WO2022099862A1 - 背板及led面板 - Google Patents

背板及led面板 Download PDF

Info

Publication number
WO2022099862A1
WO2022099862A1 PCT/CN2020/137789 CN2020137789W WO2022099862A1 WO 2022099862 A1 WO2022099862 A1 WO 2022099862A1 CN 2020137789 W CN2020137789 W CN 2020137789W WO 2022099862 A1 WO2022099862 A1 WO 2022099862A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
backplane
buffer layer
opening
disposed
Prior art date
Application number
PCT/CN2020/137789
Other languages
English (en)
French (fr)
Inventor
李兰艳
Original Assignee
Tcl华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl华星光电技术有限公司 filed Critical Tcl华星光电技术有限公司
Priority to US17/434,774 priority Critical patent/US20220406965A1/en
Publication of WO2022099862A1 publication Critical patent/WO2022099862A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • the present application relates to a display technology, in particular to a backplane and an LED panel.
  • Micro Light Emitting Diode Micro Light Emitting Diode, Micro -LED
  • Mini Light Emitting Diode Mini-LED
  • the white oil process generally adopts screen printing process or spray printing process.
  • the screen printing process has high precision, but it has direct contact with the substrate, which is easy to scratch the substrate, resulting in a short circuit in the metal layer; the spray printing process can avoid direct contact with the substrate, which can effectively avoid scratching the substrate, but its printing accuracy is difficult to guarantee.
  • the embodiments of the present application provide a backplane and an LED panel, so as to solve the technical problem that the substrate is easily scratched when the white oil reflective layer is prepared by the silk-screen process on the existing LED substrate.
  • the embodiment of the present application provides a backplane, which includes:
  • the reflective layer is disposed on the buffer layer.
  • the buffer layer includes a base layer and hole structures and/or flexible particles disposed in the base layer.
  • the flexibility of the flexible particles is greater than the flexibility of the base layer.
  • the hole structure includes a gas space.
  • the hole structure further includes a casing, and the casing wraps the gas space.
  • a side of the base layer close to the reflective layer is provided with pores, and the pores communicate with the gas space.
  • the material of the buffer layer includes a photoresist material.
  • the driving substrate includes a base and a conductive pad disposed on the base; a channel and an opening are opened on the buffer layer; the opening exposes the conductive pad, so the channel is disposed around the opening;
  • the buffer layer includes a retaining wall disposed between the channel and the opening, and the retaining wall is disposed around the opening.
  • the conductive pad includes a reflective metal layer, and the blocking wall is partially overlapped with the reflective metal layer.
  • the channel has an undercut structure, and the undercut structure extends in the direction of the retaining wall; in the direction from the driving substrate to the retaining wall, the bottom The width of the undercut structure decreases; the reflective layer extends into the undercut structure.
  • the reflective layer fills the channel.
  • the driving substrate further includes a first metal layer, an insulating layer, a second metal layer, and a passivation layer sequentially arranged on the base, and the second metal layer includes the a conductive pad, the opening penetrates the passivation layer.
  • the thickness of the buffer layer is greater than or equal to 3 micrometers and less than or equal to 10 micrometers.
  • the embodiment of the present application also relates to an LED panel, which includes an LED chip and the backplane described in the above embodiments; the LED chip is arranged on the backplane.
  • the backplane of the LED panel includes:
  • the reflective layer is disposed on the buffer layer.
  • the buffer layer includes a base layer and hole structures and/or flexible particles disposed in the base layer.
  • the flexibility of the flexible particles is greater than the flexibility of the base layer.
  • the hole structure includes a gas space.
  • the hole structure further includes a casing, and the casing wraps the gas space.
  • pores are provided on a side of the base layer close to the reflective layer, and the pores are connected to the gas space.
  • the material of the buffer layer includes a photoresist material.
  • the driving substrate includes a base and a conductive pad disposed on the base; a channel and an opening are opened on the buffer layer, and the opening exposes the conductive pad, so the channel is disposed around the opening;
  • the buffer layer includes a retaining wall disposed between the channel and the opening, and the retaining wall is disposed around the opening.
  • a buffer layer is arranged on the driving substrate, so as to protect the driving substrate during the silk screen printing process of the reflective layer; in addition, a channel is arranged on the buffer layer and a barrier around the opening is formed. The wall is used to prevent the material of the reflective layer from overflowing onto the exposed conductive pad during the spray printing process of the reflective layer.
  • FIG. 1 is a schematic top-view structural diagram of a backplane according to a first embodiment of the present application
  • FIG. 2 is a schematic cross-sectional structural diagram of a backplane according to a first embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a buffer layer of a backplane according to a first embodiment of the present application
  • FIG. 4 is a schematic structural diagram of a backplane according to a second embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a buffer layer of a backplane according to a second embodiment of the present application.
  • FIG. 6 is a schematic top-view structural diagram of a backplane according to a third embodiment of the present application.
  • FIG. 7 is a schematic cross-sectional structural diagram of a backplane according to a third embodiment of the present application.
  • FIG. 8 is another cross-sectional structural schematic diagram of the backplane according to the third embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a backplane according to a fourth embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of an LED panel according to an embodiment of the present application.
  • a first feature "on" a second feature may include the first and second features in direct contact, or may include that the first and second features are not in direct contact but Contact through additional features between them.
