WO2022092139A1 - 銅合金板材、銅合金板材の製造方法及び接点部品 - Google Patents

銅合金板材、銅合金板材の製造方法及び接点部品 Download PDF

Info

Publication number
WO2022092139A1
WO2022092139A1 PCT/JP2021/039615 JP2021039615W WO2022092139A1 WO 2022092139 A1 WO2022092139 A1 WO 2022092139A1 JP 2021039615 W JP2021039615 W JP 2021039615W WO 2022092139 A1 WO2022092139 A1 WO 2022092139A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
copper alloy
alloy plate
less
plate material
Prior art date
Application number
PCT/JP2021/039615
Other languages
English (en)
French (fr)
Inventor
俊太 秋谷
宏和 佐々木
紳悟 川田
司 高澤
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to CN202180059625.3A priority Critical patent/CN116157546A/zh
Priority to JP2022503525A priority patent/JP7051029B1/ja
Priority to KR1020237003540A priority patent/KR20230094188A/ko
Publication of WO2022092139A1 publication Critical patent/WO2022092139A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the present invention relates to a copper alloy plate material, a method for manufacturing a copper alloy plate material, and contact parts.
  • Copper alloy plates are used for electrical and electronic equipment such as smartphones, tablets, notebook PCs, action cameras, automobiles, industrial equipment, and parts such as robots, for example, contact parts such as connectors.
  • Patent Document 1 in a Cu—Fe—P alloy, the interatomic distance of Fe and P measured by a three-dimensional atom probe electric field ion microscope is shortened, and Cu.
  • Patent Document 2 in a Cu—Ni—Sn—P alloy, the interatomic distance of Ni and P measured by a three-dimensional atom probe field ion microscope is shortened, and an aggregate of Cu, Ni and P is obtained.
  • Patent Document 3 in a Cu—Ni—Co—Si based alloy, a copper alloy plate material that improves conductivity, stress relaxation resistance characteristics, and formability by controlling the component composition, spring limit value, and crystal orientation is used. The technology is disclosed.
  • the internal circuit has increased in current and the amount of heat generated has also increased.
  • the above-mentioned electric / electronic equipment, automobiles, industrial equipment, robots, etc. are continuously used for a certain period of time in a state of heat generation, their parts may be used at a high temperature.
  • spring electrical contact components such as connectors tend to have high temperatures during high-speed communication and high-speed charging.
  • the strength will be lower than the strength at room temperature (for example, 25 ° C) when new, and problems such as material breakage due to stress due to fitting will occur. There is a risk.
  • it is desired that the strength decrease due to the temperature rise is suppressed and the strength at a high temperature (for example, 100 ° C.) is high.
  • Patent Documents 1 to 3 it is difficult to obtain a copper alloy plate material having high strength at high temperature and excellent conductivity by suppressing a decrease in strength due to a temperature rise.
  • Patent Documents 1 to 3 no attention is paid to the strength when used at a high temperature.
  • the present invention has been made in view of the above circumstances, and is a copper alloy plate material, a method for producing a copper alloy plate material, and copper, which suppresses a decrease in strength due to a temperature rise, has high strength at high temperatures, and has excellent conductivity. It is an object of the present invention to provide contact parts using an alloy plate material.
  • the present inventors have made a total of 0.5% by mass or more and 5.0% by mass or less of at least one of Ni and Co, and 0.10% by mass or more and 1 of Si in the copper alloy plate material.
  • a copper alloy plate having a composition, in which a Si compound containing at least one of Ni and Co and Si is contained in the matrix, and a three-dimensional atom probe electric field ion microscope is provided in the boundary region between the Si compound and the matrix.
  • It has a diffusion layer containing at least one of Ni and Co and Cu and Si, and the average thickness of the diffusion layer is 0.5 nm or more and 5.0 nm or less, so that the strength decreases with increasing temperature. Suppressed, high strength at high temperature, and excellent conductivity, and such a copper alloy plate material is melt-cast into a copper alloy material having an alloy composition similar to the alloy composition of the copper alloy plate material [Step 1].
  • the gist structure of the present invention is as follows. (1) A total of 0.5% by mass or more and 5.0% by mass or less of at least one of Ni and Co, In addition, it contains Si in an amount of 0.10% by mass or more and 1.50% by mass or less. Moreover, the mass ratio (Ni + Co) / Si of the total content of Ni and Co to the Si content is 2.00 or more and 6.00 or less. A copper alloy plate having an alloy composition in which the balance is composed of copper and unavoidable impurities. The matrix contains a Si compound containing at least one of Ni and Co and Si.
  • the boundary region between the Si compound and the matrix has a diffusion layer containing at least one of Ni and Co and Cu and Si as observed by a three-dimensional atom probe electric field ion microscope.
  • a copper alloy plate having an average thickness of 0.5 nm or more and 5.0 nm or less.
  • the alloy composition contains both Ni and Co, the Ni content is 0.5% by mass or more and 4.5% by mass or less, and the Co content is 0.4% by mass or more and 2.5% by mass. % Or less, the copper alloy plate material according to (1) above.
  • the alloy composition further contains at least one selected from the group consisting of Mg, Sn, Zn, P, Cr, Zr and Fe in a total amount of 0.1% by mass or more and 1.0% by mass or less.
  • the copper alloy plate material of the present invention suppresses a decrease in strength due to a temperature rise, has high strength at high temperatures, and has excellent conductivity. Therefore, it is suitable as a copper alloy plate material for electrical / electronic equipment, automobiles, industrial equipment, and contact parts such as connectors in robots, which can be used at high temperatures.
  • FIG. 1 is a diagram showing an example of observation with a three-dimensional atom probe electric field ion microscope.
  • the copper alloy plate material according to the present invention contains at least one of Ni and Co in a total of 0.5% by mass or more and 5.0% by mass or less, and Si in an amount of 0.10% by mass or more and 1.50% by mass or less, and A copper alloy plate having an alloy composition in which the mass ratio (Ni + Co) / Si of the total content of Ni and Co to the Si content is 2.00 or more and 6.00 or less, and the balance is copper and unavoidable impurities.
  • the matrix contains a Si compound containing at least one of Ni and Co and Si, and is observed by a three-dimensional atom probe field ion microscope in the boundary region between the Si compound and the matrix, and at least one of Ni and Co. It has a diffusion layer containing Cu and Si, and is characterized in that the average thickness of the diffusion layer is 0.5 nm or more and 5.0 nm or less.
  • the alloy composition of the copper alloy plate material of the present invention, the Si compound contained in the copper alloy plate material, and the reasons for limiting the diffusion layer will be described.
  • the copper alloy plate material of the present invention contains at least one of Ni and Co in a total amount of 0.5% by mass or more and 5.0% by mass or less.
  • the total content of Ni and Co is preferably 0.8% by mass or more from the viewpoint of strength, and preferably 4.0% by mass or less from the viewpoint of conductivity.
  • the total content of Ni and Co is more preferably 1.0% by mass or more and 3.5% by mass or less.
  • the Co content is preferably 0.5% by mass or more and 5.0% by mass or less.
  • the Ni content is preferably 0.5% by mass or more and 5.0% by mass or less.
  • the Ni content is 0.5% by mass or more and 4.5% by mass or less
  • the Co content is 0.4% by mass or more and 2.5% by mass or less. Is preferable. It should be noted that the content of Co in an amount of 0.4% by mass or more has the effect of increasing the conductivity as compared with the case of Ni alone, but if it exceeds 2.0% by mass, the conductivity may decrease conversely.
  • the Co content is preferably 0.5% by mass or more and 2.0% by mass or less.
  • the copper alloy plate material of the present invention contains Si in an amount of 0.10% by mass or more and 1.50% by mass or less.
  • Si content is less than 0.10% by mass, the strength is lowered. If it is higher than 1.50% by mass, the conductivity is lowered, coarse crystallization is likely to occur in the ingot, and it remains as an unsolid solution after the solution heat treatment, and is the starting point of cracks during bending. It is easy to become.
  • the Si content is preferably 1.25% by mass or less, more preferably 1.10% by mass or less, from the viewpoint of conductivity.
  • the mass ratio of the total content of Ni and Co to the Si content is 2.00 or more and 6.00 or less.
  • the (Ni + Co) / Si ratio is less than 2.00, Si is excessively present with respect to Ni and Co, the residual amount of Si in the matrix phase increases during the aging heat treatment, and the conductivity decreases.
  • the (Ni + Co) / Si ratio is higher than 6.00, the residual amount of Ni and Co increases, and the conductivity decreases. From the viewpoint of conductivity, it is preferably 3.00 to 5.00, more preferably 3.30 to 4.70.
  • the copper alloy plate material of the present invention further contains at least one selected from the group consisting of Mg, Sn, Zn, P, Cr, Zr and Fe in an amount of 0.1% by mass or more and 1.0% by mass or less in total. May be.
  • Mg While Mg has the effect of improving the strength at high temperatures, it tends to lower the conductivity. Therefore, the content of Mg is preferably 0.1% by mass or more and 0.3% by mass.
  • the Sn content is preferably 0.1% by mass or more and 0.3% by mass or less.
  • (Zn) Zn has an effect of improving Sn plating property and migration characteristics, but tends to lower the conductivity. Therefore, the Zn content is preferably 0.1% by mass or more and 0.5% by mass or less. ..
  • (P) P has the effect of suppressing the precipitation of Si compounds on the grain boundaries and increasing the strength, but tends to decrease the conductivity, so the content of P is 0.1% by mass or more and 0.3% by mass. % Or less is preferable.
  • (Cr) Cr has the effect of suppressing the coarsening of crystal grains during solution heat treatment, but it tends to generate coarse crystal grains during casting and tends to create crack origins, so the Cr content is 0. It is preferably 1% by mass or more and 0.3% by mass or less.
  • (Zr) Zr has the effect of suppressing the coarsening of crystal grains during solution heat treatment, but it tends to generate coarse crystal grains during casting and tends to create crack origins, so the Zr content is 0. It is preferably 1% by mass or more and 0.2% by mass.
  • Fe has the effect of suppressing the coarsening of crystal grains during solution heat treatment, but coarse crystallized products are likely to be generated during casting, and crack origins are likely to be formed. Therefore, the Fe content is 0.1% by mass. It is preferably 0.2% by mass or less.
  • the balance consists of Cu (copper) and unavoidable impurities.
  • the "unavoidable impurities” referred to here are generally copper-based products that are present in raw materials or are inevitably mixed in the manufacturing process, and are originally unnecessary, but are in trace amounts. It is an acceptable impurity because it does not affect the properties of copper-based products.
  • Examples of the components listed as unavoidable impurities include non-metal elements such as sulfur (S) and oxygen (O) and metal elements such as aluminum (Al) and antimony (Sb).
  • the upper limit of the content of these components may be 0.05% by mass for each of the above components and 0.20% by mass for the total amount of the above components.
  • the copper alloy plate material of the present invention contains a Si compound in the matrix phase.
