WO2022099732A1 - 复合粉体混合均匀度的评价方法 - Google Patents

复合粉体混合均匀度的评价方法 Download PDF

Info

Publication number
WO2022099732A1
WO2022099732A1 PCT/CN2020/129692 CN2020129692W WO2022099732A1 WO 2022099732 A1 WO2022099732 A1 WO 2022099732A1 CN 2020129692 W CN2020129692 W CN 2020129692W WO 2022099732 A1 WO2022099732 A1 WO 2022099732A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite powder
mixing
flow energy
tfe
standard
Prior art date
Application number
PCT/CN2020/129692
Other languages
English (en)
French (fr)
Inventor
毕金峰
陈芹芹
吴昕烨
张星
吕健
吕莹
Original Assignee
中国农业科学院农产品加工研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国农业科学院农产品加工研究所 filed Critical 中国农业科学院农产品加工研究所
Priority to US17/758,397 priority Critical patent/US11892384B2/en
Publication of WO2022099732A1 publication Critical patent/WO2022099732A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N11/10Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
    • G01N11/14Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material by using rotary bodies, e.g. vane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0091Powders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/025Fruits or vegetables

Definitions

  • the invention relates to the technical field of mixing uniformity evaluation. More specifically, the present invention relates to a method for evaluating the mixing uniformity of composite powders.
  • Powder products are currently the most widely used raw materials and product forms, up to more than 70%.
  • compound fruit and vegetable powder is favored by consumers due to its good physiological activity and rich nutritional value.
  • the mixing uniformity of compound fruit and vegetable powder is the core factor affecting the distribution of nutritional functional components and product quality.
  • chloride ion selective electrode method, methyl violet method, particle size distribution, near-infrared spectroscopy, etc. are mostly used for powder mixing uniformity.
  • chloride ion selective electrode method is a chemical determination method, which is time-consuming and labor-intensive; methyl violet method does not It is suitable for mixing colored materials, and it is easy to cause material pollution; particle size distribution and near-infrared spectroscopy are mostly measured by modern analytical equipment, but the equipment cost is high, and the sample processing and testing cycle is long. Therefore, there is an urgent need to develop a convenient, fast and universally high mixing uniformity measurement method.
  • An object of the present invention is to solve at least the above-mentioned problems and to provide at least the advantages which will be explained later.
  • Another object of the present invention is to provide a method for evaluating the mixing uniformity of the composite powder, which can conveniently, quickly and generally evaluate the mixing uniformity of the composite powder.
  • a method for evaluating the mixing uniformity of composite powder comprising the following steps:
  • the preparation method of each standard composite powder in step S2 is specifically: placing each raw material in a Turbula three-dimensional mixer according to the dosage ratio and mixing for a predetermined time, wherein the mixing speed is 22-96 rpm;
  • the mixing time difference between any two adjacent standard composite powders is not more than 3min, and the minimum mixing time is 30s.
  • measuring the flow energy of each standard composite powder in step S3 and measuring the flow energy of the composite powder to be evaluated in step S6 both include the following steps:
  • the propeller rotates deeply from the surface layer in the fixed volume of the material to be measured, and records the height H of the propeller entering the material to be measured in real time, corresponding to the flow energy TFE H of the material to be measured at the height, wherein the propeller is reversed at an angle of +5 to 10° Clockwise rotation, the speed of the propeller can be 5-100mm/s;
  • the container is a cylindrical container
  • the propeller of the farinology analyzer rotates in the material to be measured from the surface layer to the bottom of the material to be measured, and then rotates from the bottom of the material to be measured back to the surface layer, wherein , the propeller rotates clockwise at an angle of -2 to -5°, and the speed of the propeller is 5 to 100 mm/s.
  • the flow energy of the material to be tested at the corresponding height is the torque
  • R is the radius of the propeller
  • is the helix angle
  • F base is the force of the propeller perpendicular to the bottom of the material to be tested.
  • the uniformity of the composite powder is evaluated according to the difference percentage, specifically, if PV ds ⁇ 5%, the composite powder to be evaluated is uniformly mixed.
  • the method for evaluating the mixing uniformity of the composite powder of the present invention can be used for evaluating the mixing uniformity of the composite powder, which is convenient, fast and has high universality.
  • FIG. 1 is a dynamic change curve of powder height and flow energy of TP and SP composite powders under different mixing times in one embodiment of the present invention.
  • the method for evaluating the mixing uniformity of composite powder includes the following steps:
  • the composite powder to be evaluated is a composite fruit and vegetable powder, including two single raw materials TP (tomato powder) and SP (spinach), and the dosage ratio of the two single raw materials is 1:1;