  • FIG. 1 is a schematic top view of the structure of the backplane according to the first embodiment of the application
  • FIG. 2 is a schematic cross-sectional structure of the backplane of the first embodiment of the application.
  • the embodiment of the present application provides a backplane 100 , which includes a driving substrate 11 , a buffer layer 12 and a reflective layer 13 .
  • the buffer layer 12 is disposed on the driving substrate 11 .
  • the reflective layer 13 is disposed on the buffer layer 12 .
  • a buffer layer 12 is provided on the driving substrate 11 ; when the reflective layer 13 is formed on the buffer layer 12 by the silk screen process in the first embodiment, the scraper is in contact with the buffer layer 12 , the buffer layer 12 absorbs the force exerted thereon by the scraper, thereby protecting the driving substrate 11 .
  • the buffer layer 12 is provided with an opening 12a.
  • the driving substrate 11 includes a base 111 and a first metal layer 112 , an insulating layer 113 , a second metal layer 114 and a passivation layer 115 which are sequentially arranged on the base 111 . It should be noted that the driving substrate 11 further includes other film layers such as an active layer and a flat layer. Since the hierarchical structure of the driving substrate 11 is in the prior art, it will not be repeated here.
  • the second metal layer 114 includes conductive pads 114a and signal traces.
  • the opening 12 a penetrates the buffer layer 12 and the passivation layer 115 .
  • the opening 12a exposes the conductive pad 114a.
  • the shape of the opening 12a in the vertical section is a structure with a wide upper part and a narrow lower part, such as an inverted trapezoid. Such an arrangement facilitates the binding of the LED chip to the conductive pad 114a through the opening 12a quickly during subsequent binding.
  • the buffer layer 12 includes a base layer 121 and a hole structure 122 disposed in the base layer 121 .
  • the hole structure 122 includes an outer shell 12b and a gas space 12c.
  • the casing 12b encloses the gas space 12c.
  • the scraper contacts the buffer layer 12 , and the hole structure 122 has the effect of absorbing the force of the scraper, thereby preventing the scraper from damaging the driving substrate 11 .
  • the gas space 12c is formed by decomposing a thermally and/or photodecomposable material into a gas. Therefore, the casing 12b protects and seals the gas space 12c to prevent the gas from breaking through the base layer 121 , thereby ensuring the smoothness of the surface of the buffer layer 12 and providing a smooth base surface for the formation of the reflective layer 13 .
  • thermodecomposable material is hereinafter simply referred to as a "decomposable material”.
  • the buffer layer 12 includes flexible particles disposed in the base layer 121 ; that is, the hole structures 122 are replaced with flexible particles. Wherein, the flexibility of the flexible particles is greater than the flexibility of the base layer 121 .
  • the flexible particles act as absorbent scrapers.
  • the buffer layer 12 further includes flexible particles disposed in the base layer 121 ; that is, the hole structure 122 and the flexible particles exist in the base layer 121 at the same time. Wherein, the flexibility of the flexible particles is greater than the flexibility of the base layer 121 .
  • the reflective layer 13 is formed on the buffer layer 12 .
  • the material of the reflective layer 13 can be white ink, or other reflective materials that can be used in silk screen printing.
  • the material of the buffer layer 12 includes a photoresist material.
  • the material of the base layer 121 of the buffer layer 12 may be a photoresist material such as polystyrene (PS) or soluble polytetrafluoroethylene (PFA).
  • PS polystyrene
  • PFA soluble polytetrafluoroethylene
  • the thickness of the buffer layer 12 is greater than or equal to 3 microns and less than or equal to 10 microns. It should be noted that if the thickness of the buffer layer 12 is less than 3 microns, it will not achieve a good anti-scratch effect; if the thickness of the buffer layer 12 is greater than 10 microns, on the one hand, the cost will increase, on the other hand It is inconvenient to bind the LED chip.
  • the preparation process of the backplane 100 of the first embodiment is as follows:
  • a substrate 111 is provided, and a first metal layer 112, an insulating layer 113, a second metal layer 114 and a passivation layer 115 are sequentially formed on the substrate 111 to form a thin film transistor array structure, that is, the driving substrate 11;
  • the particles include the outer shell 12b and a decomposable material, and the outer shell 12b wraps the decomposable material.
  • the mixed material is coated on the driving substrate 11 to form a mixed material layer.
  • the mixed material layer is exposed, developed and baked, and the decomposable material in the particles is decomposed to form the buffer layer 12 with the hole structure 122 .
  • the reflective layer 13 is formed on the buffer layer 12 by a screen printing process.
  • FIG. 4 is a schematic structural diagram of a backplane according to a second embodiment of the present application.
  • the backplane 200 of the second embodiment includes a driving substrate 11 , a buffer layer 12 and a reflective layer 13 which are arranged in sequence.
  • the driving substrate 11 includes a base 111 and a first metal layer 112 , an insulating layer 113 , a second metal layer 114 and a passivation layer 115 which are sequentially arranged on the base 111 .
  • the second metal layer 114 includes conductive pads 114a.
  • the buffer layer 12 is provided with an opening 12a.
  • the opening 12 a penetrates the buffer layer 12 and the passivation layer 115 .
  • the opening 12a exposes the conductive pad 114a.
  • the difference between the backplane 200 of the second embodiment and the backplane 100 of the first embodiment is that, as shown in FIG.
  • the function of the pores 12d is to further absorb the force of the scraper on the buffer layer 12 .
  • At least a part of the hole structure 122 in the buffer layer 12 is communicated with the hole 12d.
  • the gas generated after the decomposable material is decomposed breaks through the base layer 121 to form the pores 12d. Since the decomposable material is located at different depths of the base layer 121, the binding force of the decomposable material at different depths is different; therefore, after the decomposable material is decomposed into gas, if the internal pressure of the gas space 12c is greater than that of the base layer When the binding force of the base layer 121 on it, it will break through the base layer 121 to form the pores 12d; if the internal pressure of the gas space 12c is less than the binding force of the base layer 121 on it, the gas space 12c will be completely bound in the space. inside the base layer 121 .
