WO2022089404A1 - 胺化催化剂及其制备和应用 - Google Patents

胺化催化剂及其制备和应用 Download PDF

Info

Publication number
WO2022089404A1
WO2022089404A1 PCT/CN2021/126326 CN2021126326W WO2022089404A1 WO 2022089404 A1 WO2022089404 A1 WO 2022089404A1 CN 2021126326 W CN2021126326 W CN 2021126326W WO 2022089404 A1 WO2022089404 A1 WO 2022089404A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
amination
metal
group
catalyst
Prior art date
Application number
PCT/CN2021/126326
Other languages
English (en)
French (fr)
Inventor
田保亮
王国清
彭晖
唐国旗
向良玉
杨溢
张利军
宋超
张筱榕
陈松
刘静
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司北京化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011187667.9A external-priority patent/CN114433087A/zh
Priority claimed from CN202011192987.3A external-priority patent/CN114433090B/zh
Priority claimed from CN202011188178.5A external-priority patent/CN114433106B/zh
Priority claimed from CN202011187657.5A external-priority patent/CN114433086B/zh
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司北京化工研究院 filed Critical 中国石油化工股份有限公司
Priority to CA3200413A priority Critical patent/CA3200413A1/en
Priority to JP2023526287A priority patent/JP2023547223A/ja
Priority to EP21885131.9A priority patent/EP4238647A1/en
Priority to US18/034,101 priority patent/US20230381757A1/en
Priority to KR1020237018305A priority patent/KR20230098302A/ko
Publication of WO2022089404A1 publication Critical patent/WO2022089404A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/12Silica and alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/843Arsenic, antimony or bismuth
    • B01J23/8437Bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8896Rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8913Cobalt and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/053Sulfates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/057Selenium or tellurium; Compounds thereof
    • B01J27/0573Selenium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0234Impregnation and coating simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/28Phosphorising
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/02Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of hydrogen atoms by amino groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/04Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/04Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups
    • C07C209/14Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of hydroxy groups or of etherified or esterified hydroxy groups
    • C07C209/16Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of hydroxy groups or of etherified or esterified hydroxy groups with formation of amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/04Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups
    • C07C209/22Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of other functional groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/02Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C211/03Monoamines