  • the slitting device at the upper end of the cylindrical container to cut and quantify, so that the surface layer of the powder to be tested in each cylindrical container is flush with the plane of the opening of the cylindrical container, so that the powder is in a fixed volume, and a fixed volume is obtained.
  • the material to be tested, the volume is 25ml;
  • the propeller rotates deeply from the surface layer in the fixed volume of the material to be measured, and records the height H of the propeller entering the material to be measured in real time, corresponding to the flow energy TFE H of the material to be measured at the height, the propeller rotates counterclockwise at an angle of +5°, the propeller The speed is 100mm/s, and the recorded height range is 5-55mm.
  • T is the torque
  • R is the radius of the propeller (11.8mm for a propeller with a volume of 25ml)
  • is the helix angle
  • F base is the force of the propeller perpendicular to the bottom of the material to be tested;
  • the powder is defined as a uniformly mixed standard composite powder, and the average value TFE s of the flow energy of the standard composite powder at the four time points is obtained, and then the difference percentage between the flow energy TFE d and TFE s of the composite powder A to be evaluated is calculated.
  • PV ds (TFE d -TFE s )/TFEs*100, wherein, PV ds >5% indicates that the mixing is not uniform, and PV ds ⁇ 5% indicates that the mixing has been uniform.
  • the method for evaluating the mixing uniformity of composite powder includes the following steps:
  • the composite powder to be evaluated is a composite fruit and vegetable powder, including two single raw materials AP (apple powder) and SP (spinach powder), and the dosage ratio of the two single raw materials is 2:1;
  • the slitting device at the upper end of the cylindrical container to cut and quantify, so that the surface layer of the powder to be tested in each cylindrical container is flush with the plane of the opening of the cylindrical container, so that the powder is in a fixed volume, and a fixed volume is obtained.
  • the material to be tested, the specific volume is 50ml;
  • the propeller rotates deeply from the surface layer in the fixed volume of the material to be measured, and records the height H of the propeller entering the material to be measured in real time, corresponding to the flow energy TFE H of the material to be measured at the height, the propeller rotates counterclockwise at an angle of +5°, the propeller The speed is 40mm/s, and the recorded height range is 5-55mm.
  • T is the torque
  • R is the radius of the propeller (the propeller with a volume of 50ml is 24mm)
  • is the helix angle
  • F base is the force of the propeller perpendicular to the bottom of the material to be tested;
  • the method for evaluating the mixing uniformity of composite powder includes the following steps:
  • the composite powder to be evaluated is a composite fruit and vegetable powder, including two single raw materials TP (tomato powder) and SP (spinach powder), and the dosage ratio of the two single raw materials is 3:2;
  • the slitting device at the upper end of the cylindrical container to cut and quantify, so that the surface layer of the powder to be tested in each cylindrical container is flush with the plane of the opening of the cylindrical container, so that the powder is in a fixed volume, and a fixed volume is obtained.
  • the material to be tested, the volume is 25ml;
  • the propeller rotates deeply from the surface layer in the fixed volume of the material to be measured, and records the height H of the propeller entering the material to be measured in real time, corresponding to the flow energy TFE H of the material to be measured at the height, the propeller rotates counterclockwise at an angle of +10°, the propeller The speed is 5mm/s, and the recorded height range is 5-55mm.
  • T is the torque
  • R is the radius of the propeller (11.8mm for a propeller with a volume of 25ml)
  • is the helix angle
  • F base is the force of the propeller perpendicular to the bottom of the material to be tested;
  • the total flow energy of the mixed powder shows a trend of decreasing first and then tending to be stable. Specifically, the total flow energy after mixing TP and SP for 2 minutes gradually became stable, and there was no significant difference between the total flow energy of the powder mixed for 8 minutes. Therefore, the standard mixing times corresponding to 2 minutes, 3 minutes, 5 minutes and 8 minutes were compounded.
  • the powder is defined as a uniformly mixed standard composite powder, and the average value TFE s of the flow energy of the standard composite powder at the four time points is obtained, and then the difference percentage PV between the flow energy TFE d and TFE s of the composite powder to be evaluated is calculated.
  • ds (TFE d -TFE s )/TFEs*100, wherein, PV ds >5% indicates that the mixing is not uniform, and PV ds ⁇ 5% indicates that the mixing has been uniform.
  • the standard composite powder obtained when taking the mixing time of Example 1 was 1min and 3min respectively;
  • the red-green value "a*" value was measured on 10 different parts of each standard composite powder obtained by electronic eyes, and the powder mixing uniformity was evaluated according to the coefficient of variation (CV) value of the measured data of 10 different parts. Among them, CV ⁇ 10% indicates uniform mixing, and CV>10% indicates uneven mixing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