  • the hole structure 122 may include a shell 12b.
  • the casing 12b is provided with an opening formed by being broken by gas.
  • the hole structure 122 may only include the gas space 12c.
  • the decomposable material is decomposed into gas to form the gas space 12 c , wherein the gas breaks through the surface of the base layer 121 to form the pores 12 d in the base layer 121 .
  • FIG. 6 is a schematic top view structure of a backplane according to a third embodiment of the application
  • FIG. 7 is a cross-sectional structure diagram of the backplane according to the third embodiment of the application.
  • the backplane 300 of the third embodiment includes a driving substrate 11 , a buffer layer 12 and a reflective layer 13 which are arranged in sequence.
  • the driving substrate 11 includes a base 111 and a first metal layer 112 , an insulating layer 113 , a second metal layer 114 and a passivation layer 115 which are sequentially arranged on the base 111 .
  • the second metal layer 114 includes conductive pads 114a.
  • the buffer layer 12 is provided with an opening 12a.
  • the opening 12 a penetrates the buffer layer 12 and the passivation layer 115 .
  • the opening 12a exposes the conductive pad 114a.
  • the backplane 300 of the third embodiment is different from the backplane 100 of the first embodiment or the backplane 200 of the second embodiment in that:
  • the buffer layer 12 is further provided with a channel 12f.
  • the channel 12f is provided around the opening 12a.
  • the buffer layer 12 includes a retaining wall 123 disposed between the channel 12f and the opening 12a, and the retaining wall 123 is disposed around the opening 12a.
  • a buffer layer 12 is provided on the driving substrate 11 , and the channel 12 f is formed on the buffer layer 12 , thereby forming the blocking wall 123 .
  • the fluid material is sprayed on the portion of the buffer layer 12 other than the retaining wall 123 and overflows to the groove into the channel 12f, and is blocked by the retaining wall 123 to prevent the fluid material from overflowing onto the conductive pad 114a and causing defects. That is, the reflective layer 13 covers the channel 12f, as shown in FIG. 8 .
  • the reflective material is not only formed on the buffer layer 12, but also enters the channel 12f under the action of the scraper, that is, the The reflective layer 13 covers the buffer layer 12 and the channel 12f, as shown in FIG. 7 .
  • the conductive pad 114a includes a reflective metal layer.
  • the retaining wall 123 is partially overlapped with the reflective metal layer. It should be noted that, in the third embodiment, the "overlapping setting" is an indirect overlapping setting.
  • the blocking wall 123 is overlapped with the reflective metal layer, in the LED panel manufactured subsequently, the light emitted by the LED chip passes through the blocking wall 123 and is radiated to the reflective metal layer, and is reflected in the reflective metal layer. The metal layer is reflected, thereby improving the light utilization rate of the LED panel.
  • the conductive pad 114a may be a structure of at least two layers, wherein the reflective metal layer is located on the side close to the retaining wall 123 .
  • the conductive pad 114a may also be a single-layer structure, that is, the conductive pad 114a is formed of the reflective metal layer.
  • the reflective metal can be silver or aluminum or the like.
  • the channel 12f and the opening 12a are formed by the same mask.
  • FIG. 9 is a schematic structural diagram of a backplane according to a fourth embodiment of the present application.
  • the backplane 400 of the fourth embodiment includes a driving substrate 11 , a buffer layer 12 and a reflective layer 13 which are arranged in sequence.
  • the driving substrate 11 includes a base 111 and a first metal layer 112 , an insulating layer 113 , a second metal layer 114 and a passivation layer 115 which are sequentially arranged on the base 111 .
  • the second metal layer 114 includes conductive pads 114a.
  • the buffer layer 12 is provided with an opening 12a.
  • the opening 12 a penetrates the buffer layer 12 and the passivation layer 115 .
  • the opening 12a exposes the conductive pad 114a.
  • the difference between the backplane 400 of the fourth embodiment and the backplane 300 of the third embodiment is that the channel 12 f has an undercut structure f1 , and the undercut structure f1 extends toward the blocking wall 123 .
  • the width of the undercut structure f1 decreases in the direction from the driving substrate 11 to the blocking wall 123 .
  • the reflective layer 13 extends into the undercut structure f1.
  • the fourth embodiment shows that the reflection layer 13 is formed by a jet printing process.
  • the material of the reflective layer 13 fills the entire channel 12f, that is, the reflective layer 13 extends into the undercut structure f1. Therefore, in the subsequently manufactured LED panel, the light emitted by the LED chips radiates through the retaining wall 123 to the reflective layer 13 in the undercut structure f1, and is reflected on the reflective layer 13, thereby improving the LED performance.
  • the light utilization rate of the panel is formed by a jet printing process.
  • the reflective layer 13 When the reflective layer 13 is formed by a screen printing process, compared with the fourth embodiment, the reflective layer 13 also covers the retaining wall 123 .
  • FIG. 10 is a schematic structural diagram of an LED panel according to an embodiment of the present application.
  • the embodiments of the present application also relate to an LED panel 1000, which includes an LED chip EL and a backplane BL.
  • the LED chips EL are disposed on the backplane BL.
  • the backplane BL is the backplane (100, 200, 300, 400) described in any one of the above embodiments.
  • the LED is a light-emitting diode chip. It can be Mini-LED, Mirco-LED or other LED.
  • a buffer layer is arranged on the driving substrate, so as to protect the driving substrate during the silk screen printing process of the reflective layer; in addition, a channel is arranged on the buffer layer and a barrier around the opening is formed. The wall is used to prevent the material of the reflective layer from overflowing onto the exposed conductive pad during the spray printing process of the reflective layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Theoretical Computer Science (AREA)
  • Led Device Packages (AREA)

Abstract

一种背板(100)及LED面板,背板(100)包括驱动基板(11)、缓冲层(12)和反射层(13),缓冲层(12)设置在驱动基板(11)上;反射层(13)设置在缓冲层(12)上。通过在驱动基板(11)上设置缓冲层(12),进而在进行反射层(13)的丝印工艺中起到保护驱动基板(11)的作用。

Description

背板及LED面板 技术领域
本申请涉及一种显示技术,特别涉及一种背板及LED面板。
背景技术
在微型发光二极管(Micro Light Emitting Diode,Micro -LED)或迷你发光二极管(Mini Light Emitting Diode,Mini -LED)基板的制程中,通常需要在基板上形成一白油层。而白油工艺一般采用丝印工艺或喷印工艺。其中丝印工艺精度较高,但对基板存在直接接触,容易刮伤基板,导致金属层出现短路现象;喷印工艺可避免与基板直接接触,能有效避免刮伤基板,但是其印刷精度难以保证,容易出现白油溢流至与发光二极管(Light Emitting Diode,LED)绑定的焊盘区域,引起焊盘发生氧化变色,导致上锡异常,LED无法进行正常打件。
技术问题
本申请实施例提供一种背板及LED面板,以解决现有的LED基板采用丝印工艺制备白油反射层时,容易刮伤基板的技术问题。
技术解决方案
本申请实施例提供了一种背板,其包括:
驱动基板;
缓冲层,所述缓冲层设置在所述驱动基板上;以及
反射层,所述反射层设置在所述缓冲层上。
在本申请实施例的背板中,所述缓冲层包括基层和设置在所述基层内的孔洞结构和/或柔性粒子。
在本申请实施例的背板中,所述柔性粒子的柔性大于所述基层的柔性。
在本申请实施例的背板中,所述孔洞结构包括气体空间。
在本申请实施例的背板中,所述孔洞结构还包括外壳,所述外壳包裹所述气体空间。
在本申请实施例的背板中,所述基层靠近所述反射层的一侧设置有孔隙,所述孔隙连通于所述气体空间。
在本申请实施例的背板中,所述缓冲层的材料包括光阻材料。
在本申请实施例的背板中,所述驱动基板包括基底和设置在所述基底上的导电垫;所述缓冲层上开设有沟道和开口;所述开口暴露出所述导电垫,所述沟道围绕所述开口设置;
所述缓冲层包括挡墙,所述挡墙设置在所述沟道和所述开口之间,所述挡墙围绕所述开口设置。
在本申请实施例的背板中,所述导电垫包括反射金属层,所述挡墙与所述反射金属层的部分重叠设置。
在本申请实施例的背板中,所述沟道具有底切结构,所述底切结构向所述挡墙的方向延伸;自所述驱动基板向所述挡墙的方向上,所述底切结构的宽度递减;所述反射层延伸入所述底切结构。
在本申请实施例的背板中,所述反射层填充所述沟道。
在本申请实施例的背板中,所述驱动基板还包括依次设置在所述基底上的第一金属层、绝缘层、第二金属层和钝化层,所述第二金属层包括所述导电垫,所述开口贯穿所述钝化层。
在本申请实施例的背板中,所述缓冲层的厚度大于或等于3微米,且小于或等于10微米。
本申请实施例还涉及一种LED面板,其包括LED芯片和上述实施例所述的背板;所述LED芯片设置在所述背板上。
具体的,比如所述LED面板的所述背板包括:
驱动基板;
缓冲层,所述缓冲层设置在所述驱动基板上;以及
反射层,所述反射层设置在所述缓冲层上。
在本申请实施例的LED面板中,所述缓冲层包括基层和设置在所述基层内的孔洞结构和/或柔性粒子。
在本申请实施例的LED面板中,所述柔性粒子的柔性大于所述基层的柔性。
在本申请实施例的LED面板中,所述孔洞结构包括气体空间。
在本申请实施例的LED面板中,所述孔洞结构还包括外壳,所述外壳包裹所述气体空间。
在本申请实施例的LED面板中,所述基层靠近所述反射层的一侧设置有孔隙,所述孔隙连通于所述气体空间。
在本申请实施例的LED面板中,所述缓冲层的材料包括光阻材料。
在本申请实施例的LED面板中,所述驱动基板包括基底和设置在所述基底上的导电垫;所述缓冲层上开设有沟道和开口,所述开口暴露出所述导电垫,所述沟道围绕所述开口设置;
所述缓冲层包括挡墙,所述挡墙设置在所述沟道和所述开口之间,所述挡墙围绕所述开口设置。
有益效果
本申请的背板及LED面板通过在驱动基板上设置缓冲层,进而在进行反射层的丝印工艺时,起到保护驱动基板的作用;另外,在缓冲层上设置沟道和形成围绕开口的挡墙,以在进行反射层的喷印工艺时,避免反射层的材料溢流至开口裸露的导电垫上。
附图说明
为了更清楚地说明本申请实施例,下面对实施例中所需要使用的附图作简单的介绍。下面描述中的附图仅为本申请的部分实施例,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获取其他的附图。
图1为本申请第一实施例的背板的俯视结构示意图;
图2为本申请第一实施例的背板的剖视结构示意图;
图3为本申请第一实施例的背板的缓冲层的结构示意图;
图4为本申请第二实施例的背板的结构示意图;
图5为本申请第二实施例的背板的缓冲层的结构示意图;
图6为本申请第三实施例的背板的俯视结构示意图;
图7为本申请第三实施例的背板的剖视结构示意图;
图8为本申请第三实施例的背板的另一剖视结构示意图;
图9为本申请第四实施例的背板的结构示意图;
