulating film of Example 1, a near-infrared reflective layer was provided by the following method.
  • Preparation of silver tabular grain dispersion B1> (Preparation of silver tabular grain dispersion A1) Agitator with 13L of ion-exchanged water measured in a reaction vessel of NTKR-4 (manufactured by Nippon Metal Industry Co., Ltd.) and four NTKR-4 propellers and four NTKR-4 paddles attached to a SUS316L shaft While stirring using a chamber equipped with 1.0 g of 10 g / L trisodium citrate (anhydrous) aqueous solution, 1.0 L was added and kept at 35 ° C.
  • the stirring was increased to 1200 rpm, and the silver sulfite white precipitate mixture prepared by the method described later was further added to the reaction vessel.
  • 5.0 L of 1 mol / L NaOH aqueous solution was further added to the reaction vessel at 0.33 L / min.
  • an additional 2.0 g / L of 1- (meta-sulfophenyl) -5-mercaptotetrazole sodium aqueous solution NaOH and citric acid (anhydride) was added to the reaction vessel to a pH of 7.0 ⁇ 1.0.
  • the obtained silver tabular grain dispersion liquid A1 was stored in a 20 L container of Union Container Type II (manufactured by Low Density Polyethylene, distributor: ASONE Co., Ltd.) and stored at 30 ° C.
  • the silver tabular grain dispersion liquid A1 was subjected to a desalting treatment and a redispersion treatment to prepare a silver tabular grain dispersion liquid B1.
  • a coating liquid M1 for a near-infrared reflective layer was prepared with the following composition.
  • -Coating liquid M1- Aqueous urethane resin Hydran HW350 (Dic Co., Ltd., solid content: 30% by mass) 0.27 parts by mass
  • Silver tabular grain dispersion B1 10.24 parts by mass 1- (methylureidophenyl) -5-mercaptotetrazole (Wako Pure Chemical Industries, Ltd.) Manufactured, prepared 2% by mass of alkaline aqueous solution) 0.61 part by mass
  • Surfactant A Lipal 870P (Manufactured by Lion Co., Ltd., diluted with ion exchange water at a solid content of 1% by mass) 0.96 parts by mass
  • Surfactant B NAROACTY CL-95 (Manufactured by Sanyo Chemical Industry Co., Ltd., diluted with 1% solid content ion exchange water) 1.19 parts by mass
  • Rate of change after wet heat aging 100 ⁇
  • Rate of change after wet heat aging 100 ⁇
  • the heat insulating film of the present invention can suppress a change in heat insulating property after aging with wet heat when using a fibrous metal particle-containing layer containing fibrous metal particles mainly composed of silver and a binder.
  • a fibrous metal particle-containing layer containing fibrous metal particles mainly composed of silver and a binder On the other hand, from Comparative Examples 1 to 4, it was found that when the water contact angle on the outermost surface of the heat insulating film exceeds 25 °, the heat insulating property change after wet heat aging is large.
  • the heat insulation film of this invention it turned out that abrasion resistance, a dirt wiping test result, and the initial value of heat insulation can also be improved.
  • the binder of the fibrous metal particle-containing layer and the material of the surface layer were silicon-containing materials
  • the change in the water contact angle of the surface layer after the rubbing test was small. This is probably because the adhesion between the fibrous metal particle-containing layer and the surface layer was improved.
  • the heat insulating glass of the present invention using the heat insulating film of the present invention can suppress the heat insulating change after the aging of wet heat, the heat insulating property after the aging of the wet heat is suppressed when the heat insulating film of the present invention is arranged inside the window.
  • Such a heat insulating film of the present invention can provide a building or vehicle including a window that can achieve both low haze and high heat insulating properties.
  • the heat insulation film of this invention is a window which can suppress the heat insulation change after time-lapse

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Special Wing (AREA)
  • Optical Filters (AREA)

Abstract

支持体と、支持体の一方の面上に配置され、銀を主成分とする繊維状金属粒子およびバインダーを含む繊維状金属粒子含有層とを有する断熱フィルムであって、断熱フィルムの最表面の水接触角が25°以下である、断熱フィルムは、銀を主成分とする繊維状金属粒子およびバインダーを含む繊維状金属粒子含有層を用いた場合に、湿熱経時後の断熱性変化を抑制できる;断熱ガラス;窓。

Description

断熱フィルム、断熱ガラスおよび窓
 本発明は、断熱フィルム、断熱ガラスおよび窓に関する。より詳しくは、銀を主成分とする繊維状金属粒子およびバインダーを含む繊維状金属粒子含有層を用いた場合に、湿熱経時後の断熱性変化を抑制できる断熱フィルム、この断熱フィルムを用いた断熱ガラスおよびこの断熱フィルムを用いた窓に関する。
 近年、二酸化炭素削減のための省エネルギー施策の一つとして環境負荷の少ない商品、いわゆるエコな商品が求められており、自動車や建物等の窓に対する日射調整フィルムや断熱フィルムが注目されている。断熱フィルムとは窓などに貼ることで屋内側と屋外側の熱の行き来を遅くさせるフィルムのことであり、これを使用することにより冷暖房の使用量が減り、節電効果が期待できる。断熱性は、熱貫流率で定義される。国等による環境物品等の調達の推進等に関する法律(いわゆるグリーン購入法)における窓用日射調整フィルム調達基準では、断熱性については、JIS(Japanese Industrial Standards) A 5759「建築窓ガラス用フィルム」による計測方法で、熱貫流率5.9W/(m・K)未満であることが求められており、この数字が小さいほど断熱性が高いことになる。JIS A 5759によれば、熱貫流率は波長5μm~50μmの遠赤外線の反射スペクトルから求めることができる。すなわち、熱貫流率を下げるには波長5μm~50μmの遠赤外線の反射率を上げることが好ましい。
 断熱フィルムとして、断熱フィルムとしてスパッタ法などの蒸着により形成した金属薄膜と高屈折率膜の積層体を用い、表面の物性を改良する観点から表面層を設けた構成が知られている。
 例えば、特許文献1には、透明なガラスの片面に熱線遮断フィルムを貼付した構成体であって、熱線遮断フィルム側の表面の水に対する接触角が50°以下、波長400~750nmにおける積分可視光透過率が55%以上、及び波長750~2100nmの積分近赤外線透過率が50%以下であるグリーンハウス用ガラス積層体が開示されている。特許文献1には好ましい態様として、熱線遮断フィルム側の表面の水に対する接触角を制御するために濡れ性改良剤を積層した積層フィルムが挙げられており、実施例ではシロキサンを主成分とする塗液を塗布する方法が記載されている。
 特許文献2には、ガラス基板の表面に、少なくとも貴金属系薄膜を1層以上含む多層膜を積層成膜し、次いでa)親水性ポリマー、b)Si、Ti、Zr、Alから選択される金属アルコキシド化合物を含有し、b)の金属アルコキシドを加水分解、重縮合した親水性被膜を塗設して成る断熱ガラスが開示されている。
 特許文献3には、透明基材フィルムの一方の面に、少なくとも赤外線遮蔽層を設けたフィルムにおいて、上記赤外線遮蔽層が、(A)電離放射線硬化型樹脂と、(B)赤外線吸収剤と、電離放射線硬化型樹脂100質量部当たり、(C)電離放射線硬化型シリコーン樹脂0.1~50質量部とを含む塗膜の硬化物からなる防汚性赤外線遮蔽フィルムが開示されている。
 また、断熱フィルムの材料に繊維状金属粒子を用い、塗布方法により製造する方法が知られている。例えば、特許文献4には、透明フィルム、およびその表面に設けられた遠赤外線反射層を含む熱線遮蔽フィルムであって、遠赤外線反射層が、繊維状金属粒子を含む熱線遮蔽フィルムが記載されている。特許文献4によれば、熱線遮蔽フィルムの遠赤外線反射層が繊維状金属粒子を含んでいるので、屋内から放射される暖房等の熱線を反射して逃がさず、外気の熱を屋内に取り込まない断熱性に優れる等と記載されている。
特開平10-139489号公報 特開2007-223825号公報 特開2000-211063号公報 特開2012-252172号公報
 窓ガラスの内側に貼付されて使用される断熱フィルムは、室内からの遠赤外線を反射して熱が窓ガラスを通して逃げることを防止する。
 本発明者らが断熱フィルムを湿熱環境下で経時させる(例えば冬期に温かい室内で使用する)ことを検討したところ、特許文献4などに記載の銀を主成分とする繊維状金属粒子およびバインダーを含む繊維状金属粒子含有層を用いた場合に、断熱フィルム表面に結露が発生するなどの問題が生じ、水が遠赤外線の良好な吸収体となり、熱伝導により熱を逃がしてしまうため、断熱フィルムの性能を発揮できなくなることがわかった。いかなる理論に拘泥するものでもないが、銀を主成分とする繊維状金属粒子とバインダーとを有する繊維状金属粒子含有層を用いた遠赤外線反射層の場合は、湿熱経時後の断熱性変化が生じやすい。銀が金属酸化物でバリアされておらず、比表面積が大きく、端面以外の膜のどこからでも腐食開始されるために銀が腐食されやすい点と、銀を主成分とする繊維状金属粒子が切断され長さが変わると遠赤外線反射性能の劣化に直結する点などに起因すると考えられる。特許文献4はフィルム表面が結露することの課題を見いだせていないため、結露による断熱効率の顕著な低下が発生するものであった。また、特許文献4の構成ではフィルム表面に長時間水滴が滞留することで、繊維状金属粒子含有層の経時劣化も発生してしまうと予想される。なお、特許文献4では結露から反射層を保護するため2重ガラス窓の中空内部に断熱フィルムを配置する構成をとっており、断熱フィルム上に直接、結露防止層を配置することの記載はない。
 これに対し、特許文献1~3では、赤外線反射層において、銀を主成分とする繊維状金属粒子を使用することの記載はない。また、特許文献1~3の熱線遮蔽フィルムや断熱ガラスでは、湿熱環境下で経時させた場合の断熱性変化はあまり大きくなかった。そのため、銀を主成分とする繊維状金属粒子およびバインダーを含む繊維状金属粒子含有層を用いた場合に湿熱経時後の断熱性変化が大きくなってしまうという課題は、銀を主成分とする繊維状金属粒子を使用していない特許文献1~3ではあまり問題とならなかった新規課題であった。
 したがって、特許文献1~4に記載の方法を含め、銀を主成分とする繊維状金属粒子およびバインダーを含む繊維状金属粒子含有層を用いた場合に、湿熱経時後の断熱性変化を抑制できる断熱フィルムについては知られていないのが実情であった。
 本発明が解決しようとする課題は、銀を主成分とする繊維状金属粒子およびバインダーを含む繊維状金属粒子含有層を用いた場合に、湿熱経時後の断熱性変化を抑制できる断熱フィルムを提供することである。
 本発明者らは鋭意検討を行った結果、銀を主成分とする繊維状金属粒子およびバインダーを含む繊維状金属粒子含有層を用いた場合に、断熱フィルムの最表面の水接触角が25°以下であることで、湿熱経時後の断熱性変化を抑制できる断熱フィルムを提供できることを見出した。
 即ち、本発明は、以下の具体的手段により達成できる。
[1] 支持体と、
 支持体の一方の面上に配置され、銀を主成分とする繊維状金属粒子およびバインダーを含む繊維状金属粒子含有層とを有する断熱フィルムであって、
 断熱フィルムの最表面の水接触角が25°以下である、断熱フィルム。
[2] [1]に記載の断熱フィルムは、断熱フィルムの水接触角が25°以下である最表面が、支持体よりも繊維状金属粒子含有層に近い側の最表面であることが好ましい。
[3] [1]または[2]に記載の断熱フィルムは、繊維状金属粒子含有層の支持体とは反対の面上に、さらに水接触角が25°以下である表面層を含むことが好ましい。
[4] [3]に記載の断熱フィルムは、表面層の主成分が、ケイ素を含有する材料であることが好ましい。
[5] [3]または[4]に記載の断熱フィルムは、表面層の膜厚が、1μm以下であることが好ましい。
[6] [3]~[5]のいずれか一つに記載の断熱フィルムは、表面層が、単分子膜であることが好ましい。
[7] [1]~[6]のいずれか一つに記載の断熱フィルムは、繊維状金属粒子含有層のバインダーの主成分が、ケイ素を含有する材料であることが好ましい。
[8] [1]~[7]のいずれか一つに記載の断熱フィルムは、支持体の繊維状金属粒子含有層が配置された面とは反対の面に、さらに近赤外線遮蔽層を含むことが好ましい。
[9] [1]~[8]のいずれか一つに記載の断熱フィルムは、断熱フィルムの最表面の水接触角が10°以下であることが好ましい。
[10] [1]~[9]のいずれか一つに記載の断熱フィルムは、支持体が、透明フィルムであることが好ましい。
[11] [1]~[10]のいずれか一つに記載の断熱フィルムは、繊維状金属粒子の平均長軸長が5~50μmであることが好ましい。
[12] [1]~[11]のいずれか一つに記載の断熱フィルムは、窓の内側に配置され、
 繊維状金属粒子含有層が、支持体の窓側の面とは反対側の面上に配置されることが好ましい。
[13] [1]~[12]のいずれか一つに記載の断熱フィルムと、ガラスとを積層した断熱ガラス。
[14] 窓用透明支持体と、窓用透明支持体に貼り合わせた[1]~[12]のいずれか一つに記載の断熱フィルムを含む、窓。
 本発明によれば、銀を主成分とする繊維状金属粒子およびバインダーを含む繊維状金属粒子含有層を用いた場合に、湿熱経時後の断熱性変化を抑制できる断熱フィルムを提供することができる。
図1は、本発明の断熱フィルムの一例の断面を示す概略図である。 図2は、本発明の断熱フィルムの他の一例の断面を示す概略図である。 図3は、本発明の断熱フィルムの他の一例の断面を示す概略図である。 図4は、本発明の断熱フィルムの他の一例の断面を示す概略図である。 図5は、本発明の断熱ガラスの一例の断面を示す概略図である。
 以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は「~」前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本明細書中、組成物の主成分とは、組成物の全量に対して50質量%以上含まれる成分のことを言う。例えば、バインダーの主成分とは、バインダーの全量に対して50質量%以上含まれる成分のことを意味する。表面層の主成分とは、表面層の全量に対して50質量%以上含まれる成分のことを意味する。
[断熱フィルム]
 本発明の断熱フィルムは、支持体と、支持体の一方の面上に配置され、銀を主成分とする繊維状金属粒子およびバインダーを含む繊維状金属粒子含有層とを有する断熱フィルムであって、断熱フィルムの最表面の水接触角が25°以下である。
 このような構成により、銀を主成分とする繊維状金属粒子およびバインダーを含む繊維状金属粒子含有層を用いた場合に、湿熱経時後の断熱性変化を抑制できる断熱フィルムを提供できる。ここで、断熱フィルムの表面に水滴が付着すると、水滴が遠赤外線を吸収し、断熱性が顕著に損なわれる。いかなる理論に拘泥するものでもないが、断熱フィルムの表面を超親水性にすることによって、水分を素早く水膜化して水蒸気として室内空間に返還することが必要であると考えられる。本発明によれば、断熱フィルム表面に発生した結露を素早く水膜化して、再度大気中に戻すことによって断熱効率を維持するとともに、水滴の長期滞留による繊維状金属粒子含有層の劣化を防止することができると考えられる。また、結露した水滴を薄膜化して水蒸気として室内空間に戻し、水滴を通して侵入する硫黄成分によって銀が腐食される時間を短くして、湿熱経時後の断熱性変化を抑制できると考えられる。本発明の断熱フィルムに用いている遠赤外線反射を担う銀を主成分とする繊維状金属粒子は、水滴がフィルム表面に長期に留まることで、空気中から溶け込んだ硫黄成分で硫化してしまいやすく、断線や導電性低下による断熱性能の劣化が、Agスパッタ膜等よりも発生しやすいため、断熱フィルムの最表面の水接触角が25°以下であることによる湿熱経時後の断熱性変化の抑制効果が極めて高い。
 本発明の断熱フィルムの好ましい態様は、断熱フィルム表面が親水性であるため、埃や油汚れ等が付着した場合でも、水拭きにより簡単に除去できる効果を有する。
 また、本発明の断熱フィルムの好ましい態様の一例である、さらに近赤外線遮蔽層を含む遮熱/断熱の両機能を有する断熱フィルムでは、太陽光からの熱線が遮蔽され、結露しやすい状況になるため、さらに湿熱経時後の断熱性変化を抑制できる効果が高い。
 本発明の断熱フィルムの好ましい態様では、真空成膜法で形成された積層導電層よりも製造性に優れる。
 以下、本発明の断熱フィルムの好ましい態様を説明する。
<特性>
(最表面の水接触角)
 本発明の断熱フィルムは、断熱フィルムの最表面の水接触角が25°以下である。断熱フィルムの最表面の水接触角は、15°以下であることが湿熱経時後の断熱性変化を抑制する観点や汚れ拭き取り性を向上する観点から好ましく、10°以下であることがより好ましく、5°以下であることが特に好ましい。
 本発明の断熱フィルムは、断熱フィルムの最表面の水接触角の擦り試験後変化率が小さいことが、断熱フィルムの表面が擦られた場合にも断熱フィルムの最表面の水接触角を適切な範囲に保ち、湿熱経時後の断熱性変化の抑制ができるようにする観点(耐擦性の観点)から、好ましい。
 断熱フィルムの最表面の水接触角を制御する方法としては特に制限はないが、繊維状金属粒子含有層が最表面である場合は、繊維状金属粒子含有層に添加剤を添加する方法や、繊維状金属粒子含有層の表面を表面処理する方法を挙げることができる。表面層が最表面である場合は、水接触角が小さい表面を形成できる材料を表面層の主成分として用いる方法を挙げることができる。耐擦性の観点からは、本発明の断熱フィルムは、繊維状金属粒子含有層の支持体とは反対の面上に、さらに水接触角が25°以下である表面層を含むことが好ましい。
(断熱性の湿熱経時後変化率)
 本発明の断熱フィルムは、断熱性(後述の熱貫流率、U値)の湿熱経時後変化率が小さい。本発明の断熱フィルムは、後述の実施例に記載の方法で求められる湿熱経時後変化率が、10%以下であることが好ましく、7%以下であることがより好ましく、5%以下であることが特に好ましく、4%以下であることがより特に好ましい。
(断熱性)
 本発明の断熱フィルムは、断熱性(熱貫流率、U値)の初期値が優れることが好ましい。本発明の断熱フィルムは、断熱性(U値)の初期値が5.5W/m・K以下であることが好ましく、5.2W/m・K以下であることがより好ましく、4.9W/m・K以下であることが特に好ましい。
 本発明の断熱フィルムの好ましい態様では、さらに電波透過性にも優れることが、携帯電話等の発する有用電波の透過性を高める観点から好ましい。電波透過性の観点では表面抵抗を高くすることが好ましい。一般に繊維状金属粒子含有層は、スパッタ金属積層体よりも表面抵抗が高く、好ましい。繊維状金属粒子含有層の表面抵抗を高くすることで、電波透過性はより良好となる。表面抵抗が1000Ω/□(Ω毎スクエア)以上であることが、電波透過性を高める観点から好ましく、10000Ω/□以上がより好ましい。
<構成>
 本発明の断熱フィルムの構成について、説明する。
 図1~図4に本発明の断熱フィルムの一例の断面を示す概略図を示した。図5に本発明の断熱フィルムを含む、本発明の断熱ガラスの一例の断面を示す概略図を示した。
 図1に示した本発明の断熱フィルムは、支持体10と、繊維状金属粒子含有層20とを含む。図2に示した本発明の断熱フィルムは、支持体10と、繊維状金属粒子含有層20と、表面層21とをこの順で含む。ここで、本発明の断熱フィルムは、断熱フィルムの水接触角が25°以下である最表面が、支持体よりも繊維状金属粒子含有層に近い側の最表面であることが好ましい。図1に示した断熱フィルムの一例では、繊維状金属粒子含有層20が、水接触角が25°以下である最表面であることが好ましい。一方、図2に示した断熱フィルムの一例では、表面層21が、水接触角が25°以下である最表面であることが好ましい。すなわち、本発明の断熱フィルムは、図2に示すとおり、繊維状金属粒子含有層20の支持体10とは反対の面上に、さらに水接触角が25°以下である表面層21を含むことが好ましい。
 本発明の断熱フィルムは窓用の断熱フィルムであることが好ましい。本発明の断熱フィルムは、窓の内側に配置されることが好ましく、繊維状金属粒子含有層20が支持体10の窓(図5におけるガラス61)側の面とは反対側の面上に配置されることが遠赤外線を反射しやすいために好ましい。断熱フィルムがないときは屋内の遠赤外線がガラスに吸収されて、ガラス中を熱伝導することにより、屋内の熱が屋外に出てしまうが、断熱フィルムがあると遠赤外線を屋内に反射するため屋内の熱が屋外に出にくくなる。繊維状金属粒子含有層20は、できるだけ屋内側の最外層に近い層にあることが好ましく、表面層21が最外層であり、繊維状金属粒子含有層20が最外層の次の層にあることが断熱性を高める観点から好ましい。
 図3に示した本発明の断熱フィルムは、粘着層51と、支持体10と、繊維状金属粒子含有層20と、表面層21とをこの順で含む。
 本発明の断熱フィルムは図3または図4に示すように粘着層51を支持体10の窓(図5におけるガラス61)側の面に有することが好ましく、ガラス61と粘着層51を貼り合わせられることが好ましい。
 本発明の断熱フィルムは、支持体の繊維状金属粒子含有層が配置された面とは反対の面に、さらに近赤外線遮蔽層を含むことが好ましく、例えば図4に示す層構成で近赤外線遮蔽層41を含むことが好ましい。図4では、本発明の断熱フィルムの一例は、近赤外遮蔽材料を含む近赤外線遮蔽層41を有する。近赤外遮蔽材料は、近赤外線遮蔽層41を単独で形成せずに、その他の層に含まれていてもよい。例えば、近赤外遮蔽材料が、繊維状金属粒子含有層20に含まれていてもよく、第1の接着層31や第2の接着層32に含まれていてもよく、粘着層51に含まれていてもよい。近赤外遮蔽材料は、支持体の繊維状金属粒子含有層が配置された面とは反対の面、すなわち支持体10の窓(ガラス61)側の面側の層に含まれることが、近赤外光を遮蔽する観点から好ましい。
 図5に示した本発明の断熱ガラス111は、本発明の断熱フィルム103と、ガラス61を含む。本発明の断熱フィルム103は、ガラス61が窓の一部(窓ガラス)である場合に、窓の内側(屋内側、室内側、日中における太陽光入射側とは反対側、図5中のIN側)に配置されることが好ましい。
 支持体10と、繊維状金属粒子含有層20と、表面層21が、接着層を介して貼り合わせられた積層体を断熱部材102と言うことがある。接着層は単層でも2層以上の積層体でもよく、図5では接着層は第1の接着層31および第2の接着層32の積層体である。また、支持体10上に、接着層(図5では第1の接着層31および第2の接着層32の積層体)を設けた積層体を、接着層付きの支持体101と言うことがある。
 以下、本発明の断熱フィルムを構成する各層の好ましい態様を説明する。
<支持体>
 上記支持体としては、繊維状金属粒子含有層を担うことができるものである限り、目的に応じて種々のものを使用することができる。一般的には、板状またはシート状のものが使用される。
 支持体は、透明であっても、不透明であってもよいが、透明であることが好ましく、可視光に透明であることがより好ましい。支持体は全可視光透過率が70%以上であることが好ましく、85%以上であることがより好ましく、90%以上であることが更に好ましい。なお、支持体の全可視光透過率は、ISO(International Organization for Standardization) 13468-1(1996)に準拠して測定される。
 本発明の断熱フィルムは、支持体が、透明フィルムであることが好ましい。
 支持体を構成する素材としては、例えば、ポリカーボネート、ポリエーテルスルホン、ポリエステル、アクリル樹脂、塩化ビニル樹脂、芳香族ポリアミド樹脂、ポリアミドイミド、ポリイミド、ポリエチレンテレフタレート、ポリシクロオレフィン等の合成樹脂を挙げることができる。これらの支持体の繊維状金属粒子含有層が形成される表面は、所望により、アルカリ性水溶液による清浄化処理、シランカップリング剤などの薬品処理、プラズマ処理、イオンプレーティング、スパッタリング、気相反応法、真空蒸着などにより前処理がされていてもよい。
 支持体の厚さは、用途に応じて所望の範囲のものが使用される。一般的には、1μm~500μmの範囲から選択され、3μm~400μmがより好ましく、5μm~300μmが更に好ましい。
<繊維状金属粒子含有層>
 本発明では、繊維状金属粒子含有層は、支持体の一方の面上に配置され、銀を主成分とする繊維状金属粒子およびバインダーを含む。
 繊維状金属粒子含有層は、遠赤外線を反射させるには空隙サイズが小さいことが好ましく、例えば繊維状金属粒子含有層の断面写真において、80%以上の空隙の空隙サイズが25(μm)以下の空隙面積であることがより好ましい。
(繊維状金属粒子)
 本発明では、銀を主成分とする繊維状金属粒子を用いる。
 繊維状金属粒子は繊維状であり、繊維状は、ワイヤ状や線状と同義である。
 繊維状金属粒子としては、金属ナノワイヤ、棒状金属粒子を挙げることができる。繊維状金属粒子としては、金属ナノワイヤが好ましい。以下、金属ナノワイヤを繊維状金属粒子の代表例として説明することがあるが、金属ナノワイヤに関する説明は繊維状金属粒子の一般的な説明として用いることができる。
 繊維状金属粒子含有層は、繊維状金属粒子として、平均短軸長150nm以下の金属ナノワイヤを含有することが好ましい。平均短軸長が150nm以下であると、断熱性が向上し、光散乱等による光学特性の悪化が生じにくくなるため、好ましい。金属ナノワイヤなどの繊維状金属粒子は、中実構造であることが好ましい。
 より透明な繊維状金属粒子含有層を形成しやすいという観点からは、例えば、金属ナノワイヤなどの繊維状金属粒子は、平均短軸長が1nm~150nmのものが好ましい。
 製造時の扱い易さから、金属ナノワイヤなどの繊維状金属粒子の平均短軸長(平均直径)は、100nm以下であることが好ましく、60nm以下であることがより好ましく、50nm以下であることが更に好ましく、特に25nm以下であることがヘイズに関して一段と優れるものが得られるので好ましい。平均短軸長を1nm以上とすることにより、耐酸化性が良好で、耐候性に優れる繊維状金属粒子含有層が容易に得られる。平均短軸長は5nm以上であることがより好ましく、10nm以上であることが更に好ましく、15nm以上であることが特に好ましい。