Definitions

  • the present application relates to the technical field of amination reactions, in particular to a catalyst suitable for catalyzing amination to synthesize organic amines and its preparation and application.
  • Amines are very important industrial organic compounds that are widely used in various fields, such as solvents, pharmaceutical intermediates, resin raw materials, textile additives, pesticides, rubber stabilizers, resists, and also in cleaning and plastic processing.
  • the three main methods of preparing amines are the hydroamination of carbonyl compounds, the hydroamination of alcohols, and the hydrogenation of nitriles.
  • Hydroamination of carbonyl compounds such as the reaction of acetone, hydrogen and ammonia to produce isopropylamine
  • the hydroamination of alcohols for example, the amination of ethanol and ammonia under hydrogen conditions to produce ethylamine, isopropanol and ammonia under hydrogen conditions
  • Amination generates isopropylamine, butanol and ammonia are aminated under hydrogen conditions to generate butylamine, hexanediol and ammonia are aminated under hydrogen conditions to generate hexamethylene diamine, etc.
  • nitrile hydrogenation for example, acetonitrile hydrogenation to generate ethyl Amine, adiponitrile hydrogenation to form hexamethylene diamine.
  • a catalyst for synthesizing ethyleneamine is composed of three parts of main active component, auxiliary agent and aminated carrier, wherein the main active component is selected from the group consisting of Ni and Co one or more of the catalyst, the main active component accounts for 1-40% in the total weight of the catalyst, and the auxiliary agent is selected from Fe, Cu, Ru, Re, K, Zn and B and their respective One or more of the group consisting of oxides, the auxiliary agent accounts for 0.1-20% in the total weight of the catalyst; the aminated carrier is selected from the group consisting of SiO 2 and Al 2 O 3 One or more carriers in the group are obtained by an amination treatment comprising contacting the carrier with an ammonia source at a temperature of 150 to 400° C.
  • the carrier used in the catalyst is subjected to amination treatment. Since there are a large number of hydroxyl groups on the surface of the carrier SiO 2 or Al 2 O 3 , the surface of the carrier is in an acidic environment, and it is easy to Promote the polymerization of the intermediate product imine, and after the surface of the carrier is aminated, a large number of hydroxyl groups on the surface are converted into amine groups, so the carrier is in an alkaline environment, which reduces the possibility of imine polymerization and improves the activity and selectivity of the catalyst and stability.
  • the catalyst for the preparation of amines by amination of alcohols has basicity, which is more conducive to improving catalyst activity and selectivity, and the activity of the existing catalysts for amination reaction still has a lot of room for improvement.
  • the purpose of the present application is to provide a catalyst suitable for catalytic amination to prepare organic amines and its preparation and application, the catalyst has improved properties when used in amination reactions, such as improved catalytic activity, reaction conversion rate, product selection at least one of performance and catalyst stability.
  • the present application provides a catalyst suitable for catalyzing amination to synthesize organic amines, comprising an inorganic porous support containing aluminum and/or silicon and an active metal component supported on the support, so
  • the active metal component includes at least one metal selected from Group VIII and Group IB, wherein the L acid content of the carrier accounts for more than 85% of the sum of the L acid and B acid content.
  • the support comprises a matrix and a doping element, wherein the matrix is selected from alumina, silica, molecular sieves, diatomaceous earth, aluminum silicate or a combination thereof, and the doping element is a non-metallic element.
  • the matrix is selected from alumina, silica, molecular sieves, diatomaceous earth, aluminum silicate or a combination thereof, and the doping element is a non-metallic element.
  • the catalyst further comprises a metal promoter supported on the carrier, the metal promoter comprising at least one metal selected from the group VIB, VIIB, IB, IIB and lanthanide elements, or is A combination of at least one of Group IIA metals, at least one of Group IIB metals, and at least one of Group VA metals.
  • a metal promoter supported on the carrier, the metal promoter comprising at least one metal selected from the group VIB, VIIB, IB, IIB and lanthanide elements, or is A combination of at least one of Group IIA metals, at least one of Group IIB metals, and at least one of Group VA metals.
  • step 2) The material obtained in step 2) is subjected to heat treatment and optional reduction treatment to obtain the catalyst.
  • the present application provides a method for preparing an organic amine, comprising: in the presence of hydrogen, contacting an amination raw material, an amination reagent and a catalyst according to the present application for an amination reaction to obtain the organic amine, wherein the organic amine is obtained.
  • the amination raw materials are selected from alcohols, ketones, alcohol amines, aldehydes or their combinations; the amination reagents are selected from ammonia, primary amines, secondary amines or their combinations.
  • the catalyst of the present application exhibits improved performance, especially improved catalytic activity, reaction conversion, product selectivity and/or catalyst stability, when used to catalyze the reaction of amination to prepare organic amines.
  • any specific numerical value disclosed herein, including the endpoints of a numerical range, is not limited to the precise value of the numerical value, but is to be understood to encompass values approximating the precise value, such as within ⁇ 5% of the precise value. all possible values. And, for the disclosed numerical range, between the endpoint values of the range, between the endpoint values and the specific point values in the range, and between the specific point values, one or more new values can be obtained in any combination. Numerical ranges, these new numerical ranges should also be considered to be specifically disclosed herein.
  • the ratio of the L acid content of the catalyst carrier to the sum of the L acid and B acid content is measured by pyridine probe adsorption spectroscopy.
  • the ammonia adsorption amount of the carrier and the catalyst is determined by the NH 3 -TPD method, wherein the ammonia adsorption amount is represented by the measured ammonia desorption amount.
  • C2-20 refers to having 2-20 carbon atoms, such as having 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 carbon atoms.
  • C1-12 means having 1-12 carbon atoms.
  • the grain size of the active metal component and the metal additive is obtained by XRD measurement.
  • the isoelectric point of the carrier is measured by means of a particle size potentiometer.
  • the given pressures are all gauge pressures.
  • any matter or matter not mentioned is directly applicable to those known in the art without any change.
  • any embodiment described herein can be freely combined with one or more other embodiments described herein, and the technical solutions or technical ideas formed thereby are regarded as part of the original disclosure or original record of the present invention, and should not be It is considered to be new content not disclosed or anticipated herein, unless a person skilled in the art considers that the combination is obviously unreasonable.
  • the present application provides a catalyst suitable for catalyzing amination to synthesize organic amines, comprising an inorganic porous support containing aluminum and/or silicon and an active metal component supported on the support,
  • the active metal component includes at least one metal selected from Group VIII and Group IB, wherein the L acid content of the carrier accounts for more than 85% of the sum of the L acid and B acid content.
  • the group VIII metal may be, for example, cobalt, nickel or palladium
  • the group IB metal may be, for example, copper
  • the metal in the active metal component is selected from cobalt, nickel, palladium, copper or a combination thereof, more preferably from cobalt, nickel or a combination thereof.
  • the metal of group IB such as copper
  • the metal of group VIII can be used alone as an active metal component, in which case the amount is usually larger; or can be used in combination with a metal of group VIII, in which case the amount is usually smaller.
  • Group IB metals are used in combination with Group VIII metals, such as cobalt, nickel, and palladium, they are generally referred to herein as metal promoters.
  • the L acid content of the carrier accounts for more than 88% of the sum of the contents of L acid and B acid, more preferably more than 90%, particularly preferably more than 92%.
  • the support comprises a matrix and a doping element, wherein the matrix is selected from alumina, silica, molecular sieves, diatomaceous earth, aluminum silicate, or combinations thereof, and the doping element is A non-metal element, preferably at least one selected from group IIIA non-metal elements, VA group non-metal elements, VIA group non-metal elements and VIIA group non-metal elements and not chlorine, more preferably boron, fluorine, phosphorus, sulfur and at least one of selenium.
  • the matrix is selected from alumina, silica, molecular sieves, diatomaceous earth, aluminum silicate, or combinations thereof
  • the doping element is A non-metal element, preferably at least one selected from group IIIA non-metal elements, VA group non-metal elements, VIA group non-metal elements and VIIA group non-metal elements and not chlorine, more preferably boron, fluorine, phosphorus, sulfur and at least one of selenium.
  • the doping element in the carrier comes from a non-metallic acid ion
  • the non-metallic acid ion is preferably at least one of borate ion, fluoride ion, phosphate ion, sulfate ion and selenate ion.
  • the carrier has at least one of the following characteristics:
  • the pore volume of the carrier with a pore diameter in the range of 7-27 nm accounts for more than 65% of the pore volume of the carrier, preferably 70-90%, and preferably the pore volume with a pore diameter of less than 7 nm accounts for the percentage of the pore volume of the carrier: 0-10%, preferably 0-8%, the carrier with the above-mentioned pore size distribution is beneficial to increase the surface diffusivity of the catalyst, improve the catalyst activity and product selectivity;
  • the percentage of the pore volume with a pore diameter of less than 7.5 nm accounts for less than 20% of the pore volume of the carrier, preferably 5-17%, and the percentage of the pore volume with a pore diameter of less than 9 nm in the pore volume of the carrier is less than 40%
  • the percentage of the pore volume with a pore size greater than 27 nm in the pore volume of the carrier is less than 5%, preferably 0.5-5%, preferably, the pore volume with a pore size greater than or equal to 7.5 nm and less than 9 nm accounts for 5% of the pore volume of the carrier -17%, the pore volume with a pore size greater than or equal to 9 nm and less than or equal to 27 nm accounts for 61-89.5% of the pore volume of the carrier.
  • the carrier having the above pore size distribution is beneficial to increase the surface diffusivity of the catalyst, and improve the catalyst activity and product selectivity. ;
  • the ammonia adsorption capacity of the carrier is 0.25-0.65 mmol/g, preferably 0.3-0.6 mmol/g, more preferably 0.3-0.5 mmol/g;
  • the content of alumina in the carrier accounts for more than 65% by weight of the total amount of the matrix, preferably more than 70% by weight, more preferably more than 75% by weight;
  • the content of the doping element is 0.05-6% by weight, preferably 0.05-5% by weight, more preferably 0.05-4.5% by weight, particularly preferably 0.07-4% by weight, for example 0.08-4% by weight or 0.1% by weight of the total amount of the matrix - 3 wt% (eg, can be 0.1 wt%, 0.5 wt%, 1 wt%, 1.5 wt%, 2 wt%, 2.5 wt%, 3 wt%, or any intermediate value between any two of the above);
  • the carrier has a specific surface area of 100-220 m 2 /g, preferably 105-210 m 2 /g, more preferably 110-210 m 2 /g, particularly preferably 120-210 m 2 /g;
  • the pore volume of the carrier is 0.4-1.1 ml/g, preferably 0.43-1.1 ml/g, more preferably 0.45-1.1 ml/g, particularly preferably 0.45-1 ml/g; and
  • the isoelectric point of the carrier is 3-6, preferably 3.5-5.5.
  • the content of the active metal component is 5-45 g, preferably 8-44 g, more preferably 10-38 g, particularly preferably 15-37 g.
  • the grain size of the active metal component is less than 10 nm, more preferably 3-8 nm, and the active metal component with this grain size can be well matched with the properties of the carrier, thereby achieving Better catalytic activity and product selectivity.
  • the catalyst further comprises a metal promoter supported on the carrier, the metal promoter comprising at least one element selected from the group consisting of VIB, VIIB, IB, IIB and lanthanide elements.
  • Metal preferably including at least one metal selected from the group consisting of Cr, Mo, W, Mn, Re, Cu, Ag, Au, Zn, La and Ce; further preferably, relative to 100 grams of substrate, the amount of the metal auxiliary The content is 0-10 g, preferably 0.1-10 g, more preferably 0.5-8 g.
  • the metal promoter includes a combination of at least one Group VIIB metal and at least one Group IB metal, wherein, calculated as metal element, the weight ratio of the Group VIIB metal to the Group IB metal is 0.05-15:1, preferably 0.1-12:1; or the metal promoter includes a combination of at least one Group VIIB metal and at least one Group IIB metal, wherein, in terms of metal elements, the Group VIIB metal and Group IIB metal The weight ratio of metals is 0.2-20:1, preferably 0.3-6:1; or the metal promoter includes a combination of at least one Group VIB metal, at least one Group IB metal and at least one Group IIB metal, wherein , in terms of metal elements, the weight ratio of VIB group metal, IB group metal and IIB group metal is 0.1-10:0.1-10:1, preferably 0.2-8:0.2-8:1.
  • the Group VIIB metal is selected from manganese and/or rhenium
  • the Group IB metal is selected from at least one of copper, silver and gold
  • the Group IIB metal is selected from zinc
  • the Group VIB metal is selected from From molybdenum and/or tungsten.
  • the catalyst further comprises a metal promoter supported on the carrier, and the metal promoter is at least one of Group IIA metals, at least one of Group IIB metals and VA
  • the combination of at least one of the group metals, further preferably, the content of the metal auxiliary is 0.1-10 g, preferably 0.5-6 g per 100 g of the substrate. More preferably, the weight ratio of the metals of group IIA, group IIB and metal of VA in the metal auxiliary agent is 0.1-10:0.1-10:1, preferably 0.2-8:0.2-8:1.
  • the group IIA metal is selected from at least one of magnesium, calcium and barium
  • the group IIB metal is selected from zinc
  • the group VA metal is selected from bismuth.
  • the carrier of the catalyst can be obtained by a known method suitable for preparing the carrier with the above properties, which is not strictly limited in the present application.
  • the carrier can be prepared by a method comprising the following steps: forming, drying and calcining a mixture containing a doping element and a matrix or a precursor thereof in sequence to obtain the carrier, wherein the matrix is selected from alumina, Silica, molecular sieves, diatomaceous earth, aluminum silicate, or combinations thereof.
  • the molecular sieve can be, for example, ZSM-5 or ZSM-11 molecular sieve.
  • the alumina precursor may be pseudoboehmite
  • the silica precursor may be silicic acid, orthosilicic acid or silica gel.
  • the matrix precursor is preferably pseudo-boehmite.
  • the pseudo-boehmite can be prepared by at least one method among carbonization method, organoaluminum hydrolysis method, aluminum sulfate method and nitric acid method.
  • the specific surface area of the pseudo-boehmite is preferably 250-400 m 2 /g, preferably 255-360 m 2 /g, more preferably 255-340 m 2 /g, particularly preferably 260-330 m 2 /g; the pseudo-boehmite
  • the pore volume of the bauxite is preferably 0.5-1.3 ml, preferably 0.75-1.25 ml/g, more preferably 0.78-1.2 ml/g, particularly preferably 0.78-1.1 ml/g.
  • a catalyst with better performance can be obtained by selecting pseudo-boehmite with specific pore structure.
  • the raw material for providing the matrix precursor already contains the required amount of doping elements, then it is only necessary to use this raw material for molding, and if the raw material for providing the matrix precursor does not contain doping elements If the content of elements or doping elements is low (deficient), then additional doping elements can be introduced.
  • the doping element may be provided using a carrier modifier, the carrier modifier comprising at least one compound capable of providing non-metallic acid ions, such as a non-metallic acid-containing inorganic acid and /or inorganic salt, the non-metallic acid ion is preferably at least one of borate ion, fluoride ion, phosphate ion, sulfate ion and selenate ion.
  • the carrier modifier comprising at least one compound capable of providing non-metallic acid ions, such as a non-metallic acid-containing inorganic acid and /or inorganic salt
  • the non-metallic acid ion is preferably at least one of borate ion, fluoride ion, phosphate ion, sulfate ion and selenate ion.
  • the carrier modifier is selected from boric acid, nickel borate, cobalt borate, potassium borate, ammonium borate, magnesium borate, potassium fluoride, magnesium fluoride, cobalt fluoride, nickel fluoride, hydrofluoric acid, fluorine Ammonia, phosphoric acid, aluminum phosphate, potassium phosphate, potassium dihydrogen phosphate, potassium hydrogen phosphate, magnesium phosphate, calcium phosphate, ammonium phosphate, sulfuric acid, cobalt sulfate, nickel sulfate, aluminum sulfate, calcium sulfate, potassium sulfate, magnesium sulfate, phosphoric acid At least one of strontium, strontium sulfate and selenic acid.
  • the molding method can be selected from kneading, rolling, or tableting and the like.
  • the amount of the carrier modifier is such that based on the total weight of the substrate, the content of the doping element is 0.05-6 wt %, preferably 0.05-5 wt %, more preferably 0.05-4.5 wt % %, particularly preferably 0.07-4% by weight, for example 0.08-4% by weight.
  • the dosage of a certain component raw material such as a carrier modifier
  • the dosage of some raw materials is not shown herein.
  • the drying conditions may include: the temperature is 80-150°C (for example, it may be 80°C, 85°C, 90°C, 95°C, 100°C, 110°C, 115°C, 120°C, 125°C, 130°C, 140°C, 150°C, or any intermediate value of any of the above two values), preferably 85-130°C, and the time is 6-20h (for example, it can be 6h, 7h, 7.5h, 8h, 8.5h h, 9h, 10h, 12h, 15h, 18h, 20h, or any intermediate value between any of the above two values), preferably 10-20h.
  • the temperature is 80-150°C (for example, it may be 80°C, 85°C, 90°C, 95°C, 100°C, 110°C, 115°C, 120°C, 125°C, 130°C, 140°C, 150°C, or any intermediate value of any of the above two values), preferably 85-130°C
  • the time is 6-20h
  • the calcination conditions may include: the temperature is 500-1120°C, such as 500-650°C, preferably 700-1100°C, more preferably 800-1050°C (for example, it can be 800°C, 850°C , 860°C, 870°C, 880°C, 890°C, 900°C, 920°C, 950°C, 960°C, 980°C, 1000°C, 1050°C, or any intermediate value of the above two values), the time is 2-20h (For example, it can be 2h, 3h, 3.5h, 4h, 4.5h, 5h, 6h, 7h, 8h, 10h, 15h, 20h, or any intermediate value between any of the above two values).
  • the temperature is 500-1120°C, such as 500-650°C, preferably 700-1100°C, more preferably 800-1050°C (for example, it can be 800°C, 850°C , 860°C, 870°C, 880°C, 8
  • the catalyst of the present application can be used after reduction, for example, it can be reduced with a hydrogen-containing gas at 350-500°C, preferably at 350-450°C.
  • the hydrogen can be pure hydrogen or hydrogen diluted with an inert gas, such as a mixture of nitrogen and hydrogen.
  • the reduction time can be determined by monitoring the production of H 2 O in the reduction system, that is, when the reduction system no longer produces new H 2 O, the reduction is terminated, and those skilled in the art can select the reduction time accordingly. Without further elaboration, for example, the reduction time at the highest temperature may be 2-5h.
  • the reduction can be carried out directly in the reactor followed by a catalytic reaction. It can also be reduced in a separate reactor, also known as external reduction. After reduction, it can be passivated with a mixed gas containing oxygen before being discharged from the reactor.
  • the passivation temperature is, for example, 10-60 ° C, especially 20- 40°C.
  • the ex-situ reduced and passivated catalyst loaded into the reactor can be activated with hydrogen or a mixture of hydrogen and nitrogen before use, and the activation temperature is, for example, 150-250°C, preferably 170-200°C.
  • the activation time can be determined by monitoring the generation of H 2 O in the activation system, that is, when the activation system no longer produces new H 2 O, the activation is terminated, and those skilled in the art can select the activation time accordingly.
  • the activation time at the highest temperature is for example 1-5h, preferably 2-3h, or it can be used directly without activation, depending on the degree of oxidation of the active metal components and metal promoters in the catalyst.
  • a method for preparing the catalyst of the present application comprising the steps of:
  • step 2) heat treatment and optional reduction treatment are performed on the material obtained in step 2) to obtain the catalyst
  • the L acid content of the carrier accounts for more than 88% of the sum of the contents of L acid and B acid, more preferably more than 90%, particularly preferably more than 92%.
  • the step 1) "providing an inorganic porous carrier containing aluminum and/or silicon” includes sequentially forming, drying and calcining a mixture containing a doping element and a matrix or its precursor to obtain the Support, wherein, the matrix is selected from alumina, silica, molecular sieve, diatomaceous earth, aluminum silicate or their combination, preferably the precursor of alumina is 250-400 m 2 /g, preferably 255- 360 m 2 /g, more preferably 255-340 m 2 /g, particularly preferably 260-330 m 2 /g and a specific surface area of 0.5-1.3 ml, preferably 0.75-1.25 ml/g, more preferably 0.78-1.2 ml/g, particularly preferably Pseudo-boehmite with a pore volume of 0.78-1.1 ml/g; the doping element is a non-metallic element, preferably selected from group IIIA non-metallic elements
  • a carrier modifier is used to provide the doping element, and the doping element and the carrier modifier can be selected as described in the first aspect above, which will not be repeated here.
  • the amount of the carrier modifier is such that the content of the doping element in the obtained carrier is 0.05-6 wt %, preferably 0.05-5 wt %, more preferably 0.05-4.5 wt %, based on the total weight of the matrix, 0.07-4% by weight is particularly preferred, such as 0.08-4% by weight or 0.1-3% by weight (for example, 0.1% by weight, 0.5% by weight, 1% by weight, 1.5% by weight, 2% by weight, 2.5% by weight, 3% by weight %, or any intermediate value between any two of the above).
  • the forming method can be selected from kneading, rolling or sheeting and the like.
  • the drying conditions in step 1) include: the temperature is 80-150°C, and the time is 6-20 h; and/or, the roasting conditions include: the temperature is 500-1120°C, for example 500-650°C, preferably 700-1100°C, more preferably 800-1050°C, for 2-20h.
  • the step 1) has the features as described in the first aspect above for the preparation method of the carrier, which will not be repeated here.
  • the loading of step 2) comprises impregnating the support with a solution comprising a precursor of the active metal component and an optional precursor of a metal promoter, preferably the impregnation liquid
  • a solution comprising a precursor of the active metal component and an optional precursor of a metal promoter, preferably the impregnation liquid
  • the pH is in the range of 3.5-5.5. Controlling the pH of the impregnation solution within the above range can further improve the dispersibility of the active metal component.
  • the impregnation is to soak the carrier in a suitable solution containing the precursor of the active metal component and the metal assistant, and the precursor is adsorbed and supported on the carrier.
  • the dipping method is subdivided, including dry dipping, wet dipping, multiple dipping, mixed dipping and spray dipping.
  • the dry and wet impregnation method refers to the state of the carrier before impregnation of the active metal component precursor, whether it is dry or pre-wetted with water.
  • the multiple dipping method means that the precursor mixed solution of one or several components is impregnated in multiple times, or different precursor groups are impregnated in batches.
  • the multiple dipping method requires drying and roasting after each impregnation to " Anchor" the impregnated component.
  • the mixed impregnation method is to impregnate the active metal component and the precursor used for the metal additive together without precipitation reaction.
  • the spray dipping method uses a spray gun to spray the impregnating solution onto the continuously rotating carrier, so that the impregnating liquid just fills the pore volume of the carrier to saturation.
  • the catalyst of the present application can reasonably select these impregnation methods according to the actual situation.
  • the precursors of the active metal components and metal promoters are soluble salts of the corresponding metals, such as nitrates, formates, oxalates, lactates and the like.
  • the solvent used to form the metal salt solution of the impregnated support is preferably water, but some organic solvents such as ethanol can also be used.
  • the impregnation of the support with the metal salt solution can be carried out in any desired order, or it can be successively impregnated with a plurality of solutions containing one or more metal salts. All or a single impregnation step can be performed in several times, and the impregnation sequence can also be changed.
  • the concentration of the solution is chosen so that the desired amount of metal is supported on the support.
  • the carrier loaded with the active metal component and optional metal additive is subjected to a heat treatment, the heat treatment preferably including calcination, or a combination of drying and calcination.
  • the heat treatment may include drying the impregnated support at 80-150°C, more preferably at 80-120°C.
  • the drying time can be reasonably selected according to the drying temperature, the amount of drying materials and the drying equipment. For example, it can be 6-20 hours, as long as the moisture content after drying does not affect the subsequent roasting.
  • after drying it can be calcined at 150-500°C to remove crystal water in the salt or decompose the salt into oxides, preferably calcined at 300-500°C for 1-6h.
  • drying and firing are preferably performed after each impregnation.
  • the loading operation of active metal components and metal promoters has little effect on the microstructure of the catalyst, and therefore, the obtained catalyst has a similar pore structure as the support.
  • the present application provides a carrier comprising an inorganic porous material containing aluminum and/or silicon, wherein the L acid content of the carrier accounts for more than 85% of the sum of the L acid and B acid contents.
  • the L acid content of the carrier accounts for more than 88% of the sum of the contents of L acid and B acid, more preferably more than 90%, particularly preferably more than 92%.
  • the support comprises a matrix and a doping element, wherein the matrix is selected from alumina, silica, molecular sieves, diatomaceous earth, aluminum silicate, or combinations thereof, and the doping element is A non-metal element, preferably at least one selected from group IIIA non-metal elements, VA group non-metal elements, VIA group non-metal elements and VIIA group non-metal elements and not chlorine, more preferably boron, fluorine, phosphorus, sulfur and at least one of selenium.
  • the matrix is selected from alumina, silica, molecular sieves, diatomaceous earth, aluminum silicate, or combinations thereof
  • the doping element is A non-metal element, preferably at least one selected from group IIIA non-metal elements, VA group non-metal elements, VIA group non-metal elements and VIIA group non-metal elements and not chlorine, more preferably boron, fluorine, phosphorus, sulfur and at least one of selenium.
  • the doping element in the carrier comes from a non-metallic acid ion
  • the non-metallic acid ion is preferably at least one of borate ion, fluoride ion, phosphate ion, sulfate ion and selenate ion.
  • the carrier has at least one of the following characteristics:
  • the pore volume of the carrier with a pore diameter in the range of 7-27 nm accounts for more than 65% of the pore volume of the carrier, preferably 70-90%, and preferably the pore volume with a pore diameter of less than 7 nm accounts for the percentage of the pore volume of the carrier: 0-10%, preferably 0-8%;
  • the percentage of the pore volume with a pore diameter of less than 7.5 nm accounts for less than 20% of the pore volume of the carrier, preferably 5-17%, and the percentage of the pore volume with a pore diameter of less than 9 nm in the pore volume of the carrier is less than 40%
  • the percentage of the pore volume with a pore size greater than 27 nm in the pore volume of the carrier is less than 5%, preferably 0.5-5%, preferably, the pore volume with a pore size greater than or equal to 7.5 nm and less than 9 nm accounts for 5% of the pore volume of the carrier -17%, the pore volume with a pore size greater than or equal to 9 nm and less than or equal to 27 nm accounts for 61-89.5% of the pore volume of the carrier;
  • the ammonia adsorption capacity of the carrier is 0.25-0.65 mmol/g, preferably 0.3-0.6 mmol/g, more preferably 0.3-0.5 mmol/g;
  • the content of alumina in the carrier accounts for more than 65% by weight of the total amount of the matrix, preferably more than 70% by weight, more preferably more than 75% by weight;
  • the content of the doping element accounts for 0.05-6% by weight of the total amount of the matrix, preferably 0.05-5% by weight, more preferably 0.05-4.5% by weight, particularly preferably 0.07-4% by weight;
  • the carrier has a specific surface area of 100-220 m 2 /g, preferably 105-210 m 2 /g, more preferably 110-210 m 2 /g, particularly preferably 120-210 m 2 /g;
  • the pore volume of the carrier is 0.4-1.1 ml/g, preferably 0.43-1.1 ml/g, more preferably 0.45-1.1 ml/g, particularly preferably 0.45-1 ml/g; and
  • the isoelectric point of the carrier is 3-6, preferably 3.5-5.5.
  • the application provides the use of the catalyst according to the application or the support according to the application in catalytic amination to prepare organic amines.
  • the present application provides a method for preparing an organic amine, comprising: in the presence of hydrogen, contacting an amination raw material, an amination reagent, and a catalyst according to the present application to perform an amination reaction to obtain the organic amine.
  • the amination raw material is selected from alcohols, ketones, alcoholamines, aldehydes or their combinations, preferably selected from C2-20 alcohols, C3-20 ketones, C2-20 alcoholamines, C2 -20 aldehydes and their various mixtures.
  • the amination raw material is selected from ethanol, acetaldehyde, n-propanol, propionaldehyde, isopropanol, n-butanol, butyraldehyde, isobutanol, isobutyraldehyde, 2-ethylhexanol, 2 -Ethylhexanal, octanol, octanal, dodecanol, dodecanol, hexadecanol, cetylaldehyde, cyclopentanol, cyclohexanol, cyclooctanol, cyclododecanol, Benzyl alcohol, benzaldehyde, phenethyl alcohol, phenylacetaldehyde, 1,4-butanediol, 1,4-butanedialdehyde, 1,5-pentanediol, 1,5-glutaral
  • the amination reagent refers to a reactant capable of providing amino groups and/or amine groups.
  • the aminating agent is selected from ammonia, primary amines, secondary amines or combinations thereof, preferably selected from ammonia, C1-12 primary amines, C2-12 secondary amines and various mixtures thereof, such as alkyl groups At least one of amines, cycloalkylamines and aralkylamines, more preferably C1-4 alkylamines.
  • the aminating agent is selected from ammonia, monomethylamine, dimethylamine, methylethylamine, monoethylamine, diethylamine and various mixtures thereof.
  • the conditions of the amination reaction include: the molar ratio of hydrogen, amination reagent and amination raw material is 1-6:2-35:1, preferably 1-6:2-33:1, More preferably 1-5:3-33:1, temperature is 105-230°C, preferably 110-220°C, more preferably 110-210°C, pressure is 0.7-25MPa, preferably 1-25MPa, more preferably 1-22MPa, especially It is preferably 1-17 MPa, and the liquid phase volume space velocity of the amination raw material is 0.06-1 m 3 /(m 3 ⁇ h).
  • the amination raw material is a monohydric alcohol
  • the conditions of the amination reaction include: the molar ratio of hydrogen, amination reagent and amination raw material is preferably 1-4:2-9:1 , more preferably 1-4:2-8:1, the temperature is 130-210 °C, preferably 130-208 °C, more preferably 130-200 °C, the pressure is 0.8-3.5MPa, preferably 1-2.5MPa, the amination raw material
  • the liquid phase volume space velocity is 0.1-0.8 m 3 /(m 3 ⁇ h).
  • the amination raw material is ketone or aldehyde
  • the conditions of the amination reaction include: the molar ratio of hydrogen, amination reagent and amination raw material is 1-4:2-6:1 , preferably 1-4:2-5:1, the temperature is 105-180 °C, preferably 110-170 °C, more preferably 110-160 °C, the pressure is 0.7-2.5MPa, preferably 1-2.5MPa, more preferably is 1-2 MPa, and the liquid phase volume space velocity of the amination raw material is 0.1-1 m 3 /(m 3 ⁇ h), preferably 0.1-0.8 m 3 /(m 3 ⁇ h).
  • the amination raw material is alcohol amine
  • the conditions of the amination reaction include: the molar ratio of hydrogen, amination reagent and amination raw material is 1-4:3-23:1, Preferably 1-4:3-20:1, more preferably 1-4:3-10:1, temperature is 130-200°C, pressure is 1-16MPa, preferably 1-13MPa, more preferably 1-11MPa, amine
  • the liquid phase volume space velocity of the chemical raw material is 0.06-0.8 m 3 /(m 3 ⁇ h).
  • the amination raw material is a dihydric alcohol
  • the conditions of the amination reaction include: the molar ratio of hydrogen, amination reagent and amination raw material is 0.3-5:2-35:1 , preferably 1-4:3-35:1, more preferably 1-4:3-33:1, particularly preferably 1-4:3-32:1, the temperature is 130-230 ° C, preferably 130-220 ° C, more It is preferably 130-210°C, the pressure is 1-25MPa, preferably 1-22MPa, more preferably 1-17MPa, the liquid phase volume space velocity of the amination raw material is 0.1-0.9m 3 /(m 3 ⁇ h), preferably 0.1-0.8 m 3 /(m 3 ⁇ h).
  • the amination raw material is a mixture of 1,6-hexanediol, cyclohexylimine and 6-amino-1-hexanol
  • the conditions of the amination reaction include: hydrogen
  • the molar ratio of the amination reagent and the amination raw material is 0.3-4:3-35:1, preferably 1-4:3-33:1, more preferably 1-4:3-32:1, and the temperature is 130-230°C, It is preferably 130-220°C, more preferably 130-210°C
  • the pressure is 1-22MPa, preferably 1-17MPa
  • the liquid phase volume space velocity of the amination raw material is 0.1-0.9m 3 /(m 3 ⁇ h), preferably 0.1- 0.8m 3 /(m 3 ⁇ h).
  • a catalyst having the function of catalyzing the hydroamination of alcohol to synthesize organic amine comprising a carrier, an active metal component and an optional metal supported on the carrier
  • the carrier comprises a matrix and a doping element
  • the matrix comprises alumina and optionally other carriers, wherein the other carriers are selected from at least one of silica, molecular sieves and diatomaceous earth
  • the percentage of the pore volume of the carrier with a pore diameter of less than 7.5 nm accounts for less than 20% of the pore volume of the carrier, the pore volume of the pore diameter of less than 9 nm accounts for less than 40% of the pore volume of the carrier, and the pores with a pore diameter of greater than 27 nm
  • the percentage of the pore volume of the carrier is less than 5%; the ammonia adsorption capacity of the carrier is 0.3-0.6 mmol/g; the L acid content of the carrier accounts for more
  • the catalyst of the first embodiment of the present application has a specific acidity and a pore structure, and when used in the hydroamination reaction of alcohols, it not only exhibits high catalytic activity, but also has excellent selectivity. It is used in the hydroamination of 1,3-propanediol and produces less 3-aminopropanol and other impurities in comparison. For the hydroamination of ethanol, the amount of methylethylamine, methyldiethylamine, ethyl-n-propylamine and ethyl-sec-butylamine is less. Used in the hydroamination of 1,6-hexanediol with less heavy components and other impurities.
  • the catalyst of the first embodiment of the present application has more stable catalytic performance, controls the acidity of the catalyst within a certain range, improves the adsorption-desorption performance of the catalyst at the same time, and further promotes the diffusion of the reaction system. , speed up the reaction rate, reduce carbon deposition, slow down the blockage of pores.
  • the carrier is mainly composed of (doped) alumina, and can be further mixed with (doped) silicon oxide, so as to further improve the pore structure type and pore structure stability of the catalyst.
  • the matrix of the carrier is selected from alumina doped with at least one of silica, molecular sieve and diatomaceous earth and undoped alumina, and the content of the alumina carrier in the matrix accounts for the proportion of the alumina carrier and other alumina.
  • the total amount of the carrier is 65% by weight or more, preferably 75% by weight or more.
  • the content of the doping element in the carrier is 0.05-3 wt %, more preferably 0.08-2 wt %, further preferably 0.1-1.5 wt %.
  • the hetero elements doped in the carrier come from acid ions excluding chloride ions. Since the doped impurity elements are introduced during the preparation of the carrier, the doped impurity elements mainly exist in the bulk phase of the carrier.
  • the acid ion can be selected from at least one of non-metallic acid ions, more preferably at least one of borate ion, fluoride ion, phosphate ion, sulfate ion and selenate ion.
  • the doping element is preferably selected from at least one of boron, fluorine, phosphorus, sulfur and selenium.
  • the pore volume with a pore diameter of less than 7.5 nm in the carrier accounts for 5-17% of the pore volume of the carrier, more preferably 5-10%, and the pore volume with a pore diameter of greater than or equal to 7.5 nm and less than 9 nm accounts for the pore volume of the carrier.
  • the percentage of carrier pore volume is 5-17%, the pore volume with pore diameter greater than or equal to 9nm and less than or equal to 27nm accounts for 61-89.5% of the carrier pore volume, and the pore volume with pore diameter greater than 27nm accounts for the percentage of the carrier pore volume 0.5-5%, more preferably 0.5-3%.
  • the inventors of the present application found that the catalyst with the pore structure meeting the above requirements has more excellent catalytic performance.
  • the ammonia adsorption capacity of the carrier is 0.3-0.5 mmol/g.
  • the L acid content of the carrier accounts for 92-100% of the sum of the L acid and B acid content, preferably 96-100%.
  • the carrier has a specific surface area of 105-220 m 2 /g.
  • the pore volume of the carrier is 0.4-1.1 ml/g.
  • the content of the active metal component may be 5-42 g, preferably 10-35 g, per 100 g of the substrate.
  • the catalyst in order to better exert the performance of the catalyst, optimize the ratio of reaction products, and reduce unnecessary side reactions, the catalyst may further contain a metal promoter, and the metal promoter may At least one selected from VIB, VIIB, IB, IIB and lanthanide elements, preferably at least one of Cr, Mo, W, Mn, Re, Cu, Ag, Au, Zn, La and Ce .
  • the content of the metal auxiliary may be 0-10 g, preferably 0.5-6 g, per 100 g of the substrate.
  • a method for preparing organic amine characterized in that the method comprises: in the presence of hydrogen, mixing an amination raw material, an amination reagent and the aforementioned catalyst Contact to carry out the amination reaction.
  • the amination raw materials or amination reagents can be selected as described above, which will not be repeated here.
  • the conditions of the amination reaction may include: the molar ratio of hydrogen, the amination reagent and the amination raw material is 1-5:2-35:1, the temperature is 110-220°C, The pressure is 1-25 MPa, and the liquid phase volume space velocity of the amination raw material is 0.06-1 m 3 /(m 3 ⁇ h).
  • the amination raw material is a monohydric alcohol
  • the conditions of the amination reaction include: the molar ratio of hydrogen, the amination reagent and the amination raw material is 1-4:2-8:1, and the temperature is 130-200°C , the pressure is 1-3.5MPa, and the liquid phase volume space velocity of the amination raw material is 0.1-0.8m 3 /(m 3 ⁇ h).
  • the amination raw material is a ketone or an aldehyde
  • the conditions of the amination reaction include: the molar ratio of hydrogen, the amination reagent and the amination raw material is 1-4:2-5:1, and the temperature is 110-180 °C, the pressure is 1-2.5 MPa, and the liquid phase volume space velocity of the amination raw material is 0.1-0.8 m 3 /(m 3 ⁇ h).
  • the amination raw material is alcohol amine
  • the conditions of the amination reaction include: the molar ratio of hydrogen, amination reagent and amination raw material is 1-4:3-20:1, and the temperature is 130-200°C , the pressure is 1-11 MPa, and the liquid phase volume space velocity of the amination raw material is 0.06-0.8 m 3 /(m 3 ⁇ h).
  • the amination raw material is a dihydric alcohol
  • the conditions of the amination reaction include: the molar ratio of hydrogen, the amination reagent and the amination raw material is 1-5:2-35:1, and the temperature is 130-220 °C, the pressure is 1-25 MPa, and the liquid phase volume space velocity of the amination raw material is 0.1-0.8 m 3 /(m 3 ⁇ h).
  • the amination raw material is a mixture of 1,6-hexanediol, cyclohexylimine and 6-amino-1-hexanol (referred to as aminohexanol), and the conditions of the amination reaction include: hydrogen,
  • the molar ratio of the amination reagent and the amination raw material is 1-4:3-35:1, the temperature is 130-200 ° C, the pressure is 1-22MPa, and the liquid phase volume space velocity of the amination raw material is 0.1-0.8m 3 / (m 3 ⁇ h).
  • a catalyst with the function of catalyzing amine synthesis using alcohol as a raw material comprising a carrier, an active metal component supported on the carrier and an optional metal promoter , the carrier is selected from at least one of doped alumina, doped silica, doped molecular sieve and doped diatomaceous earth; the ammonia adsorption capacity of the carrier is 0.25-0.65 mmol/g;
  • the content of L acid accounts for more than 88% of the sum of the content of L acid and B acid;
  • the active metal component is cobalt and/or nickel, and the grain size of the active metal component in the catalyst is less than 10 nm.
  • the catalyst of the second type of embodiment of the present application improves the acidity of the carrier, the active metal components are highly dispersed, the grain size is less than 10 nm, and it has high catalytic activity and high selectivity for the hydroamination reaction of alcohols. sex. It is used in the hydroamination reaction of ethanolamine, and the amount of components other than ethylenediamine (such as piperazine, etc.) is relatively small. It is used in the hydroamination of 1,6-hexanediol with less heavy components and other impurities.
  • the catalyst of the second type of embodiment of the present application has more stable catalytic performance, controls the acidity of the catalyst within a certain range, improves the adsorption-desorption performance of the catalyst, and promotes the diffusion of the reaction system. , speed up the reaction rate, reduce carbon deposition, slow down the blockage of pores.
  • the carrier includes a matrix and a doping element, the matrix being selected from alumina, silica, molecular sieves, diatomaceous earth, and the like.
  • the content of the doping element in the carrier is 0.05-5 wt %, more preferably 0.08-4 wt %.
  • the doping elements in the carrier come from acid ions excluding chloride ions.
  • the doping element is preferably selected from at least one of boron, fluorine, phosphorus, sulfur and selenium. Since the doping element is introduced during the preparation of the carrier, the doping element is present in the bulk phase of the carrier.
  • the acid ion can be selected from at least one of non-metallic acid ions, such as at least one of borate ion, fluoride ion, phosphate ion, sulfate ion and selenate ion.
  • the ammonia adsorption amount of the carrier is 0.3-0.5mmol/g (for example, it can be 0.3mmol/g, 0.32mmol/g, 0.35mmol/g, 0.38mmol/g, 0.4mmol/g, 0.45mmol/g , 0.48 mmol/g, 0.5 mmol/g, or any intermediate value between any of the above two values).
  • the L acid content of the carrier accounts for 90-100% of the sum of the L acid and B acid content.
  • the grain size of the active metal component in the catalyst is 3-8 nm.
  • the carrier has a specific surface area of 100-200 m 2 /g.
  • the pore volume of the carrier is 0.45-1 ml/g.
  • the isoelectric point of the carrier is 3-6, preferably 3.5-5.5.
  • the content of the active metal component in the carrier may be 7-45 g, preferably 12-38 g, per 100 g of the substrate.
  • the catalyst in order to better exert the performance of the catalyst, optimize the ratio of reaction products, and reduce unnecessary side reactions, the catalyst may further contain a metal promoter.
  • the metal promoter can be selected from at least one of VIB, VIIB, IB, IIB and lanthanide elements, preferably Cr, Mo, W, Mn, Re, Cu, Ag, Au, Zn, La and at least one of Ce.
  • the content of the metal auxiliary in the carrier may be 0-10 g, preferably 0.5-6 g, per 100 g of the substrate.
  • the grain size of the metal additive is less than 10 nm.
  • the method comprises: in the presence of hydrogen, mixing an amination raw material, an amination reagent and the aforementioned catalyst Contact to carry out the amination reaction.
  • the amination raw materials or amination reagents can be selected as described above, and details are not repeated here.
  • the conditions of the amination reaction may include: the molar ratio of hydrogen, the amination reagent and the amination raw material is 1-5:3-33:1, the temperature is 110-210°C, The pressure is 1-22 MPa, and the liquid phase volume space velocity of the amination raw material is 0.06-1 m 3 /(m 3 ⁇ h).
  • the amination raw material is a monohydric alcohol
  • the conditions of the amination reaction include: the molar ratio of hydrogen, the amination reagent and the amination raw material is 1-4:2-8:1, and the temperature is 130-200°C , the pressure is 0.8-2.5MPa, and the liquid phase volume space velocity of the amination raw material is 0.1-0.8m 3 /(m 3 ⁇ h).
  • the amination raw material is a ketone or an aldehyde
  • the conditions of the amination reaction include: the molar ratio of hydrogen, the amination reagent and the amination raw material is 1-4:2-6:1, and the temperature is 110-170 °C, the pressure is 1-2.5 MPa, and the liquid phase volume space velocity of the amination raw material is 0.1-0.8 m 3 /(m 3 ⁇ h).
  • the amination raw material is an alcohol amine
  • the conditions of the amination reaction include: the molar ratio of hydrogen, the amination reagent and the amination raw material is 1-4:3-10:1, and the temperature is 130-200° C. , the pressure is 1-11 MPa, and the liquid phase volume space velocity of the amination raw material is 0.06-0.8 m 3 /(m 3 ⁇ h).
  • the amination raw material is a mixture or diol of 1,6-hexanediol, cyclohexylimine and 6-amino-1-hexanol (referred to as aminohexanol), and the conditions of the amination reaction Including: the molar ratio of hydrogen, amination reagent and amination raw material is 1-4:3-33:1, the temperature is 130-210°C, the pressure is 1-22MPa, and the liquid phase volume space velocity of the amination raw material is 0.1- 0.8m 3 /(m 3 ⁇ h).
  • a catalyst having the function of preparing amine by hydroamination of alcohol comprising a carrier, an active metal component and an optional metal promoter supported on the carrier agent, the carrier includes a matrix and a doping element, the matrix includes alumina and optionally other supports, the other supports are selected from silicon oxide and/or molecular sieves; the doping element is selected from boron, fluorine, phosphorus At least one of , sulfur and selenium; the pore volume of the carrier in the range of 7-27nm accounts for more than 65% of the carrier pore volume; the L acid content of the carrier accounts for the L acid and B acid content more than 85% of the sum; the active metal component is cobalt and/or nickel.
  • the doping of boron, fluorine, phosphorus, sulfur and selenium in the catalyst support of the third type of embodiment of the present application improves the catalytic performance, for example, for the hydroamination of ethanol, compared with the generation of methylethylamine, methylethylamine, methylethylamine
  • the amount of ethyl diethylamine, ethyl n-propylamine, ethyl sec-butylamine is less. It is used in the hydroamination of 1,6-hexanediol, producing less heavy components and other impurities, and longer catalyst life.
  • the catalyst of the third type of embodiment of the present application has a specific pore structure, and when used in the hydroamination reaction of alcohols, it not only exhibits high catalytic activity, but also has excellent selectivity and stability, reducing the need for The carbon deposits in the pores effectively prevent the catalyst pores from clogging.
  • the carrier is mainly composed of doped alumina, and can be further mixed with (doped) silicon oxide, so as to further improve the pore structure of the catalyst and the acid-base performance of the carrier.
  • the matrix of the carrier is alumina doped with silica and/or molecular sieve, and the content of the alumina carrier in the matrix is not less than 70% by weight, preferably 75-100% by weight.
  • the content of the doping element in the carrier is 0.05-6 wt %, more preferably 0.08-4 wt %.
  • the doping element in the carrier is doped with at least one of borate ion, fluoride ion, phosphate ion, sulfate ion and selenate ion. Since the doping element is introduced during the preparation of the carrier, the doping element mainly exists in the bulk phase of the carrier.
  • the pore volume of the carrier with a pore size in the range of 7-27 nm accounts for more than 65% of the pore volume of the carrier. More preferably, the pore volume of the carrier with a pore diameter in the range of 7-27 nm accounts for 70-90% of the pore volume of the carrier. Further preferably, the percentage of the pore volume with a pore size smaller than 7 nm in the pore volume of the carrier is 0-10%; the percentage of the pore volume with a pore size larger than 27 nm in the pore volume of the carrier is 18-32%.
  • the percentage of the L acid content of the carrier to the sum of the L acid and B acid content is 85-98%.
  • the carrier has a specific surface area of 120-210 m 2 /g.
  • the pore volume of the carrier is 0.43-1.1 ml/g.
  • the content of the active metal component may be 8-44 g, preferably 12-37 g, per 100 g of the substrate.
  • the content of the metal auxiliary may be 0-10 g, preferably 0.5-6 g, per 100 g of the substrate.
  • the catalyst in order to better exert the performance of the catalyst, optimize the ratio of reaction products, and reduce unnecessary side reactions, the catalyst may further contain a metal promoter.
  • the metal promoter can be selected from at least one of VIB, VIIB, IB, IIB and lanthanide elements, preferably Cr, Mo, W, Mn, Re, Cu, Ag, Au, Zn, La and at least one of Ce.
  • the method comprises: in the presence of hydrogen, mixing an amination raw material, an amination reagent and the aforementioned catalyst Contact to carry out the amination reaction.
  • the amination raw materials or amination reagents can be selected as described above, and details are not repeated here.
  • the conditions of the amination reaction may include: the molar ratio of hydrogen, the amination reagent and the amination raw material is 1-6:2-32:1, the temperature is 105-210°C, The pressure is 1-17 MPa, and the liquid phase volume space velocity of the amination raw material is 0.06-1 m 3 /(m 3 ⁇ h).
  • the amination raw material is a monohydric alcohol
  • the conditions of the amination reaction include: the molar ratio of hydrogen, the amination reagent and the amination raw material is 1-4:2-9:1, and the temperature is 130-208° C. , the pressure is 1-2.5MPa, and the liquid phase volume space velocity of the amination raw material is 0.1-0.8m 3 /(m 3 ⁇ h).
  • the amination raw material is a ketone or an aldehyde
  • the conditions of the amination reaction include: the molar ratio of hydrogen, the amination reagent and the amination raw material is 1-4:2-5:1, and the temperature is 105-160 °C, the pressure is 1-2 MPa, and the liquid phase volume space velocity of the amination raw material is 0.1-1 m 3 /(m 3 ⁇ h).
  • the amination raw material is alcohol amine
  • the conditions of the amination reaction include: the molar ratio of hydrogen, amination reagent and amination raw material is 1-4:3-20:1, and the temperature is 130-200°C , the pressure is 1-13 MPa, and the liquid phase volume space velocity of the amination raw material is 0.06-0.8 m 3 /(m 3 ⁇ h).
  • the amination raw material is a mixture or diol of 1,6-hexanediol, cyclohexylimine and 6-amino-1-hexanol (referred to as aminohexanol), and the conditions of the amination reaction Including: the molar ratio of hydrogen, amination reagent and amination raw material is 1-4:3-32:1, the temperature is 130-210 °C, the pressure is 1-17MPa, and the liquid phase volume space velocity of the amination raw material is 0.1- 0.9m 3 /(m 3 ⁇ h).
  • a catalyst having a catalytic function for preparing amines from alcohols comprising a support and active metal components and metal promoters supported on the support, wherein the support
  • the content of L acid accounts for more than 85% of the sum of the content of L acid and B acid, and the active metal component is cobalt and/or nickel;
  • the catalyst of the fourth embodiment of the present application uses a specific metal promoter, has high catalytic activity, and at the same time has high selectivity and few by-products.
  • the L acid content of the carrier accounts for more than 88% of the sum of the contents of L acid and B acid, more preferably more than 90%, particularly preferably more than 92%.
  • the support includes a host and a doping element
  • the host includes alumina and optionally other supports, the other supports include silicon oxide and/or molecular sieves
  • the doping element is selected from boron, fluorine, phosphorus , at least one of sulfur and selenium
  • the pore volume of the carrier with a pore size in the range of 7-27 nm accounts for more than 65% of the carrier pore volume.
  • the carrier is mainly composed of doped alumina, and can be further mixed with (doped) silicon oxide, so as to further improve the pore structure of the catalyst and make it easier for reactants and products to diffuse in the pores And make the pore structure more stable performance.
  • the content of alumina in the matrix of the carrier accounts for more than 70% by weight of the total amount of alumina and other supports, preferably 75-100% by weight.
  • the content of the doping element in the carrier is 0.05-4.5 wt %, more preferably 0.07-2.8 wt %.
  • the element doped in the carrier is doped by at least one of borate ion, fluoride ion, phosphate ion, sulfate ion and selenate ion.
  • Doping elements exist in the alumina precursor and are added in the process of preparing the precursor. The doping elements are enclosed in the crystal phase of the precursor, and the doping elements mainly exist in the bulk phase of the carrier after the carrier is prepared.
  • the pore volume of the carrier with a pore size in the range of 7-27 nm accounts for 70-90% of the pore volume of the carrier.
  • the pore volume with a pore diameter of less than 7 nm accounts for 0-8% of the pore volume of the carrier.
  • the pore volume with a pore size larger than 27 nm accounts for 15-35% of the pore volume of the carrier, more preferably 20-29%.
  • the carrier has a specific surface area of 110-210 m 2 /g.
  • the pore volume of the carrier is 0.45-1.1 ml/g.
  • the content of the active metal component may be 8-45g, preferably 15-38g (for example, may be 15, 20, 25, 28, 30, 32, 35, 37, 38 per 100 g of the substrate) any value in , or any intermediate value between any two of the above).
  • the content of the metal auxiliary agent may be 0.1-10 g, preferably 0.5-6 g (for example, may be 0.5, 1, 2, 3, 3.5, 3.8, 4, 4.2, 4.5 per 100 g of the substrate) , 4.8, 5, 5.2, 5.5, 6, or any intermediate value between any two of the above).
  • the catalyst in order to better exert the performance of the catalyst of the present application, optimize the ratio of reaction products, and reduce unnecessary side reactions, the catalyst contains the aforementioned metal promoter.
  • the weight ratio of Group IIA metal, Group IIB metal and Group VA metal in the metal additive is preferably 0.1-10:0.1-10:1, more preferably 0.2-8:0.2-8:1.
  • the Group IIA metal is selected from at least one of magnesium, calcium and barium.
  • the Group IIB metal is selected from zinc.
  • the Group VA metal is selected from bismuth.
  • a carrier with specific pore structure and doping elements is used, so that the catalyst has higher catalytic activity and higher selectivity for alcohol hydroamination reaction , used for the hydroamination of ethanol, in contrast, the amount of methylethylamine, methyldiethylamine, ethyl-n-propylamine, and ethyl-sec-butylamine is less. It is used in the hydroamination of 1,6-hexanediol with less heavy components and other impurities. After the long-cycle life assessment, the catalyst has more stable catalytic performance, promotes the diffusion of the reaction system, accelerates the reaction rate, reduces carbon deposition, and slows down the blockage of pores.
  • the carrier can be prepared by using an existing method that can obtain doping elements and pore structures that meet the above ranges, and obtaining a carrier with doping elements and pore structures that meet the above ranges is the present invention.
  • the carrier is prepared by a method comprising the steps of:
  • the mixture containing doping elements, alumina precursors and optional other carrier precursors are sequentially shaped, first dried and first calcined, and the other carrier precursors include silicon oxide precursors (such as silica sol) ) and/or molecular sieve precursor (such as ZSM-5);
  • the first calcined product is mixed with the solution of the Group IIA metal precursor and then subjected to second drying and second calcination.
  • the molding method can use kneading, rolling, or sheeting.
  • the doping element can be doped in the raw material for providing the alumina precursor, that is, the alumina precursor and/or other carrier precursor modified by the doping element can be directly used, and Such doping element-modified alumina precursors or other carrier precursors can be obtained by commercially available or conventional methods, and details are not described herein again.
  • the alumina precursor is preferably pseudoboehmite.
  • the specific surface area of the pseudo-boehmite is preferably 250-330 m 2 /g.
  • the pore volume of the pseudo-boehmite is preferably 0.5-1.1.
  • the pseudo-boehmite can be prepared by at least one of the carbonization method, the organic aluminum hydrolysis method, the aluminum sulfate method and the nitric acid method, and is particularly preferably prepared by the aluminum sulfate method.
  • a catalyst with better performance can be obtained by selecting pseudo-boehmite with specific pore structure.
  • the conditions for the first drying and the second drying may independently include: a temperature of 80-150° C. and a time of 6-20 h. Preferably it is 100-120°C, 8-15h.
  • the conditions of the first roasting may include: a temperature of 500-650° C. and a time of 2-20 h. Preferably it is 520-620°C, 4-8h.
  • the conditions for the second calcination may include: a temperature of 800-1100° C. and a time of 2-20 h. Preferably 800-980°C, 5-10h
  • a method for preparing organic amine comprises: in the presence of hydrogen, mixing an amination raw material, an amination reagent and the aforementioned catalyst Contact to carry out the amination reaction.
  • the amination raw materials or amination reagents can be selected as described above, and details are not repeated here.
  • the conditions of the amination reaction may include: the molar ratio of hydrogen, the amination reagent and the amination raw material is 1-5:2-35:1, the temperature is 110-230 °C, The pressure is 0.7-22 MPa, and the liquid phase volume space velocity of the amination raw material is 0.06-1 m 3 /(m 3 ⁇ h).
  • the amination raw material is a monohydric alcohol
  • the conditions of the amination reaction include: the molar ratio of hydrogen, the amination reagent and the amination raw material is 1-4:2-8:1, and the temperature is 130-210° C. , the pressure is 1-2.5MPa, and the liquid phase volume space velocity of the amination raw material is 0.1-0.8m 3 /(m 3 ⁇ h).
  • the amination raw material is a ketone or an aldehyde
  • the conditions of the amination reaction include: the molar ratio of hydrogen, the amination reagent and the amination raw material is 1-4:2-5:1, and the temperature is 110-180 °C, the pressure is 0.7-2.5 MPa, and the liquid phase volume space velocity of the amination raw material is 0.1-0.8 m 3 /(m 3 ⁇ h).
  • the amination raw material is an alcohol amine
  • the conditions of the amination reaction include: the molar ratio of hydrogen, the amination reagent and the amination raw material is 1-4:3-23:1, and the temperature is 130-200° C. , the pressure is 1-16MPa, and the liquid phase volume space velocity of the amination raw material is 0.06-0.8m 3 /(m 3 ⁇ h).
  • the amination raw material is a mixture or diol of 1,6-hexanediol, cyclohexylimine and 6-amino-1-hexanol
  • the conditions of the amination reaction include: hydrogen, amination
  • the molar ratio of the reagent and the amination raw material is 1-4:3-35:1, the temperature is 130-230 ° C, the pressure is 1-22MPa, and the liquid phase volume space velocity of the amination raw material is 0.1-0.8m 3 /(m 3 h).
  • the application provides the following technical solutions:
  • the catalyst comprises a carrier, an active metal component and an optional metal assistant supported on the carrier, and it is characterized in that the carrier comprises A matrix and a doping element, the matrix includes an alumina carrier and optional other carriers, wherein the other carriers are selected from at least one of silica, molecular sieves and diatomaceous earth; the pore size of the carrier is less than 7.5nm The percentage of the pore volume of the carrier is less than 20%, the pore volume of which the pore size is smaller than 9nm accounts for less than 40% of the pore volume of the carrier, and the pore volume of the pore size larger than 27nm accounts for the low percentage of the pore volume of the carrier.
  • the ammonia adsorption amount of the carrier is 0.3-0.6mmol/g; the L acid content of the carrier accounts for more than 90% of the sum of the L acid and B acid content; the active metal components are cobalt and
  • the content of the doping element accounts for 0.05-3 wt % of the total weight of the matrix, preferably 0.08-2 wt %;
  • the doping element comes from acid ions not including chloride ions;
  • the acid ions are selected from at least one of non-metallic acid ions, preferably borate ions, fluoride ions, phosphate ions, sulfate ions and at least one of selenate ions;
  • the pore volume with a pore diameter of less than 7.5 nm in the carrier accounts for 5-17% of the pore volume of the carrier, and the pore volume with a pore diameter greater than or equal to 7.5 nm and less than 9 nm accounts for 5% of the pore volume of the carrier.
  • the pore volume with a pore diameter greater than or equal to 9 nm and less than or equal to 27 nm accounts for 61-89.5% of the pore volume of the carrier, and the pore volume with a pore diameter greater than 27 nm accounts for 0.5-5% of the pore volume of the carrier;
  • ammonia adsorption capacity of the carrier is 0.3-0.5mmol/g
  • the L acid content of the carrier accounts for 92-100% of the sum of the L acid and B acid content
  • the specific surface area of the carrier is 105-220m 2 /g;
  • the pore volume of the carrier is 0.4-1.1 ml/g
  • the content of the active metal component is 5-42 g, preferably 10-35 g, per 100 g of the substrate.
  • the carrier modifier is selected from at least one of non-metallic acid ions, preferably selected from borate ions, fluoride ions, phosphate ions, sulfate ions and selenate ions at least one of the ions.
  • A5. The catalyst according to item A3 or A4, wherein the carrier modifier is selected from boric acid, nickel borate, cobalt borate, potassium borate, ammonium borate, potassium fluoride, cobalt fluoride, nickel fluoride, hydrofluoride Acid, ammonium fluoride, phosphoric acid, aluminum phosphate, potassium phosphate, potassium dihydrogen phosphate, potassium hydrogen phosphate, magnesium phosphate, calcium phosphate, ammonium phosphate, sulfuric acid, cobalt sulfate, nickel sulfate, aluminum sulfate, calcium sulfate, potassium sulfate, sulfuric acid at least one of magnesium, strontium phosphate, strontium sulfate and selenic acid;
  • the carrier modifier is selected from boric acid, nickel borate, cobalt borate, potassium borate, ammonium borate, potassium fluoride, cobalt fluoride, nickel fluoride, hydrofluoride Acid, ammonium fluoride,
  • the specific surface area of the pseudo-boehmite is 255-360 m 2 /g, and the pore volume is 0.75-1.3 ml/g.
  • A6 The catalyst according to any one of items A3-A5, wherein the drying conditions include: a temperature of 80-150°C and a time of 6-20h;
  • the calcination conditions include: a temperature of 800-1050° C. and a time of 2-20 h.
  • A8 The vector as defined in any one of items A1-A6.
  • a method for preparing an organic amine characterized in that the method comprises: in the presence of hydrogen, contacting an amination raw material, an amination reagent and the catalyst described in any one of items A1-A6 to carry out an amination reaction;
  • the method includes: screening a catalyst comprising the carrier defined in any one of items A1-A6, and in the presence of hydrogen, contacting an amination raw material, an amination reagent and the screened catalyst to carry out an amination reaction.
  • the amination raw material is selected from at least one of C2-20 alcohol, C3-20 ketone, C2-20 alcohol amine and C2-20 aldehyde, preferably ethanol, acetaldehyde, n-propyl Alcohol, propionaldehyde, isopropanol, n-butanol, butyraldehyde, isobutanol, isobutyraldehyde, 2-ethylhexanol, 2-ethylhexanal, octanol, octanal, dodecanol, ten Dialkanal, hexadecanol, hexadecanol, cyclopentanol, cyclohexanol, cyclooctanol, cyclododecanol, benzyl alcohol, benzaldehyde, phenethyl alcohol, phenylacetaldehyde, 1,4-butane
  • the amination reagent is selected from at least one of ammonia, C1-12 primary amine and C1-12 secondary amine, preferably ammonia, monomethylamine, dimethylamine, methylethylamine, At least one of monoethylamine and diethylamine.
  • the conditions of the amination reaction include: the molar ratio of hydrogen, amination reagent and amination raw material is 1-4:2- 8:1, the temperature is 130-200°C, the pressure is 1-3.5MPa, and the liquid phase volume space velocity of the amination raw material is 0.1-0.8m 3 /(m 3 ⁇ h);
  • the conditions of the amination reaction include: the molar ratio of hydrogen, the amination reagent and the amination raw material is 1-4:2-5:1, and the temperature is 110-180 °C, the pressure is 1-2.5MPa, the liquid phase volume space velocity of the amination raw material is 0.1-0.8m 3 /(m 3 ⁇ h);
  • the conditions of the amination reaction include: the molar ratio of hydrogen, the amination reagent and the amination raw material is 1-4:3-20:1, and the temperature is 130-200° C. , the pressure is 1-11MPa, and the liquid phase volume space velocity of the amination raw material is 0.06-0.8m 3 /(m 3 ⁇ h);
  • the conditions of the amination reaction include: the molar ratio of hydrogen, the amination reagent and the amination raw material is 1-5:2-35:1, the temperature is 130-220°C, The pressure is 1-25MPa, and the liquid phase volume space velocity of the amination raw material is 0.1-0.8m 3 /(m 3 ⁇ h);
  • the conditions for the amination reaction include: hydrogen, amination reagent and amination
  • the molar ratio of the raw materials is 1-4:3-35:1, the temperature is 130-200°C, the pressure is 1-22MPa, and the liquid phase volume space velocity of the amination raw material is 0.1-0.8m 3 /(m 3 ⁇ h) .
  • a catalyst with the function of catalyzing amine synthesis with alcohol as a raw material comprises a carrier, an active metal component and an optional metal assistant supported on the carrier, and characterized in that the carrier is selected from the group consisting of doped At least one of hetero-alumina, doped silica, doped molecular sieve and doped diatomaceous earth; the ammonia adsorption capacity of the carrier is 0.25-0.65mmol/g; the L acid content of the carrier accounts for the proportion of L acid and More than 88% of the sum of the B acid content; the active metal component is cobalt and/or nickel, and the grain size of the active metal component in the catalyst is less than 10 nm.
  • the carrier is selected from the group consisting of doped At least one of hetero-alumina, doped silica, doped molecular sieve and doped diatomaceous earth; the ammonia adsorption capacity of the carrier is 0.25-0.65mmol/g; the L acid content of the carrier accounts for the proportion of L acid
  • the carrier comprises a matrix and a doping element
  • the matrix is selected from alumina, silica, molecular sieve and diatomaceous earth, and the content of the doping element accounts for the total content of the matrix 0.05-5% by weight, preferably 0.08-4% by weight;
  • the elements doped in the carrier come from acid ions and do not include chloride ions;
  • the acid ions are selected from at least one of non-metallic acid ions, preferably borate ions, fluoride ions, phosphate ions, at least one of sulfate ions and selenate ions;
  • ammonia adsorption capacity of the carrier is 0.3-0.5mmol/g
  • the L acid content of the carrier accounts for 90-100% of the sum of the L acid and B acid content
  • the grain size of the active metal component in the catalyst is 3-8nm;
  • the specific surface area of the carrier is 100-200 m 2 /g;
  • the pore volume of the carrier is 0.45-1ml/g
  • the isoelectric point of the carrier is 3-6, preferably 3.5-5.5;
  • the content of the active metal component is 7-45 g, preferably 12-38 g, per 100 g of the substrate.
  • the carrier modifier is preferably boric acid, potassium borate, magnesium borate, hydrofluoric acid, potassium fluoride, magnesium fluoride, phosphoric acid, potassium phosphate, magnesium phosphate, sulfuric acid, potassium sulfate, magnesium sulfate and selenic acid. at least one.
  • the calcination conditions include: a temperature of 820-1120° C. and a time of 2-20 h.
  • a method for preparing an organic amine characterized in that the method comprises: in the presence of hydrogen, contacting an amination raw material, an amination reagent and the catalyst described in any one of items B1-B6 to carry out an amination reaction;
  • the catalyst comprising the carrier defined in any one of items B1-B6 is screened, and in the presence of hydrogen, the amination raw material, the amination reagent and the screened catalyst are contacted to carry out the amination reaction.
  • the amination raw material is selected from at least one of C2-20 alcohol, C3-20 ketone, C2-20 alcohol amine and C2-20 aldehyde, preferably ethanol, acetaldehyde, n-propyl Alcohol, propionaldehyde, isopropanol, n-butanol, butyraldehyde, isobutanol, isobutyraldehyde, 2-ethylhexanol, 2-ethylhexanal, octanol, octanal, dodecanol, ten Dialkanal, hexadecanol, hexadecanol, cyclopentanol, cyclohexanol, cyclooctanol, cyclododecanol, benzyl alcohol, benzaldehyde, phenethyl alcohol, phenylacetaldehyde, 1,4-butane
  • the amination reagent is selected from at least one of ammonia, C1-12 primary amine and C1-12 secondary amine, preferably ammonia, monomethylamine, dimethylamine, methylethylamine, At least one of monoethylamine and diethylamine.
  • the conditions of the amination reaction include: the molar ratio of hydrogen, the amination reagent and the amination raw material is 1-4:2-6:1, and the temperature is 110-170 °C, the pressure is 1-2.5MPa, the liquid phase volume space velocity of the amination raw material is 0.1-0.8m 3 /(m 3 ⁇ h);
  • the conditions of the amination reaction include: the molar ratio of hydrogen, the amination reagent and the amination raw material is 1-4:3-10:1, and the temperature is 130-200° C. , the pressure is 1-11MPa, and the liquid phase volume space velocity of the amination raw material is 0.06-0.8m 3 /(m 3 ⁇ h);
  • the conditions of the amination reaction include: hydrogen, amination
  • the molar ratio of the reagent and the amination raw material is 1-4:3-33:1, the temperature is 130-210 ° C, the pressure is 1-22MPa, and the liquid phase volume space velocity of the amination raw material is 0.1-0.8m 3 /(m 3 h).
  • the catalyst comprises a carrier and an active metal component and an optional metal assistant supported on the carrier, it is characterized in that, the carrier comprises a matrix and a doping element, the matrix includes an alumina carrier and optionally other carriers selected from silicon oxide and/or molecular sieves; the doping element is selected from boron, fluorine, phosphorus, sulfur and selenium At least one; the pore volume of the carrier with a pore diameter in the range of 7-27 nm accounts for more than 65% of the pore volume of the carrier; the active metal component is cobalt and/or nickel.
  • the carrier comprises a matrix and a doping element
  • the matrix includes an alumina carrier and optionally other carriers selected from silicon oxide and/or molecular sieves
  • the doping element is selected from boron, fluorine, phosphorus, sulfur and selenium At least one
  • the pore volume of the carrier with a pore diameter in the range of 7-27 nm accounts for more than 65% of the pore volume
  • the content of doping elements in the carrier accounts for 0.05-6 wt % of the total weight of the matrix, preferably 0.08-4 wt %;
  • the doping element is doped with at least one of borate ion, fluoride ion, phosphate ion, sulfate ion and selenate ion;
  • the pore volume of the carrier with a pore size in the range of 7-27 nm accounts for more than 65% of the pore volume of the carrier; preferably, the pore volume of the carrier with a pore size in the range of 7-27 nm accounts for the The percentage of the pore volume of the carrier is 70-90%, and the percentage of the pore volume with a pore diameter of less than 7 nm accounts for 0-10% of the pore volume of the carrier;
  • the percentage of the L acid content of the carrier to the sum of the L acid and B acid content is greater than or equal to 85%, preferably 85-98%;
  • the specific surface area of the carrier is 120-210 m 2 /g;
  • the pore volume of the carrier is 0.43-1.1 ml/g
  • the content of the active metal component is 8-44 g, preferably 12-37 g, per 100 g of the substrate.
  • the carrier is prepared by a method comprising the steps of: sequentially forming, drying and calcining a mixture of a precursor containing a doping element and a carrier, wherein the carrier is
  • the precursor of the carrier is selected from the precursor of alumina and optionally other matrix precursors, and the other matrix precursor is selected from the precursor of silicon oxide and/or the precursor of molecular sieve.
  • the doping element is provided by at least one selected from the group consisting of compounds containing non-metal acid ions, preferably compounds containing borate ions, compounds containing fluorine ions, compounds containing At least one of a phosphate ion-containing compound, a sulfate ion-containing compound, and a selenate ion-containing compound is provided.
  • the roasting conditions include: the temperature is 700-1100° C., and the time is 2-20 h.
  • a method for preparing an organic amine characterized in that the method comprises: in the presence of hydrogen, contacting an amination raw material, an amination reagent and the catalyst described in any one of items C1-C6 to carry out an amination reaction;
  • the catalyst comprising the carrier defined in any one of the items C1-C6 is screened, and in the presence of hydrogen, the amination raw material, the amination reagent and the screened catalyst are contacted to carry out the amination reaction.
  • the amination raw material is selected from at least one of C2-20 alcohol, C3-20 ketone, C2-20 alcohol amine and C2-20 aldehyde, preferably ethanol, acetaldehyde, n-propyl Alcohol, propionaldehyde, isopropanol, n-butanol, butyraldehyde, isobutanol, isobutyraldehyde, 2-ethylhexanol, 2-ethylhexanal, octanol, octanal, dodecanol, ten Dialkanal, hexadecanol, hexadecanol, cyclopentanol, cyclohexanol, cyclooctanol, cyclododecanol, benzyl alcohol, benzaldehyde, phenethyl alcohol, phenylacetaldehyde, 1,4-butane
  • the amination reagent is selected from at least one of ammonia, C1-12 primary amine and C1-12 secondary amine, preferably ammonia, monomethylamine, dimethylamine, methylethylamine, At least one of monoethylamine and diethylamine.
  • the conditions of the amination reaction include: the molar ratio of hydrogen, the amination reagent and the amination raw material is 1-4:2-5:1, and the temperature is 105-160 °C, the pressure is 1-2MPa, the liquid phase volume space velocity of the amination raw material is 0.1-1m 3 /(m 3 ⁇ h);
  • the conditions of the amination reaction include: the molar ratio of hydrogen, the amination reagent and the amination raw material is 1-4:3-20:1, and the temperature is 130-200° C. , the pressure is 1-13MPa, and the liquid phase volume space velocity of the amination raw material is 0.06-0.8m 3 /(m 3 ⁇ h);
  • the conditions of the amination reaction include: hydrogen, amination
  • the molar ratio of the reagent and the amination raw material is 1-4:3-32:1, the temperature is 130-210 ° C, the pressure is 1-17MPa, and the liquid phase volume space velocity of the amination raw material is 0.1-0.9m 3 /(m 3 h).
  • a catalyst having the catalytic function of preparing amine from alcohol comprising a carrier, an active metal component and a metal assistant supported on the carrier, and characterized in that the active metal component is cobalt and/or Nickel; the metal promoter is a combination of at least one of Group IIA metals, at least one of Group IIB metals, and at least one of Group VA metals.
  • the support includes a matrix and a doping element
  • the matrix includes an alumina support and optionally other supports, the other supports include silica and/or molecular sieves
  • the The doping element is selected from at least one of boron, fluorine, phosphorus, sulfur and selenium
  • the pore volume of the carrier with a pore diameter in the range of 7-27 nm accounts for more than 65% of the pore volume of the carrier.
  • the content of the doping element in the carrier accounts for 0.05-4.5 wt % of the total weight of the host, preferably 0.07-2.8 wt %;
  • the doping element in the carrier is doped with at least one of borate ion, fluoride ion, phosphate ion, sulfate ion and selenate ion;
  • the pore volume of the carrier with a pore diameter in the range of 7-27 nm accounts for 70-90% of the pore volume of the carrier, and the pore volume with a pore diameter of less than 7 nm accounts for 0-8% of the pore volume of the carrier. %;
  • the specific surface area of the carrier is 110-210 m 2 /g;
  • the pore volume of the carrier is 0.45-1.1 ml/g
  • the content of the active metal component is 8-45g, preferably 15-38g, per 100g of the substrate;
  • the content of the metal auxiliary agent is 0.1-10 g, preferably 0.5-6 g per 100 g of the substrate;
  • the weight ratio of Group IIA metal, Group IIB metal and Group VA metal in the metal additive is 0.1-10:0.1-10:1, preferably 0.2-8:0.2-8:1;
  • the IIA group metal is selected from at least one of magnesium, calcium and barium;
  • the Group IIB metal is selected from zinc;
  • the Group VA metal is selected from bismuth.
  • the mixture containing doping elements, alumina precursors and optional other carrier precursors are sequentially shaped, first dried and first calcined, and the other carrier precursors include silicon oxide precursors and/or molecular sieves Precursor;
  • the first calcined product is mixed with the solution of the Group IIA metal precursor and then subjected to second drying and second calcination.
  • the conditions of the first roasting include: the temperature is 500-650°C, and the time is 2-20h;
  • the conditions for the second calcination include: a temperature of 800-1100° C. and a time of 2-20 h.
  • the mixture containing doping elements, alumina precursors and optional other carrier precursors are sequentially shaped, first dried and first calcined, and the other carrier precursors include silicon oxide precursors and/or molecular sieves Precursor;
  • At least one of Group IIB metals, at least one of Group VA metals, and an active metal component are supported on the second calcined product.
  • a method for preparing an organic amine characterized in that the method comprises: in the presence of hydrogen, contacting the amination raw material, the amination reagent and the catalyst described in any one of items D1-D5 to carry out an amination reaction;
  • the method comprises: screening a catalyst comprising the carrier defined in any one of items D1-D5, and in the presence of hydrogen, contacting the amination raw material, amination reagent and the screened catalyst to carry out an amination reaction.
  • the amination raw material is selected from at least one of C2-20 alcohol, C3-20 ketone, C2-20 alcohol amine and C2-20 aldehyde, preferably ethanol, acetaldehyde, n-propyl Alcohol, propionaldehyde, isopropanol, n-butanol, butyraldehyde, isobutanol, isobutyraldehyde, 2-ethylhexanol, 2-ethylhexanal, octanol, octanal, dodecanol, ten Dialkanal, hexadecanol, hexadecanol, cyclopentanol, cyclohexanol, cyclooctanol, cyclododecanol, benzyl alcohol, benzaldehyde, phenethyl alcohol, phenylacetaldehyde, 1,4-butane
  • the amination reagent is selected from at least one of ammonia, C1-12 primary amine and C1-12 secondary amine, preferably ammonia, monomethylamine, dimethylamine, methylethylamine, At least one of monoethylamine and diethylamine.
  • the conditions of the amination reaction include: the molar ratio of hydrogen, amination reagent and amination raw material is 1-4:2- 8:1, the temperature is 130-210°C, the pressure is 1-2.5MPa, and the liquid phase volume space velocity of the amination raw material is 0.1-0.8m 3 /(m 3 ⁇ h);
  • the conditions of the amination reaction include: the molar ratio of hydrogen, the amination reagent and the amination raw material is 1-4:2-5:1, and the temperature is 110-180 °C, the pressure is 0.7-2.5MPa, the liquid phase volume space velocity of the amination raw material is 0.1-0.8m 3 /(m 3 ⁇ h);
  • the conditions of the amination reaction include: the molar ratio of hydrogen, the amination reagent and the amination raw material is 1-4:3-23:1, and the temperature is 130-200° C. , the pressure is 1-16MPa, and the liquid phase volume space velocity of the amination raw material is 0.06-0.8m 3 /(m 3 ⁇ h);
  • the conditions of the amination reaction include: hydrogen, amination
  • the molar ratio of the reagent and the amination raw material is 1-4:3-35:1, the temperature is 130-230 ° C, the pressure is 1-22MPa, and the liquid phase volume space velocity of the amination raw material is 0.1-0.8m 3 /(m 3 h).
  • test instruments and methods used in the following examples are as follows:
  • Test instrument Automatic Catalyst Characterization System Instrument model: Autochem 2920, a product of MICROMERITICS, USA;
  • Test conditions Accurately weigh about 0.1g of the sample and put it into the sample tube. Under the condition of He gas purging, the temperature is raised to 600°C at 10 °C/min. He mixed gas, adsorbed for 60 min, and then changed to He gas for purging for 1 h. After the baseline was stable, the count was started, and the temperature was increased to 600 °C at 10 °C/min, maintained for 30 min, and the recording was stopped to complete the experiment. The peak area was integrated and calculated to obtain the desorption amount of NH 3 , and the desorption amount was used to characterize the ammonia adsorption capacity of the sample.