一种复合粉体混合均匀度的评价方法,包括以下步骤:确定构成待评价复合粉体的原料及各原料用量比;将各原料按照用量比混合制备得到混合时间不同的多份标准复合粉体;测定每份标准复合粉体的流动能;利用显著性差异法分析比较多份标准复合粉体的流动能,按照混合时间由小至大的顺序确定流动能间无显著性差异的连续至少3份标准复合粉体,定义为混合均匀的标准复合粉体,求取混合均匀的标准复合粉体的流动能的平均值,记为标准流动能TFE s;测定待评价复合粉体的流动能TFE d,计算TFE d与TFE s的差异百分比P.V ds,依据差异百分比评价复合粉体混合均匀。具有方便、快捷、准确的评价复合粉体混合均匀度的有益效果。

Description

复合粉体混合均匀度的评价方法 技术领域
本发明涉及混合均匀度评价技术领域。更具体地说,本发明涉及一种复合粉体混合均匀度的评价方法。
背景技术
粉体产品是目前原料及产品形态中应用最广泛的一种,可达70%以上。
随着人民生活水平的提高和对营养健康的需求提升,其中,复合果蔬粉由于具有良好的生理活性及丰富的营养价值而受到消费者的青睐。复合果蔬粉的混合均匀度是影响其中营养功能成分分布及产品品质的核心因素。目前对于粉体混合均匀度多采用氯离子选择电极法、甲基紫法、粒径分布、近红外光谱等,其中,氯离子选择电极法为化学测定方法,比较费时费力;甲基紫法不适用于带颜色的物料进行混合,且容易造成物料污染;粒径分布及近红外光谱法多采用现代分析设备进行测定,但是设备成本较高,且样品处理及测试周期较长。因此,急需开发方便、快捷且普适性较高的混合均匀度测定方法。
发明内容
本发明的一个目的是解决至少上述问题,并提供至少后面将说明的优点。
本发明还有一个目的是提供一种复合粉体混合均匀度的评价方法,能够方便、快捷、普适应的评价复合粉体混合均匀度。
为了实现根据本发明的这些目的和其它优点,提供了一种复合粉体混合均匀度的评价方法,包括以下步骤:
S1、依据待评价复合粉体确定构成待评价复合粉体的原料及各原料用量比;
S2、将各原料按照用量比混合制备得到混合时间不同的多份标准复合粉体,其中,按照混合时间由小至大任意相邻两份标准复合粉体的混合时间差不小于30s,不大于5min;
S3、测定每份标准复合粉体的流动能;
S4、利用显著性差异法分析比较多份标准复合粉体的流动能,按照混合时间由小至大的顺序确定流动能间无显著性差异的连续至少3份标准复合粉体,定义为混合均匀的标准 复合粉体,求取混合均匀的标准复合粉体的流动能的平均值,记为标准流动能TFE s
S5、测定待评价复合粉体的流动能,计算TFE d与TFE s的差异百分比P.V ds,P.V ds=|(TFE d-TFE s)|/TFE s*100,依据差异百分比评价复合粉体混合均匀。
优选的是,步骤S2中每份标准复合粉体的制备方法具体为:将各原料按照用量比置于Turbula三维混合机中混合预定时间,其中,混合速度为22~96rpm;
按照混合时间由小至大任意相邻两份标准复合粉体的混合时间差不大于3min,最小的混合时间为30s。
优选的是,步骤S3中测定每份标准复合粉体的流动能及步骤S6中测定待评价复合粉体的流动能均包括以下步骤:
S3a、将待测料置于粉质分析仪的容器中,并切分获得固定体积待测料;
S3b、螺旋桨于固定体积待测料中从表层旋转深入,实时记录螺旋桨进入待测料的高度H,对应高度下待测料的流动能TFE H,其中,螺旋桨以+5~10°的角度逆时针转动,螺旋桨的速度可为5-100mm/s;
S3c、计算待测料的
Figure PCTCN2020129692-appb-000001
优选的是,步骤S3a中容器为筒形容器,切分前粉质分析仪的螺旋桨于待测料中从表层旋转深入到待测料底部,然后再从待测料底部旋转返回到表层,其中,螺旋桨以-2~-5°的角度顺时针转动,螺旋桨的速度为5~100mm/s。
优选的是,对应高度下待测料的流动能
Figure PCTCN2020129692-appb-000002
其中,T为转矩,R为螺旋桨半径,α为螺旋角,F base为螺旋桨垂直于待测料底部的作用力。
优选的是,依据差异百分比评价复合粉体混合均匀具体为若P.V ds≤5%,则待评价复合粉体混合均匀。
本发明至少包括以下有益效果:
本发明的复合粉体混合均匀度的评价方法可以用于评价复合粉体的混合均匀度,方便、快捷且普适性较高。
本发明的其它优点、目标和特征将部分通过下面的说明体现,部分还将通过对本发明的研究和实践而为本领域的技术人员所理解。
附图说明
图1为本发明的其中一实施例中TP及SP复合粉体在不同混合时间下的粉体高度与流动能的动态变化曲线。
具体实施方式
下面结合实施例对本发明做进一步的详细说明,以令本领域技术人员参照说明书文字能够据以实施。
<实施例1>
复合粉体混合均匀度的评价方法,包括以下步骤:
S1、待评价复合粉体为复合果蔬粉,包括两个单一原料TP(番茄粉)、SP(菠菜),两个单一原料的用量比为1:1;
S2、采用Turbula三维混合机将TP及SP按照1:1的质量比进行混合,制备得到混合时间不同的7份标准复合粉体,其中,由小至大混合时间分别为30s,1min,2min,3min,5min,8min及10min,每个混合时间下获得一份标准复合粉体,其中,混合速度为72rpm;
S3、测定每份标准复合粉体的流动能,具体为:
S3a、将待测标准复合粉体置于粉质分析仪的筒状容器中,粉质分析仪的螺旋桨于待测标准复合粉体中从表层旋转深入到待测标准复合粉体底部,然后再从待测标准复合粉体底部旋转返回到表层,其中,螺旋桨以-2°的角度顺时针转动,螺旋桨的速度为5mm/s;
利用筒状容器上端的分切装置进行分切定量,使得每个筒状容器内待测粉体的表层与筒状容器的开口所在平面平齐,以使粉体处于固定的体积,得固定体积待测料,体积具体为25ml;
S3b、螺旋桨于固定体积待测料中从表层旋转深入,实时记录螺旋桨进入待测料的高度H,对应高度下待测料的流动能TFE H,螺旋桨以+5°的角度逆时针转动,螺旋桨的速度为100mm/s,记录的高度范围为5-55mm,其中,对应高度下待测料的流动能
Figure PCTCN2020129692-appb-000003
Figure PCTCN2020129692-appb-000004
式中T为转矩,R为螺旋桨半径(25ml体积的螺旋桨是11.8mm),α为螺旋角,F base为螺旋桨垂直于待测料底部的作用力;
以H为横坐标,TFE H为纵坐标绘制曲线具体如图1所示;
S3c、计算待测标准复合粉体的
Figure PCTCN2020129692-appb-000005
S4、以单一原料作为对照,利用显著性差异法分析比较两个对照组及7份标准复合粉体的流动能,按照混合时间由小至大的顺序确定流动能间无显著性差异的连续至少3份标准复合粉体,定义为混合均匀的标准复合粉体,求取混合均匀的标准复合粉体的流动能的平均值,记为标准流动能TFE s
S5、测定待评价复合粉体A的流动能,计算TFE d与TFE s的差异百分比P.V ds,P.V ds=|(TFE d-TFE s)|/TFE s*100,若P.V ds≤5%,则待评价复合粉体A混合均匀,具体如下表1所示。
表1复合粉体(TP:SP=1:1)不同混合时间下总流动能变化
Figure PCTCN2020129692-appb-000006
由图1结合表1可知,TP与SP混合之后,其流动能位于TP与SP单一粉体流动能的变化范围内,随着混合时间的延长,混合粉体的总流动能显现先下降而后趋于稳定的趋势。具体的,TP与SP混合3min之后的总流动能逐步趋于平稳,和混合10min粉体的总流动能之间无显著性差异,因此将混合时间为3min,5min,8min及10min对应的标准复合粉体定义为混合均匀的标准复合粉体,求取该四个时间点的标准复合粉体流动能的均值TFE s,然后计算待评价复合粉体A的流动能TFE d与TFE s的差异百分比P.V ds=(TFE d-TFE s)/TFEs*100,其中,P.V ds>5%的表明混合还未均匀,P.V ds≤5%表明已混合均匀。
