WO2022091419A1 - 電力変換装置 - Google Patents

電力変換装置 Download PDF

Info

Publication number
WO2022091419A1
WO2022091419A1 PCT/JP2020/041111 JP2020041111W WO2022091419A1 WO 2022091419 A1 WO2022091419 A1 WO 2022091419A1 JP 2020041111 W JP2020041111 W JP 2020041111W WO 2022091419 A1 WO2022091419 A1 WO 2022091419A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
regenerative braking
inverter
overcurrent detection
signal
Prior art date
Application number
PCT/JP2020/041111
Other languages
English (en)
French (fr)
Inventor
史宏 佐藤
啓輔 田邉
直樹 高田
正宏 平賀
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to PCT/JP2020/041111 priority Critical patent/WO2022091419A1/ja
Priority to US18/013,942 priority patent/US20230291334A1/en
Priority to JP2022559285A priority patent/JP7389272B2/ja
Priority to CN202180047764.4A priority patent/CN115812275A/zh
Priority to EP21886421.3A priority patent/EP4239875A1/en
Priority to PCT/JP2021/040173 priority patent/WO2022092304A1/ja
Priority to TW110140536A priority patent/TWI798906B/zh
Publication of WO2022091419A1 publication Critical patent/WO2022091419A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • H02P3/22Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor by short-circuit or resistive braking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • H02P29/027Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load the fault being an over-current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor

Definitions

  • the present invention relates to a power conversion device that supplies AC power to a motor.
  • a power converter for driving a motor generally consists of a rectifying unit that converts AC voltage to DC voltage, a smoothing capacitor that smoothes DC voltage, and an inverter unit that reversely converts DC voltage.
  • the inverter unit converts the DC voltage into AC power for driving the motor and supplies it to the motor during the power running operation, and converts the AC power regenerated by the motor into DC power and supplies it to the smoothing capacitor during the regenerative operation. Therefore, during the regenerative operation of the motor, the regenerative energy charges the smoothing capacitor via the inverter circuit, so that the DC voltage rises.
  • a regenerative braking unit composed of a braking resistor and a series of switching elements is arranged in parallel with the smoothing capacitor, and the DC voltage is specified.
  • a method of driving a switching element of a regenerative braking unit and consuming regenerative energy with a braking resistance when the voltage exceeds the above voltage is generally known. Since the resistance value of the braking resistance, the rated power, and the allowable current of the switching element depend on the amount of regenerative energy to be consumed, it is necessary to select an appropriate one depending on the equipment.
  • the power conversion device for driving the motor is provided with an overcurrent protection circuit in the regenerative braking unit in order to improve reliability.
  • Patent Document 1 is a prior art document in this technical field.
  • Patent Document 1 describes a power conversion device provided with a current interrupting means in series with a braking resistor and a switching element, and provided with a protection mechanism for interrupting the current flowing through the braking resistor when an overcurrent is detected.
  • Patent Document 1 a contactor with a thermal relay is connected in series with the braking resistance, and when the thermal relay trips due to an overcurrent, the contactor is turned off and the braking resistance is prevented from burning.
  • the operation of the inverter portion when the braking resistance detects an overcurrent is not mentioned, and there is a problem that the increase of the DC voltage, which is the original purpose, is not suppressed when the thermal relay trips.
  • the present invention is, for example, a power conversion device, which is a rectifying unit that rectifies an AC voltage and outputs a DC voltage, a smoothing capacitor that smoothes the DC voltage, and outputs an AC power by inputting the DC voltage.
  • the regenerative braking overcurrent detection unit that outputs an overcurrent detection signal when the current flowing through the regenerative braking unit exceeds the judgment value, and the regenerative braking overcurrent detection unit.
  • a latch section that inputs the output overcurrent detection signal and outputs a gate output cutoff signal to the control section is provided, and when the regenerative braking overcurrent detection section detects an overcurrent, the switching element between the inverter section and the regenerative braking section is turned off. Configure to stop in the state.
  • the present invention it is possible to provide a power conversion device capable of suppressing an increase in DC voltage while preventing the braking resistance and the switching element of the regenerative braking unit from being destroyed.
  • FIG. It is a block diagram of the power conversion apparatus in Example 1.
  • FIG. It is a figure explaining the operation example of the power conversion apparatus in Example 1.
  • FIG. It is a block diagram which shows the specific example of the regenerative braking overcurrent detection part in Example 1.
  • FIG. It is a block diagram which shows the specific example of the regenerative braking overcurrent detection part in Example 1.
  • FIG. It is a block diagram which shows the specific example of the regenerative braking drive part in Example 1.
  • FIG. It is a block diagram which shows the specific example of the regenerative braking drive part in Example 1.
  • FIG. It is a block diagram of the power conversion apparatus in Example 2.
  • FIG. It is a block diagram which shows the specific example of the latch part, the regenerative braking drive part, and the inverter drive part in Example 2.
  • FIG. It is a figure explaining the operation example of the power conversion apparatus in Example 2.
  • FIG. It is a block diagram which shows the specific example of the inverter overcurrent detection part in Example 2.
  • FIG. It is a block diagram which shows the specific example of the latch part in Example 3.
  • FIG. It is a figure explaining the operation example of the power conversion apparatus in Example 3.
  • FIG. 1 is a configuration diagram of the power conversion device 1 in this embodiment.
  • the power conversion device 1 has a rectifying unit 101 that inputs an AC voltage and outputs a DC voltage, a smoothing capacitor 106 that smoothes the DC voltage, and a voltage detection that detects a value of the DC voltage output by the rectifying unit 101.
  • a gate signal VGB is output to the unit 102, the regenerative braking unit 103 that operates so as to suppress an increase in the DC voltage when the voltage value detected by the voltage detection unit 102 exceeds a predetermined value, and the regenerative braking unit 103.
  • the power conversion device 1 has an inverter unit 104 that converts DC voltage into AC power, an inverter drive unit 202 that outputs a gate signal VGI to the inverter unit 104, a regenerative braking drive unit 212, and a drive signal to the inverter drive unit 202.
  • the gate output cutoff signal GS is sent to the regenerative braking drive unit 212, the inverter drive unit 202, and the control unit 231.
  • a latch portion 221 for outputting the power is provided.
  • the rectifying unit 101 is composed of six diodes, converts the AC voltage input from the input terminals R, S, and T into a DC voltage, and outputs the AC voltage to both electrodes of the smoothing capacitor 106. Due to the rectifying action of the diode of the rectifying unit 101, a DC voltage is generated as a positive voltage in the DC voltage wiring on the node P side and a negative voltage in the DC voltage wiring on the node N side.
  • the smoothing capacitor 106 is connected to the DC voltage wiring at the node P and the node N to smooth the voltage between the wirings.
  • the inverter unit 104 is composed of switching elements 1041 to 1046.
  • the DC voltage of the smoothing capacitor 106 is converted into AC power and output to the motor, and when the motor is regenerated, the switching element charges the smoothing capacitor with the regenerative energy from the motor. 1041 to 1046 operate.
  • the switching element shown in FIG. 1 uses an IGBT circuit symbol as a typical example, another power semiconductor such as a MOSFET can also be applied.
  • the regenerative braking unit 103 is composed of a switching element 1031, a braking resistance 105, and a diode 1032.
  • the regenerative braking unit 103 drives the switching element 1031 when the DC voltage value detected by the voltage detection unit 102 becomes higher than a predetermined value, consumes energy with the braking resistor 105, and suppresses an increase in the DC voltage.
  • the regenerative braking drive unit 212 is composed of a buffer unit 214 and a gate drive unit 213, receives a drive signal GB output by the control unit 231 and outputs a gate signal VGB to the regenerative braking unit 103.
  • the inverter drive unit 202 is also composed of a buffer unit 204 and a gate drive unit 203, receives a drive signal GI output by the control unit 231 and outputs a gate signal VGI to the inverter unit 104.
  • the regenerative braking overcurrent detection unit 211 is connected to a braking resistance 105 having a resistance value lower than a specified value, or a short circuit between the nodes P and RB shown in FIG. 1 due to an erroneous connection.
  • the overcurrent detection signal SCB is output to the latch portion 221.
  • the latch unit 221 is composed of a flip-flop or the like, and when the regenerative braking overcurrent detection unit 211 detects an overcurrent, the gate output cutoff signal GS is output to the control input terminals of the buffer units 214 and 204.
  • the buffer units 214 and 204 receive the gate output cutoff signal GS, the buffer units 214 and 204 output the gate signals VGB and VGI regardless of the drive signals GB and GI output from the control unit 231 to the regenerative braking unit 103 and the inverter unit 104.
  • the transition is made so that the switching element of the above is stopped in the off state.
  • the gate output cutoff operation is realized.
  • the latch unit 221 releases the stop by receiving the reset signal RST from the control unit 231, and the regenerative braking drive unit 212 and the inverter drive unit 202 are the gate signal VGB based on the drive signal GB and GI output from the control unit 231. , VGI is output, and the driving of the regenerative braking unit 103 and the inverter unit 104 is restarted.
  • control unit 231 When the control unit 231 receives the gate output cutoff signal GS of the latch unit 221, the control unit 231 switches the outputs of the drive signals GB and GI to the regenerative braking drive unit 212 and the inverter drive unit 202 by switching between the regenerative braking unit 103 and the inverter unit 104. The transition is made so that the element is stopped in the off state. As a result, when an overcurrent flows through the regenerative braking unit 103, it is possible to construct a double protection system in addition to the gate output cutoff by the buffer units 214 and 204 described above.
  • FIG. 2 shows the drive signal GB, GI, gate signal VGB, VGI, overcurrent detection signal SCB, gate output cutoff signal GS, and reset signal RST, respectively, and shows how they change in Stage 1, Stage 2, and Stage 3 in the time direction. There is.
  • drive signals GB and GI are output from the control unit 231 to the regenerative braking drive unit 212 and the inverter drive unit 202, and the regenerative braking drive unit 212 and the inverter drive unit 202 are driven from the control unit 231.
  • the gate signals VGB and VGI are output to the regenerative braking unit 103 and the inverter unit 104.
  • the regenerative braking overcurrent detection unit 211 When the regenerative braking overcurrent detection unit 211 detects an overcurrent during the operation of the regenerative braking unit 103, the regenerative braking overcurrent detection unit 211 outputs an overcurrent detection signal SCB (SCB: L ⁇ H) and shifts to Stage2. ..
  • the latch unit 221 receives the transition of the overcurrent detection signal SCB, outputs the gate output cutoff signal GS (GS: L ⁇ H), and latches the state.
  • the regenerative braking drive unit 212 and the inverter drive unit 202 are configured to stop the output of the gate signals VGB and VGI while the gate output cutoff signal GS is in the H state.
  • control unit 231 is configured to stop the output of the drive signals GB and GI while the gate output cutoff signal GS is in the H state.
  • the regenerative braking overcurrent detection unit 211 stops the output of the overcurrent detection signal SCB (SCB: H ⁇ L).
  • the control unit 231 When it is confirmed that there is no operational problem such as a failure due to the overcurrent of the regenerative braking unit 103, the control unit 231 outputs a reset signal RST (RST: L ⁇ H) and shifts to Stage 3.
  • the latch unit 221 releases the latch of the gate output cutoff signal GS in response to the rise of the reset signal RST (GS: H ⁇ L), and the control unit 231 receives the fall of the gate output cutoff signal GS and the drive signal GB.
  • GI is output to the regenerative braking drive unit 212 and the inverter drive unit 202, and the regenerative braking drive unit 212 and the inverter drive unit 202 resume the output of the gate signals VGB and VGI.
  • the signal shown in FIG. 2 is an example, and the logic does not matter.
  • the operation of inputting a one-shot pulse to the reset signal RST and releasing the latch stop of the latch portion 221 at the rising edge has been described, but a method other than the illustrated method such as releasing the latch at the falling edge is also possible. Is.
  • FIG. 3 and 4 show specific examples of the regenerative braking overcurrent detection unit 211 in this embodiment.
  • a current detection resistor 2111 is arranged on the emitter side of the switching element 1031 of the regenerative braking unit 103, and when the voltage (Vs) of the current detection resistor 2111 exceeds the threshold voltage Vth, the comparator detects an overcurrent detection signal SCB. Is a method to output. Further, in FIG. 3, a current detection resistor 2111 is arranged on the emitter side of the switching element 1031 of the regenerative braking unit 103, and when the voltage (Vs) of the current detection resistor 2111 exceeds the threshold voltage Vth, the comparator detects an overcurrent detection signal SCB. Is a method to output. Further, in FIG.
  • a diode 2112 is connected to the collector terminal of the switching element 1031 of the regenerative braking unit 103, and a resistor 2113 is connected to the gate terminal as shown in the drawing, and the switching element 1031 of the regenerative braking unit 103 is in the ON state (
  • This is a method in which the emitter-collector voltage Vce in VGB: H) is detected, and the comparator outputs an overcurrent detection signal SCB when the Vce exceeds the threshold voltage Vth.
  • FIG. 5 and 6 show a specific example of the buffer unit 214 in this embodiment.
  • the configurations shown in FIGS. 5 and 6 are examples, and the logic does not matter, but in this description, the operation shown in FIG. 2 described above will be referred to.
  • FIG. 5 is a method of arranging a three-state buffer in the buffer unit 214
  • FIG. 6 is a method of arranging an AND gate and a NOT gate in the buffer unit 214 as shown in the drawing.
  • the gate output cutoff signal GS output from the latch unit 221 is H
  • the output of the buffer unit 214 is L regardless of the drive signal GB
  • the gate drive unit 213 is regenerated when the input is in the L state.
  • the switching elements of the regenerative braking unit 103 and the inverter unit 104 are stopped in the off state.
  • an overcurrent occurs in the regenerative braking unit 103, it is possible to prevent the switching element of the regenerative braking unit 103 from being destroyed, cut off the regenerative energy from the inverter unit 104, and suppress an increase in the DC voltage.
  • the regenerative braking overcurrent detection unit 211 may be connected regardless of the connection location as long as it has the configurations shown in FIGS. 3 and 4.
  • the circuit shown in FIGS. 3 and 4 may be wired by an external component, or a gate driver incorporating a part or all of the functions shown in FIGS. 3 and 4 may be applied to the regenerative braking drive unit 212. You may.
  • a gate driver incorporating a part or all of the functions shown in FIGS. 3 and 4 is applied to the regenerative braking drive unit 212, the overcurrent detection signal SCB shown in FIGS. 3 and 4 exists inside the gate driver. there's a possibility that.
  • the overcurrent detection signal SCB may be a self-recovery type in which the output is stopped after a predetermined time has elapsed after the regenerative braking overcurrent detection unit 211 detects the overcurrent.
  • the buffer units 214 and 204 can be used. Regardless of the connection location.
  • a gate driver that has a built-in function of the buffer unit 214 and shuts off the gate output when a control signal is input to a control terminal such as an enable terminal from the outside is applied to the regenerative braking drive unit 212 and the inverter drive unit 202, and the latch unit.
  • the control signal from 221 may be input to the control terminal of the gate driver.
  • a microcomputer that has a built-in buffer unit 214 function by functions such as output enable and can stop the output of the drive signal when a control signal is input to a predetermined terminal is applied to the control unit 231 and a latch unit.
  • the control signal from 221 may be input to the terminal of the control unit 231.
  • the switching element of the regenerative braking unit and the switching element of the inverter unit stop in the off state, respectively, so that the switching of the braking resistance and the regenerative braking unit is performed. While preventing the destruction of the element, the increase in the DC voltage can be suppressed, and the reliability of the power conversion device can be improved.
  • FIG. 7 is a configuration diagram of the power conversion device 2 in this embodiment.
  • the same components as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
  • FIG. 7 is different from FIG. 1 in that an inverter overcurrent detection unit 201 that outputs an overcurrent detection signal SCI when the current flowing through the inverter unit 104 exceeds the determination value is added.
  • the latch unit 221 outputs a gate output cutoff signal GS to the control unit 231, the regenerative braking drive unit 212, and the inverter drive unit 202 when the regenerative braking overcurrent detection unit 211 or the inverter overcurrent detection unit 201 detects an overcurrent. do.
  • the inverter overcurrent detection unit 201 outputs an overcurrent detection signal SCI to the latch unit 221 when the current flowing through the inverter unit 104 exceeds the determination value. Further, similarly to the first embodiment, the regenerative braking overcurrent detection unit 211 outputs an overcurrent detection signal SCB to the latch unit 221 when the current flowing through the regenerative braking unit 103 exceeds the determination value.
  • the latch unit 221 When the latch unit 221 receives the overcurrent detection signals SCB and SCI from the regenerative braking overcurrent detection unit 211 or the inverter overcurrent detection unit 201, the latch unit 221 outputs the gate output cutoff signal GS to the control input terminals of the buffer units 214 and 204. do.
  • FIG. 8 shows a specific example of the latch unit 221, the regenerative braking drive unit 212, and the inverter drive unit 202 in this embodiment.
  • the configuration shown in FIG. 8 is an example, and the logic does not matter.
  • the buffer unit of the regenerative braking drive unit 212 and the inverter drive unit 202 in FIG. 8 has the configuration of the buffer unit shown in FIG. 5 as a typical example.
  • the latch portion 221 is composed of a logic circuit 222 and a latch circuit 223.
  • the operation will be described using the logic circuit 222 as an OR gate.
  • the regenerative braking overcurrent detection unit 211 and the inverter overcurrent detection unit 201 are configured to output L at the normal time and H at the time of overcurrent, and the output of each overcurrent detection unit is input to the logic circuit 222. Therefore, the logic circuit 222 outputs L at normal times, and outputs H to the latch circuit 223 when the regenerative braking overcurrent detection unit 211 or the inverter overcurrent detection unit 201 outputs H.
  • the latch circuit 223 When H is input from the logic circuit 222, the latch circuit 223 outputs the gate output cutoff signal GS to the regenerative braking drive unit 212, the inverter drive unit 202, and the control unit 231. Further, the latch circuit 223 releases the latch by receiving the reset signal RST from the control unit 231 and restarts the drive of the regenerative braking unit 103 and the inverter unit 104 based on the drive signals GB and GI output from the control unit 231. do.
  • the inverter drive unit 202 is composed of a buffer unit 204 and a gate drive unit 203
  • the buffer unit 204 is composed of six buffer units having the same configuration as the buffer unit 214 shown in FIG.
  • the gate drive unit 203 also has six gate drive units having the same configuration as the gate drive unit 213 shown in FIG. Then, it receives the six drive signal GIs output by the control unit 231 and outputs the six gate signals VGI to the inverter unit 104.
  • FIG. 9 will explain the operation when the regenerative braking overcurrent detection unit 211 of the power conversion device in this embodiment detects an overcurrent.
  • FIG. 9 shows the drive signal GB, GI, the gate signal VGB, VGI, the overcurrent detection signal SCB, the output signal (FO) of the logic circuit 222, the gate output cutoff signal GS, and the reset signal RST, respectively, and Stage 1 in the time direction. It shows the transition in Stage2 and Stage3.
  • the signal shown in FIG. 9 is an example, and the logic does not matter.
  • drive signals GB and GI are output from the control unit 231 to the regenerative braking drive unit 212 and the inverter drive unit 202, and the regenerative braking drive unit 212 and the inverter drive unit 202 are driven from the control unit 231.
  • the gate signals VGB and VGI are output to the regenerative braking unit 103 and the inverter unit 104.
  • the regenerative braking overcurrent detection unit 211 When the regenerative braking overcurrent detection unit 211 detects an overcurrent, the regenerative braking overcurrent detection unit 211 outputs an overcurrent detection signal SCB (SCB: L ⁇ H) and shifts to Stage 2.
  • the logic circuit 222 receives the rise of the overcurrent detection signal SCB and outputs H (FO: L ⁇ H), and the latch unit 221 receives the rise of the logic circuit 222 output signal and outputs the gate output cutoff signal GS (FO: L ⁇ H). GS: L ⁇ H), latch that state.
  • the regenerative braking drive unit 212 and the inverter drive unit 202 are configured to stop the output of the gate signals VGB and VGI while the gate output cutoff signal GS is in the H state.
  • control unit 231 is configured to stop the output of the drive signals GB and GI while the gate output cutoff signal GS is in the H state.
  • the regenerative braking overcurrent detection unit 211 stops the output of the overcurrent detection signal SCB (SCB: H ⁇ L).
  • the control unit 231 When it is confirmed that there is no operational problem such as a failure due to the overcurrent of the regenerative braking unit 103, the control unit 231 outputs a reset signal RST (RST: L ⁇ H) and shifts to Stage 3.
  • the latch circuit 223 releases the latch of the gate output cutoff signal GS in response to the rise of the reset signal RST (GS: H ⁇ L), and the control unit 231 receives the fall of the gate output cutoff signal GS to drive the drive signal GB.
  • GI is output to the regenerative braking drive unit 212 and the inverter drive unit 202, and the regenerative braking drive unit 212 and the inverter drive unit 202 resume the output of the gate signals VGB and VGI.
  • FIG. 9 describes the operation when the regenerative braking overcurrent detection unit 211 detects an overcurrent, but when the inverter overcurrent detection unit 201 detects an overcurrent, the overcurrent detection signal SCB in FIG. 9 is described. Is replaced with SCI, and the switching elements of the regenerative braking unit 103 and the inverter unit 104 are stopped in the off state, as in the case where the regenerative braking overcurrent detection unit 211 detects the overcurrent.
  • FIG. 10 and 11 show specific examples of the inverter overcurrent detection unit 201 in this embodiment.
  • a current detection resistor 2011 is arranged on the emitter side of the low side switching elements 1042, 1044, and 1046 of the inverter unit 104, and when the voltage (Vs) of the current detection resistor exceeds the threshold voltage Vth, the comparator fails. This is a method of outputting the current detection signal SCI.
  • the diodes 2031 to 2036 are connected to the collector terminals of the switching elements 1041 to 1046 of the inverter unit 104, and the resistors 2021 to 2026 are connected to the gate terminals as shown, respectively, and the switching element 1041 of the inverter unit 104 is shown.
  • ⁇ 1046 detects the inverter-collector voltage Vce in the ON state, and the comparator outputs an overcurrent detection signal SCI when the Vce exceeds the threshold voltage Vth.
  • the inverter overcurrent detection unit 201 is added to the first embodiment, and the inverter overcurrent detection unit 201 outputs the overcurrent detection signal SCI in addition to the operation described in the first embodiment. If this happens, switching between the regenerative braking unit 103 and the inverter unit 104 is stopped. Since an unexpected situation such as an overcurrent due to an erroneous connection can occur not only in the regenerative braking unit 103 but also in the inverter unit 104, the power conversion device 2 has the inverter unit 104 for the same reason as the regenerative braking unit 103. It is also desirable to provide an overcurrent detector.
  • the OR gate has been described as a specific example of the logic circuit 222 in this embodiment, the logic circuit 222 can be appropriately changed according to the logic output by the overcurrent detection unit.
  • the OR gate is an AND gate, and the regenerative braking overcurrent detection unit 211 and the inverter overcurrent detection unit 201 output H during normal operation and L during overcurrent.
  • the AND gate outputs H in the normal state, and outputs L to the latch circuit 223 when the regenerative braking overcurrent detection unit 211 or the inverter overcurrent detection unit 201 outputs L.
  • the latch circuit 223 When L is input from the AND gate, the latch circuit 223 outputs the gate output cutoff signal GS to the regenerative braking drive unit 212, the inverter drive unit 202, and the control unit 231. Thereby, similarly to the operation described in this embodiment, it is possible to realize the gate output cutoff operation when an overcurrent flows through the regenerative braking unit 103 or the inverter unit 104.
  • the inverter overcurrent detection unit 201 may be connected regardless of the connection location as long as it has the configurations shown in FIGS. 10 and 11.
  • the circuit shown in FIGS. 10 and 11 may be wired by an external component, or a gate driver incorporating a part or all of the functions shown in FIGS. 10 and 11 may be applied to the inverter drive unit 202. It is also good.
  • a gate driver incorporating some or all of the functions shown in FIGS. 10 and 11 is applied to the inverter drive unit 202, the overcurrent detection signal SCI shown in FIGS. 10 and 11 may exist inside the gate driver. be.
  • FIG. 12 is a configuration diagram of the power conversion device 3 in this embodiment.
  • the same components as those in FIG. 7 are designated by the same reference numerals, and the description thereof will be omitted.
  • the difference from FIG. 7 is that the configuration of the latch portion 221 is changed, the latch circuit 224 is added in the latch portion 221 so that the output of the latch circuit 223 and 224 is input to the logic circuit 222. It is a point.
  • the inverter overcurrent detection unit 201 outputs an overcurrent detection signal SCI to the latch circuit 224 when the current flowing through the inverter unit 104 exceeds the determination value.
  • the latch circuit 224 receives the overcurrent detection signal SCI
  • the latch circuit 224 outputs a gate output cutoff signal GSI to the logic circuit 222.
  • the regenerative braking overcurrent detection unit 211 outputs the overcurrent detection signal SCB to the latch circuit 223 when the current flowing through the regenerative braking unit 103 exceeds the determination value.
  • the latch circuit 223 receives the overcurrent detection signal SCB
  • the latch circuit 223 outputs a gate output cutoff signal GSB to the logic circuit 222.
  • the logic circuit 222 outputs the gate output cutoff signal GS to the regenerative braking drive unit 212, the inverter drive unit 202, and the control unit 231.
  • FIG. 13 shows a specific example of the latch portion 221 in this embodiment.
  • the configuration shown in FIG. 13 is an example, and the logic does not matter.
  • the latch portion 221 is composed of a logic circuit 222 and a latch circuit 223 and 224.
  • the operation will be described using the logic circuit 222 as an OR gate.
  • the regenerative braking overcurrent detection unit 211 and the inverter overcurrent detection unit 201 are configured to output L during normal operation and H during overcurrent, and the output of each overcurrent detection unit is input to the latch circuits 223 and 224, respectively. Will be done.
  • the latch circuits 223 and 224 output gate output cutoff signals GSB and GSI to the logic circuit 222 when H is input from the regenerative braking overcurrent detection unit 211 and the inverter overcurrent detection unit 201.
  • the logic circuit 222 When the gate output cutoff signal GSB or GSI is output, the logic circuit 222 outputs the gate output cutoff signal GS to the regenerative braking drive unit 212, the inverter drive unit 202, and the control unit 231.
  • the latch circuits 223 and 224 release the latch by receiving the reset signal RST from the control unit 231 and restart the drive of the regenerative braking unit 103 and the inverter unit 104 based on the drive signals GB and GI output from the control unit 231. do.
  • FIG. 14 will explain the operation when the regenerative braking overcurrent detection unit 211 of the power conversion device in this embodiment detects an overcurrent.
  • FIG. 14 shows the drive signal GB, GI, gate signal VGB, VGI, overcurrent detection signal SCB, gate output cutoff signal GSB, GS, and reset signal RST, respectively, and shows how they change in Stage 1, Stage 2, and Stage 3 in the time direction. Shows.
  • the signal shown in FIG. 14 is an example, and the logic does not matter.
  • drive signals GB and GI are output from the control unit 231 to the regenerative braking drive unit 212 and the inverter drive unit 202, and the regenerative braking drive unit 212 and the inverter drive unit 202 are driven from the control unit 231.
  • the gate signals VGB and VGI are output to the regenerative braking unit 103 and the inverter unit 104.
  • the regenerative braking overcurrent detection unit 211 When the regenerative braking overcurrent detection unit 211 detects an overcurrent, the regenerative braking overcurrent detection unit 211 outputs an overcurrent detection signal SCB (SCB: L ⁇ H) and shifts to Stage 2.
  • the latch circuit 223 outputs H (GSB: L ⁇ H) in response to the rising edge of the overcurrent detection signal SCB, and latches the state.
  • the logic circuit 222 outputs H (GS: L ⁇ H) in response to the rising edge of the overcurrent detection signal SCB.
  • the regenerative braking drive unit 212 and the inverter drive unit 202 are configured to stop the output of the gate signals VGB and VGI while the gate output cutoff signal GS is in the H state.
  • control unit 231 is configured to stop the output of the drive signals GB and GI while the gate output cutoff signal GS is in the H state.
  • the regenerative braking overcurrent detection unit 211 stops the output of the overcurrent detection signal SCB (SCB: H ⁇ L).
  • the control unit 231 When it is confirmed that there is no operational problem such as a failure due to the overcurrent of the regenerative braking unit 103, the control unit 231 outputs a reset signal RST (RST: L ⁇ H) and shifts to Stage 3.
  • the latch circuit 223 releases the latch of the gate output cutoff signal GSB in response to the rise of the reset signal RST (GSB: H ⁇ L), and the logic circuit 222 receives the fall of the gate output cutoff signal GSB and outputs L (GSB: H ⁇ L). GS: H ⁇ L).
  • the control unit 231 outputs the drive signals GB and GI to the regenerative braking drive unit 212 and the inverter drive unit 202 in response to the fall of the gate output cutoff signal GS, and the regenerative braking drive unit 212 and the inverter drive unit 202 are the gate signal VGB. , VGI output is restarted.
  • FIG. 14 describes the operation when the regenerative braking overcurrent detection unit 211 detects an overcurrent
  • the overcurrent detection signal SCB in FIG. 14 Is replaced with SCI
  • the gate output cutoff signal GSB is replaced with GSI.
  • the switching elements of the regenerative braking unit 103 and the inverter unit 104 are in the off state. Stop.
  • the latch circuit 224 is added to the second embodiment, the output of the latch circuit 223 and 224 is input to the logic circuit 222, and the gate output cutoff signal GS is controlled from the logic circuit 222. It outputs to 231, the regenerative braking drive unit 212, and the inverter drive unit 202.
  • the power conversion device 3 described in this embodiment is a modification of the power conversion device 2 described in the second embodiment, and both of them stop the switching elements of the regenerative braking unit 103 and the inverter unit 104 in the off state when an overcurrent is detected. In order to realize the operation to be performed, it can be appropriately changed as necessary in consideration of the mounting area, component cost, and the like.
  • the latch circuit 224 does not matter where it is connected.
  • the latch circuit 224 may be wired by an external component, or a gate driver having a built-in latch function at the time of overcurrent protection may be applied to the inverter drive unit 202.
  • the gate cutoff signal SCI shown in FIG. 12 may exist inside the gate driver.
  • another signal synchronized with the overcurrent detection such as an error signal output from the gate driver when the inverter overcurrent detection unit 201 detects the overcurrent, is replaced with the overcurrent detection signal SCI, or the gate.

Abstract

モータ駆動用電力変換装置の信頼性向上を目的として、電力変換装置であって、交流電圧を整流し直流電圧を出力する整流部と、直流電圧を平滑する平滑コンデンサと、直流電圧を入力し交流電力を出力するインバータ部と、インバータ部にゲート信号を出力するインバータ駆動部と、平滑コンデンサに並列に接続される回生制動部と、回生制動部にゲート信号を出力する回生制動駆動部と、インバータ駆動部と回生制動駆動部に駆動信号を出力する制御部と、回生制動部に流れる電流が判定値を超過した場合に過電流検出信号を出力する回生制動過電流検出部と、回生制動過電流検出部から出力される過電流検出信号を入力し制御部にゲート出力遮断信号を出力するラッチ部を備え、回生制動過電流検出部が過電流を検出した場合にインバータ部と回生制動部のスイッチング素子がオフ状態で停止するように構成する。

Description

電力変換装置
 本発明は、モータに交流電力を供給する電力変換装置に関する。
 モータ駆動用の電力変換装置は一般的に、交流電圧を直流電圧に変換する整流部、直流電圧を平滑する平滑コンデンサ、直流電圧を逆変換するインバータ部で構成される。インバータ部は、力行動作時には直流電圧をモータ駆動のための交流電力に変換してモータへ供給し、回生動作時にはモータで回生された交流電力を直流電力に変換して平滑コンデンサへ供給する。従って、モータの回生動作時には、回生エネルギーがインバータ回路を介して平滑コンデンサを充電するため、直流電圧が上昇する。
 モータの回生動作時に直流電圧が平滑コンデンサの耐圧を超過することを防ぐために、平滑コンデンサに対して並列に制動抵抗とスイッチング素子の直列体で構成された回生制動部を配置し、直流電圧が所定の電圧を超過した場合に回生制動部のスイッチング素子を駆動させ、制動抵抗で回生エネルギーを消費させる手法が一般的に知られている。制動抵抗の抵抗値や定格電力、スイッチング素子の許容電流は、消費させる回生エネルギーの量に依存するため、機器によって適切な物を選定する必要がある。
 ここで、制動抵抗に本来必要な値よりも低い抵抗値の物を接続した場合や、制動抵抗の両端を誤って短絡させた場合、スイッチング素子に想定よりも大きな電流が流れ、スイッチング素子が破壊に至る懸念がある。また、制動抵抗に本来必要な値よりも低い定格電力の物を接続した場合、制動抵抗が焼損に至る懸念がある。そのため、モータ駆動用の電力変換装置は、信頼性を向上させるために回生制動部に過電流保護回路を備えることが望ましい。
 本技術分野における先行技術文献として特許文献1がある。特許文献1には、制動抵抗及びスイッチング素子に直列に電流遮断手段を設け、過電流を検出したときに制動抵抗に流れる電流を遮断する保護機構を備えた電力変換装置が記載されている。
特開2002-315352号公報
 特許文献1では、制動抵抗に直列にサーマルリレー付きコンタクタを接続し、過電流によりサーマルリレーがトリップするとコンタクタがオフ状態となり、制動抵抗の焼損が防止される。しかしながら、制動抵抗が過電流を検出した際のインバータ部の動作には言及しておらず、サーマルリレーがトリップした際に、本来の目的である直流電圧の上昇が抑制されないという課題があった。
 本発明は、その一例を挙げるならば、電力変換装置であって、交流電圧を整流し直流電圧を出力する整流部と、直流電圧を平滑する平滑コンデンサと、直流電圧を入力し交流電力を出力するインバータ部と、インバータ部にゲート信号を出力するインバータ駆動部と、平滑コンデンサに並列に接続される回生制動部と、回生制動部にゲート信号を出力する回生制動駆動部と、インバータ駆動部と回生制動駆動部に駆動信号を出力する制御部と、回生制動部に流れる電流が判定値を超過した場合に過電流検出信号を出力する回生制動過電流検出部と、回生制動過電流検出部から出力される過電流検出信号を入力し制御部にゲート出力遮断信号を出力するラッチ部を備え、回生制動過電流検出部が過電流を検出した場合にインバータ部と回生制動部のスイッチング素子がオフ状態で停止するように構成する。
 本発明によれば、制動抵抗及び回生制動部のスイッチング素子の破壊を防ぎつつ、直流電圧の上昇を抑制できる電力変換装置を提供できる。
実施例1における電力変換装置の構成図である。 実施例1における電力変換装置の動作例を説明する図である。 実施例1における回生制動過電流検出部の具体例を示す構成図である。 実施例1における回生制動過電流検出部の具体例を示す構成図である。 実施例1における回生制動駆動部の具体例を示す構成図である。 実施例1における回生制動駆動部の具体例を示す構成図である。 実施例2における電力変換装置の構成図である。 実施例2におけるラッチ部、回生制動駆動部、インバータ駆動部の具体例を示す構成図である。 実施例2における電力変換装置の動作例を説明する図である。 実施例2におけるインバータ過電流検出部の具体例を示す構成図である。 実施例2におけるインバータ過電流検出部の具体例を示す構成図である。 実施例3における電力変換装置の構成図である。 実施例3におけるラッチ部の具体例を示す構成図である。 実施例3における電力変換装置の動作例を説明する図である。
 以下、本発明の実施例について図面を用いて説明する。
 図1は本実施例における電力変換装置1の構成図である。図1において、電力変換装置1は、交流電圧を入力し直流電圧を出力する整流部101と、直流電圧を平滑する平滑コンデンサ106と、整流部101が出力する直流電圧の値を検出する電圧検出部102と、電圧検出部102で検出された電圧値が所定の値を超過した場合に直流電圧の上昇を抑制させる様に動作する回生制動部103と、回生制動部103にゲート信号VGBを出力する回生制動駆動部212と、回生制動部103に流れる電流が判定値を超過した場合に過電流検出信号SCBを出力する回生制動過電流検出部211を備える。さらに、電力変換装置1は、直流電圧を交流電力に変換するインバータ部104と、インバータ部104にゲート信号VGIを出力するインバータ駆動部202と、回生制動駆動部212、インバータ駆動部202に駆動信号GB、GIを出力する制御部231と、回生制動過電流検出部211が過電流検出信号SCBを出力した場合に回生制動駆動部212、インバータ駆動部202、制御部231に、ゲート出力遮断信号GSを出力するラッチ部221を備える。
 整流部101は6つのダイオードで構成され、入力端子R、S、Tから入力される交流電圧を直流電圧に変換し、平滑コンデンサ106の両電極に出力する。整流部101のダイオードの整流作用によりノードP側の直流電圧配線に正電圧、ノードN側の直流電圧配線に負電圧とした直流電圧が発生する。平滑コンデンサ106はノードPとノードNにおいて直流電圧配線に接続し、配線間の電圧を平滑化する。
 インバータ部104は、スイッチング素子1041~1046で構成される。モータを力行運転する場合には、平滑コンデンサ106の直流電圧を交流電力に変換しモータに出力し、モータを回生運転する場合には、モータからの回生エネルギーを平滑コンデンサに充電する様にスイッチング素子1041~1046が動作する。尚、図1に示すスイッチング素子は代表例としてIGBTの回路記号を適用しているが、MOSFET等別のパワー半導体を適用することも可能である。
 回生制動部103は、スイッチング素子1031、制動抵抗105、ダイオード1032で構成される。回生制動部103は、電圧検出部102で検出された直流電圧値が所定の値より高くなった時にスイッチング素子1031を駆動させ、制動抵抗105でエネルギーを消費させ、直流電圧の上昇を抑制する。
 回生制動駆動部212は、バッファ部214、ゲートドライブ部213で構成され、制御部231が出力する駆動信号GBを受け、回生制動部103にゲート信号VGBを出力する。
 また、インバータ駆動部202も同様に、バッファ部204、ゲートドライブ部203で構成され、制御部231が出力する駆動信号GIを受け、インバータ部104にゲート信号VGIを出力する。
 回生制動過電流検出部211は、制動抵抗105の抵抗値が指定の値より低いものを接続したり、誤接続により図1に示すノードP-RB間が短絡した、等の要因により回生制動部103に流れる電流が判定値を超過した場合に、ラッチ部221に過電流検出信号SCBを出力する。
 ラッチ部221は、フリップフロップ等で構成され、回生制動過電流検出部211が過電流を検出した場合、バッファ部214、204の制御入力端子に、ゲート出力遮断信号GSを出力する。バッファ部214、204は、ゲート出力遮断信号GSを受信した場合、制御部231から出力された駆動信号GB、GIに関わらず、ゲート信号VGB、VGIの出力を、回生制動部103とインバータ部104のスイッチング素子をオフ状態で停止させる様に遷移させる。これにより、回生制動部103に過電流が流れた場合に、ゲート出力遮断動作が実現する。
 ラッチ部221は、制御部231からリセット信号RSTを受信することで停止を解除し、制御部231から出力される駆動信号GB、GIに基づき回生制動駆動部212、インバータ駆動部202はゲート信号VGB、VGIを出力し、回生制動部103とインバータ部104の駆動を再開する。
 制御部231は、ラッチ部221のゲート出力遮断信号GSを受信した場合、回生制動駆動部212、インバータ駆動部202への駆動信号GB、GIの出力を、回生制動部103とインバータ部104のスイッチング素子をオフ状態で停止させる様に遷移させる。これにより、回生制動部103に過電流が流れた場合に、先に述べたバッファ部214、204によるゲート出力遮断に加え、二重に保護系を構築することが可能となる。
 図2を用いて本実施例における電力変換装置の動作例を説明する。図2は、駆動信号GB、GI、ゲート信号VGB、VGI、過電流検出信号SCB、ゲート出力遮断信号GS、リセット信号RSTをそれぞれ示し、時間方向にStage1、Stage2、Stage3で推移する様子を示している。
 図2において、Stage1では、制御部231から駆動信号GB、GIが回生制動駆動部212、インバータ駆動部202に出力されており、回生制動駆動部212、インバータ駆動部202は制御部231からの駆動信号GB、GIを受けて、回生制動部103、インバータ部104にゲート信号VGB、VGIを出力している。
 回生制動部103の動作中に、回生制動過電流検出部211が過電流を検出すると、回生制動過電流検出部211は過電流検出信号SCBを出力し(SCB:L→H)Stage2に移行する。ラッチ部221は過電流検出信号SCBの遷移を受けて、ゲート出力遮断信号GSを出力し(GS:L→H)、その状態をラッチする。回生制動駆動部212、インバータ駆動部202は、ゲート出力遮断信号GSがH状態の間は、ゲート信号VGB、VGIの出力を停止する様に構成される。また、制御部231は、ゲート出力遮断信号GSがH状態の間は、駆動信号GB、GIの出力を停止する様に構成される。回生制動部103の動作を停止し回生制動部103の電流を遮断することで、回生制動過電流検出部211は過電流検出信号SCBの出力を停止(SCB:H→L)する。
 回生制動部103の過電流による故障等、動作上問題が無いことを確認した場合、制御部231がリセット信号RSTを出力し(RST:L→H)、Stage3に移行する。ラッチ部221は、リセット信号RSTの立ち上がりを受けてゲート出力遮断信号GSのラッチを解除し(GS:H→L)、制御部231は、ゲート出力遮断信号GSの立ち下がりを受けて駆動信号GB、GIを回生制動駆動部212、インバータ駆動部202に出力し、回生制動駆動部212、インバータ駆動部202はゲート信号VGB、VGIの出力を再開する。
 尚、図2に示す信号は一例であり、論理は問わない。例えば、本実施例ではリセット信号RSTにワンショットパルスを入力し、立ち上がりでラッチ部221のラッチ停止を解除する動作について述べたが、立ち下がりでラッチ解除する等、図示した方式以外の方法も可能である。
 図3、図4に、本実施例における回生制動過電流検出部211の具体例を示す。図3は、回生制動部103のスイッチング素子1031のエミッタ側に電流検出抵抗2111を配置し、電流検出抵抗2111の電圧(Vs)が閾値電圧Vthを超過した場合に、コンパレータが過電流検出信号SCBを出力する方式である。また、図4は、回生制動部103のスイッチング素子1031のコレクタ端子にダイオード2112を、ゲート端子に抵抗2113をそれぞれ図示される様に接続して、回生制動部103のスイッチング素子1031がオン状態(VGB:H)におけるエミッタ-コレクタ間電圧Vceを検出し、Vceが閾値電圧Vthを超過した場合にコンパレータが過電流検出信号SCBを出力する方式である。これらは一般的に用いられている方式であり、前者は構成が簡素である点、後者は電力損失が小さい点が利点である。
 図5、図6に、本実施例におけるバッファ部214の具体例を示す。尚、図5、図6に示す構成は一例であり論理は問わないが、本説明では先に述べた図2に示す動作を参照する。図5は、バッファ部214に3ステートバッファを配置する方式であり、図6は、バッファ部214にANDゲートとNOTゲートを図示される様に配置する方式である。いずれの方式も、ラッチ部221から出力されるゲート出力遮断信号GSがHの状態では、駆動信号GBによらずバッファ部214の出力はLとなり、ゲートドライブ部213を、入力がL状態で回生制動部103のスイッチング素子がオフ状態で停止させる様に構成することで、所望の動作が実現する。
 以上述べた様に本実施例では、回生制動過電流検出部211が過電流を検出した場合に、回生制動部103とインバータ部104のスイッチング素子をオフ状態で停止させる。これにより、回生制動部103で過電流が発生した場合に、回生制動部103のスイッチング素子の破壊を防ぎ、且つインバータ部104からの回生エネルギーを遮断し直流電圧の上昇を抑制できる。
 尚、本実施例ではバッファ部214によるゲート出力遮断、制御部231からの駆動信号GB、GIの出力停止の2種類について述べたが、これはいずれか一方が故障或いは誤動作等の要因により動作しなかった場合にも、回生制動過電流検出部211が過電流を検出した場合に、確実に回生制動部103とインバータ部104のスイッチング素子がオフ状態で停止する動作を想定したためである。従って、電力変換装置1の保護の程度によっては、いずれか一方のみでも構わない。
 また、回生制動過電流検出部211は、図3、図4に示す構成を備えていれば接続箇所を問わない。例えば、図3、図4に示す回路を外付けの部品により配線しても良いし、図3、図4に示す機能の一部または全てを内蔵したゲートドライバを回生制動駆動部212に適用してもよい。ここで、図3、図4に示す機能の一部または全てを内蔵したゲートドライバを回生制動駆動部212に適用した場合、図3、図4に示す過電流検出信号SCBはゲートドライバ内部に存在する可能性がある。その場合は、回生制動過電流検出部211が過電流を検出した場合にゲートドライバから出力されるエラー信号等、過電流検出と同期した別の信号を過電流検出信号SCBに代替することで、本実施例で述べた動作と同様の動作が実現する。
 また、過電流検出信号SCBは、回生制動過電流検出部211が過電流を検出してから所定の時間経過後に出力を停止する自己復帰型としてもよい。
 また、回生制動過電流検出部211が過電流を検出した場合に、回生制動部103とインバータ部104のスイッチング素子がオフ状態で停止する動作が実現できる構成であれば、バッファ部214、204は接続箇所を問わない。一例として、バッファ部214の機能を内蔵し、外部から制御信号をイネーブル端子等の制御端子に入力するとゲート出力を遮断するゲートドライバを回生制動駆動部212とインバータ駆動部202に適用し、ラッチ部221からの制御信号をゲートドライバの制御端子に入力しても良い。また、アウトプットイネーブル等の機能によりバッファ部214の機能を内蔵し、制御信号を所定の端子に入力すると駆動信号の出力を停止させることが可能なマイクロコンピュータを制御部231に適用し、ラッチ部221からの制御信号を制御部231の当該端子に入力しても良い。
 このように、本実施例によれば、制動抵抗の過電流を検出した場合に回生制動部のスイッチング素子とインバータ部のスイッチング素子がそれぞれオフ状態で停止するため、制動抵抗及び回生制動部のスイッチング素子の破壊を防ぎつつ、直流電圧の上昇を抑制でき、電力変換装置の信頼性向上を図ることが出来る。
 図7は、本実施例における電力変換装置2の構成図である。図7において、図1と同じ構成については同じ符号を付し、その説明は省略する。図7において、図1と異なる点は、インバータ部104に流れる電流が判定値を超過した場合に過電流検出信号SCIを出力するインバータ過電流検出部201が追加されている点である。また、ラッチ部221は回生制動過電流検出部211もしくはインバータ過電流検出部201が過電流を検出した場合に制御部231、回生制動駆動部212、インバータ駆動部202にゲート出力遮断信号GSを出力する。
 すなわち、インバータ過電流検出部201は、インバータ部104に流れる電流が判定値を超過した場合に、ラッチ部221に過電流検出信号SCIを出力する。また、実施例1と同様に、回生制動過電流検出部211は、回生制動部103に流れる電流が判定値を超過した場合に、ラッチ部221に過電流検出信号SCBを出力する。
 ラッチ部221は、回生制動過電流検出部211もしくはインバータ過電流検出部201から過電流検出信号SCB、SCIを受けた場合、バッファ部214、204の制御入力端子に、ゲート出力遮断信号GSを出力する。
 図8に、本実施例におけるラッチ部221、回生制動駆動部212、インバータ駆動部202の具体例を示す。尚、図8に示す構成は一例であり、論理は問わない。また、図8における回生制動駆動部212、インバータ駆動部202のバッファ部は、代表例として図5に示すバッファ部の構成としている。
 図8において、ラッチ部221は、論理回路222、ラッチ回路223で構成されている。尚、本実施例では論理回路222をORゲートとして動作を説明する。回生制動過電流検出部211及びインバータ過電流検出部201は、通常時にLを出力、過電流時にHを出力する様に構成され、各過電流検出部の出力は論理回路222に入力される。従って、論理回路222は通常時にLを出力し、回生制動過電流検出部211もしくはインバータ過電流検出部201がHを出力した場合に、ラッチ回路223にHを出力する。ラッチ回路223は、論理回路222からHを入力した場合に、ゲート出力遮断信号GSを回生制動駆動部212、インバータ駆動部202、制御部231に出力する。また、ラッチ回路223は、制御部231からリセット信号RSTを受信することでラッチを解除し、制御部231から出力される駆動信号GB、GIに基づき回生制動部103、インバータ部104の駆動を再開する。
 また、図8において、インバータ駆動部202は、バッファ部204とゲートドライブ部203で構成され、バッファ部204は図5に示すバッファ部214と同様の構成のバッファ部が6つで構成されており、ゲートドライブ部203も図5に示すゲートドライブ部213と同様の構成のゲートドライブ部が6つで構成されている。そして、制御部231が出力する6本の駆動信号GIを受け、インバータ部104に6本のゲート信号VGIを出力する。
 図9を用いて、本実施例における電力変換装置の回生制動過電流検出部211が過電流を検出した場合の動作を説明する。図9は、駆動信号GB、GI、ゲート信号VGB、VGI、過電流検出信号SCB、論理回路222の出力信号(FO)、ゲート出力遮断信号GS、リセット信号RSTをそれぞれ示し、時間方向にStage1、Stage2、Stage3で推移する様子を示している。尚、図9に示す信号は一例であり、論理は問わない。
 図9において、Stage1では、制御部231から駆動信号GB、GIが回生制動駆動部212、インバータ駆動部202に出力されており、回生制動駆動部212、インバータ駆動部202は制御部231からの駆動信号GB、GIを受けて、回生制動部103、インバータ部104にゲート信号VGB、VGIを出力している。
 回生制動過電流検出部211が過電流を検出すると、回生制動過電流検出部211は過電流検出信号SCBを出力し(SCB:L→H)、Stage2に移行する。論理回路222は過電流検出信号SCBの立ち上がりを受けてHを出力し(FO:L→H)、ラッチ部221は論理回路222出力信号の立ち上がりを受けて、ゲート出力遮断信号GSを出力し(GS:L→H)、その状態をラッチする。回生制動駆動部212、インバータ駆動部202は、ゲート出力遮断信号GSがH状態の間は、ゲート信号VGB、VGIの出力を停止する様に構成される。また、制御部231は、ゲート出力遮断信号GSがH状態の間は、駆動信号GB、GIの出力を停止する様に構成される。回生制動部103の動作を停止し回生制動部103の電流を遮断することで、回生制動過電流検出部211は過電流検出信号SCBの出力を停止(SCB:H→L)する。
 回生制動部103の過電流による故障等、動作上問題が無いことを確認した場合、制御部231がリセット信号RSTを出力し(RST:L→H)、Stage3に移行する。ラッチ回路223は、リセット信号RSTの立ち上がりを受けてゲート出力遮断信号GSのラッチを解除し(GS:H→L)、制御部231は、ゲート出力遮断信号GSの立ち下がりを受けて駆動信号GB、GIを回生制動駆動部212、インバータ駆動部202に出力し、回生制動駆動部212、インバータ駆動部202はゲート信号VGB、VGIの出力を再開する。
 尚、図9では回生制動過電流検出部211が過電流を検出した場合の動作について述べたが、インバータ過電流検出部201が過電流を検出した場合には、図9の過電流検出信号SCBをSCIに置き換えた動作となり、回生制動過電流検出部211が過電流を検出した場合と同様に、回生制動部103、インバータ部104のスイッチング素子がオフ状態で停止する。
 図10、図11に、本実施例におけるインバータ過電流検出部201の具体例を示す。図10は、インバータ部104のローサイド側スイッチング素子1042、1044、1046のエミッタ側に電流検出抵抗2011を配置し、電流検出抵抗の電圧(Vs)が閾値電圧Vthを超過した場合に、コンパレータが過電流検出信号SCIを出力する方式である。また、図11は、インバータ部104のスイッチング素子1041~1046のコレクタ端子にダイオード2031~2036を、ゲート端子に抵抗2021~2026をそれぞれ図示される様に接続して、インバータ部104のスイッチング素子1041~1046がオン状態におけるエミッタ-コレクタ間電圧Vceを検出し、Vceが閾値電圧Vthを超過した場合にコンパレータが過電流検出信号SCIを出力する方式である。これらは一般的に用いられている方式であり、前者は構成が簡素である点、後者は電力損失が小さい点、ハイサイド側の過電流検出も可能な点、が利点である。
 以上述べた様に本実施例では、実施例1に対し、インバータ過電流検出部201を追加し、実施例1で述べた動作に加えてインバータ過電流検出部201が過電流検出信号SCIを出力した場合に、回生制動部103とインバータ部104のスイッチングを停止する。誤結線による過電流等の不測の事態は、回生制動部103に限らずインバータ部104にも生じ得る事であることから、回生制動部103と同様の理由により、電力変換装置2はインバータ部104にも過電流検出部を設けるのが望ましい。本実施例で述べたラッチ部221以降の構成を回生制動部103とインバータ部104で共用することにより、実施例1に対し別系統でインバータ部104の過電流保護系統を備えた場合に比べて部品数が削減される。
 尚、本実施例では論理回路222の具体例としてORゲートを用いて説明したが、論理回路222は過電流検出部が出力する論理に応じて適宜変更可能である。一例として、ORゲートをANDゲートとし、回生制動過電流検出部211及びインバータ過電流検出部201は、通常時にHを出力、過電流時にLを出力させる。これにより、ANDゲートは通常時にHを出力し、回生制動過電流検出部211もしくはインバータ過電流検出部201がLを出力した場合に、ラッチ回路223にLを出力する。ラッチ回路223はANDゲートからLを入力した場合に、ゲート出力遮断信号GSを回生制動駆動部212、インバータ駆動部202、制御部231に出力する。これにより、本実施例で述べた動作と同様に、回生制動部103もしくはインバータ部104に過電流が流れた場合に、ゲート出力遮断動作を実現することも可能である。
 また、インバータ過電流検出部201は、図10、図11に示す構成を備えていれば接続箇所を問わない。例えば、図10、図11に示す回路を外付けの部品により配線しても良いし、図10、図11に示す機能の一部または全てを内蔵したゲートドライバをインバータ駆動部202に適用してもよい。図10、図11に示す機能の一部または全てを内蔵したゲートドライバをインバータ駆動部202に適用した場合、図10、図11に示す過電流検出信号SCIはゲートドライバ内部に存在する可能性がある。その場合は、インバータ過電流検出部201が過電流を検出した場合にゲートドライバから出力されるエラー信号等、過電流検出と同期した別の信号を過電流検出信号SCIに代替することで、本実施例で述べた動作と同様の動作が実現する。
 図12は、本実施例における電力変換装置3の構成図である。図12において、図7と同じ構成については同じ符号を付し、その説明は省略する。図12において、図7と異なる点は、ラッチ部221の構成を変更し、ラッチ部221内にラッチ回路224を追加して、ラッチ回路223、224の出力を論理回路222に入力するようにした点である。
 図12において、インバータ過電流検出部201は、インバータ部104に流れる電流が判定値を超過した場合に、過電流検出信号SCIをラッチ回路224に出力する。ラッチ回路224は、過電流検出信号SCIを受信すると、論理回路222にゲート出力遮断信号GSIを出力する。一方、回生制動過電流検出部211は、回生制動部103に流れる電流が判定値を超過した場合に、過電流検出信号SCBをラッチ回路223に出力する。ラッチ回路223は、過電流検出信号SCBを受信すると、論理回路222にゲート出力遮断信号GSBを出力する。論理回路222は、過電流検出信号SCBもしくはSCIが入力されると、ゲート出力遮断信号GSを回生制動駆動部212、インバータ駆動部202、制御部231に出力する。
 図13に、本実施例におけるラッチ部221の具体例を示す。尚、図13に示す構成は一例であり、論理は問わない。
 図13において、ラッチ部221は、論理回路222、ラッチ回路223、224で構成されている。尚、本実施例では論理回路222をORゲートとして動作を説明する。回生制動過電流検出部211及びインバータ過電流検出部201は、通常時にLを出力、過電流時にHを出力する様に構成され、各過電流検出部の出力はそれぞれラッチ回路223、224に入力される。ラッチ回路223、224は、回生制動過電流検出部211及びインバータ過電流検出部201からHが入力された場合に、ゲート出力遮断信号GSB、GSIを論理回路222に出力する。論理回路222は、ゲート出力遮断信号GSBもしくはGSIが出力された場合に、ゲート出力遮断信号GSを回生制動駆動部212、インバータ駆動部202、制御部231に出力する。ラッチ回路223、224は、制御部231からリセット信号RSTを受信することでラッチを解除し、制御部231から出力される駆動信号GB、GIに基づき回生制動部103、インバータ部104の駆動を再開する。
 図14を用いて、本実施例における電力変換装置の回生制動過電流検出部211が過電流を検出した場合の動作を説明する。図14は、駆動信号GB、GI、ゲート信号VGB、VGI、過電流検出信号SCB、ゲート出力遮断信号GSB、GS、リセット信号RSTをそれぞれ示し、時間方向にStage1、Stage2、Stage3で推移する様子を示している。尚、図14に示す信号は一例であり、論理は問わない。
 図14において、Stage1では、制御部231から駆動信号GB、GIが回生制動駆動部212、インバータ駆動部202に出力されており、回生制動駆動部212、インバータ駆動部202は制御部231からの駆動信号GB、GIを受けて、回生制動部103、インバータ部104にゲート信号VGB、VGIを出力している。
 回生制動過電流検出部211が過電流を検出すると、回生制動過電流検出部211は過電流検出信号SCBを出力し(SCB:L→H)、Stage2に移行する。ラッチ回路223は、過電流検出信号SCBの立ち上がりを受けてHを出力し(GSB:L→H)、その状態をラッチする。論理回路222は、過電流検出信号SCBの立ち上がりを受けてHを出力(GS:L→H)する。回生制動駆動部212、インバータ駆動部202は、ゲート出力遮断信号GSがH状態の間は、ゲート信号VGB、VGIの出力を停止する様に構成される。また、制御部231は、ゲート出力遮断信号GSがH状態の間は、駆動信号GB、GIの出力を停止する様に構成される。回生制動部103の動作を停止し回生制動部103の電流を遮断することで、回生制動過電流検出部211は過電流検出信号SCBの出力を停止(SCB:H→L)する。
 回生制動部103の過電流による故障等、動作上問題が無いことを確認した場合、制御部231がリセット信号RSTを出力し(RST:L→H)Stage3に移行する。ラッチ回路223は、リセット信号RSTの立ち上がりを受けてゲート出力遮断信号GSBのラッチを解除し(GSB:H→L)、論理回路222はゲート出力遮断信号GSBの立下りを受けてLを出力(GS:H→L)する。制御部231は、ゲート出力遮断信号GSの立ち下がりを受けて駆動信号GB、GIを回生制動駆動部212、インバータ駆動部202に出力し、回生制動駆動部212、インバータ駆動部202はゲート信号VGB、VGIの出力を再開する。
 尚、図14では回生制動過電流検出部211が過電流を検出した場合の動作について述べたが、インバータ過電流検出部201が過電流を検出した場合には、図14の過電流検出信号SCBをSCIに、ゲート出力遮断信号GSBをGSIに置き換えた動作となり、回生制動過電流検出部211が過電流を検出した場合と同様に、回生制動部103、インバータ部104のスイッチング素子がオフ状態で停止する。
 以上述べた様に本実施例では、実施例2に対しラッチ回路224を追加し、ラッチ回路223、224の出力を論理回路222に入力し、論理回路222からゲート出力遮断信 号GSを制御部231、回生制動駆動部212、インバータ駆動部202に出力する。 本実施例で述べた電力変換装置3は、実施例2で述べた電力変換装置2の変形例であり、いずれも過電流検出時に回生制動部103とインバータ部104のスイッチング素子をオフ状態で停止する動作を実現するため、実装面積や部品コスト等に鑑み必要に応じて適宜変更できる。
 ここで、図12に示す構成であれば、ラッチ回路224は接続箇所を問わない。例えば、ラッチ回路224を外付けの部品により配線しても良いし、過電流保護時のラッチ機能を内蔵したゲートドライバをインバータ駆動部202に適用しても良い。過電流保護時のラッチ機能を内蔵したゲートドライバをインバータ駆動部202に適用した場合、図12に示すゲート遮断信号SCIはゲートドライバ内部に存在する可能性がある。その場合には、インバータ過電流検出部201が過電流を検出した場合にゲートドライバから出力されるエラー信号等、過電流検出と同期した別の信号を過電流検出信号SCIに代替する、或いはゲートドライバから直接過電流検出信号SCIを出力することで、本実施例で述べた動作と同様の動作が実現する。
 以上実施例について説明したが、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
1、2、3:電力変換装置、101:整流部、102:電圧検出部、103:回生制動部、104:インバータ部、105:制動抵抗、106:平滑コンデンサ、1031、1041~1046:スイッチング素子、1032、2112:ダイオード、201:インバータ過電流検出部、2011、2111:電流検出抵抗、2012、2113:抵抗、202:インバータ駆動部、203、213:ゲートドライブ部、204、214:バッファ部、211:回生制動過電流検出部、212:回生制動駆動部、221:ラッチ部、222:論理回路、223、224:ラッチ回路、231:制御部

Claims (12)

  1. 交流電圧を入力し交流電力を出力する電力変換装置であって、
    交流電圧を整流し直流電圧を出力する整流部と、
    前記直流電圧を平滑する平滑コンデンサと、
    前記直流電圧を入力し交流電力を出力するインバータ部と、
    前記インバータ部にゲート信号を出力するインバータ駆動部と、
    前記平滑コンデンサに並列に接続される回生制動部と、
    前記回生制動部にゲート信号を出力する回生制動駆動部と、
    前記インバータ駆動部と前記回生制動駆動部に駆動信号を出力する制御部と、
    前記回生制動部に流れる電流が判定値を超過した場合に過電流検出信号を出力する回生制動過電流検出部と、
    前記回生制動過電流検出部から出力される過電流検出信号を入力し前記制御部にゲート出力遮断信号を出力するラッチ部を備え、
    前記回生制動過電流検出部が過電流を検出した場合に前記インバータ部と前記回生制動部のスイッチング素子がオフ状態で停止することを特徴とする電力変換装置。
  2. 請求項1に記載の電力変換装置であって、
    前記回生制動駆動部は、前記制御部から駆動信号を入力する回生制動バッファ部と、前記回生制動部にゲート信号を出力する回生制動ゲートドライブ部を備えることを特徴とする電力変換装置。
  3. 請求項2に記載の電力変換装置であって、
    前記ラッチ部は、前記回生制動過電流検出部が過電流を検出した場合に、前記回生制動駆動部から出力されるゲート信号が、前記回生制動部のスイッチング素子がオフ状態で停止する様に、前記回生制動バッファ部にゲート出力遮断信号を出力することを特徴とする電力変換装置。
  4. 請求項1に記載の電力変換装置であって、
    前記インバータ部に流れる電流が判定値を超過した場合に過電流検出信号を出力するインバータ過電流検出部を備え、
    前記ラッチ部は、前記回生制動過電流検出部と前記インバータ過電流検出部から出力される過電流検出信号を入力し、前記制御部にゲート出力遮断信号を出力することを特徴とする電力変換装置。
  5. 請求項4に記載の電力変換装置であって、
    前記回生制動駆動部は、前記制御部から駆動信号を入力する回生制動バッファ部と、前記回生制動部にゲート信号を出力する回生制動ゲートドライブ部を備え、
    前記インバータ駆動部は、前記制御部から駆動信号を入力するインバータバッファ部と、前記インバータ部にゲート信号を出力するインバータゲートドライブ部を備えることを特徴とする電力変換装置。
  6. 請求項5に記載の電力変換装置であって、
    前記ラッチ部は、前記回生制動過電流検出部もしくは前記インバータ過電流検出部が過電流を検出した場合に、前記回生制動駆動部と前記インバータ駆動部から出力されるゲート信号が、前記回生制動部と前記インバータ駆動部のスイッチング素子がオフ状態で停止する様に、前記回生制動バッファ部と前記インバータバッファ部にゲート出力遮断信号を出力することを特徴とする電力変換装置。
  7. 請求項4に記載の電力変換装置であって、
    前記ラッチ部は論理回路とラッチ回路で構成されることを特徴とする電力変換装置。
  8. 請求項7に記載の電力変換装置であって、
    前記論理回路は、前記回生制動過電流検出部と前記インバータ過電流検出部から出力される過電流検出信号を入力し、前記回生制動過電流検出部もしくは前記インバータ過電流検出部が過電流を検出した場合に過電流検出信号を出力し、
    前記ラッチ回路は、前記論理回路から出力された過電流検出信号が入力された場合に、前記回生制動駆動部と前記インバータ駆動部から出力されるゲート信号が、前記回生制動部と前記インバータ部のスイッチング素子がオフ状態で停止する様にゲート出力遮断信号を出力することを特徴とする電力変換装置。
  9. 請求項7に記載の電力変換装置であって、
    前記ラッチ回路は、前記回生制動過電流検出部と前記インバータ過電流検出部から出力される過電流検出信号を入力し、前記回生制動過電流検出部もしくは前記インバータ過電流検出部が過電流を検出した場合にゲート出力遮断信号を出力し、
    前記論理回路は、前記ラッチ回路から出力されたゲート出力遮断信号が入力された場合に、前記回生制動駆動部と前記インバータ駆動部から出力されるゲート信号が、前記回生制動部と前記インバータ部のスイッチング素子がオフ状態で停止する様にゲート出力遮断信号を出力することを特徴とする電力変換装置。
  10. 請求項1に記載の電力変換装置であって、
    前記ラッチ部は前記制御部から出力されるリセット信号を受信することでラッチ停止状態を解除することを特徴とする電力変換装置。
  11. 請求項1に記載の電力変換装置であって、
    前記ラッチ部はフリップフロップ回路を含むことを特徴とする電力変換装置。
  12. 請求項1に記載の電力変換装置であって、
    前記過電流検出信号は前記回生制動過電流検出部が過電流を検出してから所定の時間経過後に出力を停止することを特徴とする電力変換装置。
PCT/JP2020/041111 2020-11-02 2020-11-02 電力変換装置 WO2022091419A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2020/041111 WO2022091419A1 (ja) 2020-11-02 2020-11-02 電力変換装置
US18/013,942 US20230291334A1 (en) 2020-11-02 2021-10-29 Power Conversion Device
JP2022559285A JP7389272B2 (ja) 2020-11-02 2021-10-29 電力変換装置
CN202180047764.4A CN115812275A (zh) 2020-11-02 2021-10-29 电力转换装置
EP21886421.3A EP4239875A1 (en) 2020-11-02 2021-10-29 Electric power converting device
PCT/JP2021/040173 WO2022092304A1 (ja) 2020-11-02 2021-10-29 電力変換装置
TW110140536A TWI798906B (zh) 2020-11-02 2021-11-01 電力轉換裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/041111 WO2022091419A1 (ja) 2020-11-02 2020-11-02 電力変換装置

Publications (1)

Publication Number Publication Date
WO2022091419A1 true WO2022091419A1 (ja) 2022-05-05

Family

ID=81382225

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/041111 WO2022091419A1 (ja) 2020-11-02 2020-11-02 電力変換装置
PCT/JP2021/040173 WO2022092304A1 (ja) 2020-11-02 2021-10-29 電力変換装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040173 WO2022092304A1 (ja) 2020-11-02 2021-10-29 電力変換装置

Country Status (6)

Country Link
US (1) US20230291334A1 (ja)
EP (1) EP4239875A1 (ja)
JP (1) JP7389272B2 (ja)
CN (1) CN115812275A (ja)
TW (1) TWI798906B (ja)
WO (2) WO2022091419A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0360390A (ja) * 1989-07-25 1991-03-15 Yaskawa Electric Mfg Co Ltd 回生回路保護方式
JPH0398472A (ja) * 1989-09-08 1991-04-24 Toyo Electric Mfg Co Ltd インバータ放電回路の保護方式

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2588385B2 (ja) * 1985-03-18 1997-03-05 三菱電機株式会社 電動機の回生エネルギ−放電回路
JP3511173B2 (ja) 2001-04-16 2004-03-29 住友重機械工業株式会社 回生抵抗保護機構
JP2008252966A (ja) 2007-03-29 2008-10-16 Matsushita Electric Ind Co Ltd モータ駆動装置
JP5166389B2 (ja) * 2009-11-04 2013-03-21 山洋電気株式会社 モータ駆動用電源装置及び該電源装置を用いた回生方法
JP5471803B2 (ja) * 2010-05-13 2014-04-16 株式会社デンソー 電力変換装置
US9214804B2 (en) * 2010-11-11 2015-12-15 Telefonaktiebolaget L M Ericsson (Publ) Overload detection in a switched mode power supply
JP6233330B2 (ja) * 2015-02-12 2017-11-22 トヨタ自動車株式会社 電力変換装置
CN106160466B (zh) * 2015-03-25 2018-11-27 三垦电气株式会社 开关电源装置
JP2017200384A (ja) * 2016-04-28 2017-11-02 エスアイアイ・セミコンダクタ株式会社 Dcdcコンバータ
CN108494262A (zh) * 2018-04-20 2018-09-04 丰县宏祥电子科技有限公司 新能源电动汽车专用全隔离dc-dc转换器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0360390A (ja) * 1989-07-25 1991-03-15 Yaskawa Electric Mfg Co Ltd 回生回路保護方式
JPH0398472A (ja) * 1989-09-08 1991-04-24 Toyo Electric Mfg Co Ltd インバータ放電回路の保護方式

Also Published As

Publication number Publication date
TWI798906B (zh) 2023-04-11
EP4239875A1 (en) 2023-09-06
WO2022092304A1 (ja) 2022-05-05
CN115812275A (zh) 2023-03-17
JPWO2022092304A1 (ja) 2022-05-05
JP7389272B2 (ja) 2023-11-29
US20230291334A1 (en) 2023-09-14
TW202220358A (zh) 2022-05-16

Similar Documents

Publication Publication Date Title
US10541622B2 (en) Electric motor drive device
JP2007259533A (ja) 半導体素子の保護回路
US20110304941A1 (en) Switching device
JP6748935B2 (ja) 電流センス付き半導体スイッチの保護回路
JPH0340517A (ja) パワーデバイスの駆動・保護回路
JP5179954B2 (ja) 半導体スイッチング素子用ゲート駆動装置を備えた電力変換装置
JP2004129378A (ja) 電力用半導体素子のゲート駆動回路
EP3220539B1 (en) Motor controller
WO2022091419A1 (ja) 電力変換装置
KR102520385B1 (ko) 모터 구동 장치
JP2005033678A (ja) ゲートドライブ回路
JP4322940B2 (ja) 電気車制御装置を冷却する電動送風機の逆転起動判定装置
JP2014103790A (ja) 電気車用電力変換装置及びデッドセクション検知装置
JP2006067732A (ja) 電気車制御装置
KR102388544B1 (ko) 전력반도체 스위칭 소자의 과전압 보호회로
JP2008154372A (ja) パワーデバイス短絡検出回路
JPH06233402A (ja) 電気自動車の駆動制御回路
JP2006271035A (ja) モータ制御装置
KR101364993B1 (ko) 직류 모터의 안전제어 회로
JP2007189756A (ja) 電力用スイッチング素子の短絡保護装置
JP5452155B2 (ja) サージ電圧抑制装置およびモータ制御装置
JP2019176601A (ja) 制動回路および電力変換装置
CN110797836B (zh) 用于电机驱动器中的开关电源的电路、操作方法和电机驱动电路系统
CN112117952B (zh) 马达驱动系统及控制方法
JP7342573B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20959934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP