WO2022098008A1 - 에어로겔 블랭킷 제조방법 - Google Patents

에어로겔 블랭킷 제조방법 Download PDF

Info

Publication number
WO2022098008A1
WO2022098008A1 PCT/KR2021/015480 KR2021015480W WO2022098008A1 WO 2022098008 A1 WO2022098008 A1 WO 2022098008A1 KR 2021015480 W KR2021015480 W KR 2021015480W WO 2022098008 A1 WO2022098008 A1 WO 2022098008A1
Authority
WO
WIPO (PCT)
Prior art keywords
blanket
wet gel
organic solvent
airgel
drying
Prior art date
Application number
PCT/KR2021/015480
Other languages
English (en)
French (fr)
Inventor
박상우
백세원
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP21889473.1A priority Critical patent/EP4119499A4/en
Priority to CN202180029503.XA priority patent/CN115427352B/zh
Priority to US17/920,097 priority patent/US20230174381A1/en
Priority to JP2022564803A priority patent/JP7460255B2/ja
Publication of WO2022098008A1 publication Critical patent/WO2022098008A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/158Purification; Drying; Dehydrating
    • C01B33/1585Dehydration into aerogels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0091Preparation of aerogels, e.g. xerogels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/157After-treatment of gels
    • C01B33/159Coating or hydrophobisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the present invention relates to a method for manufacturing an airgel blanket, and more particularly, to a method for manufacturing an airgel blanket with improved drying efficiency of a wet gel blanket.
  • Airgel is an ultra-porous, high specific surface area ( ⁇ 500 m 2 /g) material having a porosity of about 90.0% to 99.9% and a pore size ranging from 1 nm to 100 nm. It is a material with the characteristics of Accordingly, not only airgel material development research, but also application research as transparent insulation materials, environmentally friendly high-temperature insulation materials, ultra-low dielectric thin films for high-integration devices, catalysts and catalyst carriers, electrodes for supercapacitors, and electrode materials for seawater desalination are being actively conducted.
  • airgel is super-insulation with a thermal conductivity of 0.300 W/m ⁇ K or less, which is lower than that of conventional organic insulators such as Styrofoam. that can be solved.
  • airgel is manufactured by preparing a hydrogel from silica precursors such as water glass and alkoxysilane series (TEOS, TMOS, MTMS, etc.), and removing the liquid component inside the hydrogel without destroying the microstructure.
  • silica precursors such as water glass and alkoxysilane series (TEOS, TMOS, MTMS, etc.
  • the hydrophobic silica airgel blanket in which hydrophobic silica airgel is formed on the fiber is widely used in construction or industrial sites as a functional insulating material that prevents corrosion by moisture, and such airgel blanket is generally used in the silica sol solution manufacturing step, gelation It is being manufactured through a step, an aging step, a surface modification step, and a drying step.
  • the drying step is performed by supercritical drying, which is an expensive process, and there is a problem that the organic solvent inside the hydrophobic silica airgel blanket cannot be completely removed by supercritical drying alone. . Therefore, in the airgel blanket subjected to only supercritical drying, the organic solvent inevitably remains inside, and the organic solvent remaining in this way becomes a cause of absorbing moisture when the airgel blanket is used and exposed to moisture, and the airgel blanket is water repellent. It lowers the performance, which is a cause of increasing the thermal conductivity of the airgel blanket, and causes a problem in that the durability of the airgel blanket is lowered.
  • the atmospheric drying process additionally carried out is carried out as a hot air drying process using air having a temperature of 150° C. to 180° C. under atmospheric pressure.
  • this additionally carried out atmospheric drying process causes an increase in the overall drying time when the airgel blanket is manufactured, thermal energy for generating the hot air is essentially consumed, and for treating exhaust gas generated in the atmospheric drying process
  • an exhaust gas treatment facility is essential.
  • Patent Document 1 KR10-2012-0070948A
  • the present invention has been devised to solve the problems of the prior art, and after the supercritical drying process, without performing a separate atmospheric drying process, the airgel blanket manufacturing method that can minimize the residual organic solvent from the airgel blanket To provide aim to
  • the present invention provides a method for manufacturing an airgel blanket.
  • the present invention comprises the steps of preparing a wet gel blanket containing an organic solvent (S10); Putting the wet gel blanket into a supercritical extraction device, and drying the wet gel blanket using supercritical carbon dioxide (S20); Reducing the pressure of the supercritical extraction device (S30); and supplying gaseous carbon dioxide to the depressurized supercritical extraction device to dry the wet gel blanket (S40).
  • the present invention provides an airgel blanket manufacturing method according to (1), wherein the organic solvent is alcohol.
  • the present invention provides a method for manufacturing an airgel blanket according to (1) or (2), wherein the wet gel blanket produced in step (S10) is a silica wet gel blanket.
  • step (S10) preparing a precursor composition comprising a silica precursor and an organic solvent (S1); Preparing a catalyst composition comprising an organic solvent, a catalyst and a surface modifier (S2); preparing a wet gel blanket by introducing the precursor composition and the catalyst composition into an impregnation tank, and passing a substrate for a blanket through the impregnation tank (S3); And it provides an airgel blanket manufacturing method comprising the step (S4) of adding and aging a surface modification solution containing a surface modifier to the wet gel blanket.
  • the wet gel blanket prepared in the step (S3) is impregnated with the precursor composition and the catalyst composition into the blanket substrate when the substrate for the blanket passes through the impregnation tank. It provides a method for manufacturing an airgel blanket, which is a gelled wet gel blanket.
  • the present invention provides a method for manufacturing an airgel blanket according to any one of (1) to (5), wherein the drying in step (S20) dries the wet gel blanket and extracts the organic solvent at the same time do.
  • the present invention provides a method for producing an airgel blanket in (6), wherein the organic solvent extracted in step (S20) is recycled to the step of preparing the wet gel blanket in step (S10).
  • the present invention is the method for producing an airgel blanket according to any one of (1) to (7), wherein the pressure reduction in step (S30) is carried out so that the pressure of the supercritical extraction device becomes 10 bar to 70 bar provides
  • the present invention provides a method for manufacturing an airgel blanket according to any one of (1) to (9), wherein the supply pressure of gaseous carbon dioxide supplied in step (S40) is 10 bar to 70 bar .
  • the present invention provides a method for manufacturing an airgel blanket according to any one of (1) to (10), wherein the supply temperature of the gaseous carbon dioxide supplied in the step (S40) is 60° C. or higher.
  • the present invention provides a method for manufacturing an airgel blanket according to any one of (1) to (11), wherein the drying in step (S40) is to extract the organic solvent while drying the wet gel blanket. do.
  • the present invention provides a method for producing an airgel blanket according to (12), wherein the organic solvent extracted in step (S40) is recycled to the step of preparing the wet gel blanket in step (S10).
  • the present invention according to any one of (1) to (13), wherein the airgel blanket manufacturing method includes the step of reducing the pressure of the supercritical extraction device to atmospheric pressure after drying in the step (S40) (S50) It provides an airgel blanket manufacturing method comprising a.
  • the present invention provides the airgel blanket manufacturing method according to any one of (1) to (14), wherein the organic solvent recovery rate is 98.00 wt% or more.
  • the organic solvent can be recovered to the maximum, thereby reducing the manufacturing cost of the airgel blanket and improving productivity.
  • the atmospheric pressure drying step can be omitted, thereby reducing the overall drying time.
  • the atmospheric drying process can be omitted, thereby reducing the amount of heat energy used for atmospheric drying, thereby improving productivity.
  • the atmospheric drying process can be omitted, so that an exhaust gas treatment facility for treating the exhaust gas generated in the atmospheric drying process is unnecessary.
  • FIG. 1 is a graph showing a change in pressure in a supercritical extraction device for each drying time according to Examples 1 to 3 of the present invention.
  • the present invention provides a method for manufacturing an airgel blanket with improved drying efficiency of the wet gel blanket.
  • the airgel blanket manufacturing method includes the steps of preparing a wet gel blanket including an organic solvent (S10); Putting the wet gel blanket into a supercritical extraction device, and drying the wet gel blanket using supercritical carbon dioxide (S20); Reducing the pressure of the supercritical extraction device (S30); and supplying gaseous carbon dioxide to the depressurized supercritical extraction device to dry the wet gel blanket (S40).
  • the airgel blanket obtained by the drying process of steps (S20) to (S40) is manufactured.
  • a step of preparing a wet gel blanket for the following, it may be a step of preparing a wet gel blanket including an organic solvent included in a sol solution and a surface modification solution.
  • the organic solvent may be an organic solvent that can be used in the preparation of the wet gel blanket, a specific example may be a polar organic solvent, and a more specific example may be alcohol.
  • the alcohol is a monohydric alcohol such as methanol, ethanol, isopropanol and butanol; And it may be at least one selected from the group consisting of polyhydric alcohols such as glycerol, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, and sorbitol. It may be at least one selected from the group consisting of monohydric alcohols having 1 to 6 carbon atoms, such as methanol, ethanol, isopropanol and butanol.
  • the wet gel blanket prepared in step (S10) may be a silica wet gel blanket prepared from a silica precursor, and accordingly, steps (S20) to (S40)
  • the airgel blanket obtained by the drying process may be a silica airgel blanket.
  • the step (S10) may be carried out including a silica sol solution preparation step, a gelation step, an aging step, and a surface modification step.
  • the step (S10) may include preparing a precursor composition including a silica precursor and an organic solvent (S1); Preparing a catalyst composition comprising an organic solvent, a catalyst and a surface modifier (S2); preparing a wet gel blanket by introducing the precursor composition and the catalyst composition into an impregnation tank, and passing a substrate for a blanket through the impregnation tank (S3); and adding a surface modification solution containing a surface modifier to the wet gel blanket and aging (S4).
  • step (S1) is a step of preparing a silica precursor for preparing a wet gel and an airgel, and may be performed by mixing the silica precursor with an organic solvent.
  • the silica precursor is a material that allows the airgel to contain silica, and includes tetra methyl ortho silicate (TMOS) and tetra ethyl ortho silicate (TEOS).
  • TMOS tetra methyl ortho silicate
  • TEOS tetra ethyl ortho silicate
  • methyl triethyl ortho silicate, dimethyl diethyl ortho silicate, tetra propyl ortho silicate, tetra isopropyl ortho silicate, tetrabutyl tetra butyl ortho silicate, tetra secondarybutyl ortho silicate, tetra tertiarybutyl ortho silicate, tetra hexyl ortho silicate, tetra cyclohexyl ortho silicate (tetra cyclohexyl ortho silicate) and tetra dodecyl ortho silicate (tetra dodecyl ortho silicate) may be at least one selected from the group consist
  • the silica precursor may be pre-hydrolyzed tetra ethyl ortho silicate (HTEOS), wherein the pre-hydrolyzed tetra ethyl ortho silicate has a broad molecular weight It is a pre-hydrolyzed ethyl polysilicate oligomer material having a distribution, and can control physical properties such as gelation time when synthesizing an oligomer from tetraethyl orthosilicate monomer by varying the degree of pre-hydrolysis (hydration degree). It can be easily applied according to the reaction conditions of
  • the organic solvent in step (S1) may be the same as the organic solvent described above.
  • step (S1) the silica precursor and the organic solvent are mixed in a weight ratio of 1.0:0.1 to 10.0, 1.0:0.5 to 5.0, 1.0:1.0 to 3.0, or 1.0:1.0 to 1.5 by weight. can be carried out.
  • the step (S2) is a step for preparing a catalyst composition for inducing gelation from the precursor composition prepared in the step (S1), by mixing an organic solvent, a catalyst and a surface modifier. can be carried out.
  • the organic solvent in step (S2) may be the same as the organic solvent described above, and as a specific example, it may be the same as the organic solvent in step (S1).
  • the catalyst may be a base catalyst, and specifically, as a material capable of forming pH conditions to induce gelation of the silica precursor, an inorganic base such as sodium hydroxide or potassium hydroxide; or an organic base such as ammonium hydroxide.
  • an inorganic base such as sodium hydroxide or potassium hydroxide
  • an organic base such as ammonium hydroxide.
  • the organic base is ammonium hydroxide (NH 4 OH), tetramethylammonium hydroxide (TMAH), tetraethylammonium hydroxide (TEAH), tetrapropylammonium hydroxide (TPAH), tetrabutylammonium hydroxide (TBAH), methylamine, ethylamine, isopropylamine, monoisopropylamine, diethylamine, diisopropylamine, dibutylamine, trimethylamine, triethylamine, triisopropylamine, tributylamine, choline, Monoethanolamine, diethanolamine, 2-aminoethanol, 2-(ethyl amino)ethanol, 2-(methyl amino)ethanol, N-methyl diethanolamine, dimethylaminoethanol, diethylaminoethanol, nitrilotriethanol, 2 It may be at least one selected from the group consisting of -(2-aminoethoxy)ethanol, 1-amino(2-
  • the surface modifier included in the catalyst composition may be an alkyl silane compound, and specific examples thereof include trimethylethoxysilane (TMES), trimethylsilanol (TMS), trimethylchlorosilane (Trimethylchlorosilane, TMCS), methyltrimethoxysilane (MTMS), methyltriethoxysilane (MTES), dimethyldiethoxysilane (DMDEOS), ethyltriethoxysilane, and phenyltriethoxysilane It may be at least one selected from the group.
  • TMES trimethylethoxysilane
  • TMS trimethylsilanol
  • TMCS Trimethylchlorosilane
  • MTMS methyltrimethoxysilane
  • MTES methyltriethoxysilane
  • DMDEOS dimethyldiethoxysilane
  • ethyltriethoxysilane ethyltriethoxysilane
  • the surface modifier can participate in the gelation reaction as a co-precursor and hydrophobize the formed silica wet gel blanket.
  • the alkyl silane compound may be gelled together with the silica precursor in the gelation step.
  • the alkyl silane compound may be trapped in the gel, and in this case, the alkyl silane compound may form an alkyl-Si-O-Si networking in the aging and surface modification steps to hydrophobize the silica wet gel blanket.
  • step (S2) 1.000:0.001 to 0.100:0.010 to 1.000, 1.00:0.01 to 0.08:0.01 to 0.50, or 1.00:0.02 to 0.06: It may be carried out by mixing in a weight ratio of 0.05 to 0.30.
  • the step (S3) is a step of impregnating a substrate for a blanket with silica sol and preparing a wet gel blanket through gelation. It may be carried out including the step of preparing a sol, impregnating the silica sol in the blanket substrate by passing the blanket substrate through the impregnation tank, and gelling the substrate.
  • the silica sol prepared by mixing the precursor composition and the catalyst composition may be gelled by itself, and at this time, while the substrate for blanket passes through the impregnation tank, silica is added to the substrate for blanket. Gelation may be effected as the sol is impregnated. That is, the wet gel blanket prepared in step (S3) may be a wet gel blanket in which the precursor composition and the catalyst composition are impregnated and gelled in the substrate for the blanket when the blanket passes through the impregnation tank.
  • the temperature of the silica sol is room temperature (23 ⁇ 5 °C) to 50 °C, room temperature to 40 °C, or room temperature to It may be 35 °C, there is an effect that the gelation proceeds stably within this range.
  • the gelation in step (S3) may be carried out for 5 minutes to 1 hour, 5 minutes to 30 minutes, or 10 minutes to 20 minutes, and within this range, gelation can be sufficiently induced. can have an effect.
  • the base material for the blanket may be appropriately selected according to the intended use, and may be, for example, inorganic fibers or organic fibers.
  • the base material for the blanket may be a film, sheet, net, fiber, porous body, foam, non-woven body, or a laminate of two or more layers thereof, and if necessary, the surface roughness may be formed or patterned.