 金属ナノワイヤなどの繊維状金属粒子の平均長軸長は、反射したい遠赤外線の反射帯域と同じ程度であることが、その反射したい遠赤外線の反射帯域を反射しやすい観点から好ましい。本発明では、金属ナノワイヤなどの繊維状金属粒子の平均長軸長は、5μm~50μmであることが波長5~50μmの遠赤外線を反射しやすい観点から好ましく、10μm~40μmがより好ましく、15μm~40μmが更に好ましい。特に、金属ナノワイヤの平均長軸長が40μm以下であると、金属ナノワイヤを凝集物が生じることなく合成することが容易となり、平均長軸長が15μm以上であると、十分な断熱性を得ることが容易となる。
 金属ナノワイヤなどの繊維状金属粒子の平均短軸長(平均直径)および平均長軸長は、例えば、透過型電子顕微鏡(Transmission Electron Microscope;TEM)と光学顕微鏡を用い、TEM像や光学顕微鏡像を観察することにより求めることができる。具体的には、金属ナノワイヤなどの繊維状金属粒子の平均短軸長(平均直径)および平均長軸長は、透過型電子顕微鏡(日本電子株式会社製、商品名:JEM-2000FX)を用い、ランダムに選択した300個の金属ナノワイヤについて、各々短軸長と長軸長を測定し、その平均値から金属ナノワイヤなどの繊維状金属粒子の平均短軸長と平均長軸長を求めることができる。本明細書ではこの方法で求めた値を採用している。なお、金属ナノワイヤの短軸方向断面が円形でない場合の短軸長は、短軸方向の測定で最も長い箇所の長さを短軸長とする。また。金属ナノワイヤなどの繊維状金属粒子が曲がっている場合、それを弧とする円を考慮し、その半径、および曲率から算出される値を長軸長とする。
 ある実施態様においては、繊維状金属粒子含有層における全金属ナノワイヤなどの繊維状金属粒子の含有量に対する、短軸長(直径)が150nm以下であり、かつ長軸長が5μm以上50μm以下である金属ナノワイヤなどの繊維状金属粒子の含有量が、金属量で50質量%以上であることが好ましく、60質量%以上であることがより好ましく、75質量%以上であることが更に好ましい。
 短軸長(直径)が150nm以下であり、長さが5μm以上50μm以下である金属ナノワイヤなどの繊維状金属粒子の割合が、50質量%以上であることで、十分な断熱性が得られるとともに、短軸長の大きい粒子や長さの短い粒子に起因するヘイズの低下を抑制しうるため好ましい。繊維状金属粒子以外の導電性粒子が繊維状金属粒子含有層に実質的に含まれない構成では、プラズモン吸収が強い場合にも透明度の低下を避け得る。
 繊維状金属粒子含有層に用いられる金属ナノワイヤなどの繊維状金属粒子の短軸長(直径)の変動係数は、40%以下が好ましく、35%以下がより好ましく、30%以下が更に好ましい。
 変動係数が40%以下であると、波長5~50μmの遠赤外線を反射しやすい金属ナノワイヤの比率が増えて、透明性と断熱性の観点で好ましい。
 金属ナノワイヤなどの繊維状金属粒子の短軸長(直径)の変動係数は、例えば透過型電子顕微鏡(TEM)像からランダムに選択した300個のナノワイヤの短軸長(直径)を計測し、その標準偏差と算術平均値を算出し、標準偏差を算術平均値で除することにより、求めることができる。
 本発明に用いうる金属ナノワイヤなどの繊維状金属粒子のアスペクト比は、10以上であることが好ましい。ここで、アスペクト比とは、平均短軸長に対する平均長軸長の比(平均長軸長/平均短軸長)を意味する。前述の方法により算出した平均長軸長と平均短軸長から、アスペクト比を算出することができる。
 金属ナノワイヤなどの繊維状金属粒子のアスペクト比は、10以上であれば特に制限はなく、目的に応じて適宜選択することができるが、10~100,000が好ましく、50~100,000がさらに好ましく、100~100,000がより好ましい。
 アスペクト比が10以上であると、金属ナノワイヤなどの繊維状金属粒子同士が均一に分散したネットワークが容易に形成され、高い断熱性を有する繊維状金属粒子含有層が容易に得られる。また、アスペクト比が100,000以下であると、例えば支持体上に繊維状金属粒子含有層を塗布により設ける際の塗布液において、金属ナノワイヤなどの繊維状金属粒子同士が絡まって凝集物を形成することが抑制され、安定な塗布液が得られるので、繊維状金属粒子含有層の製造が容易となる。
 繊維状金属粒子含有層に含まれる全金属ナノワイヤなどの繊維状金属粒子の質量に対するアスペクト比が10以上の金属ナノワイヤなどの繊維状金属粒子の含有量は特に制限されない。例えば、70質量%以上であることが好ましく、75質量%以上であることがより好ましく、80質量%以上であることが最も好ましい。
 金属ナノワイヤなどの繊維状金属粒子の形状としては、例えば円柱状、直方体状、断面が多角形となる柱状など任意の形状であり得るが、高い透明性が必要とされる用途では、円柱状や断面が5角形以上の多角形であって鋭角的な角が存在しない断面形状であるものが好ましい。
 金属ナノワイヤなどの繊維状金属粒子の断面形状は、支持体上に金属ナノワイヤなどの繊維状金属粒子水分散液を塗布し、断面を透過型電子顕微鏡(TEM)で観察することにより検知することができる。
 本発明では、繊維状金属粒子を形成する金属は銀を主成分とすること以外は特に制限がない。1種の金属以外にも2種以上の金属を組み合わせて用いてもよく、合金を用いることも可能である。これらの中でも、金属単体又は金属化合物から形成されるものが好ましく、金属単体から形成されるものがより好ましい。
 繊維状金属粒子を形成する金属としては、長周期律表(IUPAC(International Union of Pure and Applied Chemistry)1991)の第4周期、第5周期、および第6周期からなる群から選ばれる少なくとも1種の金属が好ましく、第2~14族から選ばれる少なくとも1種の金属がより好ましく、第2族、第8族、第9族、第10族、第11族、第12族、第13族、および第14族から選ばれる少なくとも1種の金属が更に好ましいが、少なくとも銀を主成分として含む。
 金属としては、具体的には銅、銀、金、白金、パラジウム、ニッケル、錫、コバルト、ロジウム、イリジウム、鉄、ルテニウム、オスミウム、マンガン、モリブデン、タングステン、ニオブ、タンタル、チタン、ビスマス、アンチモン、鉛、および、これらのうちいずれかを含む合金などが挙げられる。これらの中でも、銅、銀、金、白金、パラジウム、ニッケル、錫、コバルト、ロジウム、イリジウム又はこれらの合金が好ましく、パラジウム、銅、銀、金、白金、錫、又は、これらのうちいずれかを含む合金がより好ましく、銀又は銀を含有する合金が特に好ましい。ここで銀を含有する合金における銀の含有量は合金の全量に対して50モル%以上であることが好ましく、60モル%以上であることがより好ましく、80モル%以上であることがさらに好ましい。
 銀を主成分繊維状金属粒子は、銀ナノワイヤであることが好ましい。
 繊維状金属粒子含有層に含まれる全金属ナノワイヤなどの繊維状金属粒子の質量に対する銀ナノワイヤの含有量は、本発明の効果を妨げない限り特に制限されない。例えば、繊維状金属粒子含有層に含まれる全金属ナノワイヤなどの繊維状金属粒子の質量に対する銀ナノワイヤの含有量は50質量%以上であることが好ましく、80質量%以上であることがより好ましく、全金属ナノワイヤなどの繊維状金属粒子が実質的に銀ナノワイヤであることが更に好ましい。ここで「実質的に」とは、不可避的に混入する銀以外の金属原子を許容することを意味する。
 繊維状金属粒子含有層の単位面積当たりの質量(製膜時の塗布液の全固形分の塗布量)は、繊維状金属粒子含有層の断熱性、全光透過率およびヘイズ値が所望の範囲となるよう選択される。塗布量が少なすぎると十分な断熱性を得られなくなり、多すぎるとヘイズ増加の原因となったり、繊維状金属粒子含有層の割れや剥がれなどの故障の原因となる。好ましくは0.050~1.000g/mの範囲であり、より好ましくは0.100~0.600g/mの範囲であり、0.110~0.500g/mであることが特に好ましい。
 繊維状金属粒子含有層に対する繊維状金属粒子の量は、繊維状金属粒子含有層の断熱性、全光透過率およびヘイズ値が所望の範囲となるよう選択されることが好ましい。繊維状金属粒子の量が十分に多いと良好な断熱性を得られ、十分に少ないとヘイズ増加の原因とならず、繊維状金属粒子含有層の電波透過性が低下する原因とならなくなる。繊維状金属粒子含有層に対する繊維状金属粒子の量は、1~65質量%であることが好ましく、3~50質量%であることがより好ましく、5~35質量%であることが特に好ましい。
-繊維状金属粒子の製造方法-
 金属ナノワイヤなどの繊維状金属粒子は、特に制限はなく、いかなる方法で作製されたものであってもよい。以下のように、ハロゲン化合物と分散剤を溶解した溶媒中で金属イオンを還元することによって製造することが好ましい。また、金属ナノワイヤなどの繊維状金属粒子を形成した後は、常法により脱塩処理を行うことが、分散性、繊維状金属粒子含有層の経時安定性の観点から好ましい。
 金属ナノワイヤなどの繊維状金属粒子の製造方法としては、特開2009-215594号公報、特開2009-242880号公報、特開2009-299162号公報、特開2010-84173号公報、特開2010-86714号公報などに記載の方法を用いることができる。
 金属ナノワイヤなどの繊維状金属粒子の製造に用いられる溶媒としては、親水性溶媒が好ましく、例えば、水、アルコール系溶媒、エーテル系溶媒、ケトン系溶媒などが挙げられ、これらは1種単独で使用してもよく、2種以上を併用してもよい。
 アルコール系溶媒としては、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、エチレングリコールなどが挙げられる。
 エーテル系溶媒としては、例えば、ジオキサン、テトラヒドロフランなどが挙げられる。
 ケトン系溶媒としては、例えば、アセトンなどが挙げられる。
 加熱する場合、その加熱温度は、250℃以下が好ましく、20℃以上200℃以下がより好ましく、30℃以上180℃以下が更に好ましく、40℃以上170℃以下が特に好ましい。上記温度を20℃以上とすることで、形成される金属ナノワイヤなどの繊維状金属粒子の長さが分散安定性を確保しうる好ましい範囲となり、且つ、250℃以下とすることで、金属ナノワイヤの断面外周が鋭角を有しない、なめらかな形状となるため、金属粒子の表面プラズモン吸収による着色が抑えられ、透明性の観点から好適である。
 なお、必要に応じて、粒子形成過程で温度を変更してもよく、途中での温度変更は核形成の制御や再核発生の抑制、選択成長の促進による単分散性向上の効果があることがある。
 加熱処理は、還元剤を添加して行うことが好ましい。
 還元剤としては、特に制限はなく、通常使用されるものの中から適宜選択することができ、例えば、水素化ホウ素金属塩、水素化アルミニウム塩、アルカノールアミン、脂肪族アミン、ヘテロ環式アミン、芳香族アミン、アラルキルアミン、アルコール、有機酸類、還元糖類、糖アルコール類、亜硫酸ナトリウム、ヒドラジン化合物、デキストリン、ハイドロキノン、ヒドロキシルアミン、エチレングリコール、グルタチオンなどが挙げられる。これらの中でも、還元糖類、その誘導体としての糖アルコール類、エチレングリコールが特に好ましい。
 還元剤によっては、機能として分散剤や溶媒としても機能する化合物があり、同様に好ましく用いることができる。
 金属ナノワイヤなどの繊維状金属粒子の製造は分散剤と、ハロゲン化合物又はハロゲン化金属微粒子を添加して行うことが好ましい。
 分散剤とハロゲン化合物の添加のタイミングは、還元剤の添加前でも添加後でもよく、金属イオンあるいはハロゲン化金属微粒子の添加前でも添加後でもよいが、単分散性のよりよい繊維状金属粒子を得るためには、核形成と成長を制御できるため、ハロゲン化合物の添加を2段階以上に分けることが好ましい。
 分散剤を添加する段階は特に制限されない。金属ナノワイヤなどの繊維状金属粒子を調製する前に添加し、分散剤存在下で金属ナノワイヤなどの繊維状金属粒子を添加してもよいし、金属ナノワイヤなどの繊維状金属粒子調製後に分散状態の制御のために添加しても構わない。
 分散剤としては、例えばアミノ基含有化合物、チオール基含有化合物、スルフィド基含有化合物、アミノ酸又はその誘導体、ペプチド化合物、多糖類、多糖類由来の天然高分子、合成高分子、又はこれらに由来するゲル等の高分子化合物類、などが挙げられる。これらのうち分散剤として好ましく用いられる各種高分子化合物類は、後述するポリマーに包含される化合物である。
 分散剤として好適に用いられるポリマーとしては、例えば保護コロイド性のあるポリマーであるゼラチン、ポリビニルアルコール、メチルセルロース、ヒドロキシプルピルセルロース、ポリアルキレンアミン、ポリアクリル酸の部分アルキルエステル、ポリビニルピロリドン、ポリビニルピロリドン構造を含む共重合体、アミノ基やチオール基を有するポリアクリル酸、等の親水性基を有するポリマーが好ましく挙げられる。
 分散剤として用いるポリマーはゲル浸透クロマトグラフィー(gel permeation chromatography;GPC)により測定した重量平均分子量(weight average molecular weight;Mw)が、3000以上300000以下であることが好ましく、5000以上100000以下であることがより好ましい。
 分散剤として使用可能な化合物の構造については、例えば「顔料の事典」(伊藤征司郎編、株式会社朝倉書店発行、2000年)の記載を参照できる。
 使用する分散剤の種類によって得られる金属ナノワイヤの形状を変化させることができる。
 ハロゲン化合物は、臭素、塩素、ヨウ素を含有する化合物であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、臭化ナトリウム、塩化ナトリウム、ヨウ化ナトリウム、ヨウ化カリウム、臭化カリウム、塩化カリウム等のアルカリハライドや下記の分散添加剤と併用できる化合物が好ましい。
 ハロゲン化合物は、分散添加剤として機能するものがありうるが、同様に好ましく用いることができる。
 ハロゲン化合物の代替としてハロゲン化銀微粒子を使用してもよいし、ハロゲン化合物とハロゲン化銀微粒子を共に使用してもよい。
 また、分散剤の機能とハロゲン化合物の機能との双方を有する単一の物質を用いてもよい。即ち、分散剤としての機能を有するハロゲン化合物を用いることで、1つの化合物で、分散剤とハロゲン化合物の双方の機能を発現する。
 分散剤の機能を有するハロゲン化合物としては、例えば、アミノ基と臭化物イオンを含むヘキサデシル-トリメチルアンモニウムブロミド(HTAB)、アミノ基と塩化物イオンを含むヘキサデシル-トリメチルアンモニウムクロライド(HTAC)、アミノ基と臭化物イオン又は塩化物イオンを含むドデシルトリメチルアンモニウムブロミド、ドデシルトリメチルアンモニウムクロリド、ステアリルトリメチルアンモニウムブロミド、ステアリルトリメチルアンモニウムクロリド、デシルトリメチルアンモニウムブロミド、デシルトリメチルアンモニウムクロリド、ジメチルジステアリルアンモニウムブロミド、ジメチルジステアリルアンモニウムクロリド、ジラウリルジメチルアンモニウムブロミド、ジラウリルジメチルアンモニウムクロリド、ジメチルジパルミチルアンモニウムブロミド、ジメチルジパルミチルアンモニウムクロリド、などが挙げられる。
 金属ナノワイヤなどの繊維状金属粒子の製造方法においては、金属ナノワイヤなどの繊維状金属粒子形成後に脱塩処理を行うことが好ましい。金属ナノワイヤなどの繊維状金属粒子形成後の脱塩処理は、限外ろ過、透析、ゲルろ過、デカンテーション、遠心分離などの手法により行うことができる。
 金属ナノワイヤなどの繊維状金属粒子は、アルカリ金属イオン、アルカリ土類金属イオン、ハロゲン化物イオン等の無機イオンをなるべく含まないことが好ましい。金属ナノワイヤを水性溶媒に分散させてなる分散物の電気伝導度は1mS/cm以下が好ましく、0.1mS/cm以下がより好ましく、0.05mS/cm以下が更に好ましい。
 金属ナノワイヤなどの繊維状金属粒子の水分散物の25℃における粘度は、0.5mPa・s~100mPa・sが好ましく、1mPa・s~50mPa・sがより好ましい。
 電気伝導度および粘度は、水分散物における金属ナノワイヤなどの繊維状金属粒子の濃度を0.45質量%として測定される。水分散物における金属ナノワイヤなどの繊維状金属粒子の濃度が上記濃度より高い場合には、水分散物を蒸留水にて希釈して測定する。
(バインダー)
 繊維状金属粒子含有層は、バインダーを含む。
 上記バインダーを含むことにより、繊維状金属粒子含有層における金属ナノワイヤなどの繊維状金属粒子の分散が安定に維持される上、支持体表面に繊維状金属粒子含有層を、接着層を介することなく形成した場合においても支持体と繊維状金属粒子含有層との強固な接着が確保される傾向がある。
 好ましいバインダーとしては、Si、Ti、ZrおよびAlからなる群より選ばれる元素(b)のアルコキシド化合物を加水分解および重縮合して得られるゾルゲル硬化物、導電性高分子、有機高分子ポリマー(導電性高分子を除く)を挙げることができる。繊維状金属粒子含有層のバインダーの主成分が、ゾルゲル硬化物であることが好ましい。また、本発明の断熱フィルムは、繊維状金属粒子含有層のバインダーの主成分がケイ素を含有する材料であることがより好ましい。ケイ素を含有する材料としては、Si元素のアルコキシド化合物を加水分解および重縮合して得られるゾルゲル硬化物であることが特に好ましい。
 以下、上記のゾルゲル硬化物、導電性高分子、有機高分子ポリマー(導電性高分子を除く)の好ましい態様を順に説明する。
-ゾルゲル硬化物-
 本発明の断熱フィルムは、繊維状金属粒子含有層のバインダーの主成分が、Si、Ti、ZrおよびAlからなる群より選ばれる元素(b)のアルコキシド化合物を加水分解および重縮合して得られるゾルゲル硬化物を含むことが好ましく、製造コストや遠赤外線領域の反射率の点で、Si元素のアルコキシド化合物を加水分解および重縮合して得られるゾルゲル硬化物が特に好ましい。
 Si、Ti、ZrおよびAlからなる群より選ばれる元素(b)のアルコキシド化合物(以下、特定アルコキシド化合物とも言う)を加水分解および重縮合して得られるゾルゲル硬化物は、酸化ケイ素、酸化ジルコニウム、酸化チタン、および酸化アルミニウムから選ばれる少なくとも1種である。前述の繊維状金属粒子含有層のバインダーの主成分がSi、Ti、ZrおよびAlからなる群より選ばれる元素(b)のアルコキシド化合物を加水分解および重縮合して得られるゾルゲル硬化物である場合、当然ながら前述の繊維状金属粒子含有層のバインダーの主成分は酸化ケイ素、酸化ジルコニウム、酸化チタン、および酸化アルミニウムから選ばれる少なくとも1種である。
 繊維状金属粒子含有層は、下記条件(i)および(ii)の少なくとも一つを満たすことが好ましく、下記条件(ii)を少なくとも満たすことがより好ましく、下記条件(i)および(ii)を満たすことが特に好ましい。
(i)繊維状金属粒子含有層に含まれる元素(b)の物質量と、繊維状金属粒子含有層に含まれる金属元素(a)の物質量との比〔(元素(b)のモル数)/(金属元素(a)のモル数)〕が0.10/1~22/1の範囲にある。
(ii)繊維状金属粒子含有層においてゾルゲル硬化物の形成に使用されるアルコキシド化合物の質量と、繊維状金属粒子含有層に含まれる金属ナノワイヤなどの繊維状金属粒子の質量の比〔(アルコキシド化合物の含有量)/(金属ナノワイヤなどの繊維状金属粒子の含有量)〕が0.25/1~30/1の範囲にある。
 繊維状金属粒子含有層は、前述の金属ナノワイヤなどの繊維状金属粒子の使用量に対する特定アルコキシド化合物の使用量の比率、即ち、〔(特定アルコキシド化合物の質量)/(金属ナノワイヤなどの繊維状金属粒子の質量)〕の比が0.25/1~30/1の範囲で形成され得ることが好ましい。上記質量比が0.25/1以上である場合、断熱性(繊維状金属粒子の導電性が高いことに起因すると考えられる)と透明性が優れると同時に、耐摩耗性、耐熱性、湿熱耐久性および耐屈曲性の全てが優れた繊維状金属粒子含有層となり得る。上記質量比が30/1以下である場合、導電性および耐屈曲性が優れた繊維状金属粒子含有層となり得る。
 上記質量比は、より好ましくは0.5/1~25/1の範囲、更に好ましくは1/1~20/1、最も好ましくは2/1~15/1の範囲である。質量比を好ましい範囲とすることで、得られた繊維状金属粒子含有層は、高い断熱性と高い透明性(可視光透過率およびヘイズ)と、を有すると共に、耐摩耗性、耐熱性および湿熱耐久性に優れ、かつ耐屈曲性に優れることになり、好適な物性を有する断熱フィルムを安定的に得ることができる。
-導電性高分子-
 本発明の断熱フィルムは、前述の繊維状金属粒子含有層のバインダーの主成分が導電性高分子であることが好ましい。導電性高分子も赤外線を効果的に遮断し、断熱性を発揮する。これは導電性高分子の自由電子によるプラズマ吸収波長が、地上気温付近の物体の放射よりも短波長側にあり、そのプラズマ吸収波長より高波長の電磁波を反射するためと考えられる。
 繊維状金属粒子含有層のバインダーの主成分に用いられる導電性高分子としては、特開2012-189683号公報の[0038]~[0046]および実施例に記載の導電性高分子を好ましく用いることができる。具体的には、導電性高分子は、一般に共役型の二重結合を基本骨格に有する有機高分子で、具体的にはポリチオフェン、ポリピロール、ポリアニリン、ポリアセチレン、ポリパラフェニレン、ポリフラン、ポリフルオレン、ポリフェニレンビニレン、これらの誘導体、およびこれらを構成する単量体の共重合体から選ばれた導電性高分子のいずれか1種又は2種以上の混合物が好ましく挙げられる。中でも、水又はその他の溶媒に対して可溶性、又は分散性を有し、高い導電性および透明性を示す、ポリチオフェン誘導体が好ましい。特に、下記式(I):
Figure JPOXMLDOC01-appb-C000001
(式中、RおよびRは、それぞれ独立して水素原子若しくは炭素原子数1~4のアルキル基を表し、又はRおよびRが相互に結合して任意に置換されていても良い炭素原子数1~4のアルキレン基を形成し、nは50~1000の整数を表す)で表される繰り返し単位を含むポリチオフェン誘導体が好ましい。
 式(I)において、RおよびRが相互に結合して形成される、置換されていても良い炭素原子数1~4のアルキレン基としては、具体的にはアルキル基で置換されたメチレン基、任意に炭素原子数1~12のアルキル基又はフェニル基で置換されたエチレン-1,2基、プロピレン-1,3基、ブテン-1,4基を形成する基等が挙げられる。
 式(I)におけるRおよびRとして、好ましくはメチル基又はエチル基であるか、RおよびRが相互に結合して形成するメチレン基、エチレン-1,2基又はプロピレン-1,3基である。特に好ましいポリチオフェン誘導体としては、下記式(II):
Figure JPOXMLDOC01-appb-C000002
(式中、pは50~1000の整数を表す)で示される繰り返し単位、即ち、ポリ(3,4-エチレンジオキシチオフェン)単位を有するポリチオフェン誘導体である。
 導電性高分子は、更にドーパント(電子供与剤)を含むことが好ましい。ドーパントとしては、例えば、ポリスチレンスルホン酸、ポリアクリル酸、ポリメタクリル酸、ポリマレイン酸、ポリビニルスルホン酸が好ましく挙げられる。特に、ポリスチレンスルホン酸が好ましい。これらにより導電性高分子の導電性を向上することができ、繊維状金属粒子含有層の断熱性を高めることができる。ドーパントの数平均分子量(number average molecular weight;Mn)は、好ましくは1,000~2,000,000であり、特に好ましくは2,000~500,000である。
 ドーパントの含有量は導電性高分子100質量部に対して、通常20~2000質量部であり、好ましくは、40~200質量部である。例えば、式(II)のポリチオフェン誘導体を導電性高分子とし、ポリスチレンスルホン酸をドーパントとして使用する場合はポリチオフェン100質量部に対して、ポリスチレンスルホン酸100~200質量部が好ましく、特に120~180質量部が好ましい。
-有機高分子ポリマー-
 繊維状金属粒子含有層のバインダーの主成分に用いられる有機高分子ポリマーの具体例には、ポリメタクリル酸、ポリメタクリレート(例えば、ポリ(メタクリル酸メチル))、ポリアクリレート、およびポリアクリロニトリルなどのポリアクリル酸、ポリビニルアルコール(PVA;例えば日本酢ビ・ポバール(株)製ポバールVC-13)、ポリエステル(例えば、ポリエチレンテレフタレート(PET)、ポリエステルナフタレート、およびポリカーボネート)、フェノールまたはクレゾール-ホルムアルデヒド(Novolacs(登録商標))、ポリスチレン、ポリビニルトルエン、ポリビニルキシレン、ポリイミド、ポリアミド、ポリアミドイミド、ポリエーテルイミド、ポリスルフィド、ポリスルホン、ポリフェニレン、およびポリフェニルエーテルなどの高芳香性を有する高分子、ポリウレタン(PU;例えば三井化学(株)製タケラック(登録商標)WS-4000)、エポキシ、ポリオレフィン(例えば、ポリプロピレン、ポリメチルペンテン、およびポリシクロオレフィン)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)、セルロース、シリコーンおよびその他のシリコン含有高分子(例えば、ポリシルセスキオキサンおよびポリシラン)、ポリ塩化ビニル(PVC)、ポリビニルアセテート、ポリノルボルネン、合成ゴム、およびフッ化炭素系重合体(例えば、ポリビニリデンフルオライド、ポリテトラフルオロエチレン(TFE)、またはポリヘキサフルオロプロピレン)、フルオロ-オレフィンの共重合体(例えば、旭硝子株式会社製「LUMIFLON」(登録商標))、および非晶質フルオロカーボン重合体または共重合体(例えば、旭硝子株式会社製の「CYTOP」(登録商標)またはデュポン社製の「Teflon」(登録商標)AF)が挙げられるがそれだけに限定されない。
 繊維状金属粒子含有層のバインダーの主成分に用いられるポリシクロオレフィンとしては、特開2012-189683号公報の[0020]~[0022]および実施例に記載の透明フィルムの材料を好ましく用いることができる。具体的には、繊維状金属粒子含有層のバインダーの主成分に用いられるポリシクロオレフィンは、好ましくはポリノルボルネンである。ポリノルボルネンは、赤外領域の吸収が少なく、断熱性と耐候性に優れる。ポリノルボルネンとして、市販のもの(例えば、日本ゼオン社製、ZEONEX(登録商標)あるいはZEONOR(登録商標))を用いてもよい。
(その他マトリックス)
 繊維状金属粒子含有層に含まれるバインダーはマトリックスとしての機能も有するが、繊維状金属粒子含有層はさらにバインダー以外のマトリックス(以下、「その他マトリックス」という。)を含んでもよい。ここで「マトリックス」は、金属ナノワイヤなどの繊維状金属粒子を含んで層を形成する物質の総称である。
 その他マトリックスを含む繊維状金属粒子含有層は、後述の液状組成物中に、その他マトリックスを形成し得る材料を含有させておき、これを支持体上に(例えば、塗布により)付与して形成すればよい。
 その他マトリックスは、非感光性のものであっても、フォトレジスト組成物のような感光性のものであってもよい。
 繊維状金属粒子含有層がその他マトリックスを含む場合、バインダーの含有量に対して、例えば0.10質量%~20質量%、好ましくは0.15質量%~10質量%、更に好ましくは0.20質量%~5質量%の範囲から選ばれることが断熱性、透明性、膜強度、耐摩耗性および耐屈曲性の優れる繊維状金属粒子含有層が得られるので有利である。
-水接触角を調整するための添加剤-
 繊維状金属粒子含有層が最表面である場合は、繊維状金属粒子含有層に添加剤を添加する方法により、繊維状金属粒子含有層の水接触角が25°以下にすることができる。
 繊維状金属粒子含有層の水接触角を調整するための添加剤としては、シランカップリング剤などの金属カップリング剤、カルボン酸ナトリウム基やスルホン酸ナトリウム基を有する界面活性剤などを用いることができる。
 繊維状金属粒子含有層に用いるシランカップリング剤などの金属カップリング剤としては、特開2012-25820号公報の[0104]~[0106]に記載の材料を挙げることができ、この公報の内容は本明細書に組み込まれる。シランカップリング剤としては、信越シリコーン(株)製、商品名X-41-1805、X-41-1053などを好ましく用いることができる。
-分散剤-
 分散剤は、光重合性組成物中における前述の金属ナノワイヤなどの繊維状金属粒子が凝集することを防止しつつ分散させるために用いられる。分散剤としては、金属ナノワイヤを分散させることができれば特に制限はなく、目的に応じて適宜選択することができる。例えば、顔料分散剤として市販されている分散剤を利用でき、特に金属ナノワイヤに吸着する性質を持つ高分子分散剤が好ましい。このような高分子分散剤としては、例えばポリビニルピロリドン、BYKシリーズ(登録商標、ビックケミー社製)、ソルスパースシリーズ(登録商標、日本ルーブリゾール社製など)、アジスパーシリーズ(登録商標、味の素株式会社製)などが挙げられる。
 繊維状金属粒子含有層中における分散剤の含有量は、特開2013-225461号公報の[0086]~[0095]に記載のバインダーを用いる場合、のバインダー100質量部に対し、0.1質量部~50質量部が好ましく、0.5質量部~40質量部がより好ましく、1質量部~30質量部が特に好ましい。
 バインダーに対する分散剤の含有量を0.1質量部以上とすることで、分散液中での金属ナノワイヤなどの繊維状金属粒子の凝集が効果的に抑制され、50質量部以下とすることで、塗布工程において安定な液膜が形成され、塗布ムラの発生が抑制されるため好ましい。
-溶媒-
 溶媒は、前述の金属ナノワイヤなどの繊維状金属粒子並びにバインダーを含む組成物を支持体の表面、または接着層付き支持体の接着層の表面に膜状に形成するための塗布液とするために使用される成分であり、目的に応じて適宜選択することができる。溶媒は、バインダーを0.1質量%以上溶解できるものであれば何でもよく、水、アルコール系溶媒、ケトン系溶媒、エーテル系溶媒、炭化水素系溶媒、芳香族系溶媒、ハロゲン系溶媒などが挙げられる。この溶媒は、前述の金属ナノワイヤの分散液の溶媒の少なくとも一部が兼ねていてもよい。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 このような溶媒を含む塗布液の固形分濃度は、0.1質量%~20質量%の範囲であることが好ましい。
-金属腐食防止剤-
 繊維状金属粒子含有層は金属ナノワイヤなどの繊維状金属粒子の金属腐食防止剤を含有することが好ましい。このような金属腐食防止剤としては、特に制限はなく、目的に応じて適宜選択することができるが、例えばチオール類、アゾール類などが好適である。
 金属腐食防止剤を含有させることで、防錆効果を発揮させることができ、繊維状金属粒子含有層の経時による断熱性および透明性の低下を抑制することができる。金属腐食防止剤は繊維状金属粒子含有層形成用組成物中に、適した溶媒で溶解した状態、又は粉末で添加するか、後述する導電層用塗布液による導電膜を作製後に、これを金属腐食防止剤浴に浸すことで付与することができる。
 金属腐食防止剤を添加する場合、繊維状金属粒子含有層中におけるその含有量は、金属ナノワイヤなどの繊維状金属粒子の含有量に対して0.5質量%~10質量%であることが好ましい。
 その他マトリックスとしては、前述の金属ナノワイヤなどの繊維状金属粒子の製造の際に使用された分散剤としての高分子化合物を、マトリックスを構成する成分の少なくとも一部として使用することが可能である。
-他の導電性材料-
 繊維状金属粒子含有層には、金属ナノワイヤなどの繊維状金属粒子に加え、他の導電性材料、例えば、導電性粒子などを本発明の効果を損なわない限りにおいて併用しうる。導電性粒子としては、例えば金属粒子、スズドープ酸化インジウム(Indium Tin Oxide;ITO)粒子、アンチモンドープ酸化スズ(Antimony Tin Oxide;ATO)粒子、セシウムドープ酸化タングステン(cesium-doped tungsten oxide;CWO)粒子などの導電性酸化物粒子が挙げられる。特に、ITOが繊維状金属粒子含有層の赤外線反射を増加させるため好ましい。効果の観点からは、金属ナノワイヤなどの繊維状金属粒子(好ましくは、アスペクト比が10以上の金属ナノワイヤ)の含有比率は、金属ナノワイヤなどの繊維状金属粒子を含む導電性材料の総量に対して体積基準で、50%以上が好ましく、60%以上がより好ましく、75%以上が特に好ましい。金属ナノワイヤなどの繊維状金属粒子の含有比率を50%とすることにより、高い断熱性を有する繊維状金属粒子含有層を容易に得ることができる。
 また、金属ナノワイヤなどの繊維状金属粒子以外の形状の導電性粒子は、繊維状金属粒子含有層における導電性に大きく寄与しない上に可視光領域に吸収を持つ場合がある。特に導電性粒子が金属であって、球形などのプラズモン吸収が強い形状ではないことが、繊維状金属粒子含有層の透明度が悪化しないようにする観点から好ましい。
 ここで、金属ナノワイヤなどの繊維状金属粒子の比率は、下記のように求めることができる。例えば、繊維状金属粒子が銀ナノワイヤであり、導電性粒子が銀粒子である場合には、銀ナノワイヤ水分散液をろ過して、銀ナノワイヤと、それ以外の導電性粒子とを分離し、誘導結合プラズマ(Inductively Coupled Plasma;ICP)発光分析装置を用いてろ紙に残っている銀の量と、ろ紙を透過した銀の量とを各々測定し、金属ナノワイヤの比率を算出することができる。金属ナノワイヤなどの繊維状金属粒子のアスペクト比は、ろ紙に残っている金属ナノワイヤなどの繊維状金属粒子をTEMで観察し、300個の金属ナノワイヤなどの繊維状金属粒子の短軸長および長軸長をそれぞれ測定することにより算出される。
(膜厚)
 繊維状金属粒子含有層の平均膜厚は、通常、0.005μm~2μmの範囲で選択される。例えば、平均膜厚を0.001μm以上0.5μm以下とすることで、十分な耐久性、膜強度が得られる。特に、平均膜厚を0.01μm~0.1μmの範囲とすれば、製造上の許容範囲が確保され得るので好ましい。
 前述の条件(i)および(ii)の少なくとも一つを満たす繊維状金属粒子含有層とすることで、断熱性と透明性とを高く維持しうるとともに、ゾルゲル硬化物に起因して、金属ナノワイヤなどの繊維状金属粒子が安定に固定化されるとともに、高い強度と耐久性とを実現し得ることが好ましい。例えば、繊維状金属粒子含有層の膜厚を0.005μm~0.5μmという薄層としても、実用上問題のない耐摩耗性、耐熱性、湿熱耐久性および耐屈曲性を有する繊維状金属粒子含有層を得ることができる。このため、本発明の一実施形態である断熱フィルムは種々の用途に好適に使用される。薄層を必要とする態様では、膜厚は、0.005μm~0.5μmとしてもよく、0.007μm~0.3μmがさらに好ましく、0.008μm~0.2μmがより好ましく、0.01μm~0.1μmが最も好ましい。このように繊維状金属粒子含有層をより薄層とすることで、繊維状金属粒子含有層の透明性がさらに向上し得る。
 繊維状金属粒子含有層の平均膜厚は、電子顕微鏡による繊維状金属粒子含有層断面の直接観察により、繊維状金属粒子含有層の膜厚を5点測定し、その算術平均値として算出される。なお、繊維状金属粒子含有層の膜厚は例えば、触針式表面形状測定器(Dektak(登録商標)150、Bruker AXS製)を用いて、繊維状金属粒子含有層を形成した部分と繊維状金属粒子含有層を除去した部分の段差として測定することもできる。しかし、繊維状金属粒子含有層を除去する際に支持体の一部まで除去してしまう恐れがあることがあり、また形成される繊維状金属粒子含有層が薄膜なため誤差が生じやすい。そのため、後述の実施例においては電子顕微鏡を用いて測定される平均膜厚を記載している。
<表面層>
 本発明の断熱フィルムは、繊維状金属粒子含有層の支持体とは反対の面上に、さらに水接触角が25°以下である表面層を含むことが好ましい。
(表面層の組成)
 表面層としては特に制限は無いが、優れた耐擦性を有することが好ましい。表面層の組成としては、COP(シクロオレフィンポリマー)、COC(シクロオレフィンコポリマー)、変性アクリレートおよびケイ素を含有するポリマーなどの親水性ポリマー、単分子膜、ゾルゲル硬化物、コロイダルシリカ、シリカ膜(スパッタ膜などの膜)などが好ましく、親水性ポリマー、単分子膜またはゾルゲル硬化物がより好ましい。
 本発明の断熱フィルムは、表面層の主成分がケイ素を含有する材料であることが耐擦性を高める観点から好ましい。ケイ素を含有する材料としては、親水性ポリマーの中でもケイ素を含有するポリマー、Si元素のアルコキシド化合物を加水分解および重縮合して得られるゾルゲル硬化物、コロイダルシリカ、シリカ膜を挙げることができる。
 一方、本発明の断熱フィルムは、表面層が単分子膜であることが断熱性(初期U値)を改善する観点から好ましい。
 表面層に用いる親水性ポリマーとしては、特開2011-073359号公報の[0033]~[0131]に記載の親水性ポリマーを挙げることができ、この公報の中でもケイ素を含有するポリマーが好ましく、この公報の内容は本明細書に組み込まれる。表面層に用いる親水性ポリマーとして変性アクリレートを用いる場合は、特開2008-30337号公報の[0011]~[0035]に記載の材料を挙げることができ、この公報の内容は本明細書に組み込まれる。市販の変性アクリレートとしては、東洋ケミカルズ(株)製、商品名Miramer M4004などを好ましく用いることができる。
 表面層に用いる単分子膜を形成するための材料としては、特開2014-213044号公報の[0019]~[0021]に記載の材料を挙げることができ、この公報の中でもSi系単分子膜が好ましく、この公報の内容は本明細書に組み込まれる。市販の単分子膜を形成するための材料としては、大阪有機化学工業(株)製、商品名LAMBIC-500WPなどを好ましく用いることができる。
 表面層に用いるゾルゲル硬化物を形成するための材料としては、繊維状導電粒子含有層に含まれるゾルゲル硬化物を形成する材料を挙げることができる。
 表面層に用いるコロイダルシリカとしては、特開2002-294157号公報の[0070]~[0071]、特開2014-214368号公報の[0039]~[0041]に記載の材料を挙げることができ、これらの公報の内容は本明細書に組み込まれる。市販のコロイダルシリカとしては、NALCO社製、NALCO(登録商標)8699などを好ましく用いることができる。
 表面層は、透湿度が低いことが、断熱性の湿熱耐久性を改善する観点から好ましい。表面層の透湿度としては、水蒸気透過率と膜厚の積を指標とすることができる。本発明において表面層に好ましく用いることができる水蒸気透過率の低い材料としては、ケイ素を含有する材料などを挙げることができる。表面層の水蒸気透過率としては例えば10g/m・day以下が好ましく、5g/m・day以下がより好ましく、1g/m・day以下が特に好ましい。
(表面層の膜厚)
 本発明の断熱フィルムは、前述の表面層の膜厚が1μm以下であることが断熱性の初期値を改善する観点から好ましく、0.5μm以下であることがより好ましく、0.3μm以下であることが特に好ましい。
 表面層には、屈折率を調整したり、表面硬度を増加させる目的で、酸化物粒子を含有させてもよい。酸化物粒子としては、例えば、酸化ケイ素、酸化チタン、酸化ジルコニウムなどが挙げられる。表面層が、断熱フィルムの最表層となるため、屈折率の低い酸化ケイ素を用いることが反射防止の点から好ましく、中空粒子の酸化ケイ素を用いることが特に好ましい。
 酸化物粒子の粒径は、1~500nmの範囲が好ましく、10~200nmの範囲がより好ましい。酸化物粒子の添加量は、1~50質量%の範囲が好ましく、10~40質量%の範囲がより好ましい。
<中間層>
 断熱フィルムは、支持体と繊維状金属粒子含有層との間に少なくとも一層の中間層を有することが好ましい。支持体と繊維状金属粒子含有層との間に中間層を設けることにより、支持体と繊維状金属粒子含有層との密着性、繊維状金属粒子含有層の全光透過率、繊維状金属粒子含有層のヘイズ、および繊維状金属粒子含有層の膜強度のうちの少なくとも一つの向上を図り得る。
 中間層としては、支持体と繊維状金属粒子含有層との接着力を向上させるための接着剤層、繊維状金属粒子含有層に含まれる成分との相互作用により機能性を向上させる機能性層などが挙げられ、目的に応じて適宜設けられる。
 中間層を更に有する断熱フィルムの構成について、図面を参照しながら説明する。
 図5においては、支持体上に中間層(第1の接着層31と第2の接着層)を有してなる接着層付きの支持体101上に繊維状金属粒子含有層20が設けられている。支持体10と繊維状金属粒子含有層20との間に、支持体10との親和性に優れた第1の接着層31と、繊維状金属粒子含有層20との親和性に優れた第2の接着層32とを含む中間層を備える。
 図5以外の構成の中間層を有していてもよく、例えば、支持体10と繊維状金属粒子含有層20との間に、図5の実施形態と同様の第1の接着層31および第2の接着層32に加え、繊維状金属粒子含有層20に隣接して機能性層を備えて構成される中間層を有することも好ましい(不図示)。
<近赤外線遮蔽層>
 さらに、近赤外遮蔽材料を用いることで、近赤外光の遮蔽性を高めることができる。
 近赤外遮蔽材料としては、平板状金属粒子(例えば、銀ナノディスク)、有機多層膜、球状の金属酸化物粒子(例えば、スズドープ酸化インジウム(ITO)粒子、アンチモンドープ酸化スズ(ATO)粒子、セシウムドープ酸化タングステン(CWO)粒子)などを挙げることができる。
 また、近赤外遮蔽材料は、近赤外線遮蔽層に含まれることが好ましく、近赤外線遮蔽層を単独で形成する材料であることがより好ましい。
 近赤外線遮蔽層は、含まれる材料によって熱線反射型の近赤外線反射層と熱線吸収型の近赤外線吸収層に分けられる。
(平板状金属粒子を用いた近赤外線反射層)
 熱線遮蔽性(日射熱取得率)の観点からは、吸収した光の屋内への再放射(吸収した日射エネルギーの約1/3量)がある熱線吸収型より再放射がない熱線反射型が望ましい。近赤外光の反射をする観点からは、近赤外遮蔽材料として平板状金属粒子を用いることが好ましい。このような平板状金属粒子を用いた近赤外線反射層は、特開2013-228694号公報の[0019]~[0046]、特開2013-083974号公報、特開2013-080222号公報、特開2013-080221号公報、特開2013-077007号公報、特開2013-068945号公報などに記載の近赤外遮蔽材料を用いることができ、これらの公報の記載は本明細書に組み込まれる。
 具体的には、近赤外線反射層は、少なくとも1種の金属粒子を含有する層であり、金属粒子が、六角形状乃至円形状の平板状金属粒子を60個数%以上有し、六角形状乃至円形状の平板状金属粒子の主平面が、近赤外線反射層の一方の表面に対して平均0°~±30°の範囲で面配向していることが好ましい。
 金属粒子の材料としては、特に制限はなく、目的に応じて適宜選択することができるが、熱線(近赤外線)の反射率が高い点から、銀、金、アルミニウム、銅、ロジウム、ニッケル、白金などが好ましい。
(有機多層膜、球状の金属酸化物粒子を用いた近赤外線反射層)
 有機多層膜を用いた近赤外線反射層としては、特開2012-256041号公報の[0039]~[0044]に記載のものを好ましく用いることができ、この公報の記載は本明細書に組み込まれる。
 球状の金属酸化物粒子を用いた近赤外線反射層としては、特開2013-37013号公報の[0038]~[0039]に記載のものを好ましく用いることができ、この公報の記載は本明細書に組み込まれる。
(近赤外線吸収層)
 繊維状金属粒子含有層の表面に結露した水滴を早く水蒸気化する観点からは、近赤外線遮蔽層の中でも断熱フィルム上に熱を発生させやすい熱線吸収型の近赤外線吸収層が好ましい。
 近赤外線吸収層としては、特開2014-240907号公報の[0033]、特開2014-214299号公報の[0011]~[0022]、特開2014-148567号公報の[0013]~[0017]、特開2014-139617号公報の[0010]~[0034]、特開2014-80466号公報の[0022]~[0035]に記載のものを好ましく用いることができ、これらの公報の記載は本明細書に組み込まれる。
<粘着層>
 本発明の断熱フィルムは、粘着層を有することが好ましい。粘着層は、紫外線吸収剤を含むことができる。
 粘着層の形成に利用可能な材料としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリビニルブチラール(PVB)樹脂、アクリル樹脂、スチレン/アクリル樹脂、ウレタン樹脂、ポリエステル樹脂、シリコーン樹脂などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの材料からなる粘着層は、塗布により形成することができる。
 さらに、粘着層には帯電防止剤、滑剤、ブロッキング防止剤などを添加してもよい。
 粘着層の厚みとしては、0.1μm~10μmが好ましい。
<断熱フィルムの製造方法>
 本発明の断熱フィルムを製造するための方法としては特に制限はないが、以下の製造方法が好ましい。
 断熱フィルムの製造方法は、銀を主成分とする繊維状金属粒子およびバインダーを含む繊維状金属粒子含有層形成用の塗布液を支持体上に塗布して繊維状金属粒子含有層を形成する工程を含むことが好ましい。
 水接触角が25°以下である表面層形成用の塗布液を前述の繊維状金属粒子含有層の上に塗布して表面層を形成する工程と、を含むことも好ましい。
 繊維状金属粒子含有層を支持体上に形成する方法としては、バインダーを繊維状金属粒子含有層形成用の塗布液に用いる場合は、一般的な塗布方法で行うことができる。
 ある実施態様では、繊維状金属粒子含有層形成用の塗布液は、金属ナノワイヤなどの繊維状金属粒子の水分散液を調製し、これと前述の特定アルコキシド化合物由来の金属酸化物以外の材料(例えば前述の導電性高分子)を主成分とするバインダーとを混合して調製されてもよい。
 一方、繊維状金属粒子含有層を支持体上に形成する方法としては、例えば前述の特定アルコキシド化合物由来の金属酸化物を主成分とするバインダーを用いる場合、繊維状金属粒子含有層形成用の塗布液(以下、「ゾルゲル塗布液」ともいう)を、支持体上に塗布して液膜を形成すること、および、この液膜中で特定アルコキシド化合物の加水分解と重縮合の反応(以下、この加水分解と重縮合の反応を「ゾルゲル反応」ともいう。)を起こさせることにより繊維状金属粒子含有層を形成すること、を少なくとも含む方法により製造することができる。この方法は、更に必要に応じて、繊維状金属粒子含有層形成用の塗布液中に溶媒として含まれ得る水を加熱により蒸発させること(乾燥)を含んでもよく含まなくてもよい。
 ある実施態様では、ゾルゲル塗布液は、金属ナノワイヤなどの繊維状金属粒子の水分散液を調製し、これと特定アルコキシド化合物とを混合して調製されてもよい。ある実施態様では、特定アルコキシド化合物を含む水溶液を調製し、この水溶液を加熱して特定アルコキシド化合物の少なくとも一部を加水分解および重縮合させてゾル状態とし、このゾル状態にある水溶液と金属ナノワイヤなどの繊維状金属粒子の水分散液とを混合してゾルゲル塗布液を調製してもよい。
 ゾルゲル反応を促進させるために、酸性触媒または塩基性触媒を併用することが反応効率を高められるので、実用上好ましい。
 塗布後は任意の方法で乾燥することができ、加熱して乾燥することが好ましい。
 前述の特定アルコキシド化合物由来の金属酸化物を主成分とするバインダーを用いる場合、支持体上に形成されたゾルゲル塗布液の塗布膜中においては、特定アルコキシド化合物の加水分解および縮合の反応が起こるが、その反応を促進させるために、上記塗布膜を加熱、乾燥することが好ましい。ゾルゲル反応を促進させるための加熱温度は、30℃~200℃の範囲が適しており、50℃~180℃の範囲がより好ましい。
 加熱、乾燥時間は10秒間~300分間が好ましく、1分間~120分間がより好ましい。
(塗布方法)
 繊維状金属粒子含有層の形成方法において、前述の各工程における塗布方法には特に制限はなく、一般的な塗布方法で行うことができ、目的に応じて適宜選択することができる。例えばロールコート法、バーコート法、ディップコーティング法、スピンコーティング法、キャスティング法、ダイコート法、ブレードコート法、グラビアコート法、カーテンコート法、スプレーコート法、ドクターコート法、などが挙げられる。
(繊維状金属粒子含有層の表面処理)
 繊維状金属粒子含有層の表面を表面処理する方法としては特に制限はない。
 繊維状金属粒子含有層の表面の水接触角が25°以下に制御する場合の表面処理としては、特開2009-40020号公報の[0031]~[0033]、特開2015-2032号公報の[0033]に記載の表面処理を挙げることができ、これらの公報の内容は本明細書に組み込まれる。繊維状金属粒子含有層の表面の水接触角が25°以下に制御する場合、繊維状金属粒子含有層へのダメージの観点から、繊維状金属粒子含有層の表面処理はプラズマ処理であることが好ましく、大気圧プラズマ処理であることがより好ましく、窒素気流下で行う大気圧プラズマ処理が特に好ましい。
(表面層の形成)
 表面層形成用の塗布液は、繊維状金属粒子含有層と同様の溶媒を用いることで、繊維状金属粒子含有層上に、均一な液膜を形成することができる。
 繊維状金属粒子含有層の上に塗布して表面層を形成する方法としては、特に制限はなく、繊維状金属粒子含有層と同様の塗布方法で行うことができる。
[断熱ガラス、窓]
 本発明の断熱ガラスは、本発明の断熱フィルムと、ガラスとを積層した断熱ガラスである。
 本発明の窓は、窓用透明支持体と、窓用透明支持体に貼り合わせた本発明の断熱フィルムを含む窓である。
 窓用透明支持体は、厚み0.5mm以上の窓用透明支持体であることが好ましく、厚み1mm以上の窓用透明支持体であることがより好ましく、窓用透明支持体の厚みに起因する熱伝導を抑制して温暖性を高める観点からは厚み2mm以上の窓用透明支持体であることが特に好ましい。
 窓用透明支持体は一般的には、板状またはシート状のものが使用される。
 窓用透明支持体としては、白板ガラス、青板ガラス、シリカコート青板ガラス等の透明ガラス;ポリカーボネート、ポリエーテルスルホン、ポリエステル、アクリル樹脂、塩化ビニル樹脂、芳香族ポリアミド樹脂、ポリアミドイミド、ポリイミド等の合成樹脂の樹脂板などを挙げることができる。これらの中でも、窓用透明支持体が、透明ガラスまたは樹脂板であることが好ましく、透明ガラスであることがより好ましい。
 ガラスや窓ガラスを構成する成分としては特に制限は無く、ガラスや窓ガラスとして、例えば、白板ガラス、青板ガラス、シリカコート青板ガラス等の透明ガラスを用いることができる。
 なお、本発明に用いられるガラスは、表面が平滑であることが好ましく、フロートガラスであることが好ましい。
 本発明の断熱ガラスの可視光透過率を求める際に、本発明の断熱フィルムを3mmの青板ガラスに貼り合わせて測定することが好ましい。3mmの青板ガラスについてはJISA5759に記載されているガラスを使用することが好ましい。
 本発明の断熱フィルムは、窓の内側、すなわち窓ガラスの屋内側に貼り付ける。
 本発明の断熱ガラスまたは本発明の窓は、本発明の断熱フィルムの繊維状金属粒子含有層が、支持体の窓(ガラス)側の面とは反対側の面上に配置される。本発明では、繊維状金属粒子含有層は、その層の厚みにもよるが繊維状金属粒子含有層と屋内側の最外面の距離が5μm以内にあることが断熱性を高める観点から好ましく、0.1~5μm以内にあることが特に好ましく、2~4μm以内であることが更に特に好ましい。
 また、本発明の断熱フィルムの繊維状金属粒子含有層は屋内側の最外層の次の層にあることが断熱性を高める観点から好ましい。
 本発明の断熱ガラスまたは本発明の窓は、近赤外線遮蔽層をなるべく太陽光側に設置している方が、屋内へ入射しようとする赤外線をあらかじめ反射できるため好ましく、この観点において近赤外線遮蔽層を太陽光入射側に設置されるように粘着層を積層することが好ましい。具体的には近赤外線遮蔽層の上、または、近赤外線遮蔽層上に設けられたオーバーコート層等の機能性層の上に粘着層を設け、その粘着層を介して窓ガラスへ貼合することが好ましい。
 窓ガラスに本発明の断熱フィルムを貼り付ける際、粘着層を塗工、あるいは、ラミネートにより設けた本発明の断熱フィルムを準備し、あらかじめ窓ガラス表面と本発明の断熱フィルムの粘着層表面に界面活性剤(主にアニオン系)を含んだ水溶液を噴霧してから、粘着層を介して窓ガラスに本発明の断熱フィルムを設置すると良い。水分が蒸発するまでの間、粘着層の粘着力は落ちるため、ガラス表面では本発明の断熱フィルムの位置の調整が可能である。窓ガラスに対する本発明の断熱フィルムの貼り付け位置が定まった後、スキージー等を用いて窓ガラスと本発明の断熱フィルムの間に残る水分をガラス中央から端部に向けて掃き出すことにより、窓ガラス表面に本発明の断熱フィルムを固定できる。このようにして、窓ガラスに本発明の断熱フィルムを設置することが可能である。
<建築材料、建築物、乗物>
 本発明の断熱フィルム、断熱ガラスおよび窓は、使用される態様に特に制限はなく、目的に応じて適宜選択することができる。例えば、乗物用、建築材料や建築物用、農業用などが挙げられる。これらの中でも、省エネルギー効果の点で、建築材料、建築物、乗物に用いられることが好ましい。
 建築材料は、本発明の断熱フィルムまたは本発明の断熱ガラスを含む建築材料である。
 建築物は、本発明の断熱フィルム、本発明の断熱ガラス、本発明の建築材料または本発明の窓を含む建築物である。建築物としては、家、ビル、倉庫などを挙げることができる。
 乗物は、本発明の断熱フィルム、本発明の断熱ガラスまたは本発明の窓を含む乗物である。乗物としては、自動車、鉄道車両、船舶などを挙げることができる。
 以下に実施例と比較例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
[繊維状金属粒子のサイズの測定法]
<繊維状金属粒子の平均短径(平均直径)と平均長径(平均長軸長)>
 透過型電子顕微鏡(TEM;日本電子株式会社製、JEM-2000FX)を用いて拡大観察される繊維状金属粒子から、ランダムに選択した300個の繊維状金属粒子の短径(短軸長、直径)と長径(長軸長)を測定し、その平均値から繊維状金属粒子の平均短径(平均短軸長、平均直径)と平均長径(平均長軸長)を求めた。
[調製例1]
<銀ナノワイヤ水分散液(1)の調製>
 予め、下記の添加液A、GおよびHを調製した。
(添加液A)
 硝酸銀粉末5.1gを純水500mLに溶解した。その後、1mol/Lのアンモニア水を透明になるまで添加した。そして、全量が1000mLになるように純水を添加した。
(添加液G)
 グルコース粉末1gを280mLの純水で溶解して、添加液Gを調製した。
(添加液H)
 HTAB(ヘキサデシル-トリメチルアンモニウムブロミド)粉末4gを220mLの純水で溶解して、添加液Hを調製した。
 次に、以下のようにして、銀ナノワイヤ水分散液(1)を調製した。
 純水410mLを三口フラスコ内に入れ、20℃にて攪拌しながら、添加液H 82.5mL、および添加液G 206mLをロートにて添加した(一段目)。この液に、添加液A 206mLを流量2.0mL/分、攪拌回転数800rpm(round per minutes)で添加した(二段目)。その10分間後、添加液Hを82.5mL添加した(三段目)。その後、3℃/分で内温73℃まで昇温した。その後、攪拌回転数を200rpmに落とし、5.5時間加熱した。得られた水分散液を冷却した。
 限外濾過モジュールSIP1013(商品名、旭化成株式会社製、分画分子量:6,000)、マグネットポンプ、およびステンレスカップをシリコーン製チューブで接続し、限外濾過装置とした。
 上述の冷却後の水分散液を限外濾過装置のステンレスカップに入れ、ポンプを稼動させて限外濾過を行った。限外濾過モジュールからの濾液が50mLになった時点で、ステンレスカップに950mLの蒸留水を加え、洗浄を行った。前述の洗浄を電気伝導度(東亜ディーケーケー(株)製CM-25Rで測定)が50μS/cm以下になるまで繰り返した後、濃縮を行い、0.84%銀ナノワイヤ水分散液(1)を得た。得られた銀ナノワイヤ水分散液(1)を、調製例1の銀ナノワイヤ水分散液とした。得られた調製例1の銀ナノワイヤ水分散液に含まれる繊維状金属粒子である銀ナノワイヤについて、前述のようにして平均短軸長、平均長軸長、および繊維状金属粒子の短軸長の変動係数を測定した。その結果、平均短軸長17.2nm、平均長軸長34.2μm、変動係数が17.8%の銀ナノワイヤを得たことがわかった。以後、「銀ナノワイヤ水分散液(1)」と表記する場合は、上記方法で得られた銀ナノワイヤ水分散液を示す。
[調製例2]
<接着層付き支持体(PET基板;図5中の符号101)の作製>
 下記の配合で接着用溶液1を調製した。
(接着用溶液1)
・タケラック(登録商標)WS-4000         5.0質量部
(コーティング用ポリウレタン、固形分濃度30%、三井化学(株)製)
・界面活性剤                      0.3質量部
(商品名:ナロアクティーHN-100、三洋化成工業(株)製)
・界面活性剤                      0.3質量部
(サンデット(登録商標)BL、固形分濃度43%、三洋化成工業(株)製)
・水                         94.4質量部
 支持体として用いる厚さ75μmのPETフィルム(図5中の符号10)の一方の表面にコロナ放電処理を施し、このコロナ放電処理を施した表面に、上記の接着用溶液1を塗布し120℃で2分間乾燥させて、厚さが0.11μmの第1の接着層(図5中の符号31)を形成した。
 以下の配合で、接着用溶液2を調製した。
(接着用溶液2)
・テトラエトキシシラン                 5.0質量部
(商品名:KBE-04、信越化学工業(株)製)
・3-グリシドキシプロピルトリメトキシシラン      3.2質量部
(商品名:KBM-403、信越化学工業(株)製)
・2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン
                                                       1.8質量部
(商品名:KBM-303、信越化学工業(株)製)
・酢酸水溶液(酢酸濃度=0.05%、pH=5.2)  10.0質量部
・硬化剤                        0.8質量部
(ホウ酸、和光純薬工業(株)製)
・コロイダルシリカ                  60.0質量部
(スノーテックス(登録商標)O、平均粒子径10nm~20nm、固形分濃度20%、pH(power of Hydrogen ion concentration)=2.6、日産化学工業(株)製)
・界面活性剤                      0.2質量部
(商品名:ナロアクティーHN-100、三洋化成工業(株)製)
・界面活性剤                      0.2質量部
(サンデット(登録商標)BL、固形分濃度43%、三洋化成工業(株)製)
 接着用溶液2は、以下の方法で調製した。酢酸水溶液を激しく攪拌しながら、3-グリシドキシプロピルトリメトキシシランを、この酢酸水溶液中に3分間かけて滴下した。次に、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランを酢酸水溶液中に強く攪拌しながら3分間かけて添加した。次に、テトラエトキシシランを、酢酸水溶液中に強く攪拌しながら5分かけて添加し、その後2時間攪拌を続けた。次に、コロイダルシリカと、硬化剤と、界面活性剤とを順次添加し、接着用溶液2を調製した。
 前述の第1の接着層(図5中の符号31)の表面をコロナ放電処理したのち、その表面に、上記の接着用溶液2をバーコート法により塗布し、170℃で1分間加熱して乾燥し、厚さ0.5μmの第2の接着層(図5中の符号32)を形成して、接着層付きの支持体(PET基板;図5中の符号101)を得た。
[実施例1]
<繊維状金属粒子含有層の塗布による形成>
 下記組成のアルコキシド化合物の溶液を60℃で1時間撹拌して均一になったことを確認した。調製した溶液をゾルゲル溶液とした。
(アルコキシド化合物の溶液)
・テトラエトキシシラン                 5.0質量部
(商品名:KBE-04、信越化学工業(株)製)
・1%酢酸水溶液                   10.0質量部
・蒸留水                        4.0質量部
 なお、ゾルゲル溶液中のテトラエトキシシランはゾルゲル反応後にはゾルゲル硬化物のSiOとして膜中に存在するため、下記表1の繊維状金属粒子含有層のバインダー材料には「ゾルゲルSiO」として記載した。
 得られたゾルゲル溶液2.09質量部と、調製例1で得られた銀ナノワイヤ水分散液(1)32.70質量部を混合し、さらに蒸留水で希釈して繊維状金属粒子含有層形成用の塗布液であるゾルゲル塗布液を得た。
 上記の接着層付き支持体の第2の接着層の表面にコロナ放電処理を施し、その表面にバーコート法で銀量が0.040g/m、全固形分塗布量が0.120g/mとなるように上記ゾルゲル塗布液を塗布した。そののち、175℃で1分間乾燥してゾルゲル反応を起こさせて、繊維状金属粒子含有層を形成した。繊維状金属粒子含有層におけるテトラエトキシシラン(アルコキシド化合物)/銀ナノワイヤの質量比は2/1となった。
<表面層の塗布による形成>
(親水性アルコキシシラン含有ポリマーの合成)
 500ml三口フラスコにアクリルアミド56.9g、アクリルアミド-3-(エトキシシリル)プロピル55.1g、及び1-メトキシ-2-プロパノール(以下MFGと略すこともある)260gを入れ、80℃窒素気流下、2,2’-アゾビス(2-メチルプロピオン酸)ジメチル0.7gを加えた。得られた溶液を6時間攪拌しながら同温度に保った後、室温まで冷却した。冷却後の溶液をn-ヘキサン5リットル中に投入し、析出した固体をろ取した。得られた固体をn-ヘキサンにて洗浄後、下記構造の例示化合物(I-2)である親水性ポリマー(I-2)を得た。乾燥後の固体の質量は80.6gであった。親水性ポリマー(I-2)は、GPC(ポリエチレンオキシド標準)により質量平均分子量22,000のポリマーであった。
Figure JPOXMLDOC01-appb-C000003
<親水性ゾルゲル液>
 精製水90g中に、親水性ポリマーとして、上記の方法で調製した親水性ポリマー(I-2)10gを混合し、室温で2時間撹拌して、親水性ゾルゲル液を調製した。
<親水性組成物>
 上記の方法で調製した親水性ゾルゲル液1gに精製水499gを混合し、親水性組成物を調製した。
<塗布方法>
 繊維状金属粒子含有層の表面上に、上記の親水性組成物を、アプリケーターを用いて乾燥後の膜厚が0.2μmとなるように塗布し、170℃で1分間加熱して乾燥して、実施例1の断熱フィルムを得た。
[実施例2]
 親水性組成物として、実施例1で調製した親水性ゾルゲル液5gに精製水495gを混合し、親水性組成物を作製した以外は実施例1と同様にして親水性組成物を調製した。
 そして、繊維状金属粒子含有層の表面上に、上記の親水性組成物を、アプリケーターを用いて乾燥後の膜厚が0.8μmとなるように塗布し、170℃で1分間加熱して乾燥して、実施例2の断熱フィルムを得た。
[実施例3]
 親水性組成物として、実施例1で調製した親水性ゾルゲル液10gに精製水490gを混合し、親水性組成物を作製した以外は実施例1と同様にして親水性組成物を調製した。
 そして、繊維状金属粒子含有層の表面上に、上記の親水性組成物を、アプリケーターを用いて乾燥後の膜厚が1.5μmとなるように塗布し、170℃で1分間加熱して乾燥して、実施例3の断熱フィルムを得た。
[実施例4]
<単分子膜組成物>
 超親水性コーティング材料(商品名LAMBIC-500WP、固形分10質量%、大阪有機化学工業(株)製)を準備した。
<塗布方法>
 繊維状金属粒子含有層の表面上に、上記の超親水性コーティング溶液を、アプリケーターを用いて塗布し、170℃で1分間加熱して乾燥して、実施例4の断熱フィルムを得た。得られた表面層は、X線反射率測定により単分子膜であることを確認した。
[実施例5]
<コロイダルシリカ分散液>
 精製水6.00gに、シリカ粒子の水分散物NALCO(登録商標)8699(NALCO社製、固形分15質量%、無孔質シリカ粒子、平均一次粒子径=3nm)7.02gを添加し、撹拌した。得られた溶液にリン酸を滴下し、pHを1.5~2.0に調整してコロイダルシリカ分散液を調製した。
<コロイダルシリカ塗布液>
 上記コロイダルシリカ分散液に、精製水23.5g、エタノール1.06g、及びTRITON BG10(ダウ・ケミカル社製、非イオン性界面活性剤)の10質量%水溶液0.56gを添加し、リン酸を用いて溶液のpHを2.4に調整し、コロイダルシリカ塗布液(固形分2.76質量%)を調製した。
<塗布方法>
 繊維状金属粒子含有層の表面上に、上記のコロイダルシリカ塗布液を、アプリケーターを用いて乾燥後の膜厚が0.2μmとなるように塗布し、170℃で1分間加熱して乾燥して、実施例5の断熱フィルムを得た。
[実施例6]
<変性アクリレート親水性組成物>
 変性アクリレート親水性モノマー(商品名Miramer M4004、東洋ケミカルズ(株)製)76質量部と、架橋剤(商品名A-DPH、新中村化学工業(株)製)21質量部と、重合開始剤(商品名IRGACURE184BASF社製)3質量部と、メチルアルコール15質量部と、プロピレングリコールモノメチルエーテル35質量部とを混合し、変性アクリレート親水性組成物を調製した。
<塗布方法>
 繊維状金属粒子含有層の表面上に、上記の変性アクリレート親水性組成物を、アプリケーターを用いて乾燥後の膜厚が0.2μmとなるように塗布し、60℃で10分間加熱して乾燥した後、UV(ultraviolet)照射によりモノマーを硬化させて実施例6の断熱フィルムを得た。
[実施例7]
<PEDOT/PSSバインダーを用いた繊維状金属粒子含有層の形成>
 下記組成のポリスチレンスルホン酸(PSS)をドープしたポリ(3,4-エチレンジオキシチオフェン)(PEDOT)溶液を調製した。
・ポリ(3,4-エチレンジオキシチオフェン)水分散体 50.0質量部
(CleviosP AI 4083、ヘレウス(株)製)
・蒸留水                        2.0質量部
・エタノール                      8.0質量部
 得られたPEDOT溶液18.0質量部と、調製例1で得られた銀ナノワイヤ水分散液(1)32.70質量部を混合し、さらに蒸留水で希釈して、繊維状金属粒子含有層形成用の塗布液である銀ナノワイヤ分散PEDOT塗布液を得た。
 上記の接着層付き支持体の第2の接着層の表面にコロナ放電処理を施し、その表面にバーコート法で銀量が0.040g/m、全固形分塗布量が0.120g/mとなるように上記銀ナノワイヤ分散PEDOT塗布液を塗布した。そののち、100℃で2分間乾燥して、PEDOT/PSSバインダーを用いた繊維状金属粒子含有層を形成した。PEDOT/PSSバインダーを用いた繊維状金属粒子含有層におけるバインダー/銀ナノワイヤの質量比は2/1となった。
 上記のPEDOT/PSSバインダーを用いた繊維状金属粒子含有層の表面上に、実施例2と同様にして表面層を形成して、実施例7の断熱フィルムを得た。
[実施例8]
<COPバインダーを用いた繊維状金属粒子含有層の形成>
 調製例1で得られた銀ナノワイヤ水分散液を、分散液の銀ナノワイヤ濃度を変更せずに、n-プロパノールへ溶媒置換したのち、さらに1-イソプロピル-4-メチルシクロヘキサンへ溶媒置換を行った。
 下記組成のシクロオレフィンポリマー(COP)溶液を調製した。
・シクロオレフィンポリマー               1.0質量部
(商品名、ゼオネックス480R、日本ゼオン(株)製)
・1-イソプロピル-4-メチルシクロヘキサン     15.0質量部
 上記のCOP溶液3.50質量部と、上記溶媒置換を行った銀ナノワイヤ水分散液32.70質量部を混合し、銀ナノワイヤ分散COP塗布液を得た。
 上記の接着層付き支持体の第2の接着層の表面にコロナ放電処理を施し、その表面にバーコート法で銀量が0.040g/m、全固形分塗布量が0.120g/mとなるように上記銀ナノワイヤ分散COP塗布液を塗布した。そののち、100℃で2分間乾燥して、COPバインダーを用いた繊維状金属粒子含有層を形成した。COPバインダーを用いた繊維状金属粒子含有層におけるCOP/銀ナノワイヤの質量比は2/1となった。
 上記のCOPバインダーを用いた繊維状金属粒子含有層の表面上に、実施例2と同様にして表面層を形成して、実施例8の断熱フィルムを得た。
[実施例9]
<PUバインダーを用いた繊維状金属粒子含有層の形成>
 下記組成のポリウレタン(PU)溶液を調製した。
・ポリウレタン水分散液                 5.0質量部
(商品名、タケラック(登録商標)WS-4000、三井化学(株)製)
・蒸留水                       95.0質量部
 得られたPU溶液15.0質量部と、調製例1で得られた銀ナノワイヤ水分散液(1)32.70質量部を混合し、さらに蒸留水で希釈して銀ナノワイヤ分散PU塗布液を得た。
 上記の接着層付き支持体の第2の接着層の表面にコロナ放電処理を施し、その表面にバーコート法で銀量が0.040g/m、全固形分塗布量が0.120g/mとなるように上記銀ナノワイヤ分散PU塗布液を塗布した。そののち、120℃で2分間乾燥して、PUバインダーを用いた繊維状金属粒子含有層を形成した。PUバインダーを用いた繊維状金属粒子含有層におけるPU/銀ナノワイヤの質量比は2/1となった。
 上記のPUバインダーを用いた繊維状金属粒子含有層の表面上に、実施例2と同様にして表面層を形成して、実施例9の断熱フィルムを得た。
[実施例10]
<PVAバインダーを用いた繊維状金属粒子含有層の形成>
 下記組成のポリビニルアルコール(PVA)溶液を調製した。
・PVA                        5.0質量部
(商品名ポバールVC-13、日本酢ビ・ポバール(株)製)
・蒸留水                       95.0質量部
 得られたPVA溶液4.4質量部と、調製例1で得られた銀ナノワイヤ水分散液(1)32.70質量部を混合し、さらに蒸留水で希釈して銀ナノワイヤ分散PVA塗布液を得た。
 上記の接着層付き支持体の第2の接着層の表面にコロナ放電処理を施し、その表面にバーコート法で銀量が0.040g/m、全固形分塗布量が0.120g/mとなるように上記銀ナノワイヤ分散PVA塗布液を塗布した。そののち、100℃で2分間乾燥して、PVAを用いた繊維状金属粒子含有層を形成した。PVAバインダーを用いた繊維状金属粒子含有層におけるPVA/銀ナノワイヤの質量比は2/1となった。
 上記のPVAバインダーを用いた繊維状金属粒子含有層の表面上に、実施例2と同様にして表面層を形成して、実施例10の断熱フィルムを得た。
[実施例11]
 実施例8で調製した銀ナノワイヤ分散COP塗布液中に0.1質量部のシランカップリング剤(商品名X-41-1805、信越シリコーン(株)製)を添加し、実施例11で用いる銀ナノワイヤ分散COP塗布液を調製した。
 上記の接着層付き支持体の第2の接着層の表面にコロナ放電処理を施し、その表面にバーコート法で銀量が0.040g/m、全固形分塗布量が0.120g/mとなるように上記銀ナノワイヤ分散COP塗布液を塗布した。そののち、100℃で2分間乾燥して、繊維状金属粒子含有層を形成した。得られた積層体を、実施例11の断熱フィルムとした。実施例11の断熱フィルムの繊維状金属粒子含有層におけるCOP/銀ナノワイヤの質量比は2/1となった。
[実施例12]
<Nプラズマ処理>
 上記の実施例8で調製したCOPバインダーを用いた繊維状金属粒子含有層の表面を、リモート式大気圧プラズマ処理装置(イー・スクエア製)を用いて、出力1.7kW、窒素流量200L/min、搬送速度2m/minの条件で表面処理を実施した。得られた積層体を、実施例12の断熱フィルムとした。
[実施例13]
 実施例1の断熱フィルムに対し、近赤外線反射層を以下の方法で設けた。
<銀平板粒子分散液B1の調製>
(銀平板粒子分散液A1の調製)
 NTKR-4(日本金属工業(株)製)の反応容器にイオン交換水13Lを計量し、SUS316L製のシャフトにNTKR-4製のプロペラ4枚およびNTKR-4製のパドル4枚を取り付けたアジターを備えるチャンバーを用いて撹拌しながら、10g/Lのクエン酸三ナトリウム(無水物)水溶液1.0Lを添加して35℃に保温した。反応容器にさらに8.0g/Lのポリスチレンスルホン酸水溶液0.68Lを添加し、更に0.04mol/Lの水酸化ナトリウム水溶液を用いて23g/Lに調製した水素化ホウ素ナトリウム水溶液0.041Lを添加した。反応容器にさらに0.10g/Lの硝酸銀水溶液13Lを5.0L/minで添加した。
 反応容器にさらに10g/Lのクエン酸三ナトリウム(無水物)水溶液1.0Lとイオン交換水11Lを添加して、更に80g/Lのヒドロキノンスルホン酸カリウム水溶液0.68Lを添加した。撹拌を800rpmに上げて、反応容器にさらに0.10g/Lの硝酸銀水溶液8.1Lを0.95L/minで添加した後、30℃に降温した。
 反応容器にさらに44g/Lのメチルヒドロキノン水溶液8.0Lを添加し、次いで、後述する方法で調製した40℃のゼラチン水溶液を全量添加した。撹拌を1200rpmに上げて、反応容器にさらに後述する方法で調製した亜硫酸銀白色沈殿物混合液を全量添加した。
 調製液のpH変化が止まった段階で、反応容器にさらに1mol/LのNaOH水溶液5.0Lを0.33L/minで添加した。その後、反応容器にさらに2.0g/Lの1-(メタ-スルホフェニル)-5-メルカプトテトラゾールナトリウム水溶液(NaOHとクエン酸(無水物)とを用いてpH=7.0±1.0に調節して溶解した)0.18Lを添加し、更に70g/Lの1,2-ベンズイソチアゾリン-3-オン(NaOHで水溶液をアルカリ性に調節して溶解した)0.078Lを添加した。このようにして銀平板粒子分散液A1を調製した。
-ゼラチン水溶液の調製-
 SUS316L製の溶解タンクにイオン交換水16.7Lを計量した。SUS316L製のアジターで低速撹拌を行いながら、脱イオン処理を施したアルカリ処理牛骨ゼラチン(GPC重量平均分子量20万)1.4kgを添加した。更に、脱イオン処理、蛋白質分解酵素処理、および過酸化水素による酸化処理を施したアルカリ処理牛骨ゼラチン(GPC重量平均分子量2.1万)0.91kgを添加した。その後40℃に昇温し、ゼラチンの膨潤と溶解を同時に行って完全に溶解させた。得られた溶液をゼラチン水溶液として、上述の銀平板粒子分散液A1の調製に用いた。
-亜硫酸銀白色沈殿物混合液の調製-
 SUS316L製の溶解タンクにイオン交換水8.2Lを計量し、100g/Lの硝酸銀水溶液8.2Lを添加した。SUS316L製のアジターで高速撹拌を行いながら、140g/Lの亜硫酸ナトリウム水溶液2.7Lを短時間で添加して、亜硫酸銀の白色沈澱物を含む混合液を調製した。得られた混合液を亜硫酸銀白色沈殿物混合液として、上述の銀平板粒子分散液A1の調製に用いた。この混合液は、使用する直前に調製した。
(銀平板粒子分散液A1の特性)
 銀平板粒子分散液A1をイオン交換水で希釈し、分光光度計((株)日立製作所製U-3500)を用いて分光吸収を測定したところ、吸収ピーク波長は900nmであり、半値全幅は270nmであった。
 銀平板粒子分散液A1の物理特性は、25℃においてpH=9.4(アズワン(株)製KR5Eで測定)、電気伝導度8.1mS/cm(東亜ディーケーケー(株)製CM-25Rで測定)、粘度2.1mPa・s((株)エー・アンド・デイ製SV-10で測定)であった。得られた銀平板粒子分散液A1は、ユニオンコンテナーII型(低密度ポリエチレン製、販売元:アズワン(株))の20Lの容器に収納し、30℃で貯蔵した。
(平板状金属粒子分散液の脱塩および再分散)
 前述の銀平板粒子分散液A1を遠沈管に800g採取して、1mol/LのNaOHおよび0.5mol/Lの硫酸のうち少なくとも一方を用いて25℃でpH=9.2±0.2に調整した。遠心分離機(日立工機(株)製himacCR22GIII、アングルローターR9A)を用いて、35℃に設定して、遠沈管中の銀平板粒子分散液A1に9000rpmで60分間の遠心分離操作を行った後、上澄み液を784g捨てた。沈殿した銀平板粒子に0.2mmol/LのNaOH水溶液を加えて合計400gとし、撹拌棒を用いて手撹拌して粗分散液にした(脱塩処理)。
 これと同様の操作で24本分の粗分散液を調製して合計9600gとし、SUS316L製のタンクに添加して混合した。更に、タンクにPluronic31R1(BASF社製)の10g/L溶液(メタノール:イオン交換水=1:1(体積比)の混合液で希釈)を10cm添加した。プライミクス(株)製オートミクサー20型(撹拌部はホモミクサーMARKII)を用いて、タンク中の粗分散液に9000rpmで120分間のバッチ式分散処理(再分散処理)を施した。再分散処理中の液温は50℃に保った。再分散処理の後、タンク中の再分散液を25℃に降温してから、プロファイルIIフィルター(日本ポール(株)製、製品型式MCY1001Y030H13)を用いてシングルパスの濾過を行った。
 このようにして、銀平板粒子分散液A1に脱塩処理および再分散処理を施して、銀平板粒子分散液B1を調製した。
(銀平板粒子分散液B1の特性)
 銀平板粒子分散液B1の分光透過率を、銀平板粒子分散液A1と同様の方法で測定したところ、吸収ピーク波長および半値全幅は銀平板粒子分散液A1とほぼ同じ結果であった。
 銀平板粒子分散液B1の物理特性は、25℃においてpH=7.6、電気伝導度0.37mS/cm、粘度1.1mPa・sであった。得られた銀平板粒子分散液B1は、ユニオンコンテナーII型の20Lの容器に収納し、30℃で貯蔵した。
<近赤外線反射層用の塗布液M1の作製>
 以下、近赤外線反射層用の塗布液M1の作製について記載する。塗布液の調製に用いた原材料は、購入した素原料を希釈したり、あるいは分散物にしたりするなど、適宜加工して使用した。
(近赤外線反射層用の塗布液M1の調製)
 以下の配合で、近赤外線反射層用の塗布液M1を調製した。
-塗布液M1-
水性ウレタン樹脂:ハイドランHW350
 (DIC(株)製、固形分30質量%)        0.27質量部
上記銀平板粒子分散液B1              10.24質量部
1-(メチルウレイドフェニル)-5-メルカプトテトラゾール
 (和光純薬工業(株)製、固形分2質量%のアルカリ性水溶液を調製)
                           0.61質量部
界面活性剤A:リパール870P
(ライオン(株)製、固形分1質量%イオン交換水希釈) 0.96質量部
界面活性剤B:ナロアクティーCL-95
 (三洋化成工業(株)製、固形分1質量%イオン交換水希釈)
                           1.19質量部
メタノール                     30.00質量部
蒸留水                       50.73質量部
<近赤外線反射層の塗布による形成>
 実施例1の断熱フィルムに対し、接着層付き支持体(PET基板;図5中の符号101)の繊維状金属粒子含有層が配置された面の裏面に、上記の近赤外線反射層用の塗布液M1を、ワイヤーバーを用いて10.6cm/mとなるように塗布し、140℃で乾燥処理を施して、近赤外線反射層(図5には不図示)を設けた。塗布乾燥後の近赤外線反射層の膜厚は10nmであった。
 得られた断熱フィルムを、実施例13の断熱フィルムとした。
[比較例1]
 実施例1の断熱フィルムの作製において、表面層無しとした以外は実施例1と同様にして、比較例1の断熱フィルムを得た。
[比較例2]
 実施例8の断熱フィルムの作製において、表面層無しとした以外は実施例8と同様にして、比較例2の断熱フィルムを得た。
[比較例3]
 実施例9の断熱フィルムの作製において、表面層無しとした以外は実施例9と同様にして、比較例3の断熱フィルムを得た。
[比較例4]
 実施例10の断熱フィルムの作製において、表面層無しとした以外は実施例10と同様にして、比較例4の断熱フィルムを得た。
[比較例5]
 比較例1の断熱フィルムに対し、実施例13と同様にして近赤外線反射層を設けて、比較例5の断熱フィルムを得た。
[参考例1]
<ITO/Ag/ITO系の積層体である赤外線反射層>
 特開平10-139489号公報の実施例1参照に記載の方法にしたがって、支持体上に、ITO/Ag/ITOの積層体である赤外線反射層を設けた。
 上記のITO/Ag/ITOの積層体である赤外線反射層の表面上に、実施例1と同様にして表面層を形成して、参考例1の断熱フィルムを得た。
[参考例2]
 参考例1の断熱フィルムの作製において、表面層無しとした以外は参考例1と同様にして、参考例2の断熱フィルムを得た。
[断熱ガラスの作製]
<粘着層の形成>
 各実施例および比較例で作製した断熱フィルムの繊維状金属粒子含有層と対向する支持体の表面上に、粘着材を以下の方法で貼り合わせ、粘着層を形成した。粘着材としてパナック(株)製パナクリーンPD-S1(粘着層25μm)を使用して、粘着材の軽剥離セパレータ(シリコーンコートPET)を剥がしてから、支持体の表面に貼り合わせた。
<断熱ガラスの製造>
 上記の方法で形成した粘着層から粘着材PD-S1の他方の重剥離セパレータ(シリコーンコートPET)を剥がし、フィルム施工液であるリアルパーフェクト(リンテック(株)製)の0.5質量%希釈液を使用してソーダ石灰珪酸塩である板ガラス(板ガラス厚み:3mmの青板ガラス)と貼り合わせて、各実施例および比較例の断熱ガラスを作製した。
[評価]
 上記で得られた各実施例および比較例の断熱フィルムまたは断熱ガラスを用いて、後述する各種の評価を実施した。
<断熱フィルムの評価>
(最表面の水接触角)
 各断熱フィルムにおいて、支持体よりも繊維状金属粒子含有層に近い側の最表面について、水接触角を以下の方法で測定した。
 環境条件:25℃、相対湿度60%において、接触角計 Drop Master 300(協和界面化学(株)製)を用い、作製した各断熱フィルムの表面に純水を2μl滴下して、θ/2法により接触角[°]を測定し、5回測定して得た値の平均値を最表面の水接触角とした。
 得られた結果を下記表1に記載した。
(最表面の水接触角の擦り試験後変化率)
 環境条件:25℃、相対湿度60%において、ラビングテスタ(AB301、テスター産業(株)製)を用い、作製した各断熱フィルムの表面をラビングテスタ用フェルト(大平理化工業(株)製)に、200gの荷重をかけて、ストローク幅25mm、速度30mm/secで100回往復摩擦して擦り試験を行った。環境条件:25℃、相対湿度60%において、擦り試験後の各断熱フィルムの最表面の水接触角(擦り試験前接触角)を測定し、擦り試験前の各断熱フィルムの最表面の水接触角(擦り試験後接触角)に対する割合を百分率で評価した。
 計算式:擦り試験後変化率=100×|(擦り試験前接触角-擦り試験後接触角)|/擦り試験前接触角
評価基準:
AA;擦り試験後変化率10%未満
 A;擦り試験後変化率10%以上20%未満
 B;擦り試験後変化率20%以上30%未満
 C;擦り試験後変化率30%超
 得られた結果を下記表1に記載した。
(汚れ拭き取り試験)
 環境条件:25℃、相対湿度60%において、各断熱フィルム表面に黒マジック(マッキー極細(商品名:ZEBRA製))のペン先(細)にて直径5mmの円形を3周書き込み、書き込み部分を覆うのに十分な量の水をかけた。10秒後に10枚重ねに折り束ねたベンコット(商品名、旭化成(株))でベンコットの束がへこむ程度の荷重でかけた水がなくなるまで拭き取った。5名の観察者でマジック跡を目視で以下の5段階で評価し、その平均値を採用した。
評価基準:
AA;マジック跡が全く見えない
 A;マジック跡がかすかに見える
 B;マジック跡がうっすらと見える
 C;マジック跡が見える
 得られた結果を下記表1に記載した。
<断熱ガラスの評価>
(断熱性(U値)の初期値)
 環境条件:85℃、相対湿度85%の恒温高湿槽で100時間保持する前の断熱性(U値)の初期値を以下の方法で評価した。
 各断熱ガラスの反射スペクトルを、赤外分光機(IFS66v/S、ブルカー・オプティクス社製)を用いて波長5μm~25μmの範囲で測定した。JIS A 5759に準拠して熱貫流率(U値)を算出した。尚、波長25μm~50μmの反射率はJIS A 5759に従って25μmの反射率から外挿した。熱貫流率(U値)が小さいほど、断熱性が高く、好ましい。
 得られた結果を、断熱性(U値)の「初期値」として下記表1に記載した。
(断熱性の湿熱経時後変化率)
 環境条件:85℃、相対湿度85%の恒温高湿槽で100時間保持した後の断熱性を評価した。
 各断熱ガラスを、環境条件:85℃、相対湿度85%の恒温高湿槽で100時間保持したのち、上記の初期の断熱性の評価と同様の方法で熱貫流率(U値)を測定し、湿熱経時後の熱貫流率を求めた。
 湿熱処理前の初期の断熱性(湿熱前U値)に対する湿熱処理後の断熱性(湿熱後U値)の変化量(絶対値)を百分率で評価した。
 計算式:湿熱経時後変化率=100×|(湿熱前U値-湿熱後U値)|/湿熱前U値
 得られた結果を、断熱性(U値)の「湿熱経時後変化率」として下記表1に記載した。
Figure JPOXMLDOC01-appb-T000004
 以上より、本発明の断熱フィルムは、銀を主成分とする繊維状金属粒子およびバインダーを含む繊維状金属粒子含有層を用いた場合に、湿熱経時後の断熱性変化を抑制できることがわかった。
 一方、比較例1~4より、断熱フィルムの最表面の水接触角が25°を超える場合、湿熱経時後の断熱性変化が大きいことがわかった。特に比較例4より、特開2012-252172号公報の[0048]および実施例に記載されているPVAバインダーを用いた場合、一般的なPVAバインダーを用いた繊維状金属粒子含有層の接触角が25°を超える程度であって、湿熱経時後の断熱性変化が大きいことがわかった。
 また、比較例5と実施例13との比較により、断熱フィルムに近赤外線反射層を組み合わせた場合に、接触角の小さい表面層を設けることで湿熱経時後の断熱性変化を抑制できることがわかった。
 さらに本発明の断熱フィルムの好ましい態様によれば、耐擦性や、汚れ拭き取り試験結果や、断熱性の初期値も改善できることがわかった。繊維状金属粒子含有層のバインダーと表面層の材料を、それぞれケイ素含有材料とした実施例1~3では、擦り試験後の表面層の水接触角の変化が小さくなった。これは、繊維状金属粒子含有層と表面層の密着性が向上したためと考えられる。
 各実施例の断熱フィルムを建材の窓に貼ったところ、使用しなかった場合に比べて冬場の平均で10%エアコンの消費量を抑えられた。
 また、各実施例の断熱フィルムを自動車の窓に貼ったところ、冬場の平均で15%エアコンの消費量を抑えられた。
 本発明の断熱フィルムを用いた本発明の断熱ガラスは、湿熱経時後の断熱性変化を抑制できるため、本発明の断熱フィルムが窓の内側に配置されると湿熱経時後の断熱性変化を抑制できる窓を提供できる。このような本発明の断熱フィルムは、ヘイズの低さと断熱性の高さを両立できる窓を含む建築物や乗物を提供することができる。さらに、既存の近赤外線遮蔽層と組合わせることで、窓の屋外側の光を屋内側に取り入れつつ、窓の屋外側からの光照射による屋内側の温度上昇を抑制でき、窓の屋外側の光が長期にわたって屋内側に取り入れる場合も屋内側から屋外側への熱交換の抑制をすることができるため、このような窓が設けられた建築物や乗物の屋内側(室内側、車内側)を望ましい環境に保つことができる。
 また、本発明の断熱フィルムは、既存の窓(例えば建築物や乗物の窓)に対して、窓の内側に貼ること(内貼り)によっても、湿熱経時後の断熱性変化を抑制できる窓を提供できる。
10   支持体
20   繊維状金属粒子含有層
21   表面層
31   第1の接着層
32   第2の接着層
41   近赤外線遮蔽層
51   粘着層
61   ガラス
101  接着層付きの支持体
102  断熱部材
103  断熱フィルム
111  断熱ガラス
IN   屋内側
OUT  屋外側

Claims (14)

  1.  支持体と、
     前記支持体の一方の面上に配置され、銀を主成分とする繊維状金属粒子およびバインダーを含む繊維状金属粒子含有層とを有する断熱フィルムであって、
     前記断熱フィルムの最表面の水接触角が25°以下である、断熱フィルム。
  2.  前記断熱フィルムの水接触角が25°以下である前記最表面が、前記支持体よりも前記繊維状金属粒子含有層に近い側の最表面である、請求項1に記載の断熱フィルム。
  3.  前記繊維状金属粒子含有層の前記支持体とは反対の面上に、さらに水接触角が25°以下である表面層を含む、請求項1または2に記載の断熱フィルム。
  4.  前記表面層の主成分が、ケイ素を含有する材料である、請求項3に記載の断熱フィルム。
  5.  前記表面層の膜厚が、1μm以下である、請求項3または4に記載の断熱フィルム。
  6.  前記表面層が、単分子膜である、請求項3~5のいずれか一項に記載の断熱フィルム。
  7.  前記繊維状金属粒子含有層の前記バインダーの主成分が、ケイ素を含有する材料である、請求項1~6のいずれか一項に記載の断熱フィルム。
  8.  前記支持体の前記繊維状金属粒子含有層が配置された面とは反対の面に、さらに近赤外線遮蔽層を含む、請求項1~7のいずれか一項に記載の断熱フィルム。
  9.  前記断熱フィルムの最表面の水接触角が10°以下である、請求項1~8のいずれか一項に記載の断熱フィルム。
  10.  前記支持体が、透明フィルムである、請求項1~9のいずれか一項に記載の断熱フィルム。
  11.  前記繊維状金属粒子の平均長軸長が5~50μmである、請求項1~10のいずれか一項に記載の断熱フィルム。
  12.  窓の内側に配置され、
     前記繊維状金属粒子含有層が、前記支持体の前記窓側の面とは反対側の面上に配置される、請求項1~11のいずれか一項に記載の断熱フィルム。
  13.  請求項1~12のいずれか一項に記載の断熱フィルムと、ガラスとを積層した、断熱ガラス。
  14.  窓用透明支持体と、前記窓用透明支持体に貼り合わせた請求項1~12のいずれか一項に記載の断熱フィルムを含む、窓。
PCT/JP2016/052674 2015-01-30 2016-01-29 断熱フィルム、断熱ガラスおよび窓 WO2016121934A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-016438 2015-01-30
JP2015016438A JP2016140989A (ja) 2015-01-30 2015-01-30 断熱フィルム、断熱ガラスおよび窓

Publications (1)

Publication Number Publication Date
WO2016121934A1 true WO2016121934A1 (ja) 2016-08-04

Family

ID=56543538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052674 WO2016121934A1 (ja) 2015-01-30 2016-01-29 断熱フィルム、断熱ガラスおよび窓

Country Status (2)

Country Link
JP (1) JP2016140989A (ja)
WO (1) WO2016121934A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019239313A1 (en) * 2018-06-12 2019-12-19 Guardian Glass, LLC Metamaterial-inclusive layer with angular-independent coloration, coating and/or coated article including metamaterial-inclusive layer, and/or associated methods

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230149913A1 (en) * 2020-03-11 2023-05-18 Nippon Sheet Glass Company, Limited Greenhouse and glass sheet with coating film
KR102560687B1 (ko) * 2021-05-27 2023-07-27 한국세라믹기술원 적외선 차단 기능을 갖는 고유연 투명전극 구조체 및 그 제조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10139489A (ja) * 1996-11-05 1998-05-26 Teijin Ltd グリーンハウス用ガラス積層体
JP2005003803A (ja) * 2003-06-10 2005-01-06 Dainippon Printing Co Ltd パターン形成体の製造方法
JP2007223825A (ja) * 2006-02-21 2007-09-06 Fujifilm Corp 断熱ガラス
JP2012252172A (ja) * 2011-06-03 2012-12-20 Bridgestone Corp 熱線遮蔽フィルム、これを用いた熱線遮蔽ウィンドウ
JP2013010341A (ja) * 2011-05-31 2013-01-17 Nitto Denko Corp 赤外線反射フィルム
JP2014063144A (ja) * 2012-08-27 2014-04-10 Asahi Glass Co Ltd 光学フィルタおよび固体撮像装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08337654A (ja) * 1995-06-14 1996-12-24 Matsushita Electric Ind Co Ltd 化学吸着膜の製造方法及びこれに用いる化学吸着液
JP5499837B2 (ja) * 2010-03-31 2014-05-21 住友大阪セメント株式会社 熱線遮蔽フィルム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10139489A (ja) * 1996-11-05 1998-05-26 Teijin Ltd グリーンハウス用ガラス積層体
JP2005003803A (ja) * 2003-06-10 2005-01-06 Dainippon Printing Co Ltd パターン形成体の製造方法
JP2007223825A (ja) * 2006-02-21 2007-09-06 Fujifilm Corp 断熱ガラス
JP2013010341A (ja) * 2011-05-31 2013-01-17 Nitto Denko Corp 赤外線反射フィルム
JP2012252172A (ja) * 2011-06-03 2012-12-20 Bridgestone Corp 熱線遮蔽フィルム、これを用いた熱線遮蔽ウィンドウ
JP2014063144A (ja) * 2012-08-27 2014-04-10 Asahi Glass Co Ltd 光学フィルタおよび固体撮像装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019239313A1 (en) * 2018-06-12 2019-12-19 Guardian Glass, LLC Metamaterial-inclusive layer with angular-independent coloration, coating and/or coated article including metamaterial-inclusive layer, and/or associated methods

Also Published As

Publication number Publication date
JP2016140989A (ja) 2016-08-08

Similar Documents

Publication Publication Date Title
JP6301483B2 (ja) 断熱フィルム、断熱フィルムの製造方法、断熱ガラスおよび窓
JP6309088B2 (ja) 窓用断熱フィルム、窓用断熱ガラス、建築材料、窓、建築物および乗物
JP6248191B2 (ja) 窓用断熱フィルム、窓用断熱材および窓
JP6083386B2 (ja) 光学積層フィルム、赤外遮蔽フィルムおよび赤外遮蔽体
WO2017022420A1 (ja) 断熱塗料
JP6499661B2 (ja) 窓用断熱フィルム、窓用断熱ガラスおよび窓
WO2016121934A1 (ja) 断熱フィルム、断熱ガラスおよび窓
WO2016152595A1 (ja) 遠赤外線反射フィルム、遠赤外線反射フィルム形成用の分散液、遠赤外線反射フィルムの製造方法、遠赤外線反射ガラスおよび窓
JP6243813B2 (ja) 窓用断熱フィルム、窓用断熱フィルムの製造方法、窓用断熱ガラスおよび窓
JP2016173499A (ja) 断熱フィルム、断熱ガラスおよび窓
JP6063846B2 (ja) 電磁波透過性積層体
WO2016121933A1 (ja) 断熱フィルム、断熱ガラスおよび窓
CN106457747B (zh) 窗户用隔热薄膜、窗户用隔热材料及窗户
WO2022107717A1 (ja) 遮熱膜付きガラス基材
JP2005209350A (ja) 透明導電膜及び透明導電膜の製造方法
CN107615116B (zh) 热射线反射材料及窗
JP6225916B2 (ja) 光学積層フィルム、赤外遮蔽フィルムおよび赤外遮蔽体
JP2001228303A (ja) 低反射導電性積層フイルム
JP2009215634A (ja) 熱線遮蔽材料、混合液及び熱線遮蔽膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16743537

Country of ref document: EP

Kind code of ref document: A1