WO2022099487A1 - 一种巢式重组酶-聚合酶扩增方法及其应用 - Google Patents

一种巢式重组酶-聚合酶扩增方法及其应用 Download PDF

Info

Publication number
WO2022099487A1
WO2022099487A1 PCT/CN2020/127937 CN2020127937W WO2022099487A1 WO 2022099487 A1 WO2022099487 A1 WO 2022099487A1 CN 2020127937 W CN2020127937 W CN 2020127937W WO 2022099487 A1 WO2022099487 A1 WO 2022099487A1
Authority
WO
WIPO (PCT)
Prior art keywords
rpa
reaction
primer
rpa reaction
amplification
Prior art date
Application number
PCT/CN2020/127937
Other languages
English (en)
French (fr)
Inventor
白净卫
刘册
杜娟娟
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to PCT/CN2020/127937 priority Critical patent/WO2022099487A1/zh
Publication of WO2022099487A1 publication Critical patent/WO2022099487A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage

Definitions

  • the invention belongs to the field of biotechnology, and in particular relates to a rapid and high-sensitivity nested recombinase-polymerase amplification detection method, a related nucleic acid rapid detection method, and a nested recombinase-polymerase amplification detection kit.
  • Recombinase-polymerase Amplification technology (Recombinase Polymerase Amplification, RPA) is known as a nucleic acid detection technology that can replace PCR. Originally patented by ASM scientific, Inc. in 2003 (EP1499738B1). Such amplification reactions are also known as recombinase-aid amplification (RAA), Multienzyme Isothermal Rapid Amplification (MIRA) and body temperature amplification technology (STAMP).
  • RPA Recombinase-polymerase Amplification
  • the basic principle is that the recombinase and the primer form a combination (filament), which invades the template strand of the substrate nucleic acid, opens the double strand, and binds to the complementary part of the primer; then, under the action of DNA polymerase with the ability of standing displacement, under the action of the primer
  • the 3' end begins to synthesize complementary strands.
  • Displaced single chains are bound by single-chain binding proteins to assemble the original double-stranded complex.
  • the above amplification reactions have been commercialized for the detection of target fragments and nucleic acids, and are usually also equipped with tag probes to improve specificity.
  • RPA technology mainly relies on three enzymes: recombinase that can bind single-stranded nucleic acid (oligonucleotide primer), single-stranded DNA binding protein (SSB) and strand displacement DNA polymerase.
  • the basic principle is: the recombinase binds to the primer.
  • the formed protein-DNA complex (filament) invades the substrate nucleic acid template strand and can search for homologous sequences in double-stranded DNA. Once the primers locate the homologous sequence, a strand exchange reaction will occur to form and initiate DNA synthesis , under the action of DNA polymerase, the complementary strand starts to be synthesized at the 3' end of the primer, and the target region on the template is exponentially amplified.
  • the displaced DNA strand binds to the SSB, preventing further displacement. In this system, a synthesis event is initiated by two opposing primers.
  • PCR primers cannot be directly used for RPA detection, because RPA primers are longer than general PCR primers, usually 30-38 bases. Primers that are too short will reduce the recombination rate and affect the amplification speed and detection sensitivity. Denaturation temperature is no longer a critical factor affecting amplification primers when designing RPA primers. It can be seen that the primer and probe design of RPA is not as mature as that of traditional PCR, and it takes a lot of exploration and testing to obtain ideal primers and probes.
  • RPA nucleic acid detection
  • the main idea is to design two pairs of primers.
  • the second pair of primers is completely amplified with the amplification product of the first pair of primers as the substrate. And the two pairs of primers have no or only a small amount of overlap.
  • the reaction process of the nested reaction is to first use the first pair of primers to amplify (the first step of RPA reaction), and draw a small amount (1/5 ⁇ 1/10) of the reaction product into the reaction system containing the second pair of primers.
  • Amplification second step RPA reaction
  • the detection is carried out by means of test strips or fluorescence. This process needs to be diluted after the first step reaction is completed. After the dilution, the reagents (including enzymes, additives, primers, etc.) of the second step reaction can be added to the diluted product before the second step reaction can be carried out. .
  • Nested RPA needs to prepare two reactions separately, which increases the operation time and difficulty, and is difficult to automate.
  • the transfer reaction product needs to be absorbed in the middle of the nested RPA, which increases the risk of product diffusion pollution.
  • Nested RPA only adds a small amount of the first-step product to the second-step reaction, and the sensitivity and stability of the reaction need to be improved.
  • the present invention proposes a new nested recombinase-polymerase amplification detection method (Simplified One-Tube Nest-RPA, SOTN RPA), although the method includes two-step RPA (or RT-RPA) reaction, but the whole reaction needs a tube of RPA reagent, the inventors of the present invention creatively found that in the second step of RPA reaction, directly add the second amplified product to all or part of the products of the first step reaction.
  • the primers and probes of the first reaction can continue to be amplified, and there is no need to transfer the reaction product in the middle, and there is no need to prepare two reaction reagents, and the reaction product capable of sensitive detection can be obtained by direct reaction.
  • the use of this technology can achieve rapid and high-sensitivity detection.
  • the purpose of the present invention is to overcome the deficiencies of the prior art, and to provide a fast and high-sensitivity nested recombinase-polymerase amplification detection method, a related nucleic acid rapid detection method, and a nested recombinase-polymerase amplification detection reagent combination or kit.
  • Nucleic acid can be detected quickly and with high sensitivity.
  • the reaction process does not need to prepare two RPA reaction reagents, and a reaction product capable of sensitive detection can be obtained by direct reaction, which greatly simplifies the nucleic acid detection operation steps and reduces the operation complexity.
  • One of the objectives of the present invention is to provide a nested recombinase-polymerase amplification method, the method includes a first step of RPA or RT-RPA reaction and a second step of RPA reaction, and the specific steps are: 1) preparation reaction The system uses the first pair of primers to carry out the first step RPA or RT-RPA reaction for amplification; 2) directly add the second pair of primers and/or probes to all or part of the products in step 1) to continue the amplification reaction to obtain reaction product.
  • the reaction solution can be directly used as the nucleic acid template solution of the second-step reaction to enter the second-step reaction without purification.
  • the second primer pair of the second step of RPA reaction is located in the template obtained by the amplification of the first primer pair of the first step of RPA or RT-RPA reaction, and is different from the first primer pair of the first step of RPA reaction. Overlap or less than 10bp overlap.
  • the first-step RPA or RT-RPA reaction can be used for DNA or RNA amplification, respectively.
  • the RPA in the second step is an RPA with a probe, and an endonuclease that can recognize /thf/ or /idSp/ can be added therein.
  • step 2) and the step 1) can be carried out in the same container, or can be carried out in a different container.
  • reaction time of the first step of RPA or RT-RPA reaction or the second step of RPA reaction of the method is 5-30min, respectively.
  • the first step of RPA or RT-RPA reaction and the second step of RPA reaction time are not more than 10 minutes, more preferably not more than 5 minutes; the total time of the two-step RPA reaction is not more than 15 minutes, preferably , respectively 10-15min.
  • reaction temperature of the first-step RPA or RT-RPA reaction or the second-step RPA reaction is 35°C to 45°C, preferably 37°C-42°C, more preferably 37°C or 42°C.
  • the product with the first label after the probe is cut and the primer with the second label in the second step form a primer pair, which participates in the amplification and forms a primer pair.
  • the step 1) is performed using the first step RPA or RT-RPA reaction reagent
  • the first step RPA or RT-RPA reaction reagent includes the first pair of primers for the first step RPA or RT-RPA reaction, Buffer and/or RPA reactants.
  • the RPA reactants can be any commercial reagents or kits required for the RPA reaction, or the reagents required for the RPA reaction can be prepared by the laboratory, which can be liquid or dry powder.
  • the step 2) is performed using a second-step RPA reaction reagent, and the second-step RPA reaction reagent includes the second pair of primers and/or probes.
  • the first step RPA or RT-RPA reaction reagent further comprises magnesium acetate, DEPC water and/or lysate.
  • the lysate can be any commercial lysate reagent or kit, etc., or the lysate can be prepared by oneself in the laboratory.
  • the second-step RPA reaction reagent only includes the primer pair and probe of the second-step RPA reaction.
  • the object of the present invention is also to provide a nucleic acid rapid detection method, which comprises the following steps:
  • the color development of the colloidal gold in the step (3) is as follows: the RPA reaction product of the second step is added to the DEPC water, mixed evenly for dilution, and the diluted product is drawn and placed in the colloidal gold spotting hole for color development and photographing.
  • the method also includes a fluorescent probe detection step.
  • Another object of the present invention is to provide a kit comprising primer pairs, probes, reagents, test strips and/or combinations thereof of any of the aforementioned methods.
  • Another object of the present invention is to provide a detection kit for the nested recombinase-polymerase amplification method
  • the detection kit includes a first-step RPA or RT-RPA reaction reagent and a second-step RPA reaction reagent