  • the substrate for the blanket may be a fiber capable of further improving thermal insulation performance by an airgel formed from the silica sol by including a space or void in which the silica sol is easily inserted into the substrate for the blanket.
  • the fiber is polyethylene terephthalate, polyamide, polybenzimidazole, polyaramid, acrylic resin, phenol resin, polyester, polyether ether ketone (PEEK), polyolefin (polyethylene, polypropylene) or polyethylene-propylene copolymer, etc.), cellulose, carbon, cotton, wool, hemp, nonwoven fabric, glass fiber or ceramic wool, and a specific example may be glass fiber.
  • the glass fiber may be a glass fiber needle mat (glass fiber needle mat), in this case, the density of the glass fiber needle mat is 100 kg/m 3 to 150 kg/m 3 , 110 kg/m 3 to 140 kg/m 3 , or 120 kg/m 3 to 140 kg/m 3 may be one.
  • the step (S4) is a step of adding a surface modification solution containing a surface modifier to the wet gel blanket to prepare an airgel blanket with a hydrophobic surface to improve water repellency performance, and aging it. may be, and at this time, aging and surface modification may be performed at the same time.
  • the surface modification solution may include an organic solvent and a surface modifier, and in this case, the organic solvent may be the same as the organic solvent described above, and specifically, step (S1) And (S2) may be the same as the organic solvent of step.
  • the surface modifier in step (S4) may be an alkyl silane compound, and specific examples thereof include trimethylethoxysilane (TMES), trimethylsilanol (TMS), trimethylchlorosilane (Trimethylchlorosilane, TMCS), methyltrimethoxysilane (MTMS), methyltriethoxysilane (MTES), dimethyldiethoxysilane (DMDEOS), ethyltriethoxysilane, and phenyltriethoxysilane It may be at least one selected from the group.
  • TMES trimethylethoxysilane
  • TMS trimethylsilanol
  • TMCS Trimethylchlorosilane
  • MTMS methyltrimethoxysilane
  • MTES methyltriethoxysilane
  • DMDEOS dimethyldiethoxysilane
  • ethyltriethoxysilane ethyltriethoxysilane
  • step (S4) may be performed by mixing the organic solvent and the surface modifier in a weight ratio of 1.00:0.01 to 0.50, 1.0:0.1 to 0.3, or 1.0:0.1 to 0.2.
  • the step (S4) is at 60 °C to 100 °C, 70 °C to 90 °C, or 75 °C to 85 °C, 1 hour to 10 hours, 2 hours to 8 hours, or 3 hours It can be carried out for 7 hours, and within this range, there is an effect that can sufficiently induce surface modification.
  • the step (S20) is a step for performing supercritical drying to remove a solvent while maintaining the pore structure of the aged silica wet gel as it is, and is performed using supercritical carbon dioxide.
  • Supercritical carbon dioxide has a molecular density close to that of a liquid, but has a gas-like property due to low viscosity, fast diffusion, high thermal conductivity, high drying efficiency, and shortening of the drying process time.
  • a wet gel blanket is put into a supercritical drying reactor or a supercritical extractor, which is a supercritical extraction device, filled with carbon dioxide in a liquid state, and the organic solvent inside the wet gel blanket is removed. It may be carried out including a solvent replacement process for substituting carbon dioxide.
  • the temperature is raised to 40 °C to 80 °C at a constant temperature increase rate, specifically, at a rate of 0.1 °C/min to 10.0 °C/min, and then carbon dioxide is in a supercritical state.
  • a pressure equal to or higher than the pressure
  • carbon dioxide becomes supercritical at a temperature of 31 °C and a pressure of 73.8 bar.
  • the drying in step (S20) may be to extract the organic solvent at the same time as drying the wet gel blanket, as a specific example, the organic solvent may be extracted together with carbon dioxide, The extracted organic solvent may be recycled to the step of preparing the wet gel blanket of step (S10).
  • the drying in step (S20) may be to extract the organic solvent at the same time as drying the wet gel blanket, as a specific example, the organic solvent may be extracted together with carbon dioxide, The extracted organic solvent may be recycled to the step of preparing the wet gel blanket of step (S10).
  • the carbon dioxide and the organic solvent may be separated and recovered to reuse the organic solvent as described above.
  • the separation may be performed through a separate separator.
  • the carbon dioxide used in step (S20) is separated from the organic solvent, it may be recovered and reused in step (S20) and/or step (S40) to be described subsequently. In this way, by reusing carbon dioxide, an additional required amount of carbon dioxide input during drying of the wet gel blanket can be reduced, thereby preventing an increase in manufacturing cost and improving productivity.
  • step (S20) in order to remove all organic solvents in the wet gel blanket by supercritical drying, supercritical drying must be performed for a very long time, which is a high pressure and Since the high temperature must be maintained continuously, a lot of energy is consumed. Therefore, the drying in step (S20) may be carried out for 100 minutes to 720 minutes, 120 minutes to 360 minutes, or 150 minutes to 180 minutes from the time the pressurization is started, and within this range, the organic solvent in the wet gel blanket can be effectively removed.
  • the step (S30) is a step of reducing the pressure of the supercritical extraction device to obtain a wet gel blanket or an airgel blanket after the supercritical drying of the step (S20) is completed.
  • the pressure of the supercritical extraction device is 10 bar to 70 bar, 10 bar in order to efficiently carry out the drying of the step (S40) to be described later in the reduced pressure of step (S30). to 50 bar, 10 bar to 30 bar, or 15 bar to 25 bar.
  • the decompression of the step (S30) may include reducing the pressure so that the pressure of the supercritical extraction device becomes 30 bar to 70 bar, 40 bar to 70 bar, or 50 bar to 70 bar (S31); And the pressure of the supercritical extraction device may be carried out including the step (S32) of reducing the pressure to be 10 bar to 50 bar, 10 bar to 40 bar, 10 bar to 30 bar, or 15 bar to 25 bar, In this case, there is an effect to prevent safety problems that may occur due to sudden pressure drop.
  • the step (S40) is a step for additionally removing and extracting the organic solvent remaining in the wet gel blanket after the drying of the step (S20). can be carried out.
  • an additional atmospheric drying process is performed.
  • the atmospheric drying process is performed as a hot air drying process using air having a temperature of 150°C to 180°C under atmospheric pressure.
  • this additionally carried out atmospheric drying process causes an increase in the overall drying time when the airgel blanket is manufactured, thermal energy for generating the hot air is essentially consumed, and for treating exhaust gas generated in the atmospheric drying process There is a problem that an exhaust gas treatment facility is essential.
  • the atmospheric drying process can be omitted, While shortening the overall drying time and reducing the amount of thermal energy used for atmospheric drying, productivity is improved, and an exhaust gas treatment facility for processing exhaust gas generated in the atmospheric drying process is unnecessary.
  • the step (S40) is characterized in that the gaseous carbon dioxide is supplied instead of the supercritical carbon dioxide as in the step (S20).
  • the supply pressure of the gaseous carbon dioxide supplied in step (S40) may be 10 bar to 70 bar, 10 bar to 50 bar, 10 bar to 30 bar, or 15 bar to 25 bar. That is, the supply pressure of the gaseous carbon dioxide may be the same as the pressure of the supercritical extraction device depressurized in the step (S30).
  • the pressure of the depressurized supercritical extraction device for supplying the gaseous carbon dioxide was not separately pressurized at normal pressure, but after supercritical drying from the supercritical extraction device was completed, the pressure was reduced according to the step (S30). Therefore, there is no need to separately pressurize to maintain the pressure of the supercritical extraction device at the pressure.
  • the supply temperature of the gaseous carbon dioxide supplied in step (S40) is 60 °C or more, 60 °C to 120 °C, 60 °C to 100 °C, 70 °C to 100 °C, or 70 °C to It may be 90 °C, while minimizing the amount of power of the gas phase drying process within this range, there is an effect of maximally removing and extracting the remaining organic solvent.
  • the drying in step (S40) may be drying the wet gel blanket and extracting an organic solvent at the same time as in step (S20).
  • the organic solvent is It may be extracted together with carbon dioxide, and the extracted organic solvent may be recycled to the step of preparing the wet gel blanket in step (S10).
  • the wet gel blanket is additionally dried using gaseous carbon dioxide to remove the residual organic solvent and, at the same time, the organic solvent extracted therefrom is reused, thereby reducing the additional required amount of organic solvent input during the production of the wet gel blanket. Accordingly, there is an effect of improving productivity by preventing an increase in manufacturing cost.
  • the carbon dioxide and the organic solvent may be separated and recovered to reuse the organic solvent as described above.
  • the separation may be performed through a separate separator.
  • the carbon dioxide used in step (S40) is separated from the organic solvent, it can be recovered and reused in step (S20) and/or step (S40). In this way, by reusing carbon dioxide, an additional required amount of carbon dioxide input during drying of the wet gel blanket can be reduced, thereby preventing an increase in manufacturing cost and improving productivity.
  • the drying in step (S40) may be performed for 10 minutes to 60 minutes, 20 minutes to 50 minutes, or 25 minutes to 40 minutes from the time when the pressure reduction in step (S30) is completed. And within this range, the organic solvent in the airgel blanket can be removed to the maximum.
  • the airgel blanket manufacturing method may include the step (S50) of reducing the pressure of the supercritical extraction device to atmospheric pressure after the drying of the step (S40).
  • the step (S50) may be a step for obtaining an airgel blanket from which the organic solvent is removed and extracted.
  • the recovery rate of the organic solvent is 98.00 wt% or more, 98.00 wt% to 100.00 wt%, 98.20 wt% to 99.99 wt%, or 98.23 wt% to 99.57 wt% it could be
  • the present invention provides an airgel blanket manufactured by the airgel blanket manufacturing method.
  • the airgel blanket may have uniform thermal conductivity, and overall thermal insulation properties may be greatly improved by the formation of uniform thermal conductivity in the blanket.
  • the airgel blanket may include: a base material for a blanket; and silica airgel formed inside and on the surface of the substrate for blanket, wherein the moisture impregnation rate is 0.1 wt% to 5.0 wt%, 1.0 wt% to 4.0 wt%, 2.0 wt% to 3.5 wt%, or 2.6 wt% to 3.4 wt% % may be.
  • the airgel blanket may include: a base material for a blanket; and silica airgel formed inside and on the surface of the substrate for blanket, and having room temperature thermal conductivity of 30.00 mW/mK or less, 10.00 mW/mK to 30.00 mW/mK, 15.00 mW/mK to 20.00 mW/mK, 18.00 mW/mK to It may be 19.00 mW/mK, or 18.09 mW/mK to 18.83 mW/mK.
  • the airgel blanket is useful as an insulator, thermal insulation material, or non-combustible material for plant facilities for thermal insulation and cold storage such as piping of various industrial facilities or industrial furnaces, as well as aircraft, ships, automobiles, building structures, etc. can be used
  • a silica precursor composition was prepared by mixing prehydrolyzed tetra ethyl ortho silicate and ethanol in a weight ratio of 1:1.1.
  • a catalyst composition was prepared by mixing ethanol, sodium hydroxide as a base catalyst, and trimethylethoxysilane (TMES) as a surface modifier in a weight ratio of 1:0.046:0.14.
  • TMES trimethylethoxysilane
  • the silica precursor composition and the catalyst composition prepared above in a 15 L impregnation tank were added in a weight ratio of 1:0.941 and mixed to prepare a silica sol, and the temperature of the silica sol was maintained at room temperature (23 ⁇ 5 ° C).
  • gelation was performed to prepare a gelled wet gel blanket. At this time, the gelation was completed between 10 and 20 minutes.
  • a surface modification solution in which ethanol and trimethylethoxysilane (TMES) were mixed in a weight ratio of 1:0.128 as a surface modifier was added to the gelled wet gel blanket, and aged at 75° C. for 5 hours.
  • Wet gel containing ethanol A blanket was prepared.
  • the wet gel blanket containing the prepared ethanol was put into a 70 L supercritical extractor, and carbon dioxide was injected. Then, the temperature of the supercritical extractor was raised to 80° C. for 15 minutes, and carbon dioxide was controlled to a supercritical state by pressurizing it to 170 bar, and then supercritical drying was performed on the wet gel blanket containing ethanol. At this time, the drying was carried out for 165 minutes from the start of the pressurization, and the ethanol extracted with supercritical carbon dioxide was recovered through a separator.
  • Gas phase carbon dioxide at a temperature of 80° C. was supplied to a supercritical extractor whose pressure was reduced to 20 bar and circulated, and vapor phase drying was performed on the wet gel blanket in which ethanol remained. At this time, the drying was carried out for 30 minutes from the time when the pressure reduction was completed, and the ethanol extracted with carbon dioxide in the gas phase was recovered through a separator.
  • Example 1 it was carried out in the same manner as in Example 1, except that the temperature of the silica sol was raised to 35° C. instead of room temperature and maintained when impregnated while passing the fiber mat as the base material for the blanket.
  • Example 1 when the wet gel blanket containing ethanol was prepared, a surface modification solution was added, and it was carried out in the same manner as in Example 1, except that it was aged at 85°C instead of 75°C for 5 hours. .
  • Example 1 The wet gel blanket containing ethanol prepared in Example 1 was carried out in the same manner as in Example 1, except that the drying process was performed as follows.
  • the wet gel blanket containing ethanol prepared in Example 1 was put into a 70 L supercritical extractor, and carbon dioxide was injected. Then, the temperature of the supercritical extractor was raised to 80° C. for 15 minutes, and carbon dioxide was controlled to a supercritical state by pressurizing it to 170 bar, and then supercritical drying was performed on the wet gel blanket containing ethanol. At this time, the drying was carried out for 165 minutes from the start of the pressurization, and the ethanol extracted with supercritical carbon dioxide was recovered through a separator.
  • the wet gel blanket on which the obtained ethanol remained was placed in a dryer, and atmospheric drying was performed using hot air using air having a temperature of 180° C. at normal pressure. At this time, atmospheric drying was performed for 50 minutes, and exhaust gas generated in atmospheric drying was discharged using a separate exhaust gas treatment device.
  • Comparative Example 1 it was carried out in the same manner as in Comparative Example 1, except that the airgel blanket was obtained as a wet gel blanket on which supercritical drying was completed without atmospheric drying.
  • Ethanol recovery rate (wt%): The amount of ethanol recovered through the drying process compared to the total amount of ethanol input as a solvent when the airgel blanket was manufactured was calculated and expressed as a percentage.
  • Electricity consumed in the gas phase drying process or atmospheric drying process (kWh/m 2 ): For 1 roll of wet gel blanket (4 m 2 ), the amount of electricity consumed in the vapor phase drying process of Examples and the energy consumed in the atmospheric drying process of Comparative Examples The amount of power was measured and displayed.
  • Moisture impregnation rate (% by weight): For each of the airgel blankets prepared in each Example and Comparative Example, three specimens of 254 mm X 254 mm (thickness less than 100 mm) were prepared each, and a temperature of 21 ⁇ 2 ° C. The specimen was floated on distilled water, and a 6.4 mm mesh screen was placed on the specimen and submerged down to 127 mm below the water surface and impregnated. After 15 minutes, the mesh screen was removed, and when the specimen floated, the specimen was picked up with a clamp and hung vertically for 60 ⁇ 5 seconds. Then, the weight increase rate was confirmed by measuring the weight before and after the impregnation, and the average value of the three specimens was expressed as the moisture impregnation rate.
  • Room temperature thermal conductivity (mW/mK): Prepare a 30 cm X 30 cm size specimen from the airgel blanket prepared in each Example and Comparative Example, and use NETZSCH's HFM 436 Lambda equipment at room temperature (23 ⁇ 5 °C) ) was measured for thermal conductivity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Silicon Compounds (AREA)

Abstract

본 발명은 에어로겔 블랭킷 제조방법에 관한 것으로, 유기 용매를 포함하는 습윤겔 블랭킷을 제조하는 단계; 습윤겔 블랭킷을 초임계 추출장치에 투입하고, 초임계 이산화탄소를 이용하여 습윤겔 블랭킷을 건조하는 단계; 초임계 추출장치의 압력을 감압하는 단계; 및 감압된 초임계 추출장치에 기상의 이산화탄소를 공급하여 습윤겔 블랭킷을 건조하는 단계를 포함하는 에어로겔 블랭킷 제조방법에 관한 것이다.

Description

에어로겔 블랭킷 제조방법
[관련출원과의 상호인용]
본 발명은 2020년 11월 9일에 출원된 한국 특허 출원 제10-2020-0148448호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
[기술분야]
본 발명은 에어로겔 블랭킷 제조방법에 관한 것으로, 구체적으로 습윤겔 블랭킷의 건조 효율을 향상시킨 에어로겔 블랭킷 제조방법에 관한 것이다.
에어로겔(aerogel)은 90.0 % 내지 99.9 % 정도의 기공율과 1 nm 내지 100 nm 범위의 기공크기를 갖는 초다공성의 고비표면적(≥500 m2/g) 물질로서, 뛰어난 초경량/초단열/초저유전 등의 특성을 갖는 재료이다. 이에, 에어로겔 소재 개발연구는 물론, 투명 단열재 및 환경 친화적 고온형 단열재, 고집적 소자용 극저유전 박막, 촉매 및 촉매 담체, 슈퍼 커패시터용 전극, 해수 담수화용 전극 재료로서의 응용 연구도 활발히 진행되고 있다.
에어로겔의 가장 큰 장점은 종래 스티로폼 등의 유기 단열재보다 낮은 0.300 W/m·K 이하의 열전도도를 보이는 슈퍼단열성(super-insulation)인 점과 유기 단열재의 치명적인 약점인 화재 취약성과 화재시 유해가스 발생을 해결할 수 있다는 점이다.
일반적으로 에어로겔은 물유리, 알콕시실란(alkoxysilane) 계열(TEOS, TMOS, MTMS 등) 등의 실리카 전구체로부터 하이드로겔을 제조하고, 하이드로겔 내부의 액체 성분을 미세구조 파괴 없이 제거하여 제조되고 있다.
특히, 섬유에 소수성의 실리카 에어로겔을 형성한 소수성 실리카 에어로겔 블랭킷은 수분에 의한 부식을 막아주는 기능성 단열 소재로서 건설 또는 산업 현장에서 광범위하게 사용되고 있으며, 이러한 에어로겔 블랭킷은 일반적으로 실리카 졸 용액 제조 단계, 겔화 단계, 숙성 단계, 표면개질 단계 및 건조 단계를 통해 제조되고 있다.
그러나, 상기와 같은 종래의 제조방법 중 건조 단계는 초임계 건조로 실시되는데, 이는 고가의 공정에 해당하고, 초임계 건조만으로는 소수성 실리카 에어로겔 블랭킷의 내부의 유기 용매를 완전히 제거할 수 없는 문제가 있다. 따라서, 초임계 건조만을 실시한 에어로겔 블랭킷은 내부에 유기 용매가 잔류할 수 밖에 없고, 이렇게 잔류된 유기 용매는 에어로겔 블랭킷의 사용 시, 수분에 노출되었을 때, 수분을 흡습하는 원인이 되어 에어로겔 블랭킷의 발수 성능을 저하시키고, 이는 곧 에어로겔 블랭킷의 열전도도를 상승시키는 원인이 되며, 에어로겔 블랭킷의 내구성이 저하되는 문제를 발생시킨다.
이에, 상기와 같은 문제점을 해결하기 위해, 에어로겔 블랭킷의 초임계 건조 이후에, 추가적으로 상압 건조 공정을 실시하는 방안이 제시되었다. 초임계 건조 이후에, 추가적으로 실시되는 상압 건조 공정은 대기압 하에서, 150 ℃ 내지 180 ℃의 온도를 갖는 공기(air)를 이용한 열풍 건조 공정으로 실시된다. 그러나, 이러한 추가적으로 실시되는 상압 건조 공정은 에어로겔 블랭킷 제조 시, 전체 건조 시간을 증가시키는 원인이 되고, 상기 열풍을 생성하기 위한 열에너지가 필수적으로 소모되며, 상압 건조 공정에서 발생되는 배기가스를 처리하기 위한 배기가스 처리 시설이 필수적으로 요구되는 문제가 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) KR10-2012-0070948A
본 발명은 상기 종래기술의 문제점을 해결하기 위하여 안출된 것으로, 초임계 건조 공정 이후, 별도의 상압 건조 공정을 실시하지 않으면서도 에어로겔 블랭킷으로부터 잔류 유기 용매를 최소화할 수 있는 에어로겔 블랭킷 제조방법을 제공하는 것을 목적으로 한다.
상기 과제를 해결하기 위하여, 본 발명은 에어로겔 블랭킷 제조방법을 제공한다.
(1) 본 발명은 유기 용매를 포함하는 습윤겔 블랭킷을 제조하는 단계(S10); 습윤겔 블랭킷을 초임계 추출장치에 투입하고, 초임계 이산화탄소를 이용하여 습윤겔 블랭킷을 건조하는 단계(S20); 초임계 추출장치의 압력을 감압하는 단계(S30); 및 감압된 초임계 추출장치에 기상의 이산화탄소를 공급하여 습윤겔 블랭킷을 건조하는 단계(S40)를 포함하는 에어로겔 블랭킷 제조방법을 제공한다.
(2) 본 발명은 상기 (1)에 있어서, 상기 유기 용매는 알코올인 것인 에어로겔 블랭킷 제조방법을 제공한다.
(3) 본 발명은 상기 (1) 또는 (2)에 있어서, 상기 (S10) 단계에서 제조되는 습윤겔 블랭킷은 실리카 습윤겔 블랭킷인 에어로겔 블랭킷 제조방법을 제공한다.
(4) 본 발명은 상기 (1) 내지 (3) 중 어느 하나에 있어서, 상기 (S10) 단계는, 실리카 전구체 및 유기 용매를 포함하는 전구체 조성물을 제조하는 단계(S1); 유기 용매, 촉매 및 표면개질제를 포함하는 촉매 조성물을 제조하는 단계(S2); 전구체 조성물 및 촉매 조성물을 함침조에 투입하고, 상기 함침조에 블랭킷용 기재를 통과시켜 습윤겔 블랭킷을 제조하는 단계(S3); 및 습윤겔 블랭킷에 표면개질제를 포함하는 표면개질 용액을 첨가하고 숙성시키는 단계(S4)를 포함하는 것인 에어로겔 블랭킷 제조방법을 제공한다.
(5) 본 발명은 상기 (4)에 있어서, 상기 (S3) 단계에서 제조된 습윤겔 블랭킷은, 상기 블랭킷용 기재가 함침조를 통과할 때, 전구체 조성물 및 촉매 조성물이 블랭킷용 기재에 함침 및 겔화된 습윤겔 블랭킷인 것인 에어로겔 블랭킷 제조방법을 제공한다.
(6) 본 발명은 상기 (1) 내지 (5) 중 어느 하나에 있어서, 상기 (S20) 단계의 건조는 습윤겔 블랭킷을 건조함과 동시에, 유기 용매를 추출하는 것인 에어로겔 블랭킷 제조방법을 제공한다.
(7) 본 발명은 상기 (6)에 있어서, 상기 (S20) 단계에서 추출된 유기 용매는 상기 (S10) 단계의 습윤겔 블랭킷을 제조하는 단계로 재순환되는 것인 에어로겔 블랭킷 제조방법을 제공한다.
(8) 본 발명은 상기 (1) 내지 (7) 중 어느 하나에 있어서, 상기 (S30) 단계의 감압은 초임계 추출장치의 압력이 10 bar 내지 70 bar가 되도록 실시되는 것인 에어로겔 블랭킷 제조방법을 제공한다.
(9) 본 발명은 상기 (1) 내지 (8) 중 어느 하나에 있어서, 상기 (S30) 단계의 감압은, 초임계 추출장치의 압력이 50 bar 내지 70 bar가 되도록 감압하는 단계(S31); 및 초임계 추출장치의 압력이 10 bar 내지 50 bar가 되도록 감압하는 단계(S32)를 포함하여 실시되는 것인 에어로겔 블랭킷 제조방법을 제공한다.
(10) 본 발명은 상기 (1) 내지 (9) 중 어느 하나에 있어서, 상기 (S40) 단계에서 공급되는 기상의 이산화탄소의 공급 압력은 10 bar 내지 70 bar인 것인 에어로겔 블랭킷 제조방법을 제공한다.
(11) 본 발명은 상기 (1) 내지 (10) 중 어느 하나에 있어서, 상기 (S40) 단계에서 공급되는 기상의 이산화탄소의 공급 온도는 60 ℃ 이상인 것인 에어로겔 블랭킷 제조방법을 제공한다.
(12) 본 발명은 상기 (1) 내지 (11) 중 어느 하나에 있어서, 상기 (S40) 단계의 건조는 습윤겔 블랭킷을 건조함과 동시에, 유기 용매를 추출하는 것인 에어로겔 블랭킷 제조방법을 제공한다.
(13) 본 발명은 상기 (12)에 있어서, 상기 (S40) 단계에서 추출된 유기 용매는 상기 (S10) 단계의 습윤겔 블랭킷을 제조하는 단계로 재순환되는 것인 에어로겔 블랭킷 제조방법을 제공한다.
(14) 본 발명은 상기 (1) 내지 (13) 중 어느 하나에 있어서, 상기 에어로겔 블랭킷 제조방법은 상기 (S40) 단계의 건조 후, 초임계 추출장치의 압력을 상압으로 감압하는 단계(S50)를 포함하는 것인 에어로겔 블랭킷 제조방법을 제공한다.
(15) 본 발명은 상기 (1) 내지 (14) 중 어느 하나에 있어서, 상기 에어로겔 블랭킷 제조방법은 유기 용매의 회수율이 98.00 중량% 이상인 에어로겔 블랭킷 제조방법을 제공한다.
본 발명에 따른 에어로겔 블랭킷 제조방법에 의하는 경우, 건조 이후, 에어로겔 블랭킷의 잔류 유기 용매를 최소화하여, 잔류 유기 용매에 의한 물성 저하를 방지할 수 있는 효과가 있다.
또한, 본 발명에 따른 에어로겔 블랭킷 제조방법에 의하는 경우, 유기 용매를 최대한으로 회수할 수 있어, 에어로겔 블랭킷의 제조원가를 절감하여, 생산성을 향상시킬 수 있는 효과가 있다.
또한, 본 발명에 따른 에어로겔 블랭킷 제조방법에 의하는 경우, 상압 건조 공정을 생략할 수 있어, 전체 건조 시간을 단축할 수 있는 효과가 있다.
또한, 본 발명에 따른 에어로겔 블랭킷 제조방법에 의하는 경우, 상압 건조 공정을 생략할 수 있어, 상압 건조를 위한 열에너지 사용량을 절감하여, 생산성을 향상시킬 수 있는 효과가 있다.
또한, 본 발명에 따른 에어로겔 블랭킷 제조방법에 의하는 경우, 상압 건조 공정을 생략할 수 있어, 상압 건조 공정에서 발생되는 배기가스를 처리하기 위한 배기가스 처리 시설이 불필요하다.
도 1은 본 발명의 실시예 1 내지 3에 따른 건조 시간 별 초임계 추출장치 내 압력의 변화를 나타내는 그래프이다.
도 2는 본 발명의 비교예 1 내지 3에 따른 건조 시간 별 초임계 추출장치 내 압력의 변화를 나타내는 그래프이다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 발명의 설명 및 청구범위에서 사용된 용어나 단어는, 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명은 습윤겔 블랭킷의 건조 효율을 향상시킨 에어로겔 블랭킷 제조방법을 제공한다.
본 발명의 일 실시예에 따르면, 상기 에어로겔 블랭킷 제조방법은 유기 용매를 포함하는 습윤겔 블랭킷을 제조하는 단계(S10); 습윤겔 블랭킷을 초임계 추출장치에 투입하고, 초임계 이산화탄소를 이용하여 습윤겔 블랭킷을 건조하는 단계(S20); 초임계 추출장치의 압력을 감압하는 단계(S30); 및 감압된 초임계 추출장치에 기상의 이산화탄소를 공급하여 습윤겔 블랭킷을 건조하는 단계(S40)를 포함하는 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 유기 용매를 포함하는 습윤겔 블랭킷을 제조하는 단계(S10)는, 이어서 실시되는 (S20) 단계 내지 (S40) 단계의 건조 공정에 의해 수득되는 에어로겔 블랭킷을 제조하기 위한 습윤겔 블랭킷을 제조하는 단계로서, 졸 용액 및 표면개질 용액 등에 포함되는 유기 용매를 포함하는 습윤겔 블랭킷을 제조하는 단계일 수 있다.
본 발명의 일 실시예에 따르면, 상기 유기 용매는 습윤겔 블랭킷의 제조 시 사용될 수 있는 유기 용매일 수 있고, 구체적인 예로 극성 유기 용매일 수 있으며, 더욱 구체적인 예로 알코올인 것일 수 있다. 여기서, 상기 알코올은 메탄올, 에탄올, 이소프로판올 및 부탄올 등과 같은 1가 알코올; 및 글리세롤, 에틸렌글리콜, 프로필렌글리콜, 디에틸렌글리콜, 디프로필렌글리콜 및 솔비톨 등과 같은 다가 알코올로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 구체적인 예로 물 및 향후 제조되는 습윤겔과의 혼화성을 고려하여, 메탄올, 에탄올, 이소프로판올 및 부탄올 등과 같은 탄소수 1 내지 6의 1가 알코올로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S10) 단계에서 제조된 습윤겔 블랭킷은, 실리카 전구체로부터 제조된 실리카 습윤겔 블랭킷일 수 있고, 이에 따라 이어서 실시되는 (S20) 단계 내지 (S40) 단계의 건조 공정에 의해 수득되는 에어로겔 블랭킷은 실리카 에어로겔 블랭킷일 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S10) 단계는 실리카 졸 용액 제조 단계, 겔화 단계, 숙성 단계 및 표면개질 단계를 포함하여 실시될 수 있다. 구체적인 예로, 상기 (S10) 단계는 실리카 전구체 및 유기 용매를 포함하는 전구체 조성물을 제조하는 단계(S1); 유기 용매, 촉매 및 표면개질제를 포함하는 촉매 조성물을 제조하는 단계(S2); 전구체 조성물 및 촉매 조성물을 함침조에 투입하고, 상기 함침조에 블랭킷용 기재를 통과시켜 습윤겔 블랭킷을 제조하는 단계(S3); 및 습윤겔 블랭킷에 표면개질제를 포함하는 표면개질 용액을 첨가하고 숙성시키는 단계(S4)를 포함하는 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S1) 단계는 습윤겔 및 에어로겔을 제조하기 위한 실리카 전구체를 준비하는 단계로서, 실리카 전구체를 유기 용매와 혼합하여 실시될 수 있다.
본 발명의 일 실시예에 따르면, 상기 실리카 전구체는 에어로겔이 실리카를 함유할 수 있도록 하는 물질로서, 테트라 메틸 오쏘 실리케이트(tetra methyl ortho silicate; TMOS), 테트라 에틸 오쏘 실리케이트(tetra ethyl ortho silicate; TEOS), 메틸 트리에틸 오쏘 실리케이트(methyl triethyl ortho silicate), 디메틸 디에틸 오쏘 실리케이트(dimethyl diethyl ortho silicate), 테트라 프로필 오쏘 실리케이트(tetra propyl ortho silicate), 테트라 이소프로필 오쏘 실리케이트(tetra isopropyl ortho silicate), 테트라 부틸 오쏘 실리케이트(tetra butyl ortho silicate), 테트라 세컨더리부틸 오쏘 실리케이트(tetra secondarybutyl ortho silicate), 테트라 터셔리부틸 오쏘 실리케이트(tetra tertiarybutyl ortho silicate), 테트라 헥실 오쏘 실리케이트(tetr ahexyl ortho silicate), 테트라 시클로헥실 오쏘 실리케이트(tetra cyclohexyl ortho silicate) 및 테트라 도데실 오쏘 실리케이트(tetra dodecyl ortho silicate)로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 또한 상기 화합물들의 전가수분해물(pre-hydrolysate)이 사용될 수도 있다. 전가수분해물을 사용하는 경우, 산의 첨가가 불필요하며, 실리카 전구체의 가수분해 공정을 단축 또는 생략할 수 있고, 표면개질 효과를 촉진시킬 수 있다.
본 발명의 일 실시예에 따르면, 상기 실리카 전구체는 전가수분해된 테트라 에틸 오쏘 실리케이트(pre-hydrolyzed tetra ethyl ortho silicate, HTEOS)일 수 있고, 여기서, 상기 전가수분해된 테트라 에틸 오쏘 실리케이트는 넓은 분자량 분포를 가지는 전가수분해된 에틸 폴리실리케이트 올리고머 물질로, 전가수분해 정도(수화도)를 달리하여 테트라 에틸 오쏘 실리케이트 단량체로부터 올리고머 형태로 합성할 때 겔화 시간 등의 물성을 조절해 줄 수 있기 때문에 사용자의 반응 조건에 맞춰 쉽게 적용될 수 있고, 최종 결과물의 재현성이 우수하여, 균일한 품질을 유지할 수 있는 효과가 있다.
본 발명의 일 실시예에 따르면, 상기 (S1) 단계의 유기 용매는 앞서 기재한 유기 용매와 동일한 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S1) 단계는 실리카 전구체 및 유기 용매를 1.0:0.1 내지 10.0, 1.0:0.5 내지 5.0, 1.0:1.0 내지 3.0, 또는 1.0:1.0 내지 1.5의 중량비로 혼합하여 실시될 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S2) 단계는 상기 (S1) 단계에서 제조된 전구체 조성물로부터 겔화를 유도하기 위한 촉매 조성물을 제조하기 위한 단계로서, 유기 용매, 촉매 및 표면개질제를 혼합하여 실시될 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S2) 단계의 유기 용매는 앞서 기재한 유기 용매와 동일한 것일 수 있고, 구체적인 예로, 상기 (S1) 단계의 유기 용매와 동일한 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 촉매는 염기 촉매일 수 있고, 구체적인 예로 상기 실리카 전구체의 겔화가 유도되도록 pH 조건을 형성할 수 있게 하는 물질로서, 수산화나트륨, 수산화칼륨 등의 무기 염기; 또는 수산화암모늄과 같은 유기 염기일 수 있다. 구체적으로 상기 유기 염기는 수산화암모늄(NH4OH), 테트라메틸암모늄 히드록시드(TMAH), 테트라에틸암모늄 히드록시드(TEAH), 테트라프로필암모늄 히드록시드(TPAH), 테트라부틸암모늄 히드록시드(TBAH), 메틸아민, 에틸아민, 이소프로필아민, 모노이소프로필아민, 디에틸아민, 디이소프로필아민, 디부틸아민, 트리메틸아민, 트리에틸아민, 트리이소프로필아민, 트리부틸아민, 콜린, 모노에탄올아민, 디에탄올아민, 2-아미노에탄올, 2-(에틸 아미노)에탄올, 2-(메틸 아미노)에탄올, N-메틸 디에탄올아민, 디메틸아미노에탄올, 디에틸아미노에탄올, 니트릴로트리에탄올, 2-(2-아미노에톡시)에탄올, 1-아미노-2-프로판올, 트리에탄올아민, 모노프로판올아민 및 디부탄올아민으로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
본 발명의 일 실시예에 따르면, 상기 촉매 조성물에 포함되는 표면개질제는 알킬 실란 화합물일 수 있고, 구체적인 예로 트리메틸에톡시실란(trimethylethoxysilane, TMES), 트리메틸실라놀(TMS), 트리메틸클로로실란(Trimethylchlorosilane, TMCS), 메틸트리메톡시실란(methyltrimethoxysilane, MTMS), 메틸트리에톡시실란(MTES), 디메틸디에톡시실란(DMDEOS), 에틸트리에톡시실란(ethyltriethoxysilane) 및 페닐트리에톡시실란(phenyltriethoxysilane)으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 촉매 조성물에 표면개질제를 포함함으로써, 상기 표면개질제가 공동 전구체(co-precursor)로서 겔화 반응에 참여할 수 있고, 형성된 실리카 습윤겔 블랭킷을 소수화시킬 수 있다. 상기 알킬 실란 화합물은 겔화 단계에서 실리카 전구체와 함께 겔화 될 수 있다. 또한, 상기 알킬 실란 화합물은 겔 안에 갖힐 수 있고, 이 때, 알킬 실란 화합물은 숙성 및 표면개질 단계에서 알킬-Si-O-Si 네트워킹을 형성하여 실리카 습윤겔 블랭킷을 소수화시킬 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S2) 단계는 유기 용매, 촉매 및 표면개질제를 1.000:0.001 내지 0.100:0.010 내지 1.000, 1.00:0.01 내지 0.08:0.01 내지 0.50, 또는 1.00:0.02 내지 0.06:0.05 내지 0.30의 중량비로 혼합하여 실시될 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S3) 단계는 블랭킷용 기재에 실리카 졸을 함침시키고, 겔화를 통하여 습윤겔 블랭킷을 제조하는 단계로서, 전구체 조성물 및 촉매 조성물을 함침조에 투입하고 혼합하여 실리카 졸을 제조하고, 상기 함침조에 블랭킷용 기재를 통과시켜 블랭킷용 기재에 실리카 졸을 함침시키고, 겔화시키는 단계를 포함하여 실시될 수 있다.
본 발명의 일 실시예에 따르면, 상기 전구체 조성물 및 촉매 조성물이 혼합되어 제조된 실리카 졸은 그 자체로서 겔화가 실시될 수 있고, 이 때 함침조를 블랭킷용 기재가 통과하면서, 블랭킷용 기재에 실리카 졸이 함침되면서 겔화가 실시될 수 있다. 즉, 상기 (S3) 단계에서 제조된 습윤겔 블랭킷은, 상기 블랭킷이 함침조를 통과할 때, 전구체 조성물 및 촉매 조성물이 블랭킷용 기재에 함침 및 겔화된 습윤겔 블랭킷인 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S3) 단계에서 상기 함침조에 블랭킷용 기재를 통과시킬 때, 실리카 졸의 온도는 상온(23±5 ℃) 내지 50 ℃, 상온 내지 40 ℃, 또는 상온 내지 35 ℃일 수 있고, 이 범위 내에서 겔화가 안정적으로 진행되는 효과가 있다.
본 발명의 일 실시예에 따르면, 상기 (S3) 단계에서 겔화는 5 분 내지 1 시간, 5 분 내지 30 분, 또는 10 분 내지 20 분 동안 실시될 수 있고, 이 범위 내에서 겔화를 충분히 유도할 수 있는 효과가 있다.
본 발명의 일 실시예에 따르면, 상기 블랭킷용 기재는 사용되는 용도에 따라 적절하게 선택될 수 있고, 구체적인 예로 무기섬유 또는 유기섬유일 수 있다. 더욱 구체적인 예로, 상기 블랭킷용 기재는 필름, 시트, 네트, 섬유, 다공질체, 발포체, 부직포체 또는 이들의 2층 이상의 적층체일 수 있고, 필요에 따라 표면에 표면조도가 형성되거나 패턴화된 것일 수 있다. 상기 블랭킷용 기재는 블랭킷용 기재 내로 실리카 졸의 삽입이 용이한 공간 또는 공극을 포함함으로써 실리카 졸로부터 형성된 에어로겔에 의해 단열 성능을 더욱 향상시킬 수 있는 섬유일 수 있다.
본 발명의 일 실시예에 따르면, 상기 섬유는 폴리에틸렌테레프탈레이트, 폴리아미드, 폴리벤즈이미다졸, 폴리아라미드, 아크릴수지, 페놀수지, 폴리에스테르, 폴리에테르에테르케톤(PEEK), 폴리올레핀(폴리에틸렌, 폴리프로필렌 또는 폴리에틸렌-프로필렌 공중합체 등), 셀룰로오스, 카본, 면, 모, 마, 부직포, 유리섬유 또는 세라믹울일 수 있고, 구체적인 예로 유리섬유일 수 있다.
본 발명의 일 실시예에 따르면, 상기 유리섬유는 유리섬유 니들 매트(glass fiber needle mat)일 수 있고, 이 때, 유리섬유 니들 매트의 밀도는 100 kg/m3 내지 150 kg/m3, 110 kg/m3 내지 140 kg/m3, 또는 120 kg/m3 내지 140 kg/m3인 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S4) 단계는 발수 성능의 향상을 위해 표면이 소수화된 에어로겔 블랭킷을 제조하기 위하여, 습윤겔 블랭킷에 표면개질제를 포함하는 표면개질 용액을 첨가하고 숙성시키는 단계일 수 있고, 이 때 숙성 및 표면개질이 동시에 수행되는 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 표면개질 용액은 유기 용매 및 표면개질제를 포함하는 것일 수 있고, 이 때 유기 용매는 앞서 기재한 유기 용매와 동일한 것일 수 있고, 구체적인 예로, 상기 (S1) 단계 및 (S2) 단계의 유기 용매와 동일한 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S4) 단계의 표면개질제는 알킬 실란 화합물일 수 있고, 구체적인 예로 트리메틸에톡시실란(trimethylethoxysilane, TMES), 트리메틸실라놀(TMS), 트리메틸클로로실란(Trimethylchlorosilane, TMCS), 메틸트리메톡시실란(methyltrimethoxysilane, MTMS), 메틸트리에톡시실란(MTES), 디메틸디에톡시실란(DMDEOS), 에틸트리에톡시실란(ethyltriethoxysilane) 및 페닐트리에톡시실란(phenyltriethoxysilane)으로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S4) 단계는 유기 용매 및 표면개질제를 1.00:0.01 내지 0.50, 1.0:0.1 내지 0.3, 또는 1.0:0.1 내지 0.2의 중량비로 혼합하여 실시될 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S4) 단계는 60 ℃ 내지 100 ℃, 70 ℃ 내지 90 ℃, 또는 75 ℃ 내지 85 ℃에서, 1 시간 내지 10 시간, 2 시간 내지 8 시간, 또는 3 시간 내지 7 시간 동안 실시될 수 있고, 이 범위 내에서 표면개질에 충분히 유도될 수 있는 효과가 있다.
본 발명의 일 실시예에 따르면, 상기 (S20) 단계는 숙성된 실리카 습윤겔의 기공구조를 그대로 유지하면서 용매를 제거하기 위해, 초임계 건조를 실시하기 위한 단계로서, 초임계 이산화탄소를 이용하여 실시될 수 있다. 이산화탄소(CO2)는 상온 및 상압에서는 기체 상태이지만 임계점(supercritical point)이라고 불리는 일정한 온도 및 고압의 한계를 넘으면 증발 과정이 일어나지 않아서 기체와 액체의 구별을 할 수 없는, 임계 상태가 되며, 이 임계 상태에 있는 이산화탄소를 초임계 이산화탄소라고 한다. 초임계 이산화탄소는 분자의 밀도는 액체에 가깝지만, 점성도는 낮아 기체에 가까운 성질을 가지며, 확산이 빠르고 열전도성이 높아 건조 효율이 높고, 건조 공정 시간을 단축시킬 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S20) 단계는 초임계 추출장치인 초임계 건조 반응기 또는 초임계 추출기에 습윤겔 블랭킷을 투입하고, 액체 상태의 이산화탄소를 채우고 습윤겔 블랭킷 내부의 유기 용매를 이산화탄소로 치환하는 용매치환 공정을 포함하여 실시될 수 있다. 또한, 상기 (S20) 단계는 용매치환 공정 이후에, 일정한 승온 속도, 구체적으로는 0.1 ℃/min 내지 10.0 ℃/min의 속도로, 40 ℃ 내지 80 ℃로 승온시킨 후, 이산화탄소가 초임계 상태가 되는 압력 이상의 압력, 구체적으로는 100 bar 내지 170 bar의 압력을 가하여, 이산화탄소를 초임계 상태로 제어하여 실시될 수 있다. 일반적으로 이산화탄소는 31 ℃의 온도, 73.8 bar의 압력에서 초임계 상태가 된다.
본 발명의 일 실시예에 따르면, 상기 (S20) 단계의 건조는 습윤겔 블랭킷을 건조함과 동시에, 유기 용매를 추출하는 것일 수 있고, 구체적인 예로 상기 유기 용매는 이산화탄소와 함께 추출되는 것일 수 있으며, 추출된 유기 용매는 상기 (S10) 단계의 습윤겔 블랭킷을 제조하는 단계로 재순환되는 것일 수 있다. 이와 같이, 습윤겔 블랭킷을 건조하여 유기 용매를 제거함과 동시에, 이로부터 추출된 유기 용매를 재사용함으로써, 습윤겔 블랭킷의 제조 시 투입되는 유기 용매의 추가 필요량을 저감할 수 있고, 이에 따라 제조원가의 상승을 방지하여 생산성을 향상시키는 효과가 있다.
본 발명의 일 실시예에 따르면, 상기 (S20) 단계에서 이용된 이산화탄소는 상기 유기 용매와 함께 추출된 후, 상기와 같이 유기 용매를 재사용하기 위해 이산화탄소와 유기 용매를 서로 분리하여 회수될 수 있다. 이 때, 상기 분리는 별도의 분리기를 통하여 실시될 수 있다. 또한, 상기 (S20) 단계에서 이용된 이산화탄소는 유기 용매와 분리된 후, 회수되어 (S20) 단계 및/또는 이어서 기재하는 (S40) 단계에서 재사용될 수 있다. 이와 같이, 이산화탄소를 재사용함으로써, 습윤겔 블랭킷의 건조 시 투입되는 이산화탄소의 추가 필요량을 저감할 수 있고, 이에 따라 제조원가의 상승을 방지하여 생산성을 향상시키는 효과가 있다.
본 발명의 일 실시예에 따르면, 초임계 건조에 의해 습윤겔 블랭킷 내의 모든 유기 용매를 제거하기 위해서는 초임계 건조를 매우 긴 시간 동안 실시하여야 하고, 이는 이산화탄소를 초임계 상태로 유지하기 위한 높은 압력 및 높은 온도를 지속적으로 유지시켜야하기 때문에, 매우 많은 에너지가 소모된다. 따라서, 상기 (S20) 단계의 건조는 상기 가압을 시작한 시점부터 100 분 내지 720 분, 120 분 내지 360 분, 또는 150 분 내지 180 분 동안 실시될 수 있고, 이 범위 내에서 습윤겔 블랭킷 내 유기 용매를 효율적으로 제거할 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S30) 단계는 상기 (S20) 단계의 초임계 건조가 완료된 후, 습윤겔 블랭킷 또는 에어로겔 블랭킷을 수득하기 위해, 초임계 추출 장치의 압력을 감압하는 단계일 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S20) 단계의 건조에 의할 때, 습윤겔 블랭킷 내에 대부분의 유기 용매는 제거 및 추출된 상태이나, 일부 유기 용매가 잔류할 수 있고, 이는 에어로겔 블랭킷의 사용 시, 수분에 노출되었을 때, 수분을 흡습하는 원인이 되어 에어로겔 블랭킷의 발수 성능을 저하시키고, 이는 곧 에어로겔 블랭킷의 열전도도를 상승시키는 원인이 되며, 에어로겔 블랭킷의 내구성이 저하되는 문제를 발생시킨다. 따라서, 본 발명의 일 실시예에 따르면, 상기 (S30) 단계의 감압은, 이어서 기재하는 (S40) 단계의 건조를 효율적으로 실시하기 위해 초임계 추출장치의 압력이 10 bar 내지 70 bar, 10 bar 내지 50 bar, 10 bar 내지 30 bar, 또는 15 bar 내지 25 bar가 되도록 실시되는 것일 수 있다. 구체적인 예로, 상기 (S30) 단계의 감압은, 초임계 추출장치의 압력이 30 bar 내지 70 bar, 40 bar 내지 70 bar, 또는 50 bar 내지 70 bar가 되도록 감압하는 단계(S31); 및 초임계 추출장치의 압력이 10 bar 내지 50 bar, 10 bar 내지 40 bar, 10 bar 내지 30 bar, 또는 15 bar 내지 25 bar가 되도록 감압하는 단계(S32)를 포함하여 실시되는 것일 수 있고, 이 경우 급격한 압력 저하로 인해 발생할 수 있는 안전상의 문제를 방지할 수 있는 효과가 있다.
본 발명의 일 실시예에 따르면, 상기 (S40) 단계는, 상기 (S20) 단계의 건조 후, 습윤겔 블랭킷 내에 잔류하는 유기 용매를 추가적으로 제거 및 추출하기 위한 단계로서, 상기 초임계 추출장치 내에서 실시될 수 있다.
앞서 기재한 바와 같이, 종래에는 습윤겔 블랭킷 또는 에어로겔 블랭킷 내에 잔류하는 유기 용매를 추가적으로 제거 및 추출하기 위하여, 상기 (S20) 단계와 같은 습윤겔 블랭킷의 초임계 건조 이후에, 추가적으로 상압 건조 공정을 실시하였다. 여기서, 상압 건조 공정은 대기압 하에서, 150 ℃ 내지 180 ℃의 온도를 갖는 공기(air)를 이용한 열풍 건조 공정으로 실시된다. 그러나, 이러한 추가적으로 실시되는 상압 건조 공정은 에어로겔 블랭킷 제조 시, 전체 건조 시간을 증가시키는 원인이 되고, 상기 열풍을 생성하기 위한 열에너지가 필수적으로 소모되며, 상압 건조 공정에서 발생되는 배기가스를 처리하기 위한 배기가스 처리 시설이 필수적으로 요구되는 문제가 있다.
그러나, 본 발명의 일 실시예에 따라, 상기 (S40) 단계와 같이, 감압된 초임계 추출장치에 기상의 이산화탄소를 공급하여 습윤겔 블랭킷을 건조하는 경우에는, 상압 건조 공정을 생략할 수 있어, 전체 건조 시간을 단축하면서, 상압 건조를 위한 열에너지 사용량을 절감하여, 생산성을 향상시킴과 동시에, 상압 건조 공정에서 발생되는 배기가스를 처리하기 위한 배기가스 처리 시설이 불필요하다.
본 발명의 일 실시예에 따르면, 상기 (S40) 단계는, 상기 (S20) 단계와 같은 초임계 이산화탄소가 아닌 기상의 이산화탄소를 공급하는 것을 특징으로 한다. 이 때, 상기 (S40) 단계에서 공급되는 기상의 이산화탄소의 공급 압력은 10 bar 내지 70 bar, 10 bar 내지 50 bar, 10 bar 내지 30 bar, 또는 15 bar 내지 25 bar인 것일 수 있다. 즉, 상기 기상의 이산화탄소의 공급 압력은, 상기 (S30) 단계에서 감압된 초임계 추출장치의 압력과 동일한 것일 수 있다. 한편, 상기 기상의 이산화탄소를 공급하는 감압된 초임계 추출장치의 압력은, 상압에서 별도로 가압을 실시한 것이 아니라, 초임계 추출장치로부터 초임계 건조가 완료된 이후, 상기 (S30) 단계에 따라 감압을 실시한 것이기 때문에, 초임계 추출장치의 압력을 상기 압력으로 유지하기 위해 별도로 가압을 할 필요가 없는 장잠이 있다.
본 발명의 일 실시예에 따르면, 상기 (S40) 단계에서 공급되는 기상의 이산화탄소의 공급 온도는 60 ℃ 이상, 60 ℃ 내지 120 ℃, 60 ℃ 내지 100 ℃, 70 ℃ 내지 100 ℃, 또는 70 ℃ 내지 90 ℃일 수 있고, 이 범위 내에서 기상 건조 공정의 전력량을 최소화하면서, 잔류하는 유기 용매를 최대한으로 제거 및 추출할 수 있는 효과가 있다.
본 발명의 일 실시예에 따르면, 상기 (S40) 단계의 건조는, 상기 (S20) 단계와 마찬가지로, 습윤겔 블랭킷을 건조함과 동시에, 유기 용매를 추출하는 것일 수 있고, 구체적인 예로 상기 유기 용매는 이산화탄소와 함께 추출되는 것일 수 있으며, 추출된 유기 용매는 상기 (S10) 단계의 습윤겔 블랭킷을 제조하는 단계로 재순환되는 것일 수 있다. 이와 같이, 습윤겔 블랭킷을 기상의 이산화탄소를 이용하여 추가적으로 건조하여 잔류 유기 용매를 제거함과 동시에, 이로부터 추출된 유기 용매를 재사용함으로써, 습윤겔 블랭킷의 제조 시 투입되는 유기 용매의 추가 필요량을 저감할 수 있고, 이에 따라 제조원가의 상승을 방지하여 생산성을 향상시키는 효과가 있다.
본 발명의 일 실시예에 따르면, 상기 (S40) 단계에서 이용된 이산화탄소는 상기 유기 용매와 함께 추출된 후, 상기와 같이 유기 용매를 재사용하기 위해 이산화탄소와 유기 용매를 서로 분리하여 회수될 수 있다. 이 때, 상기 분리는 별도의 분리기를 통하여 실시될 수 있다. 또한, 상기 (S40) 단계에서 이용된 이산화탄소는 유기 용매와 분리된 후, 회수되어 (S20) 단계 및/또는 (S40) 단계에서 재사용될 수 있다. 이와 같이, 이산화탄소를 재사용함으로써, 습윤겔 블랭킷의 건조 시 투입되는 이산화탄소의 추가 필요량을 저감할 수 있고, 이에 따라 제조원가의 상승을 방지하여 생산성을 향상시키는 효과가 있다.
본 발명의 일 실시예에 따르면, 상기 (S40) 단계의 건조는 상기 (S30) 단계의 감압이 완료된 시점부터 10 분 내지 60 분, 20 분 내지 50 분, 또는 25 분 내지 40 분 동안 실시될 수 있고, 이 범위 내에서 에어로겔 블랭킷 내 유기 용매를 최대한으로 제거할 수 있다.
본 발명의 일 실시예에 따르면, 상기 에어로겔 블랭킷 제조방법은 상기 (S40) 단계의 건조 후, 초임계 추출장치의 압력을 상압으로 감압하는 단계(S50)를 포함하는 것일 수 있다. 상기 (S50) 단계는 유기 용매가 제거 및 추출된 에어로겔 블랭킷을 수득하기 위한 단계일 수 있다.
본 발명의 일 실시예에 따르면, 상기 에어로겔 블랭킷 제조방법은 유기 용매의 회수율이 98.00 중량% 이상, 98.00 중량% 내지 100.00 중량%, 98.20 중량% 내지 99.99 중량%, 또는 98.23 중량% 내지 99.57 중량%인 것일 수 있다.
또한, 본 발명은 상기 에어로겔 블랭킷 제조방법에 의해 제조된 에어로겔 블랭킷을 제공한다. 상기 에어로겔 블랭킷은 균일한 열전도도를 가지고, 블랭킷 내 균일한 열전도도의 형성으로 전체적으로 단열성이 크게 개선된 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 에어로겔 블랭킷은 블랭킷용 기재; 및 블랭킷용 기재 내부 및 표면에 형성된 실리카 에어로겔을 포함하며, 수분 함침률이 0.1 중량% 내지 5.0 중량%, 1.0 중량% 내지 4.0 중량%, 2.0 중량% 내지 3.5 중량%, 또는 2.6 중량% 내지 3.4 중량%인 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 에어로겔 블랭킷은 블랭킷용 기재; 및 블랭킷용 기재 내부 및 표면에 형성된 실리카 에어로겔을 포함하며, 상온 열전도도가 30.00 mW/mK 이하, 10.00 mW/mK 내지 30.00 mW/mK, 15.00 mW/mK 내지 20.00 mW/mK, 18.00 mW/mK 내지 19.00 mW/mK, 또는 18.09 mW/mK 내지 18.83 mW/mK인 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 에어로겔 블랭킷은 각종 산업용 설비의 배관이나 공업용 로와 같은 보온보냉용 플랜트 시설은 물론, 항공기, 선박, 자동차, 건축 구조물 등의 단열재, 보온재, 또는 불연재로서 유용하게 사용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예
실시예 1
전가수분해된 테트라 에틸 오쏘 실리케이트와 에탄올을 1:1.1의 중량비로 혼합하여 실리카 전구체 조성물을 제조하였다.
이와 별개로, 에탄올, 염기 촉매로 수산화나트륨 및 표면개질제로 트리메틸에톡시실란(TMES)을 1:0.046:0.14의 중량비로 혼합하여 촉매 조성물을 제조하였다.
이어서, 15 L의 함침조에 상기 제조된 실리카 전구체 조성물과 촉매 조성물을 1:0.941의 중량비로 투입하고 혼합하여 실리카 졸을 제조하고, 실리카 졸의 온도를 상온(23±5 ℃)으로 유지한 상태로 블랭킷용 기재로 섬유 매트(Glass fiber needle mat, 밀도 130 kg/m3)를 통과시키면서 함침시킨 후, 겔화시켜, 겔화된 습윤겔 블랭킷을 제조하였다. 이 때, 상기 겔화는 10 분 내지 20 분 사이에 완료되었다.
상기 겔화된 습윤겔 블랭킷에 에탄올 및 표면개질제로 트리메틸에톡시실란(TMES)을 1:0.128의 중량비로 혼합한 표면개질 용액을 첨가하고, 75 ℃에서 5 시간 동안 숙성시켜, 에탄올을 포함하는 습윤겔 블랭킷을 제조하였다.
이 후, 상기 제조된 에탄올을 포함하는 습윤겔 블랭킷을 70 L 초임계 추출기에 넣고, 이산화탄소를 주입하였다. 이어서, 15 분 동안 초임계 추출기의 온도를 80 ℃로 승온하고, 170 bar로 가압하여 이산화탄소를 초임계 상태로 제어한 후, 에탄올을 포함하는 습윤겔 블랭킷에 대한 초임계 건조를 실시하였다. 이 때, 상기 건조는 가압을 시작한 시점부터 165 분 동안 실시하였고, 초임계 이산화탄소와 함께 추출된 에탄올은 분리기를 통해 회수하였다.
상기 초임계 건조가 완료된 후, 15 분 동안 감압을 실시하여, 초임계 추출기의 압력을 60 bar로 감압하였고, 이어서 15 분 동안 추가적으로 감압을 실시하여, 초임계 추출기의 압력을 20 bar로 감압하였다.
20 bar까지 감압이 완료된 초임계 추출기에 80 ℃ 온도의 기상의 이산화탄소를 공급하고 순환시켜, 에탄올이 잔류하는 습윤겔 블랭킷에 대한 기상 건조를 실시하였다. 이 때, 상기 건조는 감압이 완료된 시점부터 30 분 동안 실시하였고, 기상의 이산화탄소와 함께 추출된 에탄올은 분리기를 통해 회수하였다.
상기 기상 건조가 완료된 후, 15 분 동안 감압을 실시하여, 초임계 추출기의 압력을 상압까지 감압하였고, 건조가 완료된 에어로겔 블랭킷을 수득하였다.
실시예 2
상기 실시예 1에서, 상기 블랭킷용 기재로서 섬유 매트를 통과시키면서 함침시킬 때, 실리카 졸의 온도를 상온 대신 35 ℃로 승온하여 유지한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.
실시예 3
상기 실시예 1에서, 상기 에탄올을 포함하는 습윤겔 블랭킷의 제조 시, 표면개질 용액을 첨가하고, 75 ℃ 대신 85 ℃에서 5 시간 동안 숙성시킨 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.
비교예 1 내지 3
상기 실시예 1에서 제조된 에탄올을 포함하는 습윤겔 블랭킷에 대하여, 아래와 같이 건조 공정을 수행한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 실시하였다.
상기 실시예 1에서 제조된 에탄올을 포함하는 습윤겔 블랭킷을 70 L 초임계 추출기에 넣고, 이산화탄소를 주입하였다. 이어서, 15 분 동안 초임계 추출기의 온도를 80 ℃로 승온하고, 170 bar로 가압하여 이산화탄소를 초임계 상태로 제어한 후, 에탄올을 포함하는 습윤겔 블랭킷에 대한 초임계 건조를 실시하였다. 이 때, 상기 건조는 가압을 시작한 시점부터 165 분 동안 실시하였고, 초임계 이산화탄소와 함께 추출된 에탄올은 분리기를 통해 회수하였다.
상기 초임계 건조가 완료된 후, 15 분 동안 감압을 실시하여, 초임계 추출기의 압력을 60 bar로 감압하였고, 이어서 25 분 동안 추가적으로 감압을 실시하여, 초임계 추출기의 압력을 상압까지 감압하여, 초임계 건조가 완료된 에탄올이 잔류하는 습윤겔 블랭킷을 수득하였다.
상기 수득한 에탄올이 잔류하는 습윤겔 블랭킷을 건조기에 넣고, 상압에서 180 ℃ 온도를 갖는 공기(air)를 사용한 열풍을 이용하여 상압 건조를 실시하였다. 이 때, 상압 건조는 50분 동안 실시하였고, 상압 건조에서 발생된 배기가스는 별도의 배기가스 처리 장치를 이용하여 배출하였다.
상기 상압 건조가 완료된 후, 건조가 완료된 에어로겔 블랭킷을 수득하였다.
비교예 2 및 3
상기 비교예 1에 대하여 동일한 조건에서의 재현성을 확인하기 위해 상기 비교예 1과 동일한 방법으로 각각 실시하였다.
비교예 4
상기 비교예 1에서, 상압 건조를 실시하지 않고, 초임계 건조가 완료된 습윤겔 블랭킷으로 에어로겔 블랭킷을 수득한 것을 제외하고는 상기 비교예 1과 동일한 방법으로 실시하였다.
실험예
상기 실시예 1 내지 3 및 비교예 1 내지 4의 건조 공정에 따른 전체 건조 시간, 에탄올의 회수율, 기상 건조 공정 또는 상압 건조 공정에서 소요된 전력량, 제조된 에어로겔 블랭킷의 수분 함침률 및 상온 열전도도를 아래와 같은 방법으로 측정하여, 표 1 및 2에 나타내었다.
* 전체 건조 시간: 습윤겔 블랭킷을 초임계 추출기에 넣은 후, 가압을 시작한 시점을 기준으로, 가압, 건조, 감압 시 소요된 전체 시간을 합산하였다.
* 에탄올의 회수율(중량%): 에어로겔 블랭킷 제조 시, 용매로서 투입된 총 에탄올의 함량 대비 건조 공정을 통해 회수된 에탄올의 함량을 백분율로 계산하여 나타내었다.
* 기상 건조 공정 또는 상압 건조 공정에서 소요된 전력량(kWh/m2): 습윤겔 블랭킷 1롤(4 m2)에 대하여, 실시예의 기상 건조 공정 시 소요된 전력량과 비교예의 상압 건조 공정 시 소요된 전력량을 측정하여 나타내었다.
* 수분 함침률(중량%): 각 실시예 및 비교예에서 제조한 에어로겔 블랭킷 각각에 대하여, 254 mm X 254 mm 크기의 시편(두께 100 mm 미만)을 각 3개씩 준비하고, 21±2 ℃의 증류수 위에 시편을 띄우고 시편 위에 6.4 mm 메쉬 스크린(mesh screen)을 올려 수면 아래 127 mm까지 가라앉혀 함침시켰다. 15 분 후 메쉬 스크린을 제거하고 시편이 떠오르면 클램프로 시편을 집어 수직으로 60 ± 5초 동안 매달아두었다. 이후 함침 전 후의 무게를 각각 측정하여 무게 증가율을 확인하였고, 3개의 시편에 대한 평균값을 수분 함침률로 나타내었다.
* 상온 열전도도(mW/mK): 각 실시예 및 비교예에서 제조한 에어로겔 블랭킷에서 30 cm X 30 cm 크기의 시편을 준비하고, NETZSCH社의 HFM 436 Lambda장비를 이용하여 상온(23±5 ℃) 열전도도를 측정하였다.
구분 실시예
1 2 3
전체 건조 시간 (min) 255 255 255
에탄올의 회수율 (중량%) 98.23 99.57 98.28
기상 건조 공정 전력량 (kWh/m2) 5.21 5.21 5.21
상압 건조 공정 전력량 (kWh/m2) - - -
수분 함침률 (중량) 3.40 2.60 2.70
상온 열전도도 (mW/mK) 18.82 18.83 18.09
구분 비교예
1 2 3 4
전체 건조 시간 (min) 270 270 270 220
에탄올의 회수율 (중량%) 97.63 97.27 97.08 98.04
기상 건조 공정 전력량 (kWh/m2) - - - -
상압 건조 공정 전력량 (kWh/m2) 22.00 22.31 18.20 -
수분 함침률 (중량) 3.20 1.30 2.50 8.07
상온 열전도도 (mW/mK) 18.27 18.09 17.25 18.07
상기 표 1 및 2에 나타낸 바와 같이, 본 발명의 에어로겔 블랭킷 제조방법에 따라 건조 공정을 실시한 실시예 1 내지 3의 경우, 초임계 건조 후, 별도의 상압 공정을 실시한 비교예 1 내지 3과 비교하여, 동등 수준의 수분 함침률 및 상온 열전도도를 구현하면서, 전체 건조 시간이 15분(5.6 %) 단축되었고, 에탄올의 회수율이 향상되었으며, 특히, 비교예 1 내지 3의 상압 건조 공정에 소요되는 평균 전력량인 20.84 kWh/m2 대비, 기상 건조 공정 시 5.21 kWh/m2의 전력량만이 소요되어, 전력 사용량이 감소되는 것을 확인할 수 있었다.
한편, 초임계 건조 후, 별도의 상압 공정 또는 기상 건조 공정을 실시하지 않은 비교예 4의 경우, 전체 건조 시간은 가장 짧았으나, 초임계 건조가 완료된 습윤겔 블랭킷을 바로 에어로겔 블랭킷을 수득하여, 에어로겔 블랭킷 내에 에탄올이 잔류하였고, 이에 따라 수분 침투 시, 에탄올에 의해 수분이 흡습되어 수분 함침률 증가에 따른 발수 성능이 저하되는 것을 확인할 수 있었다.
이와 같은 결과로부터, 본 발명에 따른 에어로겔 블랭킷 제조방법에 의하는 경우, 건조 이후, 에어로겔 블랭킷의 잔류 유기 용매를 최소화하여, 잔류 유기 용매에 의한 물성 저하를 방지할 수 있고, 유기 용매를 최대한으로 회수할 수 있어, 에어로겔 블랭킷의 제조원가를 절감하여, 생산성을 향상시킬 수 있으며, 상압 건조 공정을 생략할 수 있어, 전체 건조 시간을 단축하면서, 상압 건조를 위한 열에너지 사용량을 절감하여, 생산성을 향상시킴과 동시에, 상압 건조 공정에서 발생되는 배기가스를 처리하기 위한 배기가스 처리 시설이 불필요한 것을 확인할 수 있었다.