  • Test instrument Automatic Micropore&Chemisorption Analyzer; Instrument Model: ASAP2420, MICROMERITICS (Mike Instruments);
  • Test conditions experimental gas: N 2 (purity 99.999%); degassing conditions: rise to 350°C at 10°C/min, and vacuumize for 4 hours; analysis conditions: complete mesoporous isotherm analysis to obtain specific surface area and pore volume.
  • Test instrument Infrared spectrometer from Thermo Scientific, model: NICOLET6700, in-situ transmission cell;
  • Test conditions Accurately weigh and record the quality of the sample, under vacuum conditions, at a heating rate of 10°C/min, the temperature is raised to 500°C, the carrier is pretreated at this temperature for 2h, and then lowered to room temperature. At room temperature, the pretreated support was allowed to adsorb pyridine vapor to saturation. At room temperature, 100 °C, 150 °C, 200 °C, 300 °C, and 400 °C, respectively, the static desorption was carried out to equilibrium state under vacuum conditions, and the heating rate between each temperature point was 10 °C/min.
  • Test instrument PANalytical company Empyrean X-ray diffractometer, the anode target is Cu target, Pixcel 3D detector;
  • Test conditions tube pressure 40KV, tube flow 40mA, divergence slit 1/4°, anti-scatter slit 1/2°, receiving slit height 7.5mm, scanning speed 0.013°/step, scanning range 5°-90°.
  • the grain size of the active metal components and possible metal promoters was obtained using the Scherrer formula.
  • Test instrument Zetasizer Nano ZSP particle size potentiometer of Malvern panalytical company
  • Test method Grind the sample into powder and disperse it in a low concentration NaCl solution. Use a particle size potentiometer to measure the Zeta potential at different pH, and then draw a graph of the relationship between Zeta potential and pH. The pH when the Zeta potential is 0 is the isoelectric point of the sample.
  • the dry basis (Al 2 O 3 ) content of the pseudo-boehmite powder was 72% by weight, and the silica sol was purchased from Qingdao Ocean Chemical Co., Ltd., model JN-40.
  • the pseudo-boehmite powder (specific surface area 315m 2 /g, pore volume 0.91ml/g) was kneaded with dilute acid water containing nitric acid and boric acid, extruded into strips with a diameter of 5mm, cut into 4mm lengths, and heated at 100°C. Dry for 10h, then calcinate at 850°C for 4h to make the desired carrier, and adjust the amount of boric acid to achieve the boron element content in the carrier as shown in Table I-1.
  • silica sol to pseudo-boehmite powder (specific surface area 322m 2 /g, pore volume 0.93ml/g) in a kneader, mix well, knead with dilute acid water containing nitric acid and hydrofluoric acid, and extrude into 3mm
  • the rough clover shape was dried at 120°C for 6h, and then calcined at 820°C for 3.5h to make the desired carrier, and the amount of hydrofluoric acid was adjusted to achieve the F element content in the carrier as shown in Table I-1.
  • the amount of silica sol was adjusted to achieve a mass ratio of Al 2 O 3 to SiO 2 in the carrier of 9:1.
  • silica sol In a kneader, add silica sol to the pseudo-boehmite powder (specific surface area 345m 2 /g, pore volume 1.12ml/g), mix well, knead with dilute acid water containing nitric acid and phosphoric acid, and extrude into a diameter of 4mm
  • the toothed balls were dried at 80°C for 20h, and then calcined at 800°C for 4h to make the desired carrier.
  • the amount of phosphoric acid was adjusted to achieve the content of P element in the carrier as shown in Table I-1.
  • the amount of silica sol was adjusted to achieve a mass ratio of Al 2 O 3 to SiO 2 in the carrier of 3:1.
  • pseudo-boehmite powder (specific surface area 350m 2 /g, pore volume 1.13ml/g) and diatomite powder (specific surface area 57m 2 /g)
  • knead with dilute acid water containing nitric acid and sulfuric acid extruded into strips with a diameter of 5mm, cut into 4mm lengths, dried at 150 ° C for 6 hours, and then roasted at 880 ° C for 4 hours to make the required carrier, adjust the amount of sulfuric acid to achieve the content of S element in the carrier as shown in Table I-1 shown.
  • the amount of diatomaceous earth was adjusted to achieve a mass ratio of Al 2 O 3 to SiO 2 in the carrier of 19:1.
  • the pseudo-boehmite powder (specific surface area 320m 2 /g, pore volume 0.9ml/g) was kneaded with dilute acid water containing nitric acid and sulfuric acid, extruded into a clover shape with a thickness of 3mm, dried at 120 ° C for 8h, and then After calcining at 890°C for 4.5h, the required carrier was prepared, and the amount of sulfuric acid was adjusted to achieve the content of S element in the carrier, as shown in Table I-1.
  • the pseudo-boehmite powder (specific surface area 348m 2 /g, pore volume 1.13ml/g) was kneaded with dilute acid water containing nitric acid and boric acid, extruded into tooth-shaped balls with a diameter of 4mm, dried at 100 ° C for 8h, and then After calcination at 950°C for 6.5h, the desired carrier was prepared, and the amount of boric acid was adjusted to achieve the content of B element in the carrier as shown in Table I-1.
  • Pseudo-boehmite powder (specific surface area 356m 2 /g, pore volume 1.2ml/g) was kneaded with dilute acid water containing nitric acid, sulfuric acid and phosphoric acid, extruded into tooth-shaped balls with a diameter of 3mm, and dried at 100°C for 8h , and then calcined at 860 ° C for 4 hours to make the required carrier, and the amount of phosphoric acid and sulfuric acid was adjusted to achieve the content of P element and S element in the carrier as shown in Table I-1.
  • silica sol In a kneader, add silica sol to the pseudo-boehmite powder (specific surface area 315m 2 /g, pore volume 0.88ml/g), mix well, knead with dilute acid water containing nitric acid and sulfuric acid, and extrude into teeth with a diameter of 3mm.
  • the desired carrier was prepared by drying at 100°C for 8h, and then calcined at 900°C for 6h.
  • the amount of sulfuric acid was adjusted to achieve the content of S element in the carrier, as shown in Table I-1.
  • the amount of silica sol was adjusted to achieve a mass ratio of Al 2 O 3 to SiO 2 in the carrier of 72:28.
  • silica sol added to the pseudo-boehmite powder (specific surface area 292 m 2 /g, pore volume 0.82 ml/g), mix well, knead with dilute acid water containing nitric acid, phosphoric acid and hydrofluoric acid, extrude It was formed into toothed balls with a diameter of 3 mm, dried at 110 ° C for 7 h, and then calcined at 970 ° C for 7 h to make the required carrier. -1 shown. The amount of silica sol was adjusted to achieve a mass ratio of Al 2 O 3 to SiO 2 in the carrier of 66:34.
  • the pseudo-boehmite powder (specific surface area 276m 2 /g, pore volume 0.79ml/g) was kneaded with dilute acid water containing nitric acid and sulfuric acid, extruded into a 4mm thick clover shape, dried at 110 ° C for 6h, and then After calcination at 930°C for 6 hours, the desired carrier was prepared, and the amount of sulfuric acid was adjusted to achieve the content of S element in the carrier as shown in Table I-1.
  • the pseudo-boehmite powder (specific surface area 260m 2 /g, pore volume 0.77ml/g) was kneaded with dilute acid water containing nitric acid and phosphoric acid, extruded into a clover shape with a thickness of 4 mm, dried at 100 ° C for 12 hours, and then After calcining at 860°C for 9 hours, the desired carrier was prepared, and the amount of phosphoric acid was adjusted to achieve the content of P element in the carrier, as shown in Table I-1.
  • the pseudo-boehmite powder (specific surface area 257m 2 /g, pore volume 0.76ml/g) was kneaded with dilute acid water containing nitric acid and boric acid, extruded into a clover shape with a thickness of 3 mm, dried at 120 ° C for 8 hours, and then After calcination at 850°C for 6 hours, the desired carrier was prepared, and the amount of boric acid was adjusted to achieve the content of B element in the carrier, as shown in Table I-1.
  • the catalyst was prepared according to the method of Example I-5, except that the amount of sulfuric acid added was such that the content of elemental sulfur in the carrier was as shown in Table I-1, and catalyst C-I-14 was obtained.
  • the grain size of the loaded component was determined to be 16 nm by XRD.
  • the catalyst was prepared according to the method of Example I-5, except that the carrier was calcined at a temperature of 800° C. and a time of 2 h to obtain a catalyst C-I-15.
  • the grain size of the loaded component was determined to be 14 nm by XRD.
  • the catalyst was prepared according to the method of Example I - 5 , except that silica sol was added during kneading. Catalyst CI-16 was obtained. The grain size of the loaded component was determined to be 16 nm by XRD.
  • the catalyst impregnation method was the same as that of Example I-8 to obtain catalyst C-I-17.
  • the grain size of the loaded component was determined to be 14 nm by XRD.
  • Example I-12 According to the method in Example I-12, the difference is that the calcination temperature during the preparation of the carrier is 700°C, and the calcination time is 5h. Catalyst D-I-1 was obtained.
  • Example I-12 According to the method of Example I-12, the difference is that the calcination temperature when preparing the carrier is 550°C, the calcination time is 3h, and the phosphoric acid dosage is adjusted to achieve the P element content in the carrier as shown in Table I-1. Catalyst D-I-2 was obtained.
  • the elemental composition of the carrier and the catalyst was analyzed by plasma emission spectrometer, and the content of elements (ions) other than the carrier was relative to 100 g of the matrix (that is, in terms of components other than doping elements (for example, pseudoboehmite as the carrier source) It is expressed by the content of the carrier of Al 2 O 3 ); by probe adsorption spectroscopy (characterizing the percentage of L acid content in the sum of L acid and B acid content (that is, the proportion of L acid)), NH 3 -
  • the carriers prepared above were characterized by TPD and BET nitrogen adsorption and desorption methods, and the results are shown in Table I-1.
  • This test example is used to illustrate the method for preparing 1,6-hexanediamine from the hydroamination of 1,6-hexanediol using the catalyst of the first embodiment of the present application.
  • the molar ratio of ammonia: 1,6-hexanediol is 3:12:1
  • the liquid phase volume space velocity of 1,6-hexanediol is 0.45h -1
  • the catalytic amination reaction is carried out in the reactor, and the reaction temperature 198 DEG C, reaction pressure 9.5MPa, the reaction liquid was sampled and analyzed during the reaction for 200h, and the analysis results are listed in Table I-2.
  • the sampling analysis method is gas chromatographic analysis, which is calibrated by preparing the calibration factor of the standard sample.
  • the conversion and selectivity were calculated based on the molar content of each component in the reaction solution.
  • amine dimer refers to 1,6-hexanediamine Dimers of (bis(hexamethylene)triamine, also known as N-(6-aminohexyl)-1,6-hexanediamine) and dimers of 1,6-hexanediamine and cycloheximide (N-(6-aminohexyl)cyclohexylimine).
  • the catalyst of the present application has a higher conversion rate and higher activity than the comparative catalyst, indicating that the catalyst of the present application has a faster reaction rate.
  • This test example is used to illustrate the method for preparing 1,3-propanediamine from the hydroamination of 1,3-propanediol using the catalyst of the first embodiment of the present application.
  • Example 1-3 100 milliliters of catalyst CI-3 prepared in Example 1-3 was weighed and packed in a fixed-bed reactor, activated at 220°C with hydrogen for 2 hours, then cooled to 165°C, and the system pressure was raised to 8.8MPa with hydrogen , and then use the metering pump to meter the ammonia and send it to the reaction system. After preheating to 120 °C, it enters the upper end of the reactor. The metering pump is used to send 1,3-propanediol to the upper end of the reactor, and the hydrogen is stably sent through the gas mass flowmeter.
  • the molar ratio of hydrogen: ammonia: 1,3-propanediol is 3:9:1
  • the liquid phase volume space velocity of 1,3-propanediol is 0.4h -1
  • the catalytic amination reaction is carried out in the reactor, and after the reaction is stable,
  • the reaction solution was sampled and analyzed (analytical conditions, conversion rate, and selectivity calculation method were similar to Test Example I-2), and the analysis results were shown in Table I-3.
  • This test example is used to illustrate the method for preparing ethylamine from the hydroamination of ethanol using the catalyst of the first embodiment of the present application.
  • Example 1-3 100 milliliters of catalyst CI-3 prepared in Example 1-3 was weighed and placed in a fixed-bed reactor, activated at 220°C for 2 hours with hydrogen, then cooled to 170°C, and the system pressure was raised to 1.8MPa with hydrogen , then use the metering pump to measure the ammonia and send it to the reaction system, after preheating to 125 °C, it enters the upper end of the reactor, and the ethanol is sent to the upper end of the reactor with the metering pump, and the hydrogen is stably sent through the gas mass flowmeter.
  • the molar ratio of ethanol is 3:5:1
  • the liquid phase volume space velocity of ethanol is 0.6h -1
  • the catalytic amination reaction is carried out in the reactor, the reaction temperature is 180°C, and the reaction pressure is 1.8MPa.
  • the reaction solution Sampling analysis analytical conditions and conversion rate, selectivity calculation method are similar to Test Example I-2), the analysis results are shown in Table I-4.
  • Catalysts D-I-1 and D-I-2 were tested under the same process conditions. From the analysis results, it was known that the comparative catalysts D-I-1 and D-I-2 had more other components, and the selectivities were 0.8% and 1.2%, respectively, and In the long-term assessment test (assessment period of 200h), it was found that the deactivation rates of catalysts D-I-1 and D-I-2 were relatively fast.
  • the dry basis (Al 2 O 3 ) content of the pseudo-boehmite powder is 70% by weight
  • the silica sol is purchased from Qingdao Ocean Chemical Co., Ltd., model JN-40.
  • the pseudo-boehmite powder (specific surface area 380m 2 /g, pore volume 1.09ml/g) was kneaded and extruded into strips with dilute acid water containing 5vol% nitric acid and 3.5vol% phosphoric acid, and dried at 120°C for 10h , and then calcined at 850 ° C for 4 h to make the required carrier, the specific parameters are shown in Table II-1.
  • Pseudo-boehmite powder (specific surface area 400m 2 /g, pore volume 1.15ml/g) was kneaded with dilute acid water containing 5vol% nitric acid and 3vol% boric acid, added to silica sol during the kneading process and extruded into strips, at 120 Dry at °C for 12h, then calcined at 900°C for 4h to make the required carrier.
  • the specific parameters are shown in Table II-1.
  • the amount of pseudo-boehmite powder and silica sol is such that Al 2 O 3 and SiO 2 The weight ratio is 4:1.
  • Pseudo-boehmite powder (specific surface area 395m 2 /g, pore volume 1.19ml/g) was kneaded and extruded into 4mm tooth-shaped balls with 2vol% dilute nitric acid and 2vol% sulfuric acid in dilute acid water. Dry for 8h, then calcinate at 950°C for 3.5h to prepare the desired carrier.
  • the specific parameters are shown in Table II-1.
  • the pseudo-boehmite powder (specific surface area 395m 2 /g, pore volume 1.05ml/g) was kneaded and extruded into strips with dilute acid water containing 5vol% nitric acid and 3vol% boric acid, dried at 120°C for 18h, Then calcined at 1010°C for 4.5h to make the desired carrier, the specific parameters are shown in Table II-1.
  • Pseudo-boehmite powder (specific surface area 382m 2 /g, pore volume 1.09ml/g) was kneaded with dilute acid water containing 5vol% nitric acid and 2vol% sulfuric acid, extruded into tooth-shaped balls with a diameter of 4mm, at 120°C Dry for 10h, then calcinate at 820°C for 10h to make the desired carrier.
  • the specific parameters are shown in Table II-1.
  • the pseudo-boehmite powder (specific surface area 375m 2 /g, pore volume 1.19ml/g) was kneaded with dilute acid water containing 5vol% nitric acid and 3.5vol% phosphoric acid, extruded into tooth-shaped balls, and dried at 120°C for 15h , and then calcined at 880°C for 5.5h to make the desired carrier.
  • the specific parameters are shown in Table II-1.
  • Pseudo-boehmite powder (specific surface area 342m 2 /g, pore volume 0.78ml/g) was kneaded and extruded into tooth-shaped balls with dilute acid water containing 5vol% nitric acid and 3.5vol% phosphoric acid, at 120°C Dry for 10h, then calcinate at 930°C for 4.5h to prepare the desired carrier.
  • the specific parameters are shown in Table II-1.
  • the pseudo-boehmite powder (specific surface area 280m 2 /g, pore volume 0.89ml/g) was kneaded and extruded into a tooth shape with dilute acid water containing 5vol% nitric acid, 2vol% hydrofluoric acid and 0.5wt% selenium nitrate The balls were dried at 120°C for 20h, and then calcined at 980°C for 12h to make the required carrier.
  • the specific parameters are shown in Table II-1.
  • Pseudo-boehmite powder (specific surface area 380m 2 /g, pore volume 1.09ml/g) was kneaded with dilute acid water containing 5vol% nitric acid and 3.5vol% phosphoric acid, added to silica sol during the kneading process and extruded into strips. Dry at 120°C for 10h, then calcinate at 850°C for 4h to make the required carrier.
  • the specific parameters are shown in Table II-1.
  • the amount of pseudo-boehmite powder and silica sol is such that Al 2 O 3 and SiO in the carrier The weight ratio of 2 is 9:1.
  • the pseudo-boehmite powder (specific surface area 369m 2 /g, pore volume 1.15ml/g) was kneaded and extruded into strips with dilute acid water containing 5vol% nitric acid and 3vol% sulfuric acid, dried at 120°C for 15h, Then calcined at 1010°C for 6.5h to make the desired carrier, the specific parameters are shown in Table II-1.
  • the catalyst was prepared according to the method of Example II-3, except that no sulfuric acid was added during the preparation of the carrier, and the pH value of the impregnation solution was not adjusted (the natural pH value was about 7) to obtain catalyst D-II-1.
  • the catalyst was prepared according to the method of Example II-3, except that the amount of sulfuric acid used was such that the content of S in the carrier was as shown in Table II-1, and the pH value of the impregnation solution was not adjusted (the natural pH value was about 7), Catalyst D-II-2 was obtained.
  • the catalyst was prepared according to the method of Example II-3, except that the amount of sulfuric acid was such that the S content in the carrier was as shown in Table II-1, the calcination temperature during the preparation of the carrier was 650°C, the calcination time was 4h, and the The pH value of the solution for impregnation (the natural pH value is about 7), the catalyst D-II-3 was obtained.
  • the elemental composition of the carrier and the catalyst was analyzed by plasma emission spectrometer, and the content of elements (ions) except the carrier was expressed relative to the content of 100 g of the matrix; by probe adsorption spectrometry, NH 3 -TPD, BET nitrogen adsorption and desorption method Methods
  • the carrier prepared above was characterized, and the crystallite size of the active metal component in the catalyst was determined by XRD. The results are shown in Table II-1.
  • This test example is used to illustrate the method for preparing 1,6-hexanediamine from the hydroamination of 1,6-hexanediol using the catalyst of the second embodiment of the present application.
  • the molar ratio of hydrogen: ammonia: 1,6-hexanediol is 4:10:1
  • the liquid phase volume space velocity of 1,6-hexanediol is 0.4h -1
  • the catalytic amination reaction is carried out in the reactor, and the reaction The temperature was 185° C., the reaction pressure was 11 MPa, and the reaction solution was sampled and analyzed after the reaction for 20 hours. The analysis results are listed in Table II-2.
  • the sampling analysis method is gas chromatographic analysis, which is calibrated by preparing the calibration factor of the standard sample.
  • This test example is used to illustrate the method for preparing ethylenediamine from the hydroamination of ethanolamine using the catalyst of the second embodiment of the present application.
  • Catalysts D-II-1 to D-II-4 were used for testing under the same process conditions. From the analysis results, it was known that the comparative catalysts D-II-1 to D-II-4 had more other components, and the In the periodical assessment test, it was found that the selectivity and conversion rate of catalysts D-II-1 to DII--4 decreased, and the deactivation rate was relatively fast.
  • the carbon deposition amount of catalyst C-II-3 is different from that of catalysts D-II-1 to D-II-4, the latter is obviously more than catalyst C-II-3, catalyst C-II-3
  • the specific surface area and pore volume decreased not significantly (less than 2%), while the specific surface area of catalysts D-II-1 to D-II-4 decreased by 19%, 16%, 18% and 16%, respectively, and the pore volume decreased by 20%. , 18%, 19% and 18%, indicating that the amount of carbon deposits is large and the pores are blocked.
  • the dry basis (Al 2 O 3 ) content of the pseudo-boehmite powder is 72% by weight; the silica sol was purchased from Qingdao Ocean Chemical Co., Ltd., model JN-40.
  • the pseudo-boehmite powder prepared by the aluminum sulfate method (specific surface area 315m 2 /g, pore volume 0.96ml/g, the mass of P element in the powder is 3.6g per 100g of alumina), using 5vol % nitric acid and dilute acid water were kneaded and extruded into strips with a diameter of 5 mm, cut into 4 mm lengths, dried at 120° C. for 8 hours, and then calcined at 760° C. for 5 hours to prepare a carrier.
  • the pseudo-boehmite powder prepared by the aluminum sulfate method (specific surface area 295m 2 /g, pore volume 0.93ml/g, the mass of B element in the powder is 0.8g per 100g of alumina), using 5vol % nitric acid and dilute acid water are kneaded, mixed and extruded into a clover shape with a thickness of 3 mm, dried at 100° C. for 15 hours, and then calcined at 930° C. for 4 hours to prepare a carrier.
  • the pseudo-boehmite powder prepared by the aluminum sulfate method (specific surface area 278m 2 /g, pore volume 0.85ml/g, relative to every 100g of alumina, the mass of S element in the powder is 0.4g), with a content of 3.5 vol% nitric acid and dilute acid water, add silica sol during the kneading process, extrude into dentate balls with a diameter of 4 mm after mixing, dry at 150 ° C for 6 hours, and then bake at 980 ° C for 3 hours to make a carrier, and adjust the silica sol.
  • the dosage is to achieve a ratio of alumina mass to silica mass in the carrier of 4:1.
  • ZSM-5 Catalyst Factory of Nankai University, SiO 2 /A
  • the pseudo-boehmite powder prepared by the aluminum sulfate method (specific surface area 260 m 2 /g, pore volume 0.82 ml/g, the mass of P element in the powder is 0.6 g per 100 g of alumina) with nitric acid and Boric acid and dilute acid water are kneaded and extruded into a clover shape with a thickness of 3 mm, dried at 100 ° C for 8 hours, and then calcined at 1005 ° C for 3 hours to prepare the desired carrier, wherein, relative to each 100 g of Al 2 O 3
  • the dosage of boric acid is 2.29g, and the concentration of nitric acid in dilute acid water is 5vol%.
  • the pseudo-boehmite powder prepared by the aluminum sulfate method (specific surface area 345m 2 /g, pore volume 1.09ml/g, the mass of B element in the powder is 0.02g per 100g of alumina) with nitric acid and
  • the dilute acid water of sulfuric acid is kneaded and extruded into tooth-shaped balls with a diameter of 4 mm, dried at 120 ° C for 10 h, and then calcined at 750 ° C for 12 h to prepare the desired carrier, wherein, relative to each 100 g of Al 2 O 3
  • the dosage of sulfuric acid is 0.24g, and the concentration of nitric acid in dilute acid water is 5vol%.
  • nickel nitrate hexahydrate (industrial grade, purity 98%) was dissolved in water into 184mL solution, and the nickel nitrate solution was loaded on the obtained 100g above-mentioned carrier by spray dipping method in two times, and the temperature was 120°C after each spray dipping method It was dried at 400°C for 4 hours, then calcined at 400°C for 4 hours, and then gradually heated up and reduced with hydrogen at a rate of 20°C/hour, and finally reduced at 430°C for 3 hours to obtain catalyst C-III-6.
  • the pseudo-boehmite powder prepared by the aluminum sulfate method (specific surface area 320m 2 /g, pore volume 0.93ml/g, the mass of S element in the powder is 0.1g per 100g of alumina) with nitric acid and
  • the dilute acid water of phosphoric acid is kneaded and extruded into tooth-shaped balls with a diameter of 4 mm, dried at 100 ° C for 15 h, and then calcined at 780 ° C for 10 h to prepare the required carrier, wherein, relative to each 100 g of Al 2 O 3
  • the amount of the pseudo-boehmite powder was 6.01 g of phosphoric acid.
  • the concentration of nitric acid in the dilute acid water is 5 vol%.
  • the pseudo-boehmite powder prepared by the aluminum sulfate method (specific surface area 295m 2 /g, pore volume 0.88ml/g, the mass of S element in the powder is 0.2g per 100g of alumina) containing 5vol%
  • the dilute acid water of nitric acid was kneaded and extruded into tooth-shaped balls with a diameter of 4 mm, dried at 90 °C for 18 hours, and then calcined at 810 °C for 8 hours to obtain the desired carrier.
  • the pseudo-boehmite powder prepared by the aluminum sulfate method (specific surface area 340m 2 /g, pore volume 1.18ml/g, the mass of F element in the powder is 0.12g per 100g of alumina) containing 5vol%
  • silica sol was added to extrude into a cylindrical shape with a thickness of 3 mm, dried at 100 °C for 16 hours, and then calcined at 850 °C for 6 hours to make the required carrier, and the amount of silica sol was adjusted to achieve The ratio of alumina mass to silica mass in the carrier was 73:27.
  • the pseudo-boehmite powder prepared by the aluminum sulfate method (specific surface area 310m 2 /g, pore volume 0.92ml/g, the mass of S element in the powder is 1.4g per 100g of alumina) containing 5vol%
  • the dilute acid water of nitric acid is kneaded and extruded into strips with a diameter of 5mm, dried at 100°C for 12h, and then calcined at 760°C for 10h to obtain the desired carrier.
  • the pseudo-boehmite powder prepared by the aluminum sulfate method (specific surface area 305m 2 /g, pore volume 0.94ml/g, the mass of P element in the powder is 1.55g per 100g of alumina) containing 5vol%
  • the dilute acid water of nitric acid was kneaded and extruded into strips with a diameter of 5 mm, dried at 120 °C for 6 hours, and then calcined at 860 °C for 5 hours to prepare the desired carrier.
  • the catalyst was prepared according to the method of Example III-8, except that pseudo-boehmite powders with different S element contents were used so that the content of S element was as shown in Table III-1, and the calcination temperature during the preparation of the carrier was 700 °C °C, the calcination time is 4h, and the catalyst D-III-1 is obtained.
  • the catalyst was prepared according to the method of Example III-8, except that pseudo-boehmite powder (specific surface area 224 m 2 /g, pore volume 0.95 ml/g) without heteroelements was used to obtain catalyst D-III- 2.
  • the catalyst was prepared according to the method of Example III-8, except that pseudo-boehmite powders with different S element contents were used to make the S element content as shown in Table 1, and the calcination temperature during the preparation of the carrier was 500°C, The calcination time is 4h, and the catalyst D-III-3 is obtained.
  • the elemental composition of the carrier and catalyst was analyzed by plasma emission spectrometer, and the contents of doping elements, active metal components and metal promoters were all expressed by the weight of the substrate relative to 100 g; by probe adsorption spectroscopy, BET nitrogen adsorption and desorption method Methods
  • the vectors prepared above were characterized, and the results are shown in Table III-1.
  • This test example is used to illustrate the method for preparing 1,6-hexanediamine from the hydroamination of 1,6-hexanediol using the catalyst of the third embodiment of the present application.
  • the sampling analysis method is gas chromatographic analysis, which is calibrated by preparing the calibration factor of the standard sample.
  • “Other” in the table refers to amines containing 12 carbon atoms. If the amount of production is large, it will be difficult to diffuse out of the pores, resulting in blockage of the pores and an increase in the amount of carbon deposits, so the catalyst activity decays faster. After 240 hours of assessment, the unloaded catalyst was analyzed by thermogravimetric analysis, and the carbon deposits of catalysts D-III-1, D-III-2 and D-III-3 were C-III-1 to C-III-11 At least twice the catalyst.
  • This test example is used to illustrate the method for preparing ethylamine from the hydroamination of ethanol using the catalyst of the third embodiment of the present application.
  • catalyst C-III-8 prepared in Example III-8 was weighed and placed in a fixed-bed reactor, activated at 220°C with hydrogen for 2 hours, then cooled to 160°C, and the system pressure was raised to 100°C with hydrogen. 1.6MPa, then use a metering pump to measure ammonia and send it into the reaction system. After preheating to 135 °C, it enters the upper end of the reactor. The metering pump is used to send ethanol to the upper end of the reactor.
  • the molar ratio of ammonia:ethanol is 3:8:1
  • the liquid phase volume space velocity of ethanol is 0.45h -1
  • the catalytic amination reaction is carried out in the reactor, the reaction temperature is 170°C, and the reaction pressure is 1.6MPa. After the reaction is stable, The reaction solution was sampled and analyzed (analytical conditions, conversion rate, and selectivity calculation method were similar to Test Example III-2), and the analysis results were shown in Table III-3.
  • This test example is used to illustrate the method for preparing isopropylamine from the hydroamination of acetone using the catalyst of the third type of embodiment of the present application.
  • catalyst C-III-10 prepared in Example III-10 was weighed and placed in a fixed-bed reactor, activated at 200°C for 2 hours with hydrogen, then cooled to 145°C, and the system pressure was raised to 100°C with hydrogen. 1.5MPa, then use a metering pump to measure ammonia and send it into the reaction system. After preheating to 110 °C, it enters the upper end of the reactor. The metering pump is used to send acetone to the upper end of the reactor.
  • the molar ratio of ammonia: acetone is 3: 6: 1
  • the liquid phase volume space velocity of acetone is 0.4h -1
  • the catalytic amination reaction is carried out in the reactor, and after the reaction is stable, the reaction solution is sampled and analyzed (analysis conditions and conversion rate , the selectivity calculation method is similar to Test Example III-2), and the analysis results are shown in Table III-4.
  • the dry basis (Al 2 O 3 ) content of the pseudo-boehmite powder is 70% by weight; the silica sol was purchased from Qingdao Ocean Chemical Co., Ltd., model JN-40.
  • Pseudo-boehmite powder (specific surface area 288m 2 /g, pore volume 0.91ml/g, pseudo-boehmite powder containing dopant element P, relative to 100g of Al 2 O 3
  • the calculated pseudo-boehmite powder, containing 0.22g of P element was kneaded with dilute acid water containing 5vol% nitric acid, extruded into strips with a diameter of 5mm, cut into 4mm lengths, dried at 120 ° C for 8 hours, and then heated at 550 calcined at °C for 6h.
  • magnesium nitrate hexahydrate (analytical grade) was dissolved in water into 85ml solution, and the magnesium nitrate aqueous solution was loaded on the above 100g calcined product by spray dipping, then dried at 100°C for 10h, and then calcined at 820°C for 5h , to make the desired carrier.
  • Pseudo-boehmite powder (specific surface area 285m 2 /g, pore volume 0.93ml/g, pseudo-boehmite powder containing doping element B, relative to 100g of Al 2 O 3
  • the calculated pseudo-boehmite powder, containing 0.53 g of B element) was kneaded with dilute acid water containing 5 vol% nitric acid, extruded into a clover shape with a thickness of 3 mm, dried at 120 ° C for 15 hours, and then calcined at 520 ° C for 8 hours.
  • Pseudo-boehmite powder (specific surface area 285m 2 /g, pore volume 0.9ml/g, pseudo-boehmite powder containing dopant element P, relative to 100g of Al 2 O 3
  • the calculated pseudo-boehmite powder, containing 0.23 g of P element) was kneaded with dilute acid water containing 5 vol% nitric acid, mixed and extruded into strips with a diameter of 5 mm, cut into 4 mm lengths, dried at 120 ° C for 8 hours, and then It was calcined at 550°C for 6h.
  • magnesium nitrate hexahydrate (analytical grade) was dissolved in water into 85ml solution, and the magnesium nitrate aqueous solution was loaded on the above 100g calcined product by spray dipping, then dried at 100°C for 10h, and then calcined at 820°C for 5h , to make the desired carrier.
  • Pseudo-boehmite powder (specific surface area 258m 2 /g, pore volume 0.65ml/g, pseudo-boehmite powder containing dopant element P, relative to 100g of Al 2 O 3
  • the calculated pseudo-boehmite powder, containing P element 0.18g) was kneaded with dilute acid water containing 4.5vol% nitric acid, extruded into a clover shape of 4mm thick, dried at 100 ° C for 18 hours, and then calcined at 560 ° C for 5 hours .
  • Pseudo-boehmite powder (specific surface area 318m 2 /g, pore volume 0.93ml/g, pseudo-boehmite powder containing doping element B, relative to 100g of Al 2 O 3
  • the calculated pseudo-boehmite powder, containing 3.66 g of B element) was kneaded with dilute acid water containing 5 vol% nitric acid, and silica sol (JN-40, Qingdao Ocean Chemical Co., Ltd.) was added during the kneading process.
  • the dentate balls with a diameter of 3.5mm were dried at 120°C for 4h, and then calcined at 630°C for 5h.
  • barium nitrate (analytical grade) was dissolved in water into 88ml solution, and the barium nitrate aqueous solution was loaded on the above 100g calcined product by spray dipping method, then dried at 100 °C for 12 h, and then calcined at 880 °C for 3 h. into the desired carrier.
  • the amount of the silica sol was adjusted so that the ratio of alumina mass to silica mass in the carrier was 4:1.
  • Example IV-1 The vector prepared in Example IV-1 was used.
  • Pseudo-boehmite powder (specific surface area 290m 2 /g, pore volume 0.78ml/g, pseudo-boehmite powder containing dopant element S, relative to 100g of Al 2 O 3 Calculated pseudo-boehmite powder, containing 0.88g of S element) is kneaded with dilute acid water containing 4.5vol% nitric acid, adding silica sol during the kneading process, and extruding it into a 4mm thick clover shape after mixing. Dry for 20h, then calcinate at 550°C for 7h.
  • Pseudo-boehmite powder (specific surface area 320m 2 /g, pore volume 0.95ml/g, pseudo-boehmite powder containing doping element F, relative to 100g of Al 2 O 3 Calculated pseudo-boehmite powder, containing F element 0.82g) is kneaded with dilute acid water containing 5.2vol% nitric acid, adding silica sol during the kneading process, and extruding it into a 3mm thick clover shape after mixing, at 100 °C Dry for 8h, then calcinate at 620°C for 4h.
  • barium nitrate (analytical grade) was dissolved in water into 83ml of solution, and the barium nitrate aqueous solution was loaded on the above 100g calcined product by spray dipping, then dried at 120°C for 8h, and then calcined at 950°C for 5h. into the desired carrier.
  • the amount of silica sol was adjusted so that the ratio of alumina mass to silica mass in the carrier was 89:11.
  • Pseudo-boehmite powder (specific surface area 291m 2 /g, pore volume 0.93ml/g, pseudo-boehmite powder containing dopant element S, relative to 100g of Al 2 O 3 Calculated pseudo-boehmite powder, containing S element 0.95g) was kneaded with dilute acid water containing 4vol% nitric acid, then extruded into a 3.5mm thick clover shape, dried at 100 °C for 8 hours, and then calcined at 600 °C 5h.
  • magnesium nitrate hexahydrate (analytical grade) was dissolved in water into 92ml of solution, the magnesium nitrate aqueous solution was loaded on the above 100g calcined product by spray dipping, then dried at 120°C for 8h, and then calcined at 830°C for 8h , to make the desired carrier.
  • the catalyst was prepared by the method in Example IV-1. The difference was that the pseudo-boehmite powder used was doped with element P, and relative to 100 g of the pseudo-boehmite powder calculated as Al 2 O 3 , it contained P element 4.3g. Catalyst C-IV-11 was obtained.
  • the catalyst was prepared according to the method of Example IV-2, except that the pseudo-boehmite powder used did not contain doping elements, and had a specific surface area of 286 m 2 /g and a pore volume of 0.93 ml/g. Catalyst C was obtained. -IV-12.
  • the catalyst was prepared according to the method of Example IV-2, except that the second calcination temperature was 1200° C. to obtain catalyst C-IV-13.
  • the catalyst is prepared according to the method of embodiment IV-5, the difference is that the calcium nitrate aqueous solution is replaced with water of equal volume, and the preparation method of the solution for spraying the carrier is: 151.7g nickel nitrate hexahydrate (technical grade, 98% purity) was dissolved in water into a 158 mL solution, so that only nickel was supported as an active metal component in the prepared catalyst. Catalyst D-IV-1 was obtained.
  • the catalyst was prepared according to the method of Example IV-3, the difference was that the preparation method of the solution for spraying the carrier was: 45.4g cobalt nitrate hexahydrate (technical grade, purity 98%) and 1.16g bismuth nitrate pentahydrate ( Analytical grade) was dissolved in water to a 148 mL solution. Catalyst D-IV-2 was obtained.
  • the catalyst was prepared according to the method of Example IV-1, except that the calcination temperature of the carrier was to replace zinc nitrate with 8.5 g of copper nitrate trihydrate to obtain catalyst D-IV-3.
  • the elemental composition of the carrier and the catalyst was analyzed by plasma emission spectrometer, and the content of elements (ions) except the carrier was expressed relative to the weight of 100 g of the substrate;
  • the carrier was characterized, and the results are shown in Table IV-1.
  • This test example is used to illustrate the method for preparing 1,6-hexanediamine from the hydroamination of 1,6-hexanediol using the catalyst of the embodiment IV of the present application.
  • the molar ratio of hydrogen: ammonia: 1,6-hexanediol is 3:18:1
  • the liquid phase volume space velocity of 1,6-hexanediol is 0.5h -1
  • the catalyzed amine is carried out in the reactor.
  • the reaction was carried out at a reaction temperature of 195° C. and a reaction pressure of 12.5 MPa. After the reaction was stable, the reaction solution was sampled for analysis, and the analysis results were listed in Table IV-2.
  • the sampling analysis method is gas chromatographic analysis, which is calibrated by preparing the calibration factor of the standard sample.
  • catalysts D-IV-1 to D-IV-3 have lower conversion rates under the same process conditions, indicating that their activities are lower than catalysts C-IV-1 to C-IV-13 of the present application; and
  • the selectivity of hexanediamine of catalysts D-IV-1 to D-IV-3 is also lower than that of C-IV-1 to C-IV-13, and the selectivity of other components is higher, indicating that the reactants are in the catalyst D- IV-1 to D-IV-3 are not easily desorbed, and further reactions occur to generate other by-products.
  • This test example is used to illustrate the method for preparing ethylamine from the hydroamination of ethanol using the catalyst of the fourth embodiment of the present application.
  • Example IV-3 100 milliliters of catalyst C-IV-3 prepared in Example IV-3 was weighed and placed in a fixed-bed reactor, activated at 220°C for 2 hours with hydrogen, then cooled to 173°C, and the system pressure was raised to 100°C with hydrogen. 1.65MPa, then use a metering pump to measure ammonia and send it to the reaction system. After preheating to 110 °C, it enters the upper end of the reactor. The metering pump is used to send ethanol to the upper end of the reactor.
  • the molar ratio of ammonia:ethanol is 3:5:1
  • the liquid phase volume space velocity of ethanol is 0.5h -1
  • the catalytic amination reaction is carried out in the reactor, the reaction temperature is 178°C, and the reaction pressure is 1.6MPa.
  • the reaction solution was sampled and analyzed (analytical conditions, conversion rate, and selectivity calculation method were similar to Test Example IV-2), and the analysis results were shown in Table IV-3.
  • Test Example IV-2 Under the same conditions as Test Example IV-2, the fixed bed reactors were loaded with catalysts C-IV-2, C-IV-9, D-IV-1, D-IV-2, D-IV-3, and only The change is to prolong the reaction time, carry out a test of 500h, and compare and analyze the reaction solution of the reaction for 20h (analysis conditions, conversion rate, selectivity calculation method is the same as the test example IV-2), and the reaction solution after the reaction for 500h (analysis of Condition, conversion rate, selectivity calculation method are the same as test example IV-2), and analysis result is as shown in table IV-4.
  • This test example is used to illustrate the method for preparing hexamethylenediamine from a mixture of 1,6-hexanediol, cyclohexylimine and aminohexanol using the catalyst of the IV type of embodiment of the present application.
  • Example IV-3 100 milliliters of catalyst C-IV-3 prepared in Example IV-3 was weighed and placed in a fixed-bed reactor, activated at 220°C with hydrogen for 2 hours, then cooled to 175°C, and the system pressure was raised to 100°C with hydrogen.
  • the liquid phase volume space velocity of the mixed solution is 0.5h -1 , the catalytic amination reaction is carried out in the reactor, the reaction temperature is 180°C, and the reaction pressure is 14MPa.
  • the performance calculation method is the same as that of test example IV-2), and the analysis results are shown in Table IV-5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Nanotechnology (AREA)

Abstract

公开了一种适用于催化胺化合成有机胺的催化剂及其制备和应用,该催化剂包括含铝和/或硅的无机多孔载体和负载于所述载体上的活性金属组分,所述活性金属组分包括至少一种选自VIII族和IB族的金属,其中所述载体的L酸含量占L酸与B酸含量之和的85%以上。所述催化剂用于催化胺化制备有机胺的反应中时具有改善的催化性能。

Description

胺化催化剂及其制备和应用 技术领域
本申请涉及胺化反应的技术领域,具体涉及一种适用于催化胺化合成有机胺的催化剂及其制备和应用。
背景技术
胺是非常重要的工业有机化合物,广泛应用于各个领域,例如用作溶剂、医药中间体、树脂原料、织物添加剂、杀虫剂、橡胶稳定剂、抗蚀剂,还用于清洗和塑料加工。制备胺的三种主要方法是羰基化合物临氢胺化、醇临氢胺化和腈加氢。羰基化合物临氢胺化例如为丙酮、氢气和氨反应生成异丙胺;醇临氢胺化例如为乙醇与氨在临氢条件下胺化生成乙基胺、异丙醇与氨在临氢条件下胺化生成异丙胺,丁醇与氨在临氢条件下胺化生成丁胺,己二醇与氨在临氢条件下胺化生成己二胺等;腈加氢例如为乙腈加氢生成乙基胺,己二腈加氢生成己二胺。
中国专利申请CN102658162A公开了一种用于合成乙撑胺的催化剂及制备乙撑胺的方法。一种用于合成乙撑胺的催化剂,所述催化剂是由主活性组分、助剂和胺化处理过的载体三部分组成,其中所述主活性组分选自由Ni和Co组成的组中的一种或多种,所述主活性组分在所述催化剂的总重量中占1-40%,所述助剂选自由Fe、Cu、Ru、Re、K、Zn和B以及它们各自的氧化物组成的组中的一种或多种,所述助剂在所述催化剂的总重量中占0.1-20%;所述胺化处理过的载体选自由SiO 2和Al 2O 3组成的组中的一种或多种载体经过胺化处理而得到,所述胺化处理包括:将载体与氨源在150至400℃的温度下接触0.5至15小时。该申请的发明人发现载体材料和催化剂活性有密切的关系,将催化剂采用的载体进行胺化处理,由于载体SiO 2或Al 2O 3的表面上存在大量的羟基使载体表面呈酸性环境,容易促进中间产物亚胺聚合,而载体表面被胺化以后,表面大量的羟基转化为胺基,因而载体为碱性环境,这就降低了亚胺聚合的可能性,提高了催化剂的活性、选择性和稳定性。
现有技术普遍认为醇胺化制备胺的催化剂具有碱性更有利于提高催化剂活性和选择性,且现有催化剂用于胺化反应的活性还有很大的 提升空间。
发明内容
本申请的目的是提供一种适用于催化胺化制备有机胺的催化剂及其制备和应用,所述催化剂用于胺化反应时具有改善的性能,例如改善的催化活性、反应转化率、产物选择性和催化剂稳定性中的至少一个。
为了实现上述目的,一方面,本申请提供了一种适用于催化胺化合成有机胺的催化剂,包括含铝和/或硅的无机多孔载体和负载于所述载体上的活性金属组分,所述活性金属组分包括至少一种选自VIII族和IB族的金属,其中所述载体的L酸含量占L酸与B酸含量之和的85%以上。
优选地,所述载体包含基质和掺杂元素,其中所述基质选自氧化铝、氧化硅、分子筛、硅藻土、硅酸铝或者它们的组合,并且所述掺杂元素为非金属元素。
优选地,所述催化剂还包括负载于所述载体上的金属助剂,所述金属助剂包含至少一种选自VIB族、VIIB族、IB族、IIB族和镧系元素的金属,或者为IIA族金属中的至少一种、IIB族金属中的至少一种和VA族金属中的至少一种的组合。
另一方面,提供了制备本申请的催化剂的方法,包括如下步骤:
1)提供含铝和/或硅的无机多孔载体,所述载体的L酸含量占L酸与B酸含量之和的85%以上;
2)在所述载体上负载活性金属组分和可选的金属助剂;以及
3)对步骤2)所得材料进行热处理和可选的还原处理,得到所述催化剂。
再一方面,本申请提供了制备有机胺的方法,包括:在氢气存在下,使胺化原料、胺化试剂与根据本申请的催化剂接触进行胺化反应得到所述有机胺,其中,所述胺化原料选自醇、酮、醇胺、醛或者它们的组合;所述胺化试剂选自氨、伯胺、仲胺或者它们的组合。
本申请的催化剂用于催化胺化制备有机胺的反应时,显示出改善的性能,特别是改善的催化活性、反应转化率、产物选择性和/或催化剂稳定性。
本申请的其他特征和优点将在随后的具体实施方式部分予以详细说明。
具体实施方式
以下将通过具体的实施方式对本公开作出进一步的详细描述,应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,但不以任何方式限制本发明。
在本文中所披露的任何具体数值(包括数值范围的端点)都不限于该数值的精确值,而应当理解为还涵盖了接近该精确值的值,例如在该精确值±5%范围内的所有可能的数值。并且,对于所披露的数值范围而言,在该范围的端点值之间、端点值与范围内的具体点值之间,以及各具体点值之间可以任意组合而得到一个或多个新的数值范围,这些新的数值范围也应被视为在本文中具体公开。
除非另有说明,本文所用的术语具有与本领域技术人员通常所理解的相同的含义,如果术语在本文中有定义,且其定义与本领域的通常理解不同,则以本文的定义为准。
本申请中,所述催化剂载体的L酸含量占L酸与B酸含量之和的比例通过吡啶探针吸附光谱法测得。
本申请中,所述载体和催化剂的氨吸附量通过NH 3-TPD方法测定,其中所述氨吸附量以所测得的氨脱附量来表示。
本申请中,所述载体的比表面积、孔容和不同孔径的孔的占比通过氮吸附-脱附方法测得,具体参见GB/T6609.35-2009。
本申请中,“C2-20”指具有2-20个碳原子,例如具有2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19或20个碳原子。类似地,“C1-12”指具有1-12个碳原子。
本申请中,活性金属组分和金属助剂的晶粒尺寸通过XRD测试得到。
本申请中,载体的等电点借助粒度电位仪测得。
本申请中,如无特殊表示,所给压力均为表压。
本申请中,除了明确说明的内容之外,未提到的任何事宜或事项均直接适用本领域已知的那些而无需进行任何改变。而且,本文描述的任何实施方式均可以与本文描述的一种或多种其他实施方式自由结 合,由此形成的技术方案或技术思想均视为本发明原始公开或原始记载的一部分,而不应被视为是本文未曾披露或预期过的新内容,除非本领域技术人员认为该结合明显不合理。
在本文中提及的所有专利和非专利文献,包括但不限于教科书和期刊文章等,均通过引用方式全文并入本文。
如上所述,在第一方面,本申请提供了一种适用于催化胺化合成有机胺的催化剂,包括含铝和/或硅的无机多孔载体和负载于所述载体上的活性金属组分,所述活性金属组分包括至少一种选自VIII族和IB族的金属,其中所述载体的L酸含量占L酸与B酸含量之和的85%以上。
根据本申请,所述VIII族金属可以例如为钴、镍或钯,所述IB族金属可以例如为铜。在优选的实施方式中,所述活性金属组分中的金属选自钴、镍、钯、铜或者它们的组合,更优选选自钴、镍或其组合。
在本申请的催化剂中,所述IB族金属,例如铜,既可以单独作为活性金属组分使用,此时通常用量较大;也可以与VIII族金属结合使用,此时通常用量较小。当所述IB族金属与VIII族金属,例如钴、镍和钯,结合使用时,本文中通常将其称为金属助剂。
在优选的实施方式中,所述载体的L酸含量占L酸与B酸含量之和的88%以上,更优选90%以上,特别优选92%以上。
在优选的实施方式中,所述载体包含基质和掺杂元素,其中所述基质选自氧化铝、氧化硅、分子筛、硅藻土、硅酸铝或者它们的组合,并且所述掺杂元素为非金属元素,优选选自IIIA族非金属元素、VA族非金属元素、VIA族非金属元素和VIIA族非金属元素中的至少一种且不为氯,更优选为硼、氟、磷、硫和硒中的至少一种。进一步优选地,所述载体中的掺杂元素来自非金属酸根离子,所述非金属酸根离子优选为硼酸根离子、氟离子、磷酸根离子、硫酸根离子和硒酸根离子中的至少一种。
在优选的实施方式中,所述载体具有以下特征中的至少一个:
所述载体中孔径在7-27nm范围内的孔容占所述载体孔容的百分比大于65%,优选为70-90%,优选地孔径小于7nm的孔容占所述载体孔容的百分比为0-10%,优选为0-8%,载体具有上述孔径分布有利于增加催化剂的表面扩散性,提高催化剂活性和产物选择性;
所述载体中孔径小于7.5nm的孔容占所述载体孔容的百分比低于20%,优选为5-17%,孔径小于9nm的孔容占所述载体孔容的百分比低于40%,孔径大于27nm的孔容占所述载体孔容的百分比低于5%,优选为0.5-5%,优选地,孔径大于等于7.5nm且小于9nm的孔容占所述载体孔容的百分比为5-17%,孔径大于等于9nm且小于等于27nm的孔容占所述载体孔容的百分比为61-89.5%,载体具有上述孔径分布有利于增加催化剂的表面扩散性,提高催化剂活性和产物选择性;
所述载体的氨吸附量为0.25-0.65mmol/g,优选为0.3-0.6mmol/g,更优选为0.3-0.5mmol/g;
所述载体中氧化铝的含量占基质总量的65重量%以上,优选70重量%以上,更优选75重量%以上;
所述掺杂元素的含量占基质总量的0.05-6重量%,优选0.05-5重量%,更优选0.05-4.5重量%,特别优选0.07-4重量%,例如为0.08-4重量%或0.1-3重量%(例如可以为0.1重量%、0.5重量%、1重量%、1.5重量%、2重量%、2.5重量%、3重量%,或者上述任意两个数值的任意中间值);
所述载体的比表面积为100-220m 2/g,优选105-210m 2/g,更优选110-210m 2/g,特别优选120-210m 2/g;
所述载体的孔容为0.4-1.1ml/g,优选0.43-1.1ml/g,更优选0.45-1.1ml/g,特别优选为0.45-1ml/g;以及
所述载体的等电点为3-6,优选为3.5-5.5。
在本申请催化剂的优选实施方式中,相对于每100g的基质,所述活性金属组分的含量为5-45g,优选为8-44g,更优选为10-38g,特别优选为15-37g。
在优选的实施方式中,所述活性金属组分的晶粒尺寸小于10nm,更优选为3-8nm,具有该晶粒尺寸的活性金属组分可以与所述载体的性质良好地匹配,从而实现更好的催化活性和产物选择性。
在优选的实施方式中,所述催化剂还包括负载于所述载体上的金属助剂,所述金属助剂包含至少一种选自VIB族、VIIB族、IB族、IIB族和镧系元素的金属,优选包括至少一种选自Cr、Mo、W、Mn、Re、Cu、Ag、Au、Zn、La和Ce的金属;进一步优选地,相对于每100克基质,所述金属助剂的含量为0-10g,优选为0.1-10g,更优选为0.5-8g。
在某些进一步优选的实施方式中,所述金属助剂包括至少一种VIIB族金属与至少一种IB族金属的组合,其中,以金属元素计,VIIB族金属与IB族金属的重量比为0.05-15∶1,优选为0.1-12∶1;或者所述金属助剂包括至少一种VIIB族金属与至少一种IIB族金属的组合,其中,以金属元素计,VIIB族金属与IIB族金属的重量比为0.2-20∶1,优选为0.3-6∶1;或者所述金属助剂包括至少一种VIB族金属、至少一种IB族金属和至少一种IIB族金属的组合,其中,以金属元素计,VIB族金属、IB族金属和IIB族金属的重量比为0.1-10∶0.1-10∶1,优选为0.2-8∶0.2-8∶1。特别优选地,所述VIIB族金属选自锰和/或铼,所述IB族金属选自铜、银和金中的至少一种,所述IIB族金属选自锌,所述VIB族金属选自钼和/或钨。
在另一些优选的实施方式中,所述催化剂还包括负载于所述载体上的金属助剂,所述金属助剂为IIA族金属中的至少一种、IIB族金属中的至少一种和VA族金属中的至少一种的组合,进一步优选地,相对于每100克的基质,所述金属助剂的含量为0.1-10g,优选为0.5-6g。更进一步优选地,所述金属助剂中IIA族金属、IIB族金属和VA族金属的重量比为0.1-10∶0.1-10∶1,优选为0.2-8∶0.2-8∶1。特别优选地,所述IIA族金属选自镁、钙和钡中的至少一种,所述IIB族金属选自锌,和/或所述VA族金属选自铋。
根据本申请,所述催化剂的载体可以采用现有中已知的适于制备具有上述性质的载体的方法得到,本申请对此并没有严格的限制。优选地,所述载体可以通过包括以下步骤的方法制备得到:将含有掺杂元素和基质或其前驱体的混合物依次进行成型、干燥和焙烧得到所述载体,其中所述基质选自氧化铝、氧化硅、分子筛、硅藻土、硅酸铝或者它们的组合。所述分子筛例如可以是ZSM-5或ZSM-11分子筛。当使用基质前驱体时,所述氧化铝的前驱体可以为拟薄水铝石,所述氧化硅的前驱体可以为硅酸、原硅酸或二氧化硅凝胶。
在以上载体的制备方法中,所述基质前驱体优选为拟薄水铝石。所述拟薄水铝石可以由碳化法、有机铝水解法、硫酸铝法和硝酸法中的至少一种方法制备。所述拟薄水铝石的比表面积优选为250-400m 2/g、优选255-360m 2/g、更优选255-340m 2/g、特别优选260-330m 2/g;所述拟薄水铝石的孔容优选为0.5-1.3ml、优选0.75-1.25ml/g、更优选 0.78-1.2ml/g,特别优选0.78-1.1ml/g。选用具有特定孔结构的拟薄水铝石能够获得性能更优的催化剂。
在以上载体的制备方法中,如果提供基质前驱体的原料中已经含有所需量的掺杂元素,那么只需使用这种原料进行成型即可,如果提供基质前驱体的原料中不含掺杂元素或掺杂元素的含量较低(不足),那么可以额外引入掺杂元素。
在以上载体的制备方法中,可以使用载体改性剂来提供所述掺杂元素,所述载体改性剂包含至少一种能够提供非金属酸根离子的化合物,例如包含非金属酸根的无机酸和/或无机盐,所述非金属酸根离子优选为硼酸根离子、氟离子、磷酸根离子、硫酸根离子和硒酸根离子中的至少一种。进一步优选地,所述载体改性剂选自硼酸、硼酸镍、硼酸钴、硼酸钾、硼酸铵、硼酸镁、氟化钾、氟化镁、氟化钴、氟化镍、氢氟酸、氟化氨、磷酸、磷酸铝、磷酸钾、磷酸二氢钾、磷酸氢钾、磷酸镁、磷酸钙、磷酸氨、硫酸、硫酸钴、硫酸镍、硫酸铝、硫酸钙、硫酸钾、硫酸镁、磷酸锶、硫酸锶和硒酸中的至少一种。
在以上载体的制备方法中,所述成型的方法可以选自捏合、滚球或打片等。
在以上载体的制备方法中,载体改性剂的用量使得以基质的总重量为基准,所述掺杂元素的含量为0.05-6重量%,优选0.05-5重量%,更优选0.05-4.5重量%,特别优选0.07-4重量%,例如0.08-4重量%。本领域技术人员能够根据最终载体中某成分的量确定某成分原料(如载体改性剂)的用量,因此,本文中部分原料用量未示出。
在以上载体的制备方法中,所述干燥的条件可以包括:温度为80-150℃(例如可以为80℃、85℃、90℃、95℃、100℃、110℃、115℃、120℃、125℃、130℃、140℃、150℃,或者任意上述两个数值的任意中间值),优选为85-130℃,时间为6-20h(例如可以为6h、7h、7.5h、8h、8.5h、9h、10h、12h、15h、18h、20h,或者任意上述两个数值的任意中间值),优选为10-20h。
在以上载体的制备方法中,所述焙烧的条件可以包括:温度为500-1120℃,例如500-650℃,优选700-1100℃,更优选800-1050℃(例如可以为800℃、850℃、860℃、870℃、880℃、890℃、900℃、920℃、950℃、960℃、980℃、1000℃、1050℃,或者任意上述两个数值 的中间值),时间为2-20h(例如可以为2h、3h、3.5h、4h、4.5h、5h、6h、7h、8h、10h、15h、20h,或者任意上述两个数值的任意中间值)。
本申请的催化剂可以还原后使用,例如可以用含有氢气的气体在350-500℃下还原,优选在350-450℃下还原。氢气可以是纯氢气,也可以是惰性气体稀释的氢气,例如氮气与氢气的混合气。在还原时逐渐升高还原温度,升温不宜太快,例如不超过20℃/小时。可以通过监测还原体系中H 2O的产生确定还原的时间,也即当还原体系不再产生新的H 2O时,结束还原,本领域技术人员能够据此对还原的时间进行选择,对此不再详述,例如,在最高温度下还原时间可以为2-5h。还原可以在反应器中直接进行,然后进行催化反应。也可以在单独的反应器中还原,也称为器外还原,还原后从反应器中卸出前可以用含有氧气的混合气进行钝化,钝化温度例如为10-60℃,特别是20-40℃。器外还原且钝化的催化剂装填到反应器中在使用前可以使用氢气或氢气与氮气的混合物活化,活化温度例如为150-250℃,优选170-200℃。可以通过监测活化体系中H 2O的产生确定活化的时间,也即当活化体系不再产生新的H 2O时,结束活化,本领域技术人员能够据此对活化的时间进行选择,对此不再详述,例如,在最高温度下活化时间例如为1-5h,优选为2-3h,也可以不活化直接使用,取决于催化剂中的活性金属组分和金属助剂被氧化的程度。
在第二方面,提供了制备本申请的催化剂的方法,包括如下步骤:
1)提供含铝和/或硅的无机多孔载体,所述载体的L酸含量占L酸与B酸含量之和的85%以上;
2)在所述载体上负载活性金属组分和可选的金属助剂;以及
3)对步骤2)所得材料进行热处理和可选的还原处理,得到所述催化剂,
在优选的实施方式中,所述载体的L酸含量占L酸与B酸含量之和的88%以上,更优选90%以上,特别优选92%以上。
在优选的实施方式中,步骤1)所述的“提供含铝和/或硅的无机多孔载体”包括将含有掺杂元素和基质或其前驱体的混合物依次进行成型、干燥和焙烧得到所述载体,其中,所述基质选自氧化铝、氧化硅、分子筛、硅藻土、硅酸铝或者它们的组合,优选地所述氧化铝的 前驱体为具有250-400m 2/g、优选255-360m 2/g、更优选255-340m 2/g、特别优选260-330m 2/g的比表面积和0.5-1.3ml、优选0.75-1.25ml/g、更优选0.78-1.2ml/g,特别优选0.78-1.1ml/g的孔容的拟薄水铝石;所述掺杂元素为非金属元素,优选选自IIIA族非金属元素、VA族非金属元素、VIA族非金属元素和VIIA族非金属元素中的至少一种且不为氯,优选为硼、氟、磷、硫和硒中的至少一种。
在进一步优选的实施方式中,使用载体改性剂来提供所述掺杂元素,所述掺杂元素和载体改性剂可以按照上文第一方面中所述进行选择,在此不再赘述。更进一步优选地,载体改性剂的用量使得以基质的总重量为基准,所得载体中掺杂元素的含量为0.05-6重量%,优选0.05-5重量%,更优选0.05-4.5重量%,特别优选0.07-4重量%,例如0.08-4重量%或0.1-3重量%(例如可以为0.1重量%、0.5重量%、1重量%、1.5重量%、2重量%、2.5重量%、3重量%,或者上述任意两个数值的任意中间值)。
在进一步优选的实施方式中,所述成型的方法可以选自捏合、滚球或打片等。
在进一步优选的实施方式中,步骤1)所述干燥的条件包括:温度为80-150℃,时间为6-20h;和/或,所述焙烧的条件包括:温度为500-1120℃,例如500-650℃,优选700-1100℃,更优选800-1050℃,时间为2-20h。
在更进一步优选的实施方式中,所述步骤1)具备如上文第一方面中针对所述载体的制备方法所述的特征,在此不再赘述。
在优选的实施方式中,步骤2)的所述负载包括用包含所述活性金属组分的前驱体和可选的金属助剂的前驱体的溶液浸渍所述载体,优选地所述浸渍液的pH值在3.5-5.5范围内。控制浸渍液的pH值在上述范围内能够进一步改善活性金属组分的分散性。
根据本申请,浸渍是将载体放在合适的含有所述活性金属组分和金属助剂的前驱体的溶液中浸泡,前驱体吸附负载在载体上。浸渍方法细分,包括干浸法、湿浸法、多次浸渍法、混合浸渍法和喷浸法等。干、湿浸渍法是指载体在浸渍活性金属组分前驱体之前的状态,是干燥的还是预先用水浸湿的。多次浸渍法是指一种或几种组分的前驱体混合溶液分多次浸渍,或者不同前驱体分组分批次浸渍上去,多次浸 渍法在每次浸渍后都需要干燥和焙烧以“锚定”浸渍上去的组分。混合浸渍法是在活性金属组分和金属助剂所使用的前驱体之间不发生沉淀反应时一起浸渍上去。喷浸法是用喷枪把浸渍溶液喷到连续转动的载体上,使浸渍液正好将载体的孔体积填充饱和。本申请的催化剂可以根据实际情况合理地选择这些浸渍方法。
在优选的实施方式中,所述活性金属组分和金属助剂的前驱体为相应金属的可溶性盐,例如硝酸盐、甲酸盐、草酸盐、乳酸盐等。用于形成浸渍载体的金属盐溶液的溶剂优选使用水,一些有机溶剂也可以使用,例如乙醇。金属盐溶液浸渍载体可以以任何需要的顺序进行,也可以是用多种含有一种或多种金属盐的溶液连续进行浸渍。所有或单一浸渍步骤可以分几次进行,还可以改变浸渍顺序。选择溶液的浓度使需要量的金属负载在载体上。
根据本申请,在步骤3)中对负载了活性金属组分和可选的金属助剂后的载体进行热处理,所述热处理优选包括焙烧、或者干燥和焙烧的组合。例如,所述热处理可以包括将浸渍后的载体在80-150℃下干燥,更优选80-120℃下干燥。干燥时间可以根据干燥温度、干燥物料多少和干燥设备等情况合理地选择,例如可以为6-20h小时,只要干燥后的含水量不影响后续的焙烧即可。进一步地,干燥后可以在150-500℃下焙烧将盐中的结晶水除去或将盐分解为氧化物,优选在300-500℃下焙烧1-6h。在多次浸渍的情况下,最好在每次浸渍后都进行干燥和焙烧。
本申请中,活性金属组分和金属助剂的负载操作对催化剂的微观结构影响不大,因此,所得催化剂与载体具有类似的孔结构。
在第三方面,本申请提供了一种载体,其为包括含铝和/或硅的无机多孔材料,其中所述载体的L酸含量占L酸与B酸含量之和的85%以上。
在优选的实施方式中,所述载体的L酸含量占L酸与B酸含量之和的88%以上,更优选90%以上,特别优选92%以上。
在优选的实施方式中,所述载体包含基质和掺杂元素,其中所述基质选自氧化铝、氧化硅、分子筛、硅藻土、硅酸铝或者它们的组合,并且所述掺杂元素为非金属元素,优选选自IIIA族非金属元素、VA族非金属元素、VIA族非金属元素和VIIA族非金属元素中的至少一种 且不为氯,更优选为硼、氟、磷、硫和硒中的至少一种。进一步优选地,所述载体中的掺杂元素来自非金属酸根离子,所述非金属酸根离子优选为硼酸根离子、氟离子、磷酸根离子、硫酸根离子和硒酸根离子中的至少一种。
在优选的实施方式中,所述载体具有以下特征中的至少一个:
所述载体中孔径在7-27nm范围内的孔容占所述载体孔容的百分比大于65%,优选为70-90%,优选地孔径小于7nm的孔容占所述载体孔容的百分比为0-10%,优选为0-8%;
所述载体中孔径小于7.5nm的孔容占所述载体孔容的百分比低于20%,优选为5-17%,孔径小于9nm的孔容占所述载体孔容的百分比低于40%,孔径大于27nm的孔容占所述载体孔容的百分比低于5%,优选为0.5-5%,优选地,孔径大于等于7.5nm且小于9nm的孔容占所述载体孔容的百分比为5-17%,孔径大于等于9nm且小于等于27nm的孔容占所述载体孔容的百分比为61-89.5%;
所述载体的氨吸附量为0.25-0.65mmol/g,优选为0.3-0.6mmol/g,更优选为0.3-0.5mmol/g;
所述载体中氧化铝的含量占基质总量的65重量%以上,优选70重量%以上,更优选75重量%以上;
所述掺杂元素的含量占基质总量的0.05-6重量%,优选0.05-5重量%,更0.05-4.5重量%,特别优选0.07-4重量%;
所述载体的比表面积为100-220m 2/g,优选105-210m 2/g,更优选110-210m 2/g,特别优选120-210m 2/g;
所述载体的孔容为0.4-1.1ml/g,优选0.43-1.1ml/g,更优选0.45-1.1ml/g,特别优选为0.45-1ml/g;以及
所述载体的等电点为3-6,优选为3.5-5.5。
在第四方面,本申请提供了根据本申请的催化剂或根据本申请的载体在催化胺化制备有机胺中的应用。
在第五方面,本申请提供了一种制备有机胺的方法,包括:在氢气存在下,使胺化原料、胺化试剂与根据本申请的催化剂接触进行胺化反应得到所述有机胺。
在优选的实施方式中,所述胺化原料选自醇、酮、醇胺、醛或者它们的组合,优选选自C2-20的醇、C3-20的酮、C2-20的醇胺、C2-20 的醛和它们的各种混合物。进一步优选地,所述胺化原料选自乙醇、乙醛、正丙醇、丙醛、异丙醇、正丁醇、丁醛、异丁醇、异丁醛、2-乙基己醇、2-乙基己醛、辛醇、辛醛、十二烷醇、十二烷醛、十六烷醇、十六烷醛、环戊醇、环己醇、环辛醇、环十二烷醇、苯甲醇、苯甲醛、苯乙醇、苯乙醛、1,4-丁二醇、1,4-丁二醛、1,5-戊二醇、1,5-戊二醛、1,6-己二醇、1,6-己二醛、1,8-辛二醇、1,8-辛二醛、1,12-十二碳二醇、1,12-十二碳二醛、乙醇胺、丙醇胺、异丙醇胺、6-氨基己醇、二乙醇胺、二异丙醇胺、二甲基乙醇胺、丙酮、乙二醇、1,3-丙二醇和它们的各种混合物。
本申请中,所述胺化试剂指能够提供氨基和/或胺基的反应物。优选地,所述胺化试剂选自氨、伯胺、仲胺或者它们的组合,优选选自氨、C1-12的伯胺、C2-12的仲胺和它们的各种混合物,例如烷基胺、环烷基胺和芳烷基胺中的至少一种,更优选C1-4的烷基胺。进一步优选地,所述胺化试剂选自氨、一甲胺、二甲胺、甲基乙基胺、一乙胺、二乙胺和它们的各种混合物。
在优选的实施方式中,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-6∶2-35∶1、优选1-6∶2-33∶1、更优选1-5∶3-33∶1,温度为105-230℃,优选110-220℃、更优选110-210℃,压力为0.7-25MPa、优选1-25MPa、更优选1-22MPa、特别优选1-17MPa,胺化原料的液相体积空速为0.06-1m 3/(m 3·h)。
在某些优选的实施方式中,所述胺化原料为一元醇,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为优选1-4∶2-9∶1、更优选1-4∶2-8∶1,温度为130-210℃、优选130-208℃、更优选130-200℃,压力为0.8-3.5MPa、优选1-2.5MPa,胺化原料的液相体积空速为0.1-0.8m 3/(m 3·h)。
在某些优选的实施方式中,所述胺化原料为酮或醛,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-4∶2-6∶1、优选1-4∶2-5∶1,温度为105-180℃、优选为110-170℃、更优选为110-160℃,压力为0.7-2.5MPa、优选为1-2.5MPa、更优选为1-2MPa,胺化原料的液相体积空速为0.1-1m 3/(m 3·h)、优选0.1-0.8m 3/(m 3·h)。
在某些优选的实施方式中,所述胺化原料为醇胺,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-4∶3-23∶1,优 选为1-4∶3-20∶1,更优选为1-4∶3-10∶1,温度为130-200℃,压力为1-16MPa,优选1-13MPa,更优选1-11MPa,胺化原料的液相体积空速为0.06-0.8m 3/(m 3·h)。
在某些优选的实施方式中,所述胺化原料为二元醇,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为0.3-5∶2-35∶1、优选1-4∶3-35∶1、更优选1-4∶3-33∶1,特别优选1-4∶3-32∶1,温度为130-230℃、优选130-220℃、更优选130-210℃,压力为1-25MPa、优选1-22MPa、更优选1-17MPa,胺化原料的液相体积空速为0.1-0.9m 3/(m 3·h)、优选0.1-0.8m 3/(m 3·h)。
在某些优选的实施方式中,所述胺化原料为1,6-己二醇、环己亚胺和6-氨基-1-己醇的混合物,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为0.3-4∶3-35∶1、优选1-4∶3-33∶1、更优选1-4∶3-32∶1,温度130-230℃,优选130-220℃、更优选130-210℃,压力为1-22MPa,优选1-17MPa,胺化原料的液相体积空速为0.1-0.9m 3/(m 3·h)、优选0.1-0.8m 3/(m 3·h)。
第I类实施方式
在本申请的第I类实施方式中,提供了一种具有催化醇临氢胺化合成有机胺功能的催化剂,该催化剂包括载体和负载于所述载体上的活性金属组分和可选的金属助剂,其特征在于,所述载体包括基质和掺杂元素,所述基质包括氧化铝和可选的其它载体,其中,所述其它载体选自氧化硅、分子筛和硅藻土中的至少一种;所述载体中孔径小于7.5nm的孔容占所述载体孔容的百分比低于20%,孔径小于9nm的孔容占所述载体孔容的百分比低于40%,孔径大于27nm的孔容占所述载体孔容的百分比低于5%;所述载体的氨吸附量为0.3-0.6mmol/g;所述载体的L酸含量占L酸与B酸含量之和的90%以上;所述活性金属组分为钴和/或镍。
本申请的第I类实施方式的催化剂具有特定的酸性和孔道结构,用于醇类临氢胺化反应时,不仅表现出较高的催化活性,同时具有优异的选择性。用于1,3-丙二醇临氢胺化反应,相比之下生成含3-氨基丙醇和其他杂质的量更少。用于乙醇临氢胺化反应,相比之下生成含甲基乙胺、甲基二乙胺、乙基正丙胺、乙基仲丁胺的量更少。用于1,6- 己二醇临氢胺化反应,生成的重组分和其它杂质更少。经长周期寿命考核,本申请的第I类实施方式的催化剂催化性能更加稳定,将催化剂的酸性控制在一定的范围内,也同时改善了催化剂的吸附-脱附性能,进一步促进反应体系的扩散,加快反应速率,减少了积碳,减缓了孔道堵塞。
根据本申请的第I类实施方式,所述载体以(掺杂)氧化铝为主体,可进一步配合(掺杂)氧化硅等,从而进一步改善催化剂的孔道结构类型和孔结构稳定性等性能。优选地,所述载体的基质选自掺加氧化硅、分子筛和硅藻土中至少一种的氧化铝以及未掺加的氧化铝,所述基质中氧化铝载体的含量占氧化铝载体与其它载体的总量的65重量%以上,优选75重量%以上。
优选地,以基质的总重量为基准,所述载体中掺杂元素的含量为0.05-3重量%,更优选为0.08-2重量%,进一步优选为0.1-1.5重量%。
优选地,所述载体中掺加的杂元素来自不包括氯离子的酸根离子。由于掺加的杂元素在载体的制备过程中引入,掺加的杂元素主要存在于载体的体相中。所述酸根离子可以选自非金属酸根离子中的至少一种,进一步优选为硼酸根离子、氟离子、磷酸根离子、硫酸根离子和硒酸根离子中的至少一种。所述掺杂元素优选选自硼、氟、磷、硫和硒中的至少一种。
优选地,所述载体中孔径小于7.5nm的孔容占所述载体孔容的百分比为5-17%,更优选为5-10%,孔径大于等于7.5nm且小于9nm的孔容占所述载体孔容的百分比为5-17%,孔径大于等于9nm且小于等于27nm的孔容占所述载体孔容的百分比为61-89.5%,孔径大于27nm的孔容占所述载体孔容的百分比为0.5-5%,更优选为0.5-3%。本申请的发明人发现,孔道结构满足上述要求的催化剂具有更优异的催化性能。
优选地,所述载体的氨吸附量为0.3-0.5mmol/g。
优选地,所述载体的L酸含量占L酸与B酸含量之和的92-100%,优选为96-100%。
优选地,所述载体的比表面积为105-220m 2/g。
优选地,所述载体的孔容为0.4-1.1ml/g。
根据本申请的第I类实施方式,相对于每100g的基质,所述活性 金属组分的含量可以为5-42g,优选为10-35g。
根据本申请的第I类实施方式,为了更好发挥出所述催化剂的性能、调优反应产物比例、减少不需要的副反应,所述催化剂还可以含有金属助剂,所述金属助剂可以选自VIB族、VIIB族、IB族、IIB族和镧系元素中的至少一种,优选为Cr、Mo、W、Mn、Re、Cu、Ag、Au、Zn、La和Ce中至少一种。优选地,相对于每100克的基质,所述金属助剂的含量可以为0-10g,优选为0.5-6g。
在本申请的第I类实施方式中,还提供了一种制备有机胺的方法,其特征在于,该方法包括:在氢气存在下,将胺化原料、胺化试剂与如前所述的催化剂接触进行胺化反应。
根据本申请的第I类实施方式,所述胺化原料或胺化试剂可以按照上文所述进行选择,在此不再赘述。
根据本申请的第I类实施方式,所述胺化反应的条件可以包括:氢气、胺化试剂和胺化原料的摩尔比为1-5∶2-35∶1,温度为110-220℃,压力为1-25MPa,胺化原料的液相体积空速为0.06-1m 3/(m 3·h)。
优选地,所述胺化原料为一元醇,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-4∶2-8∶1,温度为130-200℃,压力为1-3.5MPa,胺化原料的液相体积空速为0.1-0.8m 3/(m 3·h)。
优选地,所述胺化原料为酮或醛,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-4∶2-5∶1,温度为110-180℃,压力为1-2.5MPa,胺化原料的液相体积空速为0.1-0.8m 3/(m 3·h)。
优选地,所述胺化原料为醇胺,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-4∶3-20∶1,温度为130-200℃,压力为1-11MPa,胺化原料的液相体积空速为0.06-0.8m 3/(m 3·h)。
优选地,所述胺化原料为二元醇,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-5∶2-35∶1,温度为130-220℃,压力为1-25MPa,胺化原料的液相体积空速为0.1-0.8m 3/(m 3·h)。
优选地,所述胺化原料为1,6-己二醇、环己亚胺和6-氨基-1-己醇(简称氨基己醇)的混合物,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-4∶3-35∶1,温度为130-200℃,压力为1-22MPa,胺化原料的液相体积空速为0.1-0.8m 3/(m 3·h)。
第II类实施方式
在本申请的第II类实施方式中,提供了一种具有以醇为原料催化合成胺功能的催化剂,该催化剂包括载体和负载于所述载体上的活性金属组分和可选的金属助剂,所述载体选自掺杂氧化铝、掺杂氧化硅、掺杂分子筛和掺杂硅藻土中的至少一种;所述载体的氨吸附量为0.25-0.65mmol/g;所述载体的L酸含量占L酸与B酸含量之和的88%以上;所述活性金属组分为钴和/或镍且催化剂中所述活性金属组分的晶粒尺寸小于10nm。
本申请的第II类实施方式的催化剂改进了载体酸性,活性金属组分高度分散,晶粒尺寸小于10nm,用于醇类临氢胺化反应具有较高的催化活性,同时具有较高的选择性。用于乙醇胺临氢胺化反应,相比之下生成除乙二胺以外的成分(如哌嗪等)的量更少。用于1,6-己二醇临氢胺化反应,生成的重组分和其它杂质更少。经长周期寿命考核,本申请的第II类实施方式的催化剂具有更稳定的催化性能,将催化剂的酸性控制在一定的范围内,改善了催化剂的吸附-脱附性能,从而促进反应体系的扩散,加快反应速率,减少了积碳,减缓了孔道堵塞。
根据本申请的第II类实施方式,所述载体包括基质和掺杂元素,所述基质选自氧化铝、氧化硅、分子筛和硅藻土等。优选地,以所述基质的总重量为基准,所述载体中掺杂元素的含量为0.05-5重量%,更优选为0.08-4重量%。
优选地,所述载体中的掺杂元素来自不包括氯离子的酸根离子。所述掺杂元素优选选自硼、氟、磷、硫和硒中的至少一种。由于掺杂元素在载体的制备过程中引入,所述掺杂元素存在于所载体的体相中。进一步优选地,所述酸根离子可以选自非金属酸根离子中的至少一种,例如为硼酸根离子、氟离子、磷酸根离子、硫酸根离子和硒酸根离子中的至少一种。
优选地,所述载体的氨吸附量为0.3-0.5mmol/g(例如可以为0.3mmol/g、0.32mmol/g、0.35mmol/g、0.38mmol/g、0.4mmol/g、0.45mmol/g、0.48mmol/g、0.5mmol/g,或者两个任意上述数值的任意中间值)。
优选地,所述载体的L酸含量占L酸与B酸含量之和的90-100%。
优选地,催化剂中所述活性金属组分的晶粒尺寸为3-8nm。
优选地,所述载体的比表面积为100-200m 2/g。
优选地,所述载体的孔容为0.45-1ml/g。
优选地,所述载体的等电点为3-6,优选为3.5-5.5。
优选地,相对于每100g的基质,所述载体中活性金属组分的含量可以为7-45g,优选为12-38g。
根据本申请的第II类实施方式,为了更好发挥出所述催化剂的性能、调优反应产物比例、减少不需要的副反应,所述催化剂还可以含有金属助剂。所述金属助剂可以选自VIB族、VIIB族、IB族、IIB族和镧系元素中的至少一种,优选为Cr、Mo、W、Mn、Re、Cu、Ag、Au、Zn、La和Ce中至少一种。优选地,相对于每100克的基质,所述载体中金属助剂的含量可以为0-10g,优选为0.5-6g。进一步优选地,所述金属助剂的晶粒尺寸小于10nm。
在本申请的第II类实施方式中,还提供了一种制备有机胺的方法,其特征在于,该方法包括:在氢气存在下,将胺化原料、胺化试剂与如前所述的催化剂接触进行胺化反应。
根据本申请的第II类实施方式,所述胺化原料或胺化试剂可以按照上文所述进行选择,在此不再赘述。
根据本申请的第II类实施方式,所述胺化反应的条件可以包括:氢气、胺化试剂和胺化原料的摩尔比为1-5∶3-33∶1,温度为110-210℃,压力为1-22MPa,胺化原料的液相体积空速为0.06-1m 3/(m 3·h)。
优选地,所述胺化原料为一元醇,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-4∶2-8∶1,温度为130-200℃,压力为0.8-2.5MPa,胺化原料的液相体积空速为0.1-0.8m 3/(m 3·h)。
优选地,所述胺化原料为酮或醛,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-4∶2-6∶1,温度为110-170℃,压力为1-2.5MPa,胺化原料的液相体积空速为0.1-0.8m 3/(m 3·h)。
优选地,所述胺化原料为醇胺,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-4∶3-10∶1,温度为130-200℃,压力为1-11MPa,胺化原料的液相体积空速为0.06-0.8m 3/(m 3·h)。
优选地,所述胺化原料为1,6-己二醇、环己亚胺和6-氨基-1-己醇(简称氨基己醇)的混合物或二元醇,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-4∶3-33∶1,温度为130-210℃, 压力为1-22MPa,胺化原料的液相体积空速为0.1-0.8m 3/(m 3·h)。
第III类实施方式
在本申请的第III类实施方式中,提供了一种具有经醇临氢胺化制备胺功能的催化剂,该催化剂包括载体和负载于所述载体上的活性金属组分和可选的金属助剂,所述载体包括基质和掺杂元素,所述基质包括氧化铝和可选的其它载体,所述其它载体选自氧化硅和/或分子筛;所述掺杂元素选自硼、氟、磷、硫和硒中的至少一种;所述载体中孔径在7-27nm范围内的孔容占所述载体孔容的百分比大于65%;所述载体的L酸含量占L酸与B酸含量之和的85%以上;所述活性金属组分为钴和/或镍。
本申请的第III类实施方式的催化剂载体中掺杂硼、氟、磷、硫和硒提升了催化性能,例如用于乙醇临氢胺化反应,相比之下生成含甲基乙胺、甲基二乙胺、乙基正丙胺、乙基仲丁胺的量更少。用于1,6-己二醇临氢胺化反应,生成的重组分和其它杂质更少,催化剂寿命更长。
此外,本申请的第III类实施方式的催化剂具有特定的孔道结构,用于醇类临氢胺化反应时,不仅表现出较高的催化活性,同时具有优异的选择性和稳定性,减少了孔道积碳,有效阻止了催化剂孔道堵塞。
根据本申请的第III类实施方式,所述载体以掺杂氧化铝为主体,可进一步配合(掺杂)氧化硅等,从而进一步改善催化剂的孔道结构和载体的酸碱性能。优选地,所述载体的基质为掺加氧化硅和/或分子筛的氧化铝,所述基质中氧化铝载体的含量不低于70重量%,优选为75-100重量%。
优选地,以基质的总重量为基准,所述载体中掺杂元素的含量为0.05-6重量%,更优选为0.08-4重量%。
优选地,所述载体中的掺杂元素以硼酸根离子、氟离子、磷酸根离子、硫酸根离子和硒酸根离子中的至少一种的方式掺杂。由于掺杂元素在载体的制备过程中引入,掺杂元素主要存在于载体的体相中。
优选地,所述载体中孔径在7-27nm范围内的孔容占所述载体孔容的百分比大于65%。更优选地,所述载体中孔径在7-27nm范围内的孔容占所述载体孔容的百分比为70-90%。进一步优选地,孔径小于7 nm的孔容占所述载体孔容的百分比为0-10%;孔径大于27nm的孔容占所述载体孔容的百分比为18-32%。
优选地,所述载体的L酸含量占L酸与B酸含量之和的百分比为85-98%。
优选地,所述载体的比表面积为120-210m 2/g。
优选地,所述载体的孔容为0.43-1.1ml/g。
优选地,相对于每100g的基质,所述活性金属组分的含量可以为8-44g,优选为12-37g。
优选地,相对于每100克的基质,所述金属助剂的含量可以为0-10g,优选为0.5-6g。
根据本申请的第III类实施方式,为了更好发挥出所述催化剂的性能、调优反应产物比例、减少不需要的副反应,所述催化剂还可以含有金属助剂。所述金属助剂可以选自VIB族、VIIB族、IB族、IIB族和镧系元素中的至少一种,优选为Cr、Mo、W、Mn、Re、Cu、Ag、Au、Zn、La和Ce中至少一种。
在本申请的第III类实施方式中,还提供了一种制备有机胺的方法,其特征在于,该方法包括:在氢气存在下,将胺化原料、胺化试剂与如前所述的催化剂接触进行胺化反应。
根据本申请的第III类实施方式,所述胺化原料或胺化试剂可以按照上文所述进行选择,在此不再赘述。
根据本申请的第III类实施方式,所述胺化反应的条件可以包括:氢气、胺化试剂和胺化原料的摩尔比为1-6∶2-32∶1,温度为105-210℃,压力为1-17MPa,胺化原料的液相体积空速为0.06-1m 3/(m 3·h)。
优选地,所述胺化原料为一元醇,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-4∶2-9∶1,温度为130-208℃,压力为1-2.5MPa,胺化原料的液相体积空速为0.1-0.8m 3/(m 3·h)。
优选地,所述胺化原料为酮或醛,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-4∶2-5∶1,温度为105-160℃,压力为1-2MPa,胺化原料的液相体积空速为0.1-1m 3/(m 3·h)。
优选地,所述胺化原料为醇胺,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-4∶3-20∶1,温度为130-200℃,压力为1-13MPa,胺化原料的液相体积空速为0.06-0.8m 3/(m 3·h)。
优选地,所述胺化原料为1,6-己二醇、环己亚胺和6-氨基-1-己醇(简称氨基己醇)的混合物或二元醇,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-4∶3-32∶1,温度为130-210℃,压力为1-17MPa,胺化原料的液相体积空速为0.1-0.9m 3/(m 3·h)。
第IV类实施方式
在本申请的第IV类实施方式中,提供了一种具有由醇制备胺催化功能的催化剂,该催化剂包括载体和负载于所述载体上的活性金属组分和金属助剂,其中所述载体的L酸含量占L酸与B酸含量之和的85%以上,所述活性金属组分为钴和/或镍;所述金属助剂为IIA族金属中的至少一种、IIB族金属中的至少一种和VA族金属中的至少一种的组合。
本申请的第IV类实施方式的催化剂使用特定的金属助剂,具有较高的催化活性,同时具有较高的选择性,副产物少。
优选地,所述载体的L酸含量占L酸与B酸含量之和的88%以上,更优选90%以上,特别优选92%以上。
优选地,所述载体包括基质和掺杂元素,所述基质包括氧化铝和可选的其它载体,所述其它载体包括氧化硅和/或分子筛;所述掺杂元素选自硼、氟、磷、硫和硒中的至少一种;所述载体中孔径在7-27nm范围内的孔容占所述载体孔容的百分比大于65%。
根据本申请的第IV类实施方式,所述载体以掺杂氧化铝为主体,可进一步配合(掺杂)氧化硅等,从而进一步改善催化剂的孔道结构使得反应物和生成物容易在孔道中扩散和使得孔结构更稳定的性能。优选地,所述载体的基质中氧化铝的含量占氧化铝与其它载体的总量的70重量%以上,优选为75-100重量%。
优选地,以基质的总重量为基准,所述载体中的掺杂元素的含量为0.05-4.5重量%,更优选为0.07-2.8重量%。
优选地,所述载体中掺杂的元素以硼酸根离子、氟离子、磷酸根离子、硫酸根离子和硒酸根离子中的至少一种的方式掺杂。掺杂元素存在于氧化铝前驱体中,在制备前驱体的过程中添加进去,掺杂元素裹夹在前驱体晶相中,载体制备后掺杂元素主要存在于载体的体相中。
优选地,所述载体中孔径在7-27nm范围内的孔容占所述载体孔容 的百分比为70-90%。优选地,孔径小于7nm的孔容占所述载体孔容的百分比为0-8%。优选地,孔径大于27nm的孔容占所述载体孔容的百分比为15-35%,更优选为20-29%。
优选地,所述载体的比表面积为110-210m 2/g。
优选地,所述载体的孔容为0.45-1.1ml/g。
优选地,相对于每100g的基质,所述活性金属组分的含量可以为8-45g,优选为15-38g(例如可以为15、20、25、28、30、32、35、37、38中的任意值,或者上述任意两个数值的任意中间值)。
优选地,相对于每100克的基质,所述金属助剂的含量可以为0.1-10g,优选为0.5-6g(例如可以为0.5、1、2、3、3.5、3.8、4、4.2、4.5、4.8、5、5.2、5.5、6中的任意值,或者上述任意两个数值的任意中间值)。
根据本申请的第IV类实施方式,为了更好发挥出本申请的催化剂的性能、调优反应产物比例、减少不需要的副反应,所述催化剂含有如前所述的金属助剂。所述金属助剂中IIA族金属、IIB族金属和VA族金属的重量比优选为0.1-10∶0.1-10∶1,更优选为0.2-8∶0.2-8∶1。优选地,所述IIA族金属选自镁、钙和钡中的至少一种。优选地,所述IIB族金属选自锌。优选地,所述VA族金属选自铋。
在本申请的第IV类实施方式中,使用具有特定孔结构和掺杂元素的载体,使得所述催化剂用于醇类临氢胺化反应具有更高的催化活性,同时具有更高的选择性,用于乙醇临氢胺化反应,相比之下生成含甲基乙胺、甲基二乙胺、乙基正丙胺、乙基仲丁胺的量更少。用于1,6-己二醇临氢胺化反应,生成的重组分和其它杂质更少。经长周期寿命考核,所述催化剂具有更稳定的催化性能,促进反应体系的扩散,加快反应速率,减少了积碳,减缓了孔道堵塞。
根据本申请的第IV类实施方式,所述载体可以采用现有的能够得到掺杂元素和孔结构等满足上述范围的方法制备得到,且获取掺杂元素和孔结构满足上述范围的载体是本领域技术人员能够实施的。优选地,所述载体通过包括以下步骤的方法制备:
(1)将含掺杂元素、氧化铝前驱体和可选的其它载体前驱体的混合物依次进行成型、第一干燥和第一焙烧,所述其它载体前驱体包括氧化硅前驱体(如硅溶胶)和/或分子筛前驱体(如ZSM-5);
(2)将第一焙烧的产物与IIA族金属前驱体的溶液混合后进行第二干燥和第二焙烧。成型的方法可以使用捏合、滚球或打片等。
在以上载体的制备方法中,本领域技术人员能够理解的是:如果提供载体前驱体的原料中已经含有所需量的掺杂元素,那么只需使用这种原料进行成型即可,如果提供载体前驱体的原料中不含掺杂元素或掺杂元素的含量较低(不足),那么可以额外引入掺杂元素。
在以上载体的制备方法中,所述掺杂元素可以掺杂在提供氧化铝前驱体的原料中,也即可以直接使用掺杂元素改性的氧化铝前驱体和/或其它载体前驱体,而这种掺杂元素改性的氧化铝前驱体或其它载体前驱体可以通过商购或常规的方法获得,在此不再赘述。
在以上载体的制备方法中,本领域技术人员能够根据最终载体中某成分(如掺杂元素)的量确定某成分原料(如载体改性剂)的用量,因此,本文中部分原料用量未示出。
在以上载体的制备方法中,所述氧化铝前驱体优选为拟薄水铝石。所述拟薄水铝石的比表面积优选为250-330m 2/g。所述拟薄水铝石的孔容优选为0.5-1.1。所述拟薄水铝石可以由碳化法、有机铝水解法、硫酸铝法和硝酸法中的至少一种方法制备,特别优选由硫酸铝法制备。选用具有特定孔结构的拟薄水铝石能够获得性能更优的催化剂。
在以上载体的制备方法中,所述第一干燥和第二干燥的条件可以各自独立地包括:温度为80-150℃,时间为6-20h。优选为100-120℃,8-15h。
在以上载体的制备方法中,所述第一焙烧的条件可以包括:温度为500-650℃,时间为2-20h。优选为520-620℃,4-8h。
在以上载体的制备方法中,所述第二焙烧的条件可以包括:温度为800-1100℃,时间为2-20h。优选为800-980℃,5-10h
在本申请的第IV类实施方式中,还提供了一种制备有机胺的方法,其特征在于,该方法包括:在氢气存在下,将胺化原料、胺化试剂与如前所述的催化剂接触进行胺化反应。
根据本申请的第IV类实施方式,所述胺化原料或胺化试剂可以按照上文所述进行选择,在此不再赘述。
根据本申请的第IV类实施方式,所述胺化反应的条件可以包括:氢气、胺化试剂和胺化原料的摩尔比为1-5∶2-35∶1,温度为110-230 ℃,压力为0.7-22MPa,胺化原料的液相体积空速为0.06-1m 3/(m 3·h)。
优选地,所述胺化原料为一元醇,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-4∶2-8∶1,温度为130-210℃,压力为1-2.5MPa,胺化原料的液相体积空速为0.1-0.8m 3/(m 3·h)。
优选地,所述胺化原料为酮或醛,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-4∶2-5∶1,温度为110-180℃,压力为0.7-2.5MPa,胺化原料的液相体积空速为0.1-0.8m 3/(m 3·h)。
优选地,所述胺化原料为醇胺,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-4∶3-23∶1,温度为130-200℃,压力为1-16MPa,胺化原料的液相体积空速为0.06-0.8m 3/(m 3·h)。
优选地,所述胺化原料为1,6-己二醇、环己亚胺和6-氨基-1-己醇的混合物或二元醇,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-4∶3-35∶1,温度为130-230℃,压力为1-22MPa,胺化原料的液相体积空速为0.1-0.8m 3/(m 3·h)。
在某些优选的实施方式中,本申请提供了如下的技术方案:
A1、一种具有催化醇临氢胺化合成有机胺功能的催化剂,该催化剂包括载体和负载于所述载体上的活性金属组分和可选的金属助剂,其特征在于,所述载体包括基质和掺杂元素,所述基质包括氧化铝载体和可选的其它载体,其中,所述其它载体选自氧化硅、分子筛和硅藻土中的至少一种;所述载体中孔径小于7.5nm的孔容占所述载体孔容的百分比低于20%,孔径小于9nm的孔容占所述载体孔容的百分比低于40%,孔径大于27nm的孔容占所述载体孔容的百分比低于5%;所述载体的氨吸附量为0.3-0.6mmol/g;所述载体的L酸含量占L酸与B酸含量之和的90%以上;所述活性金属组分为钴和/或镍。
A2、根据项目A1所述的催化剂,其中,所述基质中氧化铝载体的含量占氧化铝载体与其它载体的总量的65重量%以上,优选75重量%以上;
和/或,所述掺杂元素的含量占基质的总重量的0.05-3重量%,优选为0.08-2重量%;
和/或,所述掺杂元素来自不包括氯离子的酸根离子;所述酸根离子选自非金属酸根离子中的至少一种,优选为硼酸根离子、氟离子、磷酸根离子、硫酸根离子和硒酸根离子中的至少一种;
和/或,所述载体中孔径小于7.5nm的孔容占所述载体孔容的百分比为5-17%,孔径大于等于7.5nm且小于9nm的孔容占所述载体孔容的百分比为5-17%,孔径大于等于9nm且小于等于27nm的孔容占所述载体孔容的百分比为61-89.5%,孔径大于27nm的孔容占所述载体孔容的百分比为0.5-5%;
和/或,所述载体的氨吸附量为0.3-0.5mmol/g;
和/或,所述载体的L酸含量占L酸与B酸含量之和的92-100%;
和/或,所述载体的比表面积为105-220m 2/g;
和/或,所述载体的孔容为0.4-1.1ml/g;
和/或,相对于每100g的基质,所述活性金属组分的含量为5-42g,优选为10-35g。
A3、根据项目A1或A2所述的催化剂,其中,所述载体通过包括以下步骤的方法制备得到:将载体改性剂、拟薄水铝石与可选的其它载体源的混合物依次进行成型、干燥和焙烧,所述其它载体源选自氧化硅前驱体、分子筛前驱体和硅藻土前驱体中的至少一种,所述焙烧的温度在800-1050℃。
A4、根据项目A3所述的催化剂,其中,所述载体改性剂选自非金属酸根离子中的至少一种,优选选自硼酸根离子、氟离子、磷酸根离子、硫酸根离子和硒酸根离子中的至少一种。
A5、根据项目A3或A4所述的催化剂,其中,所述载体改性剂选自硼酸、硼酸镍、硼酸钴、硼酸钾、硼酸铵、氟化钾、氟化钴、氟化镍、氢氟酸、氟化氨、磷酸、磷酸铝、磷酸钾、磷酸二氢钾、磷酸氢钾、磷酸镁、磷酸钙、磷酸氨、硫酸、硫酸钴、硫酸镍、硫酸铝、硫酸钙、硫酸钾、硫酸镁、磷酸锶、硫酸锶和硒酸中的至少一种;
和/或,所述拟薄水铝石的比表面积为255-360m 2/g,孔容为0.75-1.3ml/g。
A6、根据项目A3-A5中任一项所述的催化剂,其中,所述干燥的条件包括:温度为80-150℃,时间为6-20h;
和/或,所述焙烧的条件包括:温度为800-1050℃,时间为2-20h。
A7、一种制备项目A1-A6中任一项所述的催化剂的方法,该方法包括:将活性金属组分和可选的金属助剂负载于载体上。
A8、项目A1-A6中任一项所定义的载体。
A9、项目A1-A6中任一项所述的催化剂或项目A7所述的方法或项目A8所述的载体在胺化制有机胺中的应用。
A10、一种制备有机胺的方法,其特征在于,该方法包括:在氢气存在下,将胺化原料、胺化试剂与项目A1-A6中任一项所述的催化剂接触进行胺化反应;
或者,该方法包括:筛选包括项目A1-A6中任一项所定义的载体的催化剂,并在氢气存在下,将胺化原料、胺化试剂与筛选得到的催化剂接触进行胺化反应。
A11、根据项目A10所述的方法,其中,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-5∶2-35∶1,温度为110-220℃,压力为1-25MPa,胺化原料的液相体积空速为0.06-1m 3/(m 3·h);
和/或,所述胺化原料选自C2-20的醇、C3-20的酮、C2-20的醇胺和C2-20的醛中的至少一种,优选为乙醇、乙醛、正丙醇、丙醛、异丙醇、正丁醇、丁醛、异丁醇、异丁醛、2-乙基己醇、2-乙基己醛、辛醇、辛醛、十二烷醇、十二烷醛、十六烷醇、十六烷醛、环戊醇、环己醇、环辛醇、环十二烷醇、苯甲醇、苯甲醛、苯乙醇、苯乙醛、1,4-丁二醇、1,4-丁二醛、1,5-戊二醇、1,5-戊二醛、1,6-己二醇、1,6-己二醛、1,8-辛二醇、1,8-辛二醛、乙醇胺、丙醇胺、异丙醇胺、6-氨基己醇、二乙醇胺、丙酮、乙二醇、1,3-丙二醇和1,12-十二烷二醇中的至少一种;
和/或,所述胺化试剂选自氨、C1-12的伯胺和C1-12的仲胺中的至少一种,优选为氨、一甲胺、二甲胺、甲基乙基胺、一乙胺和二乙胺中的至少一种。
A12、根据项目A11所述的方法,其中,所述胺化原料为一元醇时,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-4∶2-8∶1,温度为130-200℃,压力为1-3.5MPa,胺化原料的液相体积空速为0.1-0.8m 3/(m 3·h);
或者,所述胺化原料为酮或醛时,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-4∶2-5∶1,温度为110-180℃,压力为1-2.5MPa,胺化原料的液相体积空速为0.1-0.8m 3/(m 3·h);
或者,所述胺化原料为醇胺时,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-4∶3-20∶1,温度为130-200℃,压 力为1-11MPa,胺化原料的液相体积空速为0.06-0.8m 3/(m 3·h);
所述胺化原料为二元醇时,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-5∶2-35∶1,温度为130-220℃,压力为1-25MPa,胺化原料的液相体积空速为0.1-0.8m 3/(m 3·h);
或者,所述胺化原料为1,6-己二醇、环己亚胺和6-氨基-1-己醇的混合物时,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-4∶3-35∶1,温度为130-200℃,压力为1-22MPa,胺化原料的液相体积空速为0.1-0.8m 3/(m 3·h)。
B1、一种具有以醇为原料催化合成胺功能的催化剂,该催化剂包括载体和负载于所述载体上的活性金属组分和可选的金属助剂,其特征在于,所述载体选自掺杂氧化铝、掺杂氧化硅、掺杂分子筛和掺杂硅藻土中的至少一种;所述载体的氨吸附量为0.25-0.65mmol/g;所述载体的L酸含量占L酸与B酸含量之和的88%以上;所述活性金属组分为钴和/或镍且催化剂中所述活性金属组分的晶粒尺寸小于10nm。
B2、根据项目B1所述的催化剂,其中,所述载体包括基质和掺杂元素,所述基质选自氧化铝、氧化硅、分子筛和硅藻土,所述掺杂元素的含量占基质的总重量的0.05-5重量%,优选为0.08-4重量%;
和/或,所述载体中掺杂的元素来自酸根离子且不包括氯离子;所述酸根离子选自非金属酸根离子中的至少一种,优选为硼酸根离子、氟离子、磷酸根离子、硫酸根离子和硒酸根离子中的至少一种;
和/或,所述载体的氨吸附量为0.3-0.5mmol/g;
和/或,所述载体的L酸含量占L酸与B酸含量之和的90-100%;
和/或,催化剂中所述活性金属组分的晶粒尺寸为3-8nm;
和/或,所述载体的比表面积为100-200m 2/g;
和/或,所述载体的孔容为0.45-1ml/g;
和/或,所述载体的等电点为3-6,优选为3.5-5.5;
和/或,相对于每100g的基质,所述活性金属组分的含量为7-45g,优选为12-38g。
B3、根据项目B1或B2所述的催化剂,其中,所述载体通过包括以下步骤的方法制备得到:将含掺杂离子与基质前驱体的混合物依次进行成型、干燥和焙烧,其中,所述掺杂离子由载体改性剂提供,所述载体改性剂为含掺杂离子的无机酸和含掺杂离子的无机盐中的至少 一种,所述焙烧的温度在800℃以上。
B4、根据项目B3所述的催化剂,其中,所述无机酸选自含有非金属酸根离子的无机酸中的至少一种,所述无机盐选自含有非金属酸根离子的无机盐中的至少一种,所述载体改性剂优选为硼酸、硼酸钾、硼酸镁、氢氟酸、氟化钾、氟化镁、磷酸、磷酸钾、磷酸镁、硫酸、硫酸钾、硫酸镁和硒酸中的至少一种。
B5、根据项目B3或B4所述的催化剂,其中,所述基质前驱体为拟薄水铝石,所述拟薄水铝石的比表面积为260-400m 2/g,孔容为0.75-1.2ml/g。
B6、根据项目B3-B5中任一项所述的催化剂,其中,所述干燥的条件包括:温度为80-150℃,时间为6-20h;
和/或,所述焙烧的条件包括:温度为820-1120℃,时间为2-20h。
B7、一种制备项目B1-B6中任一项所述的催化剂的方法,该方法包括:使用含活性金属组分前驱体和可选的金属助剂前驱体的浸渍液浸渍载体,以使活性金属组分和可选的金属助剂负载于载体上,所述浸渍液的pH值在3.5-5.5范围内。
B8、项目B1-B6中任一项所定义的载体。
B9、项目B1-B6中任一项所述的催化剂或项目B7所述的方法或项目B8所述的载体在胺化制有机胺中的应用。
B10、一种制备有机胺的方法,其特征在于,该方法包括:在氢气存在下,将胺化原料、胺化试剂与项目B1-B6中任一项所述的催化剂接触进行胺化反应;
或者,筛选包括项目B1-B6中任一项所定义的载体的催化剂,并在氢气存在下,将胺化原料、胺化试剂与筛选得到的催化剂接触进行胺化反应。
B11、根据项目B10所述的方法,其中,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-5∶3-33∶1,温度为110-210℃,压力为1-22MPa,胺化原料的液相体积空速为0.06-1m 3/(m 3·h);
和/或,所述胺化原料选自C2-20的醇、C3-20的酮、C2-20的醇胺和C2-20的醛中的至少一种,优选为乙醇、乙醛、正丙醇、丙醛、异丙醇、正丁醇、丁醛、异丁醇、异丁醛、2-乙基己醇、2-乙基己醛、辛醇、辛醛、十二烷醇、十二烷醛、十六烷醇、十六烷醛、环戊醇、环 己醇、环辛醇、环十二烷醇、苯甲醇、苯甲醛、苯乙醇、苯乙醛、1,4-丁二醇、1,4-丁二醛、1,5-戊二醇、1,5-戊二醛、1,6-己二醇、1,6-己二醛、1,8-辛二醇、1,8-辛二醛、乙醇胺、丙醇胺、异丙醇胺、6-氨基己醇、二乙醇胺、二异丙醇胺、二甲基乙醇胺、丙酮、乙二醇、1,3-丙二醇和1,12-十二烷二醇中的至少一种;
和/或,所述胺化试剂选自氨、C1-12的伯胺和C1-12的仲胺中的至少一种,优选为氨、一甲胺、二甲胺、甲基乙基胺、一乙胺和二乙胺中的至少一种。
B12、根据项目B11所述的方法,其中,所述胺化原料为一元醇时,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-4∶2-8∶1,温度为130-200℃,压力为0.8-2.5MPa,胺化原料的液相体积空速为0.1-0.8m 3/(m 3·h);
或者,所述胺化原料为酮或醛时,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-4∶2-6∶1,温度为110-170℃,压力为1-2.5MPa,胺化原料的液相体积空速为0.1-0.8m 3/(m 3·h);
或者,所述胺化原料为醇胺时,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-4∶3-10∶1,温度为130-200℃,压力为1-11MPa,胺化原料的液相体积空速为0.06-0.8m 3/(m 3·h);
或者,所述胺化原料为1,6-己二醇、环己亚胺和6-氨基-1-己醇的混合物或二元醇时,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-4∶3-33∶1,温度为130-210℃,压力为1-22MPa,胺化原料的液相体积空速为0.1-0.8m 3/(m 3·h)。
C1、一种具有经醇临氢胺化制备胺功能的催化剂,该催化剂包括载体和负载于所述载体上的活性金属组分和可选的金属助剂,其特征在于,所述载体包括基质和掺杂元素,所述基质包括氧化铝载体和可选的其它载体,所述其它载体选自氧化硅和/或分子筛;所述掺杂元素选自硼、氟、磷、硫和硒中的至少一种;所述载体中孔径在7-27nm范围内的孔容占所述载体孔容的百分比大于65%;所述活性金属组分为钴和/或镍。
C2、根据项目C1所述的催化剂,其中,所述载体基质中氧化铝载体的含量不低于70重量%,优选为75-100重量%;
和/或,所述载体中掺杂元素的含量占基质的总重量的0.05-6重量 %,优选为0.08-4重量%;
和/或,所述掺杂元素以硼酸根离子、氟离子、磷酸根离子、硫酸根离子和硒酸根离子中的至少一种的方式掺杂;
和/或,所述载体中孔径在7-27nm范围内的孔容占所述载体孔容的百分比大于65%;优选地,所述载体中孔径在7-27nm范围内的孔容占所述载体孔容的百分比为70-90%,孔径小于7nm的孔容占所述载体孔容的百分比为0-10%;
和/或,所述载体的L酸含量占L酸与B酸含量之和的百分比大于等于85%,优选为85-98%;
和/或,所述载体的比表面积为120-210m 2/g;
和/或,所述载体的孔容为0.43-1.1ml/g;
和/或,相对于每100g的基质,所述活性金属组分的含量为8-44g,优选为12-37g。
C3、根据项目C1或C2所述的催化剂,其中,所述载体通过包括以下步骤的方法制备得到:将含有掺杂元素与载体的前驱体的混合物依次进行成型、干燥和焙烧,其中,所述载体的前驱体选自氧化铝的前驱体和可选的其它基质前驱体,所述其它基质前驱体选自氧化硅的前驱体和/或分子筛的前驱体。
C4、根据项目C3所述的催化剂,其中,所述掺杂元素由选自含非金属酸根离子的化合物中的至少一种提供,优选由含硼酸根离子的化合物、含氟离子的化合物、含磷酸根离子的化合物、含硫酸根离子的化合物和含硒酸根离子的化合物中的至少一种提供。
C5、根据项目C3或C4所述的催化剂,其中,所述氧化铝的前驱体为拟薄水铝石,所述拟薄水铝石的比表面积为255-340m 2/g,孔容为0.78-1.25ml/g。
C6、根据项目C3-C5中任一项所述的催化剂,其中,所述干燥的条件包括:温度为80-150℃,时间为6-20h;
和/或,所述焙烧的条件包括:温度为700-1100℃,时间为2-20h。
C7、一种制备项目C1-C6中任一项所述的催化剂的方法,该方法包括:将活性金属组分和可选的金属助剂负载于载体上。
C8、项目C1-C6中任一项所定义的载体。
C9、项目C1-C6中任一项所述的催化剂或项目C7所述的方法或 项目C8所述的载体在胺化制有机胺中的应用。
C10、一种制备有机胺的方法,其特征在于,该方法包括:在氢气存在下,将胺化原料、胺化试剂与项目C1-C6中任一项所述的催化剂接触进行胺化反应;
或者,筛选包括项目C1-C6中任一项所定义的载体的催化剂,并在氢气存在下,将胺化原料、胺化试剂与筛选得到的催化剂接触进行胺化反应。
C11、根据项目C10所述的方法,其中,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-6∶2-32∶1,温度为105-210℃,压力为1-17MPa,胺化原料的液相体积空速为0.06-1m 3/(m 3·h);
和/或,所述胺化原料选自C2-20的醇、C3-20的酮、C2-20的醇胺和C2-20的醛中的至少一种,优选为乙醇、乙醛、正丙醇、丙醛、异丙醇、正丁醇、丁醛、异丁醇、异丁醛、2-乙基己醇、2-乙基己醛、辛醇、辛醛、十二烷醇、十二烷醛、十六烷醇、十六烷醛、环戊醇、环己醇、环辛醇、环十二烷醇、苯甲醇、苯甲醛、苯乙醇、苯乙醛、1,4-丁二醇、1,4-丁二醛、1,5-戊二醇、1,5-戊二醛、1,6-己二醇、1,6-己二醛、1,8-辛二醇、1,8-辛二醛、乙醇胺、丙醇胺、异丙醇胺、6-氨基己醇、二乙醇胺、二异丙醇胺、二甲基乙醇胺、丙酮、乙二醇、1,3-丙二醇和1,12-十二烷二醇中的至少一种;
和/或,所述胺化试剂选自氨、C1-12的伯胺和C1-12的仲胺中的至少一种,优选为氨、一甲胺、二甲胺、甲基乙基胺、一乙胺和二乙胺中的至少一种。
C12、根据项目C11所述的方法,其中,所述胺化原料为一元醇时,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-4∶2-9∶1,温度为130-208℃,压力为1-2.5MPa,胺化原料的液相体积空速为0.1-0.8m 3/(m 3·h);
或者,所述胺化原料为酮或醛时,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-4∶2-5∶1,温度为105-160℃,压力为1-2MPa,胺化原料的液相体积空速为0.1-1m 3/(m 3·h);
或者,所述胺化原料为醇胺时,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-4∶3-20∶1,温度为130-200℃,压力为1-13MPa,胺化原料的液相体积空速为0.06-0.8m 3/(m 3·h);
或者,所述胺化原料为1,6-己二醇、环己亚胺和6-氨基-1-己醇的混合物或二元醇时,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-4∶3-32∶1,温度为130-210℃,压力为1-17MPa,胺化原料的液相体积空速为0.1-0.9m 3/(m 3·h)。
D1、一种具有由醇制备胺催化功能的催化剂,该催化剂包括载体和负载于所述载体上的活性金属组分和金属助剂,其特征在于,所述活性金属组分为钴和/或镍;所述金属助剂为IIA族金属中的至少一种、IIB族金属中的至少一种和VA族金属中的至少一种的组合。
D2、根据项目D1所述的催化剂,其中,所述载体包括基质和掺杂元素,所述基质包括氧化铝载体和可选的其它载体,所述其它载体包括氧化硅和/或分子筛;所述掺杂元素选自硼、氟、磷、硫和硒中的至少一种;所述载体中孔径在7-27nm范围内的孔容占所述载体孔容的百分比大于65%。
D3、根据项目D1或D2所述的催化剂,其中,所述载体基质中氧化铝载体的含量占氧化铝载体与其它载体的总量的70重量%以上,优选为75-100重量%;
和/或,所述载体中的掺杂元素的含量占基质的总重量的0.05-4.5重量%,优选为0.07-2.8重量%;
和/或,所述载体中的掺杂元素以硼酸根离子、氟离子、磷酸根离子、硫酸根离子和硒酸根离子中的至少一种的方式掺杂;
和/或,所述载体中孔径在7-27nm范围内的孔容占所述载体孔容的百分比为70-90%,孔径小于7nm的孔容占所述载体孔容的百分比为0-8%;
和/或,所述载体的比表面积为110-210m 2/g;
和/或,所述载体的孔容为0.45-1.1ml/g;
和/或,相对于每100g的基质,所述活性金属组分的含量为8-45g,优选为15-38g;
和/或,相对于每100克的基质,所述金属助剂的含量为0.1-10g,优选为0.5-6g;
和/或,所述金属助剂中IIA族金属、IIB族金属和VA族金属的重量比为0.1-10∶0.1-10∶1,优选为0.2-8∶0.2-8∶1;
和/或,所述IIA族金属选自镁、钙和钡中的至少一种;
和/或,所述IIB族金属选自锌;
和/或,所述VA族金属选自铋。
D4、根据项目D2或D3所述的催化剂,其中,所述载体通过包括以下步骤的方法制备:
(1)将含掺杂元素、氧化铝前驱体和可选的其它载体前驱体的混合物依次进行成型、第一干燥和第一焙烧,所述其它载体前驱体包括氧化硅前驱体和/或分子筛前驱体;
(2)将第一焙烧的产物与IIA族金属前驱体的溶液混合后进行第二干燥和第二焙烧。
D5、根据项目D4所述的催化剂,其中,所述氧化铝前驱体为拟薄水铝石,所述拟薄水铝石的比表面积为250-330m 2/g,孔容为0.5-1.1ml/g;
和/或,所述第一焙烧的条件包括:温度为500-650℃,时间为2-20h;
和/或,所述第二焙烧的条件包括:温度为800-1100℃,时间为2-20h。
D6、一种制备项目D1-D5中任一项所述的催化剂的方法,该方法包括:
(1)将含掺杂元素、氧化铝前驱体和可选的其它载体前驱体的混合物依次进行成型、第一干燥和第一焙烧,所述其它载体前驱体包括氧化硅前驱体和/或分子筛前驱体;
(2)将第一焙烧的产物与IIA族金属前驱体的溶液混合后进行第二干燥和第二焙烧;
(3)将IIB族金属中的至少一种、VA族金属中的至少一种和活性金属组分负载于第二焙烧的产物上。
D7、项目D1-D5中任一项所定义的载体。
D8、项目D1-D5中任一项所述的催化剂或项目D6所述的方法或项目D7所述的载体在胺化制有机胺中的应用。
D9、一种制备有机胺的方法,其特征在于,该方法包括:在氢气存在下,将胺化原料、胺化试剂与项目D1-D5中任一项所述的催化剂接触进行胺化反应;
或者,该方法包括:筛选包括项目D1-D5中任一项所定义的载体的催化剂,并在氢气存在下,将胺化原料、胺化试剂与筛选得到的催 化剂接触进行胺化反应。
D10、根据项目D9所述的方法,其中,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-5∶2-35∶1,温度为110-230℃,压力为0.7-22MPa,胺化原料的液相体积空速为0.06-1m 3/(m 3·h);
和/或,所述胺化原料选自C2-20的醇、C3-20的酮、C2-20的醇胺和C2-20的醛中的至少一种,优选为乙醇、乙醛、正丙醇、丙醛、异丙醇、正丁醇、丁醛、异丁醇、异丁醛、2-乙基己醇、2-乙基己醛、辛醇、辛醛、十二烷醇、十二烷醛、十六烷醇、十六烷醛、环戊醇、环己醇、环辛醇、环十二烷醇、苯甲醇、苯甲醛、苯乙醇、苯乙醛、1,4-丁二醇、1,4-丁二醛、1,5-戊二醇、1,5-戊二醛、1,6-己二醇、1,6-己二醛、1,8-辛二醇、1,8-辛二醛、乙醇胺、丙醇胺、异丙醇胺、6-氨基己醇、二乙醇胺、二异丙醇胺、二甲基乙醇胺、丙酮、乙二醇、1,3-丙二醇和1,12-十二烷二醇中的至少一种;
和/或,所述胺化试剂选自氨、C1-12的伯胺和C1-12的仲胺中的至少一种,优选为氨、一甲胺、二甲胺、甲基乙基胺、一乙胺和二乙胺中的至少一种。
D11、根据项目D10所述的方法,其中,所述胺化原料为一元醇时,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-4∶2-8∶1,温度为130-210℃,压力为1-2.5MPa,胺化原料的液相体积空速为0.1-0.8m 3/(m 3·h);
或者,所述胺化原料为酮或醛时,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-4∶2-5∶1,温度为110-180℃,压力为0.7-2.5MPa,胺化原料的液相体积空速为0.1-0.8m 3/(m 3·h);
或者,所述胺化原料为醇胺时,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-4∶3-23∶1,温度为130-200℃,压力为1-16MPa,胺化原料的液相体积空速为0.06-0.8m 3/(m 3·h);
或者,所述胺化原料为1,6-己二醇、环己亚胺和6-氨基-1-己醇的混合物或二元醇时,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-4∶3-35∶1,温度为130-230℃,压力为1-22MPa,胺化原料的液相体积空速为0.1-0.8m 3/(m 3·h)。
实施例
以下将通过实施例对本申请进行详细描述,但本申请并不限于此。
以下实施例中所用的测试仪器和方法如下:
1)NH 3-TPD测试
测试仪器:全自动化学吸附仪(Automated Catalyst Characterization System)仪器型号:Autochem 2920,美国MICROMERITICS公司产品;
测试条件:准确称取约0.1g样品放入样品管中,在He气吹扫条件下以10℃/min升至600℃,停留1h,降至120℃,再改变气体为10%NH 3-He混合气,吸附60min,然后再改变为He气吹扫1h,基线稳定后开始计数,以10℃/min升至600℃,保持30min,停止记录,完成实验。对峰面积进行积分计算,计算得到NH 3脱附量,并以该脱附量来表征样品的氨吸附量。
2)BET测试
测试仪器:全自动物化吸附分析仪(Automatic Micropore&Chemisorption Analyzer);仪器型号:ASAP2420,美国MICROMERITICS(麦克仪器公司);
测试条件:实验气体:N 2(纯度99.999%);脱气条件:以10℃/min升到350℃,抽真空4h;分析条件:介孔等温线全分析,得到比表面积和孔容。
3)探针吸附光谱法
测试仪器:Thermo Scientific公司的红外光谱仪,型号:NICOLET6700,原位透射池;
测试条件:准确称量并记录样品质量,在真空条件下,以10℃/min的升温速率,升温至500℃,在该温度下预处理载体2h,然后降至室温。在室温条件下,让预处理后的载体吸附吡啶蒸汽至饱和。分别在室温、100℃、150℃、200℃、300℃、400℃温度点,真空条件下静态脱附至平衡状态,每个温度点间升温速率为10℃/min。
4)XRD分析
测试仪器:帕纳科公司Empyrean型X射线衍射仪,阳极靶为Cu靶,Pixcel 3D探测器;
测试条件:管压40KV,管流40mA,发散狭缝1/4°,防散射狭缝1/2°,接收狭缝高度7.5mm,扫描速度0.013°/步,扫描范围5°-90°。
使用谢乐公式(Scherrer公式)计算获得活性金属组分和可能存在 的金属助剂的晶粒尺寸。
5)等电点测试
测试仪器:Malvern panalytical公司的Zetasizer Nano ZSP粒度电位仪;
测试方法:将样品研磨成粉末并将其分散在低浓度的NaCl溶液中使用粒度电位仪测定不同pH下的Zeta电位,然后作出Zeta电位与pH的关系图。当Zeta电位为0时的pH即为样品等电点。
以下实施例和对比例中,所用材料和试剂均为市售产品,如无明确说明,纯度为分析纯。
实施例I系列
以下将通过实施例I系列对本申请的第I类实施方式进行详细描述。以下I系列的实施例中,拟薄水铝石粉体的干基(Al 2O 3)含量为72重量%,硅溶胶购自青岛海洋化工有限公司,型号为JN-40。
实施例I-1
将拟薄水铝石粉体(比表面积315m 2/g,孔容0.91ml/g)使用含硝酸和硼酸的稀酸水捏合、挤成直径5mm条状,切成4mm长短,在100℃下干燥10h,然后在850℃下焙烧4h,制成所需的载体,调节硼酸用量以达到载体中硼元素含量如表I-1所示。
将151.2g六水合硝酸钴(工业级,纯度98%)用水溶解为184mL溶液,分两次用喷浸法将溶液负载在获得的100g载体上,每次喷浸后都在120℃下干燥4小时,然后在400℃下焙烧4小时,然后用氢气逐渐升温还原,升温还原速率为20℃/小时,最后在430℃下还原3小时,获得催化剂C-I-1。用XRD测定(具体方法见测试例I-1)负载组分的晶粒尺寸为20nm。
实施例I-2
在捏合机中向拟薄水铝石粉体(比表面积322m 2/g,孔容0.93ml/g)加入硅溶胶,混合均匀,使用含硝酸和氢氟酸的稀酸水捏合,挤成3mm粗的三叶草形状,在120℃下干燥6h,然后在820℃下焙烧3.5h,制成所需的载体,调节氢氟酸用量以达到载体中F元素含量如表I-1所示。 调节硅溶胶用量以达到载体中Al 2O 3的质量与SiO 2的质量比为9∶1。
将177g六水合硝酸镍(工业级,纯度98%)用水溶解为172mL溶液,将3.7g四水合钼酸铵(分析纯)用水溶解为86ml溶液;分两次用喷浸法将硝酸镍溶液负载在获得的100g载体上;再使用喷浸法一次将钼酸铵溶液负载在载体上,每次喷浸后都在120℃下干燥4小时,然后在390℃下焙烧4小时,然后用氢气逐渐升温还原,升温还原速率为20℃/小时,最后在440℃下还原3小时,获得催化剂C-I-2。用XRD测定负载组分的晶粒尺寸为22nm。
实施例I-3
在捏合机中向拟薄水铝石粉体(比表面积345m 2/g,孔容1.12ml/g)中加入硅溶胶,混合均匀,使用含硝酸和磷酸的稀酸水捏合,挤成直径4mm齿状球,在80℃下干燥20h,然后在800℃下焙烧4h,制成所需的载体,调整磷酸用量以达到载体中P元素含量如表I-1所示。调整硅溶胶用量以达到载体中Al 2O 3的质量与SiO 2的质量比为3∶1。
将50.4g六水合硝酸钴(工业级,纯度98%)和19.5g 50wt%硝酸锰溶液和8.5g三水合硝酸铜(分析纯)用水溶解为158mL溶液,分两次用喷浸法将该混合溶液负载在获得的100g载体上,每次喷浸后都在120℃下干燥4小时,然后在395℃下焙烧4小时,然后用氢气逐渐升温还原,升温还原速率为20℃/小时,最后在430℃下还原3小时,获得催化剂C-I-3。用XRD测定负载组分的晶粒尺寸为15nm。
实施例I-4
将拟薄水铝石粉体(比表面积350m 2/g,孔容1.13ml/g)和硅藻土粉体(比表面积57m 2/g)混合后,使用含硝酸和硫酸的稀酸水捏合、挤成直径5mm条状,切成4mm长短,在150℃下干燥6h,然后在880℃下焙烧4h,制成所需的载体,调整硫酸用量以达到载体中S元素含量如表I-1所示。调整硅藻土用量以达到载体中Al 2O 3的质量与SiO 2的质量比为19∶1。
将126.4g六水合硝酸镍(工业级,纯度98%)用水溶解为176mL溶液,分两次用喷浸法将该混合溶液负载在获得的100g载体上,每次喷浸后都在120℃下干燥4小时,然后在380℃下焙烧4.5小时,然后 用氢气逐渐升温还原,升温还原速率为20℃/小时,最后在430℃下还原3小时,获得催化剂C-I-4。用XRD测定负载组分的晶粒尺寸为22nm。
实施例I-5
将拟薄水铝石粉体(比表面积320m 2/g,孔容0.9ml/g)使用含硝酸和硫酸的稀酸水捏合、挤成3mm粗的三叶草形状,在120℃下干燥8h,然后在890℃下焙烧4.5h,制成所需的载体,调整硫酸用量以达到载体中S元素含量如表I-1所示。
将40.4g六水合硝酸镍(工业级,纯度98%)和60.5g六水合硝酸钴(工业级,纯度98%)和2.9g高铼酸铵(纯度99%)用水溶解为186mL溶液,分两次用喷浸法将该混合溶液负载在获得的100g载体上,每次喷浸后都在100℃下干燥6小时,然后在390℃下焙烧4小时,然后用氢气逐渐升温还原,升温还原速率为20℃/小时,最后在440℃下还原3小时,获得催化剂C-I-5。用XRD测定负载组分的晶粒尺寸为16nm。
实施例I-6
将拟薄水铝石粉体(比表面积312m 2/g,孔容0.88ml/g)和分子筛粉体(型号ZSM-5,购自南开大学催化剂厂,SiO 2/Al 2O 3=45(摩尔比))混合后,使用含硝酸和硒酸的稀酸水捏合、挤成直径4mm齿状球,在120℃下干燥8h,然后在810℃下焙烧6h,制成所需的载体,调整硒酸用量以达到载体中Se元素含量如表I-1所示。调整分子筛用量以达到载体中Al 2O 3的质量与分子筛的质量比为94∶6。
将126g六水合硝酸钴(工业级,纯度98%)用水溶解为152mL溶液,分两次用喷浸法将该混合溶液负载在获得的100g载体上,每次喷浸后都在120℃下干燥5小时,然后在400℃下焙烧3.5小时,然后用氢气逐渐升温还原,升温还原速率为20℃/小时,最后在430℃下还原3小时,获得催化剂C-I-6。用XRD测定负载组分的晶粒尺寸为25nm。
实施例I-7
将拟薄水铝石粉体(比表面积348m 2/g,孔容1.13ml/g)使用含硝酸和硼酸的稀酸水捏合、挤成直径4mm齿状球,在100℃下干燥8h, 然后在950℃下焙烧6.5h,制成所需的载体,调整硼酸用量以达到载体中B元素含量如表I-1所示。
将100.8g六水合硝酸钴(工业级,纯度98%)和1.3g硝酸银(分析纯)用水溶解为170mL溶液,分两次用喷浸法将该混合溶液负载在获得的100g载体上,每次喷浸后都在120℃下干燥4小时,然后在400℃下焙烧4小时,然后用氢气逐渐升温还原,升温还原速率为20℃/小时,最后在410℃下还原3小时,获得催化剂C-I-7。用XRD测定负载组分的晶粒尺寸为11nm。
实施例I-8
将拟薄水铝石粉体(比表面积356m 2/g,孔容1.2ml/g)使用含硝酸、硫酸和磷酸的稀酸水捏合、挤成直径3mm齿状球,在100℃下干燥8h,然后在860℃下焙烧4h,制成所需的载体,调整磷酸、硫酸用量以达到载体中P元素含量和S元素含量如表I-1所示。
将141.6g六水合硝酸镍(工业级,纯度98%)和3.1g六水合硝酸铈分析纯)和13.7g六水合硝酸锌用水溶解为184mL溶液,分两次用喷浸法将该混合溶液负载在获得的100g载体上,每次喷浸后都在120℃下干燥5小时,然后在410℃下焙烧4小时,然后用氢气逐渐升温还原,升温还原速率为20℃/小时,最后在400℃下还原3小时,获得催化剂C-I-8。用XRD测定负载组分的晶粒尺寸为12nm。
实施例I-9
在捏合机中向拟薄水铝石粉体(比表面积315m 2/g,孔容0.88ml/g)加入硅溶胶,混合均匀,使用含硝酸和硫酸的稀酸水捏合,挤成直径3mm齿状球,在100℃下干燥8h,然后在900℃下焙烧6h,制成所需的载体,调整硫酸用量以达到载体中S元素含量如表I-1所示。调整硅溶胶用量以达到载体中Al 2O 3的质量与SiO 2的质量比为72∶28。
将100.8g六水合硝酸钴(工业级,纯度98%)和50.6g六水合硝酸镍(工业级,纯度98%)用水溶解为146mL溶液,分两次用喷浸法将该混合溶液负载在获得的100g载体上,每次喷浸后都在100℃下干燥8小时,然后在420℃下焙烧4小时,然后用氢气逐渐升温还原,升温还原速率为20℃/小时,最后在410℃下还原3小时,获得催化剂 C-I-9。用XRD测定负载组分的晶粒尺寸为18nm。
实施例I-10
在捏合机中向拟薄水铝石粉体(比表面积292m 2/g,孔容0.82ml/g)加入硅溶胶,混合均匀,使用含硝酸、磷酸和氢氟酸的稀酸水捏合,挤成直径3mm齿状球,在110℃下干燥7h,然后在970℃下焙烧7h,制成所需的载体,调整磷酸和氢氟酸用量以达到载体中P元素含量和F元素含量如表I-1所示。调整硅溶胶用量以达到载体中Al 2O 3的质量与SiO 2的质量比为66∶34。
将201.6g六水合硝酸钴(工业级,纯度98%)和6.2g六水合硝酸镧(分析纯)用水溶解为165mL溶液,分三次用喷浸法将该混合溶液负载在获得的100g载体上,每次喷浸后都在120℃下干燥6小时,然后在420℃下焙烧4小时,然后用氢气逐渐升温还原,升温还原速率为20℃/小时,最后在410℃下还原3小时,获得催化剂C-I-10。用XRD测定负载组分的晶粒尺寸为13nm。
实施例I-11
将拟薄水铝石粉体(比表面积276m 2/g,孔容0.79ml/g)使用含硝酸和硫酸的稀酸水捏合、挤成4mm粗的三叶草形状,在110℃下干燥6h,然后在930℃下焙烧6h,制成所需的载体,调整硫酸用量以达到载体中S元素含量如表I-1所示。
将15.2g六水合硝酸镍(工业级,纯度98%)和25.2g六水合硝酸钴(工业级,纯度98%)和4.4g高铼酸铵(纯度99%)用水溶解为176mL溶液,分两次用喷浸法将该混合溶液负载在获得的100g载体上,每次喷浸后都在120℃下干燥4小时,然后在390℃下焙烧5小时,然后用氢气逐渐升温还原,升温还原速率为20℃/小时,最后在440℃下还原3小时,获得催化剂C-I-11。用XRD测定负载组分的晶粒尺寸为19nm。
实施例I-12
将拟薄水铝石粉体(比表面积260m 2/g,孔容0.77ml/g)使用含硝酸和磷酸的稀酸水捏合、挤成4mm粗的三叶草形状,在100℃下干燥12h,然后在860℃下焙烧9h,制成所需的载体,调整磷酸用量以达 到载体中P元素含量如表I-1所示。
将100.8g六水合硝酸钴(工业级,纯度98%)和14.1g三水合硝酸铜(分析纯)用水溶解为180mL溶液,分两次用喷浸法将该混合溶液负载在获得的100g载体上,每次喷浸后都在120℃下干燥4小时,然后在390℃下焙烧5小时,然后用氢气逐渐升温还原,升温还原速率为20℃/小时,最后在440℃下还原3小时,获得催化剂C-I-12。用XRD测定负载组分的晶粒尺寸为21nm。
实施例I-13
将拟薄水铝石粉体(比表面积257m 2/g,孔容0.76ml/g)使用含硝酸和硼酸的稀酸水捏合、挤成3mm粗的三叶草形状,在120℃下干燥8h,然后在850℃下焙烧6h,制成所需的载体,调整硼酸用量以达到载体中B元素含量如表I-1所示。
将151.7g六水合硝酸镍(工业级,纯度98%)和12.5g六水合硝酸镧(分析纯)和18.2g六水合硝酸锌(分析纯)用水溶解为184mL溶液,分两次用喷浸法将该混合溶液负载在获得的100g载体上,每次喷浸后都在120℃下干燥4小时,然后在370℃下焙烧6小时,然后用氢气逐渐升温还原,升温还原速率为20℃/小时,最后在430℃下还原4小时,获得催化剂C-I-13。用XRD测定负载组分的晶粒尺寸为12nm。
实施例I-14
按照实施例I-5的方法制备催化剂,不同的是硫酸的添加量使得载体中的硫元素含量如表I-1所示,获得催化剂C-I-14。用XRD测定负载组分的晶粒尺寸为16nm。
实施例I-15
按照实施例I-5的方法制备催化剂,不同的是载体焙烧温度为800℃,时间为2h,获得催化剂C-I-15。用XRD测定负载组分的晶粒尺寸为14nm。
实施例I-16
按照实施例I-5的方法制备催化剂,不同的是在捏合时加入硅溶 胶,硅溶胶用量以达到载体中Al 2O 3的质量与SiO 2的质量比为66∶34。获得催化剂C-I-16。用XRD测定负载组分的晶粒尺寸为16nm。
实施例I-17
将ZSM-5(比表面积338m 2/g,孔容0.61ml/g、结晶度97.9%、SiO 2/Al 2O 3=60)使用含硝酸、硫酸和磷酸的稀酸水捏合、挤成直径3mm齿状球,在120℃下干燥6h,然后在880℃下焙烧4h,制成所需的载体,调整磷酸、硫酸用量以达到载体中P元素含量和S元素含量如表I-1所示。
催化剂浸渍方法与实施例I-8相同,获得催化剂C-I-17。用XRD测定负载组分的晶粒尺寸为14nm。
对比例I-1
按照实施例I-12中的方法,不同之处在于,制备载体时的焙烧温度为700℃,焙烧时间为5h。获得催化剂D-I-1。
对比例I-2
按照实施例I-12的方法,不同之处在于,制备载体时的焙烧温度为550℃,焙烧时间为3h,且调整磷酸用量以达到载体中P元素含量如表I-1所示。获得催化剂D-I-2。
测试例I-1
通过等离子体发射光谱仪分析载体和催化剂的元素组成,除载体外的元素(离子)含量均以相对100g的基质(即以除掺杂元素以外的成分计(例如,拟薄水铝石为载体源时以Al 2O 3计)的载体)的含量表示;通过探针吸附光谱法(表征L酸含量占L酸与B酸含量之和的百分比(也即L酸占比))、NH 3-TPD、BET氮吸附脱附法方法对以上制备的载体进行表征,结果如表I-1所示。
表I-1各实施例和对比例的载体的性质
Figure PCTCN2021126326-appb-000001
Figure PCTCN2021126326-appb-000002
测试例I-2
本测试例用来说明采用本申请第I类实施方式的催化剂由1,6-己二醇临氢胺化制备1,6-己二胺的方法。
将制备的催化剂分别量取100毫升装在固定床反应器中,使用氢气在220℃下活化2小时,然后降温至168℃,用氢气将系统压力升高至9.5MPa,然后用计量泵将氨计量后送入反应系统,经预热至150℃后进入反应器上端,用计量泵将加热熔化的1,6-己二醇送入反应器上端,氢气经气体质量流量计稳定送入,氢气∶氨∶1,6-己二醇的摩尔比为3∶12∶1,1,6-己二醇的液相体积空速为0.45h -1,在反应器进行催化胺化反应,反应温度198℃,反应压力9.5MPa,反应200h时对反应液取样分析,分析结果列于表I-2中。
取样分析方法为气相色谱分析,通过配制标准样品的校正因子进行校准。
以反应液中各组分的摩尔含量计算转化率和选择性。
Figure PCTCN2021126326-appb-000003
Figure PCTCN2021126326-appb-000004
计算环己亚胺选择性是将上式己二胺选择性中分子改为环己亚胺摩尔含量,计算氨基己醇选择性是将上式己二胺选择性中分子改为氨基己醇摩尔含量,依此类推,计算“其它”组分的选择性是将上式己二胺选择性中分子改为胺二聚体摩尔含量×2,胺二聚体是指1,6-己二胺的二聚体(双(六甲撑)三胺,也称为N-(6-氨基己基)-1,6-己二胺)和1,6-己二胺与环己亚胺的二聚体(N-(6-氨基己基)环己亚胺)。
表I-2各实施例和对比例的催化剂的测试结果
Figure PCTCN2021126326-appb-000005
从表I-2数据可以看出,本申请的催化剂的转化率比对比催化剂高,活性更高,说明本申请的催化剂反应速率更快。
测试例I-3
本测试例用来说明采用本申请第I类实施方式的催化剂由1,3-丙二醇临氢胺化制备1,3-丙二胺的方法。
将实施例I-3制备的催化剂C-I-3量取100毫升装在固定床反应器中,使用氢气在220℃下活化2小时,然后降温至165℃,用氢气将系统压力升高至8.8MPa,然后用计量泵将氨计量后送入反应系统,经预热至120℃后进入反应器上端,用计量泵将1,3-丙二醇送入反应器上端,氢气经气体质量流量计稳定送入,氢气∶氨∶1,3-丙二醇的摩尔比为3∶9∶1,1,3-丙二醇的液相体积空速为0.4h -1,在反应器进行催化胺化反应,反应稳定后,反应液取样分析(分析条件和转化率、选择性计算方法类似测试例I-2),分析结果如表I-3所示。
表I-3测试例I-3的结果
Figure PCTCN2021126326-appb-000006
测试例I-4
本测试例用来说明采用本申请第I类实施方式的催化剂由乙醇临氢胺化制备乙胺的方法。
将实施例I-3制备的催化剂C-I-3量取100毫升装在固定床反应器中,使用氢气在220℃下活化2小时,然后降温至170℃,用氢气将系统压力升高至1.8MPa,然后用计量泵将氨计量后送入反应系统,经预热至125℃后进入反应器上端,用计量泵将乙醇送入反应器上端,氢气经气体质量流量计稳定送入,氢气∶氨∶乙醇的摩尔比为3∶5∶1,乙醇的液相体积空速为0.6h -1,在反应器进行催化胺化反应,反应温度180℃,反应压力1.8MPa,反应稳定后,反应液取样分析(分析条件和 转化率、选择性计算方法类似测试例I-2),分析结果如表I-4所示。
表I-4测试例I-4的结果
Figure PCTCN2021126326-appb-000007
在同样的工艺条件下使用催化剂D-I-1和D-I-2进行测试,由分析结果得知对比催化剂D-I-1和D-I-2的其他组分比较多,选择性分别是0.8%和1.2%,并且在长周期考核试验(考核周期200h)中发现,催化剂D-I-1和D-I-2的失活速率相对较快。在考核200小时后,催化剂C-I-3、催化剂D-I-1和D-I-2的积碳量不同,后二者明显多于催化剂C-I-3,催化剂C-I-3的比表面积和孔容下降不明显(小于2%),而催化剂D-I-1和D-I-2的比表面积分别下降7%和9%,孔容分别下降9%和10%,说明积碳堵塞了孔道。
实施例II系列
以下将通过实施例II系列对本申请的第II类实施方式进行详细描述。以下II系列的实施例中,拟薄水铝石粉体的干基(Al 2O 3)含量为70重量%,硅溶胶购自青岛海洋化工有限公司,型号为JN-40。
实施例II-1
将拟薄水铝石粉体(比表面积380m 2/g,孔容1.09ml/g)使用含5vol%硝酸和3.5vol%磷酸的稀酸水捏合、挤成条状,在120℃下干燥10h,然后在850℃下焙烧4h,制成所需的载体,具体参数见表II-1。
将141.56g六水合硝酸镍(工业级,纯度98%)用水溶解为166mL溶液,调节其pH值至4.3,分两次用喷浸法将溶液负载在获得的100g氧化铝载体上,每次喷浸后都在120℃下干燥8小时,然后在400℃下焙烧4小时,然后用氢气逐渐升温还原,升温还原速率为20℃/小时,最后在440℃下还原3小时,获得催化剂C-II-1。
实施例II-2
将拟薄水铝石粉体(比表面积400m 2/g,孔容1.15ml/g)使用含5vol%硝酸和3vol%硼酸的稀酸水捏合、捏合过程加入硅溶胶挤成条状,在120℃下干燥12h,然后在900℃下焙烧4h,制成所需的载体,具体参数见表II-1,拟薄水铝石粉体和硅溶胶的用量使得载体中Al 2O 3与SiO 2的重量比为4∶1。
将176.38g六水合硝酸钴(工业级,纯度98%)用水溶解为160mL溶液,调节其pH值至3.9,分两次用湿浸法将溶液负载在获得的100g载体上,每次湿浸后都在120℃下干燥6小时,然后在390℃下焙烧4小时,然后用氢气逐渐升温还原,升温还原速率为20℃/小时,最后在460℃下还原5小时,获得催化剂C-II-2。
实施例II-3
将拟薄水铝石粉体(比表面积395m 2/g,孔容1.19ml/g)使用2vol%的稀硝酸和2vol%硫酸的稀酸水捏合、挤成4mm齿状球,在150℃下干燥8h,然后在950℃下焙烧3.5h,制成所需的载体,具体参数见表II-1。
将75.59g六水合硝酸钴(工业级,纯度98%)和27.36g 50wt%硝酸锰溶液用水溶解为138mL溶液,调节其pH值至4.4,分两次用喷浸法将该溶液负载在获得的100g载体上,每次喷浸后都在120℃下干燥2小时,然后在400℃下焙烧4小时,然后用氢气逐渐升温还原,升温还原速率为20℃/小时,最后在400℃下还原8小时,获得催化剂C-II-3。
实施例II-4
将拟薄水铝石粉体(比表面积395m 2/g,孔容1.05ml/g)使用含5vol%硝酸和3vol%硼酸的稀酸水捏合、挤成条状,在120℃下干燥18h,然后在1010℃下焙烧4.5h,制成所需的载体,具体参数见表II-1。
将60.47g六水合硝酸钴(工业级,纯度98%)、50.56g六水合硝酸镍(工业级,纯度98%)和0.73g高铼酸铵(纯度99%)用水溶解为120mL溶液,调节其pH值至4.3,分两次用等体积浸渍法将该溶液负载在获得的100g载体上,每次浸渍后都在120℃下干燥5小时,然后在390℃下焙烧4小时,然后用氢气逐渐升温还原,升温还原速率为 20℃/小时,最后在450℃下还原6小时,获得催化剂C-II-4。
实施例II-5
将拟薄水铝石粉体(比表面积382m 2/g,孔容1.09ml/g)使用含5vol%硝酸和2vol%硫酸的稀酸水捏合、挤成直径4mm齿状球,在120℃下干燥10h,然后在820℃下焙烧10h,制成所需的载体,具体参数见表II-1。
将192.12g六水合硝酸镍(工业级,纯度98%)和3.94g硝酸银用水溶解为182mL溶液,调节其pH值至4.6,分两次用喷浸法将硝酸钴溶液负载在获得的100g载体上,每次喷浸后都在120℃下干燥4小时,然后在400℃下焙烧4小时,然后用氢气逐渐升温还原,升温还原速率为20℃/小时,最后在480℃下还原3小时,获得催化剂C-II-5。
实施例II-6
将拟薄水铝石粉体(比表面积375m 2/g,孔容1.19ml/g)使用含5vol%硝酸和3.5vol%磷酸的稀酸水捏合、挤成齿状球在120℃下干燥15h,然后在880℃下焙烧5.5h,制成所需的载体,具体参数见表II-1。
将100.79g六水合硝酸钴(工业级,纯度98%)和14.56g硝酸锌(分析纯)用水溶解为154mL溶液,调节其pH值至5.1,分两次用喷浸法将该溶液负载在获得的100g载体上,每次喷浸后都在120℃下干燥6小时,然后在400℃下焙烧4小时,然后用氢气逐渐升温还原,升温还原速率为20℃/小时,最后在450℃下还原3小时,获得催化剂C-II-6。
实施例II-7
将拟薄水铝石粉体(比表面积342m 2/g,孔容0.78ml/g),使用含5vol%硝酸和3.5vol%磷酸的稀酸水捏合、挤成齿状球,在120℃下干燥10h,然后在930℃下焙烧4.5h,制成所需的载体,具体参数见表II-1。
将120.94g六水合硝酸钴(工业级,纯度98%)和9.28g五水合硝酸铋(分析纯)用水溶解为102mL溶液,调节其pH值至4.9,分两次用湿浸法将该溶液负载在获得的100g载体上,每次湿浸后都在120℃下干燥4小时,然后在400℃下焙烧4小时,然后用氢气逐渐升温还原, 升温还原速率为20℃/小时,最后在430℃下还原4小时,获得催化剂C-II-7。
实施例II-8
将拟薄水铝石粉体(比表面积280m 2/g,孔容0.89ml/g)使用含5vol%硝酸、2vol%氢氟酸和0.5wt%硝酸硒的稀酸水捏合、挤成齿状球,在120℃下干燥20h,然后在980℃下焙烧12h,制成所需的载体,具体参数见表II-1。
将202.23g六水合硝酸镍(工业级,纯度98%)和13.65g六水合硝酸锌(分析纯)用水溶解为128mL溶液,调节其pH值至3.7,分两次用喷浸法将该溶液负载在获得的100g载体上,每次喷浸后都在120℃下干燥10小时,然后在400℃下焙烧4小时,然后用氢气逐渐升温还原,升温还原速率为20℃/小时,最后在410℃下还原6小时,获得催化剂C-II-8。
实施例II-9
将拟薄水铝石粉体(比表面积380m 2/g,孔容1.09ml/g)使用含5vol%硝酸和3.5vol%磷酸的稀酸水捏合、捏合过程加入硅溶胶挤成条状,在120℃下干燥10h,然后在850℃下焙烧4h,制成所需的载体,具体参数见表II-1,拟薄水铝石粉体和硅溶胶的用量使得载体中Al 2O 3与SiO 2的重量比为9∶1。
将75.59g六水合硝酸钴(工业级,纯度98%)、六水合硝酸镍50.56g(工业级,纯度98%)和29.31g 50wt%硝酸锰溶液用水溶解为106mL溶液,调节其pH值至4.0,分两次用喷浸法将溶液负载在获得的100g氧化铝载体上,每次喷浸后都在120℃下干燥8小时,然后在400℃下焙烧4小时,然后用氢气逐渐升温还原,升温还原速率为20℃/小时,最后在440℃下还原5小时,获得催化剂C-II-9。
实施例II-10
将拟薄水铝石粉体(比表面积369m 2/g,孔容1.15ml/g)使用含5vol%硝酸和3vol%硫酸的稀酸水捏合、挤成条状,在120℃下干燥15h,然后在1010℃下焙烧6.5h,制成所需的载体,具体参数见表II-1。
将35.39g六水合硝酸镍(工业级,纯度98%)和2.18g高铼酸铵(纯度99%)用水溶解为164mL溶液,调节其pH值至5.3,分两次用喷浸法将该溶液负载在获得的100g载体上,每次喷浸后都在120℃下干燥6小时,然后在350℃下焙烧4小时,然后用氢气逐渐升温还原,升温还原速率为20℃/小时,最后在420℃下还原5小时,获得催化剂C-II-10。
对比例II-1
按照实施例II-3的方法制备催化剂,不同的是,载体制备过程中不加入硫酸,且不调整浸渍用溶液的pH值(自然pH值约为7),获得催化剂D-II-1。
对比例II-2
按照实施例II-3的方法制备催化剂,不同的是,硫酸的用量使得载体中的S含量如表II-1所示,且不调整浸渍用溶液的pH值(自然pH值约为7),获得催化剂D-II-2。
对比例II-3
按照实施例II-3的方法制备催化剂,不同的是,硫酸的用量使得载体中的S含量如表II-1所示,制备载体时的焙烧温度为650℃,焙烧时间为4h,且不调整浸渍用溶液的pH值(自然pH值约为7),获得催化剂D-II-3。
测试例II-1
通过等离子体发射光谱仪分析载体和催化剂的元素组成,除载体外的元素(离子)含量均以相对100g的基质的含量表示;通过探针吸附光谱法、NH 3-TPD、BET氮吸附脱附法方法对以上制备的载体进行表征,通过XRD测定催化剂中活性金属组分的晶粒尺寸,结果如表II-1所示。
表II-1各实施例和对比例的载体的性质
Figure PCTCN2021126326-appb-000008
测试例II-2
本测试例用来说明采用本申请第II类实施方式的催化剂由1,6-己二醇临氢胺化制备1,6-己二胺的方法。
将实施例制备的催化剂分别量取100毫升装在固定床反应器中,使用氢气在250℃下活化4小时,然后降温至160℃,用氢气将系统压力升高至11MPa,然后用计量泵将氨计量后送入反应系统,经预热至170℃后进入反应器上端,用计量泵将加热熔化的1,6-己二醇送入反应器上端,氢气经气体质量流量计稳定送入,氢气∶氨∶1,6-己二醇的摩尔比为4∶10∶1,1,6-己二醇的液相体积空速为0.4h -1,在反应器进行催化胺化反应,反应温度185℃,反应压力11MPa,反应20h时对反应液取样分析,分析结果列于表II-2中。
取样分析方法为气相色谱分析,通过配制标准样品的校正因子进行校准。
以反应液中各组分的摩尔含量计算转化率和选择性,具体计算方法参照测试例I-2。
表II-2各实施例和对比例的催化剂的测试结果
Figure PCTCN2021126326-appb-000009
从表II-2数据可以看出,本申请的催化剂的转化率比对比例催化剂高,活性更高,说明本申请的催化剂反应速率更快。
测试例II-3
本测试例用来说明采用本申请第II类实施方式的催化剂由乙醇胺临氢胺化制备乙二胺的方法。
将实施例II-3制备的催化剂C-II-3量取100毫升装在固定床反应器中,使用氢气在250℃下活化2小时,然后降温至168℃,用氢气将系统压力升高至8MPa,然后用计量泵将氨计量后送入反应系统,经预 热至165℃后进入反应器上端,用计量泵将乙醇胺送入反应器上端,氢气经气体质量流量计稳定送入,氢气∶氨∶乙醇胺的摩尔比为3∶10∶1,乙醇胺的液相体积空速为0.75h -1,在反应器进行催化胺化反应,反应温度205℃,反应压力8MPa,反应稳定后,反应液取样分析(分析条件和转化率、选择性计算方法类似测试例II-2),分析结果如表II-3所示。
表II-3测试例II-3的结果
Figure PCTCN2021126326-appb-000010
在同样的工艺条件下使用催化剂D-II-1至D-II-4进行测试,由分析结果得知对比催化剂D-II-1至D-II-4的其他组分比较多,并且在长周期考核试验中发现,催化剂D-II-1至DII--4的选择性和转化率均降低,失活速率相对较快。在考核500小时后,催化剂C-II-3与催化剂D-II-1至D-II-4的积碳量不同,后者明显多于催化剂C-II-3,催化剂C-II-3的比表面积和孔容下降不明显(小于2%),而催化剂D-II-1至D-II-4的比表面积分别下降19%、16%、18%和16%,孔容分别下降20%、18%、19%和18%,说明其积碳量较大,堵塞了孔道。
实施例III系列
以下将通过实施例III系列对本申请的第III类实施方式进行详细描述。以下III系列的实施例中,拟薄水铝石粉体的干基(Al 2O 3)含量为72重量%;硅溶胶购自青岛海洋化工有限公司,型号为JN-40。
实施例III-1
将硫酸铝法制备的拟薄水铝石粉体(比表面积315m 2/g,孔容0.96ml/g,粉体中相对于每100g的氧化铝,P元素质量为3.6g),使用含 5vol%硝酸的稀酸水捏合、挤成直径5mm条状,切成4mm长短,在120℃下干燥8h,然后在760℃下焙烧5h,制成载体。
将186.5g六水合硝酸钴(工业级,纯度98%)用水溶解为142mL溶液,分两次用喷浸法将硝酸钴溶液负载在获得的100g载体上,每次喷浸后都在120℃下干燥4小时,然后在400℃下焙烧4小时,然后用氢气逐渐升温还原,升温还原速率为20℃/小时,最后在430℃下还原3小时,获得催化剂C-III-1。
实施例III-2
将硫酸铝法制备的拟薄水铝石粉体(比表面积295m 2/g,孔容0.93ml/g,粉体中相对于每100g的氧化铝,B元素质量为0.8g),使用含5vol%硝酸的稀酸水捏合,混匀后挤成3mm粗的三叶草形状,在100℃下干燥15h,然后在930℃下焙烧4h,制成载体。
将151.7g六水合硝酸镍(工业级,纯度98%)用水溶解为158mL溶液,分两次用喷浸法将硝酸镍溶液负载在获得的100g上述载体上,每次喷浸后都在100℃下干燥8小时,然后在390℃下焙烧4小时,然后用氢气逐渐升温还原,升温还原速率为20℃/小时,最后在440℃下还原3小时,获得催化剂C-III-2。
实施例III-3
将硫酸铝法制备的拟薄水铝石粉体(比表面积278m 2/g,孔容0.85ml/g,粉体中相对于每100g的氧化铝,S元素质量为0.4g),用含3.5vol%硝酸的稀酸水捏合,捏合过程中添加硅溶胶,混匀后挤成直径4mm齿状球,在150℃下干燥6h,然后在980℃下焙烧3h,制成载体,调整硅溶胶的用量,以达到载体中氧化铝质量与二氧化硅质量之比为4∶1。
将68.92g六水合硝酸钴(工业级,纯度98%)用水溶解为112mL溶液,分两次用喷浸法将硝酸钴溶液负载在获得的100g氧化铝载体上,每次喷浸后都在110℃下干燥8小时,然后在390℃下焙烧4小时,然后用氢气逐渐升温还原,升温还原速率为20℃/小时,最后在460℃下还原2小时,获得催化剂C-III-3。
实施例III-4
将硫酸铝法制备的拟薄水铝石粉体(比表面积325m 2/g,孔容1.12ml/g,粉体中相对于每100g的氧化铝,F元素质量为2.2g)和分子筛粉体(ZSM-5,南开大学催化剂厂,SiO 2/Al 2O 3=45(摩尔比))混合均匀,然后使用含5vol%硝酸的稀酸水捏合、挤成直径5mm条状,切成4mm长短,在80℃下干燥20h,然后在730℃下焙烧8h,制成所需的载体,调整分子筛ZSM-5粉体的用量,已达到载体中源自拟薄水铝石的氧化铝含量占总载体质量的90%。
将126g六水合硝酸钴(工业级,纯度98%)用水溶解为202mL溶液,分两次用喷浸法将硝酸钴溶液负载在获得的100g氧化铝载体上,每次喷浸后都在90℃下干燥20小时,然后在400℃下焙烧4小时,然后用氢气逐渐升温还原,升温还原速率为20℃/小时,最后在430℃下还原3小时,获得催化剂C-III-4。
实施例III-5
将硫酸铝法制备的拟薄水铝石粉体(比表面积260m 2/g,孔容0.82ml/g,粉体中相对于每100g的氧化铝,P元素质量为0.6g)用含硝酸和硼酸的稀酸水捏合、挤成3mm粗的三叶草形状,在100℃下干燥8h,然后在1005℃下焙烧3h,制成所需的载体,其中,相对于每100g的以Al 2O 3计的拟薄水铝石粉体,硼酸的用量为2.29g,稀酸水中硝酸浓度为5vol%。
将75.6g六水合硝酸钴(工业级,纯度98%)用水溶解为122mL溶液,分两次用喷浸法将硝酸钴溶液负载在获得的100g上述载体上,每次喷浸后都在120℃下干燥4小时,然后在390℃下焙烧4小时,然后用氢气逐渐升温还原,升温还原速率为20℃/小时,最后在440℃下还原3小时,获得催化剂C-III-5。
实施例III-6
将硫酸铝法制备的拟薄水铝石粉体(比表面积345m 2/g,孔容1.09ml/g,粉体中相对于每100g的氧化铝,B元素质量为0.02g)用含硝酸和硫酸的稀酸水捏合、挤成直径4mm齿状球,在120℃下干燥10h,然后在750℃下焙烧12h,制成所需的载体,其中,相对于每100g的以Al 2O 3计的拟薄水铝石粉体,硫酸的用量为0.24g,稀酸水中硝酸浓 度为5vol%。
将126.4g六水合硝酸镍(工业级,纯度98%)用水溶解为184mL溶液,分两次用喷浸法将硝酸镍溶液负载在获得的100g上述载体上,每次喷浸后都在120℃下干燥4小时,然后在400℃下焙烧4小时,然后用氢气逐渐升温还原,升温还原速率为20℃/小时,最后在430℃下还原3小时,获得催化剂C-III-6。
实施例III-7
将硫酸铝法制备的拟薄水铝石粉体(比表面积320m 2/g,孔容0.93ml/g,粉体中相对于每100g的氧化铝,S元素质量为0.1g)用含硝酸和磷酸的稀酸水捏合、挤成直径4mm齿状球,在100℃下干燥15h,然后在780℃下焙烧10h,制成所需的载体,其中,相对于每100g的以Al 2O 3计的拟薄水铝石粉体,磷酸的用量为6.01g。稀酸水中硝酸浓度为5vol%。
将296.85g六水合硝酸钴(工业级,纯度98%)用水溶解为138mL溶液,分两次用喷浸法将硝酸钴溶液负载在获得的100g氧化铝载体上,每次喷浸后都在120℃下干燥5小时,然后在400℃下焙烧4小时,然后用氢气逐渐升温还原,升温还原速率为20℃/小时,最后在450℃下还原3小时,获得催化剂C-III-7。
实施例III-8
将硫酸铝法制备的拟薄水铝石粉体(比表面积295m 2/g,孔容0.88ml/g,粉体中相对于每100g的氧化铝,S元素质量为0.2g)用含5vol%硝酸的稀酸水捏合、挤成直径4mm齿状球,在90℃下干燥18h,然后在810℃下焙烧8h,制成所需的载体。
将100.8g六水合硝酸钴(工业级,纯度98%)用水溶解为134mL溶液,分两次用喷浸法将上述溶液负载在获得的100g上述载体上,每次喷浸后都在100℃下干燥8小时,然后在400℃下焙烧4小时,然后用氢气逐渐升温还原,升温还原速率为20℃/小时,最后在420℃下还原3小时,获得催化剂C-III-8。
实施例III-9
将硫酸铝法制备的拟薄水铝石粉体(比表面积340m 2/g,孔容1.18ml/g,粉体中相对于每100g的氧化铝,F元素质量为0.12g)用含5vol%硝酸的稀酸水捏合、捏合过程加入硅溶胶挤成3mm粗的圆柱形状,在100℃下干燥16h,然后在850℃下焙烧6h,制成所需的载体,调整硅溶胶的用量,以达到载体中氧化铝质量与二氧化硅质量之比为73∶27。
将176.4g六水合硝酸钴(工业级,纯度98%)和1.3g硝酸银(分析纯)用水溶解为178mL溶液,分两次用喷浸法将溶液负载在获得的100g上述载体上,每次喷浸后都在120℃下干燥4小时,然后在360℃下焙烧4小时,然后用氢气还原,升温还原速率为20℃/小时,最后在450℃下还原3小时,获得催化剂C-III-9。
实施例III-10
将硫酸铝法制备的拟薄水铝石粉体(比表面积310m 2/g,孔容0.92ml/g,粉体中相对于每100g的氧化铝,S元素质量为1.4g)用含5vol%硝酸的稀酸水捏合、挤成直径5mm条状,在100℃下干燥12h,然后在760℃下焙烧10h,制成所需的载体。
将126g六水合硝酸钴(工业级,纯度98%)和13.7g六水合硝酸锌(分析纯)用水溶解为172mL溶液,分两次用喷浸法将溶液负载在获得的100g上述载体上,每次喷浸后都在120℃下干燥4小时,然后在400℃下焙烧4小时,然后用氢气逐渐升温还原,升温还原速率为20℃/小时,最后在420℃下还原3小时,获得催化剂C-III-10。
实施例III-11
将硫酸铝法制备的拟薄水铝石粉体(比表面积305m 2/g,孔容0.94ml/g,粉体中相对于每100g的氧化铝,P元素质量为1.55g)用含5vol%硝酸的稀酸水捏合、挤成直径5mm条状,在120℃下干燥6h,然后在860℃下焙烧5h,制成所需的载体。
将141.1g六水合硝酸钴(工业级,纯度98%)和19.5g 50%质量浓度的硝酸锰水溶液用水溶解为168mL溶液,分两次用喷浸法将溶液负载在获得的100g上述载体上,每次喷浸后都在120℃下干燥4小时,然后在400℃下焙烧4小时,然后用氢气逐渐升温还原,升温还原速率 为20℃/小时,最后在420℃下还原3小时,获得催化剂C-III-11。
对比例III-1
按照实施例III-8的方法制备催化剂,不同的是,使用S元素含量不同的拟薄水铝石粉体使得S元素的含量如表III-1所示,且制备载体时焙烧的温度为700℃,焙烧的时间为4h,获得催化剂D-III-1。
对比例III-2
按照实施例III-8的方法制备催化剂,不同的是,使用不含杂元素的拟薄水铝石粉体(比表面积224m 2/g,孔容0.95ml/g),获得催化剂D-III-2。
对比例III-3
按照实施例III-8的方法制备催化剂,不同的是,使用S元素含量不同的拟薄水铝石粉体使得S元素的含量如表1所示,且制备载体时焙烧的温度为500℃,焙烧的时间为4h,获得催化剂D-III-3。
测试例III-1
通过等离子体发射光谱仪分析载体和催化剂的元素组成,掺杂元素、活性金属组分和金属助剂的含量均以相对100g的基质的重量表示;通过探针吸附光谱法、BET氮吸附脱附法方法对以上制备的载体进行表征,结果如表III-1所示。
表III-1各实施例和对比例的载体的性质
Figure PCTCN2021126326-appb-000011
测试例III-2
本测试例用来说明采用本申请第III类实施方式的催化剂由1,6-己二醇临氢胺化制备1,6-己二胺的方法。
将实施例制备的催化剂分别量取100毫升装在固定床反应器中,使用氢气在220℃下活化2小时,然后降温至170℃,用氢气将系统压力升高至10MPa,然后用计量泵将氨计量后送入反应系统,经预热至150℃后进入反应器上端,用计量泵将加热熔化的1,6-己二醇送入反应器上端,氢气经气体质量流量计稳定送入,氢气∶氨∶1,6-己二醇的摩尔比为3∶10∶1,1,6-己二醇的液相体积空速为0.45h -1,在反应器进行催化胺化反应,反应温度190℃,反应压力10MPa,反应240h时对反应液取样分析,分析结果列于表III-2中。
取样分析方法为气相色谱分析,通过配制标准样品的校正因子进行校准。
以反应液中各组分的摩尔含量计算转化率和选择性,具体计算方法参照测试例I-2。
表III-2各实施例和对比例的催化剂的测试结果
Figure PCTCN2021126326-appb-000012
表格中“其它”是指含有12个碳原子的胺,如果生成量较大,较难从孔道中扩散出来,造成孔道堵塞,积碳量也随之增加,从而催化剂活性衰减较快。在考核240小时后,卸出料的催化剂经热重分析,催化剂D-III-1、D-III-2和D-III-3的积碳量是C-III-1至C-III-11催化剂的至少两倍以上。
经1000小时考核发现,催化剂C-III-1至C-III-11的催化活性下降不明显,即持续使用1000小时后,其转化率和选择性相比于240h时 并无明显降低。而催化剂D-III-1、D-III-2和D-III-3的转化率分别下降了29%、32%和35%,己二胺的选择性分别下降15.1%、12.8%和16.3%。
测试例III-3
本测试例用来说明采用本申请第III类实施方式的催化剂由乙醇临氢胺化制备乙胺的方法。
将实施例III-8制备的催化剂C-III-8量取100毫升装在固定床反应器中,使用氢气在220℃下活化2小时,然后降温至160℃,用氢气将系统压力升高至1.6MPa,然后用计量泵将氨计量后送入反应系统,经预热至135℃后进入反应器上端,用计量泵将乙醇送入反应器上端,氢气经气体质量流量计稳定送入,氢气∶氨∶乙醇的摩尔比为3∶8∶1,乙醇的液相体积空速为0.45h -1,在反应器进行催化胺化反应,反应温度170℃,反应压力1.6MPa,反应稳定后,反应液取样分析(分析条件和转化率、选择性计算方法类似测试例III-2),分析结果如表III-3所示。
表III-3测试例III-3的结果
Figure PCTCN2021126326-appb-000013
测试例III-4
本测试例用来说明采用本申请第III类实施方式的催化剂由丙酮临氢胺化制备异丙胺的方法。
将实施例III-10制备的催化剂C-III-10量取100毫升装在固定床反应器中,使用氢气在200℃下活化2小时,然后降温至145℃,用氢气将系统压力升高至1.5MPa,然后用计量泵将氨计量后送入反应系统,经预热至110℃后进入反应器上端,用计量泵将丙酮送入反应器上端,氢气经气体质量流量计稳定送入,氢气∶氨∶丙酮的摩尔比为3∶6∶1,丙酮的液相体积空速为0.4h -1,在反应器进行催化胺化反应,反应 稳定后,反应液取样分析(分析条件和转化率、选择性计算方法类似测试例III-2),分析结果如表III-4所示。
表4测试例III-4的结果
Figure PCTCN2021126326-appb-000014
实施例IV系列
以下将通过实施例IV系列对本申请的第IV类实施方式进行详细描述。以下IV系列的实施例中,拟薄水铝石粉体的干基(Al 2O 3)含量为70重量%;硅溶胶购自青岛海洋化工有限公司,型号为JN-40。
实施例IV-1
将硫酸铝法制备的拟薄水铝石粉体(比表面积288m 2/g,孔容0.91ml/g,拟薄水铝石粉体中含掺杂元素P,相对100g的以Al 2O 3计的拟薄水铝石粉体,含有P元素0.22g)使用含5vol%的硝酸的稀酸水捏合、挤成直径5mm条状,切成4mm长短,在120℃下干燥8h,然后在550℃下焙烧6h。将32.1g六水合硝酸镁(分析纯)用水溶解为85ml溶液,用喷浸法将硝酸镁水溶液负载在上述100g焙烧后的产物上,然后在100℃下干燥10h,再在820℃下焙烧5h,制成所需的载体。
将186.5g六水合硝酸钴(工业级,纯度98%)、6.83g六水合硝酸锌(分析纯)和1.16g五水合硝酸铋(分析纯)用水溶解为148mL溶液,分两次用喷浸法将该溶液负载在上述获得的载体上,每次喷浸后都在120℃下干燥4小时,然后在400℃下焙烧4小时。然后用氢气逐渐升温还原,升温还原速率为20℃/小时,最后在430℃下还原3小时,获得催化剂C-IV-1。
实施例IV-2
将硫酸铝法制备的拟薄水铝石粉体(比表面积285m 2/g,孔容0.93ml/g,拟薄水铝石粉体中含掺杂元素B,相对100g的以Al 2O 3计的拟 薄水铝石粉体,含有B元素0.53g)用含5vol%硝酸的稀酸水捏合、挤成3mm粗的三叶草形状,在120℃下干燥15h,然后在520℃下焙烧8h。将11.8g四水合硝酸钙(分析纯)用水溶解为91ml溶液,用喷浸法将硝酸钙水溶液负载在上述100g焙烧后的产物上,然后在110℃下干燥10h,再在800℃下焙烧6h,制成所需的载体。
将151.7g六水合硝酸镍(工业级,纯度98%)、6.83g六水合硝酸锌(分析纯)和1.16g五水合硝酸铋(分析纯)用水溶解为156mL溶液,分两次用喷浸法将该溶液负载在上述获得的载体上,每次喷浸后都在120℃下干燥4小时,然后在400℃下焙烧4小时。然后用氢气逐渐升温还原,升温还原速率为20℃/小时,最后在430℃下还原3小时,获得催化剂C-IV-2。
实施例IV-3
将硫酸铝法制备的拟薄水铝石粉体(比表面积285m 2/g,孔容0.9ml/g,拟薄水铝石粉体中含掺杂元素P,相对100g的以Al 2O 3计的拟薄水铝石粉体,含有P元素0.23g)用含5vol%硝酸的稀酸水捏合,混匀后挤成直径5mm条状,切成4mm长短,在120℃下干燥8h,然后在550℃下焙烧6h。将32.1g六水合硝酸镁(分析纯)用水溶解为85ml溶液,用喷浸法将硝酸镁水溶液负载在上述100g焙烧后的产物上,然后在100℃下干燥10h,再在820℃下焙烧5h,制成所需的载体。
将45.4g六水合硝酸钴(工业级,纯度98%)、6.83g六水合硝酸锌(分析纯)和1.16g五水合硝酸铋(分析纯)用水溶解为146mL溶液,分两次用喷浸法将该溶液负载在上述获得的载体上,每次喷浸后都在120℃下干燥4小时,然后在400℃下焙烧4小时。然后用氢气逐渐升温还原,升温还原速率为20℃/小时,最后在430℃下还原3小时,获得催化剂C-IV-3。
实施例IV-4
采用实施例IV-1中的方法制备载体,不同的是,将拟薄水铝石粉体与分子筛粉体(ZSM-5,南开大学催化剂厂,SiO 2/Al 2O 3=45(摩尔比))混合均匀,调整分子筛ZSM-5粉体的用量,以达到载体中源自拟薄水铝石的氧化铝含量占总载体质量的85%。
将176.4g六水合硝酸钴(工业级,纯度98%)、4.55g六水合硝酸锌(分析纯)和2.32g五水合硝酸铋(分析纯)用水溶解为178mL溶液,分两次用喷浸法将该溶液负载在上述获得的载体上,每次喷浸后都在120℃下干燥4小时,然后在400℃下焙烧4小时。然后用氢气逐渐升温还原,升温还原速率为20℃/小时,最后在430℃下还原3小时,获得催化剂C-IV-4。
实施例IV-5
将硫酸铝法制备的拟薄水铝石粉体(比表面积258m 2/g,孔容0.65ml/g,拟薄水铝石粉体中含掺杂元素P,相对100g的以Al 2O 3计的拟薄水铝石粉体,含有P元素0.18g)用含4.5vol%硝酸的稀酸水捏合、挤成4mm粗的三叶草形状,在100℃下干燥18h,然后在560℃下焙烧5h。将11.8g四水合硝酸钙(分析纯)用水溶解为73ml溶液,用喷浸法将硝酸钙水溶液负载在上述100g焙烧后的产物上,然后在120℃下干燥10h,再在970℃下焙烧6h,制成所需的载体。
将75.6g六水合硝酸钴(工业级,纯度98%)、4.55g六水合硝酸锌(分析纯)和2.32g五水合硝酸铋(分析纯)用水溶解为124mL溶液,分两次用喷浸法将该溶液负载在上述获得的载体上,每次喷浸后都在100℃下干燥10小时,然后在388℃下焙烧4小时。然后用氢气逐渐升温还原,升温还原速率为20℃/小时,最后在420℃下还原4小时,获得催化剂C-IV-5。
实施例IV-6
将硫酸铝法制备的拟薄水铝石粉体(比表面积318m 2/g,孔容0.93ml/g,拟薄水铝石粉体中含掺杂元素B,相对100g的以Al 2O 3计的拟薄水铝石粉体,含有B元素3.66g)用含5vol%硝酸的稀酸水捏合,捏合过程中添加硅溶胶(JN-40,青岛海洋化工有限公司),混匀后挤成直径3.5mm齿状球,在120℃下干燥4h,然后在630℃下焙烧5h。将7.6g硝酸钡(分析纯)用水溶解为88ml溶液,用喷浸法将硝酸钡水溶液负载在上述100g焙烧后的产物上,然后在100℃下干燥12h,再在880℃下焙烧3h,制成所需的载体。调整硅溶胶的用量,以达到载体中氧化铝质量与二氧化硅质量之比为4∶1。
将126.4g六水合硝酸镍(工业级,纯度98%)、4.55g六水合硝酸锌(分析纯)和2.32g五水合硝酸铋(分析纯)用水溶解为160mL溶液,分两次用喷浸法将该溶液负载在上述获得的载体上,每次喷浸后都在120℃下干燥4小时,然后在400℃下焙烧4小时。然后用氢气逐渐升温还原,升温还原速率为20℃/小时,最后在420℃下还原3.5小时,获得催化剂C-IV-6。
实施例IV-7
采用实施例IV-1中制备的载体。
将201.6g六水合硝酸钴(工业级,纯度98%)、6.83g六水合硝酸锌(分析纯)和1.16g五水合硝酸铋(分析纯)用水溶解为150mL溶液,分两次用喷浸法将该溶液负载在上述获得的载体上,每次喷浸后都在120℃下干燥4小时,然后在400℃下焙烧4小时。然后用氢气逐渐升温还原,升温还原速率为20℃/小时,最后在430℃下还原3小时,获得催化剂C-IV-7。
实施例IV-8
将硫酸铝法制备的拟薄水铝石粉体(比表面积290m 2/g,孔容0.78ml/g,拟薄水铝石粉体中含掺杂元素S,相对100g的以Al 2O 3计的拟薄水铝石粉体,含有S元素0.88g)用含4.5vol%硝酸的稀酸水捏合,捏合过程中添加硅溶胶,混匀后挤成4mm粗的三叶草形状,在80℃下干燥20h,然后在550℃下焙烧7h。将17.7g四水合硝酸钙(分析纯)用水溶解为84ml溶液,用喷浸法将硝酸钙水溶液负载在上述100g焙烧后的产物上,然后在120℃下干燥10h,再在900℃下焙烧4h,制成所需的载体。调整硅溶胶的用量,以达到载体中氧化铝质量与二氧化硅质量之比为86∶14。
将100.8g六水合硝酸钴(工业级,纯度98%)、2.88g六水合硝酸锌(分析纯)和3.48g五水合硝酸铋(分析纯)用水溶解为152mL溶液,分两次用喷浸法将该溶液负载在上述获得的载体上,每次喷浸后都在100℃下干燥10小时,然后在400℃下焙烧4小时。然后用氢气逐渐升温还原,升温还原速率为20℃/小时,最后在430℃下还原4小时,获得催化剂C-IV-8。
实施例IV-9
将硫酸铝法制备的拟薄水铝石粉体(比表面积320m 2/g,孔容0.95ml/g,拟薄水铝石粉体中含掺杂元素F,相对100g的以Al 2O 3计的拟薄水铝石粉体,含有F元素0.82g)用含5.2vol%硝酸的稀酸水捏合,捏合过程中添加硅溶胶,混匀后挤成3mm粗的三叶草形状,在100℃下干燥8h,然后在620℃下焙烧4h。将3.8g硝酸钡(分析纯)用水溶解为83ml溶液,用喷浸法将硝酸钡水溶液负载在上述100g焙烧后的产物上,然后在120℃下干燥8h,再在950℃下焙烧5h,制成所需的载体。调整硅溶胶的用量,以达到载体中氧化铝质量与二氧化硅质量之比为89∶11。
将176.4g六水合硝酸钴(工业级,纯度98%)、2.88g六水合硝酸锌(分析纯)和3.48g五水合硝酸铋(分析纯)用水溶解为160mL溶液,分两次用喷浸法将该溶液负载在上述获得的载体上,每次喷浸后都在110℃下干燥8小时,然后在400℃下焙烧4小时。然后用氢气逐渐升温还原,升温还原速率为20℃/小时,最后在420℃下还原4.5小时,获得催化剂C-IV-9。
实施例IV-10
将硫酸铝法制备的拟薄水铝石粉体(比表面积291m 2/g,孔容0.93ml/g,拟薄水铝石粉体中含掺杂元素S,相对100g的以Al 2O 3计的拟薄水铝石粉体,含有S元素0.95g)用含4vol%硝酸的稀酸水捏合,然后挤成3.5mm粗的三叶草形状,在100℃下干燥8h,然后在600℃下焙烧5h。将42.7g六水合硝酸镁(分析纯)用水溶解为92ml溶液,用喷浸法将硝酸镁水溶液负载在上述100g焙烧后的产物上,然后在120℃下干燥8h,再在830℃下焙烧8h,制成所需的载体。
将226.8g六水合硝酸钴(工业级,纯度98%)、2.88g六水合硝酸锌(分析纯)和4.64g五水合硝酸铋(分析纯)用水溶解为172mL溶液,分两次用喷浸法将该溶液负载在上述获得的载体上,每次喷浸后都在120℃下干燥6小时,然后在400℃下焙烧4小时。然后用氢气逐渐升温还原,升温还原速率为20℃/小时,最后在420℃下还原4.5小时,获得催化剂C-IV-10。
实施例IV-11
采用实施例IV-1中的方法制备催化剂,不同的是,采用的拟薄水铝石粉体中掺杂元素P,相对100g的以Al 2O 3计的拟薄水铝石粉体,含有P元素4.3g。获得催化剂C-IV-11。
实施例IV-12
按照实施例IV-2的方法制备催化剂,不同的是,使用的拟薄水铝石粉体不含掺杂元素,且比表面积为286m 2/g,孔容为0.93ml/g,获得催化剂C-IV-12。
实施例IV-13
按照实施例IV-2的方法制备催化剂,不同的是,第二焙烧温度为1200℃,获得催化剂C-IV-13。
对比例IV-1
按照实施例IV-5的方法制备催化剂,不同的是,将硝酸钙水溶液替换为等体积的水,且用于喷浸载体的溶液的制备方法为:将151.7g六水合硝酸镍(工业级,纯度98%)用水溶解为158mL溶液,使制得的催化剂中仅负载镍作为活性金属组分。获得催化剂D-IV-1。
对比例IV-2
按照实施例IV-3的方法制备催化剂,不同的是,用于喷浸载体的溶液的制备方法为:将45.4g六水合硝酸钴(工业级,纯度98%)和1.16g五水合硝酸铋(分析纯)用水溶解为148mL溶液。获得催化剂D-IV-2。
对比例IV-3
按照实施例IV-1的方法制备催化剂,不同的是,载体焙烧温度为将硝酸锌替换为8.5g的三水合硝酸铜,获得催化剂D-IV-3。
测试例IV-1
通过等离子体发射光谱仪分析载体和催化剂的元素组成,除载体外的元素(离子)含量均以相对100g的基质的重量表示;通过通过探针吸附光谱法、BET氮吸附脱附法方法对以上制备的载体进行表征,结果如表IV-1所示。
表IV-1各实施例和对比例的载体的性质
Figure PCTCN2021126326-appb-000015
测试例IV-2
本测试例用来说明采用本申请第IV类实施方式的催化剂由1,6-己二醇临氢胺化制备1,6-己二胺的方法。
将实施例和对比例制备的催化剂分别量取100毫升装在固定床反应器中,使用氢气在220℃下活化2小时,然后降温至172℃,用氢气将系统压力升高至12.5MPa,然后用计量泵将氨计量后送入反应系统,经预热至150℃后进入反应器上端,用计量泵将加热熔化的1,6-己二醇送入反应器上端,氢气经气体质量流量计稳定送入,氢气∶氨∶1,6-己二醇的摩尔比为3∶18∶1,1,6-己二醇的液相体积空速为0.5h -1,在反应器进行催化胺化反应,反应温度195℃,反应压力12.5MPa,反应稳定后,反应液取样分析,分析结果列于表IV-2中。
取样分析方法为气相色谱分析,通过配制标准样品的校正因子进行校准。
以反应液中各组分的摩尔含量计算转化率和选择性,具体计算方法参照测试例I-2。
表IV-2各实施例和对比例的催化剂的测试结果
Figure PCTCN2021126326-appb-000016
Figure PCTCN2021126326-appb-000017
从上表看出,催化剂D-IV-1至D-IV-3在相同工艺条件下转化率较低,说明其活性比本申请的催化剂C-IV-1至C-IV-13低;而催化剂D-IV-1至D-IV-3的己二胺选择性也比C-IV-1至C-IV-13低,其它组分的选择性反而较高,说明反应物质在催化剂D-IV-1至D-IV-3上不容易脱附,发生进一步反应生成其它副产物。
测试例IV-3
本测试例用来说明采用本申请第IV类实施方式的催化剂由乙醇临氢胺化制备乙胺的方法。
将实施例IV-3制备的催化剂C-IV-3量取100毫升装在固定床反应器中,使用氢气在220℃下活化2小时,然后降温至173℃,用氢气将系统压力升高至1.65MPa,然后用计量泵将氨计量后送入反应系统,经预热至110℃后进入反应器上端,用计量泵将乙醇送入反应器上端,氢气经气体质量流量计稳定送入,氢气∶氨∶乙醇的摩尔比为3∶5∶1,乙醇的液相体积空速为0.5h -1,在反应器进行催化胺化反应,反应温度178℃,反应压力1.6MPa,反应稳定后,反应液取样分析(分析条件和转化率、选择性计算方法类似测试例IV-2),分析结果如表IV-3所示。
表IV-3测试例IV-3的结果
Figure PCTCN2021126326-appb-000018
测试例IV-4
与测试例IV-2条件相同,分别在固定床反应器中装填催化剂C-IV-2,C-IV-9,D-IV-1,D-IV-2,D-IV-3,仅有的改变是延长了反应时间,进行了500h的试验,对比分析了反应20h的反应液(分析条件和转化率、选择性计算方法同测试例IV-2),以及反应500h后的反应液(分析条件和转化率、选择性计算方法同测试例IV-2),分析结果如表IV-4所示。
表IV-4测试例IV-4的结果
Figure PCTCN2021126326-appb-000019
在考核500小时后,催化剂C-IV-2和C-IV-9的活性和选择性变化不大,而对比催化剂D-IV-1,D-IV-2,D-IV-3的活性和选择性都表现出明显下降。表征各个催化剂的比表面积和孔容以及积碳量,发现催化剂D-IV-1、D-IV-2、D-IV-3的比表面积和孔容都下降较多,而本申请的催化剂C-IV-2和C-IV-9则基本不变(下降量在2%以下),并且催化剂D-IV-1,D-IV-2,D-IV-3积碳量也都比C-IV-2和C-IV-9多一倍以上。
测试例IV-5
本测试例用来说明采用本申请第IV类实施方式的催化剂由1,6-己二醇、环己亚胺和氨基己醇混合料制备己二胺的方法。
将实施例IV-3制备的催化剂C-IV-3量取100毫升装在固定床反应器中,使用氢气在220℃下活化2小时,然后降温至175℃,用氢气将系统压力升高至14MPa,然后用计量泵将氨计量后送入反应系统,经预热至150℃后进入反应器上端,用计量泵将53wt%1,6-己二醇、30wt%环己亚胺和17wt%6-氨基-1-己醇的混合溶液送入反应器上端,氢气经气体质量流量计稳定送入,氢气∶氨∶混合溶液中三种物质物质的量之和的摩尔比为3∶10∶1,混合溶液的液相体积空速为0.5h -1,在反应器进行催化胺化反应,反应温度180℃,反应压力14MPa,反应稳定后,反应液取样分析(分析条件和转化率、选择性计算方法同测试例IV-2),分析结果如表IV-5所示。
表IV-5测试例IV-5的结果
Figure PCTCN2021126326-appb-000020
以上详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本申请对各种可能的组合方式不再另行说明。
此外,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所发明的内容。

Claims (14)

  1. 一种适用于催化胺化合成有机胺的催化剂,包括含铝和/或硅的无机多孔载体和负载于所述载体上的活性金属组分,所述活性金属组分包括至少一种选自VIII族和IB族的金属,优选选自钴、镍、钯、铜或者它们的组合,更优选选自钴、镍或其组合,其中所述载体的L酸含量占L酸与B酸含量之和的85%以上,优选88%以上,更优选90%以上,特别优选92%以上。
  2. 根据权利要求1所述的催化剂,其中所述载体包含基质和掺杂元素,其中所述基质选自氧化铝、氧化硅、分子筛、硅藻土、硅酸铝或者它们的组合,并且
    所述掺杂元素为非金属元素,优选选自IIIA族非金属元素、VA族非金属元素、VIA族非金属元素、VIIA族非金属元素或者它们的组合且不为氯,更优选选自硼、氟、磷、硫、硒或者它们的组合;
    优选地,所述载体中的掺杂元素来自非金属酸根离子,所述非金属酸根离子优选选自硼酸根离子、氟离子、磷酸根离子、硫酸根离子、硒酸根离子或者它们的组合。
  3. 根据权利要求1或2所述的催化剂,其中所述载体具有以下特征中的至少一个:
    所述载体中孔径在7-27nm范围内的孔容占所述载体孔容的百分比大于65%,优选为70-90%,优选地孔径小于7nm的孔容占所述载体孔容的百分比为0-10%,优选为0-8%;
    所述载体中孔径小于7.5nm的孔容占所述载体孔容的百分比低于20%,优选为5-17%,孔径小于9nm的孔容占所述载体孔容的百分比低于40%,孔径大于27nm的孔容占所述载体孔容的百分比低于5%,优选为0.5-5%,优选地,孔径大于等于7.5nm且小于9nm的孔容占所述载体孔容的百分比为5-17%,孔径大于等于9nm且小于等于27nm的孔容占所述载体孔容的百分比为61-89.5%;
    所述载体的氨吸附量为0.25-0.65mmol/g,优选为0.3-0.6mmol/g,更优选为0.3-0.5mmol/g;
    所述载体中氧化铝的含量占基质总量的65重量%以上,优选70重量%以上,更优选75重量%以上;
    所述掺杂元素的含量占基质总量的0.05-6重量%,优选0.05-5重量%,更优选0.05-4.5重量%,特别优选0.07-4重量%;
    所述载体的比表面积为100-220m 2/g,优选105-210m 2/g,更优选110-210m 2/g,特别优选120-210m 2/g;
    所述载体的孔容为0.4-1.1ml/g,优选0.43-1.1ml/g,更优选0.45-1.1ml/g,特别优选为0.45-1ml/g;以及
    所述载体的等电点为3-6,优选为3.5-5.5。
  4. 根据权利要求1-3中任一项所述的催化剂,其中相对于每100g的基质,所述活性金属组分的含量为5-45g,优选为8-44g,更优选为10-38g,特别优选为15-37g,优选地所述活性金属组分的晶粒尺寸小于10nm,更优选为3-8nm。
  5. 根据权利要求1-4中任一项所述的催化剂,还包括负载于所述载体上的金属助剂,所述金属助剂包含至少一种选自VIB族、VIIB族、IB族、IIB族和镧系元素的金属,优选包括至少一种选自Cr、Mo、W、Mn、Re、Cu、Ag、Au、Zn、La和Ce的金属;
    优选地,相对于每100克基质,所述金属助剂的含量为0-10g,优选为0.1-10g,更优选为0.5-8g。
  6. 根据权利要求5所述的催化剂,其中:
    所述金属助剂包括至少一种VIIB族金属与至少一种IB族金属的组合,其中,以金属元素计,VIIB族金属与IB族金属的重量比为0.05-15∶1,优选为0.1-12∶1;或者
    所述金属助剂包括至少一种VIIB族金属与至少一种IIB族金属的组合,其中,以金属元素计,VIIB族金属与IIB族金属的重量比为0.2-20∶1,优选为0.3-6∶1;或者
    所述金属助剂包括至少一种VIB族金属、至少一种IB族金属和至少一种IIB族金属的组合,其中,以金属元素计,VIB族金属、IB族金属和IIB族金属的重量比为0.1-10∶0.1-10∶1,优选为0.2-8∶0.2-8∶1,
    优选地,所述VIIB族金属选自锰、铼或其组合,所述IB族金属选自铜、银、金或其组合,所述IIB族金属为锌,和/或所述VIB族金属选自钼、钨或其组合。
  7. 根据权利要求1-4中任一项所述的催化剂,还包括负载于所述 载体上的金属助剂,所述金属助剂为至少一种IIA族金属、至少一种IIB族金属和至少一种VA族金属的组合,
    优选地,相对于每100克的基质,所述金属助剂的含量为0.1-10g,优选为0.5-6g;
    优选地,以金属元素计,所述金属助剂中IIA族金属、IIB族金属和VA族金属的重量比为0.1-10∶0.1-10∶1,优选为0.2-8∶0.2-8∶1;
    优选地,所述IIA族金属选自镁、钙、钡或者它们的组合,所述IIB族金属为锌,和/或所述VA族金属为铋。
  8. 制备权利要求1-7中任一项所述的催化剂的方法,包括如下步骤:
    1)提供含铝和/或硅的无机多孔载体,所述载体的L酸含量占L酸与B酸含量之和的85%以上,优选88%以上,更优选90%以上,特别优选92%以上;
    2)在所述载体上负载所述活性金属组分和可选的金属助剂;以及3)对步骤2)所得材料进行热处理和可选的还原处理,得到所述催化剂,
    优选地,所述热处理包括焙烧、或者干燥和焙烧的组合。
  9. 根据权利要求8所述的方法,其中步骤1)所述的“提供含铝和/或硅的无机多孔载体”包括将含有掺杂元素与基质或其前驱体的混合物依次进行成型、干燥和焙烧得到所述载体,
    其中,所述基质选自氧化铝、氧化硅、分子筛、硅藻土、硅酸铝或者它们的组合,优选地,所述氧化铝的前驱体为具有250-400m 2/g、优选255-360m 2/g、更优选255-340m 2/g、特别优选260-330m 2/g的比表面积和0.5-1.3ml、优选0.75-1.25ml/g、更优选0.78-1.2ml/g,特别优选0.78-1.1ml/g的孔容的拟薄水铝石;
    所述掺杂元素为非金属元素,优选选自IIIA族非金属元素、VA族非金属元素、VIA族非金属元素、VIIA族非金属元素或者它们的组合且不为氯,优选选自硼、氟、磷、硫、硒或者它们的组合,
    优选地,步骤1)所述干燥的条件包括:温度为80-150℃,时间为6-20h;以及
    优选地,步骤1)所述焙烧的条件包括:温度为500-1120℃,例如500-650℃,优选700-1100℃,更优选800-1050℃,时间为2-20h。
  10. 根据权利要求9所述的方法,其中使用载体改性剂来提供所述掺杂元素,所述载体改性剂包含至少一种能够提供非金属酸根离子的化合物,例如包含非金属酸根的无机酸和/或无机盐,所述非金属酸根离子优选选自硼酸根离子、氟离子、磷酸根离子、硫酸根离子、硒酸根离子或者它们的组合;
    优选地,所述载体改性剂选自硼酸、硼酸镍、硼酸钴、硼酸钾、硼酸铵、硼酸镁、氟化钾、氟化镁、氟化钴、氟化镍、氢氟酸、氟化氨、磷酸、磷酸铝、磷酸钾、磷酸二氢钾、磷酸氢钾、磷酸镁、磷酸钙、磷酸氨、硫酸、硫酸钴、硫酸镍、硫酸铝、硫酸钙、硫酸钾、硫酸镁、磷酸锶、硫酸锶、硒酸或者它们的组合。
  11. 根据权利要求8-10中任一项所述的方法,其中步骤2)的所述负载包括用包含所述活性金属组分的前驱体和可选的金属助剂的前驱体的溶液浸渍所述载体,优选地所述浸渍液的pH值在3.5-5.5范围内。
  12. 一种制备有机胺的方法,包括:在氢气存在下,使胺化原料、胺化试剂与权利要求1-7中任一项所述的催化剂接触进行胺化反应得到所述有机胺,
    其中,所述胺化原料选自醇、酮、醇胺、醛或者它们的组合,优选选自C2-20的醇、C3-20的酮、C2-20的醇胺、C2-20的醛或者它们的组合,更优选选自乙醇、乙醛、正丙醇、丙醛、异丙醇、正丁醇、丁醛、异丁醇、异丁醛、2-乙基己醇、2-乙基己醛、辛醇、辛醛、十二烷醇、十二烷醛、十六烷醇、十六烷醛、环戊醇、环己醇、环辛醇、环十二烷醇、苯甲醇、苯甲醛、苯乙醇、苯乙醛、1,4-丁二醇、1,4-丁二醛、1,5-戊二醇、1,5-戊二醛、1,6-己二醇、1,6-己二醛、1,8-辛二醇、1,8-辛二醛、1,12-十二碳二醇、1,12-十二碳二醛、乙醇胺、丙醇胺、异丙醇胺、6-氨基己醇、二乙醇胺、二异丙醇胺、二甲基乙醇胺、丙酮、乙二醇、1,3-丙二醇或者它们的组合;
    所述胺化试剂选自氨、伯胺、仲胺或者它们的组合,优选选自氨、C1-12的伯胺、C2-12的仲胺或者它们的组合,更优选选自氨、一甲胺、二甲胺、甲基乙基胺、一乙胺、二乙胺或者它们的组合。
  13. 根据权利要求12所述的方法,其中,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-6∶2-35∶1、优选1-6∶2-33∶ 1、更优选1-5∶3-33∶1,温度为105-230℃,优选110-220℃、更优选110-210℃,压力为0.7-25MPa、优选1-25MPa、更优选1-22MPa、特别优选1-17MPa,胺化原料的液相体积空速为0.06-1m 3/(m 3·h)。
  14. 根据权利要求13所述的方法,其中:
    所述胺化原料为一元醇时,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为优选1-4∶2-9∶1、更优选1-4∶2-8∶1,温度为130-210℃、优选130-208℃、更优选130-200℃,压力为0.8-3.5MPa、优选1-2.5MPa,胺化原料的液相体积空速为0.1-0.8m 3/(m 3·h);
    所述胺化原料为酮或醛时,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-4∶2-6∶1、优选1-4∶2-5∶1,温度为105-180℃、优选为110-170℃、更优选为110-160℃,压力为0.7-2.5MPa、优选为1-2.5MPa、更优选为1-2MPa,胺化原料的液相体积空速为0.1-1m 3/(m 3·h)、优选0.1-0.8m 3/(m 3·h);
    所述胺化原料为醇胺时,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为1-4∶3-23∶1,优选为1-4∶3-20∶1,更优选为1-4∶3-10∶1,温度为130-200℃,压力为1-16MPa,优选1-13MPa,更优选1-11MPa,胺化原料的液相体积空速为0.06-0.8m 3/(m 3·h);
    所述胺化原料为二元醇时,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为0.3-5∶2-35∶1、优选1-4∶3-35∶1、更优选1-4∶3-33∶1,特别优选1-4∶3-32∶1,温度为130-230℃、优选130-220℃、更优选130-210℃,压力为1-25MPa、优选1-22MPa、更优选1-17MPa,胺化原料的液相体积空速为0.1-0.9m 3/(m 3·h)、优选0.1-0.8m 3/(m 3·h),或者
    所述胺化原料为1,6-己二醇、环己亚胺和6-氨基-1-己醇的混合物时,所述胺化反应的条件包括:氢气、胺化试剂和胺化原料的摩尔比为0.3-4∶3-35∶1、优选1-4∶3-33∶1、更优选1-4∶3-32∶1,温度130-230℃,优选130-220℃、更优选130-210℃,压力为1-22MPa,优选1-17MPa,胺化原料的液相体积空速为0.1-0.9m 3/(m 3·h)、优选0.1-0.8m 3/(m 3·h)。
PCT/CN2021/126326 2020-10-30 2021-10-26 胺化催化剂及其制备和应用 WO2022089404A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA3200413A CA3200413A1 (en) 2020-10-30 2021-10-26 Amination catalyst and preparation and use thereof
JP2023526287A JP2023547223A (ja) 2020-10-30 2021-10-26 アミノ化触媒、ならびに調製およびその使用
EP21885131.9A EP4238647A1 (en) 2020-10-30 2021-10-26 Amination catalyst and preparation and use thereof
US18/034,101 US20230381757A1 (en) 2020-10-30 2021-10-26 Amination catalyst and preparation and use thereof
KR1020237018305A KR20230098302A (ko) 2020-10-30 2021-10-26 아미노화 촉매 및 이의 제조 및 용도

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202011187667.9A CN114433087A (zh) 2020-10-30 2020-10-30 具有经醇临氢氨化制备胺功能的催化剂和载体及其制备方法和应用
CN202011192987.3A CN114433090B (zh) 2020-10-30 2020-10-30 具有以醇为原料催化合成胺功能的催化剂和载体及其制备方法和应用
CN202011187657.5 2020-10-30
CN202011188178.5 2020-10-30
CN202011192987.3 2020-10-30
CN202011188178.5A CN114433106B (zh) 2020-10-30 2020-10-30 具有由醇制备胺催化功能的催化剂和载体及其制备方法和应用
CN202011187667.9 2020-10-30
CN202011187657.5A CN114433086B (zh) 2020-10-30 2020-10-30 具有催化醇临氢氨化合成有机胺功能的催化剂和载体及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2022089404A1 true WO2022089404A1 (zh) 2022-05-05

Family

ID=81381529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126326 WO2022089404A1 (zh) 2020-10-30 2021-10-26 胺化催化剂及其制备和应用

Country Status (7)

Country Link
US (1) US20230381757A1 (zh)
EP (1) EP4238647A1 (zh)
JP (1) JP2023547223A (zh)
KR (1) KR20230098302A (zh)
CA (1) CA3200413A1 (zh)
TW (1) TW202216289A (zh)
WO (1) WO2022089404A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114797880A (zh) * 2022-06-23 2022-07-29 北京弗莱明科技有限公司 一种复合金属氧化物催化剂及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101569862A (zh) * 2008-04-30 2009-11-04 中国石油化工股份有限公司 低级脂肪胺催化剂
CN102658162A (zh) 2012-04-13 2012-09-12 中国科学院大连化学物理研究所 一种用于合成乙撑胺的催化剂及制备乙撑胺的方法
KR20120103323A (ko) * 2011-03-10 2012-09-19 한국화학연구원 알코올의 환원성 아민화에 의한 알킬아민 제조용 촉매

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101569862A (zh) * 2008-04-30 2009-11-04 中国石油化工股份有限公司 低级脂肪胺催化剂
KR20120103323A (ko) * 2011-03-10 2012-09-19 한국화학연구원 알코올의 환원성 아민화에 의한 알킬아민 제조용 촉매
CN102658162A (zh) 2012-04-13 2012-09-12 中国科学院大连化学物理研究所 一种用于合成乙撑胺的催化剂及制备乙撑胺的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LU YANXIN QIAN CHAO LIU JIANQIN CHEN XINZHI: "Synthesis of Cyclohexylamine with CuO/NiO/γ-Al2O3 Catalyst", CHEMICAL REACTION ENGINEERING AND TECHNOLOGY, vol. 20, no. 2, 25 June 2004 (2004-06-25), CN, pages 134 - 138, XP055926571, ISSN: 1001-7631 *
MA JUN, SHEN JIANPING AND JIANG DAZHEN: "Catalytic Behaviour of Amination of C2H5OH with NH3 over β Zeolite", PETROCHEMICAL TECHNOLOGY, vol. 22, no. 9, 28 September 1993 (1993-09-28), pages 571 - 575, XP055926577 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114797880A (zh) * 2022-06-23 2022-07-29 北京弗莱明科技有限公司 一种复合金属氧化物催化剂及其制备方法和应用

Also Published As

Publication number Publication date
KR20230098302A (ko) 2023-07-03
US20230381757A1 (en) 2023-11-30
EP4238647A1 (en) 2023-09-06
JP2023547223A (ja) 2023-11-09
TW202216289A (zh) 2022-05-01
CA3200413A1 (en) 2022-05-05

Similar Documents

Publication Publication Date Title
CN107983400B (zh) 还原胺化催化剂及制备方法
RU2729070C2 (ru) Способ получения катализатора аммоксидирования и способ получения акрилонитрила
JPH02233143A (ja) アルコールの水素添加アミノ化の触媒
WO2018043007A1 (ja) 触媒の製造方法、及びアクリロニトリルの製造方法
CN107708858A (zh) 流化床氨氧化反应催化剂及丙烯腈的制造方法
JP6118016B2 (ja) アンモ酸化用触媒及びこれを用いたアクリロニトリルの製造方法
WO2017130909A1 (ja) 流動床アンモ酸化反応触媒及びアクリロニトリルの製造方法
EP3738670A1 (en) Catalyst, method for producing same, and method for producing diene compound using said catalyst
WO2022089404A1 (zh) 胺化催化剂及其制备和应用
EP2098288A1 (en) Catalyst for producing acrylonitrile and process for producing acrlyonitrile
WO2022089425A1 (zh) 胺化催化剂及其制备和应用
JP6914114B2 (ja) 金属酸化物触媒及びその製造方法ならびにそれを用いたアクリロニトリルの製造方法
CN114433087A (zh) 具有经醇临氢氨化制备胺功能的催化剂和载体及其制备方法和应用
CN114433090B (zh) 具有以醇为原料催化合成胺功能的催化剂和载体及其制备方法和应用
CN114433086B (zh) 具有催化醇临氢氨化合成有机胺功能的催化剂和载体及其制备方法和应用
CN104144918B (zh) 二乙醇胺的还原胺化和所生成的产物混合物
JP6751608B2 (ja) アセトアルデヒド合成用触媒、アセトアルデヒドの製造装置及びアセトアルデヒドの製造方法
CN114433088B (zh) 具有催化醇临氢氨化生成有机胺功能的催化剂和载体及其制备方法和应用
EP3741457A1 (en) Catalyst and method for producing diene compound using said catalyst
CN114433106B (zh) 具有由醇制备胺催化功能的催化剂和载体及其制备方法和应用
CN114433121B (zh) 具有催化氨化制备胺功能的催化剂和载体及其制备方法和应用
CN114433122B (zh) 具有催化醇临氢氨化功能的催化剂和载体及其制备方法和应用
CN114539071B (zh) 一种正己醇胺化反应制正己胺的方法
CN114433064B (zh) 由羟乙基乙二胺制备哌嗪和乙二胺的方法
KR101648283B1 (ko) 아크릴로니트릴의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885131

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18034101

Country of ref document: US

ENP Entry into the national phase

Ref document number: 3200413

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2023526287

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237018305

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021885131

Country of ref document: EP

Effective date: 20230530