图10为本申请实施例的LED面板的结构示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。
请参照图1和图2,图1为本申请第一实施例的背板的俯视结构示意图;图2为本申请第一实施例的背板的剖视结构示意图。
本申请实施例提供了一种背板100,其包括驱动基板11、缓冲层12和反射层13。所述缓冲层12设置在所述驱动基板11上。所述反射层13设置在所述缓冲层12上。
在本第一实施例的背板100中,在驱动基板11上设置一层缓冲层12;当本第一实施例采用丝印工艺在缓冲层12上形成反射层13时,刮刀跟缓冲层12接触,缓冲层12吸收刮刀施加在其上的作用力,从而保护了驱动基板11。
所述缓冲层12上开设有开口12a。所述驱动基板11包括基底111和依次设置在所述基底111上的第一金属层112、绝缘层113、第二金属层114和钝化层115。需要说明的是,所述驱动基板11还包括有源层和平坦层等其它膜层。由于驱动基板11的层级结构是现有技术,故此处不再赘述。
具体的,所述第二金属层114包括导电垫114a和信号走线。所述开口12a贯穿所述缓冲层12和所述钝化层115。所述开口12a暴露出所述导电垫114a。
所述开口12a在垂直截图的形状呈上宽下窄的结构,如倒梯形。这样的设置便于后续绑定时,LED芯片快速地穿过所述开口12a与所述导电垫114a绑定。
如图3,在本第一实施例的背板100中,所述缓冲层12包括基层121和设置在所述基层121内的孔洞结构122。所述孔洞结构122包括外壳12b和气体空间12c。所述外壳12b包裹所述气体空间12c。
在所述反射层13的丝印制程中,刮刀接触缓冲层12,所述孔洞结构122起到吸收刮刀作用力的效果,进而避免了刮刀损伤所述驱动基板11。
需要说明的是,所述气体空间12c由可热分解和/或光分解的材质分解为气体形成。因此,所述外壳12b起到保护和密封气体空间12c的作用,避免气体撑破所述基层121,进而保证缓冲层12表面的平整性,为反射层13的形成提供平整的基础面。
此外,“可热分解和/或光分解的材质”下文简称为“可分解材质”。
在一些实施例中,所述缓冲层12包括设置在所述基层121内的柔性粒子;即采用柔性粒子替换孔洞结构122。其中,所述柔性粒子的柔性大于所述基层121的柔性。所述柔性粒子起到吸收刮刀作用的作用。
在一些实施例中,所述缓冲层12还包括设置在所述基层121内的柔性粒子;即孔洞结构122和柔性粒子同时存在所述基层121内。其中,所述柔性粒子的柔性大于所述基层121的柔性。
在第一实施例的背板100中,所述反射层13形成在所述缓冲层12上。所述反射层13的材料可以是白色油墨,或其他可用于丝印工艺的反射性材料。
可选的,所述缓冲层12的材料包括光阻材料。具体的,所述缓冲层12的基层121的材料可以是聚苯乙烯(PS)或可溶性聚四氟乙烯(PFA)等光阻材料。
可选的,所述缓冲层12的厚度大于或等于3微米,且小于或等于10微米。需要说明的是,若所述缓冲层12的厚度小于3微米,则其起不到较好的防刮效果;若所述缓冲层12的厚度大于10微米,一方面增大成本,另一方面不便于LED芯片进行绑定。
当所述反射层13采用丝印工艺时,本第一实施例的背板100的制备过程如下:
首先,提供一基底111,并在所述基底111上依次形成第一金属层112、绝缘层113、第二金属层114和钝化层115,以形成薄膜晶体管阵列结构,即驱动基板11;
然后,提供光刻胶混合了粒子的混合材料。所述粒子包括所述外壳12b和可分解材质,所述外壳12b包裹所述可分解材质。
接着,在所述驱动基板11上涂布所述混合材料,形成混合材料层。对所述混合材料层通过曝光、显影和烘烤处理,以及分解所述粒子内的可分解材质,以形成具有所述孔洞结构122的所述缓冲层12。
其次,采用丝印工艺在所述缓冲层12上形成所述反射层13。
最后,按照产品需求进行切割。
这样便完成了本第一实施例的背板100的制备过程。
请参照图4,图4为本申请第二实施例的背板的结构示意图。本第二实施例的背板200包括依次设置的驱动基板11、缓冲层12和反射层13。所述驱动基板11包括基底111和依次设置在所述基底111上的第一金属层112、绝缘层113、第二金属层114和钝化层115。
所述第二金属层114包括导电垫114a。所述缓冲层12上开设有开口12a。所述开口12a贯穿所述缓冲层12和所述钝化层115。所述开口12a暴露出所述导电垫114a。
本第二实施例的背板200与第一实施例的背板100的不同之处在于:如图5所示,所述基层121靠近所述反射层13的一侧设置有孔隙12d。
所述孔隙12d的作用在于进一步吸收刮刀对所述缓冲层12的作用力。
可选的,所述缓冲层12中至少部分的孔洞结构122连通于所述孔隙12d。
需要说明的是,可分解材质在分解后产生的气体撑破所述基层121,以形成孔隙12d。由于可分解材质处在所述基层121的不同深度,导致不同深度的可分解材质所受的束缚力不同;因此当可分解材质被分解为气体后,若气体空间12c的内部压力大于所述基层121对其的束缚力时,便会突破所述基层121形成所述孔隙12d;若气体空间12c的内部压力小于所述基层121对其的束缚力时,所述气体空间12c便完整的束缚在所述基层121内。
