WO2022095992A1 - 分选组合设备及分选工艺 - Google Patents
分选组合设备及分选工艺 Download PDFInfo
- Publication number
- WO2022095992A1 WO2022095992A1 PCT/CN2021/129222 CN2021129222W WO2022095992A1 WO 2022095992 A1 WO2022095992 A1 WO 2022095992A1 CN 2021129222 W CN2021129222 W CN 2021129222W WO 2022095992 A1 WO2022095992 A1 WO 2022095992A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- particle size
- sorting
- raw materials
- type
- photoelectric
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 239000002245 particle Substances 0.000 claims abstract description 187
- 239000002994 raw material Substances 0.000 claims abstract description 148
- 239000003245 coal Substances 0.000 claims abstract description 90
- 238000007781 pre-processing Methods 0.000 claims abstract description 5
- 238000007873 sieving Methods 0.000 claims description 75
- 238000012216 screening Methods 0.000 claims description 55
- 238000000926 separation method Methods 0.000 claims description 23
- 239000000463 material Substances 0.000 claims description 16
- 239000000428 dust Substances 0.000 claims description 15
- 238000004891 communication Methods 0.000 claims description 6
- 239000012530 fluid Substances 0.000 claims description 3
- 239000013067 intermediate product Substances 0.000 claims description 2
- 230000000712 assembly Effects 0.000 claims 1
- 238000000429 assembly Methods 0.000 claims 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 27
- 229910052742 iron Inorganic materials 0.000 description 14
- 239000000047 product Substances 0.000 description 6
- 230000005693 optoelectronics Effects 0.000 description 5
- 230000032258 transport Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000013072 incoming material Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 235000020985 whole grains Nutrition 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B07—SEPARATING SOLIDS FROM SOLIDS; SORTING
- B07B—SEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
- B07B15/00—Combinations of apparatus for separating solids from solids by dry methods applicable to bulk material, e.g. loose articles fit to be handled like bulk material
Definitions
- the present application relates to the technical field of sorting, for example, to a sorting combined device and a sorting process.
- the coal preparation process generally adopts wet separation, the separation process is complex, and water is required in the separation process, which is not suitable for the water-deficient areas in the northwest, and the cost of water treatment is high.
- the coal produced by wet separation is easy to freeze, making it difficult to transport, and low-rank coal is prone to sludge during wet separation. Therefore, more and more coal preparation processes begin to use dry separation for separation.
- the application provides a sorting combined equipment and sorting process, for example, a fully dry sorting combined equipment and sorting process for lump coal (photoelectric sorting machine) and fine coal (gas screening sorting machine). While improving the sorting ability, the sorting accuracy can be improved.
- the sorting and combined equipment includes: a pretreatment assembly (100), a photoelectric sorting assembly (200), and an air sieving sorting assembly (300), the photoelectric sorting assembly (200) and the The air screening and sorting components (300) are respectively communicated with the pretreatment components (100);
- the pretreatment component (100) includes a particle size selectable screener, and the particle size selectable screener is configured to screen the sorting raw materials within a preset particle size range into N-type screening raw materials, so The particle size ranges of the N-type sieving raw materials do not overlap;
- the particle size optional sieving device passes the first N-2 type sieving raw materials into the photoelectric sorting component, the N-1 type sieving raw material is passed into the gas sieving sorting component, and the N type sieving The sieved raw materials are discharged, wherein the maximum particle size within the corresponding particle size range of the N-th type of sieved raw material is less than or equal to the minimum particle size within the corresponding particle size range of the N-1th type of sieved raw material, and the The maximum particle size within the corresponding particle size range of the N-1 type sieving raw materials is less than or equal to the minimum particle size within the corresponding particle size range of the former N-2 type sieving raw materials;
- the photoelectric sorting assembly includes N-1 parallel photoelectric sorting machines, and each parallel photoelectric sorting machine is configured to sort the screening raw materials corresponding to the particle size range into gangue and clean coal;
- the gas sieving and sorting assembly (300) is configured to sort the N-1 type sieving raw material into gangue and clean coal with a corresponding particle size range;
- N is an integer greater than or equal to 3.
- the sorting process provided by this application applied to the sorting and combined equipment in the first aspect, includes:
- the particle size ranges of the N types of sieved raw materials do not overlap;
- the photoelectric sorting method is used to sort the former N-2 types of sieving raw materials
- the gas sieve sorting method is used to sort the N-1 type sieving raw materials and discharge the Nth type sieving raw materials, wherein the Nth type sieve
- the maximum particle size within the corresponding particle size range of the classified raw materials is less than or equal to the minimum particle size within the corresponding particle size range of the N-1 category sieving raw materials, and the The maximum particle size is less than or equal to the minimum particle size within the corresponding particle size range of the former N-2 type sieved raw materials.
- FIG. 1 is a schematic diagram of a sorting and combining device provided by an embodiment of the present application.
- Fig. 2 is a kind of sorting process schematic diagram provided by the embodiment of this application.
- FIG. 3 is a schematic flow chart of another sorting process provided by the embodiment of the present application.
- Icon 100-Pretreatment component; 110-Pre-screening device; 120-Iron separator; 130-First crusher; 140-First screener; 200-Photoelectric sorting assembly; machine; 220-second parallel photoelectric sorter; 300-air sieve sorting assembly; 310-air sieve sorter; 311-blower; 320-series photoelectric sorter; 330-second sieve; 400- The second crusher; 500 - dust removal component; 510 - dust collector; 520 - induced draft fan.
- the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
- installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
- the sorting combined equipment includes: a pretreatment assembly 100 , a photoelectric sorting assembly 200 and an air screening assembly 300 , and the photoelectric sorting assembly 200 and the air screening assembly
- the selection component 300 is communicated with the preprocessing component 100 respectively;
- the pretreatment component (100) includes a particle size optional sieve, and the particle size optional sieve is configured to sieve the sorted raw materials within a preset particle size range into N-type sieved raw materials, and N-type sieved raw materials The particle size ranges do not overlap;
- the particle size optional sieving device passes the first N-2 types of sieving raw materials into the photoelectric sorting component 200, the N-1 type sieving raw materials are passed into the gas sieving and sorting component 300, and the Nth type sieving raw materials are discharged.
- the maximum particle size within the corresponding particle size range of the N-th type sieving raw material is less than or equal to the minimum particle size within the corresponding particle size range of the N-1 type sieving raw material
- the N-1 type sieving raw material corresponds to the particle size
- the maximum particle size within the range is less than or equal to the minimum particle size within the corresponding particle size range of the former N-2 sieving raw materials;
- the photoelectric sorting assembly 200 includes N-1 parallel photoelectric sorting machines, and each parallel photoelectric sorting machine is configured to sort the screening raw materials corresponding to the particle size range into gangue and clean coal.
- the gas screening and sorting assembly 300 is configured to sort the N-1 type screening raw material into gangue and clean coal with a corresponding particle size range.
- N is a natural number greater than or equal to 3.
- the optoelectronic sorting component 200 adopts the photoelectric sorting process
- the gas sieving sorting component 300 adopts the gas sieving sorting process. Sorting process. For example, lump coal or large-grained coal is sorted by the photoelectric sorting assembly 200, and fine coal or small-grained coal is sorted by the gas sieving and sorting assembly 300, so as to realize the wide granularity, Dry sorting of whole grain fractions.
- the pre-processing assembly 100 includes: a pre-screening device 110, an iron remover 120, and a first crusher 130, and the pre-screening device 110 removes the raw materials whose particle size is within a preset particle size range (for example, the particle size is less than or equal to 300 mm). Directly discharge, and pass into the particle size optional sieve, and pass the raw materials with a particle size larger than a preset particle size range (for example, a particle size larger than 300mm) into the iron remover 120, and the iron remover 120 is adsorbed by magnetic force.
- a preset particle size range for example, the particle size is less than or equal to 300 mm
- the iron doped in the raw material is removed, and the raw material for removing the iron is passed into the first crusher 130, and the sorted raw materials are crushed by the first crusher 130, so that the particle size is larger than the preset particle size range (for example, the particle size is larger than 300mm) raw materials are crushed into raw materials within the preset particle size range (for example, the particle size is less than or equal to 300mm), and the crushed raw materials whose particle size is within the preset particle size range (for example, the particle size is less than or equal to 300mm) are crushed.
- the raw material is passed into the optional sieve for particle size.
- a size-selective screener may include a first screener 140 and a second screener 330 in series.
- the first sieve 140 is configured to sieve the sorted raw materials within the preset particle size range into M-type sieved raw materials, wherein the particle size ranges of the M-type sieved raw materials do not overlap; wherein, the first sieve The separator 140 passes the screening raw materials of the first M-1 type (that is, the above-mentioned first N-2 screening raw materials) into the photoelectric sorting assembly 200, and the M-th type of screening raw materials is passed into the second screening device 330.
- the second sieve 330 sieves the M-th type of sieved raw material into the N-1th type of sieved raw material and the N-th type of sieved raw material.
- the specific values of N and M may be determined according to actual sorting requirements, wherein the actual sorting requirements may be the requirements of sorting accuracy, or the requirements of processing capacity per unit time.
- the particle size range is 50mm-25mm, the particle size range of the fourth type of sieving raw material is 25mm-6mm, and the particle size range of the fifth type of sieving raw material is 6mm-0mm.
- the first sieve 140 can sieve the sorted raw materials into 4 types of sieved raw materials, and the 4 types of sieved raw materials can be
- the particle size range of the first type of sieving raw materials is 300mm-80mm
- the particle size range of the second type of sieving raw materials is 80mm-50mm
- the particle size range of the third type of sieving raw materials is 50mm-25mm
- the fourth type of sieves The particle size range of the raw material is 25mm-0mm
- the first sieve 140 passes the sieved raw material with a particle size range of 25mm-0mm into the second sieve 330
- the second sieve 330 has a particle size range of 25mm.
- -0mm sieved raw materials are sieved into sieved raw materials with a particle size range of 25mm-6mm and a particle size range of 6mm-0mm.
- the photoelectric sorting assembly 200 may include a number of parallel photoelectric sorting machines, each of which has a different particle size range for sorting, and the specific number of parallel photoelectric sorting machines is selected according to the particle size.
- the actual number of screen segments of the filter is determined.
- the number of sieving segments of the optional sieving device for particle size is N
- the corresponding parallel photoelectric sorter The number of can be N-1.
- the raw materials with a particle size of less than or equal to 300 mm discharged from the first crusher 130 can be passed into the first screener 140, and the raw materials are screened by the first screener 140 according to particle size.
- a pretreatment assembly, a photoelectric separation assembly, and an air sieve separation assembly are arranged in the separation combination device, and the photoelectric separation assembly and the air sieve separation assembly are respectively communicated with the pretreatment assembly; wherein, the pretreatment assembly is set as: Including a particle size optional screener, the particle size optional screener is configured to screen the sorting raw materials within the preset particle size range into N-type screening materials, and the particle size ranges of the N-type screening materials do not overlap.
- the particle size optional sieve will pass the first N-2 type sieving raw materials into the photoelectric sorting component, the N-1 type sieving raw material will pass into the gas sieve sorting component, and the Nth type sieving raw material will be discharged.
- the maximum particle size within the corresponding particle size range of the N-type sieving raw material is less than or equal to the minimum particle size within the corresponding particle size range of the N-1 category sieving raw material, and the N-1 category sieving material corresponds to the particle size range.
- the maximum particle size is less than or equal to the minimum particle size within the corresponding particle size range of the former N-2 types of sieving raw materials;
- the photoelectric sorting component includes N-1 parallel photoelectric sorting machines, and each parallel photoelectric sorting machine is configured as To deal with the sieved raw materials corresponding to the particle size range, by setting a particle size optional sieve, the sorting raw materials can be selectively sieved into N types of sieving raw materials according to the actual sorting requirements.
- the photoelectric sorter or the gas sieve sorter with the matching number of 1 type of screening raw materials can sort N-1 type of sieved raw materials respectively, which can improve the sorting accuracy of materials while increasing the processing capacity of materials per unit time.
- dry separation of 10 million-ton steam coal in order to increase the processing capacity of raw materials per unit time and ensure the separation accuracy, the coal can be screened into multiple narrower particle sizes, and the corresponding parallel photoelectric separation can be selected at the same time. It is not necessary to increase the number of the entire set of sorting systems, and it also increases the sorting accuracy.
- the optoelectronic sorting assembly 200 includes a first parallel optoelectronic sorting machine 210 and a second parallel optoelectronic sorting machine 220, the first parallel optoelectronic sorting machine 210 is configured to screen the N-type raw material The first type of screening raw material is sorted into gangue and clean coal with the corresponding particle size range; the second parallel photoelectric separator 220 is configured to sort the second type of screening raw material in the N type of screening raw material into gangue and the corresponding particle size. range of clean coal.
- the pre-screening device 110 is used to pass the raw coal with a particle size of more than 300 mm into the iron remover, and the raw coal with a particle size of less than or equal to 300 mm into the first screening device. in the device.
- the raw coal entering the iron remover after removing iron doped in the raw coal through the iron remover, passes through the first crusher 130 to crush the raw coal with a particle size greater than 300 mm into raw coal with a particle size less than or equal to 300 mm, and passes into the first screening machine in the device.
- the particle size ranges are 300mm-80mm, 80mm-25mm, 25mm-6mm and 6mm-0mm respectively, and the corresponding screening particle size nodes are respectively 80mm, 25mm and 6mm.
- the first screener 140 screens the raw coal into three sections according to actual needs, and the particle size ranges are respectively 300mm-80mm, 80mm-25mm and 25mm-0mm.
- the separators are the first parallel photoelectric separator 210 and the second parallel photoelectric separator 220 respectively.
- the first screener 140 passes raw coal with a particle size range of 300mm-80mm into the first parallel photoelectric separator 210, The raw coal with a particle size range of 80mm-25mm is passed into the second parallel photoelectric separator 220, and the raw coal with a particle size range of 25mm-0mm is passed into the second sieve 330.
- the first parallel photoelectric separator 210 is configured to sort the raw materials to be sorted into gangue and bulk clean coal
- the second parallel photoelectric separator 220 is configured to sort the raw materials to be sorted into gangue and medium fine coal coal.
- the second screener 330 sieves the raw coal with a particle size range of 25mm-0mm into two sections, the particle size ranges are 25mm-6mm and 6mm-0mm respectively, and the second screener 330 screens the raw coal with a particle size range of 25mm-6mm
- the gas sieving and sorting machine 310 is introduced, and the clean coal with a particle size range of 6mm-0mm is discharged without participating in the sorting.
- the blower 311 of the gas screening machine 310 transports air to sort the materials in the inner cavity of the gas screening machine 310, so as to discharge the gangue and coal respectively.
- the particle size node of the raw coal that does not participate in the sorting can be any particle size from 0mm to 13mm, that is, the particle size node is not necessarily the particle size of 6mm in the above example, and the particle size of 6mm is only for this purpose.
- the particle size node is 6 mm for specific description.
- materials with a particle size smaller than the particle size node are materials that are easily affected by humidity and other factors during the actual sorting process and become muddy. In this embodiment, the materials that meet this condition are sorted out, It can improve the sorting accuracy and reduce the dust removal pressure of the subsequent dust removal equipment.
- the gas sieve sorting assembly 300 includes: a gas sieve sorter 310 and a series photoelectric sorter 320 connected in series with the gas sieve sorter 310;
- the gas screening machine 310 is configured to separate the clean coal in the N-1 class screening raw materials, and pass the remaining coal gangue material into the series photoelectric separator 320 .
- the above-mentioned method of connecting the gas sieve separator and the photoelectric separator in series can realize the application of the gas sieve separator in the sorting/discharging of multiple products (two products or three products, etc.).
- the pre-screening device 110 needs to be used to pass the raw coal with a particle size of more than 300 mm into the iron remover, and the raw coal with a particle size of less than or equal to 300 mm into the first screening device. in the device.
- the raw coal entering the iron remover after removing iron doped in the raw coal through the iron remover, passes through the first crusher 130 to crush the raw coal with a particle size greater than 300 mm into raw coal with a particle size less than or equal to 300 mm, and passes into the first screening machine in the device.
- the particle size ranges are 300mm-50mm, 50mm-6mm and 6mm-0mm respectively, and the corresponding screening particle size nodes are 50mm and 6mm respectively .
- the first screener 140 screens the raw coal into two sections according to actual needs, and the particle size ranges are 300mm-50mm and 50mm-0mm respectively.
- a sieve 140 passes raw coal with a particle size range of 300mm-50mm into the first parallel photoelectric separator 210, and feeds raw coal with a particle size range of 50mm-0mm into the second screener 330.
- the first parallel photoelectric separator 210 is configured to separate the raw materials to be sorted into gangue and clean coal.
- the second screener 330 sieves the raw coal with a particle size range of 50mm-0mm into 2 sections, the particle size ranges are 50mm-6mm and 6mm-0mm respectively, and the second screener 330 screens the raw coal with a particle size range of 50mm-6mm
- the gas sieving and sorting machine 310 is introduced, and the clean coal with a particle size range of 6mm-0mm is discharged without participating in the sorting.
- the blower 311 of the gas screening machine 310 transports air to sort the materials in the inner cavity of the gas screening machine 310, so as to discharge coal gangue and clean coal respectively (due to the wide particle size range of the gas screening machine.
- a series photoelectric sorter can be set in series behind the gas sieve sorter).
- the gas sieve separator 310 passes the coal-containing gangue into the series photoelectric separator 320, and the series photoelectric separator 320 separates the coal-containing gangue into gangue and clean coal.
- the sorting and combination apparatus further comprises a second crusher (400), the second crusher (400) is in communication with the photoelectric sorting assembly (200), and the second crusher (400) is configured to separate the photoelectric separation The clean coal discharged from the selection component (200) is crushed.
- the photoelectric separation assembly 200 is connected to the second crusher 400 , and the second crusher 400 is configured to crush the clean coal discharged from the photoelectric separation assembly 200 .
- the large pieces of clean coal discharged from the first photoelectric separator 210 and the medium pieces of clean coal discharged from the second photoelectric separator 220 are respectively passed into the second crusher 400 , and the large pieces of clean coal discharged by the second crusher 400 The lump clean coal and the medium lump clean coal are crushed.
- the first photoelectric separator 210 discharges the large pieces of clean coal to the second crusher 400 , and the large pieces of clean coal are crushed by the second crusher 400 .
- the sorting combined apparatus further includes a dust removal assembly (500), and the photoelectric sorting assembly (200) and the gas sieve sorting assembly (300) are in fluid communication with the dust removal assembly (500), respectively.
- the dust removal assembly 500 can suck the gas in the photoelectric separation assembly 200 and the gas sieve separation assembly 300 , and filter the impurity dust in the gas.