  • the first-step RPA or RT-RPA reaction reagents include primer pairs, buffers and RPA reactants of the first-step RPA or RT-RPA reaction
  • the second-step RPA reaction reagents include the second-step RPA reaction primer pairs and / or probe.
  • the first step RPA or RT-RPA reaction reagent further comprises magnesium acetate, DEPC water and/or lysate.
  • the second-step RPA reaction reagents only include primer pairs and/or probes for the second-step RPA reaction.
  • the first-step RPA or RT-RPA reaction reagent and the second-step RPA reaction reagent are packaged independently.
  • the detection kit further includes a color-developing test strip, and the color-developing test strip is a colloidal gold test strip.
  • the second step RPA reagent is directly added to all or part of the first step product.
  • the first-step RPA or RT-RPA reaction reagent also includes a first reaction vessel, and both the first-step RPA or RT-RPA reaction and the second-step RPA reaction are performed in the first reaction vessel.
  • first-step RPA or RT-RPA reaction reagent may further include a first reaction vessel
  • the second-step RPA reaction reagent further includes a second reaction vessel
  • the first-step RPA or RT-RPA reaction reagent may It is carried out in the first reaction vessel, and the process of directly adding the RPA reagent of the second step to all or part of the first step product is carried out in the second reaction vessel.
  • the present invention also relates to the use of primer pairs, probes and/or sequence combinations involved in the aforementioned optional amplification or detection methods in the preparation of detection kits.
  • the rapid and high-sensitivity nested recombinase-polymerase amplification detection method involved in the present invention requires one tube of RPA reagent for the entire reaction, and there is no need to transfer the reaction product in the middle, and there is no need to prepare two RPA reaction reagents, and the direct reaction is A reaction product capable of sensitive detection can be obtained, the operation steps of nucleic acid detection are greatly simplified, the risk of contamination and the complexity of operation are reduced, and nucleic acid can be detected quickly and with high sensitivity. Rapid clinical testing.
  • the detection sensitivity of the nested recombinase-polymerase amplification detection method of the present invention can reach 2copies-5copies/50ul. And the detection method is universal and can be applied to the detection of various nucleic acid samples.
  • the nested recombinase-polymerase amplification detection method of the present invention increases the amplification multiples and provides effective
  • the detection of nucleic acid signals of extremely low concentrations has high sensitivity for detecting trace nucleic acid samples, and has more obvious technical advantages in fluorescence signal amplification, and the results are read by colloidal gold test paper, without the need for other instruments.
  • the optimum temperature of the RPA reaction of the present invention is between 37°C and 42°C, and it can be carried out under a constant temperature close to normal temperature without denaturation. This can undoubtedly greatly accelerate the speed of nucleic acid amplification.
  • the RPA technology of the present invention can truly realize portable rapid nucleic acid detection.
  • FIG. 1 is an exemplary flow chart of the rapid and highly sensitive recombinase-polymerase amplification method of the present invention.
  • Figure 2 shows the experimental results of changes in effective primer concentration during the RPA reaction.
  • Figure 3 is A: standard curve of ATP concentration change during RPA reaction; B: experimental result of ATP concentration change during RPA reaction.
  • Figure 4 shows the experimental results of the effect of adding a second pair of primers on the amplification efficiency in the middle of the RPA reaction.
  • Fig. 6 is the test result of the detection sensitivity of the SOTN RPA detection method of the present invention for dual genes (E gene, ORF1ab gene).
  • SARS-Cov2 virus RNA samples were purchased from the national standard material (standard material number: GBW(E)091099.
  • the RPA reaction kit was purchased from the British TwistDX company, the product model is Basic RT kit
  • 2X RNA loading dye was purchased from Thermo Fisher Company, Cat. No. R0641
  • SYBR gold dye was purchased from thermo fisher, catalog number S11494
  • Multifunctional fluorescence imager model: Typhoon FLA9500
  • E-Primer F TTCTTTTTCTTGCTTTCGTGGTATTCTTGC (SEQ ID NO:3)
  • E-Primer R TAMRA-AGAATTCAGATTTTTAACACGAGAGTAAACGT (SEQ ID NO:4)
  • RNA added is different (set to x), and the total volume of DEPC water plus RNA is 14.1ul.
  • Primer consumption may be the main reason for the product concentration reaching the plateau at the later stage of the RPA reaction.
  • SARS-Cov2 virus RNA samples were purchased from the national standard material (standard material number: GBW(E)091099.
  • the RPA reaction kit was purchased from the British TwistDX company, the product model is Basic RT kit
  • Enhanced ATP detection kit was purchased from Biyuntian Biotechnology Co., Ltd., item number: S0027
  • Multi-function microplate reader model: TECAN spark
  • the primer sequences are as follows:
  • RNA added is different (set to x), and the total volume of DEPC water plus RNA is 14.1ul.
  • the ATP standard solution (S0027-3) was diluted into 0.01, 0.03, 0.1, 1, 3, 10uM concentration gradient with lysis buffer.
  • the SARS-Cov2 virus RNA sample was purchased from the national standard material (standard material number: GBW(E)091099.
  • the RPA reaction kit was purchased from the British TwistDX company, the product model is Basic RT kit colloidal gold test strips were purchased from Beijing Kuer Technology Co., Ltd.
  • E-Primer F ATGTACTCATTCGTTTCGGAAGAGACAGG (SEQ ID NO: 1)
  • E-primer R AGACCAGAAGATCAGGAACTCTAGAAGAA (SEQ ID NO: 2)
  • E-2 nd primer F TTCTTTTTCTTGCTTTCGTGGTATTCTTGC (SEQ ID NO: 3)
  • E-2 nd primer R AGAATTCAGATTTTTAACACGAGAGTAAACGT (SEQ ID NO:4)
  • RNA added is different (set to x), and the total volume of DEPC water plus RNA is 14.1ul.
  • E-2 nd primer F After the reaction is completed, add E-2 nd primer F, E-2 nd primer R, and E-probe to the reaction system in volumes of 2ul, 2ul, and 0.6ul, respectively, and shake and mix well. Heated at 42°C for 10min.
  • Embodiment 4 SOTN RPA detection method of the present invention detects SARS-CoV2 nucleic acid sensitivity
  • SARS-Cov2 virus RNA samples were purchased from the national standard material (standard material number: GBW(E)091099.
  • the RPA reaction kit was purchased from the British TwistDX company, the product model is nfo kit colloidal gold test strips were purchased from Beijing Kuer Technology Co., Ltd.
  • the primer sequences are as follows:
  • E-primer R AGACCAGAAGATCAGGAACTCTAGAAGAA (SEQ ID NO: 2)
  • E-2 nd primer F TTCTTTTTCTTGCTTTCGTGGTATTCTTGC (SEQ ID NO: 3)
  • E-2 nd primer R Biotin-AGAATTCAGATTTTTAACACGAGAGTAAACGT (SEQ ID NO:4)
  • N-primer F TTCCTCATCACGTAGTCGCAACAGTTCAAG (SEQ ID NO:6)
  • N-primer R CTTAGAAGCCTCAGCAGCAGATTTCTTAGTG (SEQ ID NO:7)
  • N-2 nd primer F AAGAAAATTCAACTCCAGGCAGCAGTAGGGG (SEQ ID NO: 8)
  • N-2 nd primer R ACAGTTTGGCCTTGTTGTTGTTGGCCTTTA (SEQ ID NO: 9)
  • ORF1ab-primer F TGTAGTTGTGATCAACTCCGCGAACCCATGCT (SEQ ID NO: 11)
  • ORF1ab-2 nd primer F TCAGTCAGCTGATGCACAATCGTTTTTAAACG (SEQ ID NO: 13)
  • ORF1ab-2 nd primer R 5'TAMRA-CTTGGAAGCGACAACAATTAGTTTTTAGGA (SEQ ID NO: 14)
  • RNA added is different (set to x), and the total volume of DEPC water plus RNA is 14.1ul.
  • the SOTN RPA detection method of the present invention has a single detection sensitivity of 2 copies/50ul for the three genes of the new coronavirus.
  • Embodiment 5 SOTN RPA detection method of the present invention is used for double gene detection sensitivity experiment
  • SARS-Cov2 virus RNA samples were purchased from the national standard material (standard material number: GBW(E)091099.
  • the RPA reaction kit was purchased from the British TwistDX company, the product model is nfo kit colloidal gold test strips were purchased from Beijing Kuer Technology Co., Ltd.
  • E-Primer F ATGTACTCATTCGTTTCGGAAGAGACAGG (SEQ ID NO: 1)
  • E-primer R AGACCAGAAGATCAGGAACTCTAGAAGAA (SEQ ID NO: 2)
  • E-2 nd primer F TTCTTTTTCTTGCTTTCGTGGTATTCTTGC (SEQ ID NO: 3)
  • E-2 nd primer R Biotin-AGAATTCAGATTTTTAACACGAGAGTAAACGT (SEQ ID NO:4)
  • ORF1ab-primer R TCTTCATGTTGGTAGTTAGAGAAAGTGTGTCT (SEQ ID NO: 12)
  • ORF1ab-2ndprimer F TCAGTCAGCTGATGCACAATCGTTTTTAAACG (SEQ ID NO: 13)
  • ORF1ab-2ndprimer R 5'TAMRA-CTTGGAAGCGACAACAATTAGTTTTTAGGA (SEQ ID NO: 14)
  • ORF1ab-probe 5'FAM-AGCCCGTCTTACACCGTGCGGCACAGGCACT/idSp/GTACTGATGTCGTAT-3'Spacer (SEQ ID NO: 15)
  • Embodiment 6 SOTN RPA detection method of the present invention detects ZS-green nucleic acid sensitivity
  • ZS-green pseudovirus samples were purchased from Fubaiao (Suzhou) Biotechnology Co., Ltd.
  • the RPA reaction kit was purchased from the British TwistDX company, the product model is nfo kit colloidal gold test strips were purchased from Beijing Kuer Technology Co., Ltd.
  • Triton X-100 was purchased from sigma company, product number: T9284-100ML
  • NP-40 was purchased from sigma company, the product number is: NP40S-500ML
  • the ZS-Green gene primer was diluted to 10uM.
  • the primer sequences are as follows:
  • ZS-Primer F GGACATCGTCGACTACTTCAAGAACTCCT (SEQ ID NO: 16)
  • ZS-primer R CCCAGTTGTCGGTCATCTTCTTCATCAC (SEQ ID NO: 17)
  • ZS-2 nd primer R Biotin-GTCGGCGGGGAAGTTCACGCCGTAGAAC (SEQ ID NO: 19)
  • RNA added is different (set to x), and the total volume of DEPC water plus RNA is 14.1ul.
  • the SOTN RPA detection method of the present invention has a detection sensitivity of 5 copies/50ul for ZS-Green RNA.
  • the detection sensitivity can reach 2copies-5copies/50ul.
  • the detection sensitivity of three gene loci (ORF1ab, N gene, E gene) in the new crown nucleic acid sample was detected to reach 2 copies/reaction.
  • SOTN RPA can also sensitively detect the ZS-Green gene (pseudovirus coating) derived from polyps, and the detection sensitivity reaches 5 copies/reaction, which proves the universality of this method. Therefore, the detection method of the present invention has higher sensitivity for detecting trace nucleic acid samples, and has more obvious technical advantages in fluorescence signal amplification.