在本第二实施例的背板200中,所述孔洞结构122可以包括外壳12b。所述外壳12b上设置有被气体撑破而形成的开口。
另外,在一些实施例中,所述孔洞结构122也可以仅包括气体空间12c。可分解材质被分解为气体,以形成所述气体空间12c,其中,该气体撑破所述基层121的表面,以在所述基层121形成所述孔隙12d。
请参照图6和图7,图6为本申请第三实施例的背板的俯视结构示意图;图7为本申请第三实施例的背板的剖视结构示意图。
本第三实施例的背板300包括依次设置的驱动基板11、缓冲层12和反射层13。所述驱动基板11包括基底111和依次设置在所述基底111上的第一金属层112、绝缘层113、第二金属层114和钝化层115。
所述第二金属层114包括导电垫114a。所述缓冲层12上开设有开口12a。所述开口12a贯穿所述缓冲层12和所述钝化层115。所述开口12a暴露出所述导电垫114a。
本第三实施例的背板300与第一实施例的背板100或第二实施例的背板200的不同之处在于:
在第一实施例的背板100或第二实施例的背板200的基础上,所述缓冲层12上还开设有沟道12f。所述沟道12f围绕所述开口12a设置。
所述缓冲层12包括挡墙123,所述挡墙123设置在所述沟道12f和所述开口12a之间,所述挡墙123围绕所述开口12a设置。
在本第三实施例的背板300中,在驱动基板11上设置一层缓冲层12,并在所述缓冲层12上形成所述沟道12f,进而形成挡墙123。
当本第三实施例的背板300采用喷印工艺形成所述反射层13时,流体材料喷涂在所述缓冲层12除所述挡墙123之外的部分上,且溢流至所述沟道12f内,并被所述挡墙123阻挡,避免流体材料溢流至导电垫114a上造成不良。即所述反射层13覆盖所述沟道12f,如图8所示。
当本第三实施例的背板300采用丝印工艺形成所述反射层13时,反射性材料不仅形成在所述缓冲层12上,还会在刮刀的作用下进入所述沟道12f,即所述反射层13覆盖所述缓冲层12和所述沟道12f,如图7所示。
可选的,所述导电垫114a包括反射金属层。所述挡墙123与所述反射金属层的部分重叠设置。需要说明的是,在本第三实施例中,“重叠设置”为间接重叠设置。
由于所述挡墙123与所述反射金属层重叠设置,因此在后续制成的LED面板中,LED芯片发出的光穿过所述挡墙123辐射至所述反射金属层,并在所述反射金属层发生反射,进而提高了LED面板的光利用率。
可选的,所述导电垫114a可以是至少两层结构,其中所述反射金属层位于靠近所述挡墙123的一侧。
可选的,所述导电垫114a也可以是单层结构,即所述导电垫114a由所述反射金属层构成。反射金属可以是银或铝等。
另外,在所述缓冲层12的制程中,所述沟道12f和所述开口12a采用同一道光罩制成。
请参照图9,图9为本申请第四实施例的背板的结构示意图。本第四实施例的背板400包括依次设置的驱动基板11、缓冲层12和反射层13。所述驱动基板11包括基底111和依次设置在所述基底111上的第一金属层112、绝缘层113、第二金属层114和钝化层115。
所述第二金属层114包括导电垫114a。所述缓冲层12上开设有开口12a。所述开口12a贯穿所述缓冲层12和所述钝化层115。所述开口12a暴露出所述导电垫114a。
本第四实施例的背板400与第三实施例的背板300的不同之处在于:所述沟道12f具有底切结构f1,所述底切结构f1向所述挡墙123的方向延伸。自所述驱动基板11向所述挡墙123的方向上,所述底切结构f1的宽度递减。所述反射层13延伸入所述底切结构f1。
本第四实施例示出采用喷印工艺形成反射层13。所述反射层13的材料填充整个所述沟道12f,即所述反射层13延伸入所述底切结构f1内。因此在后续制成的LED面板中,LED芯片发出的光穿过所述挡墙123辐射至所述底切结构f1内的反射层13,并在所述反射层13发生反射,进而提高了LED面板的光利用率。
当反射层13采用丝印工艺形成时,相较于第四实施例,反射层13还覆盖挡墙123。
请参照图10,图10为本申请实施例的LED面板的结构示意图。本申请实施例还涉及一种LED面板1000,其包括LED芯片EL和背板BL。所述LED芯片EL设置在所述背板BL上。背板BL为上述任意一个实施例所述的背板(100、200、300、400)。
需要说明的是,LED为发光二极管芯片。其可以是Mini-LED、Mirco-LED或其他LED。
本申请的背板及LED面板通过在驱动基板上设置缓冲层,进而在进行反射层的丝印工艺时,起到保护驱动基板的作用;另外,在缓冲层上设置沟道和形成围绕开口的挡墙,以在进行反射层的喷印工艺时,避免反射层的材料溢流至开口裸露的导电垫上。
以上对本申请实施例所提供的一种背板及LED面板进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的技术方案及其核心思想;本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例的技术方案的范围。

Claims (20)

  1. 一种背板,其中,包括:
    驱动基板;
    缓冲层,所述缓冲层设置在所述驱动基板上;以及
    反射层,所述反射层设置在所述缓冲层上。
  2. 根据权利要求1所述的背板,其中,所述缓冲层包括基层和设置在所述基层内的孔洞结构和/或柔性粒子。
  3. 根据权利要求2所述的背板,其中,所述柔性粒子的柔性大于所述基层的柔性。
  4. 根据权利要求2所述的背板,其中,所述孔洞结构包括气体空间。
  5. 根据权利要求4所述的背板,其中,所述孔洞结构还包括外壳,所述外壳包裹所述气体空间。
  6. 根据权利要求5所述的背板,其中,所述基层靠近所述反射层的一侧设置有孔隙,所述孔隙连通于所述气体空间。
  7. 根据权利要求1所述的背板,其中,所述缓冲层的材料包括光阻材料。
  8. 根据权利要求1所述的背板,其中,所述驱动基板包括基底和设置在所述基底上的导电垫;所述缓冲层上开设有沟道和开口,所述开口暴露出所述导电垫,所述沟道围绕所述开口设置;
    所述缓冲层包括挡墙,所述挡墙设置在所述沟道和所述开口之间,所述挡墙围绕所述开口设置。
  9. 根据权利要求8所述的背板,其中,所述导电垫包括反射金属层,所述挡墙与所述反射金属层的部分重叠设置。
  10. 根据权利要求8所述的背板,其中,所述沟道具有底切结构,所述底切结构向所述挡墙的方向延伸;自所述驱动基板向所述挡墙的方向上,所述底切结构的宽度递减;所述反射层延伸入所述底切结构。
  11. 根据权利要求8所述的背板,其中,所述反射层填充所述沟道。
  12. 根据权利要求8所述的背板,其中,所述驱动基板还包括依次设置在所述基底上的第一金属层、绝缘层、第二金属层和钝化层,所述第二金属层包括所述导电垫,所述开口贯穿所述钝化层。
  13. 根据权利要求1所述的背板,其中,所述缓冲层的厚度大于或等于3微米,且小于或等于10微米。
  14. 一种LED面板,包括LED芯片和背板;所述LED芯片设置在所述背板上;其中,所述背板包括:
    驱动基板;
    缓冲层,所述缓冲层设置在所述驱动基板上;以及
    反射层,所述反射层设置在所述缓冲层上。
  15. 根据权利要求14所述的LED面板,其中,所述缓冲层包括基层和设置在所述基层内的孔洞结构和/或柔性粒子。
  16. 根据权利要求15所述的LED面板,其中,所述柔性粒子的柔性大于所述基层的柔性。
  17. 根据权利要求15所述的LED面板,其中,所述孔洞结构包括气体空间。
  18. 根据权利要求17所述的LED面板,其中,所述孔洞结构还包括外壳,所述外壳包裹所述气体空间。
  19. 根据权利要求17所述的LED面板,其中,所述基层靠近所述反射层的一侧设置有孔隙,所述孔隙连通于所述气体空间。
  20. 根据权利要求14所述的LED面板,其中,所述驱动基板包括基底和设置在所述基底上的导电垫;所述缓冲层上开设有沟道和开口,所述开口暴露出所述导电垫,所述沟道围绕所述开口设置;
    所述缓冲层包括挡墙,所述挡墙设置在所述沟道和所述开口之间,所述挡墙围绕所述开口设置。
PCT/CN2020/137789 2020-11-13 2020-12-18 背板及led面板 WO2022099862A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/434,774 US20220406965A1 (en) 2020-11-13 2020-12-18 Backplane and light emitting diode panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011269903.1A CN112382206B (zh) 2020-11-13 2020-11-13 背板及led面板
CN202011269903.1 2020-11-13

Publications (1)

Publication Number Publication Date
WO2022099862A1 true WO2022099862A1 (zh) 2022-05-19

Family

ID=74582262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137789 WO2022099862A1 (zh) 2020-11-13 2020-12-18 背板及led面板

Country Status (3)

Country Link
US (1) US20220406965A1 (zh)
CN (1) CN112382206B (zh)
WO (1) WO2022099862A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112909145B (zh) * 2021-01-20 2022-03-08 深圳市华星光电半导体显示技术有限公司 显示面板及显示面板的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106057822A (zh) * 2016-07-29 2016-10-26 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置
CN106129089A (zh) * 2016-07-21 2016-11-16 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置
CN108591974A (zh) * 2018-04-24 2018-09-28 武汉华星光电技术有限公司 驱动基板、制备方法及微型led阵列发光背光模组
CN111477653A (zh) * 2020-04-22 2020-07-31 京东方科技集团股份有限公司 显示面板、显示装置及显示面板的制造方法
CN111524931A (zh) * 2020-05-11 2020-08-11 京东方科技集团股份有限公司 一种Mini LED显示面板及其制备方法和显示装置
US20200266326A1 (en) * 2019-02-20 2020-08-20 Nichia Corporation Display device and method of manufacturing display device

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6982113B2 (en) * 2002-11-22 2006-01-03 Sealed Air Corporation (Us) High strength high gas barrier cellular cushioning product
KR20060095829A (ko) * 2005-02-28 2006-09-04 엘지.필립스 엘시디 주식회사 백라이트 유닛 및 이를 구비한 액정표시장치
TWI269467B (en) * 2005-07-01 2006-12-21 Epitech Technology Corp Light-emitting diode
CN100477248C (zh) * 2007-06-20 2009-04-08 中国科学院长春光学精密机械与物理研究所 Led阵列微显示器件及制作方法
JP2009194091A (ja) * 2008-02-13 2009-08-27 Seiko Instruments Inc 電子部品、電子機器、及びベース部材製造方法
CN102347426A (zh) * 2010-07-26 2012-02-08 旭硝子株式会社 发光元件搭载用基板、其制造方法及发光装置
EP2741341B1 (en) * 2011-08-01 2022-11-23 Shikoku Instrumentation Co., Ltd. Semiconductor device and fabrication method thereof
US9029880B2 (en) * 2012-12-10 2015-05-12 LuxVue Technology Corporation Active matrix display panel with ground tie lines
CN203151858U (zh) * 2013-03-25 2013-08-21 乐健科技(珠海)有限公司 带有陶瓷反光层的金属基印刷电路板及led发光模块
CN203317814U (zh) * 2013-04-12 2013-12-04 艾迪美国股份有限公司 一种贴附式移动电子设备的外壳保护膜
CN106410027B (zh) * 2013-09-24 2019-11-05 京东方科技集团股份有限公司 柔性显示基板及其制备方法、柔性显示装置
AT515372B1 (de) * 2014-01-29 2019-10-15 At & S Austria Tech & Systemtechnik Ag Verfahren zur Herstellung einer Leiterplatte
CN105098091A (zh) * 2015-06-15 2015-11-25 深圳市华星光电技术有限公司 Oled器件的封装结构及其封装方法
JP6288009B2 (ja) * 2015-08-31 2018-03-07 日亜化学工業株式会社 発光装置の製造方法
CN105405521B (zh) * 2015-12-24 2017-10-10 昆山安胜达微波科技有限公司 防开裂半硬电缆
CN109390286B (zh) * 2017-08-09 2022-04-15 昆山国显光电有限公司 阵列基板及其制造方法、显示面板及其制造方法
CN207329193U (zh) * 2017-08-21 2018-05-08 林楠泓 一种防碰撞包装袋
CN108549499B (zh) * 2018-03-30 2021-07-06 武汉天马微电子有限公司 一种显示面板及显示装置
CN109065748B (zh) * 2018-07-20 2020-02-14 云谷(固安)科技有限公司 显示面板及设有其的显示装置
KR102593358B1 (ko) * 2018-08-14 2023-10-25 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광소자 패키지 및 광원 장치
CN109244111A (zh) * 2018-08-31 2019-01-18 武汉华星光电半导体显示技术有限公司 Oled显示面板及其制作方法
CN109445179A (zh) * 2018-10-22 2019-03-08 青岛海信电器股份有限公司 发光二极管灯板、其防护封装方法、背光模组及显示装置
KR102008261B1 (ko) * 2019-03-08 2019-08-07 존스미디어 주식회사 디지털프린팅소재를 겸비한 장식패널
CN110231727B (zh) * 2019-05-14 2020-11-24 深圳市华星光电半导体显示技术有限公司 膜结构及其制备方法
CN111146163B (zh) * 2019-12-25 2022-02-01 苏州通富超威半导体有限公司 一种芯片组件及制备方法
CN111477618A (zh) * 2020-04-23 2020-07-31 恩利克(浙江)智能装备有限公司 一种量子点全彩Micro/Mini-LED显示屏结构及其制造方法
CN111524927B (zh) * 2020-04-30 2023-10-24 京东方科技集团股份有限公司 驱动基板及其制备方法和显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106129089A (zh) * 2016-07-21 2016-11-16 京东方科技集团股份有限公司 显示面板及其制造方法、显示装置
CN106057822A (zh) * 2016-07-29 2016-10-26 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置
CN108591974A (zh) * 2018-04-24 2018-09-28 武汉华星光电技术有限公司 驱动基板、制备方法及微型led阵列发光背光模组
US20200266326A1 (en) * 2019-02-20 2020-08-20 Nichia Corporation Display device and method of manufacturing display device
CN111477653A (zh) * 2020-04-22 2020-07-31 京东方科技集团股份有限公司 显示面板、显示装置及显示面板的制造方法
CN111524931A (zh) * 2020-05-11 2020-08-11 京东方科技集团股份有限公司 一种Mini LED显示面板及其制备方法和显示装置

Also Published As

Publication number Publication date
CN112382206B (zh) 2022-07-12
CN112382206A (zh) 2021-02-19
US20220406965A1 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
WO2019165658A1 (zh) 一种oled显示器件
US10522783B2 (en) Flexible display including protective coating layer having different thickness in bend section
US9935281B2 (en) Flexible display
WO2020063530A1 (zh) 封装结构、电子装置及封装方法
CN112396979B (zh) 背板及led面板
CN107968112B (zh) 具有多种微涂层的柔性显示装置
JP5214128B2 (ja) 発光素子及び発光素子を備えたバックライトユニット
WO2007088690A1 (ja) El装置
CN112309243B (zh) 背光模组及显示装置
WO2019184641A1 (zh) 一种薄膜封装方法、薄膜封装结构、显示装置
TW201833883A (zh) 蓋板結構及顯示裝置
WO2022099862A1 (zh) 背板及led面板
WO2020199122A1 (zh) 触控基板、触控屏和电子装置
TW201724392A (zh) 散熱封裝構造
US20190267570A1 (en) Oled display device
US20160174332A1 (en) Organic light emitting display device
TWI780966B (zh) 發光裝置、背光板及顯示面板
TWI813764B (zh) 顯示裝置
TWI530398B (zh) 顯示面板
US20200035657A1 (en) Electroluminescent device and method of manufacturing the same
TWI732555B (zh) 微型發光二極體結構及其製作方法與微型發光二極體裝置
CN112420948A (zh) 一种显示面板及显示装置
US11996503B2 (en) Display device
TWI795144B (zh) 發光二極體顯示裝置
US20230144891A1 (en) Backlight module, manufacturing method thereof, and liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961415

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20961415

Country of ref document: EP

Kind code of ref document: A1