<实施例2>
复合粉体混合均匀度的评价方法,包括以下步骤:
S1、待评价复合粉体为复合果蔬粉,包括两个单一原料AP(苹果粉)、SP(菠菜粉),两个单一原料的用量比为2:1;
S2、采用Turbula三维混合机将AP及SP按照2:1的质量比进行混合,制备得到混合 时间不同的7份标准复合粉体,其中,由小至大混合时间分别为30s,1min,2min,3min,5min,8min及10min,每个混合时间下获得一份标准复合粉体,其中,混合速度为96rpm;
S3、测定每份标准复合粉体的流动能,具体为:
S3a、将待测标准复合粉体置于粉质分析仪的筒状容器中,粉质分析仪的螺旋桨于待测标准复合粉体中从表层旋转深入到待测标准复合粉体底部,然后再从待测标准复合粉体底部旋转返回到表层,其中,螺旋桨以-3°的角度顺时针转动,螺旋桨的速度为40mm/s;
利用筒状容器上端的分切装置进行分切定量,使得每个筒状容器内待测粉体的表层与筒状容器的开口所在平面平齐,以使粉体处于固定的体积,得固定体积待测料,体积具体为50ml;
S3b、螺旋桨于固定体积待测料中从表层旋转深入,实时记录螺旋桨进入待测料的高度H,对应高度下待测料的流动能TFE H,螺旋桨以+5°的角度逆时针转动,螺旋桨的速度为40mm/s,记录的高度范围为5-55mm,其中,对应高度下待测料的流动能
Figure PCTCN2020129692-appb-000007
Figure PCTCN2020129692-appb-000008
式中T为转矩,R为螺旋桨半径(50ml体积的螺旋桨是24mm),α为螺旋角,F base为螺旋桨垂直于待测料底部的作用力;
以H为横坐标,TFE H为纵坐标绘制曲线;
S3c、计算待测标准复合粉体的
Figure PCTCN2020129692-appb-000009
S4、以单一原料作为对照,利用显著性差异法分析比较两个对照组及7份标准复合粉体的流动能,按照混合时间由小至大的顺序确定流动能间无显著性差异的连续至少3份标准复合粉体,定义为混合均匀的标准复合粉体,求取混合均匀的标准复合粉体的流动能的平均值,记为标准流动能TFE s
S5、测定待评价复合粉体B的流动能,计算TFE d与TFE s的差异百分比P.V ds=|(TFE d-TFE s)|/TFE s*100,若P.V ds≤5%,则待评价复合粉体B混合均匀,具体如下表2所示。
表2复合粉体(AP:SP=2:1)不同混合时间下总流动能变化
Figure PCTCN2020129692-appb-000010
Figure PCTCN2020129692-appb-000011
由表2可知,AP与SP混合之后,其流动能位于AP与SP单一粉体流动能的变化范围内,随着混合时间的延长,混合粉体的总流动能显现先下降而后趋于稳定的趋势,具体的,AP与SP混合5min之后的总流动能逐步趋于平稳,和混合10min粉体的总流动能之间无显著性差异。因此将混合时间为5min,8min及10min对应的标准复合粉体定义为混合均匀的标准复合粉体,求取该三个时间点的标准复合粉体流动能的均值TFE s,然后计算待评价复合粉体B的流动能TFE d与TFE s的的差异百分比P.V ds=(TFE d-TFE s)/TFEs*100,其中,P.V ds>5%的表明混合还未均匀,P.V ds≤5%表明已混合均匀。
<实施例3>
复合粉体混合均匀度的评价方法,包括以下步骤:
S1、待评价复合粉体为复合果蔬粉,包括2个单一原料TP(番茄粉)、SP(菠菜粉),两个单一原料的用量比为3:2;