Abstract

一种快速、高灵敏度的巢式重组酶-聚合酶扩增检测方法、以及相关核酸快速检测方法、巢式重组酶-聚合酶扩增检测试剂盒。可快速且高灵敏度地对核酸进行检测,反应过程无需配制两个反应试剂,直接反应即可获得能够进行灵敏检测的反应产物,极大减化了核酸检测操作步骤,降低了操作复杂性,提高了灵敏度。

Description

一种巢式重组酶-聚合酶扩增方法及其应用 技术领域
本发明属于生物技术领域,具体涉及一种快速、高灵敏度的巢式重组酶-聚合酶扩增检测方法、以及相关核酸快速检测方法、巢式重组酶-聚合酶扩增检测试剂盒。
背景技术
重组酶-聚合酶扩增技术(Recombinase Polymerase Amplification,RPA),被称为是可以替代PCR的核酸检测技术。最初由ASM scientific,Inc.于2003年申请专利(EP1499738B1)。此类扩增反应又被称为recombinase-aid amplification(RAA),Multienzyme Isothermal Rapid Amplification(MIRA)和体温扩增技术(STAMP)。其基本原理都为重组酶与引物形成组合体(filament),入侵到底物核酸template strand进行,对双链进行打开,结合到引物互补的部位;接着具有standed displacement能力DNA聚合酶作用下,在引物3‘端开始合成互补链。Displaced的单链由单链结合蛋白所结合,组装原双链的复合。以上扩增反应已经被商业化,用来检测目的片段和核酸,通常也配有标签probe来提高特异性。
RPA技术主要依赖于三种酶:能结合单链核酸(寡核苷酸引物)的重组酶、单链DNA结合蛋白(SSB)和链置换DNA聚合酶,其基本原理为:重组酶与引物结合形成的蛋白-DNA复合物(filament),入侵到底物核酸template stra nd进行,能在双链DNA中寻找同源序列,一旦引物定位了同源序列,就会发生链交换反应形成并启动DNA合成,在DNA聚合酶作用下,在引物3‘端开始合成互补链,对模板上的目标区域进行指数式扩增。被置换的DNA链与SSB结合,防止进一步替换。在这个体系中,由两个相对的引物起始一个合成事件。
RPA检测技术的关键在于扩增引物和探针的设计。PCR引物并不能直接用于RPA检测,因为RPA引物比一般PCR引物长,通常需要达到30-38个碱基。引物过短会降低重组率,影响扩增速度和检测灵敏度。在设计RPA引物时,变性温度不再是影响扩增引物的关键因素。可见RPA的引物和探针设计不像传统PCR那样成熟,需要大量的摸索和测试才能获得理想的引物和探针。
为了提高RPA对于核酸检测的灵敏度,还可以通过巢式反应的方式进行扩增,主要思路是设计两对引物,第二对引物完全以第一对引物的扩增产物为底物进行扩增,且两对引物没有或者只有少量的重叠。巢式反应的反应过程是先用第一对引物进行扩增(第一步RPA反应),吸取少量(1/5~1/10)的反应产物加入到含有第二对引物的反应体系中进行扩增(第二步RPA反应)。最后通过试纸条或者荧光的方式进行检测。这一过程需要在第一步反应结束后进行稀释,稀释后产物加入第二步反应的试剂(包括酶、添加剂、引物等)才能进行第二步的反应,两步反应均需配制不同的试剂。
因此可以看出,巢式RPA反应可以大大提高RPA的检测灵敏度,但缺点也是明显的:
1.整个反应需要两管RPA试剂,使得反应试剂成本加倍。
2.巢式RPA需要分别配制两个反应,增加操作时间和难度,难以实现自动化。
3.巢式RPA中间需要吸取转移反应产物,增加了产物扩散污染的风险。
4.巢式RPA只是将少量的第一步产物加入到第二步反应之中,反应的灵敏度和稳定性都有待提高。
在实践中,待检测核酸来源复杂,数量巨大,经常面临急需拿到准确的检测结果的情形,如何获得更加明显的检测信号是急需解决的问题。针对上述检测缺陷以及临床检测困难,本发明提出一种新的巢式重组酶-聚合酶扩增检测方法(Simplified One-Tube Nest-RPA,SOTN RPA),所述方法虽然包括两步RPA(或RT-RPA)反应,但整个反应需要一管RPA试剂,本发明的发明人创造性的发现在第二步RPA反应时,直接在第一步反应的全部或部分产物中直接加入扩增的第二步反应的引物和探针继续扩增即可,中间无需吸取转移反应产物,也无需配制两个反应试剂,直接反应即可获得能够进行灵敏检测的反应产物。在各类场景的核酸检测中,使用这一技术能够实现快速高灵敏度的检测。
发明内容
本发明目的是为了克服现有技术的不足,提供一种快速、高灵敏度的巢式重组酶-聚合酶扩增检测方法、以及相关核酸快速检测方法、巢式重组酶-聚合酶扩增检测试剂组合或试剂盒。可快速且高灵敏度地对核酸进行检测,反应过程无需配制两个RPA反应试剂,直接 反应即可获得能够进行灵敏检测的反应产物,极大减化了核酸检测操作步骤,降低了操作复杂性。
本发明的目的之一在于,提供一种巢式重组酶-聚合酶扩增方法,所述方法包括第一步RPA或RT-RPA反应和第二步RPA反应,具体步骤为:1)配制反应体系使用第一对引物对进行第一步RPA或RT-RPA反应进行扩增;2)在步骤1)的全部或部分产物中直接加入第二对引物对和/或探针继续扩增反应获得反应产物。
第一步反应完成后,反应液可不经过纯化,直接作为第二步反应的核酸模板溶液进入第二步反应。
具体的,所述第二步RPA反应的第二引物对位于所述第一步RPA或RT-RPA反应第一引物对扩增获得的模板内,且与第一步RPA反应第一引物对不重叠或小于10bp的重叠。
具体的,所述第一步RPA或RT-RPA反应分别可用于DNA或RNA的扩增。
具体的,所述第二步RPA是带有探针的RPA,且里面可添加可以识别/thf/或者/idSp/的核酸内切酶。
具体的,所述步骤2)可以与步骤1)在同一个容器中进行,也可以在不同容器中进行。
更进一步地,所述方法的所述第一步RPA或RT-RPA反应或第二步RPA反应的反应时间分别为5-30min。优选的,所述第一步RPA或RT-RPA反应和第二步RPA反应时间均不超过10分钟,更优地均不超过5分钟;两步RPA反应总时间均不超过15分钟,优选的,分别为10-15min。
更进一步地,所述第一步RPA或RT-RPA反应或第二步RPA反应的反应温度为35℃到45℃,优选的是37℃-42℃,更优选的是37℃或42℃。
优选的,步骤2)的第二步扩增反应中,探针被切割后的带有第一标记的产物与第二步中的带有第二标记的引物组成引物对,参与扩增并形成一端带有第一标记,一端带有第二标记的双链DNA,所述第一标记和第二标记分别选自FAM、FITC、BIOTIN、地高辛和TAMRA中的任意一种。
优选的,所述步骤1)使用第一步RPA或RT-RPA反应试剂进行,所述第一步RPA或RT-RPA反应试剂包括第一步RPA或RT-RPA反应的第一对引物对、缓冲液和/或RPA反应物。RPA反应物可以是商业化的任意的RPA反应所需的试剂或试剂盒等,也可自行实验室进行配制获得的RPA反应所需的试剂,其可以是液体,也可以是干粉。
优选的,所述步骤2)使用第二步RPA反应试剂进行,所述第二步RPA反应试剂包括所述第二对引物对和/或探针。
优选的,所述第一步RPA或RT-RPA反应试剂进一步包括选自醋酸镁、DEPC水和/或裂解液。裂解液可以是商业化的任意的裂解液试剂或试剂盒等,也可自行实验室进行配制获得的裂解液。
优选的,所述第二步RPA反应试剂只包括第二步RPA反应的引物对和探针。
本发明的目的还在于,提供一种核酸快速检测方法,其包括如下步骤:
(1)获得待检测核酸;部分样品可进行稀释,也可不进行稀释直接扩增。
(2)使用前述任意的巢式重组酶-聚合酶扩增方法扩增步骤(1)的核酸,反应获得反应产物;
(3)将反应产物稀释后插入胶体金试纸条进行胶体金显色。
具体的,所述步骤(3)的胶体金显色具体为:取第二步RPA反应产物加入到DEPC水中混合均匀进行稀释,吸取稀释产物置于胶体金点样孔中显色拍照。
所述方法还包括荧光探针检测步骤。
优选的,步骤(2)的第二步扩增反应中,探针被切割后的带有FAM(或FITC)的产物与第二步中的带有biotin的引物组成引物对,参与扩增并形成一端带有FAM(或FITC),一端带有biotin的双链DNA,此时在胶体金层析中通过夹心法被显色。此时胶体层析试纸可设置为:胶体金表面为链霉亲和素(或者FAM/FITC抗体),第一条线T线为FAM/FITC抗体(或者链霉亲和素),第二条线C线为链霉亲和素抗体(或者anti-IgG抗体)。
本发明的目的还在于,提供一种试剂盒,其包含前述任意所述方法的引物对、探针、试剂、试纸条和/或其组合。
本发明的目的还在于,提供一种用于巢式重组酶-聚合酶扩增方法的检测试剂盒,所述检测试剂盒包括第一步RPA或RT-RPA反应试剂和第二步RPA反应试剂,所述第一步RPA或RT-RPA反应试剂包括第一步RPA或RT-RPA反应的引物对、缓冲液和RPA反应物,第二步RPA反应试剂包括第二步RPA反应的引物对和/或探针。
具体的,所述第一步RPA或RT-RPA反应试剂进一步包括选自醋酸镁、DEPC水和/或裂解液。
具体的,所述第二步RPA反应试剂只包括第二步RPA反应的引物对和/或探针。
具体的,所述第一步RPA或RT-RPA反应试剂和第二步RPA反应试剂独立包装。
具体的,所述检测试剂盒还包括显色试纸条,所述显色试纸条是胶体金试纸条。
更进一步地,所述第一步RPA或RT-RPA反应试剂反应完毕获得第一步产物后,在全部或部分所述第一步产物中直接加入第二步RPA反应试剂。
更进一步地,所述第一步RPA或RT-RPA反应试剂还包括第一反应容器,所述第一步RPA或RT-RPA反应和第二步RPA反应均在第一反应容器中进行。
另外还可以是,所述第一步RPA或RT-RPA反应试剂还包括第一反应容器,所述第二步RPA反应试剂还包括第二反应容器,所述第一步RPA或RT-RPA反应在第一反应容器进行,在全部或部分所述第一步产物中直接加入第二步RPA反应试剂的过程在第二反应容器中进行。
另一方面,本发明还涉及前述任选的扩增或检测方法中涉及的引物对、探针和/或序列组合在制备检测试剂盒中的用途。
本发明有益效果:
1、本发明涉及的快速、高灵敏度的巢式重组酶-聚合酶扩增检测方法,整个反应需要一管RPA试剂,中间无需吸取转移反应产物,也无需配制两个RPA反应试剂,直接反应即可获得能够进行灵敏检测的反应产物,极大减化了核酸检测操作步骤,降低污染风险以及操作复杂性,可快速且高灵敏度地对核酸进行检测,操作简单易行,成本低廉,适合用于临床快速检测。
2、本发明的巢式重组酶-聚合酶扩增检测方法,能够降低RPA反应过程中引物浓度消耗,保证反应体系中的有效引物浓度水平,避免反应停滞。
3、本发明的巢式重组酶-聚合酶扩增检测方法检测灵敏度可达到2copies-5copies/50ul。且检测方法具有普适性,可适用于各种核酸样本的检测。
4、对于痕量的核酸检测,无法通过一步RPA来得到足够的扩增倍数,从而获得明显的信号,本发明的巢式重组酶-聚合酶扩增检测方法,提高扩增倍数,提供有效的检验极低浓度的核酸信号,对于检测痕量核酸样品具有较高的灵敏度,在荧光信号放大方面具有更明显的技术优势,且通过胶体金试纸读取的方式进行结果读取,无需其他仪器。
5、常规PCR必须经过变性、退火、延伸三个步骤,而PCR仪本质上就是一个控制温度升降的设备。本发明RPA反应的最适温度在37℃-42℃之间,无需变性,在接近常温的恒温条件下即可进行。这无疑能大大加快核酸扩增的速度。此外,由于不需要复杂的温控设备,本发明的RPA技术可以真正实现便携式的快速核酸检测。
附图说明
图1为本发明快速、高灵敏度的重组酶-聚合酶扩增方法示例性流程图。
图2为RPA反应过程中有效引物浓度的变化实验结果。
图3为A:RPA反应过程中ATP浓度变化标准曲线;B:RPA反应过程中ATP浓度变化实验结果。
图4为RPA反应中途添加第二对primer对扩增效率的影响实验结果。
图5为本发明的SOTN RPA检测法对于新冠病毒三种基因的单独检测灵敏度实验结果。
图6为本发明的SOTN RPA检测法对于双基因(E基因,ORF1ab基因)的检测灵敏度实验结果。
图7为本发明的SOTN RPA检测法对于ZS-Green假病毒的检测灵敏度实验结果。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而 不用于限制本发明的范围。
实施例1 研究RPA反应过程中有效引物浓度的变化
1.试剂仪器准备
SARS-Cov2病毒RNA样品购自国家标准物质(标准物质编号:GBW(E)091099。
RPA反应试剂盒购自英国TwistDX公司,产品型号为
Figure PCTCN2020127937-appb-000001
Basic RT kit
2X RNA loading dye购自thermo fisher公司,货号为R0641
SYBR gold染料购自thermo fisher公司,货号为S11494
多功能荧光成像仪,型号:Typhoon FLA9500
2.实验步骤
1)将新冠病毒RNA按照E基因浓度,稀释至500copies/ul。
2)将新冠病毒E基因引物用DEPC水稀释至10Um。引物序列如下:
E-Primer F:TTCTTTTTCTTGCTTTCGTGGTATTCTTGC(SEQ ID NO:3)
E-Primer R:TAMRA-AGAATTCAGATTTTTAACACGAGAGTAAACGT(SEQ ID NO:4)
3)RPA反应体系配置
Figure PCTCN2020127937-appb-000002
注:根据实验分组不同,RNA加入的体积不同(设置为x),DEPC水加RNA的总体积是14.1ul。
上述成分配置好后,直接加入到RPA反应干粉中形成RPA反应体系。
4)分别在反应体系中加入1ul(500copies RNA)和0ul RNA模板,设置PCR仪器温度为42℃,分别在0min,10min,20min,30min取出5ul样品,放入液氮中速冻保存。
5)待所有样品收集完毕后,加入5ul 2x RNA loading dye,95℃加热10min。取2ul上样12%denatured page胶。
6)设设置电压160V,运行40min。
7)跑胶结束后使用SYBR gold染料进行染色10min。
8)使用台风多功能激光成像仪(型号:FLA9500)进行成像拍照。
3.实验结论
1)在RPA反应的前10min,引物大量消耗。
2)RPA反应过程中实验组(500copies RNA)和对照组(0copy RNA)都有大量非特异产产物生成(NS products)
3)实验组(500copies)在10~20min时产物(products)浓度达到峰值。
4)引物消耗可能是RPA反应后期产物浓度到达平台期的主要原因。
5)实验结果图见图2。
实施例2 研究RPA反应过程中ATP浓度变化
1.试剂仪器准备
SARS-Cov2病毒RNA样品购自国家标准物质(标准物质编号:GBW(E)091099。
RPA反应试剂盒购自英国TwistDX公司,产品型号为
Figure PCTCN2020127937-appb-000003
Basic RT kit
增强型ATP检测试剂盒购自碧云天生物技术有限公司,货号:S0027
多功能酶标仪,型号:TECAN spark
2.实验步骤:
1)将新冠病毒RNA按照E基因浓度,稀释至500copies/ul。
2)将新冠病毒E基因引物用DEPC水稀释至10uM。
引物序列如下:
E-Primer F:
TTCTTTTTCTTGCTTTCGTGGTATTCTTGC(SEQ ID NO:3)
E-Primer:
TAMRA-AGAATTCAGATTTTTAACACGAGAGTAAACGT(SEQ ID NO:4)
3)RPA反应体系配置
Figure PCTCN2020127937-appb-000004
注:根据实验分组不同,RNA加入的体积不同(设置为x),DEPC水加RNA的总体积是14.1ul。
上述成分配置好后,直接加入到RPA反应干粉中形成RPA反应体系。
4)在反应进行的0min,2min,5min,10min,20min,30min分别取1ul样品溶解1ml裂解液(碧云天,S0027-4)中,冰上保存。每个时间点做三个实验重复。
5)ATP含量测定(参考碧云天S0027产品说明书)
a)标准曲线测定的准备
将ATP标准溶液(S0027-3)用裂解液稀释成0.01,0.03,0.1,1,3,10uM浓度梯度。
b)ATP检测工作液配置
取600ul ATP检测试剂(S0027-1)加入到2400ul ATP检测试剂稀释液(S0027-2)中,吹打混匀,冰上保存。
c)ATP浓度测定
d)吸取100ul ATP检测工作液加入到96孔板中,室温放置3min。取10ul待测样品和标准曲线样品加入到工作液中,吹打混匀,静置1min。
e)使用多功能酶标仪测定化学发光值。
3.实验结论
1)实验结果见图3
2)30min的RPA反应过程中ATP浓度下降约30%
3)30min后ATP浓度逐渐趋于平稳,说明ATP浓度下降并非RPA反应变慢的主要原因。
实施例3 研究RPA反应中途添加两对primer对扩增效率的影响
1.试剂仪器准备
SARS-Cov2病毒RNA样品购自国家标准物质(标准物质编号:GBW(E)091099。RPA反应试剂盒购自英国TwistDX公司,产品型号为
Figure PCTCN2020127937-appb-000005
Basic RT kit胶体金试纸条购自北京库尔科技有限公司
2.实验步骤
1)将新冠病毒RNA按照E基因浓度,稀释至10copies/ul。
2)将新冠病毒E基因引物用DEPC水稀释至10uM。引物序列如下:
E-Primer F:ATGTACTCATTCGTTTCGGAAGAGACAGG(SEQ ID NO:1)
E-primer R:AGACCAGAAGATCAGGAACTCTAGAAGAA(SEQ ID NO:2)
E-2 ndprimer F:TTCTTTTTCTTGCTTTCGTGGTATTCTTGC(SEQ ID NO:3)
E-2 ndprimer R:AGAATTCAGATTTTTAACACGAGAGTAAACGT(SEQ ID NO:4)
E-probe:
5’FAM-TTACACTAGCCATCCTTACTGCGCTTCGAT[thf]GTGTGCGTACTGCTG-C 3spacer(SEQ ID NO:5)。
3)RPA反应体系配置
Figure PCTCN2020127937-appb-000006
注:根据实验分组不同,RNA加入的体积不同(设置为x),DEPC水加RNA的总体积是14.1ul。
上述成分配置好后,直接加入到RPA反应干粉中形成RPA反应体系。
4)在RPA反应体系中分别加入2ul(10copies/ul)和0ul RNA模板,震荡混匀。设置PCR仪温度为42℃,加热10min。
5)反应结束后,在反应体系中加入E-2 nd primer F,E-2 nd primer R,和E-probe体积分别为2ul,2ul,0.6ul,震荡混匀。42℃加热10min。
6)反应结束后,从反应体系中取出20ul反应产物,加入180ul水中,混匀。插入胶体金试纸条,2min后读取结果。
3.实验结论
1)实验结果见图4。
2)通过中途添加第二对引物,可以检测到20copies病毒RNA。
3)引物的消耗是RPA反应后续变慢的主要原因之一。
实施例4 本发明的SOTN RPA检测法检测SARS-CoV2核酸灵敏度
1.试剂仪器准备
SARS-Cov2病毒RNA样品购自国家标准物质(标准物质编号:GBW(E)091099。
RPA反应试剂盒购自英国TwistDX公司,产品型号为
Figure PCTCN2020127937-appb-000007
nfo kit 胶体金试纸条购自北京库尔科技有限公司
2.实验步骤
1)将新冠病毒RNA分别按照E基因,N基因,ORT1ab基因浓度,稀释至10copies/ul。
2)将新冠病毒E基因引物,N基因引物,ORF1ab基因引物用DEPC水稀释至10uM。
引物序列如下:
E-Primer F:ATGTACTCATTCGTTTCGGAAGAGACAGG(SEQ ID NO:1)
E-primer R:AGACCAGAAGATCAGGAACTCTAGAAGAA(SEQ ID NO:2)
E-2 ndprimer F:TTCTTTTTCTTGCTTTCGTGGTATTCTTGC(SEQ ID NO:3)
E-2 ndprimer R:Biotin-AGAATTCAGATTTTTAACACGAGAGTAAACGT(SEQ ID NO:4)
E-probe:
FAM-TTACACTAGCCATCCTTACTGCGCTTCGAT[thf]GTGTGCGTACTGCTG-C3s pacer(SEQ ID NO:5)
N-primer F:TTCCTCATCACGTAGTCGCAACAGTTCAAG(SEQ ID NO:6)
N-primer R:CTTAGAAGCCTCAGCAGCAGATTTCTTAGTG(SEQ ID NO:7)
N-2 ndprimer F:AAGAAATTCAACTCCAGGCAGCAGTAGGGG(SEQ ID NO:8)
N-2 ndprimer R:ACAGTTTGGCCTTGTTGTTGTTGGCCTTTA(SEQ ID NO:9)
N-probe:
FAM-AACTTCTCCTGCTAGAATGGCTGGCAATGG[thf]GGTGATGCTGCTCTTGC-C3spacer(SEQ ID NO:10)
ORF1ab-primer F:TGTAGTTGTGATCAACTCCGCGAACCCATGCT(SEQ ID NO:11)
ORF1ab-primer R:TCTTCATGTTGGTAGTTAGAGAAAGTGTGTCT(SEQ ID NO:12)
ORF1ab-2 ndprimer F:TCAGTCAGCTGATGCACAATCGTTTTTAAACG(SEQ ID  NO:13)
ORF1ab-2 ndprimer R:5’TAMRA-CTTGGAAGCGACAACAATTAGTTTTTAGGA(SEQ ID NO:14)
ORF1ab-probe
5’FAM-AGCCCGTCTTACACCGTGCGGCACAGGCACT/idSp/GTACTGATGTCGTAT-C3Spacer(SEQ ID NO:15)
3)配置RPA反应体系
Figure PCTCN2020127937-appb-000008
注:根据实验分组不同,RNA加入的体积不同(设置为x),DEPC水加RNA的总体积是14.1ul。
上述成分配置好后,直接加入到RPA反应干粉中形成RPA反应体系。
4)实验分组
编号 引物 模板
1 E-primer F+E-primer R 10copies
2 E-primer F+E-primer R 5copies
3 E-primer F+E-primer R 2copies
4 E-primer F+E-primer R 0copy
5 N-primer F+N-primer R 10copies
6 N-primer F+N-primer R 5copies
7 N-primer F+N-primer R 2copies
8 N-primer F+N-primer R 0copy
9 ORF1ab-primer F+ORF1ab-primer R 10copies
10 ORF1ab-primer F+ORF1ab-primer R 5copies
11 ORF1ab-primer F+ORF1ab-primer R 2copies
12 ORF1ab-primer F+ORF1ab-primer R 0copy
5)设置PCR仪温度为42℃,反应10min。
6)反应结束后,加入各自基因的2 nd primer F:2ul,2 nd primer R:2ul,probe:0.6ul。震荡混匀,42℃反应10min。
7)反应结束后,取20ul反应产物加入180ul水中,震荡混匀,插入试纸条。2min后读取结果。
3.实验结论
1)实验结果见图5;
2)本发明的SOTN RPA检测法对于新冠病毒三种基因的单独检测灵敏度都达到了2copies/50ul。
实施例5 本发明的SOTN RPA检测法对于双基因检测灵敏度实验
1.试剂仪器准备
SARS-Cov2病毒RNA样品购自国家标准物质(标准物质编号:GBW(E)091099。
RPA反应试剂盒购自英国TwistDX公司,产品型号为
Figure PCTCN2020127937-appb-000009
nfo kit胶体金试纸条购自北京库尔科技有限公司
2.实验步骤
1)将新冠病毒RNA分别按照E基因浓度,稀释至10copies/ul。
2)将新冠病毒E基因引物,ORF1ab基因引物用DEPC水稀释至10uM。引物序列 如下:
E-Primer F:ATGTACTCATTCGTTTCGGAAGAGACAGG(SEQ ID NO:1)
E-primer R:AGACCAGAAGATCAGGAACTCTAGAAGAA(SEQ ID NO:2)
E-2 ndprimer F:TTCTTTTTCTTGCTTTCGTGGTATTCTTGC(SEQ ID NO:3)
E-2 ndprimer R:Biotin-AGAATTCAGATTTTTAACACGAGAGTAAACGT(SEQ ID NO:4)
E-probe:
FAM-TTACACTAGCCATCCTTACTGCGCTTCGAT[thf]GTGTGCGTACTGCTG-C3spacer(SEQ ID NO:5)
ORF1ab-primer F:TGTAGTTGTGATCAACTCCGCGAACCCATGCT(SEQ ID NO:11)
ORF1ab-primer R:TCTTCATGTTGGTAGTTAGAGAAAGTGTGTCT(SEQ ID NO:12)
ORF1ab-2ndprimer F:TCAGTCAGCTGATGCACAATCGTTTTTAAACG(SEQ ID NO:13)
ORF1ab-2ndprimer R:5’TAMRA-CTTGGAAGCGACAACAATTAGTTTTTAGGA(SEQ ID NO:14)
ORF1ab-probe:5’FAM-AGCCCGTCTTACACCGTGCGGCACAGGCACT/idSp/GTACTGATGTCGTAT-3’Spacer(SEQ ID NO:15)
3)RPA反应体系配制
Figure PCTCN2020127937-appb-000010
Figure PCTCN2020127937-appb-000011
注:根据实验分组不同,RNA加入的体积不同(设置为x),DEPC水加RNA的总体积是14.1ul。
上述成分配置好后,直接加入到RPA反应干粉中形成RPA反应体系。
4)在RPA反应体系中分别加入10copies,5copies,2copies,0copy RNA模板,震荡混匀,42℃反应10min。随后添加1ul E-2 nd primer F,1ul E-2 nd primer R,0.6ul E-Probe,1ul ORF1ab-2 nd primer F,1ul ORF1ab-2 nd primer F,0.6ul ORF1ab-probe。震荡混匀,42℃反应10min。
5)反应结束后,分别吸取20ul产物,加入到180ul水中,混合均匀。插入胶体金试纸条2min后读取结果。
3.实验结论
1)实验结果见图6。
2)本发明的SOTN RPA检测法对于双基因(E基因,ORF1ab基因)的检测灵敏度达到2copies/50ul。
实施例6 本发明的SOTN RPA检测法检测ZS-green核酸灵敏度
1.试剂仪器准备
ZS-green假病毒样品购自复百澳(苏州)生物科技有限公司。
RPA反应试剂盒购自英国TwistDX公司,产品型号为
Figure PCTCN2020127937-appb-000012
nfo kit胶体金试纸条购自北京库尔科技有限公司
Triton X-100购自sigma公司,产品货号为:T9284-100ML
NP-40购自sigma公司,产品货号为:NP40S-500ML
2.实验步骤
1)将ZS-Green假病毒提取核酸后,qPCR定量,稀释至10copies/ul
2)ZS-Green基因引物稀释至10uM。引物序列如下:
ZS-Primer F:GGACATCGTCGACTACTTCAAGAACTCCT(SEQ ID NO:16)
ZS-primer R:CCCAGTTGTCGGTCATCTTCTTCATCAC(SEQ ID NO:17)
ZS-2 nd primer F:TACACCTGGGACCGCTCCTTCCTGTTCGA(SEQ ID NO:18)
ZS-2 nd primer R:Biotin-GTCGGCGGGGAAGTTCACGCCGTAGAAC(SEQ ID NO:19)
ZS-probe:
FAM-CGTGTGCATCTGCAACGCCGACATCACCGTG/idSp/GCGTGGAGGAGAACT-C3spacer(SEQ ID NO:20)
1)RPA反应体系配制
Figure PCTCN2020127937-appb-000013
注:根据实验分组不同,RNA加入的体积不同(设置为x),DEPC水加RNA的总体积是14.1ul。
先将Rehydration buffer,primer,水震荡混匀。加入假病毒,震荡混匀,立即加入到RPA反应干粉中。
2)设置PCR仪温度为42℃,孵育10min。
3)反应结束后,加入2ulZS-2 ndprimer F,2ul ZS-2 ndprimer R,0.6ul ZS-Probe,震荡混匀,42℃孵育10min。
4)反应结束后,取20ul反应产物加入到180ul水中,稀释混匀。插入胶体金试纸条,2min后读取显色结果。
1.实验结论
1)实验结果见图7。
2)本发明的SOTN RPA检测法对于ZS-Green RNA的检测灵敏度达到5copies/50ul。
上述结果显示,通过测量RPA反应过程中引物浓度,以及ATP含量的动态变化,验证了引物消耗是单步RPA反应持续扩增时间较短的原因;研究RPA反应中途添加第二对primer对扩增效率的影响进一步明确了RPA反应中有效引物浓度的消耗是造成反应停滞的原因。
使用本发明的SOTN RPA检测法检测新冠核酸、新冠假病毒、Zs-green假病毒,检测灵敏度可达到2copies-5copies/50ul。检测出新冠核酸样本的三个基因位点(ORF1ab,N基因,E基因)检测灵敏度达到2copies/reaction。同时SOTN RPA还可以灵敏的检测出来源于珊瑚虫的ZS-Green基因(假病毒包被),检测灵敏度达到5copies/reaction,证明了这种方法的普适性。因此,本发明的检测方法对于检测痕量核酸样品具有较高的灵敏度,在荧光信号放大方面具有更明显的技术优势。
本发明虽然以较佳实施例公开如上,但并不是用来限定权利要求,任何本领域技术人员在不脱离本发明构思的前提下,都可以做出若干可能的变动和修改,因此本发明的保护范围应当以本发明权利要求所界定的范围准。

Claims (26)

  1. 一种巢式重组酶-聚合酶扩增方法,其特征在于,所述方法包括第一步RPA或RT-RPA反应和第二步RPA反应,具体步骤为:1)配制反应体系使用第一对引物对进行第一步RPA或RT-RPA反应进行扩增;2)在步骤1)的全部或部分产物中直接加入第二对引物对和/或探针继续扩增反应获得反应产物。
  2. 根据权利要求1的扩增方法,其特征在于,所述第二步RPA反应的第二引物对位于所述第一步RPA或RT-RPA反应第一引物对扩增获得的模板内,且与第一步RPA反应第一引物对不重叠或小于10bp的重叠。
  3. 根据权利要求1或2的扩增方法,其特征在于,所述第一步RPA或RT-RPA反应分别可用于DNA或RNA的扩增。
  4. 根据权利要求1或2的扩增方法,其特征在于,所述第二步RPA是带有探针的RPA,且里面可添加可以识别/thf/或者/idSp/的核酸内切酶。
  5. 根据权利要求1或2的扩增方法,其特征在于,所述步骤2)可以与步骤1)在同一个容器中进行,也可以在不同容器中进行。
  6. 根据权利要求1或2的扩增方法,其特征在于,所述方法的所述第一步RPA或RT-RPA反应或第二步RPA反应的反应时间分别为5-30min;优选的,分别为10-15min。
  7. 根据权利要求1或2的扩增方法,其特征在于,所述第一步RPA或RT-RPA反应或第二步RPA反应的反应温度为35℃到45℃,优选的是37℃-42℃,更优选的是37℃或42℃。
  8. 根据权利要求1或2的扩增方法,其特征在于,步骤2)的第二步扩增反应中,探针被切割后的带有第一标记的产物与第二步中的带有第二标记的引物组成引物对,参与扩增并形成一端带有第一标记,一端带有第二标记的双链DNA,所述第一标记和第二标记分别选自FAM、FITC、BIOTIN、地高辛和TAMRA中的任意一种。
  9. 根据权利要求1或2的扩增方法,其特征在于,所述步骤1)使用第一步RPA或RT-RPA反应试剂进行,所述第一步RPA或RT-RPA反应试剂包括第一步RPA或RT-RPA反应的第一对引物对、缓冲液和/或RPA反应物。
  10. 根据权利要求1或2的扩增方法,其特征在于,所述步骤2)使用第二步RPA反应试剂进行,所述第二步RPA反应试剂包括所述第二对引物对和/或探针。
  11. 根据权利要求9或10的扩增方法,其特征在于,所述第二步RPA反应试剂只包括第二步RPA反应的引物对和/或探针。
  12. 一种核酸快速检测方法,其特征在于,其包括如下步骤:
    (1)获得待检测核酸;
    (2)使用权利要求1-11任意一项所述的巢式重组酶-聚合酶扩增方法扩增步骤(1)的核酸,获得反应产物;
    (3)将反应产物稀释后插入胶体金试纸条进行胶体金显色。
  13. 根据权利要求12的检测方法,其特征在于,所述步骤(3)的胶体金显色具体为:取第二步RPA反应产物加入到DEPC水中混合均匀进行稀释,吸取稀释产物置于胶体金点样孔中显色拍照。
  14. 根据权利要求12或13的检测方法,其特征在于,所述方法还包括荧光探针检测步骤。
  15. 根据权利要求12或13的检测方法,其特征在于,所述胶体金显色为夹心法。
  16. 根据权利要求15的检测方法,其特征在于,所述胶体层析试纸设置为:胶体金表面为链霉亲和素或FAM(或者FITC)抗体或TAMRA抗体或地高辛抗体;
  17. 根据权利要求15或16的检测方法,其特征在于,第一条T线为FAM(或者FITC)抗体或TAMRA抗体或地高辛抗体或链霉亲和素;T线与胶体金表面修饰的与小分子结合的大分子分别对应探针与下游引物上修饰的小分子标记物,第二条C线为抗IgG的抗体或者链霉亲和素抗体。
  18. 一种试剂盒,其特征在于,其包含用于权利要求1-11或权利要求12-17任意一项所述方法的引物对、探针、试剂、试纸条和/或其组合。
  19. 一种用于巢式重组酶-聚合酶扩增方法的检测试剂盒,其特征在于,所述检测试剂盒包括第一步RPA或RT-RPA反应试剂和第二步RPA反应试剂,所述第一步RPA或 RT-RPA反应试剂包括第一步RPA或RT-RPA反应的引物对、缓冲液和RPA反应物,第二步RPA反应试剂包括第二步RPA反应的引物对和/或探针。
  20. 根据权利要求19的检测试剂盒,其特征在于,所述第二步RPA反应试剂只包括第二步RPA反应的引物对和/或探针。
  21. 根据权利要求19或20的检测试剂盒,其特征在于,所述第一步RPA或RT-RPA反应试剂和第二步RPA反应试剂独立包装。
  22. 根据权利要求19或20的检测试剂盒,其特征在于,所述检测试剂盒还包括显色试纸条。
  23. 根据权利要求22的检测试剂盒,其特征在于,所述显色试纸条是胶体金试纸条。
  24. 根据权利要求19或20的检测试剂盒,其特征在于,所述第一步RPA或RT-RPA反应试剂反应完毕获得第一步产物后,在全部或部分所述第一步产物中直接加入第二步RPA反应试剂。
  25. 根据权利要求19或20的检测试剂盒,其特征在于,所述第一步RPA或RT-RPA反应试剂还包括第一反应容器,所述第一步RPA或RT-RPA反应和第二步RPA反应均在第一反应容器中进行。
  26. 根据权利要求19或20的检测试剂盒,其特征在于,所述第一步RPA或RT-RPA反应试剂还包括第一反应容器,所述第二步RPA反应试剂还包括第二反应容器,所述第一步RPA或RT-RPA反应在第一反应容器进行,在全部或部分所述第一步产物中直接加入第二步RPA反应试剂的过程在第二反应容器中进行。
PCT/CN2020/127937 2020-11-11 2020-11-11 一种巢式重组酶-聚合酶扩增方法及其应用 WO2022099487A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/127937 WO2022099487A1 (zh) 2020-11-11 2020-11-11 一种巢式重组酶-聚合酶扩增方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/127937 WO2022099487A1 (zh) 2020-11-11 2020-11-11 一种巢式重组酶-聚合酶扩增方法及其应用

Publications (1)

Publication Number Publication Date
WO2022099487A1 true WO2022099487A1 (zh) 2022-05-19

Family

ID=81601929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127937 WO2022099487A1 (zh) 2020-11-11 2020-11-11 一种巢式重组酶-聚合酶扩增方法及其应用

Country Status (1)

Country Link
WO (1) WO2022099487A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115541875A (zh) * 2022-09-27 2022-12-30 江苏迅睿生物技术有限公司 N基因检测引物及探针组、层析试纸条、制备方法、检测试剂盒、检测方法
CN116622805A (zh) * 2023-07-18 2023-08-22 九天览月生物科技(天津)有限公司 一种用于核酸检测的试剂盒

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017075649A1 (en) * 2015-11-04 2017-05-11 Joanne Macdonald Multiplex lateral flow devices and assays
CN107893103A (zh) * 2017-11-29 2018-04-10 默禾医疗科技(上海)有限公司 重组酶聚合酶扩增中重组酶和蛋白浓度比及活性定量法
CN111560469A (zh) * 2020-03-30 2020-08-21 广州和盛医疗科技有限公司 一组检测新冠病毒基因的引物及crispr序列组合及其应用
CN111621597A (zh) * 2020-05-09 2020-09-04 清华大学 一种病毒重组酶-聚合酶扩增检测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017075649A1 (en) * 2015-11-04 2017-05-11 Joanne Macdonald Multiplex lateral flow devices and assays
CN107893103A (zh) * 2017-11-29 2018-04-10 默禾医疗科技(上海)有限公司 重组酶聚合酶扩增中重组酶和蛋白浓度比及活性定量法
CN111560469A (zh) * 2020-03-30 2020-08-21 广州和盛医疗科技有限公司 一组检测新冠病毒基因的引物及crispr序列组合及其应用
CN111621597A (zh) * 2020-05-09 2020-09-04 清华大学 一种病毒重组酶-聚合酶扩增检测方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LIN, YANXING ET AL.: "Rapid Detection of Two Serotypes of the Vesicular Stomatitis Virus by a Duplex Fluorescent Reverse Transcription-Recombinase Polymerase Amplification Assay", CHINESE JOURNAL OF VIROLOGY, vol. 33, no. 5, 30 September 2017 (2017-09-30), pages 712 - 719, XP055930956 *
MOHAMED EL-THOLOTH, BAU HAIM H, SONG JINZHAO: "A Single and Two-Stage, Closed-Tube, Molecular Test for the 2019 Novel Coronavirus (COVID-19) at Home, Clinic, and Points of Entry", CHEMRXIV, 19 February 2020 (2020-02-19), pages 1 - 21, XP055730851, Retrieved from the Internet <URL:https://chemrxiv.org/articles/A_Single_and_Two-Stage_Closed-Tube_Molecular_Test_for_the_2019_Novel_Coronavirus_COVID-19_at_Home_Clinic_and_Points_of_Entry/11860137> [retrieved on 20200915] *
WEE SOON KEONG, SIVALINGAM SUPPIAH PARAMALINGAM, YAP ERIC PENG HUAT: "Rapid Direct Nucleic Acid Amplification Test without RNA Extraction for SARS-CoV-2 Using a Portable PCR Thermocycler", GENES, vol. 11, no. 6, pages 1 - 13, XP055930959, DOI: 10.3390/genes11060664 *
XIA SIMIN, CHEN XI: "Single-copy sensitive, field-deployable, and simultaneous dual-gene detection of SARS-CoV-2 RNA via modified RT–RPA", CELL DISCOVERY, vol. 6, no. 37, 1 December 2020 (2020-12-01), pages 1 - 4, XP055930967, DOI: 10.1038/s41421-020-0175-x *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115541875A (zh) * 2022-09-27 2022-12-30 江苏迅睿生物技术有限公司 N基因检测引物及探针组、层析试纸条、制备方法、检测试剂盒、检测方法
CN116622805A (zh) * 2023-07-18 2023-08-22 九天览月生物科技(天津)有限公司 一种用于核酸检测的试剂盒

Similar Documents

Publication Publication Date Title
WO2022057060A1 (zh) 多重检测呼吸道病毒核酸的方法及试剂盒
CN112481358A (zh) 一种巢式重组酶-聚合酶扩增方法及其应用
WO2022099487A1 (zh) 一种巢式重组酶-聚合酶扩增方法及其应用
CN112852921B (zh) 一种基于即时检测试纸条的核酸检测方法、检测探针及其试剂盒
WO2022077687A1 (zh) 一种新型crispr核酸检测方法及应用
CN106755593B (zh) 一种hpv分型检测的核酸组合及其应用和试剂盒
US20230193369A1 (en) Composition, reaction liquid and method for improving qpcr test performance, and use thereof
WO2023216612A1 (zh) 一种无扩增时间分辨荧光侧向层析检测方法检测沙门氏菌及耐药菌
WO2019205764A1 (zh) 一种检测微生物的方法及试剂盒
Weissenborn et al. Quantification of beta-human papillomavirus DNA by real-time PCR
CN112359143A (zh) 一种基于y型探针组的等温指数扩增方法及其应用
CN115948614B (zh) 一种基于CRISPR/Cas12a系统的核酸检测试剂盒和检测方法
Du et al. A simple rapid detection method of DNA based on ligation-mediated real-time fluorescence PCR
CN115927746A (zh) 用于诺如病毒和轮状病毒双重rt-rap检测的引物探针组、试剂盒及其应用
CN113481326B (zh) 一种等温核酸扩增反应试剂、等温核酸扩增方法及其应用
CN112553379A (zh) 基于液相芯片检测呼吸道传染病病毒的方法及试剂盒
CN106191314B (zh) 一种dna病毒的lamp检测试剂盒、检测方法及应用
Asa et al. Multiple gene detection using a selective fluorophore probe–RNA hybridization/graphene oxide quenching system
CN116411136B (zh) 一种同时检测牛诺如病毒和牛轮状病毒的引物探针组合、试剂盒及其应用
CN115807128B (zh) 一种用于检测呼吸道病原的核酸组合、试剂盒及检测方法
KR102514966B1 (ko) 실시간 중합효소연쇄반응을 이용한 파에코바이러스 검출 및 정량 방법
CN114317835B (zh) 一种水禽细小病毒、鸭肠炎病毒及鹅星状病毒的多重pcr检测引物组、试剂盒和检测方法
CN108315480B (zh) 一种检测树鼩腺病毒的实时荧光定量pcr引物、探针和试剂盒
CN117089596A (zh) 一种固相探针及固相多重荧光pcr检测方法
Zhang et al. Real-time detection of SARS-CoV-2 in clinical samples via ultrafast ligation-dependent RNA transcription amplification

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20961046

Country of ref document: EP

Kind code of ref document: A1