- the dust removal assembly 500 includes: a dust collector 510 and an induced draft fan 520, the photoelectric sorting assembly 200 and the gas screening sorting assembly 300 are in fluid communication with the dust collector 510, respectively, and the induced draft fan 520 drives the gas from the photoelectric sorting assembly 200 and the gas screening sorting assembly. 300 flows through the dust collector 510 respectively, and the clean gas filtered and processed by the dust collector 510 is discharged into the air through the induced draft fan 520.
- the embodiment of the present application provides a corresponding sorting process, which is applied to the sorting and combined device described in the embodiment of the present application, and includes the following steps: identifying The particle size range of the raw materials to be sorted;
- the particle size ranges of the N types of sieved raw materials do not overlap;
- the photoelectric sorting method is used to sort the first N-2 type of screening raw materials
- the gas sieve sorting method is used to separate the N-1 type of screening raw materials and discharge the N-th type of screening raw materials.
- the N-th type of screening raw materials The maximum particle size within the corresponding particle size range is less than or equal to the minimum particle size within the corresponding particle size range of the N-1 type sieving raw materials, and the maximum particle size within the corresponding particle size range of the N-1 type sieving raw materials is less than or equal to
- the first N-2 type sieved raw materials correspond to the smallest particle size within the particle size range.
- the above-mentioned process of using the gas sieve separator and the photoelectric separator in parallel can make the large-scale coal use the photoelectric separator to separate, and the small-grade coal can be separated by the wind coal separator. Accurate dry sorting of granular materials, and at the same time improve the processing capacity of materials per unit time.
- the sorting process also includes:
- the above-mentioned process of using the gas sieve separator and the photoelectric separator in series can flexibly separate the medium coal of the gas sieve separator according to the nature of the incoming material and the index of the sorted product. or gangue.
- the gas sieve separator is used for three-product separation/discharge, when there is a lot of coal in the middle coal, the photoelectric separator is used to recover the clean coal in the middle coal; Gangue in medium coal; when there is a lot of coal in the gangue, the photoelectric separator is used to recover the medium coal in the gangue.
- the sorting process also includes:
Landscapes
- Combined Means For Separation Of Solids (AREA)
Abstract
本申请提供了一种分选组合设备及分选工艺,例如,本申请提供的分选组合设备,包括:预处理组件、光电分选组件和气筛分选组件,预处理组件包括粒级可选筛分器,粒级可选筛分器配置为将分选原料筛分为N类筛分原料,N类筛分原料的粒径范围不重叠;粒级可选筛分器将前N-2类筛分原料通入光电分选组件,将第N-1类筛分原料通入气筛分选组件,将第N类筛分原料排出,光电分选组件包括N-1个并联光电分选机,每个并联光电分选机配置为将对应粒径范围的筛分原料分选为矸石和精煤;气筛分选组件配置为将第N-1类筛分原料分选为矸石和对应粒径范围的精煤。
Description
本申请要求在2020年11月9日提交中国专利局、申请号为202011235811.1的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
本申请涉及分选技术领域,例如是涉及一种分选组合设备及分选工艺。
目前选煤工艺普遍采用湿法分选,分选工艺复杂,分选过程中需要水,不适用于西北缺水地区,且水处理成本较高。此外,在高寒地区,采用湿法分选的产品煤易结冻,难以进行运输,并且,低阶煤在湿法分选时易产生泥化。因此,越来越多的选煤工艺开始利用干法分选的方式进行分选。
然而,在采用干法分选时,当需要提高单位时间的处理量时,往往只能通过增加成套的相同分选系统的数量来提高处理能力。
发明内容
本申请提供一种分选组合设备及分选工艺,例如为一种块煤(光电分选机)与末煤(气筛分选机)的全干法分选组合设备及分选工艺,在提高分选能力的同时能够提高分选精度。
第一方面,本申请提供的分选组合设备,包括:预处理组件(100)、光电分选组件(200)和气筛分选组件(300),所述光电分选组件(200)和所述气筛分选组件(300)分别与所述预处理组件(100)连通;
所述预处理组件(100)包括粒级可选筛分器,所述粒级可选筛分器配置为将处于预设粒径范围内的分选原料筛分为N类筛分原料,所述N类筛分原料的粒径范围不重叠;
所述粒级可选筛分器将前N-2类筛分原料通入所述光电分选组件,将第N-1类筛分原料通入所述气筛分选组件,将第N类筛分原料排出,其中,所述第N类筛分原料对应粒径范围内的最大粒径小于或等于所述第N-1类筛分原料对应粒径范围内的最小粒径,所述第N-1类筛分原料对应粒径范围内的最大粒径小 于或等于所述前N-2类筛分原料对应粒径范围内的最小粒径;
所述光电分选组件包括N-1个并联光电分选机,每个并联光电分选机配置为将对应粒径范围的筛分原料分选为矸石和精煤;
所述气筛分选组件(300)配置为将所述第N-1类筛分原料分选为矸石和对应粒径范围的精煤;
其中,N为大于或等于3的整数。
第二方面,本申请提供的分选工艺,应用于所述第一方面中的分选组合设备,包括:
识别被分选原料的粒径范围;
响应于确定所述粒径范围处于预设粒径范围内,将分选原料筛分为N类筛分原料,所述N类筛分原料的粒径范围不重叠;
选用光电分选方式分选前N-2类筛分原料,选用气筛分选方式分选第N-1类筛分原料并将第N类筛分原料排出,其中,所述第N类筛分原料对应粒径范围内的最大粒径小于或等于所述第N-1类筛分原料对应粒径范围内的最小粒径,所述第N-1类筛分原料对应粒径范围内的最大粒径小于或等于所述前N-2类筛分原料对应粒径范围内的最小粒径。
下面将对具体实施方式或相关技术描述中所需要使用的附图作简单地介绍。
图1为本申请实施例提供的分选组合设备的示意图;
图2为本申请实施例提供的一种分选工艺流程示意图;
图3为本申请实施例提供的另一种分选工艺流程示意图。
图标:100-预处理组件;110-预筛分器件;120-除铁器;130-第一破碎机;140-第一筛分器;200-光电分选组件;210-第一并联光电分选机;220-第二并联光电分选机;300-气筛分选组件;310-气筛分选机;311-鼓风机;320-串联光电分选机;330-第二筛分器;400-第二破碎机;500-除尘组件;510-除尘器;520-引风机。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或 位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。公式中的物理量,如无单独标注,应理解为国际单位制基本单位的基本量,或者,由基本量通过乘、除、微分或积分等数学运算导出的导出量。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
如图1、图2和图3所示,本申请实施例提供的分选组合设备,包括:预处理组件100、光电分选组件200和气筛分选组件300,光电分选组件200和气筛分选组件300分别与预处理组件100连通;
预处理组件(100)包括粒级可选筛分器,粒级可选筛分器配置为将处于预设粒径范围内的分选原料筛分为N类筛分原料,N类筛分原料的粒径范围不重叠;
粒级可选筛分器将前N-2类筛分原料通入光电分选组件200,将第N-1类筛分原料通入气筛分选组件300,将第N类筛分原料排出,其中,第N类筛分原料对应粒径范围内的最大粒径小于或等于第N-1类筛分原料对应粒径范围内的最小粒径,第N-1类筛分原料对应粒径范围内的最大粒径小于或等于前N-2类筛分原料对应粒径范围内的最小粒径;
光电分选组件200包括N-1个并联光电分选机,每个并联光电分选机配置为将对应粒径范围的筛分原料分选为矸石和精煤。
气筛分选组件300配置为将所述第N-1类筛分原料分选为矸石和对应粒径范围的精煤。
本实施例中,N为大于或等于3的自然数。当需要增加或减少单位时间处理量时,只需通过调整N值的大小即可实现,即只要调整物料筛分段数以及并联光电分选机的种类,即可在提高物料单位时间处理量的同时,提高物料分选精度。
例如,光电分选组件200采用光电分选工艺,气筛分选组件300采用气筛 分选工艺,根据被分选原料的粒级和产品指标确定采用光电分选工艺进行分选或采用气筛分选工艺进行分选。例如,块煤或大粒级煤炭使用光电分选组件200进行分选,末煤或小粒级煤炭使用气筛分选组件300进行分选,从而根据设备的有效分选粒度实现了对煤炭宽粒度、全粒级的干法分选。
例如,预处理组件100包括:预筛分器件110、除铁器120和第一破碎机130,预筛分器件110将粒径处于预设粒径范围内(例如粒径小于或等于300mm)的原料直接排出,并通入粒级可选筛分器中,并将粒径大于预设粒径范围内(例如粒径大于300mm)的原料通入除铁器120中,除铁器120通过磁力吸附的方式除去原料中掺杂的铁器,除去铁器的原料通入第一破碎机130,通过第一破碎机130对被分选原料进行破碎处理,以将粒径大于预设粒径范围(例如粒径大于300mm)的原料破碎成预设粒径范围之内(例如粒径小于或等于300mm)的原料,并将粒径处于预设粒径范围之内(例如粒径小于或等于300mm)的破碎后的原料通入粒级可选筛分器中。
例如,粒级可选筛分器可以包括第一筛分器140和第二筛分器330,第一筛分器140和第二筛分器330串联。其中,第一筛分器140配置为将处于预设粒径范围内的分选原料筛分为M类筛分原料,其中,M类筛分原料的粒径范围不重叠;其中,第一筛分器140将前M-1类(即为上述前N-2类筛分原料)筛分原料通入光电分选组件200,将第M类筛分原料通入第二筛分器330,第二筛分器330将第M类筛分原料筛分为第N-1类筛分原料和第N类筛分原料。
本实施例中,N和M的具体数值可以根据实际分选需求确定,其中实际分选需求可以是分选精度的需求,也可以是单位时间处理量的需求等。
示例性的,N=5,M=4,预设粒径范围为0mm-300mm,分选原料的粒径范围也为0mm-300mm,粒级可选筛分器可以将分选原料筛分为5类筛分原料,5类筛分原料可以是第一类筛分原料的粒径范围为300mm-80mm,第二类筛分原料的粒径范围为80mm-50mm,第三类筛分原料的粒径范围为50mm-25mm,第四类筛分原料的粒径范围为25mm-6mm,第五类筛分原料的粒径范围为6mm-0mm。若粒级可选筛分器包括第一筛分器140和第二筛分器330,则第一筛分器140可以将分选原料筛分为4类筛分原料,4类筛分原料可以是第一类筛分原料的粒径范围为300mm-80mm,第二类筛分原料的粒径范围为80mm-50mm,第三类筛分原料的粒径范围为50mm-25mm,第四类筛分原料的粒径范围为25mm-0mm,第一筛分器140将粒径范围为25mm-0mm的筛分原料通入第二筛 分器330,第二筛分器330将粒径范围为25mm-0mm的筛分原料筛分为粒径范围为25mm-6mm和粒径范围为6mm-0mm的筛分原料。
光电分选组件200中可以包括若干并联的并联光电分选机,每个并联光电分选机的分选粒径范围均不相同,并联光电分选机的具体设置数目由粒级可选筛分器的实际筛分段数确定。示例性的,当粒级可选筛分器的筛分段数为N段时,由于第N段粒径范围的筛分原料被排出,不参与分选,因此,对应的并联光电分选机的数目可以是N-1个。
例如,第一破碎机130排出的粒径小于或等于300mm的原料可以通入第一筛分器140,通过第一筛分器140对原料按粒级进行筛分。
本申请实施例通过在分选组合设备中设置预处理组件、光电分选组件和气筛分选组件,且光电分选组件和气筛分选组件分别与预处理组件连通;其中,预处理组件设置为包括粒级可选筛分器,粒级可选筛分器配置为将处于预设粒径范围内的分选原料筛分为N类筛分原料,N类筛分原料的粒径范围不重叠;粒级可选筛分器将前N-2类筛分原料通入光电分选组件,将第N-1类筛分原料通入气筛分选组件,将第N类筛分原料排出,其中,第N类筛分原料对应粒径范围内的最大粒径小于或等于第N-1类筛分原料对应粒径范围内的最小粒径,第N-1类筛分原料对应粒径范围内的最大粒径小于或等于前N-2类筛分原料对应粒径范围内的最小粒径;光电分选组件包括N-1个并联光电分选机,每个并联光电分选机配置为处理对应粒径范围的筛分原料,通过设置粒级可选筛分器,可以根据实际分选需求,选择性的将分选原料筛分为N类筛分原料,此外,通过设置与N-1类筛分原料数目匹配的光电分选机或气筛分选机,分别对N-1类筛分原料进行分选,能够在提高物料单位时间处理量的同时,提高物料的分选精度。在进行千万吨级动力煤干法分选时,为了增加原料单位时间处理量,并保证分选精度,可以将煤炭筛分为多个更窄的粒级,同时选择对应的并联光电分选机进行分选,无需增加整套分选系统的数量,同时也增加了分选精度更高。
在一个示例实施例中,光电分选组件200包括第一并联光电分选机210和第二并联光电分选机220,第一并联光电分选机210配置为将N类筛分原料中的第一类筛分原料分选为矸石和对应粒径范围的精煤;第二并联光电分选机220配置为将N类筛分原料中的第二类筛分原料分选为矸石和对应粒径范围的精煤。
下面以一个示例的实例对上述示例实施例中的分选组合设备进行介绍:
如图1和图2所示,本实施例首先需要利用预筛分器件110将原煤中粒径 大于300mm的原煤通入除铁器中,将粒径小于或等于300mm的原煤通入第一筛分器中。进入除铁器中的原煤,经过除铁器除去原煤中掺杂的铁器后,经过第一破碎机130将粒径大于300mm的原煤破碎成粒径小于或等于300mm的原煤,并通入第一筛分器中。
本实施例中,实际需要将粒径小于或等于300mm的原煤筛分成4段,粒径范围分别是300mm-80mm、80mm-25mm、25mm-6mm和6mm-0mm,对应的筛分粒径节点分别为80mm、25mm和6mm。第一筛分器140根据实际需要将原煤筛分成3段,粒径范围分别是300mm-80mm、80mm-25mm和25mm-0mm,本实施例中,光电分选组件200中设置两个并联光电分选机,分别是第一并联光电分选机210和第二并联光电分选机220,第一筛分器140将粒径范围为300mm-80mm的原煤通入第一并联光电分选机210,将粒径范围为80mm-25mm的原煤通入第二并联光电分选机220,将粒径范围为25mm-0mm的原煤通入第二筛分器330中。其中,第一并联光电分选机210配置为将被分选原料分选为矸石和大块精煤,第二并联光电分选机220配置为将被分选原料分选为矸石和中块精煤。第二筛分器330将粒径范围为25mm-0mm的原煤筛分成2段,粒径范围分别是25mm-6mm和6mm-0mm,第二筛分器330将粒径范围为25mm-6mm的原煤通入气筛分选机310,将粒径范围为6mm-0mm的精煤排出不参与分选。气筛分选机310的鼓风机311输送风对气筛分选机310内腔的物料进行分选,从而分别排出矸石和煤料。
在此需要说明的是,不参与分选的原煤的粒径节点可以是0mm-13mm中的任一粒径,即粒径节点不一定是上述示例中的粒径6mm,粒径6mm仅为本实施例中的一个示例。本申请多个实施例中均是以粒径节点为6mm进行具体说明的。在此还需要说明的是,粒径小于粒径节点的物料为在实际分选过程中容易受湿度等因素影响而泥化的物料,本实施例中,将符合该条件的物料分选出来,能够提高分选精度,并且减小后续除尘设备的除尘压力。
在一个示例实施例中,气筛分选组件300包括:气筛分选机310和与气筛分选机310串联的串联光电分选机320;
气筛分选机310配置为将第N-1类筛分原料中的精煤分选出来,并将剩余的带煤矸物料通入串联光电分选机320中。
上述将气筛分选机与光电分选机串联的方式,可以实现气筛分选机在多产品(两产品或三产品等)分选/排矸中的应用。
下面以一个示例的实例对上述示例实施例中的分选组合设备进行介绍:
如图1和图3所示,本实施例首先需要利用预筛分器件110将原煤中粒径大于300mm的原煤通入除铁器中,将粒径小于或等于300mm的原煤通入第一筛分器中。进入除铁器中的原煤,经过除铁器除去原煤中掺杂的铁器后,经过第一破碎机130将粒径大于300mm的原煤破碎成粒径小于或等于300mm的原煤,并通入第一筛分器中。
本实施例中,实际需要将粒径小于或等于300mm的原煤筛分成3段,粒径范围分别是300mm-50mm、50mm-6mm和6mm-0mm,对应的筛分粒径节点分别为50mm和6mm。第一筛分器140根据实际需要将原煤筛分成2段,粒径范围分别是300mm-50mm和50mm-0mm,本实施例中,光电分选组件200中设置一个并联光电分选机210,第一筛分器140将粒径范围为300mm-50mm的原煤通入第一并联光电分选机210,将粒径范围为50mm-0mm的原煤通入第二筛分器330中。其中,第一并联光电分选机210配置为将被分选原料分选为矸石和精煤。第二筛分器330将粒径范围为50mm-0mm的原煤筛分成2段,粒径范围分别是50mm-6mm和6mm-0mm,第二筛分器330将粒径范围为50mm-6mm的原煤通入气筛分选机310,将粒径范围为6mm-0mm的精煤排出不参与分选。气筛分选机310的鼓风机311输送风对气筛分选机310内腔的物料进行分选,从而分别排出含煤矸石和精煤(由于通入气筛分选机的粒径范围过宽,其分选精度可能达不到实际要求,因此,可以在气筛分选机后面串联设置串联光电分选机)。气筛分选机310将含煤矸石通入串联光电分选机320中,串联光电分选机320将含煤矸石分选为矸石和精煤。
在一个示例实施例中,分选组合设备还包括第二破碎机(400),第二破碎机(400)与光电分选组件(200)连通,第二破碎机(400)配置为将光电分选组件(200)排出的精煤进行破碎。
如图1所示,光电分选组件200连通第二破碎机400,第二破碎机400配置为将光电分选组件200排出的精煤进行破碎。
如图2所示,第一光电分选机210排出的大块精煤和第二光电分选机220排出的中块精煤分别通入第二破碎机400,通过第二破碎机400将大块精煤和中块精煤进行破碎。
如图3所示,第一光电分选机210将大块精煤排出至第二破碎机400,通过第二破碎机400将大块精煤进行破碎。
在一个示例的实施例中,分选组合设备还包括除尘组件(500),光电分选组件(200)和气筛分选组件(300)分别与除尘组件(500)流体连通。
如图1、图2和图3所示,除尘组件500可抽吸光电分选组件200和气筛分选组件300中的气体,并对气体中的掺杂粉尘进行过滤。
例如,除尘组件500包括:除尘器510和引风机520,光电分选组件200和气筛分选组件300分别与除尘器510流体连通,引风机520驱动气体自光电分选组件200和气筛分选组件300分别流经除尘器510,通过除尘器510过滤处理后的洁净气体经引风机520外排至空气中。
如图1、图2和图3所示的分选组合设备,本申请实施例提供一种对应的分选工艺,应用于本申请实施例中所述的分选组合设备,包括以下步骤:识别被分选原料的粒径范围;
响应于确定所述粒径范围处于预设粒径范围内,将分选原料筛分为N类筛分原料,N类筛分原料的粒径范围不重叠;
选用光电分选方式分选前N-2类筛分原料,选用气筛分选方式分选第N-1类筛分原料并将第N类筛分原料排出,其中,第N类筛分原料对应粒径范围内的最大粒径小于或等于第N-1类筛分原料对应粒径范围内的最小粒径,第N-1类筛分原料对应粒径范围内的最大粒径小于或等于前N-2类筛分原料对应粒径范围内的最小粒径。
上述采用气筛分选机与光电分选机并联的工艺可以使大粒级煤炭使用光电分选机分选,小粒级煤炭使用风力选煤机分选,根据设备的有效分选粒度实现了对全粒级物料的精确干法分选,同时提高了物料单位时间的处理量。
例如,在本申请实施例中,在分选工艺中还包括:
对选用光气筛分选方式分选所述第N-1类筛分原料后的中间产品选用光电分选方式再次进行分选。
如图3所示,上述采用气筛分选机与光电分选机串联的工艺可以根据入料的性质和分选产品的指标,光电分选机可以灵活分选气筛分选机的中煤或矸石。在气筛分选机用于三产品分选/排矸中,当中煤带煤较多时,使用光电分选机回收中煤中的精煤;当中煤带矸较多时,使用光电分选机排除中煤中的矸石;当矸石带煤较多时,使用光电分选机回收矸石中的中煤。在气筛分选机用于两产品分选/排矸中,当矸石带煤较多时,可以使用光电分选机回收矸石中的精煤。 例如,在本申请实施例中,在分选工艺中还包括:
对利用光电分选方式分选所述前N-2类筛分原料后的精煤进行破碎处理。
Claims (9)
- 一种分选组合设备,包括:预处理组件(100)、光电分选组件(200)和气筛分选组件(300),所述光电分选组件(200)和所述气筛分选组件(300)分别与所述预处理组件(100)连通;所述预处理组件(100)包括粒级可选筛分器,所述粒级可选筛分器配置为将处于预设粒径范围内的分选原料筛分为N类筛分原料,所述N类筛分原料的粒径范围不重叠;所述粒级可选筛分器将前N-2类筛分原料通入所述光电分选组件(200),将第N-1类筛分原料通入所述气筛分选组件(300),将第N类筛分原料排出,其中,所述第N类筛分原料对应粒径范围内的最大粒径小于或等于所述第N-1类筛分原料对应粒径范围内的最小粒径,所述第N-1类筛分原料对应粒径范围内的最大粒径小于或等于所述前N-2类筛分原料对应粒径范围内的最小粒径;所述光电分选组件(200)包括N-1个并联光电分选机,每个并联光电分选机配置为将对应粒径范围的筛分原料分选为矸石和精煤;所述气筛分选组件(300)配置为将所述第N-1类筛分原料分选为矸石和对应粒径范围的精煤;其中,N为大于或等于3的整数。
- 根据权利要求1所述的分选组合设备,其中,所述气筛分选组件(300)包括:气筛分选机(310)和与所述气筛分选机(310)串联的串联光电分选机(320);所述气筛分选机(310)配置为将所述第N-1类筛分原料中的精煤分选出来,并将剩余的带煤矸物料通入所述串联光电分选机(320)中。
- 根据权利要求1所述的分选组合设备,其中,所述光电分选组件(200)包括第一并联光电分选机(210)和第二并联光电分选机(220),所述第一并联光电分选机(210)配置为将所述N类筛分原料中的第一类筛分原料分选为矸石和对应粒径范围的精煤;所述第二并联光电分选机(220)配置为将所述N类筛分原料中的第二类筛分原料分选为矸石和对应粒径范围的精煤。
- 根据权利要求1所述的分选组合设备,其中,所述预处理组件(100)包括第一破碎机(130);所述第一破碎机(130)配置为将粒径大于所述预设粒径范围的原料破碎处理为粒径处于所述预设粒径范围内的分选原料,并将破碎处理后粒径处于所述 预设粒径范围内的分选原料通入所述粒级可选筛分器中。
- 根据权利要求1-4任一项所述的分选组合设备,其中,所述分选组合设备还包括第二破碎机(400),所述第二破碎机(400)与所述光电分选组件(200)连通,所述第二破碎机(400)配置为将所述光电分选组件(200)排出的所述精煤进行破碎。
- 根据权利要求1-4任一项所述的分选组合设备,其中,所述分选组合设备还包括除尘组件(500),所述光电分选组件(200)和所述气筛分选组件(300)分别与所述除尘组件(500)流体连通。
- 一种分选工艺,应用于如权利要求1-6中任一项所述的分选组合设备包括:识别被分选原料的粒径范围;响应于确定所述粒径范围处于预设粒径范围内,将分选原料筛分为N类筛分原料,所述N类筛分原料的粒径范围不重叠;选用光电分选方式分选前N-2类筛分原料,选用气筛分选方式分选第N-1类筛分原料并将第N类筛分原料排出,其中,所述第N类筛分原料对应粒径范围内的最大粒径小于或等于所述第N-1类筛分原料对应粒径范围内的最小粒径,所述第N-1类筛分原料对应粒径范围内的最大粒径小于或等于所述前N-2类筛分原料对应粒径范围内的最小粒径。
- 根据权利要求7所述的分选工艺,还包括:对选用气筛分选方式分选所述第N-1类筛分原料后的中间产品选用光电分选方式再次进行分选。
- 根据权利要求7所述的分选工艺,还包括:对选用光电分选方式分选所述前N-2类筛分原料后的精煤进行破碎处理。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011235811.1 | 2020-11-09 | ||
CN202011235811.1A CN112090762B (zh) | 2020-11-09 | 2020-11-09 | 分选组合设备及分选工艺 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022095992A1 true WO2022095992A1 (zh) | 2022-05-12 |
Family
ID=73785977
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/129222 WO2022095992A1 (zh) | 2020-11-09 | 2021-11-08 | 分选组合设备及分选工艺 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112090762B (zh) |
WO (1) | WO2022095992A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112090762B (zh) * | 2020-11-09 | 2021-03-12 | 天津美腾科技股份有限公司 | 分选组合设备及分选工艺 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030183558A1 (en) * | 2002-03-26 | 2003-10-02 | Lewis M. Carter Manufacturing Co. | Apparatus and method for dry beneficiation of coal |
CN203816932U (zh) * | 2014-04-29 | 2014-09-10 | 唐山开远选煤科技有限公司 | 组合式多功能干选系统 |
CN105268648A (zh) * | 2015-04-16 | 2016-01-27 | 天津美腾科技有限公司 | 一种块、粒煤分粒级智能干选工艺 |
CN205110130U (zh) * | 2015-11-20 | 2016-03-30 | 中国矿业大学 | 一种煤炭全粒级干法分选洁净系统 |
CN106179676A (zh) * | 2016-07-18 | 2016-12-07 | 淮南矿业(集团)有限责任公司 | 一种干法选煤及处理方法 |
CN109331989A (zh) * | 2018-09-18 | 2019-02-15 | 中国矿业大学 | 一种煤炭全粒级干法脱水脱灰系统与工艺 |
CN109482494A (zh) * | 2018-11-22 | 2019-03-19 | 中国矿业大学 | 一种动力煤全粒级干法提质排矸工艺 |
CN109569874A (zh) * | 2018-11-26 | 2019-04-05 | 天津美腾科技有限公司 | 动力煤分选系统、动力煤分选工艺及应用 |
CN112090762A (zh) * | 2020-11-09 | 2020-12-18 | 天津美腾科技股份有限公司 | 分选组合设备及分选工艺 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB396828A (en) * | 1932-02-19 | 1933-08-17 | Gen Electric Co Ltd | Improvements in apparatus for separating dust from coal or other materials |
JP2001054728A (ja) * | 1999-08-19 | 2001-02-27 | Nippon Steel Corp | 湿式造粒後の脱水方法及び脱水装置 |
CN204220486U (zh) * | 2014-09-30 | 2015-03-25 | 重庆万盛煤化有限责任公司 | 原煤干法分选系统 |
CN109331988A (zh) * | 2018-09-18 | 2019-02-15 | 中国矿业大学 | 一种基于干法分选设备的金属矿物富集工艺与系统 |
CN109158157A (zh) * | 2018-11-14 | 2019-01-08 | 方忠平 | 一种高效逐级选煤机 |
CN210159985U (zh) * | 2019-06-05 | 2020-03-20 | 山东泰安煤矿机械有限公司 | 基于射线的多粒度干法的选煤装置 |
-
2020
- 2020-11-09 CN CN202011235811.1A patent/CN112090762B/zh active Active
-
2021
- 2021-11-08 WO PCT/CN2021/129222 patent/WO2022095992A1/zh unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030183558A1 (en) * | 2002-03-26 | 2003-10-02 | Lewis M. Carter Manufacturing Co. | Apparatus and method for dry beneficiation of coal |
CN203816932U (zh) * | 2014-04-29 | 2014-09-10 | 唐山开远选煤科技有限公司 | 组合式多功能干选系统 |
CN105268648A (zh) * | 2015-04-16 | 2016-01-27 | 天津美腾科技有限公司 | 一种块、粒煤分粒级智能干选工艺 |
CN205110130U (zh) * | 2015-11-20 | 2016-03-30 | 中国矿业大学 | 一种煤炭全粒级干法分选洁净系统 |
CN106179676A (zh) * | 2016-07-18 | 2016-12-07 | 淮南矿业(集团)有限责任公司 | 一种干法选煤及处理方法 |
CN109331989A (zh) * | 2018-09-18 | 2019-02-15 | 中国矿业大学 | 一种煤炭全粒级干法脱水脱灰系统与工艺 |
CN109482494A (zh) * | 2018-11-22 | 2019-03-19 | 中国矿业大学 | 一种动力煤全粒级干法提质排矸工艺 |
CN109569874A (zh) * | 2018-11-26 | 2019-04-05 | 天津美腾科技有限公司 | 动力煤分选系统、动力煤分选工艺及应用 |
CN112090762A (zh) * | 2020-11-09 | 2020-12-18 | 天津美腾科技股份有限公司 | 分选组合设备及分选工艺 |
Also Published As
Publication number | Publication date |
---|---|
CN112090762B (zh) | 2021-03-12 |
CN112090762A (zh) | 2020-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022095992A1 (zh) | 分选组合设备及分选工艺 | |
CN103817072B (zh) | 一种粉碎机筛片的自动检测装置 | |
CN101648184B (zh) | 一种茶叶筛分机构 | |
CN206882167U (zh) | 一种碳化硅粉体的分段筛选装置 | |
CN203816939U (zh) | 一种带有除尘设备的色选机系统 | |
CN208879029U (zh) | 一种带有清理功能的固体颗粒分离装置 | |
CN214132113U (zh) | 一种新型石英砂研磨装置 | |
CN104549711A (zh) | 一种砂石生产系统 | |
CN108114771A (zh) | 一种破碎式磁选机 | |
CN105268648A (zh) | 一种块、粒煤分粒级智能干选工艺 | |
CN109701730A (zh) | 一种提高利用率的高效洗煤工艺 | |
CN108940555A (zh) | 天然鳞片石墨和鳞片云母物理干法分选方法 | |
CN108176576A (zh) | 一种大米色选机用预筛分装置 | |
KR102288909B1 (ko) | 실리콘 원료칩의 선별 시스템 | |
CN100463731C (zh) | 烟草颗粒状材料清选装置 | |
CN106000882A (zh) | 多通道多层振动清理机 | |
CN109317504A (zh) | 一种废旧电路板颗粒的多级高效筛选方法 | |
RU2004108474A (ru) | Способ удаления оболочек семян из шрота/жмыха подсолнечника и установка для его осуществления | |
CN209663388U (zh) | 一种石英粉球磨机出料输料装置 | |
RU2015102735A (ru) | Способ получения высокобелковых растительных продуктов, преимущественно крупки, из шрота/жмыха подсолнечника и устройство для его осуществления | |
CN106000575A (zh) | 农作物秸秆破碎、分选一体化装置及方法 | |
CN202137125U (zh) | 一种用于金属粉末粉碎机的振动筛 | |
RU2491133C1 (ru) | Способ очистки семян пшеницы от татарской гречихи | |
CN110935628A (zh) | 一种多级筛分、分取装置 | |
CN104117420A (zh) | 一种浇注料分级整理设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21888684 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 30/06/2023) |