  • the Si compound is a compound containing at least one of Ni and Co and Si.
  • the Si compound may contain other elements contained in the copper alloy plate material in addition to Ni, Co and Si, and may contain, for example, Cu, Mg, Sn, Zn, P, Cr, Zr and Fe. good.
  • the Si compound is a precipitate formed by precipitating during the production of a copper alloy plate material.
  • the Si compound is, for example, precipitated and formed in the first temporary heat treatment [step 6], and then undergoes solution heat treatment [step 7], second aging heat treatment [step 8], and the like to finally produce a copper alloy plate material. include.
  • the copper alloy plate material of the present invention has a diffusion layer containing at least one of Ni and Co and Cu and Si, which is observed by a three-dimensional atom probe field ion microscope in the boundary region between the Si compound and the matrix.
  • the average thickness of the diffusion layer is 0.5 nm or more and 5.0 nm or less.
  • the diffusion layer is defined as a region in which the concentration of Cu is 20 at% or more and 90 at% or less, which is observed with a three-dimensional atom probe field ion microscope for the copper alloy plate material. Details of the three-dimensional atom probe electric field ion microscope will be described later.
  • the present inventors have the above alloy composition, and the average thickness of the diffusion layer observed by the three-dimensional atom probe field ion microscope in the boundary region between the Si compound and the matrix is set to 0.5 nm or more and 5 nm or less. By doing so, it has been found that a copper alloy plate material having high strength at high temperature and excellent conductivity can be obtained by suppressing a decrease in strength due to an increase in temperature.
  • phase transformation of copper alloy on changes in strength in the range of operating temperature of electrical / electronic equipment, automobiles, industrial equipment, robots, etc., specifically room temperature (for example, 25 ° C) to high temperature (for example, 100 ° C). Is almost negligible, and it is considered that the change in strength is affected by the mobility of dislocations, which is a thermal activation phenomenon. Therefore, in order to suppress the decrease in strength due to temperature rise and increase the strength at high temperature, it is effective to inhibit dislocation movement by increasing the number of second phase particles such as solid solution elements and precipitates. It is believed that there is.
  • the present inventors consider that a method of not increasing the amount of added elements is required in order to suppress the decrease in strength due to the temperature rise, increase the strength at high temperature, and improve the conductivity.
  • a diffusion layer of a predetermined thickness at the interface between the Si compound, which is a precipitate, and the parent phase the decrease in strength due to an increase in temperature is suppressed, the strength at high temperatures is high, and copper has excellent conductivity. It was found that it would be an alloy plate material. Since the copper alloy plate has high strength at high temperature, it also has high strength at room temperature.
  • the diffusion layer is in a state where Ni atoms, Co atoms, and Si atoms are locally present in a high concentration in the Cu matrix phase, and this diffusion layer suppresses the movement of dislocations. It is presumed that this is one of the reasons why the copper alloy plate material has high strength at high temperature and excellent conductivity by suppressing the decrease in strength due to the temperature rise.
  • the average thickness of the diffusion layer needs to be 0.5 nm or more and 5.0 nm or less.
  • the thickness of the diffusion layer is preferably 1.0 nm or more and 4.0 nm or less, and more preferably 2.0 nm or more and 3.0 nm or less.
  • the three-dimensional atom probe method is an analysis method capable of three-dimensional composition analysis of nanoprecipitates and clusters in metals and semiconductors.
  • the principle is as follows. A needle-shaped sample having a tip of about 100 nm is prepared, carried into a 3DAP device (three-dimensional atom probe electric field ion microscope), and then a high voltage is applied in a pulse to evaporate the electric field one atom at a time from the tip of the sample. Further, by irradiating the tip of the needle with a pulsed laser having a specific wavelength to assist electric field evaporation, it is possible to reduce the probability of sample destruction, improve the mass resolution, and measure semiconductors and insulators.
  • the two-dimensional position detector detects the flight time and position measurement of the ions that have been electro-evaporated by the pulse voltage and laser irradiation, and measures the two-dimensional coordinate position of each ion.
  • analysis as time-of-flight mass spectrometry is also possible, so the reached ion species can be identified.
  • laser irradiation is repeated to obtain information on the two-dimensional coordinate position of the ion and information on the depth direction of the sample, three-dimensional composition information can be obtained by performing data analysis considering the shape of the tip of the needle. Is possible.
  • EIKOS-X manufactured by CAMECA
  • the thickness of the diffusion layer is determined by observing from the matrix to the Si compound and using a proxygram, which is a concentration profile of each component (Cu, Si, Ni, Co, etc.) of the obtained copper alloy plate material. If there is unevenness in the boundary region between the Si compound that is the second phase and the parent phase, creating a one-dimensional concentration profile across the boundary region will superimpose the effects of the unevenness and define an accurate diffusion layer. I can't. For this reason, a proxygram based on the equiconcentration plane of a specific element is used.
  • the proxygram is a one-dimensional concentration profile in which the concentration is calculated in the direction perpendicular to the plane of the equal concentration of a specific element as a reference.
  • IVAS which is a 3D atom probe software provided by CAMECA, can be used for the calculation of the proxygram.
  • FIG. 1 is a proxygram based on an equal concentration surface having a Ni concentration of 5 at%.
  • FIG. 1 is an example of observation with a three-dimensional atom probe field ion microscope of a copper alloy plate having an alloy composition of Ni: 2.3% by mass and Si: 0.55% by mass with a balance of Cu.
  • the average thickness of the diffusion layer was sampled at five locations at even intervals in the direction perpendicular to the rolling direction in the copper alloy plate material, and the diffusion layer obtained from the proxygram measured for each sample (sample). It is the average value of the thickness of.
  • the copper alloy plate material of the present invention suppresses a decrease in strength due to an increase in temperature, has high strength at high temperatures, and has excellent conductivity. Therefore, parts such as electric / electronic equipment, automobiles, industrial equipment, and robots formed by using the copper alloy plate material of the present invention are highly reliable in terms of strength and conductivity. For example, even when the operating temperature is from room temperature to high temperature, there is little change in strength, the strength exceeds a certain level, and the conductivity is excellent, so that the component is highly reliable. In particular, even a spring electric contact component such as a connector whose terminal tends to become hot during high-speed communication or high-speed charging can be highly reliable by using the copper alloy plate material of the present invention.
  • the tensile strength of the copper alloy plate material at 100 ° C. is, for example, 500 MPa or more.
  • the tensile strength of the copper alloy plate material at 100 ° C. can be 600 MPa or more or 690 MPa or more.
  • the copper alloy plate material of the present invention since the copper alloy plate material of the present invention has high strength at high temperature, it also has high strength at room temperature.
  • the tensile strength of the copper alloy plate material at 25 ° C. is, for example, 500 MPa or more, and usually 505 MPa or more.
  • the decrease in strength due to temperature rise is suppressed, and the difference between the strength at room temperature and the strength at high temperature, for example, the difference between the tensile strength at 25 ° C. and the tensile strength at 100 ° C. is 100 MPa or less. , 70 MPa or less, 55 MPa or less, or 35 MPa or less.
  • the difference between the tensile strength at 25 ° C. and the tensile strength at 100 ° C. is 100 MPa or less, preferably 70 MPa or less, more preferably. Is 55 MPa or less.
  • the difference between the tensile strength at 25 ° C. and the tensile strength at 100 ° C. is 100 MPa or less, preferably 70 MPa or less, and more preferably 55 MPa. It is as follows.
  • the difference between the tensile strength at 25 ° C. and the tensile strength at 100 ° C. is 100 MPa or less, preferably 90 MPa or less, and more preferably 70 MPa.
  • the tensile strength of the copper alloy plate material at 25 ° C. is 800 MPa or more and less than 900 MPa
  • the difference between the tensile strength at 25 ° C. and the tensile strength at 100 ° C. is 100 MPa or less, preferably 95 MPa or less, and more preferably 55 MPa. It is as follows.
  • the tensile strength of the copper alloy plate material in the present specification can be measured based on JIS Z 2241: 2011, for example, using a JIS 13B test piece.
  • the conductivity of the copper alloy plate material of the present invention is, for example, 45% IACS or more, and may be 50% IACS or more or 55% IACS or more.
  • the conductivity of the copper alloy plate material in the present specification is calculated by measuring the specific resistance by the 4-terminal method in a constant temperature bath kept at 20 ° C. ( ⁇ 0.5 ° C.), for example, when the distance between terminals is 100 mm. can do.
  • the copper alloy plate material of the present invention is also excellent in basic bending workability required for connectors and the like.
  • Patent Document 1 and Patent Document 2 in order to increase the strength and conductivity, the solid solution to the matrix is small, and the strength largely depends on the dislocation strengthening by cold working of 60% or more. Therefore, it is presumed that the copper alloy plates of Patent Document 1 and Patent Document 2 sacrifice the basic bending workability required for the connector.
  • the diffusion layer may contain other elements contained in the copper alloy plate material in addition to Ni, Co, Cu and Si, and may contain, for example, Mg, Sn, Zn, P, Cr, Zr and Fe. May be good.
  • melt casting [step 1], homogenization [step 2], hot rolling [step 3], and surface milling [step 1] are performed on a copper alloy material having an alloy composition similar to that of the copper alloy plate. 4], first cold rolling [step 5], first temporary heat treatment [step 6], solution heat treatment [step 7], second aging heat treatment [step 8], second cold rolling [step 9], and The tempering and annealing [10] is performed in this order, and the first temporary heat treatment [step 6] is held at a temperature of 500 to 700 ° C.
  • step 7 is the first temporary heat treatment [step 6].
  • step 6 the solution heat treatment
  • step 7 is the first temporary heat treatment [step 6].
  • step 6 the temperature is raised from room temperature, and the temperature is maintained at an reached temperature of 750 to 980 ° C. for 0.10 to 10 seconds before cooling.
  • melt casting step [step 1] an alloy component is melted in a high frequency melting furnace in the atmosphere, and the alloy component is cast to produce an ingot having a predetermined shape (for example, thickness 30 mm, width 100 mm, length 150 mm).
  • a predetermined shape for example, thickness 30 mm, width 100 mm, length 150 mm.
  • the homogenization heat treatment is performed by heating in the air or in an inert gas atmosphere at a predetermined temperature (for example, 1000 ° C.) for about 1 hour.