S2、采用Turbula三维混合机将TP及SP按照3:2的质量比进行混合,制备得到混合时间不同的6份标准复合粉体,其中,由小至大混合时间分别为30s,1min,2min,3min,5min,8min,每个混合时间下获得一份标准复合粉体,其中,混合速度为22rpm;
S3、测定每份标准复合粉体的流动能,具体为:
S3a、将待测标准复合粉体置于粉质分析仪的筒状容器中,粉质分析仪的螺旋桨于待测标准复合粉体中从表层旋转深入到待测标准复合粉体底部,然后再从待测标准复合粉体底部旋转返回到表层,其中,螺旋桨以-5°的角度顺时针转动,螺旋桨的速度为100mm/s;
利用筒状容器上端的分切装置进行分切定量,使得每个筒状容器内待测粉体的表层与筒状容器的开口所在平面平齐,以使粉体处于固定的体积,得固定体积待测料,体积具体为25ml;
S3b、螺旋桨于固定体积待测料中从表层旋转深入,实时记录螺旋桨进入待测料的高度H,对应高度下待测料的流动能TFE H,螺旋桨以+10°的角度逆时针转动,螺旋桨的速 度为5mm/s,记录的高度范围为5-55mm,其中,对应高度下待测料的流动能
Figure PCTCN2020129692-appb-000012
F base,式中T为转矩,R为螺旋桨半径(25ml体积的螺旋桨是11.8mm),α为螺旋角,F base为螺旋桨垂直于待测料底部的作用力;
S3c、计算待测标准复合粉体的
Figure PCTCN2020129692-appb-000013
S4、利用显著性差异法分析比较6份标准复合粉体的流动能,按照混合时间由小至大的顺序确定流动能间无显著性差异的连续至少3份标准复合粉体,定义为混合均匀的标准复合粉体,求取混合均匀的标准复合粉体的流动能的平均值,记为标准流动能TFE s
S5、测定待评价复合粉体XX的流动能,计算TFE d与TFE s的差异百分比P.V ds=|(TFE d-TFE s)|/TFE s*100,若P.V ds≤5%,则待评价复合粉体A混合均匀,具体如下表3所示。
表3复合粉体(TP:SP=3:2)不同混合时间下总流动能变化
Figure PCTCN2020129692-appb-000014
由3可知TP与SP混合之后,混合粉体的总流动能显现先下降而后趋于稳定的趋势。具体的,TP与SP混合2min之后的总流动能逐步趋于平稳,和混合8min粉体的总流动能之间无显著性差异,因此将混合时间为2min,3min,5min及8min对应的标准复合粉体定义为混合均匀的标准复合粉体,求取该四个时间点的标准复合粉体流动能的均值TFE s,然后计算待评价复合粉体的流动能TFE d与TFE s的差异百分比P.V ds=(TFE d-TFE s)/TFEs*100,其中,P.V ds>5%的表明混合还未均匀,P.V ds≤5%表明已混合均匀。
<验证实验1>
取实施例1混合时间分别为1min,3min时制得的标准复合粉体;
采用电子眼对得到的每个标准复合粉体的10个不同部位进行红绿值“a*”值测定,根据10个不同部位测定数据的变异系数(CV)值对粉体混合均匀度进行评价,其中CV≤10%表示混合均匀,CV>10%则表示混合不均匀。
表4复合粉体(TP:SP=1:1)不同混合时间下色泽变化
Figure PCTCN2020129692-appb-000015
由表4可知,根据色泽均匀度判断标准,TP和SP粉混合1min后,其色泽a*值的变异系数为15.9%,大于10%,表明处于不均匀状态;TP和SP粉混合3min后,其色泽a*值的变异系数为4.1%,小于10%,表明处于均匀状态。其判别结果与表1中相应的混合条件下判别标准相一致。
尽管本发明的实施方案已公开如上,但其并不仅仅限于说明书和实施方式中所列运用,它完全可以被适用于各种适合本发明的领域,对于熟悉本领域的人员而言,可容易地实现另外的修改,因此在不背离权利要求及等同范围所限定的一般概念下,本发明并不限于特定的细节和这里示出与描述的图例。

Claims (6)

  1. 复合粉体混合均匀度的评价方法,其特征在于,包括以下步骤:
    S1、依据待评价复合粉体确定构成待评价复合粉体的原料及各原料用量比;
    S2、将各原料按照用量比混合制备得到混合时间不同的多份标准复合粉体,其中,按照混合时间由小至大任意相邻两份标准复合粉体的混合时间差不小于30s,不大于5min;
    S3、测定每份标准复合粉体的流动能;
    S4、利用显著性差异法分析比较多份标准复合粉体的流动能,按照混合时间由小至大的顺序确定流动能间无显著性差异的连续至少3份标准复合粉体,定义为混合均匀的标准复合粉体,求取混合均匀的标准复合粉体的流动能的平均值,记为标准流动能TFE s
    S5、测定待评价复合粉体的流动能,计算TFE d与TFE s的差异百分比P.V ds,P.V ds=|(TFE d-TFE s)|/TFE s*100,依据差异百分比评价复合粉体混合均匀。
  2. 如权利要求1所述的复合粉体混合均匀度的评价方法,其特征在于,步骤S2中每份标准复合粉体的制备方法具体为:将各原料按照用量比置于Turbula三维混合机中混合预定时间,其中,混合速度为22~96rpm;
    按照混合时间由小至大任意相邻两份标准复合粉体的混合时间差不大于3min,最小的混合时间为30s。
  3. 如权利要求1所述的复合粉体混合均匀度的评价方法,其特征在于,步骤S3中测定每份标准复合粉体的流动能及步骤S6中测定待评价复合粉体的流动能均包括以下步骤:
    S3a、将待测料置于粉质分析仪的容器中,并切分获得固定体积待测料;
    S3b、螺旋桨于固定体积待测料中从表层旋转深入,实时记录螺旋桨进入待测料的高度H,对应高度下待测料的流动能TFE H,其中,螺旋桨以+5~10°的角度逆时针转动,螺旋桨的速度可为5-100mm/s;
    S3c、计算待测料的
    Figure PCTCN2020129692-appb-100001
  4. 如权利要求3所述的复合粉体混合均匀度的评价方法,其特征在于,步骤S3a中容器为筒形容器,切分前粉质分析仪的螺旋桨于待测料中从表层旋转深入到待测料底部, 然后再从待测料底部旋转返回到表层,其中,螺旋桨以-2~-5°的角度顺时针转动,螺旋桨的速度为5~100mm/s。
  5. 如权利要求3所述的复合粉体混合均匀度的评价方法,其特征在于,对应高度下待测料的流动能
    Figure PCTCN2020129692-appb-100002
    其中,T为转矩,R为螺旋桨半径,α为螺旋角,F base为螺旋桨垂直于待测料底部的作用力。
  6. 如权利要求1所述的复合粉体混合均匀度的评价方法,其特征在于,依据差异百分比评价复合粉体混合均匀具体为若P.V ds≤5%,则待评价复合粉体混合均匀。
PCT/CN2020/129692 2020-11-10 2020-11-18 复合粉体混合均匀度的评价方法 WO2022099732A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/758,397 US11892384B2 (en) 2020-11-10 2020-11-18 Evaluation method of mixing uniformity of composite powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011248647.8A CN112414898B (zh) 2020-11-10 2020-11-10 复合粉体混合均匀度的评价方法
CN202011248647.8 2020-11-10

Publications (1)

Publication Number Publication Date
WO2022099732A1 true WO2022099732A1 (zh) 2022-05-19

Family

ID=74781261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129692 WO2022099732A1 (zh) 2020-11-10 2020-11-18 复合粉体混合均匀度的评价方法

Country Status (3)

Country Link
US (1) US11892384B2 (zh)
CN (1) CN112414898B (zh)
WO (1) WO2022099732A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5504332A (en) * 1994-08-26 1996-04-02 Merck & Co., Inc. Method and system for determining the homogeneity of tablets
CN101832921A (zh) * 2009-03-10 2010-09-15 承德颈复康药业集团有限公司 近红外在线检测控制中药药粉二维混合的均匀度的方法
CN102661911A (zh) * 2012-04-26 2012-09-12 西安理工大学 一种快速检测粉体物料混合均匀性的方法
CN103760302A (zh) * 2014-01-06 2014-04-30 山东威能环保电源有限公司 一种干粉混合均匀度的测试方法
JP2015141146A (ja) * 2014-01-30 2015-08-03 太平洋セメント株式会社 粉体混合物の均一性判定方法
CN106680149A (zh) * 2016-12-28 2017-05-17 中国农业科学院农产品加工研究所 粉体吸湿形式判别及吸湿结块程度量化表征方法
CN109490156A (zh) * 2018-11-29 2019-03-19 北京康仁堂药业有限公司 定量预测中药配方颗粒混合过程终点时间的方法
CN110927029A (zh) * 2019-12-16 2020-03-27 陕西住院帮医疗科技有限公司 一种基于粒度分析的粉体混合均匀性检测方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8875591B1 (en) * 2011-01-27 2014-11-04 Us Synthetic Corporation Methods for measuring at least one rheological property of diamond particles
IN2015DN01316A (zh) * 2012-09-07 2015-07-03 Univation Tech Llc
CN103935390A (zh) 2014-04-22 2014-07-23 广西大学 一种手动搬运车两自由度脚踏式液压机构
CN103983539A (zh) * 2014-05-29 2014-08-13 长安大学 一种冷补沥青低温流动性能试验装置及其试验方法
CN105067539A (zh) * 2015-07-16 2015-11-18 浙江大学 一种土壤重金属污染样本混合均匀度的检测方法
CN106404584A (zh) * 2016-04-15 2017-02-15 南京国轩电池有限公司 一种锂离子电池合浆粉料干混均匀性的评价方法
CN108072740B (zh) * 2016-11-10 2021-08-27 内蒙古伊利实业集团股份有限公司 一种干法混合粉状产品的混合均匀度的测定方法
CN106769661A (zh) * 2016-11-18 2017-05-31 内蒙古包钢钢联股份有限公司 铁矿石粉液相流动性的评价方法
EP3674682A4 (en) * 2017-08-25 2021-02-17 Fukuda Metal Foil & Powder Co., Ltd. EVALUATION OF LAMINATE PARTS MOLDING POWDER, AND LAMINATE PARTS MOLDING POWDER
CN107727534A (zh) * 2017-11-17 2018-02-23 杨海华 微波浓度在线测量系统
CN108889941B (zh) * 2018-08-01 2020-10-27 中铁四局集团第二工程有限公司 一种在碳化钨-钴复合粉体表面包覆氧化锆的方法
CN111175449B (zh) * 2020-01-03 2021-03-12 中南大学 一种强力混合强化铁矿烧结原料混合均匀性的评价方法
CN111721715B (zh) * 2020-06-05 2023-06-23 红云红河烟草(集团)有限责任公司 一种基于色度值结合熵权法的烟丝掺配均匀度测定方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5504332A (en) * 1994-08-26 1996-04-02 Merck & Co., Inc. Method and system for determining the homogeneity of tablets
CN101832921A (zh) * 2009-03-10 2010-09-15 承德颈复康药业集团有限公司 近红外在线检测控制中药药粉二维混合的均匀度的方法
CN102661911A (zh) * 2012-04-26 2012-09-12 西安理工大学 一种快速检测粉体物料混合均匀性的方法
CN103760302A (zh) * 2014-01-06 2014-04-30 山东威能环保电源有限公司 一种干粉混合均匀度的测试方法
JP2015141146A (ja) * 2014-01-30 2015-08-03 太平洋セメント株式会社 粉体混合物の均一性判定方法
CN106680149A (zh) * 2016-12-28 2017-05-17 中国农业科学院农产品加工研究所 粉体吸湿形式判别及吸湿结块程度量化表征方法
CN109490156A (zh) * 2018-11-29 2019-03-19 北京康仁堂药业有限公司 定量预测中药配方颗粒混合过程终点时间的方法
CN110927029A (zh) * 2019-12-16 2020-03-27 陕西住院帮医疗科技有限公司 一种基于粒度分析的粉体混合均匀性检测方法

Also Published As

Publication number Publication date
US20230266212A1 (en) 2023-08-24
CN112414898B (zh) 2021-12-21
US11892384B2 (en) 2024-02-06
CN112414898A (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
Brown Introduction to thermal analysis: techniques and applications
JP2009068962A5 (zh)
CN103604717B (zh) 测量土壤质量含水率的体积置换方法及设备
CN107976385A (zh) 一种钛白粉晶粒尺寸的快速测定方法
CN106645606A (zh) 一种阿胶感官品质评价方法
WO2022099732A1 (zh) 复合粉体混合均匀度的评价方法
CN108020526A (zh) 一种丁羟推进剂药浆组分近红外检测方法
CN101912351B (zh) 用于检测化妆品中重金属的标准物质的配制方法
CN106751217B (zh) 一种含增塑剂塑胶标准样品的制备方法
CN206920058U (zh) 一种螺纹自锁式汽车球铰调试夹具
CN211373437U (zh) 一种锂离子电池壳体角部铝塑膜整体厚度的测量装置
CN109916971B (zh) 一种基于电容的新鲜烟叶水分的快速无损检测方法
CN207163362U (zh) 一种面包体积测定仪
CN112697888A (zh) 一种辣椒素含量的测定方法
CN206488730U (zh) 一种快速检验端淬试样尺寸的量具
CN205374352U (zh) 一种测试硫铝酸盐水泥早期水化性能及缓凝剂性能的装置
WO2020173072A1 (zh) 一种基于测量质心无损检测鸡蛋新鲜度的方法
CN101672815A (zh) 电解质分析仪线性检定用标准溶液
Zuidema et al. Data-reduction problems in biopharmaceutics and pharmacokinetics
CN109115645A (zh) 一种评价烟支中烟丝配方完整性的方法
CN206177198U (zh) 一种偏心阀板检验器具
CN105698746A (zh) 一种金属材料塑性加工过程中的应变的测量方法
CN210863460U (zh) 一种基于gsa近红外光谱仪的粒度分布检测装置
CN220339807U (zh) 定质量缩分设备
CN115327074A (zh) 一种基于介电常数确定粗颗粒土基质吸力的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20961286

Country of ref document: EP

Kind code of ref document: A1