WO2022091985A1 - 電磁軟鉄 - Google Patents

電磁軟鉄 Download PDF

Info

Publication number
WO2022091985A1
WO2022091985A1 PCT/JP2021/039163 JP2021039163W WO2022091985A1 WO 2022091985 A1 WO2022091985 A1 WO 2022091985A1 JP 2021039163 W JP2021039163 W JP 2021039163W WO 2022091985 A1 WO2022091985 A1 WO 2022091985A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
machinability
soft iron
magnetic
magnetic properties
Prior art date
Application number
PCT/JP2021/039163
Other languages
English (en)
French (fr)
Inventor
克行 一宮
孝一 中島
祐太 今浪
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN202180072305.1A priority Critical patent/CN116391056A/zh
Priority to JP2022518877A priority patent/JP7556024B2/ja
Priority to EP21886103.7A priority patent/EP4239095A1/en
Priority to US18/248,525 priority patent/US20230411055A1/en
Publication of WO2022091985A1 publication Critical patent/WO2022091985A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition

Definitions

  • the present invention relates to electromagnetic soft iron having excellent machinability and magnetic properties.
  • Pure iron-based electromagnetic soft iron is usually used as a material that easily responds to an external magnetic field.
  • a steel material having a C content of approximately 0.01% by mass or less is used, and the steel bar obtained by hot rolling and then wire drawing is subjected to forging or cutting to form an electrical component. It is generally manufactured.
  • Patent Document 1 discloses a technique for producing a soft magnetic steel material having excellent magnetic properties and machinability by controlling the size and number of MnS dispersed in steel.
  • Patent Document 2 discloses a technique relating to a soft magnetic steel material having excellent cold forgeability, machinability and magnetic properties, which controls the size and density of FeS precipitates.
  • Patent Document 1 and Patent Document 2 are techniques for improving machinability by the sole effect of MnS or FeS.
  • an increase in the amount of these precipitates (MnS, FeS) may lead to deterioration of magnetic properties. Therefore, there is a technical limit in achieving both magnetic properties and machinability at a higher level.
  • the present invention has been made in view of such circumstances, and provides a technique for achieving both magnetic properties and machinability at a high level, which could not be realized only by the conventional machinability improving technique by MnS or the like.
  • the purpose is.
  • the present invention has been completed after further studies based on the above-mentioned novel findings, and its gist structure is as follows. 1. 1. By mass%, C: Less than 0.02%, Si: less than 0.05%, Mn: More than 0.03% and less than 0.50%, P: 0.002% or more and less than 0.006%, S: 0.013% or more and 0.050% or less, Al: 0.010% or less, N: 0.0010% or more and 0.0100% or less and B: 0.0003% or more and 0.0065% or less, and the balance is iron and electromagnetic soft iron having a component composition of unavoidable impurities.
  • the component composition further By mass%, Cu: 0.20% or less, Ni: 0.30% or less, Cr: 0.30% or less, Mo: 0.10% or less, V: 0.02% or less,
  • composition of the components is further increased by mass%.
  • Pb 0.30% or less
  • Bi 0.30% or less
  • Te 0.30% or less
  • Se 0.30% or less
  • Ca 0.0100% or less
  • Mg less than 0.0050%
  • C Less than 0.02% If the amount of C is 0.02% or more, the iron loss is significantly deteriorated by magnetic aging, so the content is limited to less than 0.02%. Even if the amount of C is less than 0.001%, the influence on the magnetic characteristics is saturated, but the amount of C is 0 because the refining cost is increased to reduce the amount of C to less than 0.001%. It is preferably 001% or more. It is preferably 0.001% or more and 0.015% or less, and more preferably 0.001% or more and 0.010% or less.
  • Si less than 0.05% Si is an effective element as a deoxidizing element.
  • Si content is 0.05% or more, the ferrite is cured and the workability in the cold is lowered. Therefore, Si may be contained, but the Si content is less than 0.05%. It is preferably 0.03% or less. Of course, Si may be 0%.
  • Mn More than 0.03% and 0.50% or less Mn is effective for improving strength by solid solution strengthening, and is also effective for improving machinability by dispersing MnS bonded to S in steel. It is an element.
  • the content should be more than 0.03%.
  • the content should be 0.50% or less.
  • it is more than 0.03% and 0.40% or less. More preferably, it is more than 0.03% and 0.35% or less.
  • P 0.002% or more and less than 0.006% P can obtain a significant solid solution strengthening ability even with a relatively small amount of addition.
  • the content should be 0.002% or more.
  • excessive addition impairs workability in the cold, so the ratio is set to less than 0.006%.
  • S 0.013% or more and 0.050% or less S forms MnS in the steel and contributes to the improvement of machinability. It is necessary to add 0.013% or more to realize the effect. On the other hand, addition of more than 0.050% deteriorates workability in the cold. Therefore, the amount of S is set to 0.013% or more and 0.050% or less. It is preferably 0.013% or more and 0.045% or less, and more preferably 0.013% or more and 0.040% or less.
  • Al 0.010% or less Al combines with N in steel to form fine AlN. Since this fine AlN inhibits the growth of crystal grains and deteriorates the magnetic properties, it needs to be 0.010% or less. Of course, Al may be 0%.
  • N 0.0010% or more and 0.0100% or less N binds to B and forms BN, thereby contributing to machinability. Addition of 0.0010% or more is required to produce the effect. On the other hand, if the addition exceeds 0.0100%, the workability in the cold and the magnetic properties are deteriorated, so that the upper limit is 0.0100%. Preferably, it is 0.0015% or more and 0.0090% or less.
  • B 0.0003% or more and 0.0065% or less B combines with N in steel to form BN.
  • BN has the effect of improving machinability. In order to obtain the effect, it is necessary to add 0.0003% or more.
  • addition of more than 0.0065% causes deterioration of magnetic properties and castability, so 0.0065% is the upper limit. It is preferably 0.0005% or more and 0.0060% or less, and more preferably 0.0010% or more and 0.0055% or less.
  • the basic components of the present invention have been described above.
  • the rest other than the above components are Fe and unavoidable impurities.
  • any one or more of the elements described below can be appropriately contained.
  • Ni and Cr contribute to the increase in strength mainly by strengthening the solid solution, and in order to exhibit the effect, it is preferable to add 0.01% or more of each.
  • it is preferable to set the upper limit to 0.20%, 0.30% and 0.30%, respectively.
  • Mo, V, Nb and Ti contribute to the increase in strength mainly by strengthening precipitation, and in order to exert the effect, 0.001%, 0.0001%, 0.0001% and 0.0001%, respectively.
  • the above addition is preferable. However, since excessive addition deteriorates the magnetic properties, it is preferably 0.10% or less, 0.02% or less, less than 0.015%, and less than 0.010%, respectively.
  • any one or more of the following elements can be contained.
  • Pb 0.30% or less Bi: 0.30% or less Te: 0.30% or less Se: 0.30% or less
  • REM 0.0100% or less
  • Pb, Bi, Te, Se, Ca, Mg, Zr and REM improve machinability. It is an element that contributes.
  • Pb is 0.001% or more
  • Bi is 0.001% or more
  • Te is 0.001% or more
  • Se 0.001% or more
  • Ca is 0.0001% or more
  • Mg is.
  • components other than the above are Fe and unavoidable impurities.
  • a suitable method for producing pure iron-based electromagnetic soft iron according to the present invention will be described.
  • Molten steel having the above composition is melted by a melting method such as a normal converter or an electric furnace, and is used as a steel material by a normal continuous casting or a slabbing method.
  • the steel material is heated as necessary to obtain electromagnetic soft iron by hot rolling such as steel piece rolling and bar wire rolling.
  • the above heating and rolling conditions are not particularly limited, but may be appropriately determined according to the required material.
  • the structure is controlled so as to be advantageous for forging and machining for subsequent part molding. Just do it.
  • the shape of the electromagnetic soft iron may be any of rods, rods, and wires, which are mainly used in applications where cutting is performed. It is preferable to have.
  • each element can be determined by a spark discharge emission spectroscopic analysis method, a fluorescent X-ray analysis method, an ICP emission spectroscopic analysis method, an ICP mass spectrometry method, a combustion method, or the like.
  • Other manufacturing conditions may follow the general manufacturing method of steel materials.
  • the magnetic properties were measured according to JIS C2504. That is, a ring-shaped test piece was collected from the steel bar (material) and subjected to magnetic annealing at 750 ° C. for 2 hours. Then, an excitation winding (primary winding 220 turns) and a detection winding (secondary winding 100 turns) were wound around the ring test piece and subjected to the test.
  • the magnetic flux density was determined by measuring the BH curve using a DC magnetization measuring device. Specifically, the magnetic flux densities at 100 and 300 A / m in the magnetization process with the maximum ultimate magnetic field of 10,000 A / m were determined. If it is 1.20T and 1.50T or more, respectively, it can be said that the magnetic characteristics are excellent.
  • the coercive force was measured with a reversal magnetization force of ⁇ 400 A / m using a DC magnetic property tester using a ring-shaped test piece having the same windings as above. If the coercive force is 60 A / m or less, it can be said that the magnetic characteristics are excellent.
  • Cold workability was evaluated by the marginal embedding rate. That is, the limit embedding rate is 15 mm in diameter and 22.5 mm in height from the depth position of 1/2 of the diameter from the peripheral surface of the steel bar, and the depth is 0.8 mm and the notch bottom R0.15 is cut on the side surface. A test piece having a notch is collected, and compression processing is performed using this test piece. Sequential compression was performed until cracks having a width of 0.5 mm or more were generated at the bottom of the notch of the test piece. The stationary rate at this time was defined as the marginal stationary rate. If the limit setting rate is 55% or more, it can be said that the cold workability is excellent.
  • the machinability was evaluated by measuring the amount of flank wear of the tool. Specifically, using an NC lathe, a steel bar with a diameter of 25 mm is cut with a cemented carbide base metal coating tool with a depth of cut of 0.2 mm, a feed rate of 0.15 mm / rev, a peripheral speed of 300 m / min, and a wet method. It was evaluated by measuring the amount of flank wear of the tool after cutting with a length of 1000 m. If the flank wear amount is 35 ⁇ m or less, it can be said that the machinability is excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

従来のMnS等による被削性向上技術だけでは実現できなかった、高いレベルでの磁気特性と被削性の両立を達成する技術について提供する。電磁軟鉄は、質量%で、C:0.02%未満、Si:0.05%未満、Mn:0.03%超0.50%以下、P:0.002%以上0.006%未満、S:0.013%以上0.050%以下、Al:0.010%以下、N:0.0010%以上0.0100%以下およびB:0.0003%以上0.0065%以下を含有し、残部が鉄および不可避的不純物の成分組成を有する。

Description

電磁軟鉄
 本発明は、被削性と磁気特性に優れた電磁軟鉄に関するものである。
 近年、地球環境を保護する観点から、省資源・省エネルギー化が世界的に求められており、電気機器の分野においても、省エネルギーを目的として、高効率化や小型化が積極的に進められている。このような背景から、自動車等に用いられる電装部品においても、省電力化と外部磁界に対する応答速度の向上などが求められている。
 外部磁界に応答しやすい材料として、純鉄系電磁軟鉄が通常使用されている。この電磁軟鉄には、C量がおおよそ0.01質量%以下の鋼材が用いられ、熱間圧延後に伸線加工等を行って得られた棒鋼に、鍛造や切削加工等を施して電装部品として製造されるのが一般的である。
 ここで、部品加工において、電磁軟鉄が有する軟質なフェライト単相組織は、切削加工性が非常に劣ることが知られている。よって、電磁軟鉄に対しては、磁気特性に加えて、加工性能に優れることも重要になってきている。
 例えば、特許文献1では、MnSを鋼中に分散させるに際し、そのサイズと個数を制御することにより、磁気特性と被削性に優れた軟磁性鋼材を製造する技術が開示されている。
 特許文献2では、FeS析出物のサイズや密度を制御する、冷間鍛造性、被削性および磁気特性に優れた軟磁性鋼材に関する技術が開示されている。
特開2007-51343号公報 特開2007-46125号公報
 特許文献1や特許文献2に記載の技術は、MnSまたはFeSの単独効果による被削性向上の技術である。しかしながら、これら析出物(MnS、FeS)の増量は磁気特性の劣化を招く、おそれがある。従って、さらに高いレベルにて磁気特性と被削性を両立するには、技術的な限界があった。
 本発明は、かかる事情に鑑みなされたものであり、従来のMnS等による被削性向上技術だけでは実現できなかった、高いレベルでの磁気特性と被削性の両立を達成する技術について提供することを目的とする。
 上記課題を解決するために、発明者らが鋭意検討したところ、BNを活用することによって、磁気特性を劣化させることなしに被削性の向上が図れることを新たに見出した。
 本発明は、上記の新規な知見に基づき、さらに検討を重ねた末に完成されたものであり、その要旨構成は、以下の通りである。
1.質量%で、
 C:0.02%未満、
 Si:0.05%未満、
 Mn:0.03%超0.50%以下、
 P:0.002%以上0.006%未満、
 S:0.013%以上0.050%以下、
 Al:0.010%以下、
 N:0.0010%以上0.0100%以下および
 B:0.0003%以上0.0065%以下
を含有し、残部が鉄および不可避的不純物の成分組成を有する電磁軟鉄。
2.前記成分組成は、さらに、
 質量%で、
 Cu:0.20%以下、
 Ni:0.30%以下、
 Cr:0.30%以下、
 Mo:0.10%以下、
 V:0.02%以下、
 Nb:0.015%未満および
 Ti:0.010%未満
のうちから選ばれる1種または2種以上を含有する、前記1に記載の電磁軟鉄。
3.前記成分組成は、さらに、質量%で、
 Pb:0.30%以下、
 Bi:0.30%以下、
 Te:0.30%以下、
 Se:0.30%以下
 Ca:0.0100%以下、
 Mg:0.0050%未満、
 Zr:0.200%以下および
 REM:0.0100%以下
のうちから選ばれる1種または2種以上を含有する、前記1または2に記載の電磁軟鉄。
 本発明によれば、磁気特性および被削性に優れた純鉄系の電磁軟鉄を安定して提供することができる。
 以下、本発明の一実施形態による純鉄系の電磁軟鉄について説明する。
 まず、純鉄系の電磁軟鉄の成分組成における、各成分の限定理由について述べる。なお、本明細書において、各成分元素の含有量を表す「%」は、特に断らない限り「質量%」を意味する。
C:0.02%未満
 C量が0.02%以上であると、磁気時効により鉄損が著しく劣化するため、0.02%未満に制限する。なお、C量は0.001%未満にしても磁気特性への影響は飽和する一方、0.001%未満にまでC量を低減するには精錬コストの上昇が伴うため、C量は0.001%以上であることが好ましい。好ましくは、0.001%以上0.015%以下、より好ましくは0.001%以上0.010%以下である。
Si:0.05%未満
 Siは、脱酸元素として有効な元素である。Si含有量が0.05%以上であると、フェライトを硬化させて冷間での加工性が低下する。このため、Siは、含有されてもよいが、Si含有量は0.05%未満とする。好ましくは、0.03%以下である。なお、Siは、0%であってもよいのは勿論である。
Mn:0.03%超0.50%以下
 Mnは、固溶強化による強度向上に有効であることに加え、Sと結合したMnSが鋼中に分散することで被削性の改善に有効な元素である。そのためには、0.03%超の含有量とする。一方、過剰な添加は磁気特性を劣化させるため、0.50%以下とする。好ましくは、0.03%超0.40%以下である。より好ましくは、0.03%超0.35%以下である。
P:0.002%以上0.006%未満
 Pは、比較的少量の添加でも大幅な固溶強化能が得られる。そのためには、0.002%以上の含有量とする。一方、過剰な添加は冷間での加工性を害するため、0.006%未満とする。
S:0.013%以上0.050%以下
 Sは、鋼中でMnSを形成し、被削性の向上に寄与する。その効果を発現するには0.013%以上の添加が必要である。一方、0.050%を超える添加は、冷間での加工性を劣化させる。したがって、S量は0.013%以上0.050%以下とする。好ましくは、0.013%以上0.045%以下、より好ましくは、0.013%以上0.040%以下である。
Al:0.010%以下
 Alは、鋼中のNと結合し、微細なAlNを形成する。この微細なAlNは結晶粒の成長を阻害し、磁気特性を劣化させるため、0.010%以下にする必要がある。なお、Alは、0%であってもよいのは勿論である。
N:0.0010%以上0.0100%以下
 Nは、Bと結合し、BNを形成することで被削性に寄与する。その効果を生じるには0.0010%以上の添加が必要である。一方、0.0100%を超える添加は、冷間での加工性や磁気特性を劣化させるため、0.0100%を上限とした。好ましくは、0.0015%以上0.0090%以下である。
B:0.0003%以上0.0065%以下
 Bは、鋼中のNと結合し、BNを形成する。BNは、被削性を向上させる効果がある。その効果を得るためには、0.0003%以上の添加が必要である。一方、0.0065%を超える添加は、磁気特性や鋳造性の劣化を招くことから、0.0065%を上限とした。好ましくは、0.0005%以上0.0060%以下、より好ましくは、0.0010%以上0.0055%以下である。
 以上、本発明の基本成分について説明した。上記成分以外の残部はFeおよび不可避的不純物である。さらに、その他にも必要に応じて、以下に述べる元素のいずれか1種以上を適宜含有させることができる。
Cu:0.20%以下
Ni:0.30%以下
Cr:0.30%以下
Mo:0.10%以下
V:0.02%以下
Nb:0.015%未満
Ti:0.010%未満
 Cu,NiおよびCrは、主に固溶強化により強度上昇に寄与し、その効果を発現するには、それぞれ0.01%以上の添加が好ましい。しかし、過度の添加は磁気特性を劣化させるため、それぞれ上限を0.20%、0.30%および0.30%とすることが好ましい。
 また、Mo、V、NbおよびTiは、主に析出強化により強度上昇に寄与し、その効果を発現するには、それぞれ0.001%、0.0001%、0.0001%および0.0001%以上の添加が好ましい。しかし、過度の添加は磁気特性を劣化させるため、それぞれ0.10%以下、0.02%以下、0.015%未満および0.010%未満とすることが好ましい。
 さらに本発明では、以下の元素のいずれか1種以上を含むことができる。
Pb:0.30%以下
Bi:0.30%以下
Te:0.30%以下
Se:0.30%以下、
Ca:0.0100%以下
Mg:0.0050%未満
Zr:0.200%以下
REM:0.0100%以下
 Pb、Bi、Te、Se、Ca、Mg、ZrおよびREMは、被削性向上に寄与する元素である。それぞれ効果を発現するには、Pbは0.001%以上、Biは0.001%以上、Teは0.001%以上、Seは0.001%以上、Caは0.0001%以上、Mgは0.0001%以上、Zrは0.005%以上およびREMは0.0001%以上の添加が好ましい。しかし、過剰な添加は磁気特性に劣化を引き起こすため、それぞれPbは0.30%以下、Biは0.30%以下、Teは0.30%以下、Seは0.30%以下、Caは0.0100%以下、Mgは0.0050%未満、Zrは0.200%以下、REMは0.0100%以下とすることが好ましい。
 本発明における成分組成のうち、上記以外の成分はFeおよび不可避的不純物である。
 本発明に係る純鉄系電磁軟鉄の好適な製造方法について述べる。
 上記成分組成を有する溶鋼を、通常の転炉、電気炉等の溶製方法で溶製し、通常の連続鋳造や分塊法により鋼素材とする。次いで、鋼素材を必要に応じ加熱し、鋼片圧延、棒線圧延等の熱間圧延により電磁軟鉄とする。上記の加熱、圧延条件は特に限定されないが、要求される材質に応じて適宜決定すればよく、例えば、その後の部品成形のための鍛造や機械加工等に有利となるように、組織制御を行えばよい。なお、本発明の電磁軟鉄は、切削加工性に優れることから、電磁軟鉄の形状としては、切削加工が施される用途において主に使用されている、棒、ロッド、線のいずれかの形状であることが好ましい。
 また、各元素の含有量は、スパーク放電発光分光分析法、蛍光X線分析法、ICP発光分光分析法、ICP質量分析法、燃焼法等により求めることができる。
 その他の製造条件は、鋼材の一般的な製造方法に従えばよい。
 次に、本発明の実施例について説明する。なお、本発明は以下の実施例のみに限定されるものではない。
 表1に示した成分組成を含有する鋼を溶製後、約1200℃で熱間鍛造を行い、その後、950℃での焼鈍処理を行って、直径25mmの棒鋼を製造した。得られた棒鋼について、以下に示す手法に従って磁気特性、冷間加工性および被削性の評価を行った。評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
[磁気特性]
 磁気特性は、JIS C2504に準拠して測定した。すなわち、上記棒鋼(素材)から、リング状試験片を採取し、750℃で2h保持する磁気焼鈍を施した。その後、リング試験片に、励起巻線(1次巻線220ターン)、検出巻線(2次巻線100ターン)を巻いて試験に供した。磁束密度は、直流磁化測定装置を用いてB-H曲線を測定し求めた。具体的には、最高到達磁界が10,000A/mの磁化過程における100および300A/mでの磁束密度を求めた。それぞれ、1.20Tおよび1.50T以上あれば磁気特性に優れるといえる。
 また、保磁力は、上記と同様の巻線を施したリング状試験片を用いて、直流磁気特性試験装置を使用し、反転磁化力±400A/mで測定を行った。保磁力が60A/m以下であれば、磁気特性に優れるといえる。
[冷間加工性]
 冷間加工性は、限界据え込み率で評価した。すなわち、限界据え込み率は、上記棒鋼の周面から直径の1/2の深さ位置から、直径15mmおよび高さ22.5mm、かつ側面に深さ0.8mmおよびノッチ底R0.15の切欠きを有する、試験片を採取し、この試験片を用い圧縮加工を行う。試験片のノッチ底に幅0.5mm以上の割れが発生するまでの逐次圧縮を行った。このときの据え込み率を限界据え込み率とした。
 限界据え込み率が55%以上であれば、冷間加工性に優れているといえる。
[被削性]
 被削性は、工具の逃げ面摩耗量を測定して評価した。具体的には、NC旋盤を用いて、直径25mmの棒鋼を超硬母材のコーティング工具にて、切込み量0.2mm、送り速度0.15mm/rev、周速300m/min、湿式で、切削長1000mの切削加工を行った後の、工具の逃げ面摩耗量を測定することで評価した。逃げ面摩耗量35μm以下であれば、被削性に優れるといえる。

Claims (3)

  1.  質量%で、
     C:0.02%未満、
     Si:0.05%未満、
     Mn:0.03%超0.50%以下、
     P:0.002%以上0.006%未満、
     S:0.013%以上0.050%以下、
     Al:0.010%以下、
     N:0.0010%以上0.0100%以下および
     B:0.0003%以上0.0065%以下
    を含有し、残部が鉄および不可避的不純物の成分組成を有する電磁軟鉄。
  2.  前記成分組成は、さらに、
     質量%で、
     Cu:0.20%以下、
     Ni:0.30%以下、
     Cr:0.30%以下、
     Mo:0.10%以下、
     V:0.02%以下、
     Nb:0.015%未満および
     Ti:0.010%未満
    のうちから選ばれる1種または2種以上を含有する、請求項1に記載の電磁軟鉄。
  3.  前記成分組成は、さらに、質量%で、
     Pb:0.30%以下、
     Bi:0.30%以下、
     Te:0.30%以下、
     Se:0.30%以下
     Ca:0.0100%以下、
     Mg:0.0050%未満、
     Zr:0.200%以下および
     REM:0.0100%以下
    のうちから選ばれる1種または2種以上を含有する、請求項1または2に記載の電磁軟鉄。
PCT/JP2021/039163 2020-10-29 2021-10-22 電磁軟鉄 WO2022091985A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180072305.1A CN116391056A (zh) 2020-10-29 2021-10-22 电磁软铁
JP2022518877A JP7556024B2 (ja) 2020-10-29 2021-10-22 電磁軟鉄
EP21886103.7A EP4239095A1 (en) 2020-10-29 2021-10-22 Soft magnetic iron
US18/248,525 US20230411055A1 (en) 2020-10-29 2021-10-22 Soft magnetic iron

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020181791 2020-10-29
JP2020-181791 2020-10-29

Publications (1)

Publication Number Publication Date
WO2022091985A1 true WO2022091985A1 (ja) 2022-05-05

Family

ID=81383924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039163 WO2022091985A1 (ja) 2020-10-29 2021-10-22 電磁軟鉄

Country Status (5)

Country Link
US (1) US20230411055A1 (ja)
EP (1) EP4239095A1 (ja)
JP (1) JP7556024B2 (ja)
CN (1) CN116391056A (ja)
WO (1) WO2022091985A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303209A (ja) * 2000-04-19 2001-10-31 Nkk Joko Kk 軟磁性に優れたbn系快削鋼
JP2003055745A (ja) * 2001-08-10 2003-02-26 Kobe Steel Ltd 被削性と磁気特性に優れた軟磁性低炭素鋼材及びその製法、並びに該鋼材を用いた軟磁性低炭素鋼部品の製法
JP2007046125A (ja) 2005-08-11 2007-02-22 Kobe Steel Ltd 冷間鍛造性、被削性および磁気特性に優れた軟磁性鋼材、並びに磁気特性に優れた軟磁性鋼部品
JP2007051343A (ja) 2005-08-18 2007-03-01 Kobe Steel Ltd 高磁界での磁気特性と被削性に優れた軟磁性鋼材および高磁界での磁気特性に優れた軟磁性鋼部品
JP2015127454A (ja) * 2013-11-29 2015-07-09 株式会社神戸製鋼所 軟磁性鋼材及びその製造方法、並びに軟磁性鋼材から得られる軟磁性部品
WO2015113937A1 (en) * 2014-01-28 2015-08-06 Tata Steel Ijmuiden B.V. Process for producing an elc or ulc steel slab, strip or sheet, and to a slab, strip or sheet produced thereby
JP2017128784A (ja) * 2016-01-22 2017-07-27 株式会社神戸製鋼所 軟磁性鋼部品の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4360349B2 (ja) * 2005-05-25 2009-11-11 住友金属工業株式会社 軟磁性条鋼
JP2018076557A (ja) * 2016-11-09 2018-05-17 株式会社神戸製鋼所 軟磁性部品の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001303209A (ja) * 2000-04-19 2001-10-31 Nkk Joko Kk 軟磁性に優れたbn系快削鋼
JP2003055745A (ja) * 2001-08-10 2003-02-26 Kobe Steel Ltd 被削性と磁気特性に優れた軟磁性低炭素鋼材及びその製法、並びに該鋼材を用いた軟磁性低炭素鋼部品の製法
JP2007046125A (ja) 2005-08-11 2007-02-22 Kobe Steel Ltd 冷間鍛造性、被削性および磁気特性に優れた軟磁性鋼材、並びに磁気特性に優れた軟磁性鋼部品
JP2007051343A (ja) 2005-08-18 2007-03-01 Kobe Steel Ltd 高磁界での磁気特性と被削性に優れた軟磁性鋼材および高磁界での磁気特性に優れた軟磁性鋼部品
JP2015127454A (ja) * 2013-11-29 2015-07-09 株式会社神戸製鋼所 軟磁性鋼材及びその製造方法、並びに軟磁性鋼材から得られる軟磁性部品
WO2015113937A1 (en) * 2014-01-28 2015-08-06 Tata Steel Ijmuiden B.V. Process for producing an elc or ulc steel slab, strip or sheet, and to a slab, strip or sheet produced thereby
JP2017128784A (ja) * 2016-01-22 2017-07-27 株式会社神戸製鋼所 軟磁性鋼部品の製造方法

Also Published As

Publication number Publication date
US20230411055A1 (en) 2023-12-21
CN116391056A (zh) 2023-07-04
EP4239095A1 (en) 2023-09-06
JP7556024B2 (ja) 2024-09-25
JPWO2022091985A1 (ja) 2022-05-05

Similar Documents

Publication Publication Date Title
JP4360349B2 (ja) 軟磁性条鋼
JP7239075B1 (ja) 電磁軟鉄棒鋼
JP4438687B2 (ja) 軟磁性条鋼
JP2013049918A (ja) 電磁ステンレス鋼及びその製造方法
JP7355234B2 (ja) 電磁軟鉄
JP7556024B2 (ja) 電磁軟鉄
JP2003055745A (ja) 被削性と磁気特性に優れた軟磁性低炭素鋼材及びその製法、並びに該鋼材を用いた軟磁性低炭素鋼部品の製法
WO2023084756A1 (ja) 電磁軟鉄
JP2007291519A (ja) 電磁棒鋼およびその製造方法
JP6192291B2 (ja) らせんコア用無方向性電磁鋼板およびその製造方法
WO2023210061A1 (ja) 電磁軟鉄
JP4646872B2 (ja) 軟磁性鋼材、並びに軟磁性部品およびその製造方法
US20210340651A1 (en) Non-oriented electrical steel sheet and manufacturing method therefor
JP4772703B2 (ja) 磁気特性に優れた電磁軟鉄製部品並びに電磁軟鉄製部品用棒線材及びその製造方法
JP4398639B2 (ja) 被削性と磁気特性に優れた軟磁性鋼材および磁気特性に優れた軟磁性鋼部品ならびに軟磁性鋼部品の製造方法
KR20240148415A (ko) 전자 연철
US20230257859A1 (en) Soft magnetic member and intermediate therefor, methods respectively for producing said member and said intermediate, and alloy for soft magnetic member
JP4360347B2 (ja) 軟磁性鋼材
JPH0653903B2 (ja) Ni―Fe系高透磁率磁性合金
JP2002088452A (ja) 鉄損が低く疲労特性に優れた無方向性電磁鋼板
WO2018088328A1 (ja) 軟磁性部品用鋼材及びそれを用いた軟磁性部品の製造方法
JP2013224482A (ja) 複合磁性材素材の製造方法及び複合磁性材の製造方法
WO2024162352A1 (ja) 電磁軟鉄
JP2004300516A (ja) 磁気特性に優れたフェライト系ステンレス用素材及び冷間鍛造品並びにその製造方法
JP2001200347A (ja) 鉄損の低い無方向性電磁鋼板およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022518877

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886103

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202317017669

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021886103

Country of ref document: EP

Effective date: 20230530