  • the hot rolling step [step 3] is performed immediately after the homogenization heat treatment, and is cooled immediately after the plate thickness is set to a predetermined value (for example, 10 mm).
  • ⁇ Surface cutting [process 4]> In the face-cutting step [step 4], a face-cutting of a predetermined thickness (for example, about 1 mm to 2 mm) is performed from the surface of the hot-rolled plate to remove the oxide layer.
  • a predetermined thickness for example, about 1 mm to 2 mm
  • first cold rolling step [step 5] cold rolling is performed to, for example, 0.25 mm to 1 mm.
  • the temperature is maintained at 500 to 700 ° C. for 1 to 240 minutes.
  • the mixture is cooled to room temperature.
  • a Si compound having an average size of 50 nm or more and 120 nm or less and containing Si is contained in the matrix of the first cold-rolled sheet obtained by the first cold rolling [step 5] by the first temporary heat treatment [step 6]. , Precipitated and formed.
  • the average size of the precipitated Si compound becomes less than 50 nm, and homogenization by solidification and diffusion of Ni, Co and Si progresses in the solution heat treatment [step 7], and the second aging heat treatment [ In step 9], a Si compound having a narrow diffusion layer is likely to be produced, and the average thickness of the diffusion layer of the produced copper alloy plate becomes thin. Further, when the temperature exceeds 700 ° C., the average size of the Si compound becomes larger than 120 nm, the unsolidified Si compound in the solution heat treatment [step 7] increases, and the aging strength decreases.
  • Patent Document 3 does not pay attention to controlling the diffusion layer by the precipitation state before the solution heat treatment, and in the pre-annealing before the solution heat treatment, pays attention to the softening of the material and heat-treats for a short time. It is considered that an appropriate precipitation state cannot be created because of the heat treatment, and a precipitation state having a diffusion layer cannot be created.
  • the cross section including the rolling parallel direction and the plate thickness direction is observed by TEM (Transmission Electron Microscope), and each Si compound observed from the obtained bright field image connects two outer edges.
  • the Si compound precipitated and formed in the matrix of the first cold-rolled plate obtained by the first cold rolling [step 5] by the first temporary heat treatment [step 6] is subjected to the solution heat treatment [step 7]. Since it undergoes the second aging heat treatment [step 8] and the like, the average size and the like are often different from those of the Si compound contained in the finally produced copper alloy plate material.
  • the temperature is raised from room temperature, held at an ultimate temperature of 750 to 980 ° C. for 0.10 to 10 seconds, and then cooled.
  • the solution heat treatment [step 7] dissolves the second phase particles (Si compound) produced by the first temporary effect heat treatment [step 6], but if the temperature is lower than 750 ° C., the solid dissolution does not proceed. Since it becomes difficult to form the diffusion layer in the second aging heat treatment [step 9], the average thickness of the diffusion layer becomes thin.
  • the holding time is longer than 10 seconds, the solid solution atom is diffused and homogenized, and the diffusion layer precipitated and formed in the second aging heat treatment [step 8] becomes thin. If it is less than 0.10 seconds, the diffusion layer becomes thick.
  • the holding time is preferably 1 to 5 seconds, more preferably 1 to 2 seconds.
  • the temperature rising rate is preferably 30 ° C./sec or more. If it is less than 30 ° C./sec, precipitates may grow during the temperature rise and the average thickness of the diffusion layer may become thin.
  • the upper limit of the temperature rising rate is preferably 200 ° C./sec or less from the viewpoint of controlling the ultimate temperature.
  • the cooling rate is preferably 50 ° C./sec or higher. If it is less than 50 ° C./sec, cooling from a high temperature may generate coarse precipitates and reduce the average thickness of the diffusion layer.
  • the second aging heat treatment [step 8] is performed after the solution heat treatment [step 7].
  • the second aging heat treatment [step 8] it is preferable to adopt a condition of holding the heat treatment at a temperature of 450 to 500 ° C. for about 3 to 5 hours, for example.
  • additional cold rolling [step 11] may be further performed between the solution heat treatment [step 7] and the second aging heat treatment [step 8].
  • additional cold rolling [step 11] for example, cold rolling with a rolling processing ratio of about 80% or less is performed to make the thickness about 0.1 mm to 0.4 mm.
  • the rolling processing ratio (%) is a value obtained by (plate thickness before rolling (mm) -plate thickness after rolling (mm)) / plate thickness before rolling (mm) ⁇ 100.
  • the temper annealing [10] is a step for reducing the anisotropy of mechanical properties including elongation. For example, heat treatment is performed in a salt bath at a temperature of about 400 ° C. for about 15 seconds to 1 minute. conduct.
  • the copper alloy plate material of the present invention is extremely useful as a material for forming contact parts such as connectors.
  • Examples 1 to 23 and Comparative Examples 1 to 8) The alloy components shown in Tables 1 and 2 were melted in an atmosphere in a high-frequency melting furnace and cast by a mold to obtain ingots having a thickness of 30 mm, a width of 100 mm and a length of 150 mm (melting casting). [Step 1]). Next, after homogenization [step 2] at 1000 ° C. for 1 hour in the atmosphere, hot rolling [step 3] was carried out, and the hot-rolled plate having a thickness of 10 mm was immediately cooled. Next, 1 mm was surface-cut from the surface in the face-cutting [step 4] to remove the oxide film, and then the thickness was 0.4 mm in the first cold rolling [step 5].
  • the heat treatment was performed at the temperatures and times shown in Tables 3 and 4 under an argon atmosphere, and then the mixture was cooled to room temperature.
  • the Si compound was precipitated in the matrix of the first cold-rolled sheet obtained by the first cold rolling [step 5] by the first temporary heat treatment [step 6]. ..
  • the solution heat treatment [step 7] the temperature was raised from room temperature, the heat treatment was performed at the reached temperature and the holding time shown in Tables 3 and 4, and the mixture was immediately cooled with water.
  • the thickness was made 0.1 to 0.38 mm by additional cold rolling [step 11]. In Example 17, the additional cold rolling [step 11] was not performed.
  • step 8 the heat treatment was performed at the temperatures and times shown in Tables 3 and 4 under an argon atmosphere.
  • step 9 the thickness was 0.09 to 0.36 mm.
  • step 10 heat treatment was performed at 400 ° C. for 30 seconds in a salt bath. From the above, a copper alloy plate material was produced.
  • the average size of the Si compound formed by the first temporary heat treatment [Step 6], the average thickness of the diffusion layer, the tensile strength at 25 ° C. and 100 ° C., and the conductivity were determined by the following methods. The results are shown in Tables 1 to 4.
  • the Si compound precipitated and formed by the first temporary heat treatment [step 6] is subjected to the following method.
  • the average size of the Si compound was determined.
  • a square region having a rolling parallel direction dimension and a plate thickness dimension of 100 ⁇ m was observed by TEM in a cross section including the rolling parallel direction and the plate thickness direction.
  • the average value of the longest straight line and the shortest straight line connecting the two outer edges was defined as the average size of the Si compound.
  • Needle-shaped sample was obtained. In the copper alloy plate material, sampling was performed at 5 points at equal intervals in the direction perpendicular to the rolling direction to obtain 5 needle-shaped samples.
  • 3D atom probe electric field ion microscope As a three-dimensional atom probe electric field ion microscope (3DAP device), EIKOS-X manufactured by CAMECA was used. The sample was cooled to 50 K and measured. The wavelength of the irradiated laser was 532 nm, and the energy of the laser pulse was 20 nJ. The voltage applied to the needle was 1 to 5 kV. In each needle-shaped sample, three Si compounds were selected and observed from the parent phase to the Si compound.
  • the thickness of the diffusion layer was determined using a proxygram.
  • IVAS which is the software of the three-dimensional atom probe provided by CAMECA.
  • Examples 1 to 3, 10 and Comparative Example 4 containing only Ni among Ni and Co were proxy grams based on an equal concentration surface having a Ni concentration of 5 at%.
  • Examples 7 to 9 and 13 containing only Co among Ni and Co were used as proxy grams based on an equal concentration surface having a Co concentration of 5 at%.
  • Examples 4 to 6, 11, 12, 14 to 23 and Comparative Examples 1 to 3, 5 to 11 containing both Ni and Co were proxy grams based on an equal concentration surface having a Co concentration of 5 at%.
  • the length in the horizontal axis direction of the region where the Cu concentration is 20 at% or more and 90 at% or less is determined as the thickness of the diffusion layer.
  • the average value of the thickness of the diffusion layer was calculated by averaging the thicknesses of a total of 15 diffusion layers obtained for 3 Si compounds in each of the 5 needle-shaped samples.
  • the tensile strength of the copper alloy plate was measured by performing a tensile test in the atmosphere at room temperature (25 ° C.) and high temperature (100 ° C.) based on JIS Z 2241: 2011 using a JIS 13B test piece.
  • the conductivity of the copper alloy plate material was calculated by measuring the specific resistance by the 4-terminal method in a constant temperature bath kept at 20 ° C. ( ⁇ 0.5 ° C.) with the distance between terminals set to 100 mm.
  • Comparative Example 1 in which the solution heat treatment temperature is low and Comparative Example 2 in which the solution heat treatment temperature is high, the average thickness of the diffusion layer is less than 0.5 nm, and the difference in tensile strength between 25 ° C and 100 ° C is large. , The tensile strength at 100 ° C. was low.
  • Comparative Example 3 in which the holding time of the solution heat treatment was long, the average thickness of the diffusion layer was less than 0.5 nm, and the difference in tensile strength between 25 ° C. and 100 ° C. was large.
  • Comparative Example 4 in which the total amount of Ni and Co was small, the tensile strength at 100 ° C. was low.
  • Comparative Example 5 having a low (Ni + Co) / Si ratio had a low conductivity.
  • Comparative Example 6 having a high (Ni + Co) / Si ratio had a low conductivity.
  • Comparative Example 7 in which the first-time treatment time is long and the average size of the Si compound precipitated and formed by the first-time treatment is large the average thickness of the diffusion layer is less than 0.5 nm, and the tensile strength between 25 ° C and 100 ° C is reached. The difference in strength was large, and the tensile strength at 100 ° C. was low.
  • Comparative Example 8 in which the temperature of the first-time treatment was low and the average size of the Si compound precipitated and formed by the first-time treatment was small, the average thickness of the diffusion layer was 0.5 nm, probably because homogenization was advanced by the solution treatment. It became less than, and the difference in tensile strength between 25 ° C. and 100 ° C. was large. Comparative Example 9 having a large total amount of Ni and Co and Comparative Example 10 having a large amount of Si had low conductivity. In Comparative Example 11 in which the holding time of the solution heat treatment was short, the average thickness of the diffusion layer was more than 5.0 nm, and the conductivity was low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

温度上昇に伴う強度低下が抑制され、高温での強度が高く、且つ導電性に優れる銅合金板材等を提供する。 Ni及びCoの少なくとも一方を合計0.5質量%以上5.0質量%以下、並びに、Siを0.10質量%以上1.50質量%以下含有し、且つ、Si含有量に対するNi及びCoの合計含有量の質量比(Ni+Co)/Siが2.00以上6.00以下であり、残部が銅及び不可避不純物からなる合金組成を有する銅合金板材であって、母相中に、Ni及びCoの少なくとも一方とSiとを含有するSi化合物を含み、Si化合物と母相との境界領域に、3次元アトムプローブ電界イオン顕微鏡により観察され、Ni及びCoの少なくとも一方とCuとSiとを含む拡散層を有し、拡散層の平均厚さが0.5nm以上5.0nm以下である。

Description

銅合金板材、銅合金板材の製造方法及び接点部品
 本発明は、銅合金板材、銅合金板材の製造方法及び接点部品に関する。
 スマートフォン、タブレット、ノートPC、アクションカメラ等の電気・電子機器、自動車、産業機器や、ロボット等の部品、例えば、コネクタ等の接点部品には、銅合金板材が使用されている。
 このような銅合金板材として、例えば、特許文献1には、Cu-Fe-P系合金において、3次元アトムプローブ電界イオン顕微鏡により測定されるFeやPの原子間距離を短くし、且つCu、Fe、Pの集合体密度を高くすることにより、強度と、製造時の熱処理における耐熱性とに優れた銅合金板材とする技術が開示されている。
 また、特許文献2には、Cu-Ni-Sn-P系合金において、3次元アトムプローブ電界イオン顕微鏡により測定されるNiやPの原子間距離を短くし、且つCu、Ni、Pの集合体密度を高くすることにより、耐応力緩和特性に優れた銅合金板材とする技術が開示されている。
 また、特許文献3には、Cu-Ni-Co-Si系合金において、成分組成、ばね限界値及び結晶方位制御により、導電性、耐応力緩和特性及び成形加工性を向上させる銅合金板材とする技術が開示されている。
特開2009-263690号公報 特開2009-179864号公報 特開2016-53220号公報
 ここで、近年、高速通信化、高速給電化、センサー数の増加等に伴い、内部回路が高電流化し、発熱量も増加している。上記電気・電子機器、自動車、産業機器、ロボット等は、発熱した状態で一定時間の連続使用がされるため、その部品は高温で使用される場合がある。特にコネクタ等のばね電気接点部品は、高速通信中や高速充電中に端子が高温になりやすい。このような部品は、高温環境下で継続使用されると、新品時の常温(例えば25℃)での強度と比べて低下し、嵌合による応力で材料が破断してしまう等の問題が生じるおそれがある。これを防ぐために、温度上昇に伴う強度低下が抑制され、高温(例えば100℃)での強度が高いことが望まれる。
 一方、上記部品には、導電性に優れることが求められている。
 しかしながら、特許文献1~3等の従来の技術では、温度上昇に伴う強度低下が抑制され高温での強度が高く且つ導電性に優れる銅合金板材は得難い。なお、特許文献1~3では、高温での使用時における強度については、なんら着目されていない。
 本発明は、以上の実情に鑑みてなされたものであり、温度上昇に伴う強度低下が抑制され、高温での強度が高く、且つ導電性に優れる銅合金板材、銅合金板材の製造方法及び銅合金板材を用いた接点部品を提供することを目的とする。
 本発明者らは、鋭意検討を重ねた結果、銅合金板材が、Ni及びCoの少なくとも一方を合計0.5質量%以上5.0質量%以下、並びに、Siを0.10質量%以上1.5質量%以下含有し、且つ、Si含有量に対するNi及びCoの合計含有量の質量比(Ni+Co)/Siが2.0以上6.0以下であり、残部が銅及び不可避不純物からなる合金組成を有する銅合金板材であって、母相中に、Ni及びCoの少なくとも一方とSiとを含有するSi化合物を含み、Si化合物と母相との境界領域に、3次元アトムプローブ電界イオン顕微鏡により観察され、Ni及びCoの少なくとも一方とCuとSiとを含む拡散層を有し、拡散層の平均厚さが0.5nm以上5.0nm以下であることによって、温度上昇に伴う強度低下が抑制され、高温での強度が高く、且つ導電性に優れること、及びそのような銅合金板材は、上記銅合金板材の合金組成と同様の合金組成を有する銅合金素材に、溶解鋳造[工程1]、均質化[工程2]、熱間圧延[工程3]、面削[工程4]、第一冷間圧延[工程5]、第一時効熱処理[工程6]、溶体化熱処理[工程7]、第二時効熱処理[工程8]、第二冷間圧延[工程9]、及び調質焼鈍[10]をこの順に施し、前記第一時効熱処理[工程6]では、温度500~700℃で1~240分保持し、前記溶体化熱処理[工程7]では、前記第一時効熱処理[工程6]後に、室温から昇温し、到達温度750~980℃で0.10~10秒保持した後に冷却する製造方法により製造できることを見出し、かかる知見に基づき本発明を完成するに至った。
 すなわち、本発明の要旨構成は以下のとおりである。
 (1)Ni及びCoの少なくとも一方を合計0.5質量%以上5.0質量%以下、
並びに、Siを0.10質量%以上1.50質量%以下含有し、
且つ、Si含有量に対するNi及びCoの合計含有量の質量比(Ni+Co)/Siが2.00以上6.00以下であり、
残部が銅及び不可避不純物からなる合金組成を有する銅合金板材であって、
 母相中に、Ni及びCoの少なくとも一方とSiとを含有するSi化合物を含み、
 前記Si化合物と前記母相との境界領域に、3次元アトムプローブ電界イオン顕微鏡により観察され、Ni及びCoの少なくとも一方とCuとSiとを含む拡散層を有し、
 前記拡散層の平均厚さが0.5nm以上5.0nm以下である、銅合金板材。
 (2)前記合金組成は、Ni及びCoのうちCoのみを含有し、Co含有量が0.5質量%以上5.0質量%以下である、上記(1)に記載の銅合金板材。
 (3)前記合金組成は、Ni及びCoのうちNiのみを含有し、Ni含有量が0.5質量%以上5.0質量%以下である、上記(1)に記載の銅合金板材。
 (4)前記合金組成は、Ni及びCoの双方を含有し、Ni含有量が0.5質量%以上4.5質量%以下であり、Co含有量が0.4質量%以上2.5質量%以下である、上記(1)に記載の銅合金板材。
 (5)前記合金組成は、さらにMg、Sn、Zn、P、Cr、Zr及びFeからなる群から選択される少なくとも1種を合計で0.1質量%以上1.0質量%以下含有する、上記(1)~(4)のいずれか1項に記載の銅合金板材。
 (6)上記(1)~(5)のいずれか1項に記載の銅合金板材の製造方法であって、
 前記銅合金板材の前記合金組成と同様の合金組成を有する銅合金素材に、溶解鋳造[工程1]、均質化[工程2]、熱間圧延[工程3]、面削[工程4]、第一冷間圧延[工程5]、第一時効熱処理[工程6]、溶体化熱処理[工程7]、第二時効熱処理[工程8]、第二冷間圧延[工程9]、及び調質焼鈍[10]をこの順に施し、前記第一時効熱処理[工程6]では、温度500~700℃で1~240分保持し、
 前記溶体化熱処理[工程7]では、前記第一時効熱処理[工程6]後に、室温から昇温し、到達温度750~980℃で0.10~10秒保持した後に冷却することを特徴とする銅合金板材の製造方法。
 (7)上記(1)~(5)のいずれか1項に記載の銅合金板材を用いて形成された接点部品。
 本発明の銅合金板材は、温度上昇に伴う強度低下が抑制され、高温での強度が高く、且つ導電性に優れる。このため、高温で使用され得る、電気・電子機器、自動車、産業機器や、ロボットにおけるコネクタ等の接点部品用の銅合金板材として、好適である。
図1は、3次元アトムプローブ電界イオン顕微鏡による観察例を示す図である。
(1)銅合金板材
 以下、本発明の銅合金板材の好ましい実施形態について、詳細に説明する。
 本発明に従う銅合金板材は、Ni及びCoの少なくとも一方を合計0.5質量%以上5.0質量%以下、並びに、Siを0.10質量%以上1.50質量%以下含有し、且つ、Si含有量に対するNi及びCoの合計含有量の質量比(Ni+Co)/Siが2.00以上6.00以下であり、残部が銅及び不可避不純物からなる合金組成を有する銅合金板材であって、母相中に、Ni及びCoの少なくとも一方とSiとを含有するSi化合物を含み、Si化合物と母相との境界領域に、3次元アトムプローブ電界イオン顕微鏡により観察され、Ni及びCoの少なくとも一方とCuとSiとを含む拡散層を有し、拡散層の平均厚さが0.5nm以上5.0nm以下であることを特徴とするものである。
 以下、本発明の銅合金板材の合金組成、銅合金板材が含むSi化合物及び拡散層の限定理由について説明する。
<銅合金板材の合金組成>
[Ni及びCo成分]
 本発明の銅合金板材は、Ni及びCoの少なくとも一方を合計0.5質量%以上5.0質量%以下含有する。Ni及びCoの合計が0.5質量%未満の場合、強度が低下し、5.0質量%より高い場合、導電率が低下する。Ni及びCoの含有量の合計は、強度の観点から0.8質量%以上が好ましく、また、導電率の観点から4.0質量%以下が好ましい。Ni及びCoの含有量の合計は、より好ましくは、1.0質量%以上3.5質量%以下である。
 Ni及びCoのうちCoのみを含有する場合、Co含有量が0.5質量%以上5.0質量%以下であることが好ましい。
 また、Ni及びCoのうちNiのみを含有する場合、Ni含有量が0.5質量%以上5.0質量%以下であることが好ましい。
 また、Ni及びCoの双方を含有する場合、Ni含有量が0.5質量%以上4.5質量%以下であり、Co含有量が0.4質量%以上2.5質量%以下であることが好ましい。
 なお、Coを0.4質量%以上含有することで、Niのみの場合より導電率を高める効果があるが、2.0質量%を超えると逆に導電率が低下する場合があるため、Coを含有する場合、Co含有量は0.5質量%以上2.0質量%以下であることが好ましい。
[Si成分]
 本発明の銅合金板材は、Siを0.10質量%以上1.50質量%以下含有する。Siの含有量が0.10質量%未満の場合、強度が低下する。また、1.50質量%より高い場合は、導電率が低下し、鋳塊に粗大な晶出物が発生しやすく、溶体化熱処理後に未固溶のまま残存し、曲げ加工時のクラックの起点にもなりやすい。Siの含有量は、導電率の観点から1.25質量%以下であることが好ましく、1.10質量%以下であることがより好ましい。
[(Ni+Co)/Si比]
 本発明の銅合金板材は、Si含有量に対するNi及びCoの合計含有量の質量比、すなわち、(Ni+Co)/Si比が、2.00以上6.00以下である。(Ni+Co)/Si比が2.00未満の場合、SiがNi及びCoに対し過剰に存在し、時効熱処理時に母相中のSiの残存量が増加し、導電率が低下する。(Ni+Co)/Si比が6.00より高い場合、逆にNiやCoの残存量が増加し、導電率が低下する。導電率の観点から、好ましくは3.00~5.00、より好ましくは3.30~4.70である。
[任意添加成分]
 本発明の銅合金板材は、さらにMg、Sn、Zn、P、Cr、Zr及びFeからなる群から選択される少なくとも1種を、合計で0.1質量%以上1.0質量%以下含有していてもよい。
(Mg)
 Mgは、高温での強度を向上させる効果がある一方で、導電率を低下させる傾向があるため、Mgの含有量は、0.1質量以上0.3質量%であることが好ましい。
(Sn)
 Snは、高温での強度を向上させる効果がある一方で、導電率を低下させる傾向があるため、Snの含有量は、0.1質量%以上0.3質量%以下であることが好ましい。
(Zn)
 Znは、Snめっき性やマイグレーション特性を改善する効果があるが、導電率を低下させる傾向があるため、Znの含有量は、0.1質量%以上0.5質量%以下であることが好ましい。
(P)
 Pは、粒界上のSi化合物の析出を抑制し、強度を上昇させる効果があるが、導電率を低下させる傾向があるため、Pの含有量は、0.1質量%以上0.3質量%以下であることが好ましい。
(Cr)
 Crは、溶体化熱処理時に結晶粒の粗大化を抑制する効果があるが、鋳造時に粗大な晶出物を生じやすく、クラックの起点を作りやすい傾向があるため、Crの含有量は、0.1質量%以上0.3質量%以下であることが好ましい。
(Zr)
 Zrは、溶体化熱処理時に結晶粒の粗大化を抑制する効果があるが、鋳造時に粗大な晶出物を生じやすく、クラックの起点を作りやすい傾向があるため、Zrの含有量は、0.1質量%以上0.2質量%であることが好ましい。
(Fe)
 Feは、溶体化熱処理時に結晶粒の粗大化を抑制する効果があるが、鋳造時に粗大な晶出物を生じやすく、クラックの起点を作りやすいため、Feの含有量は、0.1質量%以上0.2質量%以下であることが好ましい。
〔残部:銅及び不可避不純物〕
 上述した必須含有成分及び任意添加成分以外は、残部がCu(銅)及び不可避不純物からなる。なお、ここでいう「不可避不純物」とは、おおむね銅系製品において、原料中に存在するものや、製造工程において不可避的に混入するもので、本来は不要なものであるが、微量であり、銅系製品の特性に影響を及ぼさないため許容されている不純物である。不可避不純物として挙げられる成分としては、例えば、硫黄(S)、酸素(O)等の非金属元素やアルミニウム(Al)やアンチモン(Sb)等の金属元素が挙げられる。なお、これらの成分含有量の上限は、上記成分毎に0.05質量%、上記成分の総量で0.20質量%とすればよい。
<Si化合物>
 本発明の銅合金板材は、母相中にSi化合物を含む。
 Si化合物とは、Ni及びCoの少なくとも一方とSiとを含有する化合物である。Si化合物は、Ni、Co及びSiの他に、銅合金板材が含有するその他の元素を含んでいてもよく、例えばCu、Mg、Sn、Zn、P、Cr、ZrやFeを含んでいてもよい。
 Si化合物は、銅合金板材の製造時に析出することで形成される、析出物である。Si化合物は、例えば、第一時効熱処理[工程6]において析出形成され、その後、溶体化熱処理[工程7]及び第二時効熱処理[工程8]等を経て、最終的に製造される銅合金板材に含まれる。
<拡散層>
 本発明の銅合金板材は、Si化合物と母相との境界領域に、3次元アトムプローブ電界イオン顕微鏡により観察され、Ni及びCoの少なくとも一方とCuとSiとを含む拡散層を有する。そして、拡散層の平均厚さは、0.5nm以上5.0nm以下である。拡散層は、銅合金板材について、3次元アトムプローブ電界イオン顕微鏡で観察され、具体的には、Cuの濃度が20at%以上90at%以下である領域と定義する。3次元アトムプローブ電界イオン顕微鏡についての詳細は、後述する。
 本発明者らは、上記合金組成を有し、且つ、Si化合物と母相との境界領域に3次元アトムプローブ電界イオン顕微鏡により観察される拡散層の平均厚さを0.5nm以上5nm以下にすることにより、温度上昇に伴う強度低下が抑制され、高温での強度が高く、且つ導電性に優れる銅合金板材となることを見出した。
 電気・電子機器、自動車、産業機器、ロボット等の使用温度、具体的には室温(例えば25℃)から高温(例えば100℃)の範囲における強度の変化に対して、銅合金の相変態の影響はほとんど無視でき、当該強度の変化は、熱活性化現象である転位の移動度に影響されるものと考えられる。そのため、温度上昇に伴う強度低下を抑制し、高温での強度を高くするためには、固溶元素や析出物等の第二相粒子を増加させることで、転位移動を阻害することが有効であると考えられる。一方で、単純に、固溶原子や第二相量を増加するために、溶質元素の添加量を増加させると、導電率が低下するという問題が生じる。そのため、本発明者らは、温度上昇に伴う強度低下を抑制し、高温での強度を高くし、且つ導電率を良好にするためには、添加元素量を増加させない方法が必要であると考え、析出物であるSi化合物と母相との界面に所定の厚さの拡散層を形成することで、温度上昇に伴う強度低下が抑制され、高温での強度が高く、且つ導電性に優れる銅合金板材になることを見出した。なお、当該銅合金板材は、高温での強度が高いため、室温での強度も高い。
 拡散層は、Ni原子やCo原子と、Si原子がCu母相に局所的に高濃度に存在する状態であり、この拡散層が転位の移動を抑制する。このことが、温度上昇に伴う強度低下が抑制され、高温での強度が高く、且つ導電性が優れる銅合金板材になる理由の一因と推測される。
 拡散層の平均厚さは、0.5nm以上5.0nm以下であることが必要である。拡散層の厚さが0.5nmより小さい場合は、温度上昇に伴い強度が大きく低下したり、高温での強度が低くなる。また、拡散層の厚さが5.0nmより大きい場合は、固溶量が増加し、導電率が低下する。拡散層の厚さは、好ましくは1.0nm以上4.0nm以下であり、さらに好ましくは2.0nm以上3.0nm以下である。
(3次元アトムプローブ電界イオン顕微鏡)
 3次元アトムプローブ法(3DAP法)は、金属や半導体中のナノ析出物やクラスターを3次元で組成分析できる分析手法である。原理は、以下のとおりである。
 先端が100nm程度の針状試料を作製し、3DAP装置(3次元アトムプローブ電界イオン顕微鏡)に搬入した後、高電圧をパルス印加し、試料の先端から1原子ずつ電界蒸発させる。また、針の先端に特定波長のパルスレーザーを照射し、電界蒸発を補助することにより、試料破壊の確率の低減、質量分解能の改善、半導体や絶縁物の測定が可能となる。パルス電圧とレーザー照射により電界蒸発させたイオンの飛行時間と位置測定を2次元位置検出器で検出し、各イオンの2次元座標位置を測定する。針の先で蒸発した時点から検出器に到達するまでの時間を計測することによって、飛行時間型質量分析としての解析も可能であるので、到達したイオン種を特定できる。レーザー照射を繰り返し行い、イオンの2次元座標位置の情報と、試料の深さ方向の情報が得られるので、針の先端形状を考慮したデータ解析を行うことにより、3次元の組成情報を得ることが可能である。
 3DAP装置としては、例えば、CAMECA社製のEIKOS-Xを用いることができる。
 拡散層の厚さは、母相からSi化合物にわたって観察し、得られる銅合金板材の各成分(Cu、Si、Ni、Co等)の濃度プロファイルである、プロキシグラムを用いて求める。第二相であるSi化合物と母相との境界領域に凹凸がある場合、境界領域を横断して一次元の濃度プロファイルを作成すると、凹凸の影響が重畳し、正確な拡散層を定義することができない。このため、特定の元素の等濃度面を基準とするプロキシグラムを用いる。プロキシグラムとは、特定の元素の等濃度面を基準として、その面に対し垂直な方向に濃度を計算した一次元の濃度プロファイルである。プロキシグラムの計算には、CAMECA社が提供する3次元アトムプローブのソフトウェアであるIVASを用いることができる。例えば、図1は、Ni濃度が5at%の等濃度面を基準としたプロキシグラムである。図1は、合金組成が、Ni:2.3質量%、Si:0.55質量%残部がCuである銅合金板材の、3次元アトムプローブ電界イオン顕微鏡による観察例である。このプロキシグラムから、本発明の銅合金板材において、Si化合物と母相の界面では、Co、Niや,Cu等が拡散していることが分かる。
 プロキシグラムにおいて、図1に示すように、Cuの濃度が20at%以上90at%以下である領域が拡散層であり、拡散層の厚さは、Cuの濃度が20at%以上90at%以下の領域の、横軸(distance)方向の長さである。
 拡散層の平均厚さは、銅合金板材において、圧延方向に垂直な方向に、均等な間隔をあけた5箇所でサンプリングし、各サンプル(試料)について測定されたプロキシグラムから得られた拡散層の厚さの平均値である。
 本発明の銅合金板材は、上述のとおり、温度上昇に伴う強度低下が抑制され、高温での強度が高く、且つ導電率に優れる。このため、本発明の銅合金板材を用いて形成される、電気・電子機器、自動車、産業機器、ロボット等の部品は、強度及び導電性について信頼性が高い。例えば、使用温度が室温から高温までの場合であっても、強度変化が少なく、一定以上の強度を発揮し、且つ、導電性にも優れるため、信頼性が高い部品となる。特に、高速通信中や高速充電中に端子が高温になりやすいコネクタ等のばね電気接点部品であっても、本発明の銅合金板材を用いることにより、信頼性の高いものとなる。
 銅合金板材の100℃における引張強さは、例えば500MPa以上である。銅合金板材の100℃における引張強さは、600MPa以上や690MPa以上とすることもできる。
 また、本発明の銅合金板材は、高温での強度が高いため、室温での強度も高い。銅合金板材の25℃における引張強さは、例えば500MPa以上であり、通常505MPa以上である。
 本発明の銅合金板材は、温度上昇に伴う強度低下が抑制され、室温における強度と高温における強度との差、例えば25℃における引張強さと100℃における引張強さとの差は、100MPa以下であり、70MPa以下、55MPa以下や35MPa以下とすることもできる。
 例えば、銅合金板材の25℃における引張強さが500MPa以上600MPa未満の場合、25℃における引張強さと100℃における引張強さとの差は、100MPa以下であり、好ましくは70MPa以下であり、より好ましくは55MPa以下である。
 銅合金板材の25℃における引張強さが600MPa以上700MPa未満の場合、25℃における引張強さと100℃における引張強さとの差は、100MPa以下であり、好ましくは70MPa以下であり、より好ましくは55MPa以下である。
 銅合金板材の25℃における引張強さが700MPa以上800MPa未満の場合、25℃における引張強さと100℃における引張強さとの差は、100MPa以下であり、好ましくは90MPa以下であり、より好ましくは70MPa以下であり、さらに好ましくは55MPa以下であり、特に好ましくは35MPaである。
 銅合金板材の25℃における引張強さが800MPa以上900MPa未満の場合、25℃における引張強さと100℃における引張強さとの差は、100MPa以下であり、好ましくは95MPa以下であり、より好ましくは55MPa以下である。
 本明細書における銅合金板材の引張強さは、例えば、JIS 13B号試験片を用いて、JIS Z 2241:2011に基づき測定することができる。
 本発明の銅合金板材の導電率は、例えば、45%IACS以上であり、50%IACS以上や55%IACS以上とすることもできる。
 本明細書における銅合金板材の導電率は、例えば、端子間距離を100mmとし、20℃(±0.5℃)に保たれた恒温槽中で、4端子法により比抵抗を計測して算出することができる。
 なお、本発明の銅合金板材は、コネクタ等に必要な基本的な曲げ加工性にも優れている。一方、特許文献1や特許文献2では、強度と導電率を高めるため、母相への固溶が少なく、強度は60%以上の冷間加工による転位強化に大きく依存している。このため、特許文献1や特許文献2の銅合金板は、コネクタに必要な基本的な曲げ加工性が犠牲になっていることが推測される。
 拡散層は、Ni、Co、Cu及びSiの他に、銅合金板材が含有するその他の元素を含んでいてもよく、例えば、Mg、Sn、Zn、P、Cr、ZrやFeを含んでいてもよい。
(2)銅合金板材の製造方法
 以上のような本発明の一実施形態による銅合金板材の製造方法を詳しく説明する。この製造方法は、上記銅合金板材の合金組成と同様の合金組成を有する銅合金素材に、溶解鋳造[工程1]、均質化[工程2]、熱間圧延[工程3]、面削[工程4]、第一冷間圧延[工程5]、第一時効熱処理[工程6]、溶体化熱処理[工程7]、第二時効熱処理[工程8]、第二冷間圧延[工程9]、及び調質焼鈍[10]をこの順に施し、第一時効熱処理[工程6]では、温度500~700℃で1~240分保持し、溶体化熱処理[工程7]では、第一時効熱処理[工程6]後に、室温から昇温し、到達温度750~980℃で0.10~10秒保持した後に冷却することを特徴としている。以下、各工程について説明する。
<溶解鋳造[工程1]>
 溶解鋳造工程[工程1]では、大気下で高周波溶解炉により合金成分を溶解し、これを鋳造することによって所定形状(例えば厚さ30mm、幅100mm、長さ150mm)の鋳塊を製造する。
<均質化[工程2]>
 均質化工程[工程2]では、大気中や、不活性ガス雰囲気中で、例えば所定温度(例えば1000℃)で1時間程度加熱し均質化熱処理を施す。
<熱間圧延[工程3]>
 熱間圧延工程[工程3]は、均質化熱処理の直後に施し、所定の板厚(例えば10mm)とした直後に冷却する。
<面削[工程4]>
 面削工程[工程4]では、熱延板の表面から所定の厚さ(例えば1mm~2mm程度)の面削を行い、酸化層を除去する。
<第一冷間圧延[工程5]>
 第一冷間圧延工程[工程5]では、例えば0.25mm~1mmまで冷間圧延を施す。
<第一時効熱処理[工程6]>
 第一時効熱処理[工程6]では、温度500~700℃で1~240分保持する。温度500~700℃で1~240分保持した後、室温まで冷却する。
 第一時効熱処理[工程6]により、第一冷間圧延[工程5]で得られた第一冷延板の母相中に、平均サイズが50nm以上120nm以下であり、Siを含むSi化合物が、析出形成される。温度が500℃未満であると、析出するSi化合物の平均サイズが50nm未満となり、溶体化熱処理[工程7]でNi、Co、Siの固溶や拡散による均質化が進み、第二時効熱処理[工程9]で拡散層が狭いSi化合物が生成しやすく、製造される銅合金板材の拡散層の平均厚さが薄くなる。また、温度が700℃超であるとSi化合物の平均サイズが120nmより大きくなり、溶体化熱処理[工程7]での未固溶のSi化合物が増加し、時効強度が低下する。適切な条件で第一時効熱処理[工程6]に次いで溶体化熱処理[工程7]を行うことで、溶体熱処理[工程7]により一度Si化合物が固溶しても、第二時効熱処理[工程9]時に拡散の広い析出状態を形成し、温度上昇に伴う強度低下が抑制でき室温強度と高温強度の差を小さくすることが可能となったと考えられる。一方、従来、例えば特許文献3では、溶体化熱処理前の析出状態により拡散層を制御することに注目しておらず、溶体化熱処理前の予備焼鈍では材料の軟化に着目し短時間の熱処理を行っているため適切な析出状態を作ることはできず、拡散層を有する析出状態を作りだすことはできないと考えられる。
 Si化合物の平均サイズは、圧延平行方向と板厚方向を含む断面を、TEM(Transmission Electron Microscope)により観察し、得られた明視野像から観測される各Si化合物について、2箇所の外縁を結ぶ最も長い直線と最も短い直線の平均値である。
 なお、第一時効熱処理[工程6]により、第一冷間圧延[工程5]で得られた第一冷延板の母相中に析出形成されるSi化合物は、溶体化熱処理[工程7]及び第二時効熱処理[工程8]等を経るため、最終的に製造される銅合金板材が含むSi化合物とは平均サイズ等が異なる場合が多い。
<溶体化熱処理[工程7]>
 溶体化熱処理[工程7]では、第一時効熱処理[工程6]後に、室温から昇温し、到達温度750~980℃で0.10~10秒保持した後、冷却する。
 溶体化熱処理[工程7]により、第一時効熱処理[工程6]までに生成している第二相粒子(Si化合物)を固溶させるが、温度が750℃より低いと固溶が進まず、第二時効熱処理[工程9]で拡散層を形成しづらくなるため拡散層の平均厚さが薄くなる。温度が980℃より高い場合、拡散による均一化が進み、同じく拡散層が形成しづらくなるため拡散層の平均厚さが薄くなる。また、保持時間が10秒より長い場合、固溶原子が拡散、均質化され、第二時効熱処理[工程8]で析出形成される拡散層が薄くなる。0.10秒未満の場合、拡散層が厚くなる。保持時間は、好ましくは、1~5秒であり、さらに好ましくは、1~2秒である。
 溶体化熱処理[工程7]において、昇温速度は30℃/秒以上であることが好ましい。30℃/秒未満の場合、昇温中に析出物が成長し、拡散層の平均厚さが薄くなる場合がある。昇温速度の上限は、到達温度の制御の観点から、200℃/秒以下であることが好ましい。また、冷却速度は50℃/秒以上であることが好ましい。50℃/秒未満の場合、高温からの冷却により粗大な析出物が生成し、拡散層の平均厚さが薄くなる場合がある。
<第二時効熱処理[工程8]>
 第二時効熱処理[工程8]は、溶体化熱処理[工程7]の後に行う。
 第二時効熱処理[工程8]としては、例えば温度450~500℃で3~5時間程度保持する条件を採用することが好ましい。
 なお、溶体化熱処理[工程7]と第二時効熱処理[工程8]の間で、必要に応じて、追加の冷間圧延[工程11]をさらに行ってもよい。
 追加の冷間圧延[工程11]では、例えば、80%以下の程度の圧延加工率の冷間圧延を施し、厚さを0.1mm~0.4mm程度にする。圧延加工率(%)は、(圧延前の板厚(mm)-圧延後の板厚(mm))/圧延前の板厚(mm)×100で求められる値である。
<第二冷間圧延[工程9]>
 第二冷間圧延[工程9]では、例えば厚さ0.09~0.36mm程度まで冷間圧延を施す。
<調質焼鈍[10]>
 調質焼鈍[10]は、伸びを含めて機械的特性の異方性を低減するための工程であり、例えば、塩浴中で、400℃程度の温度で15秒~1分程度の熱処理を行う。
 本発明の銅合金板材は、コネクタ等の接点部品の形成材として極めて有用である。
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の概念及び特許請求の範囲に含まれるあらゆる態様を含み、本発明の範囲内で種々に改変することができる。
 次に、本発明の効果をさらに明確にするために、実施例及び比較例について説明するが、本発明はこれらの実施例に限定されるものではない。
 (実施例1~23及び比較例1~8)
 大気下で高周波溶解炉により、表1及び表2に示す合金成分を溶解し、これを金型モールドで鋳造して、厚さ30mm、幅100mm、長さ150mmの鋳塊を得た(溶解鋳造[工程1])。次に、大気中、1000℃、1時間の均質化[工程2]を行った後、熱間圧延[工程3]を実施し、厚さ10mmの熱延板とした直後に冷却した。次いで、面削[工程4]で、表面から1mmを面削し、酸化膜を除去した後、第一冷間圧延[工程5]で、厚さ0.4mmにした。次に、第一時効熱処理[工程6]で、表3及び表4に示す温度と時間で、アルゴン雰囲気下で、熱処理を行った後、室温まで冷却した。いずれの実施例及び比較例とも、第一時効熱処理[工程6]により、第一冷間圧延[工程5]で得られた第一冷延板の母相中に、Si化合物が析出していた。
 次に、溶体化熱処理[工程7]で、室温から昇温し、表3及び表4に示す到達温度及び保持時間で熱処理し、直ちに水冷した。次に、追加の冷間圧延[工程11]で、厚さ0.1~0.38mmにした。なお、実施例17では、追加の冷間圧延[工程11]は行わなかった。次に、第二時効熱処理[工程8]で、表3及び表4に示す温度と時間で、アルゴン雰囲気下で、熱処理を行った。次に、第二冷間圧延[工程9]で、厚さ0.09~0.36mmとした。最後に、調質焼鈍[工程10]で、塩浴中で、400℃で30秒の熱処理を行った。以上により、銅合金板材を作製した。
 以下の方法により、第一時効熱処理[工程6]により形成されたSi化合物の平均サイズ、拡散層の平均厚さ、25℃及び100℃での引張強さ、導電率を求めた。結果を表1~表4に示す。
[Si化合物の平均サイズ]
 第一時効熱処理[工程6]により、析出形成されたSi化合物について、以下の方法で、
Si化合物の平均サイズを求めた。
 第一時効熱処理[工程6]で室温まで冷却した銅合金板材について、圧延平行方向と板厚方向を含む断面において、100μmの圧延平行方向寸法と板厚寸法となる四角形の領域をTEM観察し、得られた明視野像から観測される各Si化合物について、2箇所の外縁を結ぶ最も長い直線と最も短い直線の平均値を、Si化合物の平均サイズとした。
[拡散層の平均厚さ]
(試料の作製)
 3次元アトムプローブ電界イオン顕微鏡による観察のための針状の試料の作製は、FIB(Focused Ion Beam)を用いた。FIBによる針状の試料の作製は、FEI社のHeliosG4を用いた。
 銅合金板材からリフトアウト法により、数μmの小さな試料を抜き出した後、試料を支持台に接着させた。次に、円環状の加工領域に加速電圧が30kVのGaイオンビームを照射し、針の形状に形成した。30kVのGaイオンビームで試料を削ると、照射面に数10nmのダメージ層が形成されてしまうため、最後に低加速である5kVのGaイオンビームにより、このダメージ層を除去することで、200nm程度の針状の試料を得た。
 銅合金板材において、圧延方向に垂直な方向に、均等な間隔をあけた5箇所でサンプリングし、上記針状の試料を5個得た。
(3次元アトムプローブ電界イオン顕微鏡の条件)
 3次元アトムプローブ電界イオン顕微鏡(3DAP装置)として、CAMECA社製のEIKOS-Xを用いた。試料は50Kに冷却して測定した。照射したレーザーの波長は532nmであり、レーザーパルスのエネルギーは20nJとした。また、針に印加させる電圧は、1~5kVとした。
 各針状試料において、Si化合物を3個選択し、それぞれ母相からSi化合物にわたって観察した。
(拡散層の平均厚さの算出)
 拡散層の厚さは、プロキシグラムを用いて求めた。プロキシグラムの計算には、CAMECA社が提供する3次元アトムプローブのソフトウェアであるIVASを用いた。
 Ni及びCoのうちNiのみを含む実施例1~3、10及び比較例4は、Ni濃度が5at%の等濃度面を基準としたプロキシグラムとした。また、Ni及びCoのうちCoのみを含む実施例7~9、13は、Co濃度が5at%の等濃度面を基準としたプロキシグラムとした。Ni及びCoの双方を含む実施例4~6、11、12、14~23及び比較例1~3、5~11は、Co濃度が5at%の等濃度面を基準としたプロキシグラムとした。
 このプロキシグラムにおいて、Cuの濃度が20at%以上90at%以下の領域の、横軸方向の長さを、拡散層の厚さとして求めた。各針状試料5個におけるSi化合物3個に関して求められた合計15個の拡散層の厚さを平均することで、拡散層の厚さの平均値を算出した。
[引張強さ]
 銅合金板材の引張強さは、JIS 13B号試験片を用いて、JIS Z 2241:2011に基づき、室温(25℃)及び高温(100℃)の大気下で引張試験を行うことによって測定した。
[導電率]
 銅合金板材の導電率は、端子間距離を100mmとし、20℃(±0.5℃)に保たれた恒温槽中で、4端子法により比抵抗を計測して算出した。
[評価]
 100℃における引張強さが500MPa以上、25℃における引張強さと100℃における引張強さとの差が100MPa以下、且つ導電率が45%IACS以上のものを合格とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1~4の結果から、実施例1~23の銅合金板材はいずれも、合金組成が本発明の範囲内であり、且つ、Si化合物と母相との境界領域に3次元アトムプローブ電界イオン顕微鏡により観察される拡散層の平均厚さが0.5nm以上5.0nm以下であるため、25℃と100℃での引張強度差が100MPa以下と小さく、100℃での引張強度が500MPa以上と高く、且つ導電性が45%IACS以上と高かった。
 一方、溶体化熱処理温度が低い比較例1や、溶体化熱処理温度が高い比較例2は、拡散層の平均厚さが0.5nm未満であり、25℃と100℃との引張強度差が大きく、100℃での引張強度が低かった。溶体化熱処理の保持時間が長い比較例3は、拡散層の平均厚さが0.5nm未満であり、25℃と100℃との引張強度差が大きかった。Ni及びCoの合計量が少ない比較例4は、100℃での引張強度が低かった。(Ni+Co)/Si比が低い比較例5は、導電率が低かった。(Ni+Co)/Si比が高い比較例6は、導電率が低かった。第一時効処理時間が長く、第一時効処理で析出形成したSi化合物の平均サイズが大きい比較例7は、拡散層の平均厚さが0.5nm未満であり、25℃と100℃との引張強度差が大きく、100℃での引張強度が低かった。第一時効処理温度が低く、第一時効処理で析出形成したSi化合物の平均サイズが小さい比較例8は、溶体化処理で均質化が進んだためか、拡散層の平均厚さが0.5nm未満になり、25℃と100℃との引張強度差が大きかった。Ni及びCoの合計量が多い比較例9や、Si量が多い比較例10は、導電率が低かった。溶体化熱処理の保持時間が短い比較例11は、拡散層の平均厚さが5.0nm超であり、導電率が低かった。

Claims (7)

  1.  Ni及びCoの少なくとも一方を合計0.5質量%以上5.0質量%以下、
    並びに、Siを0.10質量%以上1.50質量%以下含有し、
    且つ、Si含有量に対するNi及びCoの合計含有量の質量比(Ni+Co)/Siが2.00以上6.00以下であり、
    残部が銅及び不可避不純物からなる合金組成を有する銅合金板材であって、
     母相中に、Ni及びCoの少なくとも一方とSiとを含有するSi化合物を含み、
     前記Si化合物と前記母相との境界領域に、3次元アトムプローブ電界イオン顕微鏡により観察され、Ni及びCoの少なくとも一方とCuとSiとを含む拡散層を有し、
     前記拡散層の平均厚さが0.5nm以上5.0nm以下である、銅合金板材。
  2.  前記合金組成は、Ni及びCoのうちCoのみを含有し、
    Co含有量が0.5質量%以上5.0質量%以下である、請求項1に記載の銅合金板材。
  3.  前記合金組成は、Ni及びCoのうちNiのみを含有し、
    Ni含有量が0.5質量%以上5.0質量%以下である、請求項1に記載の銅合金板材。
  4.  前記合金組成は、Ni及びCoの双方を含有し、
    Ni含有量が0.5質量%以上4.5質量%以下であり、
    Co含有量が0.4質量%以上2.5質量%以下である、請求項1に記載の銅合金板材。
  5.  前記合金組成は、さらにMg、Sn、Zn、P、Cr、Zr及びFeからなる群から選択される少なくとも1種を合計で0.1質量%以上1.0質量%以下含有する、請求項1~4のいずれか1項に記載の銅合金板材。
  6.  請求項1~5のいずれか1項に記載の銅合金板材の製造方法であって、
     前記銅合金板材の前記合金組成と同様の合金組成を有する銅合金素材に、溶解鋳造[工程1]、均質化[工程2]、熱間圧延[工程3]、面削[工程4]、第一冷間圧延[工程5]、第一時効熱処理[工程6]、溶体化熱処理[工程7]、第二時効熱処理[工程8]、第二冷間圧延[工程9]、及び調質焼鈍[10]をこの順に施し、
     前記第一時効熱処理[工程6]では、温度500~700℃で1~240分保持し、
     前記溶体化熱処理[工程7]では、前記第一時効熱処理[工程6]後に、室温から昇温し、
    到達温度750~980℃で0.10~10秒保持した後に冷却することを特徴とする銅合金板材の製造方法。
  7.  請求項1~5のいずれか1項に記載の銅合金板材を用いて形成された接点部品。
PCT/JP2021/039615 2020-10-29 2021-10-27 銅合金板材、銅合金板材の製造方法及び接点部品 WO2022092139A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180059625.3A CN116157546A (zh) 2020-10-29 2021-10-27 铜合金板材、铜合金板材的制造方法及接点部件
JP2022503525A JP7051029B1 (ja) 2020-10-29 2021-10-27 銅合金板材、銅合金板材の製造方法及び接点部品
KR1020237003540A KR20230094188A (ko) 2020-10-29 2021-10-27 구리 합금 판재, 구리 합금 판재의 제조 방법 및 접점 부품

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020181363 2020-10-29
JP2020-181363 2020-10-29

Publications (1)

Publication Number Publication Date
WO2022092139A1 true WO2022092139A1 (ja) 2022-05-05

Family

ID=81382599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039615 WO2022092139A1 (ja) 2020-10-29 2021-10-27 銅合金板材、銅合金板材の製造方法及び接点部品

Country Status (2)

Country Link
TW (1) TW202231885A (ja)
WO (1) WO2022092139A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011252188A (ja) * 2010-05-31 2011-12-15 Jx Nippon Mining & Metals Corp 電子材料用Cu−Co−Si系銅合金及びその製造方法
JP2012072470A (ja) * 2010-09-29 2012-04-12 Jx Nippon Mining & Metals Corp 電子材料用Cu−Co−Si系銅合金及びその製造方法
JP2016186107A (ja) * 2015-03-27 2016-10-27 株式会社神戸製鋼所 放熱部品用銅合金板
JP6152212B1 (ja) * 2016-03-31 2017-06-21 Dowaメタルテック株式会社 Cu−Ni−Si系銅合金板材

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011252188A (ja) * 2010-05-31 2011-12-15 Jx Nippon Mining & Metals Corp 電子材料用Cu−Co−Si系銅合金及びその製造方法
JP2012072470A (ja) * 2010-09-29 2012-04-12 Jx Nippon Mining & Metals Corp 電子材料用Cu−Co−Si系銅合金及びその製造方法
JP2016186107A (ja) * 2015-03-27 2016-10-27 株式会社神戸製鋼所 放熱部品用銅合金板
JP6152212B1 (ja) * 2016-03-31 2017-06-21 Dowaメタルテック株式会社 Cu−Ni−Si系銅合金板材

Also Published As

Publication number Publication date
TW202231885A (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
US10294547B2 (en) Copper alloy for electronic and electrical equipment, plastically worked copper alloy material for electronic and electrical equipment, and component and terminal for electronic and electrical equipment
KR101615830B1 (ko) 전자 기기용 구리 합금, 전자 기기용 구리 합금의 제조 방법, 전자 기기용 구리 합금 소성 가공재 및 전자 기기용 부품
TWI518192B (zh) Titanium parts for electronic parts
KR101628583B1 (ko) Cu-Ni-Si 계 합금 및 그 제조 방법
JP5448763B2 (ja) 銅合金材料
TWI518191B (zh) Titanium parts for electronic parts
JP6076724B2 (ja) 銅合金材料およびその製造方法
TWI513833B (zh) 電子機器用銅合金、電子機器用銅合金之製造方法、電子機器銅合金用塑性加工材、以及電子機器用零件
KR102059917B1 (ko) 구리합금재료 및 그 제조 방법
JP2009242926A (ja) 電子材料用Cu−Ni−Si系合金
JPWO2019244842A1 (ja) 抵抗器用抵抗材料およびその製造方法並びに抵抗器
KR101917416B1 (ko) 전자 재료용 Cu-Co-Si 계 합금
JP5750070B2 (ja) 銅合金
JP5903839B2 (ja) 電子機器用銅合金、電子機器用銅合金の製造方法、電子機器用銅合金塑性加工材および電子機器用部品
JP2011208232A (ja) Cu−Co−Si合金材
JP7051029B1 (ja) 銅合金板材、銅合金板材の製造方法及び接点部品
WO2022092139A1 (ja) 銅合金板材、銅合金板材の製造方法及び接点部品
JP2016211054A (ja) 銅合金
JP2016176106A (ja) 電子部品用Cu−Ni−Co−Si合金
KR101807969B1 (ko) 전자 부품용 Cu-Co-Ni-Si 합금
JP7445096B1 (ja) 銅合金板材および絞り加工部品
JP2017071812A (ja) 電子部品用Cu−Co−Ni−Si合金
JP2019203202A (ja) 電子部品用Cu−Ni−Co−Si合金
JP2014118595A (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP2013204060A (ja) 銅合金

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022503525

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21886257

Country of ref document: EP

Kind code of ref document: A1