Claims (15)

  1. 유기 용매를 포함하는 습윤겔 블랭킷을 제조하는 단계(S10);
    습윤겔 블랭킷을 초임계 추출장치에 투입하고, 초임계 이산화탄소를 이용하여 습윤겔 블랭킷을 건조하는 단계(S20);
    초임계 추출장치의 압력을 감압하는 단계(S30); 및
    감압된 초임계 추출장치에 기상의 이산화탄소를 공급하여 습윤겔 블랭킷을 건조하는 단계(S40)를 포함하는 에어로겔 블랭킷 제조방법.
  2. 제1항에 있어서,
    상기 유기 용매는 알코올인 것인 에어로겔 블랭킷 제조방법.
  3. 제1항에 있어서,
    상기 (S10) 단계에서 제조되는 습윤겔 블랭킷은 실리카 습윤겔 블랭킷인 에어로겔 블랭킷 제조방법.
  4. 제1항에 있어서,
    상기 (S10) 단계는,
    실리카 전구체 및 유기 용매를 포함하는 전구체 조성물을 제조하는 단계(S1);
    유기 용매, 촉매 및 표면개질제를 포함하는 촉매 조성물을 제조하는 단계(S2);
    전구체 조성물 및 촉매 조성물을 함침조에 투입하고, 상기 함침조에 블랭킷용 기재를 통과시켜 습윤겔 블랭킷을 제조하는 단계(S3); 및
    습윤겔 블랭킷에 표면개질제를 포함하는 표면개질 용액을 첨가하고 숙성시키는 단계(S4)를 포함하는 것인 에어로겔 블랭킷 제조방법.
  5. 제4항에 있어서,
    상기 (S3) 단계에서 제조된 습윤겔 블랭킷은, 상기 블랭킷용 기재가 함침조를 통과할 때, 전구체 조성물 및 촉매 조성물이 블랭킷용 기재에 함침 및 겔화된 습윤겔 블랭킷인 것인 에어로겔 블랭킷 제조방법.
  6. 제1항에 있어서,
    상기 (S20) 단계의 건조는 습윤겔 블랭킷을 건조함과 동시에, 유기 용매를 추출하는 것인 에어로겔 블랭킷 제조방법.
  7. 제6항에 있어서,
    상기 (S20) 단계에서 추출된 유기 용매는 상기 (S10) 단계의 습윤겔 블랭킷을 제조하는 단계로 재순환되는 것인 에어로겔 블랭킷 제조방법.
  8. 제1항에 있어서,
    상기 (S30) 단계의 감압은 초임계 추출장치의 압력이 10 bar 내지 70 bar가 되도록 실시되는 것인 에어로겔 블랭킷 제조방법.
  9. 제1항에 있어서,
    상기 (S30) 단계의 감압은,
    초임계 추출장치의 압력이 50 bar 내지 70 bar가 되도록 감압하는 단계(S31); 및 초임계 추출장치의 압력이 10 bar 내지 50 bar가 되도록 감압하는 단계(S32)를 포함하여 실시되는 것인 에어로겔 블랭킷 제조방법.
  10. 제1항에 있어서,
    상기 (S40) 단계에서 공급되는 기상의 이산화탄소의 공급 압력은 10 bar 내지 70 bar인 것인 에어로겔 블랭킷 제조방법.
  11. 제1항에 있어서,
    상기 (S40) 단계에서 공급되는 기상의 이산화탄소의 공급 온도는 60 ℃ 이상인 것인 에어로겔 블랭킷 제조방법.
  12. 제1항에 있어서,
    상기 (S40) 단계의 건조는 습윤겔 블랭킷을 건조함과 동시에, 유기 용매를 추출하는 것인 에어로겔 블랭킷 제조방법.
  13. 제12항에 있어서,
    상기 (S40) 단계에서 추출된 유기 용매는 상기 (S10) 단계의 습윤겔 블랭킷을 제조하는 단계로 재순환되는 것인 에어로겔 블랭킷 제조방법.
  14. 제1항에 있어서,
    상기 에어로겔 블랭킷 제조방법은 상기 (S40) 단계의 건조 후, 초임계 추출장치의 압력을 상압으로 감압하는 단계(S50)를 포함하는 것인 에어로겔 블랭킷 제조방법.
  15. 제1항에 있어서,
    상기 에어로겔 블랭킷 제조방법은 유기 용매의 회수율이 98.00 중량% 이상인 에어로겔 블랭킷 제조방법.
PCT/KR2021/015480 2020-11-09 2021-10-29 에어로겔 블랭킷 제조방법 WO2022098008A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21889473.1A EP4119499A4 (en) 2020-11-09 2021-10-29 METHOD FOR MANUFACTURING AN AIRGEL LAYER
CN202180029503.XA CN115427352B (zh) 2020-11-09 2021-10-29 气凝胶毡的制造方法
US17/920,097 US20230174381A1 (en) 2020-11-09 2021-10-29 Method for manufacturing aerogel blanket
JP2022564803A JP7460255B2 (ja) 2020-11-09 2021-10-29 エアロゲルブランケットの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200148448A KR20220062811A (ko) 2020-11-09 2020-11-09 에어로겔 블랭킷 제조방법
KR10-2020-0148448 2020-11-09

Publications (1)

Publication Number Publication Date
WO2022098008A1 true WO2022098008A1 (ko) 2022-05-12

Family

ID=81458059

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/015480 WO2022098008A1 (ko) 2020-11-09 2021-10-29 에어로겔 블랭킷 제조방법

Country Status (6)

Country Link
US (1) US20230174381A1 (ko)
EP (1) EP4119499A4 (ko)
JP (1) JP7460255B2 (ko)
KR (1) KR20220062811A (ko)
CN (1) CN115427352B (ko)
WO (1) WO2022098008A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070114668A (ko) * 2006-05-29 2007-12-04 한국생산기술연구원 에폭시로 개질된 에어로겔 및 그 제조방법
WO2007146945A2 (en) * 2006-06-12 2007-12-21 Aspen Aerogels, Inc. Aerogel-foam composites
KR20120070948A (ko) 2010-12-22 2012-07-02 주식회사 화인텍 단열 성능을 지닌 소수성 실리카 에어로젤 분말의 제조방법
US20160046867A1 (en) * 2006-05-25 2016-02-18 Aspen Aerogels, Inc. Aerogel compositions with enhanced performance
KR20170086830A (ko) * 2016-01-19 2017-07-27 주식회사 엘지화학 에어로겔 시트의 제조방법 및 장치
KR20200077263A (ko) * 2018-12-20 2020-06-30 주식회사 엘지화학 실리카 에어로겔 블랭킷의 제조방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104496402B (zh) * 2014-12-18 2017-02-01 贵州航天乌江机电设备有限责任公司 一种玻纤复合型二氧化硅气凝胶保温毡的制备工艺
CN105664809A (zh) * 2016-01-29 2016-06-15 卓达新材料科技集团有限公司 一种毛毡/硅铝气凝胶复合保温板的超临界干燥方法
WO2017155311A1 (ko) * 2016-03-08 2017-09-14 주식회사 엘지화학 에어로겔 블랑켓의 제조방법 및 이로부터 제조된 에어로겔 블랑켓
WO2018056626A1 (ko) * 2016-09-23 2018-03-29 주식회사 엘지화학 초고온용 실리카 에어로겔 블랭킷, 이의 제조방법 및 이의 시공방법
KR102160555B1 (ko) * 2017-11-13 2020-09-28 주식회사 엘지화학 폐용매 정제방법
KR102183537B1 (ko) 2017-11-17 2020-11-26 주식회사 엘지화학 초임계 폐액을 재사용한 실리카 에어로겔 블랭킷 제조방법
CN108636304B (zh) * 2018-05-16 2021-04-30 航天特种材料及工艺技术研究所 一种通过超临界干燥法制备气凝胶的方法和用于超临界干燥的装置
KR102427987B1 (ko) 2018-11-27 2022-08-02 주식회사 엘지화학 전가수분해된 폴리실리케이트의 합성방법
CN110553470B (zh) * 2019-09-20 2021-08-20 航天特种材料及工艺技术研究所 一种用于制备超低密度气凝胶的超临界干燥方法及由该方法制得的产品
CN111099876A (zh) 2019-12-20 2020-05-05 山东工业陶瓷研究设计院有限公司 一种低成本二氧化硅气凝胶复合柔性隔热材料的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160046867A1 (en) * 2006-05-25 2016-02-18 Aspen Aerogels, Inc. Aerogel compositions with enhanced performance
KR20070114668A (ko) * 2006-05-29 2007-12-04 한국생산기술연구원 에폭시로 개질된 에어로겔 및 그 제조방법
WO2007146945A2 (en) * 2006-06-12 2007-12-21 Aspen Aerogels, Inc. Aerogel-foam composites
KR20120070948A (ko) 2010-12-22 2012-07-02 주식회사 화인텍 단열 성능을 지닌 소수성 실리카 에어로젤 분말의 제조방법
KR20170086830A (ko) * 2016-01-19 2017-07-27 주식회사 엘지화학 에어로겔 시트의 제조방법 및 장치
KR20200077263A (ko) * 2018-12-20 2020-06-30 주식회사 엘지화학 실리카 에어로겔 블랭킷의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4119499A4

Also Published As

Publication number Publication date
KR20220062811A (ko) 2022-05-17
US20230174381A1 (en) 2023-06-08
EP4119499A4 (en) 2023-11-01
CN115427352B (zh) 2024-03-05
CN115427352A (zh) 2022-12-02
EP4119499A1 (en) 2023-01-18
JP2023522776A (ja) 2023-05-31
JP7460255B2 (ja) 2024-04-02

Similar Documents

Publication Publication Date Title
WO2018070752A1 (ko) 초고온용 에어로겔 블랭킷, 이의 제조방법 및 이의 시공방법
WO2021045483A1 (ko) 에어로겔 블랭킷 제조방법
WO2020111763A1 (ko) 에어로겔 블랭킷의 제조방법
WO2019039841A1 (ko) 실리카 에어로겔 블랑켓 제조방법 및 이의 제조장치
WO2021045514A1 (ko) 에어로겔 블랭킷 및 이의 제조방법
WO2018056626A1 (ko) 초고온용 실리카 에어로겔 블랭킷, 이의 제조방법 및 이의 시공방법
WO2018208005A1 (ko) 실리카 에어로겔 블랭킷의 제조방법 및 이로 제조된 실리카 에어로겔 블랭킷
WO2019107706A1 (ko) 에어로겔을 포함한 복합 단열 시트
WO2021054644A1 (ko) 에어로겔 블랑켓 및 이의 제조방법
WO2019098504A1 (ko) 초임계 폐액을 재사용한 실리카 에어로겔 블랭킷 제조방법
WO2020111765A1 (ko) 전가수분해된 폴리실리케이트의 합성방법
WO2022080721A1 (ko) 에어로겔 블랭킷의 제조방법 및 이로부터 제조된 에어로겔 블랭킷
WO2021029624A1 (ko) 습윤겔 블랭킷의 건조방법 및 이를 이용한 에어로겔 블랭킷의 제조방법
WO2021045484A1 (ko) 에어로겔 블랭킷
WO2022098008A1 (ko) 에어로겔 블랭킷 제조방법
WO2021045533A1 (ko) 에어로겔 블랭킷
WO2020130353A1 (ko) 실리카 습윤겔 블랭킷의 초임계 건조 방법
WO2015122548A1 (ko) 개방 셀 발포체용 조성물 및 이를 이용한 소수성 개방 셀 발포체와 그 제조 방법
WO2021066492A1 (ko) 에어로겔 블랭킷
WO2020122664A1 (ko) 실리카 습윤겔 블랭킷의 초임계 건조 방법
WO2022211353A1 (ko) 에어로겔 복합체 제조방법 및 에어로겔 복합체
KR20200077263A (ko) 실리카 에어로겔 블랭킷의 제조방법
WO2021045356A1 (ko) 에어로겔 블랭킷 제조장치 및 방법
WO2024043616A1 (ko) 실리카 에어로겔 블랭킷의 제조방법
KR102555087B1 (ko) 에어로겔 블랭킷

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21889473

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021889473

Country of ref document: EP

Effective date: 20221013

ENP Entry into the national phase

Ref document number: 2022564803

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE